

Brain Structure and Episodic Learning Rate in Cognitively Healthy Ageing

Darya Frank^{*1}, Marta Garo-Pascual^{*1,2,3}, Pablo Alejandro Reyes Velasquez¹, Belén Frades²,
Noam Peled^{4,5}, Linda Zhang², Bryan A. Strange^{1,2}

¹Laboratory for Clinical Neuroscience, CTB, Universidad Politécnica de Madrid, 28223
Madrid, Spain

²Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer
Center, 28031 Madrid, Spain.

³PhD Program in Neuroscience, Autonoma de Madrid University, 28049 Madrid, Spain

⁴Athinoula A. Martinos Center. for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, 02129 Charlestown, MA, USA

⁵Harvard Medical School, 02115 Boston, MA, USA

* Contributed equally to this work

Corresponding authors: Marta Garo-Pascual (marta.garo@ctb.upm.es), Darya Frank
(darya.frank@ctb.upm.es) and Bryan A. Strange (bryan.strange@upm.es).

Commercial interest: The authors declare no competing financial interests.

1 **Abstract**

2 Memory normally declines with ageing and these age-related cognitive changes are
3 associated with changes in brain structure. Episodic memory retrieval has been widely
4 studied during ageing, whereas learning has received less attention. Here we examined the
5 neural correlates of episodic learning rate in ageing. Our study sample consisted of 982
6 cognitively healthy female and male older participants from the Vallecás Project cohort,
7 without a clinical diagnosis of mild cognitive impairment or dementia. The learning rate
8 across the three consecutive recall trials of the verbal memory task (Free and Cued
9 Selective Reminding Test) recall trials was used as a predictor of grey matter (GM) using
10 voxel-based morphometry, and WM microstructure using tract-based spatial statistics on
11 fractional anisotropy (FA) and mean diffusivity (MD) measures. Immediate Recall improved
12 by 1.4 items per trial on average, and this episodic learning rate was faster in women and
13 negatively associated with age. Structurally, hippocampal and anterior thalamic GM volume
14 correlated positively with learning rate. Learning also correlated with the integrity of WM
15 microstructure (high FA and low MD) in an extensive network of tracts including bilateral
16 anterior thalamic radiation, fornix, and long-range tracts. These results suggest that episodic
17 learning rate is associated with key anatomical structures for memory functioning, motivating
18 further exploration of the differential diagnostic properties between episodic learning rate and
19 retrieval in ageing.

20 Abstract word count: 219

21

22 **Introduction**

23 Ageing is accompanied by a decline in cognition, most characteristically in episodic memory
24 performance (Glisky, 2007; Tromp et al., 2015), the ability to remember personal
25 experiences. Episodic memory impairments in ageing can manifest in different ways
26 depending on the studied phase (i.e., encoding, consolidation, or retrieval process). It is
27 difficult to study these phases independently in behavioural studies, although previous work
28 has reported that distinct processes may be affected unequally during ageing. For example,
29 more prominent deficits have been found for encoding relative to retrieval in older adults
30 (Friedman et al., 2007; Morcom et al., 2003). Furthermore, exploring the neural
31 underpinnings of these various manifestations (e.g., learning versus retention) could inform
32 dissociations between normal age-related decline and decline driven by neurodegenerative
33 diseases such as dementia. Memory decline in ageing is often measured in terms of
34 retention. However, impairments could also be driven by a diminished ability to learn
35 information over a period of time, rather than to retrieve it. We therefore aimed to elucidate
36 the structural brain properties underlying episodic learning rate in ageing.

37 Ageing has been associated with a global reduction in grey matter (GM) volume (Farokhian
38 et al., 2017; Grieve et al., 2007), although to different extents across brain regions (Cox et
39 al., 2018; Resnick et al., 2003). Numerous studies have found a specific GM volume loss in
40 prefrontal, temporal and parietal cortices (Cox et al., 2021; Elliott, 2020), associated with
41 general cognitive and memory-specific decline (Cox et al., 2021; Fjell and Walhovd, 2010;
42 Gorbach et al., 2017). White matter (WM) age-related differences in fractional anisotropy
43 (FA) and mean diffusivity (MD) have also been reported (Bennett et al., 2010; Fjell and
44 Walhovd, 2010; Madden and Parks, 2017). FA and MD are negatively correlated such that
45 reduced WM integrity is indexed by a decrease in FA and an increase in MD. Like GM, age-
46 related WM effects are apparent throughout the brain (Farokhian et al., 2017; Grieve et al.,
47 2007), although with greater effects in anterior than posterior tracts (Bennett et al., 2010).

48 Whilst these structural differences contribute to our understanding of brain ageing, it is vital
49 to also consider their cognitive manifestations.

50 A commonly observed form of age-related cognitive decline is impaired memory, which has
51 been associated with reduced hippocampal volume (Gorbach et al., 2017; Hedden et al.,
52 2016; Persson et al., 2012), as well as with damage to the microstructure of frontal and
53 temporal WM tracts (de Mooij et al., 2018; Kennedy and Raz, 2009; Rizvi et al., 2020), and
54 specifically limbic tracts (Bennett et al., 2015). Furthermore, recognition performance on
55 neuropsychological episodic memory tests has been shown to correlate with FA and MD
56 measures in the fornix, cingulum, and superior and inferior longitudinal fasciculi (Sasson et
57 al., 2013). However, other studies have not found correlations between WM microstructure
58 and episodic retrieval in ageing (Gorbach et al., 2017; Laukka et al., 2013; Salami et al.,
59 2012).

60 Memory performance is usually quantified by the ability to recognise or recall information
61 correctly, a retrieval impairment could be caused by a reduced ability to encode or learn
62 information (Boujut and Clarys, 2016; Cedar et al., 2018). Encoding, which is potentially
63 dissociable from retrieval processes (Bennett et al., 2015; Kwok and Buckley, 2010), has
64 been shown to underlie several memory deficits observed in ageing (Grady, 2012). Whilst
65 learning rate is part of the encoding process, in the current context it specifically refers to an
66 improvement in learning over time (or repetitions). Indeed, there is evidence for reduced
67 error-driven (Nassar et al., 2016) and probabilistic learning rates (Herff et al., 2019;
68 Samanez-Larkin et al., 2012) in older adults, but evidence for similar deficits in episodic
69 learning rate is lacking.

70 A potential way to probe episodic learning rate is through the Free and Cued Selective
71 Reminding Test (FCSRT). The FCSRT is one of the most commonly used free-recall
72 paradigms for episodic memory assessment, including immediate and delayed free- and
73 cued-recall (Buschke, 1984). Worse recall performance of cognitively normal older adults on

74 the FCSRT has been associated with reduced hippocampal GM volume (Zammit et al.,
75 2017), reduced fornix FA (Hartopp et al., 2019; Metzler-Baddeley et al., 2011) and increased
76 frontal MD (Nicolas et al., 2020). In addition to such retrieval effects, using the immediate
77 free recall components across three consecutive trials, the FCSRT enables investigating
78 episode learning by examining how many additional words are successfully recalled on each
79 trial.

80 We investigated whether the learning rate in FCSRT is associated with age, as well as its
81 neural manifestation in GM volume and WM tract microstructure. In a large cross-sectional
82 cohort of healthy older adults, we first calculated the learning rate across the three
83 consecutive FCSRT trials and tested for an association with age. To examine brain-cognition
84 associations, we used learning rate as a predictor to examine 1) GM volume using voxel-
85 based morphometry (VBM), and 2) WM microstructure using tract-based spatial statistics on
86 FA and MD measures. Given the critical role of the hippocampus in episodic memory and its
87 correlation with structural changes in ageing, we hypothesised that hippocampal GM volume
88 and associated WM limbic tract microstructure would correlate with learning rate.

89 **Methods**

90 *Participants.* All participants in this study were part of the Vallecás Project, a single-centre
91 longitudinal study of community-dwelling volunteers aged 69-86 without any cognitive or
92 psychiatric disorder that compromised their daily functioning at the time of recruitment.
93 Inclusion and exclusion criteria have been further described elsewhere (Olazarán et al.,
94 2015). From this cohort, data from the baseline visit of 982 cognitively normal participants
95 (mean age = 74.8, SD = 3.9, 637 (64.9%) females) were included in the current study. Any
96 subject with a diagnosis of mild cognitive impairment or Alzheimer's disease at this first visit
97 was excluded. All participants provided written informed consent and the Vallecás Project
98 was approved by the Ethics committee of the Instituto de Salud Carlos III.

99 *Neuropsychological assessment.* Participants completed a battery of neuropsychological
100 assessments as part of the Vallecas Project protocol. In this study, we report the total score
101 of the Mini Mental State Examination (MMSE; Folstein et al., 1975) and we mainly focused
102 on the Free and Cued Selective Reminding Test (FCSRT; Buschke, 1984), assessing
103 learning and retention of verbal memory, with immediate and delayed recall components.
104 The test was administered using standard procedures (Peña-Casanova et al., 2009).
105 Participants were presented with cards containing four words and asked to identify the word
106 corresponding to a specific semantic category, going through all four words, on four different
107 cards (16 words in total). The words presented are not the most obvious member of each
108 semantic category. Following the presentation phase, participants were asked to recall as
109 many words as possible in three consecutive recall trials each one followed by 20 seconds
110 of interference counting backwards (Figure 1A). For each trial, participants were asked to
111 freely recall as many words as possible with a time limit of 90 seconds, then examiners
112 provided the semantic category clue for the forgotten items. These three free and cued
113 recalls constitute the three immediate recall trials of the task. This immediate recall phase is
114 followed by a 30-minute delay, after which the delayed phase of the test starts. Participants
115 were asked on a single trial to freely recall as many words as possible otherwise cues were
116 provided (Figure 1A). To assess the learning rate across trials, we fit a linear mixed-effects
117 model of the number of items freely recalled in each immediate trial, as a function of the
118 recall trial (first, second, and third) using the lme4 package in R 4.0.2 (<https://www.r-project.org/>). The model also included a random slope of the recall trial, and a random
119 intercept per participant, capturing inter-individual variability in learning rate (across the three
120 trials). The learning rate coefficient for each participant was extracted using the coef()
121 function for subsequent analyses. Next, we built a multiple regression model where the
122 learning rate was the dependent variable, sex, age and level of education were the
123 predictors and the delayed free recall score of the FCSRT was included as a covariate to
124 rule out the retrieval phase of the memory process. Extraction and plotting of the effects
125

126 reported below were conducted using the effects (Fox, 2003) and ggplot2 (Wickham, 2009)
127 packages in R.

128 *MRI Data acquisition.* Images were acquired using a 3T MRI (Signa HDxt GE) with a phased
129 array eight-channel head coil. T1-weighted images (3D fast spoiled gradient echo with
130 inversion recovery preparation) were collected using a repetition time (TR) of 10ms, echo
131 time (TE) of 4.5ms, field of view (FOV) of 240mm and a matrix size of 288x288 with slice
132 thickness of 1mm, yielding a voxel size of 0.5 x 0.5 x 1 mm³. Diffusion-weighted images
133 were single-shot spin echo echo-planar imaging (SE-EPI), with TR 9200ms, TE 80ms, b-
134 value 800s/mm² and 21 gradient directions, FOV 240mm and matrix size 128 x 128 with
135 slice thickness of 3mm.

136 *Grey matter VBM.* The analysis was carried out in SPM12 (version r6225;
137 <https://www.fil.ion.ucl.ac.uk/spm>). T1-weighted images were segmented into grey matter,
138 white matter and cerebrospinal fluid and then aligned and normalised to MNI space using
139 the DARTEL algorithm (Ashburner, 2007). Prior to statistical modelling, the normalised
140 images were smoothed using a 6mm FWHM Gaussian kernel. The pre-processed grey
141 matter maps were entered into a general linear model (GLM) with learning rate from the
142 memory task as the predictor of interest, and total intracranial volume (TIV), sex, and the
143 delayed free recall score of the FCSRT as covariates. Age and education were not used in
144 the model as additional covariates since FCSRT delayed free recall is sensitive to the effects
145 of age and level of education. Nonetheless, to ensure the model is capturing variance
146 associated with these variables we devised a second model without FCSRT delayed free
147 recall and including TIV, sex, age and education as covariates and the same results were
148 obtained (see Supplementary Materials). We conducted whole-brain analyses using a
149 threshold-free cluster enhancement (TFCE) approach with 5000 permutations and default
150 parameters (E = 0.5 and H = 2) using the TFCE tool (version r223) for CAT12 toolbox in
151 SPM (<http://dbm.neuro.uni-jena.de/tfce>). Therefore, our analyses fully correct for mass-
152 univariate testing (and associated multiple-comparisons problem) by employing a whole-

153 brain FWE correction. Furthermore, we used the TFCE approach to overcome cluster-based
154 inference issues. The AAL3 atlas neuroanatomical labels were used to describe
155 neuroanatomical loci (Rolls et al., 2020) and Mango software was used to produce the figure
156 (<http://rii.uthscsa.edu/mango/>). These analyses assessed which regions were positively
157 associated with the immediate recall learning rate. Significant results are reported at a
158 family-wise error FWE) corrected level of $p < 0.05$.

159 *White matter tract-based spatial statistics (TBSS)*. Of the 982 participants, seven were
160 excluded as they did not have diffusion data. For preprocessing these images, the FSL
161 toolbox (<http://fsl.fmrib.ox.ac.uk/fsl/fslwiki>) was used for motion and eddy current correction,
162 the extraction of non-brain voxels and, lastly, the calculation of voxel-wise diffusion maps
163 (FA and MD) for each participant. Individual FA and MD maps were then used in the FSL
164 TBSS pipeline (<http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuider>; detailed methods
165 described by Smith et al. (2006)). The general outline of the process is: 1) FA individual
166 maps were non-linearly registered to standard space (FMRIB58_FA template) (Andersson et
167 al., 2007). 2) A mean FA image was created by averaging all co-registered FA maps. 3)
168 Individually aligned images were projected onto the mean FA skeleton—representing the
169 centers of all tracts common to the study sample—and skeletonised images were used for
170 voxel-wise analysis. Diffusivity maps for MD were generated by applying the same steps
171 detailed above. The same GLM design matrix as the VBM analysis was used along with the
172 TFCE approach with 5000 permutations (default parameters $E = 0.5$ and $H = 2$). Significant
173 results are reported at a family-wise error (FWE) corrected level of $p < 0.05$. To visualise our
174 TBSS results we used the multimodal analysis and visualisation tool (MMVT; Felsenstein et
175 al., 2019). The pipeline follows these steps: 1) Binary masking: all the voxels in the TBSS
176 volume below the threshold (0.95) were set to zero. 2) Outlier voxels removal using the
177 Open3D python package (Zhou et al., 2018). 3) Smoothing the volumetric data using a 3D
178 Gaussian filter (Virtanen et al., 2020). 4) Surface creation from the volume's TBSS surfaces
179 using the marching cubes algorithm (Lorensen and Cline, 1987). For that, we re-calculate

180 the threshold to give us the same number of voxels after the smoothing step. 5) Translation
181 for the surfaces' vertices coordinates. 6) Projection of the volumetric data on the surfaces.

182 **Results**

183 *Memory and neuropsychological performance*

184 On average, across three trials, participants correctly remembered 7.9 items (SD = 2.6).
185 When looking at individual trials, performance improved as trials progressed, reflecting a
186 positive episodic learning rate (see Table 1 for number of items recalled, and Figure 1B for
187 learning rates). Our linear model predicting the learning rate as a function of age, sex, and
188 level of education revealed significant effects of the three predictors after correcting for
189 FCSRT delayed free recall score. Learning rate and delayed free recall FCSRT were
190 positively correlated (Pearson's $r = 0.7$; $p < 2.2 \times 10^{-16}$). Age had a negative effect on
191 learning rate ($F(1,965) = 10.45$, $p = 0.001$) (Figure 1C), sex also had an effect ($F(1,965) =$
192 4.66, $p = 0.031$) and being a woman was positively associated with learning rate (Figure
193 1D). Finally, having a higher level of education was positively associated with learning rate
194 ($F(3,965) = 5.17$, $p < 0.002$) (Figure 1E). There was no significant interaction between the
195 three predictors (age, sex and years of education).

196
197

Total sample (n = 982)	Women (n = 637)	Men (n = 345)
Mean (SD)	Mean (SD)	Mean (SD)

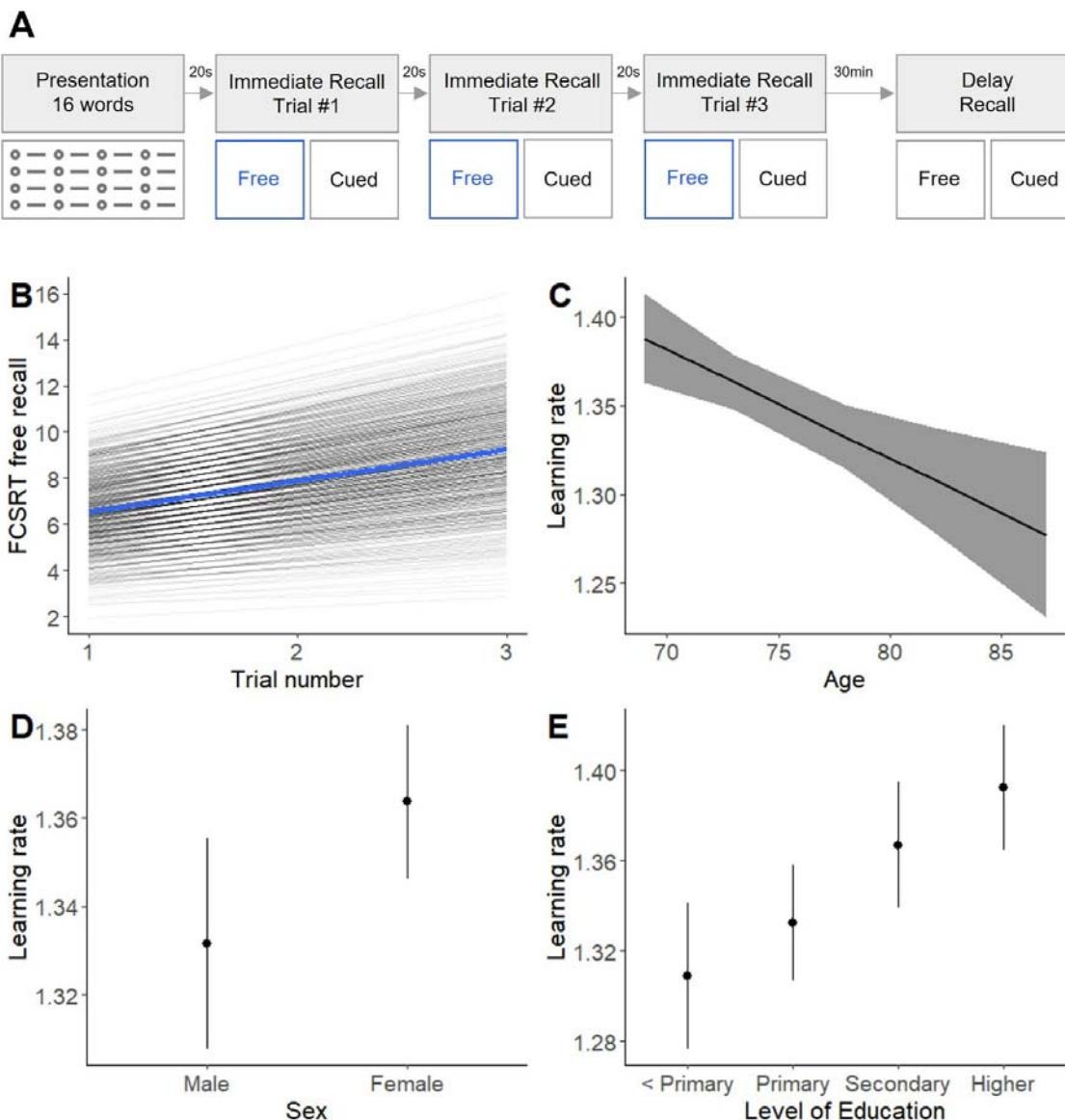
Demographics

Age, years		74.8 (3.9)	74.8 (3.9)	74.8 (3.9)
Levels of education, count (%)	Less than primary	185 (18.8)	137 (21.5)	48 (13.9)
	Primary	295 (30.0)	222 (34.9)	73 (21.1)
	Secondary	245 (24.9)	151 (23.7)	94 (27.2)
	Higher education	257 (26.2)	127 (19.9)	130 (37.7)
<i>Neuropsychological performance</i>				
MMSE, total score		28.6 (1.6)	28.6 (1.6)	28.7 (1.4)
Trial 1 immediate free recall FCSRT, items recalled		6.5 (2.1)	6.7 (2.1)	6.3 (2.1)
Trial 2 immediate free recall FCSRT, items recalled		7.9 (2.4)	7.9 (2.4)	7.8 (2.4)
Trial 3 immediate free recall FCSRT, items recalled		9.2 (2.5)	9.4 (2.6)	9.0 (2.6)
Learning rate immediate free recall FCSRT, items recalled/trial		1.4 (0.3)	1.4 (0.3)	1.3 (0.3)

Delayed free recall FCSRT, items recalled	9.4 (2.6)	9.5 (2.7)	9.3 (2.6)
---	-----------	-----------	-----------

198 **Table 1. Demographic and neuropsychological profile of the total sample and split by**
199 **sex.** MMSE: Mini Mental State Examination total score, FCSRT: Free and Cued Selective
200 Reminding Test.

201

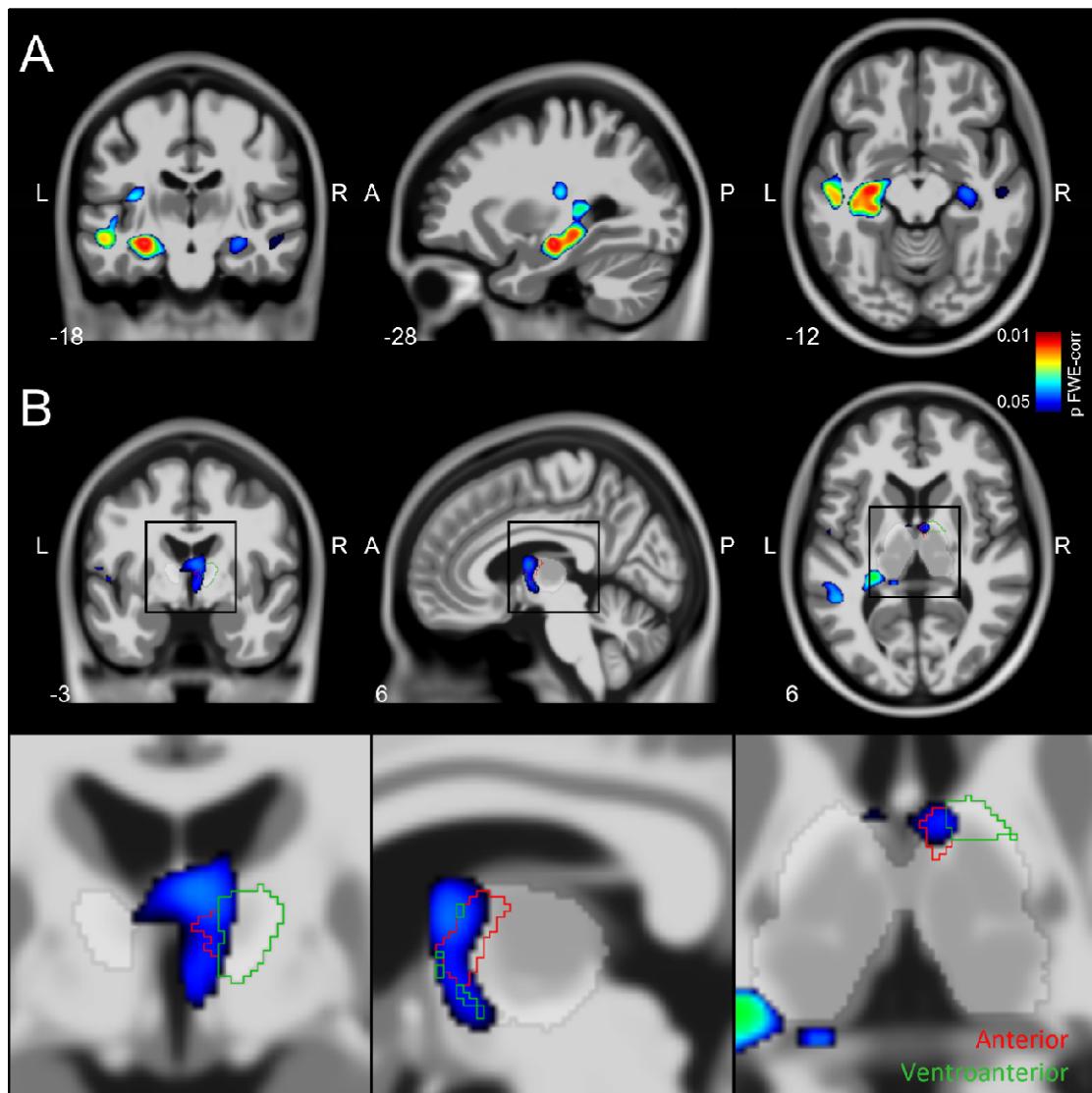


202

203 **Figure 1. Learning rate across FCSRT trials is related to age, sex and level of**
204 **education.** A Diagram of the FCSRT protocol used to assess memory in this study in which
205 the learning rate is calculated from the free recall of the three immediate trials (blue). B
206 Mean and individual learning rates across the three free immediate recall FCSRT trials. After
207 controlling for the rest of the model predictors, C learning rate decreases with age, D
208 females learn faster than males and E level of education is positively associated with
209 learning rate. Error bars represent 95% confidence intervals.

210 *Grey matter volume (VBM)*

211 We found a positive correlation between episodic learning rate and grey matter volume in
212 the bilateral hippocampus, with more pronounced effects on the left side and the left superior
213 temporal gyrus (Figure 2A, Supplementary Figure 1), and the right anterior thalamic nucleus
214 with some extension to adjacent nuclei (right ventroanterior and ventrolateral thalamic nuclei;
215 Figure 2B, Supplementary Table 1, Supplementary Figure 1).



216

217 **Figure 2. Grey matter volume correlates with episodic learning rate in older adults.**
218 The positive correlation has been overlaid on a canonical T1 image (thresholded at $p < 0.05$
219 FWE-corr) to show a significant effect in A) hippocampus bilaterally and left superior
220 temporal gyrus and B) right anterior (red) and ventroanterior (green) (thalamic ROIs in the
221 inset come from the AAL3 atlas (Rolls et al., 2020)). The coordinates of the sections are
222 given in mm. L: left, R: right, A: anterior, P: posterior.

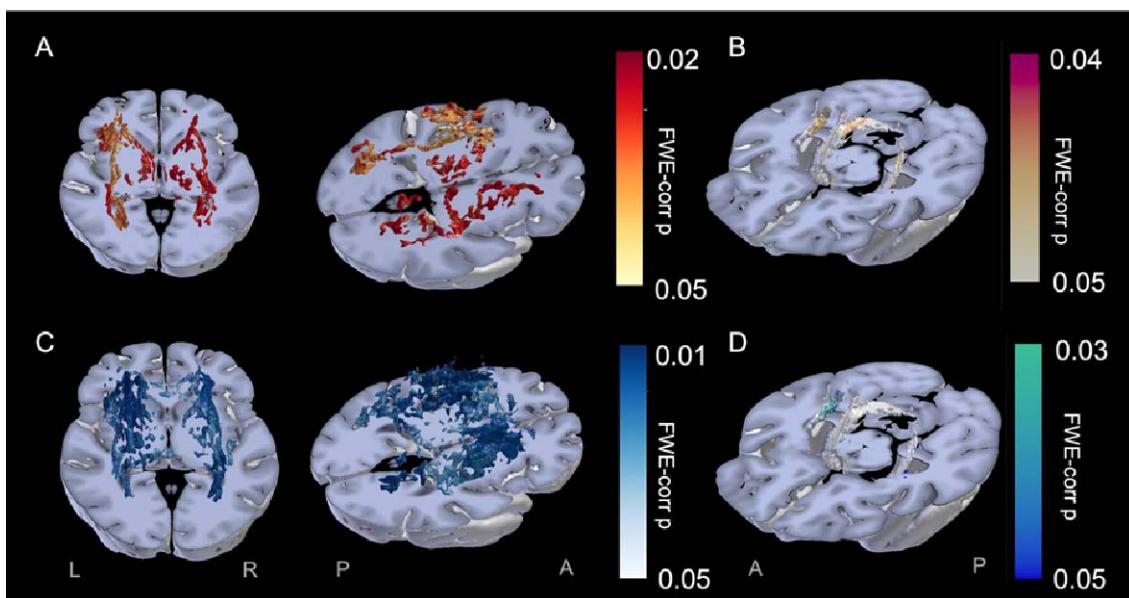
223

224 *White matter microstructure (TBSS)*

225 We first examined FA as a marker of WM integrity. We found a bilateral network of temporal,
226 parietal and occipital tracts showing a positive association with episodic learning rate.
227 Among tracts showing significant positive correlations were the bilateral anterior thalamic

228 radiation (ATR), fornix, inferior fronto-occipital fasciculus (IFOF), inferior longitudinal
229 fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinate (Figure 3A-B,
230 Supplementary Table 2, Supplementary Figure 2). Next, we examined MD and found a
231 negative association between a similar network of bilateral tracts and FCSRT learning rate,
232 including bilateral ATR, corticospinal tract, forceps major and minor, cingulum (cingulate),
233 IFOF, ILF, SLF, uncinate and fornix (Figure 3C-D, Supplementary Figure 2, Supplementary
234 Table 2).

235



236

237 **Figure 3. Extensive network of white matter microstructure integrity is related to**
238 **episodic learning rate in older adults.** A. Positive correlation between FA and learning
239 rate (warm colours; $p < 0.05$ FWE-corr). B. FA effects overlaid on the fornix. C. Negative
240 correlation between MD and learning rate (cold colours; $p < 0.05$ FWE-corr). D. MD effect
241 overlaid on the fornix.

242

243 Discussion

244 Our results show that women and individuals with more years of formal education had a
245 faster episodic learning rate, that it declined with age, and that this rate was associated with
246 neuroanatomical structural properties. We found a positive correlation between GM volume

247 and episodic learning rate, where participants with greater volume in hippocampus, anterior
248 thalamic nucleus and left superior temporal gyrus learned at a faster rate than those with
249 lower volume. Furthermore, we found that FA was positively associated with episodic
250 learning rate in an extended network including limbic tracts, indicating that the structural
251 integrity of these tracts indexed learning ability. A complementary negative association was
252 observed for MD, in similar tracts, such that decreased MD was associated with a faster
253 episodic learning rate. The converging GM and WM findings suggest that structural
254 properties of the hippocampal-anterior thalamic circuit contribute to learning ability in ageing
255 and may potentially inform age-related decline in encoding (Friedman et al., 2007; Morcom
256 et al., 2003).

257 Previous research on neural substrates of cognitive decline in ageing has shown a
258 hippocampal volume decline with age that correlated with memory performance and with
259 FCSRT recall specifically (Zammit et al., 2017). The presence of hippocampal volume
260 findings with relation to both episodic learning rate and recall components of the FCSRT task
261 suggests the hippocampus may be involved in these two separate processes, both of which
262 are impaired in ageing. The more pronounced effect we observed in the left hippocampus is
263 in accordance with previous VBM findings of verbal memory tasks (Ezzati et al., 2016), and
264 the general lateralisation of verbal functions. Our results, therefore, extend previous
265 research on the relationship between hippocampal volume and memory decline in ageing,
266 showing episodic learning rate is also indexed by hippocampal volume. Note that it is
267 unlikely that these effects reflect memory function in general, given that delayed free recall
268 was included as a covariate in our model.

269 Structural properties of extra-hippocampal limbic regions were also associated with learning
270 ability. Our GM thalamic findings indicate a correlation between episodic learning rate and
271 the right anterior thalamic nucleus, extending to right ventroanterior and right ventrolateral
272 nuclei. The anterior thalamic nuclei have been suggested to play an important role in
273 learning and memory (Aggleton et al., 2010; Sweeney-Reed et al., 2021; Winocur, 1985),

274 that extend beyond its established role in spatial processing (Nelson, 2021; Wolff and Vann,
275 2019). For example, fMRI studies in younger adults suggest that the activation of the anterior
276 thalamic nuclei supports recognition memory performance (Pergola et al., 2013) and
277 evidence from intracranial EEG studies indicates theta-synchronisation between anterior
278 thalamus and frontal and parietal regions supporting successful memory formation
279 (Sweeney-Reed et al., 2014). Furthermore, and in line with our results, Leszczyński and
280 Staudigl (2016) posited that the anterior thalamus might modulate information flow, via
281 attention allocation, to support learning. Taken together with the increased hippocampal
282 volume, which was related to a better learning rate, our results indicate that the limbic
283 system may play an important role in learning ability in ageing and might explain some of the
284 impairments in navigating in a novel environment (Grzeschik et al., 2021), and impaired
285 learning strategies observed in mild cognitive impairment (Ribeiro et al., 2007).

286 The fornix is a major hippocampal input/output pathway and has been associated with visuo-
287 spatial learning across species (Buckley et al., 2008; Hodgetts et al., 2020; Hofstetter et al.,
288 2013). The fornix links the hippocampus with the anterior thalamic nuclei directly and via the
289 mammillary bodies (Aggleton et al., 2010, 1986), with both the hippocampus and the anterior
290 thalamic nuclei showing grey matter volume relationships with episodic learning rate.
291 Furthermore, we found that fornix integrity, as captured by bilateral FA and MD, correlated
292 with episodic learning rate in older adults. Together with previous findings linking fornix
293 integrity to recall performance on the FCSRT task (Hartopp et al., 2019; Metzler-Baddeley et
294 al., 2011), our results extend its role in memory processes, indicating that the fornix also
295 supports verbal episodic learning. We also found that the WM integrity of the ATR was
296 correlated with learning rate. The ATR connects the anterior and dorsomedial thalamus with
297 the prefrontal cortex (Grodd et al., 2020), which has been suggested to play a role in
298 learning rate (McGuire et al., 2014).

299 In addition to changes in limbic GM volume and WM microstructure, we found episodic
300 learning rate was associated with broader changes within bilateral WM tracts connecting

301 occipital-temporal-frontal regions (ILF, SLF, IFOF). This result might point toward an overall
302 WM microstructure effect, as previously noted in age-related cognitive decline (de Mooij et
303 al., 2018; Farokhian et al., 2017; Grieve et al., 2007; Molloy et al., 2021; Rizvi et al., 2020).
304 With respect to specific cognitive functions, ILF and SLF have been shown to relate to
305 memory performance in normal ageing (Sasson et al., 2013). ILF and IFOF facilitate the flow
306 of visual information up the visual stream (Rokem et al., 2017), and IFOF has been
307 associated with semantic processing (Duffau, 2008), potentially supporting learning
308 performance in our task. Therefore, the observed relationship between microstructure of
309 these tracts and learning ability might reflect a more general aspect of cognitive ability.

310 Finally, it is important to note some limitations of the current study; we analysed data from a
311 cross-sectional cohort of healthy older adults. As GM and WM properties and memory
312 function both deteriorate with age, future longitudinal studies would be needed to better
313 understand the relationship between learning ability and structural changes as ageing
314 progresses and eliminate age-related confounds in cross-sectional studies (Elliott, 2020).
315 We used the learning rate across trials in an established neuropsychological memory task
316 (FCSRT) as a measure for episodic learning; it would be interesting to examine neural
317 correlates of learning rates in tasks such as error-driven and statistical learning (Herff et al.,
318 2019; Nassar et al., 2016; Samanez-Larkin et al., 2012), as well as consider learning ability
319 as a potential cognitive phenotype in pathological ageing. Finally, future research with
320 hippocampal subfield resolution could examine their differential contribution to episodic
321 learning rate. It would be interesting to explore whether volumetric effects are more
322 pronounced in the subiculum, the principal source of hippocampal projections to the anterior
323 thalamus and mammillary bodies (Hartopp et al., 2019).

324 In conclusion, in a cross-sectional cohort of healthy older adults, we found learning rate on
325 the FCSRT task was positively associated with extensive GM and WM structural effects
326 including the hippocampus, fornix and anterior thalamic nucleus, structures part of the limbic
327 system. Furthermore, there was a positive correlation between episodic learning rate and

328 long-range WM tracts (ILF, SLF, IFOF). Our findings indicate that episodic learning rate is
329 associated with key anatomical structures implicated in memory function, and therefore may
330 inform further exploration of the relationship between episodic learning rate and retrieval in
331 ageing.

332

333

334 **References**

335 Aggleton, J.P., Desimone, R., Mishkin, M., 1986. The origin, course, and termination of the
336 hippocampothalamic projections in the macaque. *J. Comp. Neurol.* 243, 409–421.
337 <https://doi.org/10.1002/cne.902430310>

338 Aggleton, J.P., O'Mara, S.M., Vann, S.D., Wright, N.F., Tsanov, M., Erichsen, J.T., 2010.
339 Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct
340 and indirect actions. *Eur. J. Neurosci.* 31, 2292–2307. <https://doi.org/10.1111/J.1460-9568.2010.07251.X>

342 Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. *Neuroimage* 38, 95–
343 113. <https://doi.org/10.1016/j.neuroimage.2007.07.007>

344 Bennett, I.J., Huffman, D.J., Stark, C.E.L., 2015. Limbic tract integrity contributes to pattern
345 separation performance across the lifespan. *Cereb. Cortex* 25, 2988–2999.
346 <https://doi.org/10.1093/cercor/bhu093>

347 Bennett, I.J., Madden, D.J., Vaidya, C.J., Howard, D. V., Howard, J.H., 2010. Age-related
348 differences in multiple measures of white matter integrity: A diffusion tensor imaging
349 study of healthy aging. *Hum. Brain Mapp.* 31, 378–390.
350 <https://doi.org/10.1002/hbm.20872>

351 Boujut, A., Clarys, D., 2016. The effect of ageing on recollection: the role of the binding
352 updating process. *Memory* 24, 1231–1242.
353 <https://doi.org/10.1080/09658211.2015.1091893>

354 Buckley, M.J., Wilson, C.R.E., Gaffan, D., 2008. Fornix Transection Impairs Visuospatial
355 Memory Acquisition More Than Retrieval. *Behav. Neurosci.* 122, 44–53.
356 <https://doi.org/10.1037/0735-7044.122.1.44>

357 Buschke, H., 1984. Cued recall in amnesia. *J. Clin. Neuropsychol.* 6, 433–40.

358 Cadar, D., Usher, M., Davelaar, E.J., 2018. Age-Related Deficits in Memory Encoding and
359 Retrieval in Word List Free Recall. *Brain Sci.* 8, 211.
360 <https://doi.org/10.3390/brainsci8120211>

361 Cox, S.R., Bastin, M.E., Ritchie, S.J., Dickie, D.A., Liewald, D.C., Muñoz Maniega, S.,
362 Redmond, P., Royle, N.A., Pattie, A., Valdés Hernández, M., Corley, J., Aribisala, B.S.,
363 McIntosh, A.M., Wardlaw, J.M., Deary, I.J., 2018. Brain cortical characteristics of
364 lifetime cognitive ageing. *Brain Struct. Funct.* 223, 509–518.
365 <https://doi.org/10.1007/s00429-017-1505-0>

366 Cox, S.R., Harris, M.A., Ritchie, S.J., Buchanan, C.R., Valdés Hernández, M.C., Corley, J.,
367 Taylor, A.M., Madole, J.W., Harris, S.E., Whalley, H.C., McIntosh, A.M., Russ, T.C.,
368 Bastin, M.E., Wardlaw, J.M., Deary, I.J., Tucker-Drob, E.M., 2021. Three major
369 dimensions of human brain cortical ageing in relation to cognitive decline across the
370 eighth decade of life. *Mol. Psychiatry* 26, 2651–2662. <https://doi.org/10.1038/s41380-020-00975-1>

372 de Mooij, S.M.M., Henson, R.N.A., Waldorp, L.J., Kievit, R.A., 2018. Age differentiation
373 within gray matter, white matter, and between memory and white matter in an adult life
374 span cohort. *J. Neurosci.* 38, 5826–5836. <https://doi.org/10.1523/JNEUROSCI.1627-17.2018>

376 Duffau, H., 2008. The anatomo-functional connectivity of language revisited. New insights
377 provided by electrostimulation and tractography. *Neuropsychologia* 46, 927–934.
378 <https://doi.org/10.1016/j.neuropsychologia.2007.10.025>

379 Elliott, M.L., 2020. MRI-based biomarkers of accelerated aging and dementia risk in midlife:
380 how close are we? *Ageing Res. Rev.* 61, 101075.
381 <https://doi.org/10.1016/j.arr.2020.101075>

382 Ezzati, A., Katz, M.J., Zammit, A.R., Lipton, M.L., Zimmerman, M.E., Sliwinski, M.J., Lipton,

383 R.B., 2016. Differential association of left and right hippocampal volumes with verbal
384 episodic and spatial memory in older adults. *Neuropsychologia* 93, 380–385.
385 <https://doi.org/10.1016/j.neuropsychologia.2016.08.016>

386 Farokhian, F., Yang, C., Beheshti, I., Matsuda, H., Wu, S., 2017. Age-related gray and white
387 matter changes in normal adult brains. *Aging Dis.* 8, 899–909.
388 <https://doi.org/10.14336/AD.2017.0502>

389 Felsenstein, O., Peled, N., Hahn, E., Rockhill, A.P., Folsom, L., Gholipour, T., Macadams,
390 K., Rozengard, N., Pault, A.C., Dougherty, D., Cash, S.S., Widge, A.S., Hämäläinen,
391 M., Stufflebeam, S., 2019. Multi-Modal Neuroimaging Analysis and Visualization Tool
392 (MMVT).

393 Fjell, A.M., Walhovd, K.B., 2010. Structural Brain Changes in Aging: Courses, Causes and
394 Cognitive Consequences. *Rev. Neurosci.* 21.
395 <https://doi.org/10.1515/REVNEURO.2010.21.3.187>

396 Fox, J., 2003. Effect Displays in R for Generalised Linear Models. *J. Stat. Softw.* 8.
397 <https://doi.org/10.18637/jss.v008.i15>

398 Friedman, D., Nessler, D., Johnson, R., 2007. Memory Encoding and Retrieval in the Aging
399 Brain. *Clin. EEG Neurosci.* 38, 2–7. <https://doi.org/10.1177/155005940703800105>

400 Glisky, E.L., 2007. Changes in Cognitive Function in Human Aging.

401 Gorbach, T., Pudas, S., Lundquist, A., Orädd, G., Josefsson, M., Salami, A., de Luna, X.,
402 Nyberg, L., 2017. Longitudinal association between hippocampus atrophy and episodic-
403 memory decline. *Neurobiol. Aging* 51, 167–176.
404 <https://doi.org/10.1016/j.neurobiolaging.2016.12.002>

405 Grady, C., 2012. The cognitive neuroscience of ageing. *Nat. Rev. Neurosci.* 13, 491–505.
406 <https://doi.org/10.1038/nrn3256>

407 Grieve, S.M., Williams, L.M., Paul, R.H., Clark, C.R., Gordon, E., 2007. Cognitive aging,
408 executive function, and fractional anisotropy: A diffusion tensor MR imaging study. *Am.*
409 *J. Neuroradiol.* 28, 226–235.

410 Grodd, W., Kumar, V.J., Schüz, A., Lindig, T., Scheffler, K., 2020. The anterior and medial
411 thalamic nuclei and the human limbic system: tracing the structural connectivity using
412 diffusion-weighted imaging. *Sci. Rep.* 10, 1–25. <https://doi.org/10.1038/s41598-020-67770-4>

414 Grzeschik, R., Hilton, C., Dalton, R.C., Konovalova, I., Cotterill, E., Innes, A., Wiener, J.M.,
415 2021. From repeating routes to planning novel routes: the impact of landmarks and
416 ageing on route integration and cognitive mapping. *Psychol. Res.* 85, 2164–2176.
417 <https://doi.org/10.1007/s00426-020-01401-5>

418 Hartopp, N., Wright, P., Ray, N.J., Evans, T.E., Metzler-Baddeley, C., Aggleton, J.P.,
419 O'Sullivan, M.J., 2019. A key role for subiculum-fornix connectivity in recollection in
420 older age. *Front. Syst. Neurosci.* 12, 1–11. <https://doi.org/10.3389/fnsys.2018.00070>

421 Hedden, T., Schultz, A.P., Rieckmann, A., Mormino, E.C., Johnson, K.A., Sperling, R.A.,
422 Buckner, R.L., 2016. Multiple Brain Markers are Linked to Age-Related Variation in
423 Cognition. *Cereb. Cortex* 26, 1388–1400. <https://doi.org/10.1093/cercor/bhu238>

424 Herff, S., Rashid, N.A.B.A., Keong, J.L.C., Tih-Shih, L., Agres, K., 2019. Statistical Learning
425 Ability as a Measure of Cognitive Function. <https://doi.org/10.31234/osf.io/u4ry6>

426 Hodgetts, C.J., Stefani, M., Williams, A.N., Kolarik, B.S., Yonelinas, A.P., Ekstrom, A.D.,
427 Lawrence, A.D., Zhang, J., Graham, K.S., 2020. The role of the fornix in human
428 navigational learning. *Cortex* 124, 97–110. <https://doi.org/10.1016/j.cortex.2019.10.017>

429 Hofstetter, S., Tavor, I., Moryosef, S.T., Assaf, Y., 2013. Short-term learning induces white
430 matter plasticity in the fornix. *J. Neurosci.* 33, 12844–12850.

431 <https://doi.org/10.1523/JNEUROSCI.4520-12.2013>

432 Kennedy, K.M., Raz, N., 2009. Aging white matter and cognition: Differential effects of
433 regional variations in diffusion properties on memory, executive functions, and speed.

434 *Neuropsychologia* 47, 916–927. <https://doi.org/10.1016/j.neuropsychologia.2009.01.001>

435 Kwok, S.C., Buckley, M.J., 2010. Long-term visuospatial retention unaffected by fornix
436 transection. *Hippocampus* 20, 889–893. <https://doi.org/10.1002/hipo.20733>

437 Laukka, E.J., Lövdén, M., Kalpouzos, G., Li, T.Q., Jonsson, T., Wahlund, L.O., Fratiglioni, L.,
438 Bäckman, L., 2013. Associations between white matter microstructure and cognitive
439 performance in old and very old age. *PLoS One* 8, 1–8.
440 <https://doi.org/10.1371/journal.pone.0081419>

441 Leszczyński, M., Staudigl, T., 2016. Memory-guided attention in the anterior thalamus.
442 *Neurosci. Biobehav. Rev.* 66, 163–165. <https://doi.org/10.1016/j.neubiorev.2016.04.015>

443 Lorensen, W.E., Cline, H.E., 1987. Marching cubes: A high resolution 3D surface
444 construction algorithm, in: *Proceedings of the 14th Annual Conference on Computer*
445 *Graphics and Interactive Techniques - SIGGRAPH '87*. ACM Press, New York, New
446 York, USA, pp. 163–169. <https://doi.org/10.1145/37401.37422>

447 Madden, D.J., Parks, E.L., 2017. Age differences in structural connectivity: Diffusion tensor
448 imaging and white matter hyperintensities, in: Cabeza, R., Nyberg, L., Park, D.C. (Eds.),
449 *Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging*. Oxford, New
450 York, pp. 71–103.

451 McGuire, J.T., Nassar, M.R., Gold, J.I., Kable, J.W., 2014. Functionally Dissociable
452 Influences on Learning Rate in a Dynamic Environment. *Neuron* 84, 870–881.
453 <https://doi.org/10.1016/j.neuron.2014.10.013>

454 Metzler-Baddeley, C., Jones, D.K., Belaroussi, B., Aggleton, J.P., O'Sullivan, M.J., 2011.

455 Frontotemporal connections in episodic memory and aging: A diffusion MRI
456 tractography study. *J. Neurosci.* 31, 13236–13245.
457 <https://doi.org/10.1523/JNEUROSCI.2317-11.2011>

458 Molloy, C.J., Nugent, S., Bokde, A.L.W., 2021. Alterations in diffusion measures of white
459 matter integrity associated with healthy aging. *Journals Gerontol. - Ser. A Biol. Sci.*
460 *Med. Sci.* 76, 945–954. <https://doi.org/10.1093/gerona/glz289>

461 Morcom, A.M., Good, C.D., Frackowiak, R.S.J., Rugg, M.D., 2003. Age effects on the neural
462 correlates of successful memory encoding. *Brain* 126, 213–229.
463 <https://doi.org/10.1093/brain/awg020>

464 Nassar, M.R., Bruckner, R., Gold, J.I., Li, S.C., Heekeren, H.R., Eppinger, B., 2016. Age
465 differences in learning emerge from an insufficient representation of uncertainty in older
466 adults. *Nat. Commun.* 7, 1–13. <https://doi.org/10.1038/ncomms11609>

467 Nelson, A.J.D., 2021. The anterior thalamic nuclei and cognition: A role beyond space?
468 *Neurosci. Biobehav. Rev.* <https://doi.org/10.1016/j.neubiorev.2021.02.047>

469 Nicolas, R., Hiba, B., Dilharreguy, B., Barse, E., Baillet, M., Edde, M., Pelletier, A., Periot, O.,
470 Helmer, C., Allard, M., Dartigues, J.F., Amieva, H., Pérès, K., Fernandez, P., Catheline,
471 G., 2020. Changes Over Time of Diffusion MRI in the White Matter of Aging Brain, a
472 Good Predictor of Verbal Recall. *Front. Aging Neurosci.* 12, 1–9.
473 <https://doi.org/10.3389/fnagi.2020.00218>

474 Olazarán, J., Valentí, M., Belén Frades, Zea-Sevilla, M.A., Ávila-Villanueva, M., Fernández-
475 Blázquez, M.Á., Calero, M., Dobato, J.L., Hernández-Tamames, J.A., León-Salas, B.,
476 Agüera-Ortiz, L., López-Álvarez, J., Larrañaga, P., Bielza, C., Álvarez-Linera, J.,
477 Martínez-Martín, P., 2015. The Vallecas Project: A cohort to identify early markers and
478 mechanisms of Alzheimer's disease. *Front. Aging Neurosci.* 7.
479 <https://doi.org/10.3389/fnagi.2015.00181>

480 Peña-Casanova, J., Gramunt-Fombuena, N., Quiñones-Úbeda, S., Sánchez-Benavides, G.,
481 Aguilar, M., Badenes, D., Molinuevo, J.L., Robles, A., Barquero, M.S., Payno, M.,
482 Antúnez, C., Martínez-Parra, C., Frank-García, A., Fernández, M., Alfonso, V., Sol,
483 J.M., Blesa, R., 2009. Spanish Multicenter Normative Studies (NEURONORMA
484 Project): norms for the Rey-Osterrieth complex figure (copy and memory), and free and
485 cued selective reminding test. *Arch. Clin. Neuropsychol.* 24, 371–393.
486 <https://doi.org/10.1093/ARCLIN/ACP041>

487 Pergola, G., Ranft, A., Mathias, K., Suchan, B., 2013. The role of the thalamic nuclei in
488 recognition memory accompanied by recall during encoding and retrieval: An fMRI
489 study. *Neuroimage* 74, 195–208. <https://doi.org/10.1016/j.neuroimage.2013.02.017>

490 Persson, J., Pudas, S., Lind, J., Kauppi, K., Nilsson, L.-G., Nyberg, L., 2012. Longitudinal
491 Structure-Function Correlates in Elderly Reveal MTL Dysfunction with Cognitive
492 Decline. *Cereb. Cortex* 22, 2297–2304. <https://doi.org/10.1093/cercor/bhr306>

493 Resnick, S.M., Pham, D.L., Kraut, M.A., Zonderman, A.B., Davatzikos, C., 2003.
494 Longitudinal Magnetic Resonance Imaging Studies of Older Adults: A Shrinking Brain.
495 *J. Neurosci.* 23, 3295–3301. <https://doi.org/10.1523/JNEUROSCI.23-08-03295.2003>

496 Ribeiro, F., Guerreiro, M., De Mendonça, A., 2007. Verbal learning and memory deficits in
497 Mild Cognitive Impairment. *J. Clin. Exp. Neuropsychol.* 29, 187–197.
498 <https://doi.org/10.1080/13803390600629775>

499 Rizvi, B., Lao, P.J., Colón, J., Hale, C., Igwe, K.C., Narkhede, A., Budge, M., Manly, J.J.,
500 Schupf, N., Brickman, A.M., 2020. Tract-defined regional white matter hyperintensities
501 and memory. *NeuroImage Clin.* 25, 102143. <https://doi.org/10.1016/j.nicl.2019.102143>

502 Rokem, A., Takemura, H., Bock, A.S., Scherf, K.S., Behrmann, M., Wandell, B.A., Fine, I.,
503 Bridge, H., Pestilli, F., 2017. The visual white matter: The application of diffusion MRI
504 and fiber tractography to vision science. *J. Vis.* <https://doi.org/10.1167/17.2.4>

505 Salami, A., Eriksson, J., Nilsson, L.G., Nyberg, L., 2012. Age-related white matter
506 microstructural differences partly mediate age-related decline in processing speed but
507 not cognition. *Biochim. Biophys. Acta - Mol. Basis Dis.* 1822, 408–415.
508 <https://doi.org/10.1016/j.bbadi.2011.09.001>

509 Samanez-Larkin, G.R., Levens, S.M., Perry, L.M., Dougherty, R.F., Knutson, B., 2012.
510 Frontostriatal white matter integrity mediates adult age differences in probabilistic
511 reward learning. *J. Neurosci.* 32, 5333–5337.
512 <https://doi.org/10.1523/JNEUROSCI.5756-11.2012>

513 Sasson, E., Doniger, G.M., Pasternak, O., Tarrasch, R., Assaf, Y., 2013. White matter
514 correlates of cognitive domains in normal aging with diffusion tensor imaging. *Front.*
515 *Neurosci.* <https://doi.org/10.3389/fnins.2013.00032>

516 Sweeney-Reed, C.M., Buentjen, L., Voges, J., Schmitt, F.C., Zaehle, T., Kam, J.W.Y.,
517 Kaufmann, J., Heinze, H.J., Hinrichs, H., Knight, R.T., Rugg, M.D., 2021. The role of
518 the anterior nuclei of the thalamus in human memory processing. *Neurosci. Biobehav.*
519 *Rev.* 126, 146–158. <https://doi.org/10.1016/j.neubiorev.2021.02.046>

520 Sweeney-Reed, C.M., Zaehle, T., Voges, J., Schmitt, F.C., Buentjen, L., Kopitzki, K.,
521 Esslinger, C., Hinrichs, H., Heinze, H.J., Knight, R.T., Richardson-Klavehn, A., 2014.
522 Corticothalamic phase synchrony and cross-frequency coupling predict human memory
523 formation. *eLife* 3, e05352. <https://doi.org/10.7554/eLife.05352>

524 Tromp, D., Dufour, A., Lithfous, S., Pebayle, T., Després, O., 2015. Episodic memory in
525 normal aging and Alzheimer disease: Insights from imaging and behavioral studies.
526 *Ageing Res. Rev.* 24, 232–262. <https://doi.org/10.1016/j.arr.2015.08.006>

527 Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
528 Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M.,
529 Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E.,

530 Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J.,
531 Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H.,
532 Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. Pietro, Rothberg, A.,
533 Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C.,
534 Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.
535 V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G.,
536 Price, G.A., Ingold, G.-L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P.,
537 Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger,
538 J.L., de Miranda Cardoso, J.V., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-
539 Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M.,
540 Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk,
541 O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S.,
542 Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J.,
543 Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T.,
544 Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y., 2020. SciPy 1.0: fundamental
545 algorithms for scientific computing in Python. *Nat. Methods* 17, 261–272.
546 <https://doi.org/10.1038/s41592-019-0686-2>

547 Wickham, H., 2009. *ggplot2*. Springer New York, New York, NY. <https://doi.org/10.1007/978-0-387-98141-3>

549 Winocur, G., 1985. THE HIPPOCAMPUS AND THALAMUS: THEIR ROLES IN SHORT-
550 AND LONG-TERM MEMORY AND THE EFFECTS OF INTERFERENCE, *Behavioural*
551 *Bra#z Research*.

552 Wolff, M., Vann, S.D., 2019. The cognitive thalamus as a gateway to mental representations.
553 *J. Neurosci.* 39, 3–14. <https://doi.org/10.1523/JNEUROSCI.0479-18.2018>

554 Zammit, A.R., Ezzati, A., Zimmerman, M.E., Lipton, R.B., Lipton, M.L., Katz, M.J., 2017.
555 Roles of hippocampal subfields in verbal and visual episodic memory. *Behav. Brain*

556 Res. 317, 157–162. <https://doi.org/10.1016/j.bbrc.2016.09.038>

557 Zhou, Q.-Y., Park, J., Koltun, V., 2018. Open3D: A Modern Library for 3D Data Processing.

558

559 **Funding sources**

560 We thank the participants of the Vallecas Project and the staff of the CIEN Foundation. This
561 work was supported by the CIEN Foundation and the Queen Sofia Foundation, as well as by
562 a grant from the Spanish Ministry of Science and Innovation (PID2020-119302RB-I00) to
563 BAS. DF was supported by a Marie Skłodowska-Curie fellowship project PCI2021-122046-
564 2B, financed by the Spanish Ministry of Science and Innovation and the Spanish State
565 Research Agency MCIN/AEI/10.13039/501100011033 and the European Union
566 “NextGenerationEU”/PRTR. MGP was supported by a MAPFRE-Queen Sofia Foundation
567 scholarship. LZ was supported by a grant from the Alzheimer’s Association (2016-NIRG-
568 397128) to BAS.

569 **Supplementary Materials**

Number of voxels in cluster	p (FWE-corr)	TFCE	p (unc)	x	y	z	AAL3 labels
2287	0.007	1337.9	0	-28	-18	-12	Hippocampus_L Extended to the left superior temporal gyrus
	0.008	1318.49	0	-40	-30	-8	Hippocampus_L
	0.008	1308.5	0	-26	-31	-8	Hippocampus_L
184	0.032	999.29	0.002	4	-3	12	Thal_VL_R
	0.038	959.07	0.001	4	-5	-2	Thal_VA_R
168	0.033	994.55	0.001	30	-19	-12	Hippocampus_R
	0.045	922.07	0.002	20	-23	-16	Parahippocampal_R
46	0.044	928.22	0.001	20	-67	22	Cuneus_R

	0.049	904.13	0.001	18	-59	16	Calcarine_R
64	0.046	915.85	0.002	52	-19	-12	Temporal_Mid_R
	0.047	911.21	0.002	44	-11	-18	Hippocampus_R
22	0.048	909.89	0.002	-24	18	-18	OFCpost_L
7	0.049	903.11	0.001	14	-28	-24	Cerebellum_3_R

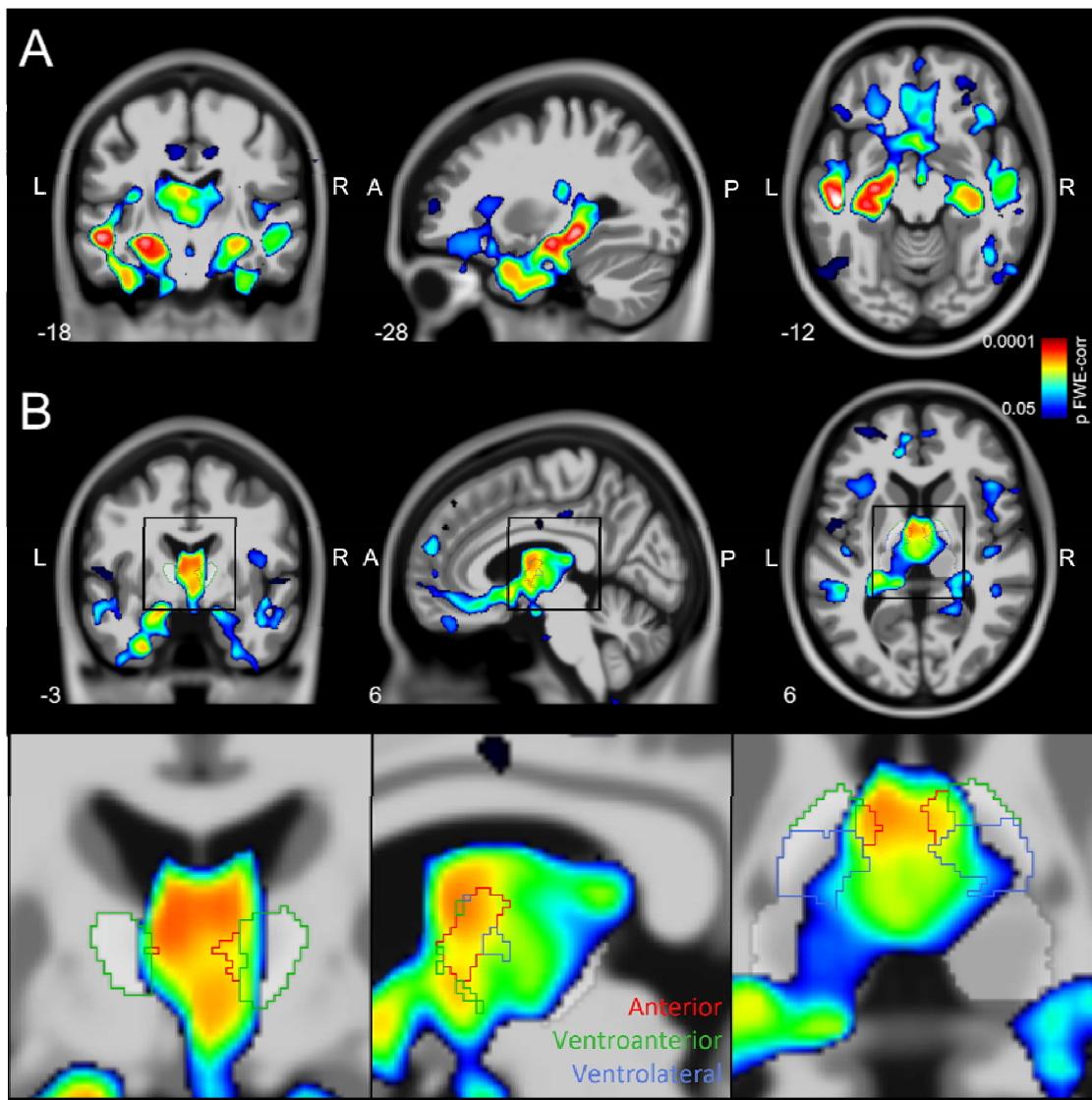
Supplementary Table 1. Coordinates of grey matter volume effects in the VBM analysis. The MNI coordinates for the global maximum and local maxima of each cluster are indicated in mm for the three sections in space (x, y and z). Neuroanatomical labels from the AAL3 atlas are indicated. P(FWE-corr): Family Wise Error corrected p-value, TFCE: Threshold-Free Cluster Enhancement local spatial support, p (unc): uncorrected p-value.

575

Number of voxels in cluster	p (FWE-corr)	Main tracts
Positive correlation with FA values		
4917	0.025	IFOF, SLF, fornix, ATR_R
3123	0.036	IFOF, ILF, SLF, fornix, ATR_L
1310	0.036	IFOF, ILF, forceps major_R
359	0.047	ILF, forceps major_L

239	0.044	SLF_L
128	0.047	Corpus callosum
61	0.049	Forceps minor
8	0.05	Corpus callosum
Negative correlation with MD values		
9921	0.013	IFOF, ILF, SLF, ATR_R, forceps minor, corpus callosum
7467	0.015	IFOF, ILF, SLF, fornix, ATR_L, corpus callosum
3	0.05	Corticospinal tract
1	0.05	

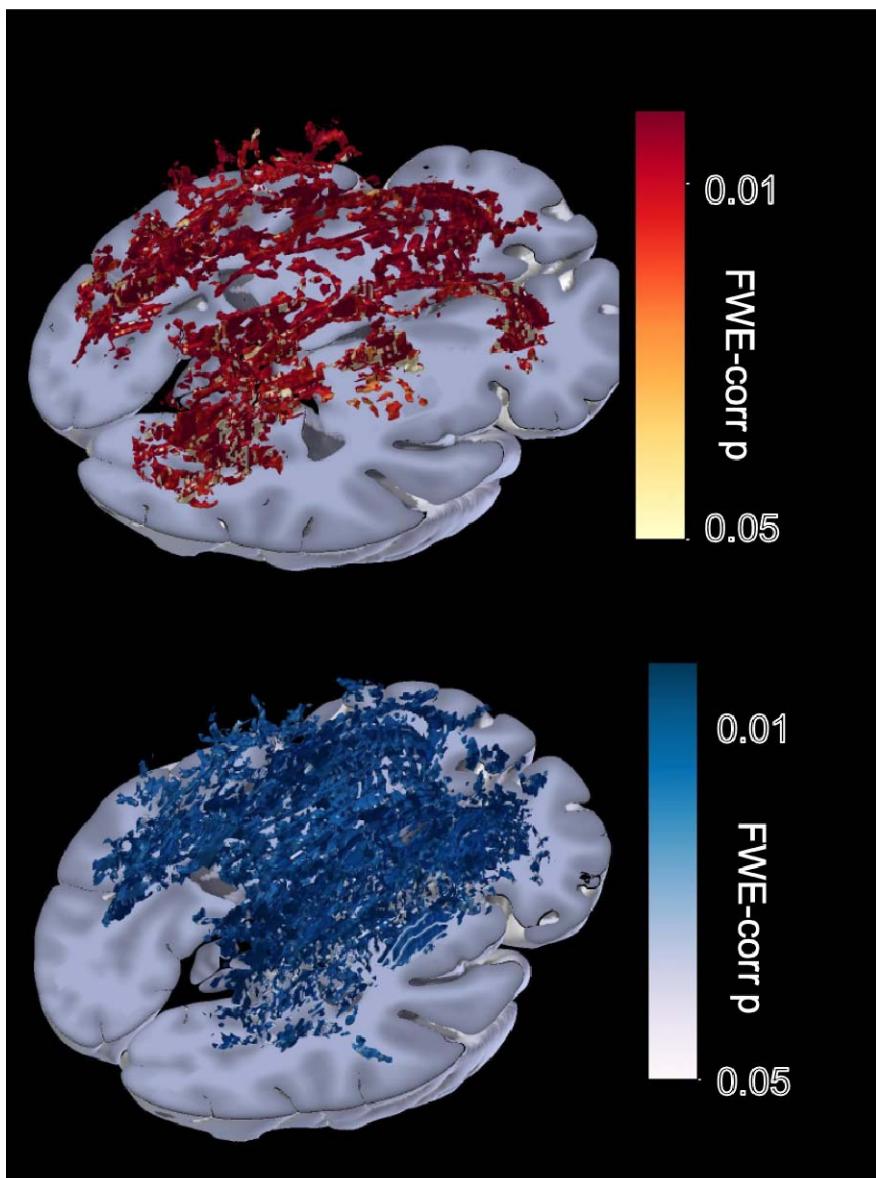
576 **Supplementary Table 2. Brain clusters for correlation between episodic learning rate**
577 **and FA and MD values in the main analysis.** P(FWE-cor): Family Wise Error corrected p-
578 value. Neuroanatomical labels from the JHU white matter atlas are indicated.



579

580 **Supplementary Figure 1. Grey matter volume correlates with learning rate in older**
581 **adults with an alternative statistical model.** For this model, age and education were
582 introduced in the model whereas the delayed FCSRT score was removed. The positive
583 correlation has been overlaid on a canonical T1 image (thresholded at $p < 0.05$ FWE-corr) to
584 show a significant effect in A hippocampus bilaterally and B thalamus, right anterior (red),
585 ventroanterior (green) and ventrolateral thalamic nuclei (blue) (thalamic ROIs in the inset
586 come from the AAL3 atlas (Rolls et al., 2020). The coordinates of the sections are given in
587 mm. L: left, R: right, A: anterior, P: posterior.

588



589

590 **Supplementary Figure 2. Extensive network of white matter microstructure integrity is**
591 **related to learning rate in older adults with an alternative statistical model.** For this
592 model, age and education were introduced in the model whereas the delayed FCSRT score
593 was removed. A. Positive correlation between FA and learning rate (warm colours; $p < 0.05$
594 FWE-corr). B. FA effects overlaid on the fornix. C. Negative correlation between MD and
595 learning rate (cold colours; $p < 0.05$ FWE-corr). D. MD effect overlaid on the fornix.

596
597