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Abstract 
 
Purpose 
Magnetic resonance spectroscopy (MRS) can non-invasively measure levels of endogenous 
metabolites in living tissue and is of great interest to neuroscience and clinical research. To this 
day, MRS data analysis workflows differ substantially between groups, frequently requiring 
many manual steps to be performed on individual datasets, e.g., data renaming/sorting, 
manual execution of analysis scripts, and manual assessment of success/failure. Manual 
analysis practices are a substantial barrier to wider uptake of MRS. They also increase the 
likelihood of human error and prevent deployment of MRS at large scale. Here, we 
demonstrate an end-to-end workflow for fully automated data uptake, processing, and quality 
review. 
 
Methods 
The proposed continuous automated MRS analysis workflow integrates several recent 
innovations in MRS data and file storage conventions. They are efficiently deployed by a 
directory monitoring service that automatically triggers the following steps upon arrival of a 
new raw MRS dataset in a project folder: (1) conversion from proprietary manufacturer file 
formats into the universal format NIfTI-MRS; (2) consistent file system organization according 
to the data accumulation logic standard BIDS-MRS; (3) executing a command-line executable of 
our open-source end-to-end analysis software Osprey; (4) e-mail delivery of a quality control 
summary dashboard for all analysis steps. 
 
Results 
The automated architecture successfully completed for a demonstration dataset. The only 
manual step required is to copy a raw data folder into a monitored directory. 
 
Conclusion 
Continuous automated analysis of MRS data can reduce the burden of manual data analysis and 
quality control, particularly for non-expert users and large-scale studies. 
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Introduction 
 
Magnetic resonance spectroscopy (MRS) provides access to measuring levels of endogenous 
biochemicals in vivo with a clinical MRI scanner. Approximately 15 different metabolites can be 
resolved, e.g., markers of neuronal integrity and cell proliferation, neurotransmitters, and 
antioxidants. MRS is therefore a method of great interest to clinical research and neuroscience. 
However, although MRS predates other modern MRI modalities (fMRI, DTI) by a decade, it is 
not used as widely (1). MRS analysis workflows are commonly not automated and require local 
spectroscopy expertise to be executed. Everyday use of MRS has therefore remained restricted 
to a few specialized research centers.  
 
One barrier to efficient inclusion of MRS into multimodal imaging protocols is the number of 
manual steps required. Applied research studies with MRS in the acquisition protocol require 
manual data renaming and sorting, manual amendment of analysis scripts, manual execution of 
the analysis pipeline, and manual assessment of processing success on individual datasets. 
Depending on the amount of data and complexity of the protocol, these tasks can take a 
substantial amount of time. Manual analysis labor is therefore a strongly rate-limiting factor 
that prevents the deployment of MRS at scale. 
 
Because MRS data are less familiar than MRI (and because spectra are not brain images), it can 
be challenging for non-expert users to distinguish between ‘successful’ and ‘unsuccessful’ 
acquisitions at the scanner. It is therefore regrettably common for data to be lost due to 
procedural error (e.g., a technologist uses an incorrect protocol version, or accidentally places 
an MRS voxel in the wrong hemisphere) or as a consequence of hardware and software updates 
(e.g., a software update introduces a new default exam parameter that overrides an 
acquisition-critical one). Regular data inspection is therefore necessary to capture sudden 
unintended acquisition protocol changes – while our recommendation to users is “check after 
every scan”, this places a large burden on research staff, with the result that it is not 
consistently followed. Finally, the requirement for manual data analysis increases the likelihood 
of human error, e.g., copying the wrong files, using incorrect filenames, or executing the wrong 
analysis script. 
 
In this manuscript, we describe a fully automated data review and end-to-end analysis 
workflow to support non-expert users of MRS conducting local research studies. This procedure 
makes use of several recent innovations in MRS file formats and large-scale neuroimaging data 
management, which make it much easier to deploy repeated analyses. The workflow can be 
customized to accommodate local project protocols and IT infrastructure.   
 
 
Methods 
 
The primary goal of this work is to reduce the manual overhead involved in checking data 
regularly, and to make modern MRS analysis easier. The secondary goal is to demonstrate the 
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benefits of automated analysis workflows for the deployment of MRS methods at scale. 
Reducing manual analysis effort is necessary to open MRS methods up to be a part of multi-site 
consortium projects or continuous long-time local initiatives. 
 
First, a command-line job scheduling or file-watching utility is deployed at regular intervals to 
monitor the content of the project folder. If the service detects previously unencountered raw 
MRS data, a script is launched to convert them into a standardized folder and file structure 
according to a pre-defined study-specific template. Next, a new analysis job is automatically set 
up and executed. After completion of the analysis, the tool sends the user an e-mail with a 
dashboard summarizing quantitative results, quality control criteria, and analysis diagnostics 
(warnings, errors). This effectively removes the need to check data manually after every scan – 
if no email is received, the user is alerted to check whether data export from the scanner 
occurred as intended. Equally, if the data exported are incomplete (i.e., do not agree with the 
expected data specified in the study template), the email report will signal the need to repeat 
data export. 
 
The workflow (Figure 1) integrates several aspects and innovations: 

- scripted raw data format conversion from proprietary manufacturer file formats into the 
universal storage format NIfTI-MRS 

- consistent organization and metadata annotation according to the data accumulation 
logic standard BIDS 

 
Figure 1: Illustration of the automated MRS data analysis workflow. The watchman service notices a new 
folder in the raw data directory that it monitors. It triggers the backbone script, which first uses dicomsort to 
sort image DICOM into series folders, then executes bidscoin which uses the dcm2niix and spec2nii programs 
to convert the raw data to NIfTI/NIfTI-MRS/BIDS format. The script then populates a template job file with 
paths to the new data and passes the job file on to an Osprey analysis instance. The last Osprey step sends a 
confirmation e-mail to specified addresses. 
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- a compiled command-line executable version of our open-source end-to-end analysis 
software Osprey 

- regular monitoring of a raw data project folder for automation of the above steps when 
a new dataset arrives 

- e-mail notification upon completion of a new automated analysis. 
 
Example data 
 
We implemented and tested this workflow on raw data from a single site with a 3T General  
Electric scanner from the Big GABA dataset (site ID ‘G1’), specifically the image DICOMs of a 3D 
anatomical T1-weighted MP-RAGE scan, and a short-TE (TE = 35 ms) PRESS scan in .7 format (2). 
 
Backbone script 
 
The ‘chain of commands’ (raw data conversion, analysis execution, reporting) is strung together 
in a small Python script (main.py). 
 
NIfTI-MRS & BIDS-MRS conversion 
 
This standardized MRS file format convention was developed to overcome longstanding issues 
with different raw data formats (3). Each manufacturer uses several proprietary file types 
(Siemens DAT and RDA; Philips SDAT/SPAR, DATA/LIST and SIN/LAB/RAW; GE .7 P-file; multiple 
vendor flavors of DICOM). These contain different non-standardized data and header 
information and are mutually incompatible. NIfTI-MRS is based on the NIfTI-2 standard that is 
widely used in neuroimaging. Raw data is stored in well-defined array dimensions and 
accompanied by standardized header information fields saving all metadata necessary to 
reconstruct the spectra. The Brain Imaging Data Structure (BIDS) is a neuroimaging data 
organization standard (4). File and folder naming conventions create a standardized hierarchy 
(study, subject, session, modality) that benefits the automation of analysis pipelines and data 
sharing. BIDS further catalogues required metadata on technical details and demographics. 
BIDS-MRS is an MRS-specific extension of BIDS currently in development (5).  
 
Several tools have been developed to automate the conversion and sorting of raw DICOM 
image source data into BIDS-compliant NIfTI, e.g., HeuDiConv (6), dcm2bids (7), bidskit (8), etc. 
They use heuristics based on DICOM metadata and file paths to recognize image types and 
determine ‘maps’, i.e., well-defined procedures for BIDS-compliant file naming and metadata 
annotation. While very flexible and powerful, their learning curves can be steep. We decided to 
use BIDScoin (9) for two reasons: 

1) its user-friendly GUI allows researchers to define appropriate mapping strategies after 
the software has made intelligent guesses. 

2) it includes a plugin to run spec2nii, a command-line conversion tool from vendor-
proprietary formats into NIfTI-MRS. 
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The backbone script first calls dicomsort, a command-line utility included in BIDScoin that sorts 
unsorted image DICOMs into folders named for the image series they were acquired under, 
e.g., “T1-MPRAGE”. Using BIDScoin’s GUI (bidsmapper raw bids) and an example dataset (sub-
001), we created a bidsmap file to automatically recognize the source MRS dataset and the 
source anatomical image DICOMs in these image series folders. Using bidseditor raw, we 
defined output naming heuristics, including identifying the DICOMs as a structural T1-weighted 
image, and adding BIDS-MRS labels vox-pcc to denote the voxel location and `acq-press` to 
highlight that these data were acquired with PRESS localization. These translation heuristics, 
from source to BIDS-compliant output, are stored in a YAML-formatted file (the bidsmap) that 
serves as a template for any subsequently acquired subject folders (sub-002, sub-003, etc.).  
 
Osprey 
 
Osprey is our free modular open-source software written in MATLAB that completes all 
consensus-recommended modern MRS data analysis steps, i.e., pre-processing of raw data, 
modeling pre-processed data, and converting model parameters into metabolite concentration 
measures (10). For the present work, we compiled Osprey v2.4.0 into standalone executables 
for Windows 10 and MacOS using the MATLAB Compiler. We further created an installation 
routine that automatically downloads and installs the necessary MATLAB Runtime libraries. 
 
Osprey requires a JSON-formatted ‘job file’ specifying the analysis options, settings, and the 
complete paths to the NIfTI-MRS/BIDS-formatted data. This workflow automatically generates 
this file by populating a template job file with the newly encountered BIDS-formatted data. 
Once the job file has been written, the workflow calls the Osprey executable, with the job file as 
the only input argument. 
 
Reporting 
 
Once Osprey has completed the requested analysis, a standardized reporting page (in HTML 
format) is packaged into a zip file and attached to an e-mail sent to a set of addresses specified 
by the user in the job file. The report contains visualizations of the different analysis stages (raw 
data loading, pre-processing, modeling, co-registration, segmentation) and quality control 
(FWHM, SNR, fit error, frequency drift). 
 
Source data directory monitoring 
 
The backbone script main.py can easily be triggered manually after a new dataset has been 
added to the source data folder. We further increased the degree of analysis automation with 
an open-source file watching service (watchman) to continuously monitor the source data 
directory for changes. When watchman detects an added subject-level folder in the source data 
directory, it performs a quick check whether this new folder fulfills source data formatting 
requirements. If it does, watchman triggers main.py. 
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Results 
 
The workflow presented here was successfully deployed to process the test dataset. After the 
initial configuration of the bidsmap, Osprey job file templates, and watchman scripts, no 
further user intervention was required. All seven single-subjects datasets were automatically 
pushed through the entire pipeline (DICOM sorting, NIfTI-MRS/BIDS conversion, Osprey 
analysis). Osprey output files included the summary report sent via e-mail. The routine file 
system output generated by Osprey (PDF visualizations, tab-separated values files holding 
metabolite estimates for further analysis, binary voxel masks, etc.) is automatically saved into a 
derivatives folder as specified by the parent BIDS. 
 

 
Figure 2: Summary dashboard reporting on all key steps of the automated MRS data analysis workflow (lightly 
edited from HTML output to minimize whitespace for presentation purposes). The HTML report is 
automatically e-mailed to a user-specified address after completion of the Osprey analysis. The summary 
includes quantitative quality control metrics (linewidth, SNR, model fit error) and visualizations of the 
processing, modeling, and co-registration/segmentation steps of the automated Osprey pipeline. 
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Discussion 
 
We have demonstrated an example of an automated workflow for project folder organization, 
data analysis and reporting for applied MRS studies. Automation of MRS data analysis can 
improve reproducibility and efficiency, particularly at sites that historically have not established 
local workflows. The immediate feedback helps users identify sudden fatal changes to the 
hardware or software setup, for example after scanner upgrades. Lastly, automated data 
analysis can lower the entry-level threshold to engage with MRS in general, and provide much-
needed scale. 
 
Standardized workflows and data storage conventions also increase reusability of existing 
analysis code at various levels. Once set up for a particular study, the setup described herein 
can easily be ported to a new study protocol, simply by adjusting the bidsmaps and Osprey job 
file templates. This increases ‘horizontal’ efficiency for the individual researcher, between 
members of a research group, and between locations of multi-site consortia, but also 
‘longitudinal’ efficiency for incoming personnel taking over responsibility for existing projects. 
 
This automated analysis workflow may also serve as a template for the integration of MRS into 
large-scale multi-center multi-modal neuroimaging studies. MRS data acquisition and analysis 
have not been easy scalable in the past since they were limited by the amount of manual effort 
they demand. As a result, even the largest MRS datasets may only include a few hundred 
subjects – orders of magnitude less than the most powerful databases of structural, functional, 
or diffusion imaging. BIDS has transformed the way in which large-scale neuroimaging datasets 
are made accessible to other researchers, and the anticipated publication of the BIDS-MRS 
extension will open up many existing neuroimaging repositories for use with MRS data.  
 
Alternative strategies 
 
Neuroimaging centers may already have solutions to transform source imaging data into BIDS 
format in place, e.g., for fMRI, PET, or EEG data. The BIDScoin part of the workflow presented 
here may easily be swapped for existing `BIDS-ification` methods, although it offers the 
advantage of already offering a work-in-progress MRS integration via a spec2nii plugin.  
 
We demonstrate the workflow with Osprey, our own software for MRS pre-processing, 
modeling, and quantification. Researchers can, of course, swap Osprey for any other MRS 
analysis software. Note, however, that full BIDS compliance requires NIfTI-MRS as the core file 
storage format. NIfTI-MRS is supported by recently published open-source software packages 
(FSL-MRS (11), spant (12)) and the latest versions of some seasoned ones (Vespa (13), jMRUI 
(14)). LCModel (15), on the contrary, is unlikely to directly interface with NIfTI-MRS unless data 
are prepared with modular processing packages like FID-A (16) which includes NIfTI-MRS 
reading and writing routines. Osprey also includes a fully-functioning wrapper to call LCModel. 
Researchers wishing to maintain vendor-native formats (SDAT/SPAR, RDA, etc.) may construct 
similar workflows involving directory monitoring and standardized file naming conventions, 
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although they forfeit many of the advantages that BIDS offers through highly formalized storage 
logic and existing software solutions. 
 
Finally, continuous directory monitoring is an optional part of the workflow. We selected the 
watchman service because it is free, open-source, and compatible with different OS 
architectures. Researchers may opt for similar file monitoring services (fswatch), scheduled 
execution (cron on Unix-type systems, Task Scheduler on Windows) at larger time intervals, or 
wish to execute the workflow manually after all. 
 
Limitations and future perspectives 
 
Integration of MRS into BIDS and its software ecosystem is a recent innovation that is 
continuously evolving. NIfTI-MRS conversion with spec2nii is supported for many common 
formats and sequence implementations, but may require further modification for custom 
sequences, either directly in the source code or with command line options to specify data 
dimensions and add metadata. Similarly, BIDScoin currently only supports a single ‘type’ of MRS 
data per bidsmap, i.e., two different bidsmaps need to be defined to accommodate study 
protocols with, e.g., one PRESS and one MEGA-PRESS dataset. In this case, the backbone script 
main.py needs to feature two instances of bidscoiner with the respective bidsmaps as input 
argument. 
 
The mapping heuristics can be tailored to be powerful and versatile thanks to regular 
expressions in the filters, but still require a relatively consistent study protocol to be executed 
on the scanner. If sequence parameters, scan sequence names and order, and other data 
attributes and properties change frequently, the BIDScoin heuristics are likely to fail. This 
workflow is therefore primarily useful for long-running application studies with a fixed protocol, 
but less suitable for exploratory methodological piloting, which typically requires custom 
manual analysis anyway. 
 
Quality control metrics remain a challenge for MRS. Model residuals, Cramer-Rao Lower 
Bounds, spectral linewidth, and signal-to-noise ratio all provide valuable information, but they 
often fail to reliably indicate the presence of major artefacts like lipid contamination or out-of-
voxel echoes. Visual inspection of individual spectra therefore continues to be a key benchmark 
by which data quality is judged. This practice is clearly not scalable for large-scale studies or 
even single-site spectroscopic imaging. CSI/MRSI produces thousands of spectra per dataset, 
and the output is still often judged by the visual appearance of the final color map. Several 
quantitative metrics for quality assessment have been proposed (17–20), but have not been 
tested or implemented in mainstream MRS analysis. Automated scalable workflows like the one 
described here may facilitate uptake and benchmarking of these quantitative QC metrics. 
 
Conclusion 
 
In summary, we present an open-source end-to-end workflow for continuous automated 
analysis of MRS data, making use of recent advances in standardized file format and data 
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storage conventions (NIfTI-MRS, BIDS-MRS). Reduced manual analysis overhead can help 
simplify the integration of MRS into large-scale multi-modal imaging studies and clinical trials. 
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