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ABSTRACT

Over the last decade, the advances in Brainbow labeling al-
lowed labeling hundreds of neurons with distinct colors in the
same field of view of a brain [[1} 2]]. Reconstruction (or “trac-
ing”) of the 3D structures of these images has been enabled by
a growing set of software tools for automatic and manual an-
notation. It is common, however, to have errors introduced by
heuristics used by tracing software, namely that they assume
the “best” path is the highest intensity one, a more pertinent
issue when dealing with multicolor microscope images. Here,
we report nCorrect, an algorithm for correcting this error by
reanalyzing previously created neuron traces to produce more
physiologically-relevant ones. Specifically, we use a four di-
mensional minimization algorithm to identify a more-optimal
reconstruction of the image, allowing us to better take advan-
tage of existing manual tracing results. We define a new met-
ric (hyperspectral cosine similarity) for describing the simi-
larity of different neuron colors to each other. Our code is
available in an open source license and forms the basis for
future improved neuron tracing software.

Index Terms— Neurons, Brainbow, Microscopy

1. INTRODUCTION

Advances in microscopy methods have recently enabled the
high-throughput reconstruction of hundreds of neurons’ 3D
structure in a single experiment. Recent studies, such as those
by the BRAIN initiative [4]], have demonstrated the value of
large numbers of neuron reconstruction into understand-
ing the structure of the nervous system through identifying
roles of individual cell types. In order to process these data,
large numbers of manual and automatic analysis applications
have been developed [3| 5 |6 [7]. Despite these technical
advances, a major limiting factor remains the proofreading
and data analysis of neuron reconstructions which must be
performed [8]. Proofreading includes verifying that neuron
traces accurately represent the physiology of the target neu-
ron, and are not overfit to the boundary of the neuron, which
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Fig. 1.
B-C, The result of applying nCorrect to data from [3]]. No-
tably, nCorrect fixes a misplaced trace in a thick neurite. In
C, white represents nCorrect result, while cyan represents the
original trace. D-E, Two 3D views of reconstructed neurites,
demonstrating the ability to estimate the volume of a neurite.

A, A schematic of the expected result of nCorrect.

can occur when following the maximum intensity of the data
(Fig.[TA).

In our work, we have found many erred neuron recon-
structions where the path is placed along the membrane edge
of a neurite, due to that being the highest intensity point in
the region of the image (e.g., Fig. [IB). Multi-color labeling
techniques, such as Brainbow [[1] or Tetbow [9], complicate
this further becasue multiple neurons are often imaged within
the same sample in different combinations of color, leading
to the possibility that multiple neurons are in close proximity
to each other. To ensure the fidelity of these reconstructions,
we created nCorrect, an algorithm which uses a novel metric
multispectral cosine similarity and a iterative minimization
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approach to identify optimized neuron traces in multispectral
images.

2. METHODS

2.1. Algorithm motivation

nCorrect is motivated by an observation that many existing
tools do not accurately model neurons. Specifically, because
neurons are 3D objects, one must fit both a 3D segmentation
as well as a skeleton to the raw data. Recently, the SNT [3]]
Fiji plugin [10]] added a utility to perform this type of fitting,
however it relies upon fitting of cross sections and using a
thresholded monochrome image, which is incompatible with
hyperspectral data without modification. Instead, we directly
fit 3D spheres to the data, using a collection of techniques to
account for the complexity of multispectral data, as described
below.

2.2. Representation

We define a node n as a coordinate tuple with three inte-
ger spatial coordinates (ng,n,,n,) € I and a radius n, €
ZN[1, ny max), where I represents a grid of all pixel values in a
given micrograph image made up of a number of color chan-
nels k. Thus, each node represents a sphere in R®. Finally,
each node contains a vector of intensities 7i. € (R* >0).
Neuron traces are represented as directed, acyclic chains or
“paths” of nodes which are bounded in 1.

2.3. Hyperspectral cosine similarity

To handle multispectral images (ones captured with multiple
colors of light), our heuristic function uses a distance function
based on the angle between different colors of light. Assum-
ing that the color composition of each neuron is relatively uni-
form, we define a neuron’s reference color vector as the vector
average of color over a path P (é}ef:% Zl PLC). Using this,
we can define the cosine similarity between any normalized
color vectors ¢ and cf using the dot product:

es(T, ) = € crap (1)

Here, we define a node’s color background ratio 7pgcor as
the percentage of pixels which meet the criteria cs(&p, Cref) <
Tcol'

2.4. Intensity thresholding

To identify areas of oversegmentation (background being in-
cluded in the segmentation), we define a node’s background
ratio Mg ine as the ratio of pixels where the sum of a pixel’s
color vector components (s, = >, i ;) and a the sum of
(Sref = Y, Cret,s) fail to satisfy T~ < s,/ser < T". Here,
the lower threshold (7 7) is defined by the function:

T7 = max(min(Tr;axa Trr;dx +m- (Sref - Si))v Tr;ax) (2)

Var. \ Description Value
a Background intensity weight 1.00
b Background cosine weight 0.85
c Radius cost weight 3.75
Teot | Cosine similarity threshold 0.90
T Maximum for upper intensity condition 3.00
T .. | Min. of lower intensity condition 0.05
Thax | Max. of lower intensity condition 0.30
Tbeint | Threshold for node intensity background 0.47
s~ Min. color sum for low intensity condition 10,000
st Max. color sum for low intensity condition 85,000
ny Maximum node radius 12
Table 1.  Parameters and the values used in this pa-

per. Each parameter was determined by iterative searches
executed in batch and may vary depending on the nature of
the image being analyzed.

where m=(T,,,,—T.. )/(s”—s") and parameters used are
defined in Table By setting 7~ as a function of s, we can
better ensure that sections of low-intensity neurons are still
classified as foreground while dim regions are not included
as foreground for high-intensity neurons. Finally, after npg i
is computed, we can classify the node as a background node
if Npgint > The,int- For background nodes where n, > 1, we
rectify 7npgin to a value of 100 to disadvantage this node in

the pathfinding procedure.

2.5. Cost function

Using Npg col, Mg int as defined above, we define the heuristic
cost function of node n as follows:

Cn(n) = Q- Npgjint + b- Nbg,col T C* TL;2 3

Where a, b, and c are given in Table Thus the total cost

function of a path can be computed using a sum across all
nodes’s cost (C(P)=>_, Cp (F)).

2.6. Iterative minimization approach

In order to obtain a corrected path along a neuron, we propose
an iterative minimization approach (Algorithm|[I), seeking to
minimize the global penalty C'(P). We begin by assuming
that we have an a priori path, P which is given as input
to our algorithm and may represent the output from another
tracing software. The radius of each node in P° is set by
finding n,=argmin, C,(n). Next, we iterate through all
nodes excluding the endpoints, calculating the penalty at each
neighboring coordinate-radius pair. We then swap the current
node with the most optimal neighboring node if it has a lower
penalty value. This procedure is repeated until the algorithm
converges to a minimal penalty path (i.e., no swaps are made
over an entire iteration). Note that this iterative minimization
approach is separately performed on each branch in a neuron,
and gaps between branches and sub-branches are closed with
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Algorithm 1 The iterative minimization algorithm

Require: 3P € I and P° as input path
Ensure: argmin, C(P)
P+ PY
for i € P[O,...,N] do
i < argmin; Cp (i)
end for
do > Iterative minimization loop
swaps < 0 > Define break sentinel
foric Py . n_1do > Iterate the path
for j € neighbors(:) do > Test all neighbors
if C,, (§) < C,, (7) then > Check for min.

> Define the initial path from input
> Loop over initial path
> Minimize node cost

14 J > Replace ¢ with j
swaps < swaps + 1 > Increment sentinel
end if
end for
end for

while swaps > 0 > Break when no change between loops

a previously-described [3] A* search strategy before subse-
quent iterative minimization of sub-branches.

2.7. Code implementation

nCorrect was written in Java to ensure cross-platform porta-
bility, and to work well with the popular ImageJ/Fiji [[10] im-
age analysis environment for file loading and memory man-
agement. We have released this tool as a command line utility
that can be run in batch scripts.

2.8. Biological sample preparation and analysis

PV-Cre (Pvalb™!(cr9A™r: Jackson Laboratory #008069) mice
were injected into V1, immunolabeled, processed, and im-
aged as described previously [11]]. Manual tracing of Brain-
bow data sets was done using nTracer 1.4 [3]. Each individ-
ual SWC file was exported from these analyses to be used as
nCorrect inputs.

3. RESULTS

3.1. Cosine similarity and thresholding approach success-
fully segments neurons

To demonstrate the novel cosine similarity metric’s ability to
segment neurons, we applied it to previously published data
from (Fig. [ZA). After choosing a reference point (white
‘X” in Fig[ZA), the cosine similarity was calculated for each
pixel using n,=2 (Fig. 2B). Each pixel was then thresholded
for cosine similarity < 0.9 and intensity < 20% of maximum
range (Fig. 2IC-D). This demonstrates that our thresholding
approach can be used to segment a neuron from both other
neurons and from background.
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Fig. 2. Use of cosine similarity scores for neuron discrim-
ination. A A 20 frame 2D z-projection of an example image.
The original image is 4 spectral channels, which are plotted
as RGBR. A white ‘X’ represents a chosen sample point to se-
lect the green neurite in the image. B The cosine similarity
score for each pixel is plotted against the reference point in
A. C A distribution of all pixels in the image, separated by if
a pixel meets set cosine similarity and intensity thresholds. D
A plot of the pixels in C, demonstrating that the green neuron
has been segmented by the cosine similarity metric.

3.2. nCorrect may result in neuron morphometrics changes

To evaluate the effect that correcting, we calculated a collec-
tion of neuron morphometrics for a collection of 70 individ-
ual tracing results with nGauge [12]]. Three morphometrics
were calculated, including the total length of the traced neu-
rite, the total volume of the traced structure, and neuron tor-
tuosity (Fig. [3). We find that path length and tortuosity in
particular have a wide range of changes, which we attribute
to path smoothing as a result nCorrect processing.

3.3. Human evaluation of nCorrect results

To evaluate the fidelity of nCorrect’s tracing results, 70 in-
dividual neurite tracing results were exported as individual
SWC neuron structure files for modification with nCor-
rect. The original and nCorrect results were assigned either
a cyan or magenta color at random and distributed to four
blind evaluators with moderate to advanced tracing experi-
ence. For each pair of results, evaluators were asked which
trace displayed a more accurate trace of the neurite in the raw
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Fig. 3. Morphometrics change in response to nCorrect

processing. For each compared traced neurite, total path
length, volume, and tortuosity was calculated for the orig-
inal neurite and nCorrect results, and compared by 100 x
original —changed F h . . ith 1 f
—orignal - For each comparison, metrics with a value o
zero were excluded from analysis because they have an inde-
terminate percentage change.

image, with the following parameters prioritized: maintains
correct neurite (based on color), trace centered in the neurite,
and trace smoothness. These evaluations were labeled “Im-
proved” (nCorrect chosen), “Neutral” (neither was chosen),
or “Error” (original result was chosen). For tracing results in
the “Error” category, one expert evaluator further compared
original and nCorrect tracing results to determine if the error
was due to an error in the original nTracer result (Fig. @B-C)
or introduced by the nCorrect modification (Fig. @D-E). Pro-
portions of each category were averaged together across the
four evaluators.

From this blinded qualitative evaluation, the evaluators
found that 44.1% of tracing results showed the nCorrect re-
sults were an improvement over the original results and that
36.7% were similar to the original results. For the remain-
ing 19.2%, a post-hoc evaluation of traces determined that
the source of errors in the majority of nCorrect tracing re-
sults were due to errors in the original nTracer result (Fig. [dB-
C). Most of these occurred in highly dense regions where the
nTracer trace jumped to the incorrect neurite (based on color
composition), which either caused the nCorrect trace to fol-
low to the incorrect neurite or, as shown in Fig. [Z_f]B—C, caused
a nCorrect pathfinding error downstream of the nTracer error.

4. DISCUSSION AND CONCLUSION

nCorrect is the first algorithm to our knowledge, designed to
improve neuron tracing fidelity in multispectral data that has
already been reconstructed. We believe that this is a crucial
step to large-scale neuron reconstruction protocols, as it not
only gives a more accurate reconstruction, but also provides
information about neuron width, etc. which are not present in
many neuron reconstruction outputs currently.
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Fig. 4. Human evaluation of nCorrect tracing fidelity. A,
Proportions of evaluation results averaged from three blind
evaluators, indicating that the vast majority (80.8%) of inputs
were found to either by improved or unaffected by the nCor-
rect protocol. B-C, An example of an nTracer (magenta) error
causing an error in the nCorrect (cyan) result. The nTracer re-
sult error is indicated by arrowhead, where the trace jumps to
the wrong neurite before navigating back to the original neu-
rite. The erroneous color sampling from the wrong neurite
causes a downstream nCorrect error indicated by the arrow.
D-E An example of an nCorrect error. In this example, the
nCorrect result (cyan) prefers to hug the edge of the neurite
rather than traverse the center of the neurite (indicated by the
arrowheads in D-E). The nTracer result is shown in magenta.

We believe that versions of nCorrect can be used to fur-
ther improve existing tracing software by optimizing the al-
gorithm to run as a real-time step of current analyses. This
could be accelerated by a C++ implementation, which could
be significantly faster than the current Java implementation.
Further, because this algorithm can be parallelized by neuron
branch, it may be possible to accelerate it using GPU comput-
ing techniques.

5. CODE AVAILABILITY

A reference implementation of nCorrect is available from our
lab’s GitHub page.
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