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Abstract

Forster resonance energy transfer (FRET) using pulsed illumination has been piv-
otal in leveraging lifetime information in FRET analysis. However, there remain major
challenges in quantitative single photon, single molecule FRET (smFRET) data analy-
sis under pulsed illumination including: 1) simultaneously deducing kinetics and num-
ber of system states; 2) providing uncertainties over estimates, particularly uncertainty
over the number of system states; 3) taking into account detector noise sources such
as crosstalk, and the instrument response function contributing to uncertainty; in ad-
dition to 4) other experimental noise sources such as background. Here, we implement
the Bayesian nonparametric framework described in the first companion manuscript
that addresses all aforementioned issues in smFRET data analysis specialized for the
case of pulsed illumination. Furthermore, we apply our method to both synthetic as
well as experimental data acquired using Holliday junctions.

Why It Matters

In the first companion manuscript of this series, we developed new methods to analyze
noisy smFRET data. These methods eliminate the requirement of a priori specifying the
dimensionality of the physical model describing a molecular complex’s kinetics. Here, we
apply these methods to experimentally obtained datasets with samples illuminated by laser
pulses at regular time intervals. In particular, we study conformational dynamics of Holliday
junctions.

1 Terminology Convention

To be consistent throughout our three part manuscript, we precisely define some terms as
follows

1. a macromolecular complex under study is always referred to as a system,

2. the configurations through which a system transitions are termed system states, typi-
cally labeled using o,

3. FRET dyes undergo quantum mechanical transitions between photophysical states,
typically labeled using v,


https://doi.org/10.1101/2022.07.20.500892
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.20.500892; this version posted November 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

a system-FRET combination is always referred to as a composite,
a composite undergoes transitions among its superstates, typically labeled using ¢,

all transition rates are typically labeled using A,

NS v

the symbol N is generally used to represent the total number of discretized time win-
dows, typically labeled with n, and

8. the symbol w,, is generally used to represent the observations in the n-th time window.

2 Introduction

Amongst the many fluorescence methods available [IH7], single molecule Forster resonance
energy transfer (smFRET) has been useful in probing interactions and conformational changes
on nanometer scales [§-12]. This is typically achieved by estimating FRET efficiencies (and
system states) at all instants of an smFRET trace and subsequently estimating transition
rates. Furthermore, among different FRET modalities, FRET efficiencies are most accu-
rately determined under pulsed illumination [I3HI5], where the FRET dyes are illuminated
by short laser bursts at known times.

Under this illumination procedure, photon arrival times are recorded with respect to the
immediately preceding pulse, thereby facilitating accurate estimation of fluorescence lifetimes
as well as FRET rates. As such, in this manuscript, we will focus on single photon smFRET
analysis under pulsed illumination.

Under pulsed illumination, information on kinetic parameters present in smFRET data
is traditionally learned by: binned photon methods thereby eliminating lifetime information
altogether [T6HIS]; bulk correlative methods [I9H21]; and single photon methods [14] 22] 23].
However, these methods are parametric, i.e., require fixing the number of system states a
priori, and necessarily only learn system kinetics even though information on the number of
system states is encoded in the data.

In this paper, we implement a general smFRET analysis framework presented in the
Sec. 2.5.1 of the first companion manuscript [24] for the case of pulsed illumination to learn
full distributions. In other words, probability distributions over parameters taking into ac-
count uncertainties from all existing sources such as crosstalk and background. These param-
eters include the system transition probabilities, and photophysical rates, that is, donor and
acceptor relaxation and FRET rates, with special attention paid to uncertainty arising from
sources such as inherent stochasticity in photon arrival times and detectors. As our main
concern is deducing the number of system states using single photon arrivals while incorpo-
rating detector effects, we leverage the formalism of infinite hidden Markov models (iIHMM)
[25H30] within the Bayesian nonparametric (BNP) paradigm [25, 26, BTH38]. The iHMM
framework assumes an a priori infinite number of system states with associated transition
probabilities, where the number of system states warranted by input data is enumerated by
those states most visited over the course of the system state trajectory.

Next, to benchmark our BNP-FRET sampler, we analyzed synthetic and experimental
smFRET data acquired using a single confocal microscope with pulsed illumination opti-
mized to excite donor dyes.


https://doi.org/10.1101/2022.07.20.500892
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.20.500892; this version posted November 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

In particular, we employ a broad range of experimental data acquired from Holliday
junctions (HJ) with an array of different kinetic rates due to varying buffer concentration of
MgCl, [39-47).

3 Forward Model and Inverse Strategy

In this section, we first briefly illustrate the adaptation of the general formalism described
in our first companion manuscript [24] to the pulsed illumination case. Next, we present a
specialized inference procedure. The details of the framework not provided herein can be
found in the Supplementary Information.

As before, we consider a molecular complex labeled with a donor-acceptor FRET pair.
As the molecular complex transitions through its M, system states indexed by o7.,/,, laser
pulses (optimized to excite the donor) separated by time 7 may excite either the donor or
acceptor to drive transitions among the photophysical states, 1.1, as defined in the first
companion manuscript [24]. Such photophysical transitions lead to photon emissions that
may be detected in either donor or acceptor channels. The set of N observations, e.g., photon
arrival times, from NN pulses are recorded as

w:{wl,wz,...,w]v}. (1)

Here, each individual measurement is a pair w,, = (u4, %), where u¢ and 2 are the recorded
arrival times (also known as microtimes) after the n-th pulse in both donor and acceptor
channels, respectively. In cases where there is no photon detection, we denote the absent
microtimes with u¢ = @ and u® = @ for donor and acceptor channels, respectively.

As is clear from Fig. [I, smFRET traces are inherently stochastic due to the nature of
photon excitation, emission, and noise introduced by detector electronics. To analyze such
stochastic systems, we begin with the most generic likelihood derived in Eq. 51 of the first
companion manuscript [24]

L Pstart Ql ce Qn SR QN pZomru (2)

where p,,,,, is the initial probability vector for the system-FRET composite to be in one of M
(= My x M,) superstates, and p,,,.,, is & vector that sums the elements of the propagated
probability vector. Here, we recall that Q, is the transition probability matrix between
pulses n and n + 1, characterizing system-FRET composite transitions among superstates.

The propagators Q,, above adopt different forms depending on whether a photon is de-
tected or not during the associated period. Their most general forms are derived in Sec. 2.5.1
of the first companion manuscript [24]. However, these propagators involve computationally
expensive integrals and thus we make a few approximations here as follows: 1) we assume
that the system state remains the same over an interpulse period since typical system ki-
netic timescales (typically 1 ms or more) are much longer than interpulse periods (/ 100 ns)
[41], 43]; 2) the interpulse period (a 100 ns) is longer than the donor and acceptor lifetimes
(=~ a few ns) [41], 43] such that they relax to the ground state before the next pulse. Further-
more, we will demonstrate a specialized sampling scheme under these physically motivated
approximations.
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Figure 1: Events over a pulsed illumination experiment pulse window. Here, the
beginning of the n-th interpulse window of size 7 is marked by time ¢,. The FRET labels
originally in state GG (donor and acceptor, respectively, in ground states) are excited by a
high intensity burst (shown by the green) to the state EG (only donor excited) for a very
short time 0pyse. If FRET occurs, the donor transfers its energy to the acceptor and resides
in the ground state leaving the FRET labels in the GE state (only acceptor excited). The
acceptor then emits a photon to be registered by the detector at microtime x,,. When using
ideal detectors, the microtime is the same as the photon emission time as shown in panel
(a). However, when the timing hardware has jitter (shown in red), a small delay €, is added
to the microtime as shown in panel (b). For convenience, we have reproduced this figure
from our first companion manuscript [24].
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The immediate implications of assumption (1) are that the system transitions may now,
to a good approximation, only occur at the beginning of each pulse. Consequently, the
evolution of the FRET pair between two consecutive pulses is now exclusively photophysical
as the system state remains the same during interpulse times. As such, the system now
evolves in equally spaced discrete time steps of size 7 where the system state trajectory can
be written as

S1.N = {51,82, ey Sy . .,SN,LSN},

where s, is the system state between pulses n and n + 1. The stochastic evolution of the
system states in such discrete steps is then determined by the transition probability matrix
designated by Il,. For example, in the simplest case of a molecular complex with two system
states 0.9, this matrix is computed as follows

| e "
)\0'2*)0‘2 * Too—o1  Tog—oo
where the matrix in the exponential contains transition rates among the system states and
the * represents the negative row sum.
Next, by assumption 2, we can further suppose that the fluorophores always start in the

ground state at the beginning of every pulse. As a result, we treat pulses independently and
write the probability of observation w,, as

p('LUn|Sn, Gw) = pgroundQﬁ(Sn)pzorm7 (4)

where p,,,.,q denotes the probability vector when the FRET pair is in the ground state at
the beginning of each pulse, G, is the generator matrix with only photophysical transition
rates, and QY (s,) is the photophysical propagator for the n-th interpulse period.

We further organize the observation probabilities of Eq. 4| into a newly defined detection
matrix Dy, with its elements given by (D7)s,—o; = p(wn|sn, Gy). Here, we note that the
index j does not appear on the right hand side because the system state does not change
during an interpulse window resulting in the independence of observation probability from the
next system state s, 1. The explicit formulas for the observation probabilities are provided
in the Supplementary Information.

Now, using the matrix D7, we define the reduced propagators for each interpulse period
as

II) =11, ® Dy, (5)
where © denotes element-by-element product.

Finally, using these simplified propagators, we can write the likelihood for a an smFRET
trace under pulsed illumination as

L = p<w|pstart7 HU? G1ZJ) X pstartHTHg te H?VpZormv (6>

as also introduced in the Sec. 2.5.1 of the first companion manuscript [24]. This form of
the likelihood is advantageous in that it allows empty pulses to be computed as a simple
product, greatly reducing computational cost.

In the following, we first illustrate a parametric inference procedure assuming a given
number of system states. We next generalize the procedure developed to the nonparametric
case to deduce the number of system states along with the rest of parameters.
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3.1 Inference Procedure: Parametric Sampler

Now, with the likelihood at hand, we construct the posterior as follows

p(pstart’ HU? G¢|’LU) (8 p(w|pstart7 HU7 Gl/’)p(pstart)p<G¢)p(H0)7 (7)

where we assume in the prior that the unknown parameters, including the initial probability
vector, P+, the photophysical transition rates in the generator matrix Gy, and the tran-
sition probabilities among system states in propagator Il,, are independent. Here, we can
sample the set of unknowns using the above posterior with the Gibbs sampling procedure
as described in the first companion manuscript Sec. 3.2.2. However, a computationally more
convenient inference procedure that allows direct sampling is accomplished by writing the
posterior of Eq. [§ as a marginalization (sum) over state trajectories as follows

p(pstart7 HU’ G7/1|w) - Zp(psta’rt’ HU? G%Z)? 811N|w>

S1:N
(8 Zp(w‘l_'[07 Gi/)? SlIN)p<pstart)p(G¢)p(HCf)p<SliN|pstart7 HU)? (8)
S1:N
where s1.y = {s1, S2...,sy} denotes a system state trajectory. Now, we can use the non-

marginal posterior

p(pstart7 ]'_‘[07 Gl/“ 811N|w) X p(w“‘_'[(f? G'GZ” SliN)p(pstart)p<G¢)p(HU)p(815N|pstart7 HU) (9)

to sample the trajectory si.n which, in turn, allows direct sampling of the elements of
propagator II, described shortly. For priors on p,,,, and rates in Gy, we, respectively, use
a Dirichlet and Gamma distributions similar to Eq. 65-66 of the first companion manuscript
[24]. We sample the system state trajectory s;.y by recursively sampling the states using a
forward filtering backward sampling algorithm described in the Supplementary Information
Sec. S4.3.

Finally, for each row in the propagator I1,, we use a Dirichlet prior
7, ~ Dirichlet(ag), m=1,2,..., M,, (10)

where M, is the number of system states and 7r,, denotes the m-th row of the propagator.
Here, the hyperparameters o and 3 are, respectively, the concentration parameter and a
vector of length M, described in the first companion manuscript [24] Sec. 3.2.2. We can
now directly generate samples for the transition probability vectors m,, of length M, via
prior-likelihood conjugacy as (see Supplementary Information Sec. S4.3)

7, ~ Dirichlet(n,, + a8), m=1,2,..., M

where the vector n,, collects the number of times each transition out of system state o,
occurs obtained using the system state trajectory.

After constructing the posterior, we can make inferences on the parameters by drawing
samples from the posterior. However, as the resulting posterior has a nonanalytical form, it
cannot be directly sampled. Therefore, we develop a Markov chain Monte Carlo sampling
(MCMC) procedure [38, [44H48] to draw samples from the posterior.

7
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Our MCMC scheme follows a Gibbs sampling technique sweeping through updates of
the set of parameters in the following order: 1) photophysical transition rates including
donor relaxation rates Ay (inverse of donor lifetime), acceptor relaxation rate A, (inverse of
acceptor lifetime), FRET rates Afﬁff for each system state, and excitation rate (inverse
of excitation probability m,) using MH; 2) transition probabilities between system states,
m1.m, by directly drawing samples from the posterior; 3) the system states trajectory, S,
using forward backward sampling procedure [49]; and 4) the initial probabilities pg,,,., by
taking direct samples. In the end, the chains of samples drawn can be used for subsequent
numerical analysis.

3.2 Inference Procedure: Nonparametrics Sampler

The smFRET data analysis method illustrated above assumes a given number of system
states, M,. However, in many applications the number of system states is not specified a
priori. Here, we describe a generalization of our parametric method to address this short-
coming and estimate the number of system states simultaneously along with other unknown
parameters.

We accomplish this by modifying our previously introduced parametric posterior as fol-
lows. First, we suppose an infinite number of system states (M, — oo) for the likelihood
introduced previously and learn the transition matrix IT,. The number of system states can
then be interpreted as those appreciably visited over the course of the trajectory.

To incorporate this infinite system state space into our inference strategy, we leverage
the iHMM [25], 26, 28H30] from the BNP repertoire, placing a hierarchical Dirichlet process
prior over the infinite set of system states as described in the first companion manuscript,
Sec. 3.2.2 [24]. However, as detailed in the first companion manuscript [24] Sec. 3.2.2 dealing
with an infinite number of random variables, though feasible, is not computationally efficient
and we approximate this infinite value with a large number M**  reducing our hierarchical
Dirichlet process prior to

. . Y Y
~ Dirichlet .
B irichle ( ;mx, , ;mw) ,

7 ~ Dirichlet(af3) , m=1,.., M.

Here, 3 denotes the base probability vector of length M]"* serving itself as a prior on
the probability transition matrix Il,, and 7, is the m-th row of Il,. Moreover, v is a
positive scalar hyperparameter of the Dirichlet process prior often chosen to be one. As such,
we ascribe identical weights across the state space a prior: for computational convenience
[28, 29, [50].

Now, equipped with the nonparametric posterior, we proceed to simultaneously make
inferences on transition probabilities, excited state escape rates, and the remaining param-
eters. To do so, we employ the Gibbs sampling scheme detailed in Sec. 3.2.2 on the first
companion manuscript [24], except that we must now also sample the system state trajec-
tory si.ny. More details on the overall sampling scheme are found in the Supplementary
Information in section S4.
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4 Results

The main objective of our method is to learn full distributions over: 1) transition probabilities
among M"** system states determining, in turn, the corresponding system transition rates
and the effective number of system states; 2) photophysical transition rates including FRET
rates \EET " and fluorophores’ relaxation rates (inverse of lifetimes) A, and Ag.

To sample from distributions over these parameters, the BNP-FRET sampler requires
input data comprised of photon arrival time traces from both donor and acceptor chan-
nels as well as a set of precalibrated input parameters including: camera effects such as
crosstalk matrix and detection efficiency (see Sec. 2.4 and Example V of the first companion
manuscript [24]); background emission (see Sec. 2.6 of the first companion manuscript and
Supplementary Information Sec. S2.4); and the IRF (see Sec. 2.5 of the first companion
manuscript [24] and Supplementary Information Sec. 52.3).

Here, we first show that our method samples posteriors over a set of parameters employing
realistic synthetic data generated using the Gillespie algorithm [51] to simulate system and
photophysical transitions while incorporating detector artefacts such as crosstalk (see Sec. 2.8
of the first companion manuscript [24]). The list of parameters used in data generation
for all the figures is provided in Supplementary Information Sec. S6. Furthermore, prior
hyperparameters used in the analysis of synthetic and experimental data are listed in the
Supplementary Information Sec. S3.

We first show that our method works for the simplest case of slow transitions compared
to the interpulse period (25 ns) with two system states using synthetic data, see Fig. .
Next, we proceed to tackle more challenging synthetic data with three system states and
higher transition rates Fig. [3] We show that our nonparametric algorithm correctly infers
system transition probabilities and thus the number of system states; see Fig. [3|

After demonstrating the performance of our method using synthetic data, we use experi-
mental data to investigate the kinetics of HJs under different MgCl, concentrations in buffer;

see Fig. [4]

4.1 Simulated Data Analysis

To help validate BNPs on smFRET single photon data, we start with a simple case of a two
state system and select kinetics similar to those of the experimental data sets, c.f., the HJ in
10 mm MgCl,, with escape rates of 40s™! for both system states [52]. The generated system
state trajectory and photon traces over a period of 500 ms from both channels are shown in
Fig. 2| (a).

Fig. [2| (b) shows the bivariate posterior distribution over FRET efficiencies, eprpr, de-
fined as eprpr = ArrET/(AFRET + A4), and system escape rates, i.e., obtained by computing
logarithm of the propagator matrix, with two peaks corresponding to two system states most
visited by the sampler. Furthermore, the ground truths, designated by red dots, fall within
the posterior with a relative error of less than 3% from the posterior modes. The results
for the remaining parameters, including donor and acceptor transition rates, FRET transi-
tion rates and system transition probabilities, are presented in Supplementary Information
Sec. S7.

To showcase the critical role played by BNPs, we also consider the more difficult case of a
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Figure 2: Analysis on synthetic data for a system with two system states. In
panel (a), we show a section of synthetic data produced with the values in Supplementary
Information Table S2. Furthermore, the system state trajectory is shown in blue. Below
this, the arrival times of donor and acceptor photons u¢ and p? are shown in green and
red, respectively. In panel (b), the ground truth is shown with red dots corresponding to
escape rate of 40 s~' and FRET efficiencies of 0.22 and 0.59. From our MAP estimate, we
plot the bivariate distribution over escape rates \.,. and FRET efficiencies eprpr. As seen,
the BNP-FRET sampler clearly distinguishes two system states and locates ground truth
values for the associated escape rates with values ~ 38*7 s™ and ~ 407 s7!, and FRET
efficiencies ~ 0.211503 and ~ 0.597503. We have smoothed the distributions using kernel
density estimation (KDE) for illustration purposes only.
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Figure 3: Analysis on synthetic data for three system states. In panel (a) we have a
section of synthetic data produced with the values from Supplementary Information Table S3.
The system state trajectory is seen in blue. Below this, the arrival times of donor and
acceptor photons u? and u? are shown in green and red, respectively. In panel (b), the red
dots show ground truths corresponding to escape rates of 1200 s, 2400 s~!, and 1200 s*
and FRET efficiencies of 0.22, 0.53 and 0.7. From our MAP estimate, we plot the distribution
over escape rates A.,. and FRET efficiencies eprpr. The MAP estimate clearly shows three
system states with escape rates of 1100750 s™1, 23007138 s~ 1050755 s~

sample with three system states and faster system state kinetics ranging over 1200-2500 s~ 1.
We do so by simulating photon traces in both donor and acceptor channels over a period of
~150 ms. A 50 ms section of the synthetic photon trace is shown in Fig (a).

Using direct photon arrivals from the generated photon trace, we find that the most
probable system state trajectories sampled by BNP-FRET visit the correct number of system
states, as shown in Fig (b), while inferring all other parameters. Furthermore, the BNP-

11
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FRET sampler estimates the system transition rates and thus the escape rates (i.e., sum
of transition rates out of a given state) where the ground truth escape rates differ from the
posterior peaks by a relative average error of less than 8%. The results for the remaining
parameters are provided in the Supplementary Information Sec. S7.

4.2 Experimental Data Analysis: Holliday Junction (HJ)

In this section, we benchmark our method over a wide range of kinetic rates employing
experimental data acquired using HJ under varying buffer MgCl, concentrations [15] 52].

HJs are four-way double-helical DNA junctions existing in various structural configura-
tions [41], 53, [54]. When not interacting with multivalent metal ions, electrostatic repulsion
between negatively charged phosphate groups of the four helical arms forces HJs to assume
a wide configuration where the arms lie along the two diagonals of a square. However, in the
presence of ions, such as Mg®", interaction with the phosphate groups results in electrostatic
screening. This reduced repulsion induces transitions to what is believed to be primarily two
compact stacked configurations/conformations. The transitions between both conformations
necessitates passing through the intermediate open configuration. Since, at high ion concen-
trations, displacing ions away from the phosphate group becomes increasingly difficult, in
this scenario we anticipate smaller transition rates between both conformations.

The HJ kinetic rates have been studied using both fluorescence lifetime correlation spec-
troscopy (FLCS) [15] and HMM analysis [55] on diffusing HJs assuming a priori a pair of
high and low FRET system states. As expected, these previous studies show kinetic rates
decreasing with increasing MgCl, concentrations |41} [43] and correspondingly longer dwells.

Here our method, free from averaging and binning otherwise common in HMM analysis,
is particularly well-suited to learn the rapid kinetics at low Mg®" concentrations. We apply
our BNP-FRET to data acquired from HJs at 1, 3, 5, and 10 mm MgCl, concentrations, and
sample the photophysical transition rates and the system transition probabilities.

The acquired bivariate posterior distributions over the FRET efficiencies and escape rates
(computed via the logarithm of the system transition probability matrix II,) are presented
in Fig. 4l Moreover, estimates for the other parameters can be found in the Supplementary
Information Section S7. We note that our results are obtained on a single molecule basis
with a photon budget of 10* — 10° photons.

For all four concentrations (see Fig. , our BNP-FRET sampler most frequently visited
only two system states, while this was given as an input to the other analysis methods
[15, B5]. Moreover, both escape rates are found to have similar values with an average of
approximately 1400s™ (1 mM MgCl,), 140s™! (3 mM MgCl,), 725! (5 mM MgCl,), and
41s7! (10 mM MgCl,). These escape rates are in close agreement with values reported by
FLCS and H2MM methods [I5, 5] ~ 1300 s7* (1 mM MgCly), =~ 170 s~' (3 mM MgCl,),
~ 100 s7' (5 mM MgCly), ~ 60 s~! (10 mM MgCl,), which lie well within the bounds of
our posteriors shown in Fig. 4| while simultaneously, and self-consistently, learning number
of system states.
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4.3 Experimental Data Acquisition

In this section, we describe the protocol for preparing the surface immobilized HJ sample
labeled with a FRET pair and the procedure for recording smFRET traces from individual
immobilized molecules. The sample preparation and recording of data follow previous work
[56].

Sample preparation: The HJ used in this work consists of four DNA strands whose
sequences are as follows

R-strand: 5-CGA TGA GCA CCG CTC GGC TCA ACT GGC AGT CG-3’

H-strand: 5-CAT CTT AGT AGC AGC GCG AGC GGT GCT CAT CG-3’

X-strand: 5-biotin-TCTTT CGA CTG CCA GTT GAG CGC TTG CTA GGA GGA
GC-3

B-strand: 5-GCT CCT CCT AGC AAG CCG CTG CTA CTA AGA TG-3".

For surface immobilization, the X-strand was labeled with biotin at the 5’-end. For FRET
measurements, the donor (ATTO-532) and acceptor (ATTO-647N) dyes were introduced
into the H- and B-strands, respectively. In both cases, the dyes were labeled to thymine
nucleotide at the 6th position from the 5’-ends of respective strands (shown as T). All DNA
samples (labeled or unlabeled) were purchased from JBioS (Japan) in the HPLC purified
form and were used without any further purification.

The HJ complex was prepared by mixing 1 mM solutions of R-, H-, B-, and X-strands in
TN buffer (10 mm Tris-HCI with 50 mMm NaCl, pH 8.0) at 3:2:3:3 molar ratio, annealing the
mixture at 94 °C for 4 minutes, and gradually cooling it down (2-3°Cmin~') to room tem-
perature (25°C). For smFRET measurements, we used a sample chamber (Grace Bio-Labs
SecureSeal, GBL621502) with biotin-PEG-SVA (biotin-poly(ethylene glycol)-succinimidyl
valerate) coated coverslip. The chamber was first incubated with streptavidin (0.1 mgmL™"
in TN buffer) for 20min. This was followed by washing the chamber with TN buffer (3
times) and injection of 1nM HJ solution (with respect to its H-strand) for 3-10 seconds.
After this incubation period, the chamber was rinsed with TN buffer (3 times) to remove
unbound DNA and it was filled with TN buffer containing 1 mm (or 5mm) MgCl, and 2 mMm
Trolox for smFRET measurements.

smFRET measurements: The smFRET traces from individual HJs were recorded
using a custom built confocal microscope (Nikon Eclipse Ti) equipped with the Perfect
Focus System (PFS), a sample scanning piezo stage (Nano control B16-055), and a time
correlated single photon counting (TCSPC) module (Becker and Hickl SPC-130EM).

The broadband light generated by a supercontinuum laser operating at 40 MHz (Fianium
SC-400-4) was filtered with a bandpass filter (Semrock FF01-525/30) for exciting the donor
dye, ATTO-532. This excitation light was introduced to the microscope using a single-mode
optical fiber (Thorlabs P5-460B-PCAPC-1), and directed onto the sample using a dichroic
mirror (Chroma ZT532/640rpc) and a water immersion objective lens (Nikon Plan Apo IR
60x, numerical aperture = 1.27).

The excitation light was focused onto the top surface of the coverslip and, during mea-
surements, the focusing condition was maintained using the PFS. The fluorescence signals

were collected by the same objective, passed through the dichroic mirror, and guided to the
detection assembly (Thorlabs DFM1/M) using a multimode fiber (Thorlabs M50L02S-A).
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Note that this multimode fiber (core diameter: 50 pm) also acts as the confocal pinhole. In
the detection assembly, the fluorescence signals from the donor and acceptor dyes were sepa-
rated using a dichroic mirror (Chroma Technology ZT633rdc), filtered using bandpass filters
(Chroma ET585/65m for donor, and Semrock FF02-685/40 for acceptor), and detected using
separate hybrid detectors (Becker & Hickl HPM-100-40-C).

For each detected photon, its macrotime (absolute arrival time from the start of the
measurement) was recorded with 25.2ns resolution and its microtime (relative delay from
the excitation pulse) was recorded with 6.1 ps resolution using the TCSPC module operating
in time-tagging mode. A router (Becker and Hickl HRT-41) was used to process the signals
from the donor and acceptor detectors.

For recording smFRET traces from individual HJs, we first imaged a 10 pmx3 pm area
of the sample using the piezo stage by scanning it linearly at a speed of 1ums™! in the
X-direction and with an increment of 0.1 pm in the Y-direction. Individual HJs appeared as
isolated bright spots in the image.

Next, we fitted the obtained donor and acceptor intensity images with multiple 2D Gaus-
sian functions to determine the precise locations of individual HJs. Note that, during this
image acquisition, the laser excitation power was kept to a minimum (~1pW at the back
aperture of the objective lens) to avoid photobleaching the dyes. In addition, we also em-
ployed an electronic shutter (Suruga Seiki, Japan) in the laser excitation path to control the
sample excitation as required.

Using the precise locations of individual HJs obtained, we recorded 30s long smFRET
traces for each molecule by moving them to the center of the excitation beam using the
piezo stage. For each trace, the laser excitation was blocked (using the shutter) for the first
5 seconds and was allowed to excite the sample for the remaining 25 seconds. Note that
the smFRET traces were recorded using 40 W laser excitation (at the back aperture of the
objective lens) to maximize the fluorescence photons emitted from the dyes. We automated
the process of acquiring smFRET traces from different molecules sequentially and executed
it using a program written in-house on Igor Pro (Wavemetrics).

5 Discussion

The sensitivity of smFRET under pulsed illumination has been exploited to investigate many
different molecular interactions and geometries [8-11] 57]. However, quantitative interpreta-
tion of smFRET data faces serious challenges including unknown number of system states
and robust propagation of uncertainty from noise sources such as detectors and background.
These challenges ultimately mitigate our ability to determine full distributions over all rele-
vant unknowns and, traditionally, have resulted in data pre- or post-processing compromising
the information otherwise encoded in the rawest form of data: single photon arrivals.

Here, we provide a general BNP framework for smFRET data analysis starting from
single photon arrivals under a pulsed illumination setting. We simultaneously learn transition
probabilities among system states as well as determine photophysical rates by incorporating
existing sources of uncertainty such as background and crosstalk.

We benchmark our method using both experimental and simulated data. That is, we
first show that our method correctly learns parameters for the simplest case with two system
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states and slow system transition rates. Moreover, we test our method on more challenging
cases with more than two states using synthetic data and obtain correct estimations for the
system state transition probabilities and thus the number of system states along with the
remaining parameters of interest. To further assess our method’s performance, we analyzed
experimental data from HJs suspended in solutions with a range of MgCl, concentrations.
These data were previously processed using other techniques assuming a fixed number of
system states by binning photon arrival times [15].

Despite multiple advantages mentioned above for BNP-FRET, BNPs always come with
an added computational cost as they take full advantage of information from single photon
arrival times and all existing sources of uncertainty. For this version of our general BNP
method simplified for pulsed illumination, we further reduced the computational complexity
by grouping empty pulses together. Therefore, the computational complexity increased only
linearly with the number of input photons as the photons are treated independently.

The method described in this paper assumes a Gaussian IRF. However, the developed
framework is not limited to a specific form for the IRF and can be used for data collected
using any type of IRF by modifying Eq.[d Furthermore, the framework is flexible in accom-
modating different illumination techniques such as alternating color pulses, typically used
to directly excite the acceptor fluorophores. This can be achieved by simple modification of
the propagator Q¥ in Eq. . A future extension of this method could relax the assumption
of a static sample by adding spatial dependence to the excitation rate as we explored in
previous works [35] 48] [58]. This would allow our method to learn the dynamics of diffusing
molecules, as well as their photophysical and system state transition rates.

6 Code Availability

The BNP-FRET software package is available on Github at
https://github.com/LabPresse/BNP-FRET
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