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Abstract 1 

Memory normally declines with ageing and these age-related cognitive changes are 2 

associated with changes in brain structure. Episodic memory retrieval has been widely 3 

studied during ageing, whereas learning has received less attention. Here we examined the 4 

neural correlates of episodic learning rate in ageing. Our study sample consisted of 982 5 

cognitively healthy female and male older participants from the Vallecas Project cohort, 6 

without a clinical diagnosis of mild cognitive impairment or dementia. The learning rate 7 

across the three consecutive recall trials of the verbal memory task (Free and Cued 8 

Selective Reminding Test) recall trials was used as a predictor of grey matter (GM) using 9 

voxel-based morphometry, and WM microstructure using tract-based spatial statistics on 10 

fractional anisotropy (FA) and mean diffusivity (MD) measures. Immediate Recall improved 11 

by 1.4 items per trial on average, and this episodic learning rate was faster in women and 12 

negatively associated with age. Structurally, hippocampal and anterior thalamic GM volume 13 

correlated positively with learning rate. Learning also correlated with the integrity of WM 14 

microstructure (high FA and low MD) in an extensive network of tracts including bilateral 15 

anterior thalamic radiation, fornix, and long-range tracts. These results suggest that episodic 16 

learning rate is associated with key anatomical structures for memory functioning, motivating 17 

further exploration of the differential diagnostic properties between episodic learning rate and 18 

retrieval in ageing. 19 
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Introduction 22 

Ageing is accompanied by a decline in cognition, most characteristically in episodic memory 23 

performance (Glisky, 2007; Tromp et al., 2015), the ability to remember personal 24 

experiences. Episodic memory impairments in ageing can manifest in different ways 25 

depending on the studied phase (i.e., encoding, consolidation, or retrieval process). It is 26 

difficult to study these phases independently in behavioural studies, although previous work 27 

has reported that distinct processes may be affected unequally during ageing. For example, 28 

more prominent deficits have been found for encoding relative to retrieval in older adults 29 

(Friedman et al., 2007; Morcom et al., 2003). Furthermore, exploring the neural 30 

underpinnings of these various manifestations (e.g., learning versus retention) could inform 31 

dissociations between normal age-related decline and decline driven by neurodegenerative 32 

diseases such as dementia. Memory decline in ageing is often measured in terms of 33 

retention. However, impairments could also be driven by a diminished ability to learn 34 

information over a period of time, rather than to retrieve it. We therefore aimed to elucidate 35 

the structural brain properties underlying episodic learning rate in ageing. 36 

Ageing has been associated with a global reduction in grey matter (GM) volume (Farokhian 37 

et al., 2017; Grieve et al., 2007), although to different extents across brain regions (Cox et 38 

al., 2018; Resnick et al., 2003). Numerous studies have found a specific GM volume loss in 39 

prefrontal, temporal and parietal cortices (Cox et al., 2021; Elliott, 2020), associated with 40 

general cognitive and memory-specific decline (Cox et al., 2021; Fjell and Walhovd, 2010; 41 

Gorbach et al., 2017). White matter (WM) age-related differences in fractional anisotropy 42 

(FA) and mean diffusivity (MD) have also been reported (Bennett et al., 2010; Fjell and 43 

Walhovd, 2010; Madden and Parks, 2017). FA and MD are negatively correlated such that 44 

reduced WM integrity is indexed by a decrease in FA and an increase in MD. Like GM, age-45 

related WM effects are apparent throughout the brain (Farokhian et al., 2017; Grieve et al., 46 

2007), although with greater effects in anterior than posterior tracts (Bennett et al., 2010). 47 
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Whilst these structural differences contribute to our understanding of brain ageing, it is vital 48 

to also consider their cognitive manifestations. 49 

A commonly observed form of age-related cognitive decline is impaired memory, which has 50 

been associated with reduced hippocampal volume (Gorbach et al., 2017; Hedden et al., 51 

2016; Persson et al., 2012), as well as with damage to the microstructure of frontal and 52 

temporal WM tracts (de Mooij et al., 2018; Kennedy and Raz, 2009; Rizvi et al., 2020), and 53 

specifically limbic tracts (Bennett et al., 2015). Furthermore, recognition performance on 54 

neuropsychological episodic memory tests has been shown to correlate with FA and MD 55 

measures in the fornix, cingulum, and superior and inferior longitudinal fasciculi (Sasson et 56 

al., 2013). However, other studies have not found correlations between WM microstructure 57 

and episodic retrieval in ageing (Gorbach et al., 2017; Laukka et al., 2013; Salami et al., 58 

2012). 59 

Memory performance is usually quantified by the ability to recognise or recall information 60 

correctly, a retrieval impairment could be caused by a reduced ability to encode or learn 61 

information (Boujut and Clarys, 2016; Cadar et al., 2018). Encoding, which is potentially 62 

dissociable from retrieval processes (Bennett et al., 2015; Kwok and Buckley, 2010), has 63 

been shown to underlie several memory deficits observed in ageing (Grady, 2012). Whilst 64 

learning rate is part of the encoding process, in the current context it specifically refers to an 65 

improvement in learning over time (or repetitions). Indeed, there is evidence for reduced 66 

error-driven (Nassar et al., 2016) and probabilistic learning rates (Herff et al., 2019; 67 

Samanez-Larkin et al., 2012) in older adults, but evidence for similar deficits in episodic 68 

learning rate is lacking.  69 

A potential way to probe episodic learning rate is through the Free and Cued Selective 70 

Reminding Test (FCSRT). The FCSRT is one of the most commonly used free-recall 71 

paradigms for episodic memory assessment, including immediate and delayed free- and 72 

cued-recall (Buschke, 1984). Worse recall performance of cognitively normal older adults on 73 
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the FCSRT has been associated with reduced hippocampal GM volume (Zammit et al., 74 

2017), reduced fornix FA (Hartopp et al., 2019; Metzler-Baddeley et al., 2011) and increased 75 

frontal MD (Nicolas et al., 2020). In addition to such retrieval effects, using the immediate 76 

free recall components across three consecutive trials, the FCSRT enables investigating 77 

episode learning by examining how many additional words are successfully recalled on each 78 

trial.  79 

We investigated whether the learning rate in FCSRT is associated with age, as well as its 80 

neural manifestation in GM volume and WM tract microstructure. In a large cross-sectional 81 

cohort of healthy older adults, we first calculated the learning rate across the three 82 

consecutive FCSRT trials and tested for an association with age. To examine brain-cognition 83 

associations, we used learning rate as a predictor to examine 1) GM volume using voxel-84 

based morphometry (VBM), and 2) WM microstructure using tract-based spatial statistics on 85 

FA and MD measures. Given the critical role of the hippocampus in episodic memory and its 86 

correlation with structural changes in ageing, we hypothesised that hippocampal GM volume 87 

and associated WM limbic tract microstructure would correlate with learning rate. 88 

Methods 89 

Participants. All participants in this study were part of the Vallecas Project, a single-centre 90 

longitudinal study of community-dwelling volunteers aged 69-86 without any cognitive or 91 

psychiatric disorder that compromised their daily functioning at the time of recruitment. 92 

Inclusion and exclusion criteria have been further described elsewhere (Olazarán et al., 93 

2015). From this cohort, data from the baseline visit of 982 cognitively normal participants 94 

(mean age = 74.8, SD = 3.9, 637 (64.9%) females) were included in the current study. Any 95 

subject with a diagnosis of mild cognitive impairment or Alzheimer’s disease at this first visit 96 

was excluded. All participants provided written informed consent and the Vallecas Project 97 

was approved by the Ethics committee of the Instituto de Salud Carlos III. 98 
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Neuropsychological assessment. Participants completed a battery of neuropsychological 99 

assessments as part of the Vallecas Project protocol. In this study, we report the total score 100 

of the Mini Mental State Examination (MMSE; Folstein et al., 1975) and we mainly focused 101 

on the Free and Cued Selective Reminding Test (FCSRT; Buschke, 1984), assessing 102 

learning and retention of verbal memory, with immediate and delayed recall components. 103 

The test was administered using standard procedures (Peña-Casanova et al., 2009). 104 

Participants were presented with cards containing four words and asked to identify the word 105 

corresponding to a specific semantic category, going through all four words, on four different 106 

cards (16 words in total). The words presented are not the most obvious member of each 107 

semantic category. Following the presentation phase, participants were asked to recall as 108 

many words as possible in three consecutive recall trials each one followed by 20 seconds 109 

of interference counting backwards (Figure 1A). For each trial, participants were asked to 110 

freely recall as many words as possible with a time limit of 90 seconds, then examiners 111 

provided the semantic category clue for the forgotten items. These three free and cued 112 

recalls constitute the three immediate recall trials of the task. This immediate recall phase is 113 

followed by a 30-minute delay, after which the delayed phase of the test starts. Participants 114 

were asked on a single trial to freely recall as many words as possible otherwise cues were 115 

provided (Figure 1A). To assess the learning rate across trials, we fit a linear mixed-effects 116 

model of the number of items freely recalled in each immediate trial, as a function of the 117 

recall trial (first, second, and third) using the lme4 package in R 4.0.2 (https://www.r-118 

project.org/). The model also included a random slope of the recall trial, and a random 119 

intercept per participant, capturing inter-individual variability in learning rate (across the three 120 

trials). The learning rate coefficient for each participant was extracted using the coef() 121 

function for subsequent analyses. Next, we built a multiple regression model where the 122 

learning rate was the dependent variable, sex, age and level of education were the 123 

predictors and the delayed free recall score of the FCSRT was included as a covariate to 124 

rule out the retrieval phase of the memory process. Extraction and plotting of the effects 125 
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reported below were conducted using the effects (Fox, 2003) and ggplot2 (Wickham, 2009) 126 

packages in R. 127 

MRI Data acquisition. Images were acquired using a 3T MRI (Signa HDxt GE) with a phased 128 

array eight-channel head coil. T1-weighted images (3D fast spoiled gradient echo with 129 

inversion recovery preparation) were collected using a repetition time (TR) of 10ms, echo 130 

time (TE) of 4.5ms, field of view (FOV) of 240mm and a matrix size of 288x288 with slice 131 

thickness of 1mm, yielding a voxel size of 0.5 x 0.5 x 1 mm3. Diffusion-weighted images 132 

were single-shot spin echo echo-planar imaging (SE-EPI), with TR 9200ms, TE 80ms, b-133 

value 800s/mm2 and 21 gradient directions, FOV 240mm and matrix size 128 x 128 with 134 

slice thickness of 3mm. 135 

Grey matter VBM. The analysis was carried out in SPM12 (version r6225; 136 

https://www.fil.ion.ucl.ac.uk/spm). T1-weighted images were segmented into grey matter, 137 

white matter and cerebrospinal fluid and then aligned and normalised to MNI space using 138 

the DARTEL algorithm (Ashburner, 2007). Prior to statistical modelling, the normalised 139 

images were smoothed using a 6mm FWHM Gaussian kernel. The pre-processed grey 140 

matter maps were entered into a general linear model (GLM) with learning rate from the 141 

memory task as the predictor of interest, and total intracranial volume (TIV), sex, and the 142 

delayed free recall score of the FCSRT as covariates. Age and education were not used in 143 

the model as additional covariates since FCSRT delayed free recall is sensitive to the effects 144 

of age and level of education. Nonetheless, to ensure the model is capturing variance 145 

associated with these variables we devised a second model without FCSRT delayed free 146 

recall and including TIV, sex, age and education as covariates and the same results were 147 

obtained (see Supplementary Materials). We conducted whole-brain analyses using a 148 

threshold-free cluster enhancement (TFCE) approach with 5000 permutations and default 149 

parameters (E = 0.5 and H = 2) using the TFCE tool (version r223) for CAT12 toolbox in 150 

SPM (http://dbm.neuro.uni-jena.de/tfce). Therefore, our analyses fully correct for mass-151 

univariate testing (and associated multiple-comparisons problem) by employing a whole-152 
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brain FWE correction. Furthermore, we used the TFCE approach to overcome cluster-based 153 

inference issues.  The AAL3 atlas neuroanatomical labels were used to describe 154 

neuroanatomical loci (Rolls et al., 2020) and Mango software was used to produce the figure 155 

(http://rii.uthscsa.edu/mango/). These analyses assessed which regions were positively 156 

associated with the immediate recall learning rate. Significant results are reported at a 157 

family-wise error FWE) corrected level of p < 0.05. 158 

White matter tract-based spatial statistics (TBSS). Of the 982 participants, seven were 159 

excluded as they did not have diffusion data. For preprocessing these images, the FSL 160 

toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki) was used for motion and eddy current correction, 161 

the extraction of non-brain voxels and, lastly, the calculation of voxel-wise diffusion maps 162 

(FA and MD) for each participant. Individual FA and MD maps were then used in the FSL 163 

TBSS pipeline (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuider; detailed methods 164 

described by Smith et al. (2006)). The general outline of the process is: 1) FA individual 165 

maps were non-linearly registered to standard space (FMRIB58_FA template) (Andersson et 166 

al., 2007). 2) A mean FA image was created by averaging all co-registered FA maps. 3) 167 

Individually aligned images were projected onto the mean FA skeleton—representing the 168 

centers of all tracts common to the study sample—and skeletonised images were used for 169 

voxel-wise analysis. Diffusivity maps for MD were generated by applying the same steps 170 

detailed above. The same GLM design matrix as the VBM analysis was used along with the 171 

TFCE approach with 5000 permutations (default parameters E = 0.5 and H = 2). Significant 172 

results are reported at a family-wise error (FWE) corrected level of p < 0.05. To visualise our 173 

TBSS results we used the multimodal analysis and visualisation tool (MMVT; Felsenstein et 174 

al., 2019). The pipeline follows these steps: 1) Binary masking: all the voxels in the TBSS 175 

volume below the threshold (0.95) were set to zero. 2) Outlier voxels removal using the 176 

Open3D python package (Zhou et al., 2018). 3) Smoothing the volumetric data using a 3D 177 

Gaussian filter (Virtanen et al., 2020). 4) Surface creation from the volume’s TBSS surfaces 178 

using the marching cubes algorithm (Lorensen and Cline, 1987). For that, we re-calculate 179 
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the threshold to give us the same number of voxels after the smoothing step. 5) Translation 180 

for the surfaces’ vertices coordinates. 6) Projection of the volumetric data on the surfaces.  181 

Results 182 

Memory and neuropsychological performance 183 

On average, across three trials, participants correctly remembered 7.9 items (SD = 2.6). 184 

When looking at individual trials, performance improved as trials progressed, reflecting a 185 

positive episodic learning rate (see Table 1 for number of items recalled, and Figure 1B for 186 

learning rates). Our linear model predicting the learning rate as a function of age, sex, and 187 

level of education revealed significant effects of the three predictors after correcting for 188 

FCSRT delayed free recall score. Learning rate and delayed free recall FCSRT were 189 

positively correlated (Pearson’s r = 0.7; p < 2.2×10-16). Age had a negative effect on 190 

learning rate (F(1,965) = 10.45, p = 0.001) (Figure 1C), sex also had an effect (F(1,965) = 191 

4.66, p = 0.031) and being a woman was positively associated with learning rate (Figure 192 

1D). Finally, having a higher level of education was positively associated with learning rate 193 

(F(3,965) = 5.17 , p < 0.002) (Figure 1E). There was no significant interaction between the 194 

three predictors (age, sex and years of education). 195 

 196 
 197 

    Total 

sample 

(n = 982) 

Mean (SD) 

Women 

(n = 637) 

Mean 

(SD) 

Men 

(n = 345) 

Mean 

(SD) 

Demographics 
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Age, years 74.8 (3.9) 74.8 (3.9) 74.8 (3.9) 

Levels of education, count (%) Less than primary 185 (18.8) 137 (21.5) 48 (13.9) 

Primary 295 (30.0) 222 (34.9) 73 (21.1) 

Secondary 245 (24.9) 151 (23.7) 94 (27.2) 

Higher education 257 (26.2) 127 (19.9) 130 (37.7) 

Neuropsychological performance 

MMSE, total score 28.6 (1.6) 28.6 (1.6) 28.7 (1.4) 

Trial 1 immediate free recall FCSRT, items recalled 6.5 (2.1) 6.7 (2.1) 6.3 (2.1) 

Trial 2 immediate free recall FCSRT, items recalled 7.9 (2.4) 7.9 (2.4) 7.8 (2.4) 

Trial 3 immediate free recall FCSRT, items recalled 9.2 (2.5) 9.4 (2.6) 9.0 (2.6) 

Learning rate immediate free recall FCSRT, items 

recalled/trial 

1.4 (0.3) 1.4 (0.3) 1.3 (0.3) 
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Delayed free recall FCSRT, items recalled 9.4 (2.6) 9.5 (2.7) 9.3 (2.6) 

Table 1. Demographic and neuropsychological profile of the total sample and split by 198 

sex. MMSE: Mini Mental State Examination total score, FCSRT: Free and Cued Selective 199 

Reminding Test.  200 

 201 

 202 
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Figure 1. Learning rate across FCSRT trials is related to age, sex and level of 203 
education. A Diagram of the FCSRT protocol used to assess memory in this study in which 204 
the learning rate is calculated from the free recall of the three immediate trials (blue). B 205 
Mean and individual learning rates across the three free immediate recall FCSRT trials. After 206 
controlling for the rest of the model predictors, C learning rate decreases with age, D 207 
females learn faster than males and E level of education is positively associated with 208 
learning rate. Error bars represent 95% confidence intervals. 209 

Grey matter volume (VBM) 210 

We found a positive correlation between episodic learning rate and grey matter volume in 211 

the bilateral hippocampus, with more pronounced effects on the left side and the left superior 212 

temporal gyrus (Figure 2A, Supplementary Figure 1), and the right anterior thalamic nucleus 213 

with some extension to adjacent nuclei (right ventroanterior and ventrolateral thalamic nuclei; 214 

Figure 2B, Supplementary Table 1, Supplementary Figure 1).   215 
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 216 

Figure 2. Grey matter volume correlates with episodic learning rate in older adults. 217 
The positive correlation has been overlaid on a canonical T1 image (thresholded at  p < 0.05 218 
FWE-corr) to show a significant effect in A) hippocampus bilaterally and left superior 219 
temporal gyrus and B) right anterior (red) and ventroanterior (green) (thalamic ROIs in the 220 
inset come from the AAL3 atlas (Rolls et al., 2020)). The coordinates of the sections are 221 
given in mm. L: left, R: right, A: anterior, P: posterior.  222 

 223 

White matter microstructure (TBSS) 224 

We first examined FA as a marker of WM integrity. We found a bilateral network of temporal, 225 

parietal and occipital tracts showing a positive association with episodic learning rate. 226 

Among tracts showing significant positive correlations were the bilateral anterior thalamic 227 
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radiation (ATR), fornix, inferior fronto-occipital fasciculus (IFOF), inferior longitudinal 228 

fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinate (Figure 3A-B, 229 

Supplementary Table 2, Supplementary Figure 2). Next, we examined MD and found a 230 

negative association between a similar network of bilateral tracts and FCSRT learning rate, 231 

including bilateral ATR, corticospinal tract, forceps major and minor, cingulum (cingulate), 232 

IFOF, ILF, SLF, uncinate and fornix (Figure 3C-D, Supplementary Figure 2, Supplementary 233 

Table 2). 234 

 235 

 236 

Figure 3. Extensive network of white matter microstructure integrity is related to 237 
episodic learning rate in older adults. A. Positive correlation between FA and learning 238 
rate (warm colours; p < 0.05 FWE-corr). B. FA effects overlaid on the fornix. C. Negative 239 
correlation between MD and learning rate (cold colours; p < 0.05 FWE-corr). D. MD effect 240 
overlaid on the fornix. 241 

 242 

Discussion 243 

Our results show that women and individuals with more years of formal education had a 244 

faster episodic learning rate, that it declined with age, and that this rate was associated with 245 

neuroanatomical structural properties. We found a positive correlation between GM volume 246 
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and episodic learning rate, where participants with greater volume in hippocampus, anterior 247 

thalamic nucleus and left superior temporal gyrus learned at a faster rate than those with 248 

lower volume. Furthermore, we found that FA was positively associated with episodic 249 

learning rate in an extended network including limbic tracts, indicating that the structural 250 

integrity of these tracts indexed learning ability. A complementary negative association was 251 

observed for MD, in similar tracts, such that decreased MD was associated with a faster 252 

episodic learning rate. The converging GM and WM findings suggest that structural 253 

properties of the hippocampal-anterior thalamic circuit contribute to learning ability in ageing 254 

and may potentially inform age-related decline in encoding (Friedman et al., 2007; Morcom 255 

et al., 2003). 256 

Previous research on neural substrates of cognitive decline in ageing has shown a 257 

hippocampal volume decline with age that correlated with memory performance  and with 258 

FCSRT recall specifically (Zammit et al., 2017). The presence of hippocampal volume 259 

findings with relation to both episodic learning rate and recall components of the FCSRT task 260 

suggests the hippocampus may be involved in these two separate processes, both of which 261 

are impaired in ageing.  The more pronounced effect we observed in the left hippocampus is 262 

in accordance with previous VBM findings of verbal memory tasks (Ezzati et al., 2016), and 263 

the general lateralisation of verbal functions. Our results, therefore, extend previous 264 

research on the relationship between hippocampal volume and memory decline in ageing, 265 

showing episodic learning rate is also indexed by hippocampal volume. Note that it is 266 

unlikely that these effects reflect memory function in general, given that delayed free recall 267 

was included as a covariate in our model.  268 

Structural properties of extra-hippocampal limbic regions were also associated with learning 269 

ability. Our GM thalamic findings indicate a correlation between episodic learning rate and 270 

the right anterior thalamic nucleus, extending to right ventroanterior and right ventrolateral 271 

nuclei. The anterior thalamic nuclei have been suggested to play an important role in 272 

learning and memory (Aggleton et al., 2010; Sweeney-Reed et al., 2021; Winocur, 1985), 273 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.05.03.490431doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490431
http://creativecommons.org/licenses/by-nc/4.0/


that extend beyond its established role in spatial processing (Nelson, 2021; Wolff and Vann, 274 

2019). For example, fMRI studies in younger adults suggest that the activation of the anterior 275 

thalamic nuclei supports recognition memory performance (Pergola et al., 2013) and 276 

evidence from intracranial EEG studies indicates theta-synchronisation between anterior 277 

thalamus and frontal and parietal regions supporting successful memory formation 278 

(Sweeney-Reed et al., 2014). Furthermore, and in line with our results, Leszczyński and 279 

Staudigl (2016) posited that the anterior thalamus might modulate information flow, via 280 

attention allocation, to support learning. Taken together with the increased hippocampal 281 

volume, which was related to a better learning rate, our results indicate that the limbic 282 

system may play an important role in learning ability in ageing and might explain some of the 283 

impairments in navigating in a novel environment (Grzeschik et al., 2021), and impaired 284 

learning strategies observed in mild cognitive impairment (Ribeiro et al., 2007).  285 

The fornix is a major hippocampal input/output pathway and has been associated with visuo-286 

spatial learning across species (Buckley et al., 2008; Hodgetts et al., 2020; Hofstetter et al., 287 

2013). The fornix links the hippocampus with the anterior thalamic nuclei directly and via the 288 

mammillary bodies (Aggleton et al., 2010, 1986), with both the hippocampus and the anterior 289 

thalamic nuclei showing grey matter volume relationships with episodic learning rate. 290 

Furthermore, we found that fornix integrity, as captured by bilateral FA and MD, correlated 291 

with episodic learning rate in older adults. Together with previous findings linking fornix 292 

integrity to recall performance on the FCSRT task (Hartopp et al., 2019; Metzler-Baddeley et 293 

al., 2011), our results extend its role in memory processes, indicating that the fornix also 294 

supports verbal episodic learning. We also found that the WM integrity of the ATR was 295 

correlated with learning rate. The ATR connects the anterior and dorsomedial thalamus with 296 

the prefrontal cortex (Grodd et al., 2020), which has been suggested to play a role in 297 

learning rate (McGuire et al., 2014).  298 

In addition to changes in limbic GM volume and WM microstructure, we found episodic 299 

learning rate was associated with broader changes within bilateral WM tracts connecting 300 
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occipital-temporal-frontal regions (ILF, SLF, IFOF). This result might point toward an overall 301 

WM microstructure effect, as previously noted in age-related cognitive decline (de Mooij et 302 

al., 2018; Farokhian et al., 2017; Grieve et al., 2007; Molloy et al., 2021; Rizvi et al., 2020). 303 

With respect to specific cognitive functions, ILF and SLF have been shown to relate to 304 

memory performance in normal ageing (Sasson et al., 2013). ILF and IFOF facilitate the flow 305 

of visual information up the visual stream (Rokem et al., 2017), and IFOF has been 306 

associated with semantic processing (Duffau, 2008), potentially supporting learning 307 

performance in our task. Therefore, the observed relationship between microstructure of 308 

these tracts and learning ability might reflect a more general aspect of cognitive ability.  309 

Finally, it is important to note some limitations of the current study; we analysed data from a 310 

cross-sectional cohort of healthy older adults. As GM and WM properties and memory 311 

function both deteriorate with age, future longitudinal studies would be needed to better 312 

understand the relationship between learning ability and structural changes as ageing 313 

progresses and eliminate age-related confounds in cross-sectional studies (Elliott, 2020). 314 

We used the learning rate across trials in an established neuropsychological memory task 315 

(FCSRT) as a measure for episodic learning; it would be interesting to examine neural 316 

correlates of learning rates in tasks such as error-driven and statistical learning (Herff et al., 317 

2019; Nassar et al., 2016; Samanez-Larkin et al., 2012), as well as consider learning ability 318 

as a potential cognitive phenotype in pathological ageing. Finally, future research with 319 

hippocampal subfield resolution could examine their differential contribution to episodic 320 

learning rate. It would be interesting to explore whether volumetric effects are more 321 

pronounced in the subiculum, the principal source of hippocampal projections to the anterior 322 

thalamus and mammillary bodies (Hartopp et al., 2019).   323 

In conclusion, in a cross-sectional cohort of healthy older adults, we found learning rate on 324 

the FCSRT task was positively associated with extensive GM and WM structural effects 325 

including the hippocampus, fornix and anterior thalamic nucleus, structures part of the limbic 326 

system. Furthermore, there was a positive correlation between episodic learning rate and 327 
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long-range WM tracts (ILF, SLF, IFOF). Our findings indicate that episodic learning rate is 328 

associated with key anatomical structures implicated in memory function, and therefore may 329 

inform further exploration of the relationship between episodic learning rate and retrieval in 330 

ageing. 331 

 332 

  333 
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Supplementary Materials 569 

Number of 

voxels in 

cluster 

p (FWE-

corr) 
TFCE p (unc) x y z AAL3 labels 

2287 0.007 1337.9 0 -28 -18 -12 
Hippocampus_L 

Extended to the left 
superior temporal gyrus 

 0.008 1318.49 0 -40 -30 -8 Hippocampus_L 

 0.008 1308.5 0 -26 -31 -8 Hippocampus_L 

184 0.032 999.29 0.002 4 -3 12 Thal_VL_R 

 0.038 959.07 0.001 4 -5 -2 Thal_VA_R 

168 0.033 994.55 0.001 30 -19 -12 Hippocampus_R 

 0.045 922.07 0.002 20 -23 -16 Parahippocampal_R 

46 0.044 928.22 0.001 20 -67 22 Cuneus_R 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.05.03.490431doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490431
http://creativecommons.org/licenses/by-nc/4.0/


 0.049 904.13 0.001 18 -59 16 Calcarine_R 

64 0.046 915.85 0.002 52 -19 -12 Temporal_Mid_R 

 0.047 911.21 0.002 44 -11 -18 Hippocampus_R 

22 0.048 909.89 0.002 -24 18 -18 OFCpost_L 

7 0.049 903.11 0.001 14 -28 -24 Cerebellum_3_R 

Supplementary Table 1. Coordinates of grey matter volume effects in the VBM 570 
analysis. The MNI coordinates for the global maximum and local maxima of each cluster are 571 
indicated in mm for the three sections in space (x, y and z). Neuroanatomical labels from the 572 
AAL3 atlas are indicated. P(FWE-corr): Family Wise Error corrected p-value, TFCE: 573 
Threshold-Free Cluster Enhancement local spatial support, p (unc): uncorrected p-value. 574 

 575 

Number of voxels in cluster p (FWE-corr) Main tracts 

Positive correlation with FA values 

4917  0.025 IFOF, SLF, fornix, ATR_R 

3123 0.036 IFOF, ILF, SLF, fornix, 
ATR_L 

1310 0.036 IFOF, ILF, forceps major_R 

359 0.047 ILF, forceps major_L 
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239 0.044 SLF_L 

128    0.047 Corpus callosum 

61      0.049 Forceps minor 

8        0.05 Corpus callosum 

Negative correlation with MD values 

9921  0.013 IFOF, ILF, SLF, ATR_R, 
forceps minor, corpus 
callosum 

7467 0.015 IFOF, ILF, SLF, fornix, 
ATR_L, corpus callosum 

3 0.05 Corticospinal tract 

1 0.05 

Supplementary Table 2. Brain clusters for correlation between episodic learning rate 576 
and FA and MD values in the main analysis. P(FWE-cor): Family Wise Error corrected p-577 
value. Neuroanatomical labels from the JHU white matter atlas are indicated. 578 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.05.03.490431doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490431
http://creativecommons.org/licenses/by-nc/4.0/


 579 

Supplementary Figure 1. Grey matter volume correlates with learning rate in older 580 
adults with an alternative statistical model. For this model, age and education were 581 
introduced in the model whereas the delayed FCSRT score was removed. The positive 582 
correlation has been overlaid on a canonical T1 image (thresholded at p < 0.05 FWE-corr) to 583 
show a significant effect in A hippocampus bilaterally and B thalamus, right anterior (red), 584 
ventroanterior (green) and ventrolateral thalamic nuclei (blue) (thalamic ROIs in the inset 585 
come from the AAL3 atlas (Rolls et al., 2020). The coordinates of the sections are given in 586 
mm. L: left, R: right, A: anterior, P: posterior. 587 

 588 
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 589 

Supplementary Figure 2. Extensive network of white matter microstructure integrity is 590 
related to learning rate in older adults with an alternative statistical model. For this 591 
model, age and education were introduced in the model whereas the delayed FCSRT score 592 
was removed. A. Positive correlation between FA and learning rate (warm colours; p < 0.05 593 
FWE-corr). B. FA effects overlaid on the fornix. C. Negative correlation between MD and 594 
learning rate (cold colours; p < 0.05 FWE-corr). D. MD effect overlaid on the fornix. 595 

 596 
 597 
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