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1 Abstract

Memory normally declines with ageing and these age-related cognitive changes are
associated with changes in brain structure. Episodic memory retrieval has been widely
studied during ageing, whereas learning has received less attention. Here we examined the
neural correlates of episodic learning rate in ageing. Our study sample consisted of 982
cognitively healthy female and male older participants from the Vallecas Project cohort,
without a clinical diagnosis of mild cognitive impairment or dementia. The learning rate

across the three consecutive recall trials of the verbal memory task (Free and Cued
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Selective Reminding Test) recall trials was used as a predictor of grey matter (GM) using

=
o

voxel-based morphometry, and WM microstructure using tract-based spatial statistics on
11 fractional anisotropy (FA) and mean diffusivity (MD) measures. Immediate Recall improved
12 by 1.4 items per trial on average, and this episodic learning rate was faster in women and
13 negatively associated with age. Structurally, hippocampal and anterior thalamic GM volume
14  correlated positively with learning rate. Learning also correlated with the integrity of WM
15  microstructure (high FA and low MD) in an extensive network of tracts including bilateral
16  anterior thalamic radiation, fornix, and long-range tracts. These results suggest that episodic
17 learning rate is associated with key anatomical structures for memory functioning, motivating
18 further exploration of the differential diagnostic properties between episodic learning rate and

19 retrieval in ageing.
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22 Introduction

23  Ageing is accompanied by a decline in cognition, most characteristically in episodic memory
24  performance (Glisky, 2007; Tromp et al., 2015), the ability to remember personal
25 experiences. Episodic memory impairments in ageing can manifest in different ways
26  depending on the studied phase (i.e., encoding, consolidation, or retrieval process). It is
27  difficult to study these phases independently in behavioural studies, although previous work
28 has reported that distinct processes may be affected unequally during ageing. For example,
29 more prominent deficits have been found for encoding relative to retrieval in older adults
30 (Friedman et al., 2007; Morcom et al, 2003). Furthermore, exploring the neural
31 underpinnings of these various manifestations (e.g., learning versus retention) could inform
32 dissociations between normal age-related decline and decline driven by neurodegenerative
33 diseases such as dementia. Memory decline in ageing is often measured in terms of
34  retention. However, impairments could also be driven by a diminished ability to learn
35 information over a period of time, rather than to retrieve it. We therefore aimed to elucidate

36  the structural brain properties underlying episodic learning rate in ageing.

37 Ageing has been associated with a global reduction in grey matter (GM) volume (Farokhian
38 etal, 2017; Grieve et al., 2007), although to different extents across brain regions (Cox et
39 al., 2018; Resnick et al., 2003). Numerous studies have found a specific GM volume loss in
40 prefrontal, temporal and parietal cortices (Cox et al., 2021; Elliott, 2020), associated with
41  general cognitive and memory-specific decline (Cox et al., 2021; Fjell and Walhovd, 2010;
42  Gorbach et al., 2017). White matter (WM) age-related differences in fractional anisotropy
43 (FA) and mean diffusivity (MD) have also been reported (Bennett et al., 2010; Fjell and
44  Walhovd, 2010; Madden and Parks, 2017). FA and MD are negatively correlated such that
45  reduced WM integrity is indexed by a decrease in FA and an increase in MD. Like GM, age-
46 related WM effects are apparent throughout the brain (Farokhian et al., 2017; Grieve et al.,

47  2007), although with greater effects in anterior than posterior tracts (Bennett et al., 2010).


https://doi.org/10.1101/2022.05.03.490431
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.03.490431; this version posted September 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

48  Whilst these structural differences contribute to our understanding of brain ageing, it is vital

49  to also consider their cognitive manifestations.

50 A commonly observed form of age-related cognitive decline is impaired memory, which has
51 been associated with reduced hippocampal volume (Gorbach et al., 2017; Hedden et al.,
52  2016; Persson et al.,, 2012), as well as with damage to the microstructure of frontal and
53 temporal WM tracts (de Mooij et al., 2018; Kennedy and Raz, 2009; Rizvi et al., 2020), and
54  specifically limbic tracts (Bennett et al., 2015). Furthermore, recognition performance on
55  neuropsychological episodic memory tests has been shown to correlate with FA and MD
56  measures in the fornix, cingulum, and superior and inferior longitudinal fasciculi (Sasson et
57 al., 2013). However, other studies have not found correlations between WM microstructure
58 and episodic retrieval in ageing (Gorbach et al., 2017; Laukka et al., 2013; Salami et al.,

59  2012).

60 Memory performance is usually quantified by the ability to recognise or recall information
61 correctly, a retrieval impairment could be caused by a reduced ability to encode or learn
62 information (Boujut and Clarys, 2016; Cadar et al., 2018). Encoding, which is potentially
63 dissociable from retrieval processes (Bennett et al., 2015; Kwok and Buckley, 2010), has
64  been shown to underlie several memory deficits observed in ageing (Grady, 2012). Whilst
65 learning rate is part of the encoding process, in the current context it specifically refers to an
66 improvement in learning over time (or repetitions). Indeed, there is evidence for reduced
67 error-driven (Nassar et al.,, 2016) and probabilistic learning rates (Herff et al., 2019;
68 Samanez-Larkin et al., 2012) in older adults, but evidence for similar deficits in episodic

69 learning rate is lacking.

70 A potential way to probe episodic learning rate is through the Free and Cued Selective
71 Reminding Test (FCSRT). The FCSRT is one of the most commonly used free-recall
72  paradigms for episodic memory assessment, including immediate and delayed free- and

73  cued-recall (Buschke, 1984). Worse recall performance of cognitively normal older adults on
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74  the FCSRT has been associated with reduced hippocampal GM volume (Zammit et al.,
75  2017), reduced fornix FA (Hartopp et al., 2019; Metzler-Baddeley et al., 2011) and increased
76  frontal MD (Nicolas et al., 2020). In addition to such retrieval effects, using the immediate
77 free recall components across three consecutive trials, the FCSRT enables investigating
78  episode learning by examining how many additional words are successfully recalled on each

79  trial.

80 We investigated whether the learning rate in FCSRT is associated with age, as well as its
81 neural manifestation in GM volume and WM tract microstructure. In a large cross-sectional
82 cohort of healthy older adults, we first calculated the learning rate across the three
83  consecutive FCSRT trials and tested for an association with age. To examine brain-cognition
84  associations, we used learning rate as a predictor to examine 1) GM volume using voxel-
85  based morphometry (VBM), and 2) WM microstructure using tract-based spatial statistics on
86 FA and MD measures. Given the critical role of the hippocampus in episodic memory and its
87  correlation with structural changes in ageing, we hypothesised that hippocampal GM volume

88 and associated WM limbic tract microstructure would correlate with learning rate.

89 Methods

90 Participants. All participants in this study were part of the Vallecas Project, a single-centre
91 longitudinal study of community-dwelling volunteers aged 69-86 without any cognitive or
92 psychiatric disorder that compromised their daily functioning at the time of recruitment.
93 Inclusion and exclusion criteria have been further described elsewhere (Olazaran et al.,
94  2015). From this cohort, data from the baseline visit of 982 cognitively normal participants
95 (mean age = 74.8, SD = 3.9, 637 (64.9%) females) were included in the current study. Any
96 subject with a diagnosis of mild cognitive impairment or Alzheimer’s disease at this first visit
97 was excluded. All participants provided written informed consent and the Vallecas Project

98 was approved by the Ethics committee of the Instituto de Salud Carlos Ill.
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99  Neuropsychological assessment. Participants completed a battery of neuropsychological
100 assessments as part of the Vallecas Project protocol. In this study, we report the total score
101  of the Mini Mental State Examination (MMSE; Folstein et al., 1975) and we mainly focused
102 on the Free and Cued Selective Reminding Test (FCSRT; Buschke, 1984), assessing
103 learning and retention of verbal memory, with immediate and delayed recall components.
104 The test was administered using standard procedures (Pefia-Casanova et al., 2009).
105 Participants were presented with cards containing four words and asked to identify the word
106  corresponding to a specific semantic category, going through all four words, on four different
107 cards (16 words in total). The words presented are not the most obvious member of each
108 semantic category. Following the presentation phase, participants were asked to recall as
109 many words as possible in three consecutive recall trials each one followed by 20 seconds
110 of interference counting backwards (Figure 1A). For each trial, participants were asked to
111  freely recall as many words as possible with a time limit of 90 seconds, then examiners
112 provided the semantic category clue for the forgotten items. These three free and cued
113 recalls constitute the three immediate recall trials of the task. This immediate recall phase is
114  followed by a 30-minute delay, after which the delayed phase of the test starts. Participants
115 were asked on a single trial to freely recall as many words as possible otherwise cues were
116 provided (Figure 1A). To assess the learning rate across trials, we fit a linear mixed-effects
117 model of the number of items freely recalled in each immediate trial, as a function of the
118 recall trial (first, second, and third) using the Ime4 package in R 4.0.2 (https://www.r-
119 project.org/). The model also included a random slope of the recall trial, and a random
120 intercept per participant, capturing inter-individual variability in learning rate (across the three
121 trials). The learning rate coefficient for each participant was extracted using the coef()
122  function for subsequent analyses. Next, we built a multiple regression model where the
123 learning rate was the dependent variable, sex, age and level of education were the
124  predictors and the delayed free recall score of the FCSRT was included as a covariate to

125 rule out the retrieval phase of the memory process. Extraction and plotting of the effects
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126  reported below were conducted using the effects (Fox, 2003) and ggplot2 (Wickham, 2009)

127 packagesin R.

128 MRI Data acquisition. Images were acquired using a 3T MRI (Signa HDxt GE) with a phased
129 array eight-channel head coil. T1-weighted images (3D fast spoiled gradient echo with
130 inversion recovery preparation) were collected using a repetition time (TR) of 10ms, echo
131 time (TE) of 4.5ms, field of view (FOV) of 240mm and a matrix size of 288x288 with slice
132  thickness of 1mm, yielding a voxel size of 0.5 x 0.5 x 1 mm3. Diffusion-weighted images
133  were single-shot spin echo echo-planar imaging (SE-EPI), with TR 9200ms, TE 80ms, b-
134  value 800s/mm2 and 21 gradient directions, FOV 240mm and matrix size 128 x 128 with

135 slice thickness of 3mm.

136 Grey matter VBM. The analysis was carried out in SPM12 (version r6225;
137  https://www fil.ion.ucl.ac.uk/spm). T1l-weighted images were segmented into grey matter,
138 white matter and cerebrospinal fluid and then aligned and normalised to MNI space using
139 the DARTEL algorithm (Ashburner, 2007). Prior to statistical modelling, the normalised
140 images were smoothed using a 6mm FWHM Gaussian kernel. The pre-processed grey
141  matter maps were entered into a general linear model (GLM) with learning rate from the
142 memory task as the predictor of interest, and total intracranial volume (TIV), sex, and the
143 delayed free recall score of the FCSRT as covariates. Age and education were not used in
144  the model as additional covariates since FCSRT delayed free recall is sensitive to the effects
145 of age and level of education. Nonetheless, to ensure the model is capturing variance
146  associated with these variables we devised a second model without FCSRT delayed free
147  recall and including TIV, sex, age and education as covariates and the same results were
148 obtained (see Supplementary Materials). We conducted whole-brain analyses using a
149  threshold-free cluster enhancement (TFCE) approach with 5000 permutations and default
150 parameters (E = 0.5 and H = 2) using the TFCE tool (version r223) for CAT12 toolbox in
151 SPM (http://dbm.neuro.uni-jena.de/tfce). Therefore, our analyses fully correct for mass-

152 univariate testing (and associated multiple-comparisons problem) by employing a whole-
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153  brain FWE correction. Furthermore, we used the TFCE approach to overcome cluster-based
154 inference issues. The AAL3 atlas neuroanatomical labels were used to describe
155 neuroanatomical loci (Rolls et al., 2020) and Mango software was used to produce the figure
156  (http://rii.uthscsa.edu/mango/). These analyses assessed which regions were positively
157 associated with the immediate recall learning rate. Significant results are reported at a

158 family-wise error FWE) corrected level of p < 0.05.

159 White matter tract-based spatial statistics (TBSS). Of the 982 participants, seven were
160 excluded as they did not have diffusion data. For preprocessing these images, the FSL
161 toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki) was used for motion and eddy current correction,
162 the extraction of non-brain voxels and, lastly, the calculation of voxel-wise diffusion maps
163 (FA and MD) for each participant. Individual FA and MD maps were then used in the FSL
164 TBSS pipeline (http:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/ TBSS/UserGuider; detailed methods
165 described by Smith et al. (2006)). The general outline of the process is: 1) FA individual
166 maps were non-linearly registered to standard space (FMRIB58_FA template) (Andersson et
167 al., 2007). 2) A mean FA image was created by averaging all co-registered FA maps. 3)
168 Individually aligned images were projected onto the mean FA skeleton—representing the
169 centers of all tracts common to the study sample—and skeletonised images were used for
170 voxel-wise analysis. Diffusivity maps for MD were generated by applying the same steps
171 detailed above. The same GLM design matrix as the VBM analysis was used along with the
172  TFCE approach with 5000 permutations (default parameters E = 0.5 and H = 2). Significant
173 results are reported at a family-wise error (FWE) corrected level of p < 0.05. To visualise our
174  TBSS results we used the multimodal analysis and visualisation tool (MMVT; Felsenstein et
175 al., 2019). The pipeline follows these steps: 1) Binary masking: all the voxels in the TBSS
176  volume below the threshold (0.95) were set to zero. 2) Outlier voxels removal using the
177  Open3D python package (Zhou et al., 2018). 3) Smoothing the volumetric data using a 3D
178 Gaussian filter (Virtanen et al., 2020). 4) Surface creation from the volume’s TBSS surfaces

179 using the marching cubes algorithm (Lorensen and Cline, 1987). For that, we re-calculate
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180 the threshold to give us the same number of voxels after the smoothing step. 5) Translation

181 for the surfaces’ vertices coordinates. 6) Projection of the volumetric data on the surfaces.

182 Results

183 Memory and neuropsychological performance

184 On average, across three trials, participants correctly remembered 7.9 items (SD = 2.6).
185 When looking at individual trials, performance improved as trials progressed, reflecting a
186 positive episodic learning rate (see Table 1 for number of items recalled, and Figure 1B for
187 learning rates). Our linear model predicting the learning rate as a function of age, sex, and
188 level of education revealed significant effects of the three predictors after correcting for
189 FCSRT delayed free recall score. Learning rate and delayed free recall FCSRT were
190 positively correlated (Pearson’'s r = 0.7; p < 2.2x10-16). Age had a negative effect on
191 learning rate (F(1,965) = 10.45, p = 0.001) (Figure 1C), sex also had an effect (F(1,965) =
192 4.66, p = 0.031) and being a woman was positively associated with learning rate (Figure
193 1D). Finally, having a higher level of education was positively associated with learning rate
194  (F(3,965) = 5.17 , p < 0.002) (Figure 1E). There was no significant interaction between the
195 three predictors (age, sex and years of education).

196
197

Total Women Men

sample
(n=637) [ (n=2345)

(n=982)
Mean Mean

Mean (SD) (SD) (SD)

Demographics
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Age, years 74.8 (3.9) 74.8 (3.9) [ 74.8(3.9)

Levels of education, count (%) Less than primary 185 (18.8) 137 (21.5) | 48 (13.9)
Primary 295 (30.0) 222 (34.9) | 73 (21.1)
Secondary 245 (24.9) 151 (23.7) | 94 (27.2)
Higher education 257 (26.2) 127 (19.9) | 130 (37.7)

Neuropsychological performance

MMSE, total score 28.6 (1.6) 28.6 (1.6) | 28.7 (1.4)
Trial 1 immediate free recall FCSRT, items recalled 6.5 (2.1) 6.7 (2.1) 6.3 (2.1)
Trial 2 immediate free recall FCSRT, items recalled 7.9 (2.4) 7.9 (2.4) 7.8 (2.4)
Trial 3 immediate free recall FCSRT, items recalled 9.2 (2.5) 9.4 (2.6) 9.0 (2.6)
Learning rate immediate free recall FCSRT, items | 1.4(0.3) 1.4 (0.3) 1.3(0.3)
recalled/trial
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198
199
200

201

202

Delayed free recall FCSRT, items recalled

9.4 (2.6)

9.5(2.7)

9.3 (2.6)

Table 1. Demographic and neuropsychological profile of the total sample and split by

sex. MMSE: Mini Mental State Examination total score, FCSRT: Free and Cued Selective

Reminding Test.
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203 Figure 1. Learning rate across FCSRT trials is related to age, sex and level of
204  education. A Diagram of the FCSRT protocol used to assess memory in this study in which
205 the learning rate is calculated from the free recall of the three immediate trials (blue). B
206 Mean and individual learning rates across the three free immediate recall FCSRT trials. After
207  controlling for the rest of the model predictors, C learning rate decreases with age, D
208 females learn faster than males and E level of education is positively associated with
209 learning rate. Error bars represent 95% confidence intervals.

210  Grey matter volume (VBM)

211  We found a positive correlation between episodic learning rate and grey matter volume in

212  the bilateral hippocampus, with more pronounced effects on the left side and the left superior
213 temporal gyrus (Figure 2A, Supplementary Figure 1), and the right anterior thalamic nucleus
214  with some extension to adjacent nuclei (right ventroanterior and ventrolateral thalamic nuclei;

215  Figure 2B, Supplementary Table 1, Supplementary Figure 1).
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216

217 Figure 2. Grey matter volume correlates with episodic learning rate in older adults.
218 The positive correlation has been overlaid on a canonical T1 image (thresholded at p < 0.05
219 FWE-corr) to show a significant effect in A) hippocampus bilaterally and left superior
220 temporal gyrus and B) right anterior (red) and ventroanterior (green) (thalamic ROls in the
221 inset come from the AAL3 atlas (Rolls et al., 2020)). The coordinates of the sections are
222  givenin mm. L: left, R: right, A: anterior, P: posterior.

223

224 White matter microstructure (TBSS)

225  We first examined FA as a marker of WM integrity. We found a bilateral network of temporal,
226 parietal and occipital tracts showing a positive association with episodic learning rate.

227  Among tracts showing significant positive correlations were the bilateral anterior thalamic
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228 radiation (ATR), fornix, inferior fronto-occipital fasciculus (IFOF), inferior longitudinal
229 fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinate (Figure 3A-B,
230 Supplementary Table 2, Supplementary Figure 2). Next, we examined MD and found a
231 negative association between a similar network of bilateral tracts and FCSRT learning rate,
232 including bilateral ATR, corticospinal tract, forceps major and minor, cingulum (cingulate),
233 IFOF, ILF, SLF, uncinate and fornix (Figure 3C-D, Supplementary Figure 2, Supplementary

234  Table 2).

235

-
=
m
(=]
=]
|

=
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o
o
@
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236

237  Figure 3. Extensive network of white matter microstructure integrity is related to
238 episodic learning rate in older adults. A. Positive correlation between FA and learning
239 rate (warm colours; p < 0.05 FWE-corr). B. FA effects overlaid on the fornix. C. Negative
240  correlation between MD and learning rate (cold colours; p < 0.05 FWE-corr). D. MD effect
241  overlaid on the fornix.

242

243  Discussion

244 Our results show that women and individuals with more years of formal education had a
245  faster episodic learning rate, that it declined with age, and that this rate was associated with

246  neuroanatomical structural properties. We found a positive correlation between GM volume
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247  and episodic learning rate, where participants with greater volume in hippocampus, anterior
248 thalamic nucleus and left superior temporal gyrus learned at a faster rate than those with
249  lower volume. Furthermore, we found that FA was positively associated with episodic
250 learning rate in an extended network including limbic tracts, indicating that the structural
251 integrity of these tracts indexed learning ability. A complementary negative association was
252  observed for MD, in similar tracts, such that decreased MD was associated with a faster
253 episodic learning rate. The converging GM and WM findings suggest that structural
254  properties of the hippocampal-anterior thalamic circuit contribute to learning ability in ageing
255 and may potentially inform age-related decline in encoding (Friedman et al., 2007; Morcom

256 etal., 2003).

257 Previous research on neural substrates of cognitive decline in ageing has shown a
258  hippocampal volume decline with age that correlated with memory performance and with
259 FCSRT recall specifically (Zammit et al., 2017). The presence of hippocampal volume
260 findings with relation to both episodic learning rate and recall components of the FCSRT task
261  suggests the hippocampus may be involved in these two separate processes, both of which
262  are impaired in ageing. The more pronounced effect we observed in the left hippocampus is
263 in accordance with previous VBM findings of verbal memory tasks (Ezzati et al., 2016), and
264 the general lateralisation of verbal functions. Our results, therefore, extend previous
265 research on the relationship between hippocampal volume and memory decline in ageing,
266 showing episodic learning rate is also indexed by hippocampal volume. Note that it is
267  unlikely that these effects reflect memory function in general, given that delayed free recall

268  was included as a covariate in our model.

269  Structural properties of extra-hippocampal limbic regions were also associated with learning
270  ability. Our GM thalamic findings indicate a correlation between episodic learning rate and
271 the right anterior thalamic nucleus, extending to right ventroanterior and right ventrolateral
272 nuclei. The anterior thalamic nuclei have been suggested to play an important role in

273 learning and memory (Aggleton et al., 2010; Sweeney-Reed et al., 2021; Winocur, 1985),
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274  that extend beyond its established role in spatial processing (Nelson, 2021; Wolff and Vann,
275  2019). For example, fMRI studies in younger adults suggest that the activation of the anterior
276 thalamic nuclei supports recognition memory performance (Pergola et al., 2013) and
277 evidence from intracranial EEG studies indicates theta-synchronisation between anterior
278 thalamus and frontal and parietal regions supporting successful memory formation
279  (Sweeney-Reed et al., 2014). Furthermore, and in line with our results, Leszczynski and
280 Staudigl (2016) posited that the anterior thalamus might modulate information flow, via
281 attention allocation, to support learning. Taken together with the increased hippocampal
282  volume, which was related to a better learning rate, our results indicate that the limbic
283  system may play an important role in learning ability in ageing and might explain some of the
284  impairments in navigating in a novel environment (Grzeschik et al., 2021), and impaired

285 learning strategies observed in mild cognitive impairment (Ribeiro et al., 2007).

286  The fornix is a major hippocampal input/output pathway and has been associated with visuo-
287  spatial learning across species (Buckley et al., 2008; Hodgetts et al., 2020; Hofstetter et al.,
288  2013). The fornix links the hippocampus with the anterior thalamic nuclei directly and via the
289  mammillary bodies (Aggleton et al., 2010, 1986), with both the hippocampus and the anterior
290 thalamic nuclei showing grey matter volume relationships with episodic learning rate.

291 Furthermore, we found that fornix integrity, as captured by bilateral FA and MD, correlated
292  with episodic learning rate in older adults. Together with previous findings linking fornix

293 integrity to recall performance on the FCSRT task (Hartopp et al., 2019; Metzler-Baddeley et
294  al., 2011), our results extend its role in memory processes, indicating that the fornix also
295  supports verbal episodic learning. We also found that the WM integrity of the ATR was

296 correlated with learning rate. The ATR connects the anterior and dorsomedial thalamus with
297  the prefrontal cortex (Grodd et al., 2020), which has been suggested to play a role in

298 learning rate (McGuire et al., 2014).

299 In addition to changes in limbic GM volume and WM microstructure, we found episodic

300 learning rate was associated with broader changes within bilateral WM tracts connecting
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301 occipital-temporal-frontal regions (ILF, SLF, IFOF). This result might point toward an overall
302 WM microstructure effect, as previously noted in age-related cognitive decline (de Mooij et
303 al., 2018; Farokhian et al., 2017; Grieve et al., 2007; Molloy et al., 2021; Rizvi et al., 2020).
304  With respect to specific cognitive functions, ILF and SLF have been shown to relate to
305 memory performance in normal ageing (Sasson et al., 2013). ILF and IFOF facilitate the flow
306 of visual information up the visual stream (Rokem et al., 2017), and IFOF has been
307 associated with semantic processing (Duffau, 2008), potentially supporting learning
308 performance in our task. Therefore, the observed relationship between microstructure of

309 these tracts and learning ability might reflect a more general aspect of cognitive ability.

310 Finally, it is important to note some limitations of the current study; we analysed data from a
311  cross-sectional cohort of healthy older adults. As GM and WM properties and memory
312  function both deteriorate with age, future longitudinal studies would be needed to better
313 understand the relationship between learning ability and structural changes as ageing
314  progresses and eliminate age-related confounds in cross-sectional studies (Elliott, 2020).
315 We used the learning rate across trials in an established neuropsychological memory task
316 (FCSRT) as a measure for episodic learning; it would be interesting to examine neural
317 correlates of learning rates in tasks such as error-driven and statistical learning (Herff et al.,
318 2019; Nassar et al., 2016; Samanez-Larkin et al., 2012), as well as consider learning ability
319 as a potential cognitive phenotype in pathological ageing. Finally, future research with
320 hippocampal subfield resolution could examine their differential contribution to episodic
321 learning rate. It would be interesting to explore whether volumetric effects are more
322  pronounced in the subiculum, the principal source of hippocampal projections to the anterior

323  thalamus and mammillary bodies (Hartopp et al., 2019).

324 In conclusion, in a cross-sectional cohort of healthy older adults, we found learning rate on
325 the FCSRT task was positively associated with extensive GM and WM structural effects
326 including the hippocampus, fornix and anterior thalamic nucleus, structures part of the limbic

327 system. Furthermore, there was a positive correlation between episodic learning rate and
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long-range WM tracts (ILF, SLF, IFOF). Our findings indicate that episodic learning rate is
associated with key anatomical structures implicated in memory function, and therefore may
inform further exploration of the relationship between episodic learning rate and retrieval in

ageing.
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569 Supplementary Materials

Number of
p (FWE-
voxelsin TFCE p (unc) X y z AAL3 labels
corr)
cluster
Hippocampus_L
2287 0.007 1337.9 0 -28 |-18 |-12
Extended to the left
superior temporal gyrus
0.008 1318.49 0 -40 |-30 | -8 Hippocampus L
0.008 1308.5 0 -26 |-31 | -8 Hippocampus_L
184 0.032 999.29 0.002 4 -3 12 Tha_VL_R
0.038 959.07 0.001 4 -5 -2 Tha_VA_R
168 0.033 994.55 0.001 30 |-19 |-12 Hippocampus R
0.045 922.07 0.002 20 (-23 |-16 | Parahippocampal_R
46 0.044 928.22 0.001 20 |-67 |22 Cuneus R
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0.049 904.13 0.001 18 |-59 |16 Calcarine_ R

64 0.046 915.85 0.002 52 (-19 |-12 Temporal_Mid_R

0.047 911.21 0.002 44 (-11 |-18 Hippocampus_R

22 0.048 909.89 0002 |-24 |18 |-18 OFCpost_L

7 0.049 903.11 0.001 14 |-28 |-24 Cerebellum_3 R

570 Supplementary Table 1. Coordinates of grey matter volume effects in the VBM
571 analysis. The MNI coordinates for the global maximum and local maxima of each cluster are
572 indicated in mm for the three sections in space (x, y and z). Neuroanatomical labels from the
573 AAL3 atlas are indicated. P(FWE-corr): Family Wise Error corrected p-value, TFCE:
574  Threshold-Free Cluster Enhancement local spatial support, p (unc): uncorrected p-value.

575

Number of voxelsin cluster | p (FWE-corr) Main tracts

Positive correlation with FA values

49017 0.025 IFOF, SLF, fornix, ATR_R

3123 0.036 IFOF, ILF, SLF, fornix,
ATR L

1310 0.036 IFOF, ILF, forceps major_R

359 0.047 ILF, forceps major_L
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239 0.044 SLF L

128 0.047 Corpus callosum
61 0.049 Forceps minor

8 0.05 Corpus callosum

Negative correlation with MD values

9921 0.013 IFOF, ILF, SLF, ATR_R,
forceps minor, corpus
callosum

7467 0.015 IFOF, ILF, SLF, fornix,

ATR_L, corpus callosum

3 0.05 Corticospinal tract

1 0.05

576 Supplementary Table 2. Brain clusters for correlation between episodic learning rate
577 and FA and MD values in the main analysis. P(FWE-cor): Family Wise Error corrected p-
578 value. Neuroanatomical labels from the JHU white matter atlas are indicated.
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579

580 Supplementary Figure 1. Grey matter volume correlates with learning rate in older
581 adults with an alternative statistical model. For this model, age and education were
582 introduced in the model whereas the delayed FCSRT score was removed. The positive
583 correlation has been overlaid on a canonical T1 image (thresholded at p < 0.05 FWE-corr) to
584  show a significant effect in A hippocampus bilaterally and B thalamus, right anterior (red),
585 ventroanterior (green) and ventrolateral thalamic nuclei (blue) (thalamic ROIs in the inset
586 come from the AAL3 atlas (Rolls et al., 2020). The coordinates of the sections are given in
587 mm. L: left, R: right, A: anterior, P: posterior.

588


https://doi.org/10.1101/2022.05.03.490431
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.03.490431; this version posted September 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

M
=
m
0
o}
=
©

=
(=}

589

590 Supplementary Figure 2. Extensive network of white matter microstructure integrity is
591 related to learning rate in older adults with an alternative statistical model. For this
592  model, age and education were introduced in the model whereas the delayed FCSRT score
593 was removed. A. Positive correlation between FA and learning rate (warm colours; p < 0.05
594  FWE-corr). B. FA effects overlaid on the fornix. C. Negative correlation between MD and
595 learning rate (cold colours; p < 0.05 FWE-corr). D. MD effect overlaid on the fornix.

596
597
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