

1 **Novel synergies and isolate specificities in the drug interactions landscape of**
2 ***Mycobacterium abscessus***

3 **Authors**

4 Nhi Van^{1,2}, Yonatan N. Degefu^{1,2,3}, Patricia A. Leus^{1,4}, Jonah Larkins-Ford^{1,2,4,5}, Jacob
5 Klickstein⁴, Florian P. Maurer^{6,7}, David Stone⁸, Husain Poonawala^{2,8}, Cheleste M. Thorpe^{2,8},
6 Trevor C. Smith II^{1,2}, Bree B. Aldridge^{1,2,4,9*}

7 **Affiliations**

8 ¹Department of Molecular Biology and Microbiology, Tufts University School of Medicine,
9 Boston, MA, 02111

10 ²Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA,
11 02111

12 ³Current: Department of Biomedical Engineering, University of Virginia, Charlottesville, VA,
13 22904

14 ⁴Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA,
15 02111

16 ⁵Current: MarvelBiome, Inc., Woburn, MA 01801, USA

17 ⁶Institute of Medical Microbiology, Virology and Hygiene, University Medical Center
18 Hamburg-Eppendorf, Hamburg, Germany

19 ⁷National and WHO Supranational Reference Center for Mycobacteria, Research Center
20 Borstel, Borstel, Germany

21 ⁸Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts
22 Medical Center and Tufts University School of Medicine, Boston, MA

23 ⁹Department of Biomedical Engineering, Tufts University School of Engineering, Medford,
24 MA, 02155

25 Author List Footnotes:

26 Corresponding author(s) e-mail address(es):

27 *Correspondence: bree.aldrige@tufts.edu

28

29 **ABSTRACT**

30 *Mycobacterium abscessus* infections are difficult to treat and are often considered untreatable
31 without tissue resection. Due to the intrinsic drug-resistant nature of the bacteria, combination
32 therapy of three or more antibiotics is recommended. A major challenge in treating *M.*
33 *abscessus* infections is the absence of a universal combination therapy with satisfying clinical
34 success rates, leaving clinicians to treat infections using antibiotic lacking efficacy data. We
35 systematically measured drug combinations in *M. abscessus* to establish a resource of drug
36 interaction data and identify patterns of synergy to help design optimized combination
37 therapies. We measured approximately 230 pairwise drug interactions among 22 antibiotics
38 and identified 71 synergistic pairs, 54 antagonistic pairs, and four potentiator-antibiotics not
39 previously reported. We found that commonly used drug combinations in the clinic, such as
40 azithromycin and amikacin, are antagonistic in lab reference strain ATCC19977, whereas
41 novel combinations, such as azithromycin and rifampicin, are synergistic. Another challenge
42 in developing universally effective multidrug therapies for *M. abscessus* is the significant
43 variation in drug response between isolates. We measured drug interactions in a focused set
44 of 36 drug pairs across a small panel of clinical isolates with rough and smooth morphotypes.
45 We observed highly strain-dependent drug interactions that cannot be predicted from single-
46 drug susceptibility profiles or known drug mechanisms of action. Our study demonstrates the
47 immense potential to identify synergistic drug combinations in the vast drug combination
48 space and emphasizes the importance of strain-specific combination measurements for
49 designing improved therapeutic interventions.

50 **INTRODUCTION**

51 *Mycobacterium abscessus* (*M. abscessus*) is a rapidly growing nontuberculous
52 mycobacterium (NTM) that consists of three subspecies, *M. abscessus* subsp. *abscessus*, *M.*
53 *abscessus* subsp. *massiliense* and *M. abscessus* subsp. *bolletii* (1). *M. abscessus* is a
54 ubiquitous, opportunistic pathogen commonly found in soil, water systems, and contaminated
55 material in hospitals. Recently, a steady increase in the morbidity and mortality of NTM
56 infections has been reported worldwide (2). Although *M. abscessus* causes both pulmonary
57 and extrapulmonary infection, the majority of the clinical syndrome of *M. abscessus*
58 infections are pulmonary, occurring in immunocompromised people and those with pre-
59 existing conditions such as cystic fibrosis, chronic obstructive pulmonary diseases, and
60 bronchiectasis (3, 4).

61 Pulmonary *M. abscessus* infections are notoriously hard to treat due to the plethora of
62 intrinsic mechanisms conferring resistance toward most clinically relevant antimicrobials,
63 including macrolides, aminoglycosides, tetracyclines, and β -lactams (5). Antibiotics such as
64 amikacin and moxifloxacin are bactericidal in *E. coli* but are bacteriostatic in *M. abscessus*,
65 creating another barrier to treating *M. abscessus* infection (6). The inherent phenotypic drug
66 resistance in *M. abscessus* is due to multiple factors. *M. abscessus* possesses complex drug
67 efflux pump system. a cell wall rich in lipids and mycolic acids that act as a physical barrier
68 between antibiotics and the bacteria (7). Additionally, *M. abscessus* express numerous
69 enzymes that can modify drugs or their targets. For example, studies have identified multiple
70 enzymes in *M. abscessus* such as the Erm(41) erythromycin ribosomal methyltransferase,
71 aminoglycoside acetyltransferases, an aminoglycoside phosphotransferase, a rifamycin ADP-
72 ribosyltransferase (Arr_{Mab}), a β -lactamase (Bla_{mab}), and tetracycline-modifying
73 monooxygenase that confer their ability to resist many clinically used antibiotics (7-9). In
74 addition to intrinsic resistance, acquired mutational resistance against macrolides and
75 aminoglycosides also poses a significant risk for chronically infected patients with increased
76 long-term antibiotic exposure (10). These characteristics contribute to the complex and
77 multifaceted resistome of *M. abscessus*, creating a major challenge in developing
78 antimicrobial therapies against *M. abscessus*.

79 Despite being an emerging global health threat, pan-effective treatment for NTM lung
80 diseases has not yet been established and current treatment guideline is based on small studies
81 and expert opinion (11, 12). Hence, treatment of *M. abscessus* is highly individualized and
82 typically split into an intensive initial phase of several weeks comprising at least three
83 antibiotics and a continuation phase of several months. In patients infected with strains
84 harboring inducible or mutational resistance to macrolides, a macrolide can be included in the
85 regimen for its immunomodulatory purpose only (12). Current guidelines suggest a minimum
86 treatment duration of twelve months after culture conversion, although it is also
87 individualized based on several factors, such as underlying patient conditions and *M.*
88 *abscessus* subspecies, which typically have different clinical outcomes (3, 13). Clinical
89 outcomes are poor in patients with pulmonary disease and those with immunosuppression (2,
90 14). Meta-analysis done across multiple clinical studies showed that sputum conversion
91 without relapse was low, and evidence suggests that surgical resection prolongs negative
92 culture (13, 15, 16). The poor cure rate and the emergence of clinically acquired pan-
93 macrolide and pan-aminoglycoside resistance suggest the urgent need to develop more

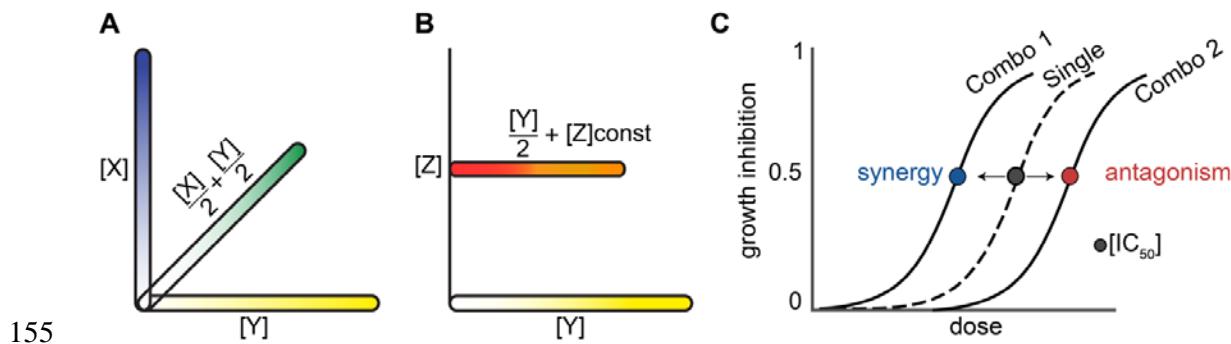
94 effective therapies for NTM and *M. abscessus* infections (8). Except for clarithromycin,
95 results of traditional antimicrobial susceptibility testing by the Clinical and Laboratory
96 Standards Institute (CLSI) are not linked to clinical outcomes (17). Additionally, there are no
97 published breakpoints for tigecycline, or repurposed MDR-TB drugs like clofazimine or
98 bedaquiline that are used to treat *M. abscessus*. Because *M. abscessus* treatment requires
99 multi-drug therapy, systematic interrogation of drug combinations and drug-drug interactions
100 has the potential to identify synergistic combinations that will form the basis for more
101 effective therapies.

102 Several combination studies for *M. abscessus* have been reported using traditional
103 checkerboard assays. However, conducting large-scale drug combination measurements is
104 not practical because systematic measurements of drug-dose combinations in the
105 checkerboard make these assays too resource-intensive. Here, we utilized DiaMOND
106 (diagonal measurement of n-way drug interaction), a measurement and analysis pipeline
107 based on an efficient geometric sampling of a traditional checkerboard assay, to significantly
108 decrease the number of measurements required in checkerboard assays (18). We modified the
109 DiaMOND assay to measure potentiation effects of drugs that are not active on their own but
110 may increase the efficacy of other compounds. Because there are few antibiotics that are
111 active in *M. abscessus*, potentiator screens may be critical to developing combination
112 therapies in *M. abscessus* and other NTMs. Using medium-throughput measurement, we
113 generated a systematic, large-scale catalog of drug interactions for *M. abscessus* as a resource
114 and evaluated drug interaction patterns. Our dataset includes antibiotics commonly used in
115 the clinic and next-generation antibiotics, such as bedaquiline or benzimidazole SPR719, an
116 active moiety of a non-fluoroquinolone gyrase inhibitor SPR720. We identified many novel
117 synergistic drug pairs, suggesting the potential for effective multidrug regimens in the
118 combination drug space. However, drug interactions were highly variable among different
119 clinical isolates highlighting the importance of making isolate-specific drug combination
120 measurement rather than searching for a universal drug combination to treat *M. abscessus*
121 infection.

122 RESULTS

123 Design of systematic drug interaction study in ATCC19977

124 To generate a systematic dataset of drug interaction profiles comparable to other published
125 drug interaction studies, we began by measuring drug combination responses in the *M.*


126 *abscessus* reference strain ATCC19977, an *M. abscessus* subsp. *abscessus* variant showing
127 inducible macrolide resistance due to a functional Erm(41) ribosomal methylase (19). We
128 measured pairwise combination effects among 22 antibiotics drawn from four categories
129 (Table 1): **(a)** antibiotics currently recommended for *M. abscessus* treatment such as
130 amikacin, clarithromycin, and azithromycin, **(b)** anti-tuberculosis drugs such as linezolid and
131 ethambutol, **(c)** drugs in development for *M. abscessus* infection such as bedaquiline and
132 SPR719, and **(d)** drugs that show no significant effect on their own but can be used to
133 potentiate other drugs, such as avibactam.

134 **Table 1. Summary of antimycobacterial used in the study and their antimicrobial**
 135 **activity against *M. abscessus* ATCC19977**

	antimycobacterial	general mechanism of action	abbreviation	IC ₅₀ (μ g/mL)	IC ₉₀ (μ g/mL)
active drug	amikacin	protein synthesis	AMK	6.6	110
	amoxicillin	cell wall	AMX	300	NA
	azithromycin	protein synthesis	AZM	4.3	680
	bedaquiline	respiration	BDQ	0.16	1.3
	cefoxitin	cell wall	FOX	9	28
	cerulenin	cell wall	CER	2.2	7
	clarithromycin	protein synthesis	CLR	0.45	80
	ethambutol	cell wall	EMB	31	1200
	levofloxacin	DNA	LXF	13	200
	linezolid	protein synthesis	LZD	14	260
	moxifloxacin	DNA	MXF	1.5	35
	nitrofuran	DNA	NFT	44	1800
	rifabutin	RNA	RFB	1.8	23
	rifampicin	RNA	RIF	16	2100
potentiator	SPR719	DNA	SPR	0.39	NA
	telithromycin	protein synthesis	TEL	10	NA
	thioridazine	respiration	TZ	23	39
	vancomycin	cell wall	VAN	9	250
	avibactam	β -lactamase inhibitor	AVI	NA	NA
	streptomycin	RNA	STR	NA	NA
	tetracycline	RNA	TET	NA	NA
	verapamil	efflux pump inhibitor	VER	NA	NA

136 Drug combinations may be constructed from antibiotics that are active on their own and are
 137 effective together. We may then search for synergistic drug combinations, e.g., sets of
 138 antibiotics that are more effective together than expected based on their single-antibiotic
 139 efficacies. Nevertheless, applying this approach systematically to *M. abscessus* poses a
 140 challenge due to its inherent drug resistance and the large-scale, resource-intensive,
 141 traditional checkerboard assays. To overcome the latter, we used DiaMOND to measure
 142 pairwise combination effects more efficiently. DiaMOND is an experimental analysis method
 143 approximating the checkerboard assay to measure drug interactions. The first step of
 144 DiaMOND is to determine the 50% and 90% growth inhibitory concentrations (IC₅₀ and IC₉₀,
 145 respectively) of every drug to design an equipotent combination dose-response curve. We
 146 sampled 20-25 doses to obtain a dose-response curve for every drug. From obtained IC₅₀

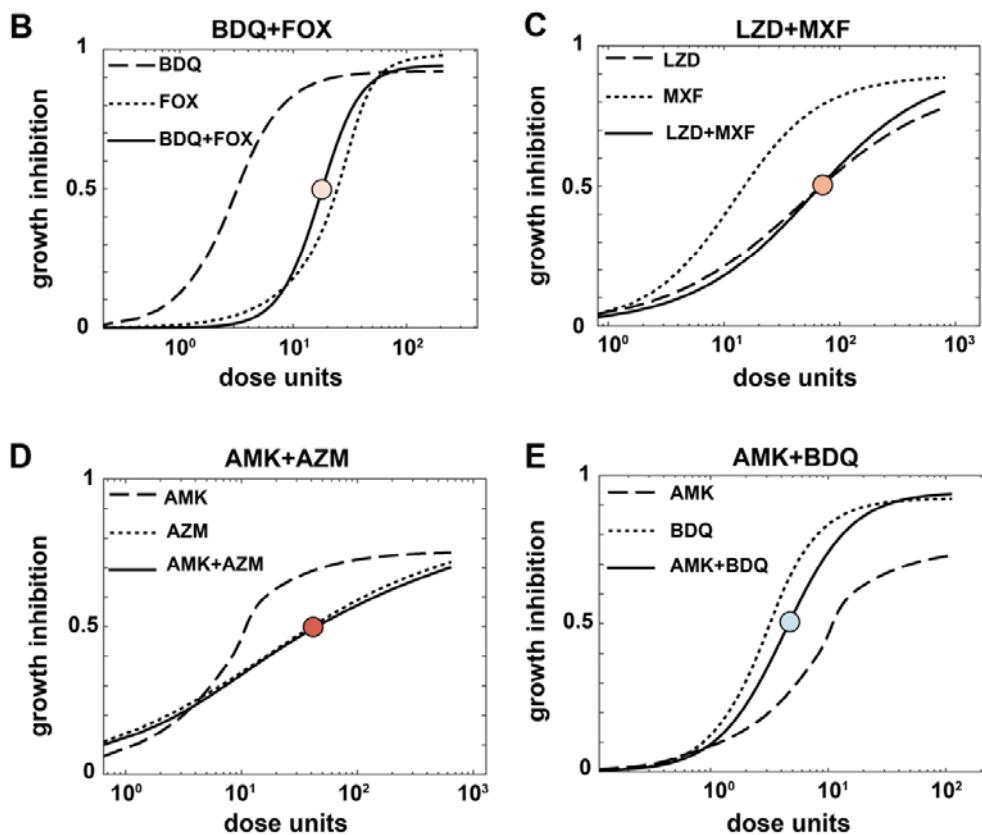
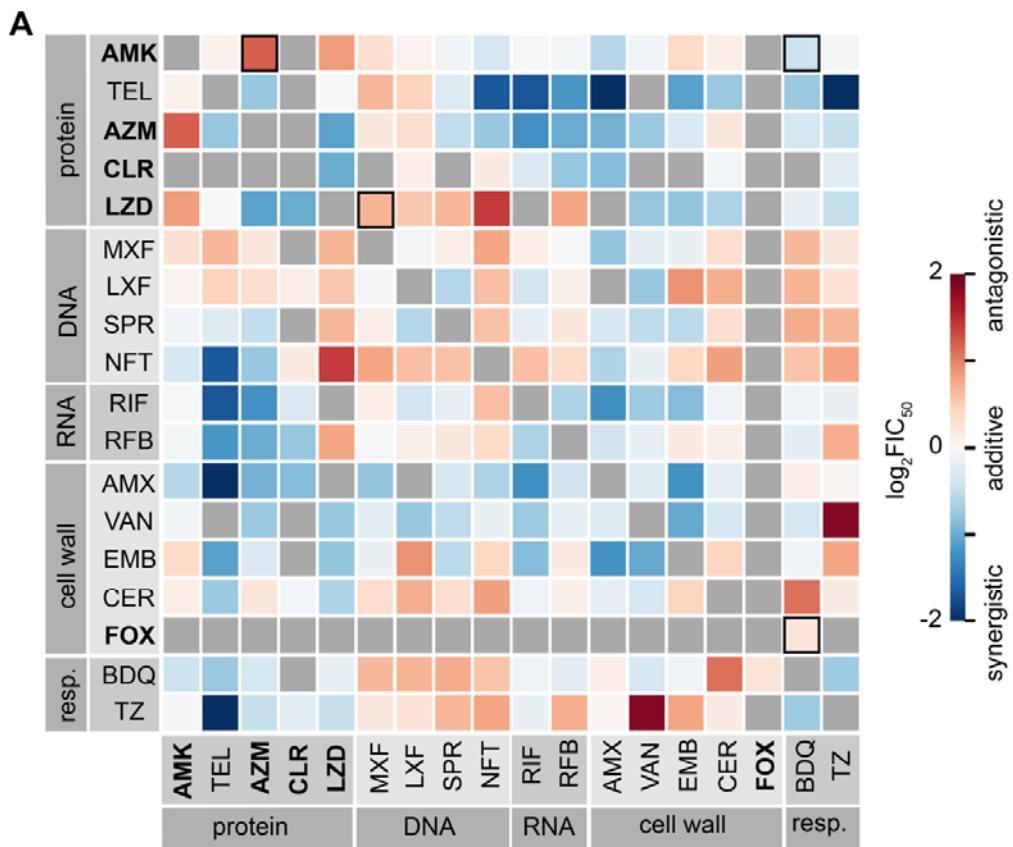
147 values, we designed pairwise DiaMOND experiments for equipotent combinations of drug
148 pairs (diagonal in Fig. 1A). Fractional inhibitory concentrations at 50% growth inhibition
149 (FIC_{50}) were calculated based on Loewe Additivity and Bliss Independence null models.
150 Metrics from both models were strongly correlated ($R^2 = 0.75$, Pearson correlation), so we
151 focused on FICs calculated by Loewe Additivity (Fig. S1). We report $\log_2 FIC$ values, such
152 that synergies (negative) are balanced in magnitude compared to antagonisms (positive). We
153 can also visualize synergies and antagonisms by comparing combination dose-response
154 curves to single drug dose-response curves (Fig. 1C)

156 **FIG 1. Schematic of drug interaction and potentiation measurement with**
157 **DiaMOND.** (A) DiaMOND single (axes) and pairwise (diagonal) dose-response
158 sampling using an equipotent mixture of two drugs. The x- and y-axes show the doses
159 of the single drugs (X and Y) sampled from low to high concentrations, as indicated
160 by the blue and yellow gradient. The diagonal is the mixture of half of each single
161 drug at each dose, as shown by the green gradient. (B) Schematic of antibiotic and
162 antibiotic-potentiator dose-response measurement. A dose-response for the antibiotic
163 alone (Y; yellow gradient) and with the addition of a constant concentration of the
164 potentiating agent (Z; red to orange gradient). The antibiotic-potentiator dose-
165 response is a mixture of half the dose of the potentiating drug (constant) and half of
166 the non-potentiating drug (increasing amounts in a dose-response). (C) Schematic of
167 shifts in dose-response curves with synergy or antagonism. The dose-response curve
168 in the dashed line represents the effect of a single drug. When the single drug is
169 combined with another drug, the combination curve might shift to the left, indicating
170 synergy (blue dot), or shift to the right indicating antagonism (red dot).

171 Another complementary approach is to design combinations that include potentiators, e.g.,
172 inactive compounds as single agents that increase the efficacy of other drugs. Similarly, an
173 inactive drug can also decrease the efficacy of other drugs, and we refer to this effect as

174 attenuation. This approach could be particularly relevant in designing combination therapy
175 against *M. abscessus*, where there is a dearth of potent antibiotics for clinicians to choose
176 from. For example, SPR741, a synthetic polymyxin analog with little effective against gram-
177 negative bacteria as a stand-alone agent, exhibits synergy in combination with other
178 antibiotics (20-22). In *M. abscessus*, verapamil has minimal activity against ATCC19977 but
179 potentiates the activity of bedaquiline (23). Another reason to search for potentiator-antibiotic
180 pairs is the possibility of reducing treatment doses to alleviate side effects. For instance,
181 intravenous amikacin can cause adverse effects, including gastrointestinal distress (e.g.
182 nausea) and serious cases of ototoxicity and nephrotoxicity (24). A partner drug to amikacin
183 that potentiates its activity could lower the treatment dose and reduce adverse effects.

184 DiaMOND was initially designed to quantify drug interaction between two potent drugs.
185 Therefore, modification is required to quantify drug interaction between an active drug and a
186 potentiator candidate. Here, we defined potentiator candidates as compounds that did not
187 achieve growth inhibition at a clinically achievable concentration in patients without extreme
188 adverse side effects. We have included four potentiator candidates in our study: avibactam,
189 tetracycline, streptomycin, and verapamil (Table 1). Because potentiator candidates are not
190 active as single drugs, we developed a geometrically optimized sampling of the checkerboard
191 assay to measure the effect of the potentiator candidate at a constant dose on the potency of
192 effective (dose-responsive) antibiotics (Fig 1B). We measured two-dose responses: (a) the
193 single-drug dose-response curve [Y] with increasing concentrations and (b) the single-drug
194 dose-response [Y] (in which drug concentration was reduced by half for all doses) combined
195 with a fixed-dose (1.5x reported maximum plasma concentration after 12-24 hours of dosing
196 in humans) of drug [Z] (Fig. 1B) (25). The effect of the potentiator candidate was calculated
197 as a fold change in concentration of the antibiotic to reach a specific level of growth
198 inhibition (IC_{50} or IC_{90}) with the potentiator candidate compared to the drug alone. This fold
199 shift in IC (FsIC) ratio can be interpreted similarly to FIC values: \log_2 FsICs are negative for
200 potentiator-drug pairs and positive for attenuator-drug pairs. We focused on evaluating fold
201 shifts at 50% and 90% growth inhibition levels (FsIC₅₀ and FsIC₉₀, respectively). Potentiation
202 and attenuation can be visualized by the shift of combination dose-response curves relative to
203 single-drug dose-response curves resembling synergy and antagonism, respectively (Fig.1C),
204 with the exception that the combination dose-response utilizes a constant dose of the
205 potentiator candidate with an increasing dose level of the antibiotic.



206 **A drug interaction landscape of ATCC19977**

207 To generate a systematic dataset of drug interactions for *M. abscessus*, we measured 153
208 pairwise combinations of 18 drugs representing five drug classes in the reference strain
209 ATCC19977 (Fig. 2A). Among these combinations, we report 122 combinations that passed
210 our quality control metrics. The details of quality control metrics can be found in the method
211 section. Briefly, passing criteria include metrics such as Z-factor, the quality of the dose-
212 response curve fitting, and data reproducibility. The most common reason for quality control
213 failure was variation in potency that compromised the equipotent design of the combination
214 dose-response curve, leading to poor equipotency score and reproducibility. Interactions were
215 measured up to nine times; combinations that failed to achieve at least biological duplicates
216 that passed these criteria were categorized as unmeasurable and reported as N/A (gray boxes
217 in Fig. 2A) in this dataset. Approximately 20% of the drug interactions were unmeasurable
218 due to extreme variation in drug combination response, which is consistent with challenges in
219 measuring drug susceptibility to *M. abscessus* due to lack of reproducibility (26). Nonetheless,
220 it is important to understand which drug combinations cannot be reliably measured.

221 To understand how well DiaMOND drug interaction measurements correlate with other
222 independent studies, we compared our measurements with previously reported results. We
223 observed a qualitative (synergy vs. antagonism) agreement between drug interactions from
224 DiaMOND and other studies. For example, bedaquiline has been shown to eliminate the
225 bactericidal effect of β -lactam by dampening the overproduction of ATP to toxic levels
226 normally found upon treatment with these drugs (27). Using DiaMOND, we observed a mild
227 antagonism ($\log_2\text{FIC}_{50}$ of 0.25) between bedaquiline and cefoxitin, a β -lactam (Fig. 2B). The
228 antagonism can be visually observed by the right shift of the combination dose-response
229 curve (solid line), compare to the expected combination dose-response curve if $\frac{1}{2}$
230 concentration of bedaquiline and $\frac{1}{2}$ concentration of cefoxitin were used (not shown in the
231 figure). Similarly, we observed a mild antagonism between linezolid and moxifloxacin in
232 agreement interactions reported in Zhang et al. ($\log_2\text{FIC}_{50}$ of 0.67 and 0.17, respectively, Fig.
233 2C) (28). Combinations such as rifabutin and clarithromycin were reported to be synergistic
234 by Pyrjma et al. (29). Using DiaMOND, we also observed that rifabutin and clarithromycin
235 are synergistic ($\log_2\text{FIC}_{50}$ of -0.76 and -3.1, respectively). Taken together, we conclude that
236 DiaMOND measurements of *M. abscessus* drug interactions are comparable to traditional
237 checkerboard approaches previously reported in other studies.

238 In other bacterial species, including *M. tuberculosis* and *E. coli*, drug interactions tend toward
239 antagonism (30). In our study, we observed a tendency toward synergy in the landscape of

240 drug interactions in *M. abscessus*. Of the 122 measurable pairwise drug interactions among
241 18 drugs, about two-thirds (71) were synergistic or additive (with ~ 0 and negative $\log_2\text{FIC}_{50}$
242 values). Our data suggests that there is potential to improve *M. abscessus* multi-drug
243 regimens using combinations of existing antibiotics. To further explore these combinations,
244 we analyzed our dataset in smaller sections for interpretability.

246 **FIG 2. Drug interaction landscape of *M. abscessus* strain ATCC19977.** (A)
247 Heatmap of pairwise drug interactions among 18 drugs. Drugs are organized by the
248 mechanism of action, and drugs recommended for treating *M. abscessus* infection are
249 indicated in bold text. Drug interactions are evaluated with $\log_2\text{FIC}_{50}$ values: $\log_2\text{FIC} < 0$ (synergy, blue) and $\log_2\text{FIC} > 0$ (antagonism, red). Gray boxes indicate
250 unmeasurable drug combinations due to poor reproducibility. Outlined squares
251 indicate combinations that are shown in the dose responses below. (B-E) Example
252 pairwise (and corresponding single-drug) dose responses. Pairwise dose responses for
253 synergistic and antagonistic combinations are shifted to the left and right, respectively,
254 as compared to the corresponding single-drug dose-response curves. Circles with gray
255 indicate the IC_{50} of single drugs, and circles with the red-blue scale according to
256 $\log_2\text{FIC}_{50}$ values as in (A). The y-axis represents growth inhibition, whereas the x-axis
257 represents the dose unit (a unitless representation of the volume, or concentration,
258 used for each drug. A dose unit is preferred when plotting as different drugs have
259 different inhibition concentrations, while a dose unit normalizes the difference and
260 allows easy representation) (B-C) Dose-response curves of combinations that were
261 reported from other studies which are bedaquiline (BDQ) + cefoxitin (FOX) (B) and
262 linezolid (LZD) + moxifloxacin (MXF) (C). (D) Dose-response curves for clinically
263 relevant combination amikacin (AMK) + azithromycin (AZM) (antagonistic) and (E)
264 novel combination amikacin (AMK) + bedaquiline (BDQ) (synergistic).
265

266 **Amikacin and macrolides (azithromycin and clarithromycin):** Combination treatment
267 with amikacin and azithromycin (or clarithromycin) is a recommended treatment for
268 macrolide-susceptible *M. abscessus* (12). We observed a strong antagonistic relationship
269 between amikacin and a commonly used macrolide, azithromycin (Fig. 2D, $\log_2\text{FIC}_{50}$ of 1.2).
270 We also tested another macrolide-amikacin pair (clarithromycin-amikacin) but found that the
271 combination was unmeasurable because the data fluctuated significantly from replicate-to-
272 replicate. Generally, we did not observe any strong synergistic combinations between
273 amikacin and other tested drugs, except with amoxicillin, bedaquiline, and nitrofurantoin
274 ($\log_2\text{FIC}_{50}$ of -0.58, -0.43, and -0.36, respectively). None of these drugs are currently being
275 recommended to be used with amikacin. For azithromycin and clarithromycin, we found
276 more synergistic combinations between these macrolides and other tested drugs. Both
277 azithromycin and clarithromycin are strongly synergistic with linezolid ($\log_2\text{FIC}_{50}$ of -1.1 and
278 -0.99, respectively), an oxazolidinone that is suggested to treat *M. abscessus*. Azithromycin

279 and clarithromycin are also synergistic with cell-wall-acting drugs (except with cerulenin),
280 RNA polymerase inhibitors, and respiratory inhibitors (Fig. 2A). These data suggest that
281 there is potential to improve treatment outcomes by combining these core bacteriostatic
282 protein elongation inhibitors with antibiotics that disrupt initiation of protein synthesis
283 (linezolid) or target other cellular processes.

284 **Clinically used antibiotics and other common antituberculosis agents:** Besides amikacin
285 and macrolides, other drugs recommended for treating *M. abscessus* are imipenem, cefoxitin,
286 tigecycline, clofazimine, and linezolid (12). Among this list, we focused on linezolid and
287 cefoxitin due to drug availability and reproducibility. **Linezolid:** We observed synergies
288 between linezolid and some of the drugs used in the clinic, such as azithromycin and
289 clarithromycin ($\log_2\text{FIC}_{50}$ of -1.1 and -1.0, respectively). Linezolid is strongly antagonistic
290 with DNA-targeting antibiotics in our drug set while synergistic with cell-wall-acting drugs
291 and respiratory inhibitors (Fig 2A), suggesting an underlying relationship between drug
292 interaction and mechanism of action. We did not observe a synergistic relationship between
293 linezolid and amikacin, which was previously reported in another study (28). However, there
294 are several differences between the two studies that may account for these differences,
295 including the media used (7H9 medium with supplements vs. CAMHB), strains
296 (ATCC19977 vs. clinical isolates from patients), and method used to determine drug
297 interaction (DiAMOND vs. broth microdilution). **Cefoxitin:** Cefoxitin is one of the few β -
298 lactams recommended to treat *M. abscessus*, besides imipenem (31). We could not obtain a
299 reliable dose-response curve for both imipenem and cefoxitin, which may be due to the
300 instability of β -lactams in solution or the presence of the *bla_{mab}* gene that confers their
301 resistance to β -lactam. Nevertheless, one combination that passed our quality control is
302 bedaquiline and cefoxitin ($\log_2\text{FIC}_{50}$ of 0.25). The antagonistic relationship between
303 bedaquiline and cefoxitin has been reported in another study (32). It is thought that cefoxitin
304 (and imipenem) triggers an ATP burst in *M. abscessus* by increasing oxidative
305 phosphorylation, which is suppressed by bedaquiline, an F-ATP synthase inhibitor, leading to
306 an elimination of the bactericidal effect of cefoxitin against *M. abscessus* (32, 33). Though
307 this result is preliminary, it suggests that combining β -lactams with bedaquiline could be
308 unfavorable. **Moxifloxacin:** Moxifloxacin and other fluoroquinolones have been shown to
309 have good activities against *M. abscessus* isolates *in vivo* (34). We and others have observed
310 that moxifloxacin is antagonistic with azithromycin *in vitro* ($\log_2\text{FIC}_{50}$ of 0.23) and *in vivo*
311 (35). We also observed that moxifloxacin is antagonistic with recommended antibiotics such

312 as amikacin and linezolid ($\log_2\text{FIC}_{50}$ of 0.31 and 0.68 respectively), suggesting its inclusion
313 in multidrug therapies should be carefully considered. **Ethambutol:** Ethambutol is another
314 antituberculosis agent with potential activity against NTMs such as *Mycobacterium avium*
315 complex (MAC) due to its ability to slow the acquisition of macrolide-resistance clinically
316 (36). The interactions of ethambutol with other drugs used to treat NTMs are unknown. Here,
317 we observed a synergistic relationship of ethambutol with linezolid or azithromycin but not
318 amikacin ($\log_2\text{FIC}_{50}$ of -0.79, -0.28 and 0.4 respectively), suggesting potential for exploring
319 of ethambutol for *M. abscessus* treatment. **Rifampicin:** Rifamycin is a common
320 antituberculosis agent that is highly potent *in vivo* and reduces relapse rate in combination
321 therapies (37). However, rifampicin is not commonly used for *M. abscessus* because they are
322 known to be intrinsically resistant to rifampicin (38). *M. abscessus* resistance to rifampicin
323 partially due to its intrinsically low cell-wall permeability, possibly due to high lipid content,
324 as well as drug efflux pump (37, 39). Additionally, *M. abscessus* encodes rifampicin ADP-
325 ribosyltransferase (Arr_{Mab}), whose function is to catalyze ADP-ribosylation and render
326 rifampicin inactive (40, 41). Though rifampicin does not have high potency against *M.*
327 *abscessus*, our dataset demonstrate synergistic interaction between rifampicin with many
328 tested drugs, including amikacin and azithromycin. Rifampicin also synergizes all cell-wall-
329 acting antibiotics in our dataset; the mechanism of synergy may be due to a weakened cell
330 wall allowing better entry for rifampicin. Though rifabutin, another rifamycin antibiotic, has
331 been approved to treat *Mycobacterium Avium Complex* and TB, its potential against *M.*
332 *abscessus* has not been fully explored. Recent findings demonstrate limited modification of
333 rifabutin by the Arr_{Mab} in comparison to rifampicin, resulting in lower MICs against both the
334 ATCC19977 strain and clinical *M. abscessus* isolates (42). We also observed in our dataset
335 that rifabutin has a lower IC_{50} and is more potent than rifampicin (IC_{50} of 1.8 $\mu\text{g}/\text{mL}$ versus 16
336 $\mu\text{g}/\text{mL}$, respectively, Table 1, Fig. 4A). However, rifabutin in our pairwise combinations tend
337 toward antagonism, indicated by more red squares in the heat map compared to rifampicin
338 (Fig. 2A). Nevertheless, rifabutin remains synergistic with frontline *M. abscessus* antibiotics
339 such as clarithromycin (which has also been reported by other study), amikacin, and
340 azithromycin, suggesting that rifabutin may be part of a clinically useful combination therapy
341 (43). The rifamycin pairwise interaction data support continued exploration of this important
342 class of drugs for treatment of *M. abscessus* infections.

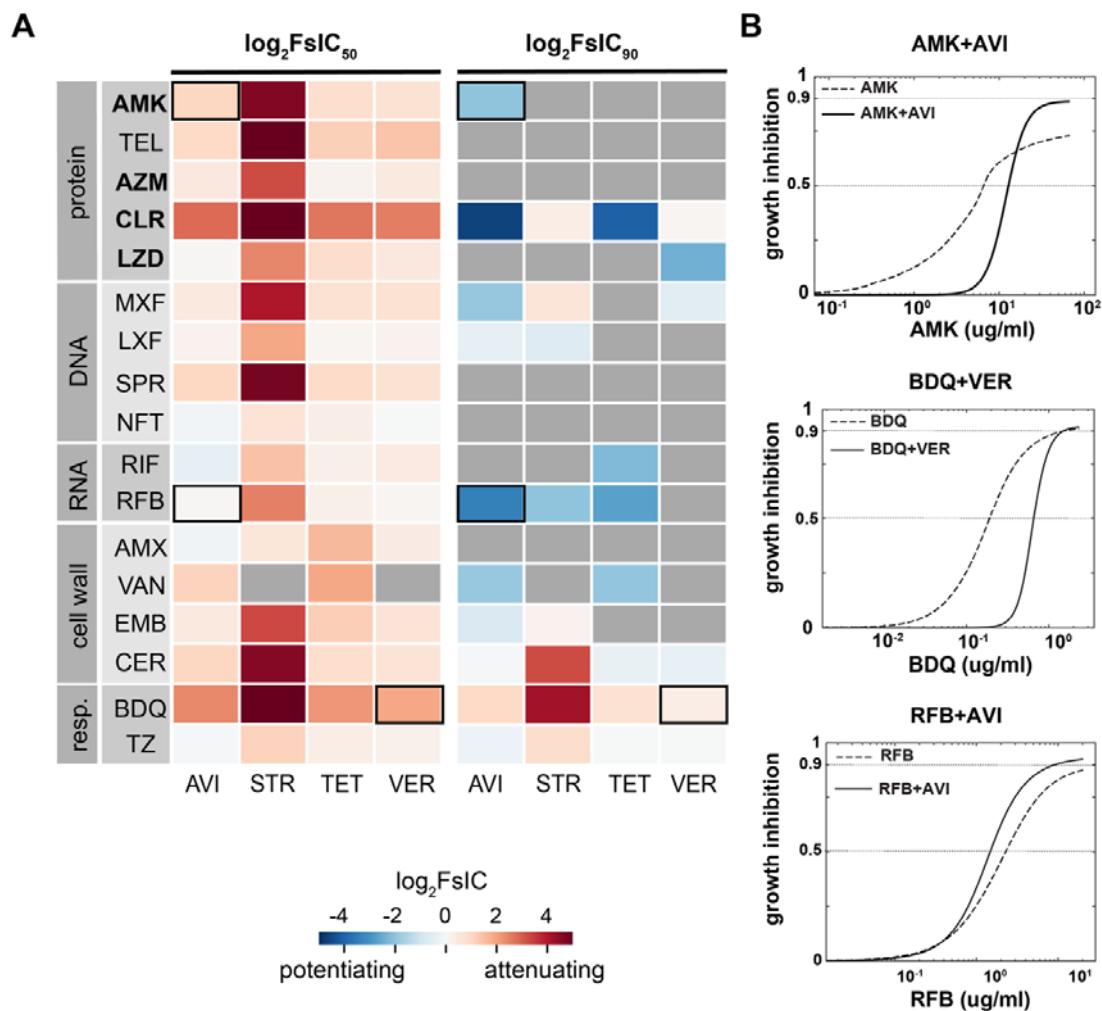
343 **Non-traditional NTM antibiotics**

344 Next, we evaluated an unexplored space in combination therapies by analyzing drug
345 interactions among antibacterials that are not traditionally used to treat NTMs and TB.
346 **Telithromycin:** Telithromycin belongs to a large group of ketolides, a newer generation of
347 macrolide with a slightly different mechanism of action (44, 45). Ketolides appear to partially
348 inhibit protein synthesis rather than complete or near-complete inhibition of protein synthesis,
349 which leads to more cellular degradation and a stronger bactericidal effect (45, 46). Despite
350 being designed to be an alternative for some macrolide-resistant bacteria, telithromycin is not
351 often used in the clinic due to its toxic side effects on the liver (47). We observed particularly
352 strong synergies between telithromycin and other antibacterial compounds such as
353 nitrofurantoin, rifampicin, amoxicillin, thioridazine, and azithromycin ($\log_2\text{FIC}_{50}$ of -1.7, -1.7,
354 -2.7, -2.4, and -0.76, respectively), suggesting the potential of using combinations containing
355 telithromycin to treat macrolide-resistant *M. abscessus*. Nevertheless, telithromycin is mildly
356 antagonistic with amikacin and additive with linezolid ($\log_2\text{FIC}_{50}$ of 0.09 and -0.02,
357 respectively). Therefore, further evaluation may be required before combining telithromycin
358 with these clinically recommended drugs. **Amoxicillin and vancomycin:** Cell-wall-acting
359 antibiotics amoxicillin and vancomycin show broad synergies with different classes of
360 antimycobacterial (Fig. 2A). We found that amoxicillin is synergistic with almost all the
361 tested partner drugs, including amikacin, azithromycin, clarithromycin, rifampicin, and
362 ethambutol ($\log_2\text{FIC}_{50}$ of -0.58, -0.94, -0.87, -1.2, and -1.2, respectively). Amoxicillin has
363 previously been known to enhance the effect of β -lactam antibiotics such as imipenem and
364 relebactam (48). Our results suggest that amoxicillin may also partner well with a broad
365 range of antibiotics. For example, amoxicillin and telithromycin are strongly synergistic, with
366 a $\log_2\text{FIC}_{50}$ of -2.7 (the most synergistic combo in our dataset). Vancomycin is another
367 widely synergistic drug in our drug panel and was reported to be synergistic with
368 clarithromycin, one of the most used clinical drugs for *M. abscessus* (49). Although we did
369 not obtain a reliable drug interaction measurement for vancomycin with clarithromycin due to
370 poor reproducibility, vancomycin is a promising candidate for a multi-drug regimen which
371 showed broad synergy with most of the other drugs tested, except with thioridazine (Fig. 2A).
372 Together, these data suggest that telithromycin, vancomycin, and amoxicillin, despite being
373 uncommon drugs to choose in the clinic, tend toward synergy and may be candidates as
374 partner drugs for *M. abscessus* regimen development.

375 **Bedaquiline**

376 Another drug candidate for the combination treatment of *M. abscessus* is bedaquiline, a
377 diarylquinoline that inhibits subunit c of mycobacterial ATP synthase. In a zebrafish model of
378 *M. abscessus* infection, bedaquiline was shown to exert a therapeutic effect by preventing the
379 formation of abscesses (50). Additionally, a preliminary study in the clinic demonstrated the
380 efficacy of using bedaquiline as salvage therapy. Within three months of treatment,
381 bedaquiline reduced the bacterial load in the sputum of patients (51). Consistent with this
382 finding, we found bedaquiline to have a low IC₅₀ value of 0.16 µg/mL (Table 1). With
383 DiaMOND, we observe that bedaquiline mildly antagonizes cefoxitin and amoxicillin
384 (log₂FIC₅₀ of 0.25 and 0.14, respectively) and is mildly synergistic with vancomycin and
385 ethambutol (log₂FIC₅₀ of -0.35 and -0.08, respectively). The antagonistic relationship
386 between bedaquiline and cefoxitin in our data set is in agreement with previous studies that
387 suggested bedaquiline eliminates the effects of β-lactams (52). To evaluate the potential of
388 bedaquiline more fully, we investigated drug interactions between bedaquiline and other
389 antibiotics where these drug interactions have not yet been reported. We observed an overall
390 trend that bedaquiline is antagonistic with DNA-acting antibiotics used in this study (Fig. 2A).
391 In contrast, bedaquiline is synergistic with protein synthesis targeting drugs and thioridazine
392 (Fig. 2A). Bedaquiline's potency and synergy with clinically favored protein synthesis
393 inhibitors, such as amikacin and azithromycin (log₂FIC₅₀ of -0.42 and -0.35, respectively)
394 have not been previously reported to our knowledge. However, the administration of
395 bedaquiline following amikacin yields positive clinical outcomes and has been reported for
396 macrolide-resistant *M. fortuitum* complex soft tissue infection (53). A small preliminary
397 report also suggested the potential clinical and microbiologic activity of bedaquiline against
398 *M. abscessus* (51). Though current clinical results on bedaquiline are limited and further
399 studies are required, these results suggested that bedaquiline should be explored for treating
400 *M. abscessus*, and combinations containing bedaquiline could be considered for macrolide-
401 resistant cases.

402 **Thioridazine** is an atypical antipsychotic still available in generic form, but with limited
403 clinical use because of QTc prolongation (54). This agent initially gained interest for its
404 potential use in treatment of MDR-Tb, as it has been shown to have properties against Mtb *in*
405 *vitro*, *in vivo*, and in clinical cases, irrespective of antibiotic resistance status (55). In this
406 study, thioridazine is synergistic with clinically preferred drugs such as amikacin,
407 azithromycin, and clarithromycin (log₂FIC₅₀ of -0.04, -0.46, and -0.22, respectively), as well
408 as drugs that are not traditionally used for NTM treatment such as telithromycin, and


409 bedaquiline ($\log_2\text{FIC}_{50}$ of -2.4 and -0.72, respectively). Although thioridazine does not appear
410 to have a strongly synergistic drug interaction profile (Fig. 2A), it is one of a few drugs in this
411 dataset that shows synergy with clinically preferred drugs (other drugs are bedaquiline,
412 vancomycin, and amoxicillin), suggesting that non-traditional antibiotics such as thioridazine
413 could be useful in combination with other agents for *M. abscessus* infection, where the
414 intrinsic resistance to common antibiotics is a challenge for treatment success.

415 **SPR719**

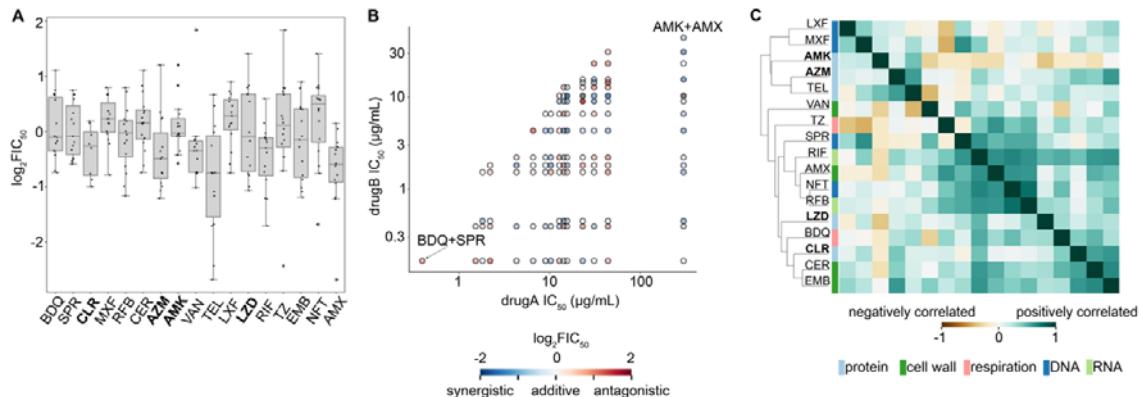
416 Another promising candidate for *M. abscessus* multi-drug regimen development is SPR719.
417 SPR719 is a DNA gyrase inhibitor (GyrB) that is currently in clinical studies as a treatment
418 for NTM infections, and is the prodrug version of SPR720, which is in phase I clinical
419 development as a new oral agent for NTM infection and Mtb infection (56). We determined
420 the IC_{50} of SPR719 to be 0.39 $\mu\text{g}/\text{mL}$ (Table 1), in agreement with the reported IC_{50} from
421 previous studies (0.25 – 4 $\mu\text{g}/\text{mL}$, (26)). Despite being highly potent, the interaction profile
422 of SPR719 is relatively mild, with a balanced profile of synergies and antagonisms (an even
423 number of synergistic combinations, having $\log_2\text{FIC}_{50} < 0$ and antagonistic combinations
424 $\log_2\text{FIC}_{50} > 0$ (Fig. 2A)). SPR719 is additive with amikacin ($\log_2\text{FIC}_{50}$ of -0.09) and
425 synergistic with drugs from a broad range of classes used to treat NTMs and TB, including
426 azithromycin, telithromycin, rifampicin ($\log_2\text{FIC}_{50}$ of -0.49, -0.26 and -0.19, respectively),
427 and all cell-wall acting antibiotics tested (Fig. 2A). Through genomic analysis, *M. abscessus*
428 was shown to contain a natural A92S mutation in *gyrB*, which is unique among other NTMs
429 and *M. tuberculosis* (57). This mutation causes a conformational change in the ATP binding
430 site, which may partially explain the intrinsic resistance of NTMs to GyrB inhibitors (57, 58).
431 Despite this mutation, SPR719 is still very potent against *M. abscessus* (Table 1, Fig. 4A)
432 (58). SPR719 is more potent than the fluoroquinolone moxifloxacin and is synergistic with
433 more combinations compared to moxifloxacin (moxifloxacin $\log_2\text{FIC}_{50}$ median is 0.22 with
434 only four combinations having $\log_2\text{FIC}_{50} < 0$) (Table 1, Fig. 4A). Although moxifloxacin is
435 not commonly recommended to treat *M. abscessus*, moxifloxacin is still being used in
436 conjunction with amikacin and macrolides in clinical settings (12, 59). Together, these data
437 suggest that SPR719 may be part of improved combination therapies for *M. abscessus*,
438 including as a replacement for moxifloxacin.

439 **Antibiotic potentiation to improve combinations therapy against *M. abscessus***

440 To determine whether a potentiator candidate enhances or attenuates the potency of
441 antibiotics, we measured how the addition of potentiator candidates shifts the partner
442 antibiotic's dose-response curve (Fig. 1B-C, Fig. 3A). We quantified the degree of
443 potentiation (and attenuation) by calculating the \log_2 -transformed fold shift in IC_{50} or IC_{90} of
444 the effective antibiotic with the addition of a constant dose of the candidate potentiator so that
445 a negative $\log_2 FsIC$ indicates potentiation and a positive value indicates attenuation (Fig.
446 1B-C). We observed that all tested antibiotics were attenuated by all four potentiator
447 candidates at IC_{50} , but some antibiotics were potentiated at IC_{90} (Fig. 3A). For example,
448 avibactam attenuates the effect of amikacin at IC_{50} , indicated by the right shift in combination
449 dose-response curves compared to the amikacin dose-response curve ($\log_2 FsIC_{50}$ of 1.1, Fig.
450 3B). However, with avibactam, amikacin reached IC_{90} at a lower concentration, indicated by
451 a left shift in the combination dose-response curve compared to single-drug dose-response
452 curve ($\log_2 FsIC_{90}$ of -2.1, Fig. 3B), indicating a potentiating effect. We observe a similar shift
453 in all combinations where IC_{90} is reported, e.g., potentiator candidates shifted from being
454 attenuating to either less attenuating (such as bedaquiline with streptomycin; $\log_2 FsIC$ shifts
455 from 6.4 at IC_{50} to 4.2 at IC_{90}), or from attenuating to potentiating (as with the previous
456 example between amikacin and avibactam), or from less potentiating to more potentiating
457 (such as avibactam and rifabutin; $\log_2 FsIC$ shift from 0.04 at IC_{50} to -3.4 at IC_{90} , Fig. 3B).
458 This dramatic shift from attenuation to potentiation is explained by an increase in the
459 steepness of the dose-response curve with the addition of potentiator candidates so that the
460 effect in some combinations is an increase in potency at higher dose levels of the antibiotic
461 (Fig. 3B). Among four tested potentiator candidates, streptomycin has the strongest
462 attenuating effect at IC_{50} and IC_{90} (except with rifabutin and levofloxacin, in which case
463 streptomycin acts as a potentiator). Among our tested drug set, three inactive drugs potentiate
464 the activity of rifabutin (with the 4th being unmeasurable).

465

466 **FIG 3. Effect of potentiator candidates on antibiotic efficacies in *M. abscessus***
467 **ATCC19977.** (A) Heat map of pairwise drug interactions with potentiators at a fixed
468 concentration. Drugs are categorized based on their mechanism of action and drugs
469 recommended for treating *M. abscessus* infection are indicated in bold text. Drug
470 interaction measurement is expressed as the change in log2 fold shift at IC_{50} (left) or
471 IC_{90} (right). $\log_2\text{FsIC} < 0$ indicates potentiating effects, shown in blue, and $\log_2\text{FsIC} >$
472 0 indicate attenuating effects, shown in red. Outline squares indicate combinations
473 that are shown in the dose-response below. (B) Example dose-response curves
474 showing the fold shift in IC_{50} and IC_{90} for drugs combined with potentiators, amikacin
475 (AMK) + avibactam (AVI) (top), bedaquiline (BDQ) + verapamil (VER) (middle),
476 rifabutin (RFB) + avibactam (AVI) (bottom). The dash line indicates the single drug
477 dose-response curve, while the solid line represents the combination curve. A left shift
478 in the solid line dose-response curve indicates a potentiating effect, and a right shift
479 shows an attenuated effect by the potentiator.


480 Beta-lactams are the most widely used antibiotics (60). However, due to the presence of the
481 broad-spectrum beta-lactamase Bla_{Mab} , only imipenem and cefoxitin are currently
482 recommended in the multidrug-regimens targeting *M. abscessus* (8). Therefore, potentiators
483 such as avibactam, a non- β -lactam β -lactamase inhibitor shown to efficiently inhibit Bla_{Mab} ,
484 can potentially help extend the spectrum of β -lactam antibiotics active against *M. abscessus*
485 (61). Porins of *M. abscessus* cell wall have been shown to partially contribute to β -lactam
486 resistance as they allow hydrophilic molecules to cross the cell membrane, which can interact
487 with the target in the cytoplasm and potentially trigger the expression of resistance genes (10,
488 62). Avibactam has also been reported to reduce the MIC of cell-wall-acting agents (63), and
489 we observed a potentiating effect of avibactam with cell-wall-acting agents ethambutol,
490 cerulenin, and vancomycin ($\log_2\text{FsIC}_{90}$ of -0.76, -0.072, and -1.9) at IC_{90} . Because avibactam
491 is a β -lactamase inhibitor, we also wanted to determine its effect with amoxicillin. Due to the
492 low potency of amoxicillin, there is no IC_{90} for amoxicillin. However, at IC_{50} , we observed a
493 mild potentiating effect ($\log_2\text{FsIC}_{50}$ of -0.2), which is not commonly observed in our dataset
494 (the other combinations are avibactam and nitrofurantoin, $\log_2\text{FsIC}_{50}$ of -0.2, avibactam and
495 rifampicin, $\log_2\text{FsIC}_{50}$ of -0.44, and avibactam with thioridazine, $\log_2\text{FsIC}_{50}$ of -0.061).

496 Although verapamil is not effective on its own and have limited clinical used due to its
497 primary effect on cardiac function, verapamil at 50 $\mu\text{g}/\text{mL}$ was reported to enhance the
498 killing of bedaquiline in *M. abscessus* (23, 64). In contrast, our data show a right shift
499 (attenuation) of the bedaquiline + verapamil dose-response curve compared to the
500 bedaquiline single dose-response curve ($\log_2\text{FsIC}_{50}$ value of 1.9, Fig. 3B). This difference in
501 the role of verapamil on bedaquiline efficacy may be due to experimental differences such as
502 verapamil concentration. In Viljoen et al., 50 $\mu\text{g}/\text{mL}$ of verapamil was used, whereas we used
503 a lower dose of 2.35 $\mu\text{g}/\text{mL}$, which was chosen based on 3-fold maximum plasma
504 concentration 4-6 hours after administration, assuming one pill of 100 mg of bedaquiline was
505 administered (65).

506 We observed that streptomycin and verapamil largely attenuated the potency of partner drugs,
507 whereas avibactam and tetracycline are broadly potentiating at IC_{90} (Fig. 3A), suggesting that
508 these two candidates should be further explored as an element of multi-drug treatment for *M.*
509 *abscessus* infection. Additionally, we showed that with modification, DiaMOND can be used
510 to measure the combined effect between a potentiator and an active drug.

511 **Drug interactions cannot be predicted from single drug potencies or mechanisms of
512 action**

513 In the absence of a known effective multidrug therapy for *M. abscessus* infection, clinicians
514 usually rely on single drug susceptibility profiles and their own experience to determine the
515 best drug combination for each patient. In some cancers, single-drug susceptibility profiles
516 can be used to design optimized combination therapies under the principle that efficacy for
517 each cancer is determined by its susceptibility to any of the agents and that combination
518 therapies were effective as bet-hedging strategies (66). To understand whether we could
519 predict drug interactions based on single-drug properties, we started by evaluating whether
520 single-drug potencies were correlated with the propensity for drug interactions to be
521 synergistic or antagonistic in *M. abscessus*. In Fig 4A, single drugs are organized based on
522 their IC₅₀ on the x-axis, and the y-axis shows the distribution of log₂FIC₅₀ of all combinations
523 containing that single drug. We do not observe a correlation between distributions of
524 log₂FIC₅₀ compared to IC₅₀ for each drug, suggesting that drug interactions cannot be
525 predicted from single drug potencies. We wondered if the most potent or least potent
526 antibiotic is the driver of drug interaction, which may be obscured by looking at the overall
527 propensity for synergy compared to single-drug potencies. To take the IC₅₀ of both drugs in
528 each pairwise combination into consideration, we evaluated whether there were patterns of
529 synergy and antagonism compared to the IC₅₀s of both partner drugs (Fig. 4B). In the drug
530 interactions among 18 antibiotics, there was no clear trend of synergy and antagonism based
531 on single-drug potencies (e.g., the drug interactions, colored by log₂FIC₅₀, are not clustered
532 by drug potency to either drug). For example, SPR719 and bedaquiline are highly potent
533 drugs with low IC₅₀ (IC₅₀ of 0.39 µg/mL and 0.16 µg/mL, respectively), but the combination
534 between SPR719 and bedaquiline are antagonistic (log₂FIC₅₀ of 0.74). Conversely, amikacin
535 and amoxicillin are not as potent as SPR719 or bedaquiline (IC₅₀ of 6.6 µg/mL and 300
536 µg/mL, respectively) but are mildly synergistic in combination (log₂FIC₅₀ of -0.59). Together,
537 our analysis demonstrates that single drug potency is not predictive of drug interactions, and
538 we cannot anticipate whether a drug pair will be synergistic or antagonistic based on their
539 potency profiles as single agents.

540

541 **FIG 4. Relationship between drug potency or mechanism of action with synergy**

542 (A) Box plot of drug interaction ($\log_2 FIC_{50}$) of all combinations containing the single
543 drug represented on the x-axis, drugs recommended for treating *M. abscessus*
544 infection are indicated in bold text. Each dot inside the box represents a combination
545 of that single drug and another drug in the data set. Single drugs are ordered on the x-
546 axis based on IC_{50} (Table 1), with drugs having the highest IC_{50} on the right and the
547 lowest IC_{50} on the left (B) Comparison of drug interaction scores with single drug
548 potency in ATCC1977. Pairwise combinations are plotted as the components of their
549 single drug IC_{50} (µg/mL). Given a pairwise combination, the potency of a single drug
550 is plotted on the y-axis while the non-potent drug is on the x-axis; drugs
551 recommended for treating *M. abscessus* infection are indicated in bold text. The color
552 fill indicates the synergistic (blue) or antagonistic (red) interaction in ATCC19977. (C)
553 Clustering of drugs' interaction profile in ATCC19977. Each box represents the
554 Pearson correlation of drug interaction profiles between two antibiotics. 1 indicates a
555 positive correlation, whereas -1 indicates a negative correlation. The color bar along
556 the y-axis represents the general drug target pathway (e.g., inhibition of protein, cell
557 wall, DNA, or RNA synthesis and inhibition of respiration.)

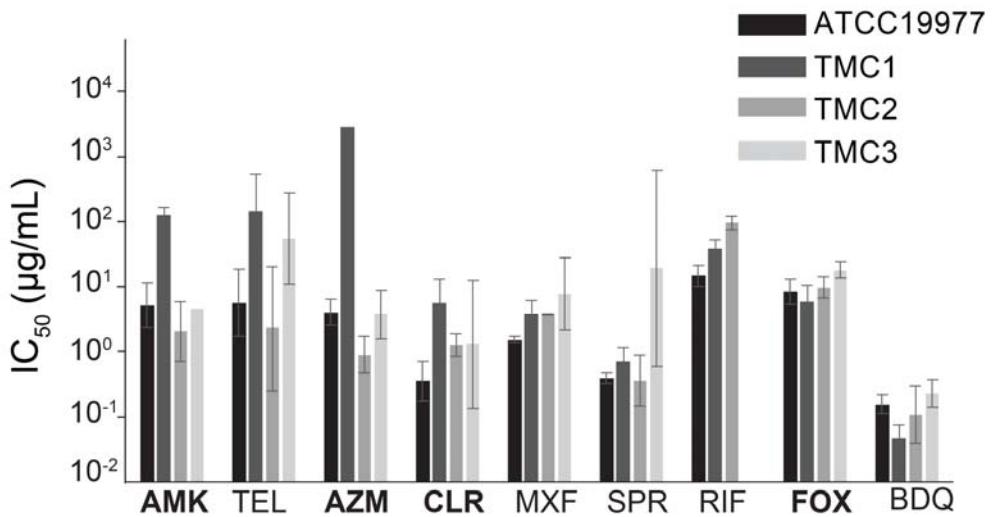
558 Next, we evaluated whether there were drug interaction patterns that correspond to each
559 partner drug's mechanism of action. To test the hypothesis that drugs targeting similar
560 pathways would have similar interaction profiles, we compared the similarities among drug
561 interaction profiles from the 17 antibiotics that target four general processes using
562 hierarchical clustering (Fig. 4C). Cefoxitin is removed from this analysis because there is
563 only one reportable combination containing cefoxitin in our dataset. In general, it is unclear
564 whether drug interaction profiles are clustered by the mechanism of action. For example,
565 rifabutin and nitrofurantoin have similar interaction profiles but different mechanisms of

566 action. However, there are also examples of drugs with a similar mechanism of action that
567 have similar interaction profiles, such as cell-wall acting agents ethambutol and cerulenin, the
568 fluoroquinolones levofloxacin and moxifloxacin, protein synthesis inhibitors azithromycin
569 and telithromycin (Fig. 4C). Nevertheless, it is possible that an analysis of drug interaction
570 profiles across a larger set of drugs may reveal patterns that are not present in this dataset due
571 to the small number of representatives for each drug class. Further analysis with a larger drug
572 set with an even greater number of representatives for each drug category may be necessary
573 to understand whether drug interaction patterns are similar in *M. abscessus* for drugs with
574 closely related mechanisms of action. However, our data do not suggest that there are strong
575 similarities in drug interactions for drugs that target the same pathways.

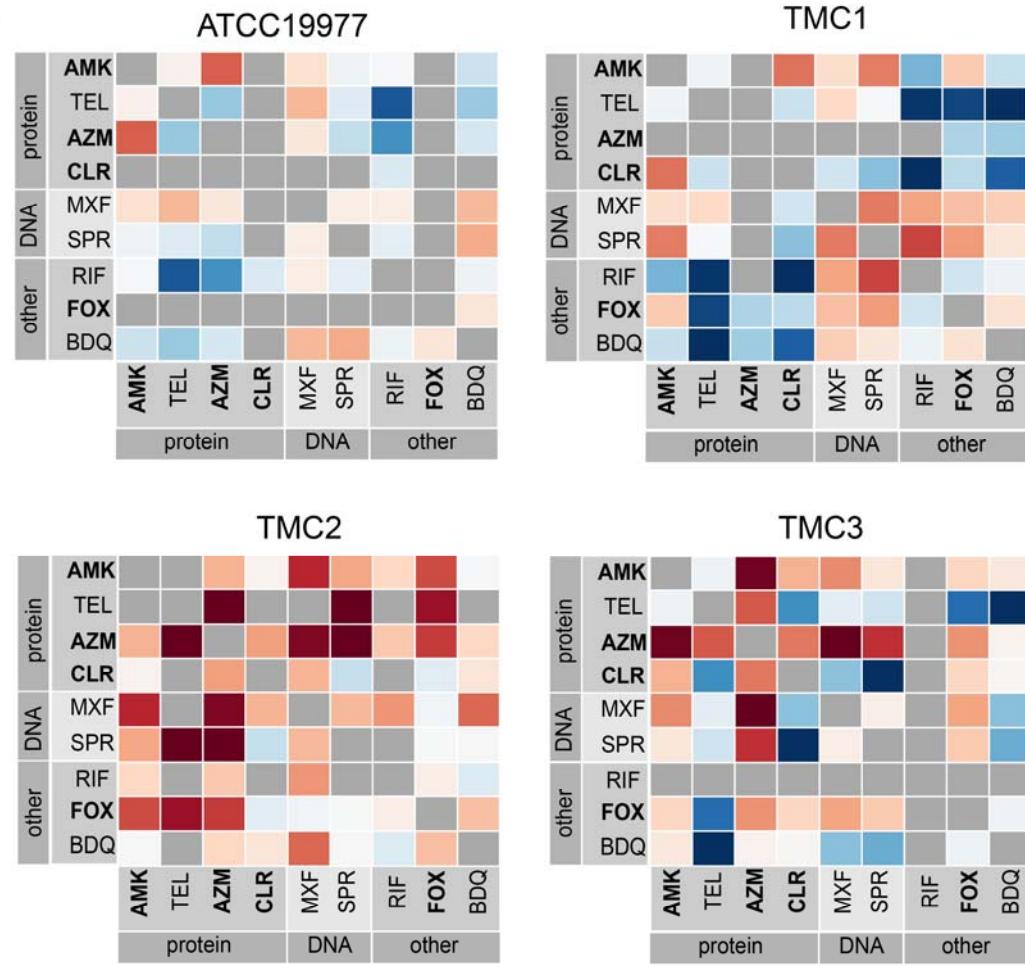
576 **Drug interaction is strain-specific**

577 An extensive study of 85 clinical isolates from *M. abscessus* subspecies demonstrated
578 species-specific drug susceptibility, including clinically favored drugs, such as amikacin and
579 macrolide clarithromycin (67). For this reason, we speculated that drug interactions would
580 also vary from isolate to isolate. To test this hypothesis, we selected three strains that were
581 chosen to represent major types of variation among strains, including colony morphology
582 (e.g., smooth versus rough phenotype) and growth rate (e.g., slow- versus fast-growing). The
583 fastest and the slowest growing strain were the lab reference strain ATCC19977 and TMC2
584 (4hr and 20hr doubling, respectively, Table S2). ATCC19977 and TMC3 shared similar
585 smooth morphologies, and TMC1 and TMC2 shared similar rough morphologies. Detailed
586 information about the doubling time and phenotype of these clinical isolates is included in
587 Table S2.

588 We used a focused drug set for isolate-to-isolate comparison; the set includes antibiotics that
589 are recommended for current therapies for NTMs and TB (amikacin, azithromycin, cefoxitin,
590 clarithromycin, moxifloxacin, and rifampicin), in development (SPR719 and bedaquiline), or
591 are broadly synergistic in ATCC19977 (telithromycin). Consistent with previous studies, we
592 observed variation in IC_{50} values from isolate-to-isolate (Fig. 5A) (11, 67). Though
593 susceptibility among strains is also variable for newer drugs, some relative potencies for
594 single-antibiotics are retained across strains. For example, bedaquiline and SPR719 have the
595 highest potency (e.g., lowest IC_{50}) for the lab reference strain, and this observation holds for
596 other strains (except for SPR719 in TMC3 strains, Fig. 5A). To understand if colony
597 morphology or growth rate was correlated with drug susceptibility, we calculated Pearson
598 correlations of IC_{50} values between each strain (Fig. S4A). In general, we observed poor

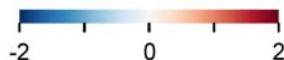

599 correlations in single-drug susceptibility patterns between strains, even in strains with
600 common morphologies and similar growth rates (ATCC19977, TMC3) and (Table 2, Fig.
601 S4A). The only significant correlation ($R = 0.88$) observed is between TMC2 and
602 ATCC19977, which differ in both morphology and growth rate (Table 2). Together, our data
603 suggest that isolate-to-isolate differences in drug response are not well correlated with colony
604 morphology and doubling times.

605 **Table 2. Characterization of lab strain (ATCC19977) and clinical isolates TMC1, TMC2
606 and TMC3**


strain	doubling time (hour)	morphology
ATCC19977	4	smooth
TMC 1	12	rough
TMC 2	20	rough
TMC 3	8	smooth

607

A



B

$\log_2 FIC_{50}$

synergistic additive antagonistic

609 **FIG 5. Single drug susceptibility and drug interaction outcomes and in different**
610 ***M. abscessus* clinical isolates.** (A) Single drug susceptibilities for the reference strain
611 (ATCC19977) and three clinical isolates (TMC1, TMC2, and TMC3). Susceptibility
612 is measured by the IC₅₀ (μg/ml). Error bars represent standard deviation as compared
613 to the mean, when there are more than one replicates IC values are reported. (B) Heat
614 map showing drug interactions for each strain: ATCC19977 (top left), TMC1 (top
615 right), TMC2 (bottom left) and TMC3 (bottom right). As in Fig 2, drugs are organized
616 by the mechanism of action, and drugs recommended for treating *M. abscessus*
617 infection are indicated in bold text. Drug measurement is expressed in log₂FIC₅₀,
618 where blue highlights log₂FIC < 0 (synergy) and red is log₂FIC > 0 (antagonism).

619 To understand whether drug interactions were also strain-dependent, we measured pairwise
620 drug interactions among the nine drugs in our focused antibiotics set with DiaMOND. The
621 drug interaction profiles varied from isolate to isolate (Fig. 5B). Correlation analysis
622 demonstrates that the most similarity in drug interactions is between TMC1 and ATCC19977
623 (R = 0.48, Fig. S4B). We noted that there was no correlation in single-drug IC₅₀ values
624 between TMC1 and ATCC19977, nor did these two strains share morphologies or growth
625 rates. The lack of similarity between these strains, except in the drug interaction profile,
626 supports our hypothesis that drug interaction is independent of single drug potency and
627 morphology. The spectrum of drug interactions is balanced in ATCC19977, TMC1, and
628 TMC3, whereas TMC2 strongly tends toward antagonism (Fig. 5B). Despite poor overall
629 correlations in drug interaction profiles from strain to strain, we observed some similarities
630 between these strains. For example, amikacin paired with macrolides (such as azithromycin
631 or clarithromycin) is consistently antagonistic. In contrast, combinations of clarithromycin
632 and SPR719 or bedaquiline and telithromycin were all synergistic (Fig. 5B). There are
633 strongly synergistic combinations such as clarithromycin with almost all tested drugs for
634 TMC1 (except amikacin) or telithromycin with almost all tested drugs for TMC3 (except
635 amikacin and azithromycin) (Fig. 5B), suggesting that there may be space for improvement in
636 combination therapy in a strain specific manner. Taken together, our results affirm the need
637 for targeted drug combination testing and suggest that measurements should be made for each
638 isolate for reliable drug interaction determination.

639 **DISCUSSION**

640 Infections caused by *M. abscessus* are notoriously difficult to treat for many reasons,
641 including innate and acquired drug resistance, low antibiotic efficacies, and variation among

642 strains. Combination antibiotic treatment has the potential to improve treatment efficacies via
643 synergies and potentiation. Despite this potential and reports of several synergistic drug
644 combinations, we have lacked a comprehensive drug interaction dataset to develop drug
645 combinations for the treatment of *M. abscessus*. Here, we applied DiaMOND to
646 systematically measure pairwise drug interactions among 18 drugs against *M. abscessus* to
647 better understand the landscape and potential of combination therapy for effective treatment.
648 Our results include 122 drug pairs for which we report interactions for the first time. These
649 data revealed an unexpectedly large synergy space compared to other bacterial species. We
650 observe many synergistic drug pairs that are currently not considered as options for treating
651 *M. abscessus* pulmonary infection in clinical practice. One example is amoxicillin, which is
652 not currently recommended to be used to treat *M. abscessus*. Amoxicillin is synergistic with
653 almost all tested drugs, combined with its clinical practicality suggests its potential to be used
654 in combination therapy. We did not find that clinically used drug pairs were necessarily
655 synergistic *in vitro*. For example, amikacin and azithromycin is antagonistic *in vitro* while
656 another pair of protein synthesis inhibitors (azithromycin and linezolid) is synergistic.
657 Together, the large number of synergies identified here *in vitro* motivates future investigation
658 of these combinations as a path forward to improve combination therapy to treat pulmonary
659 *M. abscessus* infection.

660 Our findings demonstrate that some drugs that are not effective alone potentiate the activities
661 of other antibiotics. These agents may play an important role in improving *M. abscessus*
662 regimens given the poor efficacy of antibiotics as monotherapies for *M. abscessus*. To
663 understand whether we could sensitize *M. abscessus* to antibiotics using potentiators, we
664 expanded our combinations screen and adapted the DiaMOND methodology to evaluate how
665 drugs that are considered inactive affect the efficacies of active drugs. Among the four
666 candidate potentiators we tested, avibactam has been subjected to multiple studies due to its
667 ability to inhibit Bla_{mab} and potentially allow more β -lactams to be used to treat *M. abscessus*.
668 Our results are consistent with previously reported studies on combining a non- β -lactam β -
669 lactamase inhibitor with β -lactam to extend the efficacy of β -lactam, which suggests that
670 avibactam should be considered in a multi-drug therapy (61, 63). Additionally, the most
671 potentiating effect is observed at 90% growth inhibition (not 50% growth inhibition),
672 suggesting that the potentiators' effect is likely to be more prominent at higher concentrations
673 of the active antibiotic.

674 We found that we could not predict drug interactions based on drug potencies or mechanisms
675 of action. Though drug interaction profiles were not very similar among antimicrobials
676 targeting the same cellular process (cell wall, DNA, etc.), we observed that some antibiotics
677 were consistently synergistic or antagonistic with drugs from the same class. For example,
678 DNA-targeting drugs are antagonistic with linezolid and respiratory inhibitors (bedaquiline
679 and thioridazine) and synergistic with cell-wall-acting antibiotics (ethambutol, vancomycin,
680 and amoxicillin). The reason for the observed synergy between cell-wall-acting and DNA-
681 acting compounds may be due to cell wall targeting compounds increasing the permeability
682 of the mycobacterial cell wall, resulting in an increased accumulation of DNA-targeting
683 compounds in the cell (68). *M. abscessus* is known to increase the activity of efflux pump
684 inhibitors when exposed to bedaquiline, which may result in the rapid efflux of DNA-acting
685 compounds and an antagonist interaction (23).

686 Another challenge with developing an effective regimen for *M. abscessus* is the remarkable
687 variation in drug response among strains, likely due to genomic diversity in NTM species,
688 even across morphologically related isolates (26, 69). We measured drug interactions in three
689 clinical isolates with different colony morphologies and growth rates. Previous studies have
690 shown that the impact of colony morphotype, which includes the transition of the smooth
691 colony to the rough colony during infection, highly affects drug susceptibility (70). To
692 understand whether a universal multidrug regimen may be developed that is effective against
693 all *M. abscessus* strains, we measured a core set of drug pairs in different clinical strains of *M.*
694 *abscessus*. We found that drug interactions were poorly correlated across strains and could
695 not be systematically determined based on data from the reference strain, strains with similar
696 morphologies or growth rates, the single-drug susceptibility profiles, or the drug mechanisms
697 of action. This result suggests the potential need to include susceptibility testing for drug
698 combinations, instead of single drugs only in clinical laboratory testing. Strain-to-strain
699 variation in drug interaction profile may be determined by subspecies or genetic differences,
700 for instance the presence of the *erm* gene, which can confer macrolide resistance. Future
701 work measuring drug interactions across a large set of clinical isolates is required to address
702 this question. Nevertheless, our observations drug interactions in *M. abscessus* are strain-
703 specific supports the idea that treatment regimen development may need to be personalized
704 for each isolate (e.g., directly measured) rather than derived from guidelines based on other
705 strains.

706 This systematic study of the drug combination landscape in *M. abscessus* suggests that we
707 require a more extensive phenotypic evaluation of drug interactions to develop improved
708 therapies. Additionally, the relationship between *in vitro* single drug susceptibility or
709 combination measurement and clinical outcome in *M. abscessus* has not yet been sufficiently
710 studied, and it is currently unclear whether synergy correlates with positive clinical outcomes
711 (71). This challenge in linking *in vitro* measurement to *in vivo* response is not unique to
712 NTMs and is well characterized in tuberculosis (72, 73). However, previous studies have
713 shown that measurement of the drug combination response across multiple growth conditions
714 that resemble the host's microenvironment is predictive of treatment shortening in Mtb (30,
715 74). Environmental nutrients have a critical effect on drug interaction in both *M. abscessus*
716 and Mtb, and antibiotic response is altered when grown in artificial cystic fibrosis sputum (30,
717 75, 76). We, therefore, expect that making drug interaction measurements in different host-
718 mimicking growth conditions and testing which of these growth environments predicts
719 treatment outcomes in preclinical animal models and in humans is a critical step in drug
720 combination design for *M. abscessus* and other NTMs. Together, the dependence of drug
721 interactions on strain and variation in drug response with strain and growth conditions
722 suggests that we have failed to identify a universal combination therapy that is effective for
723 *M. abscessus* not because good drug combinations do not exist, but rather because we need to
724 better understand how to tailor combination therapy to each infection.

725 MATERIALS AND METHODS

726 Antimicrobials

727 The antimicrobials agents used in this study (except for SPR719) were obtained from Sigma
728 Aldrich. SPR719 was a gift from Spero Therapeutics. Stock solutions were prepared in
729 DMSO or sterile water + 0.01% Triton X-100, depending on solubility, and stored in single-
730 use aliquots at -20°C until used.

731 Strain and culturing

732 Measurement was made using *M. abscessus* subsp. *abscessus* strain ATCC19977 (reference
733 strain) and clinical isolates obtained from patient sputum at Tufts Medical Center, Infectious
734 Disease Clinic (TMC1, TMC2, and TMC3) (77). All strains were cultured in a 7H9 medium
735 supplemented with 0.05% Tween 80, 0.2% Glycerol, and 10% BBL Middlebrook ADC
736 enrichment. Cultures were started from frozen aliquots and allowed to grow to the mid-log
737 phase (OD₆₀₀ between 0.4 - 0.6), shaking at 37°C overnight. Cultures were then diluted once

738 to the lag phase (OD₆₀₀ between 0.05 - 0.1) and allowed to grow to the mid-log phase before
739 performing assays.

740 **DiaMOND measurement**

741 DiaMOND was used to measure drug interactions, as previously described for
742 *Mycobacterium tuberculosis* (18). Details of DiaMOND can be obtained in Mycobacteria
743 Protocol 4th, chapter 30th (78). Briefly, DiaMOND uses equipotent drug-combination dose-
744 response curves to approximate the shape of checkerboard isoboles at the same level of
745 growth inhibition. Minor adjustments (e.g., the dose-response curve is centered around 50%
746 inhibitory concentration (IC₅₀) in contrast to 90% inhibitory concentration (IC₉₀) for *M.*
747 *tuberculosis*, the modification of fractional inhibition concentration to fold shifts in inhibition
748 concentration) were made to account for the rapid growth of *M. abscessus* and low drug
749 potency relative to *M. tuberculosis*. Details of these adjustments are explained in subsequent
750 sections.

751 *Growth inhibition assay*

752 Antibiotics tested were either dissolved in dimethyl sulfoxide (DMSO) or sterile water + 0.01%
753 Triton X-100 and stored at -20°C in single-use aliquots. Assays were performed in clear, flat
754 bottom 384-well microplates. Drugs were dispensed using a digital drug dispenser (D300e
755 Digital Dispenser, HP). Drug wells were randomized across plates to minimize plate position
756 effects. Bacterial cultures were diluted to OD₆₀₀ of 0.05 in fresh medium, and 50µL of diluted
757 culture was added to each well for drug treatment. Plates were sealed with optically clear
758 plate seals and incubated without shaking at 37°C. Growth (OD₆₀₀) was measured by a
759 microplate reader (BioTek) 48h after drug treatment.

760 *Data analysis*

761 OD₆₀₀ data were processed using MATLAB's custom analysis pipeline (MathWorks). Data
762 were first derandomized from the plate layout, and dose-response curves were organized for
763 each drug and drug combination. The first row of wells in each 384-well plate contained
764 medium-only wells. The median of these medium-only wells was subtracted from each well
765 in a plate as a background. Drug-treated wells were normalized to the mean of the untreated
766 wells (controls), and the values obtained were subtracted from 1 to get a dose-response
767 inhibition curve where 0 and 1 represented no growth inhibition and full growth inhibition,
768 respectively. Growth inhibition curves were then fit to a three-parameter Hill curve using a
769 nonlinear solver in MATLAB (79). The fit accuracy was assessed using the R² metric.

770 Equations derived from the Hill function were used to calculate different inhibitory
771 concentration values (IC values) along the dose-response curve.

772 *Drug interaction calculation*

773 To assess whether drugs in combination were synergistic, additive, or antagonistic, we
774 measured the fractional inhibitory concentrations (FIC). We used Loewe additivity as the null
775 model to calculate the FIC values (80). We calculated the expected IC value of the
776 combination AB (drug A with drug B) from the intersection of the combination line to the
777 line of additivity determined by the IC values of A and B alone (Fig. 1A). Finally, the FIC
778 value is calculated by dividing the experimentally observed IC by the expected IC value of
779 the drug combination.

780
$$FIC = \frac{\text{observed IC}}{\text{expected IC}}$$

781 We report the \log_2 of the FIC so that the magnitude of synergy and antagonism scores are
782 balanced around zero. A \log_2 FIC value < 0 is synergistic, \log_2 FIC value ~ 0 is additive, and
783 \log_2 FIC value > 0 is antagonistic. FIC scores were calculated at IC₅₀ (FIC₅₀) and IC₉₀ (FIC₉₀).
784 With DiaMOND, we can measure drug interaction scores using other null models such as
785 Bliss independence. By Bliss independence, the expected IC value for [AB] is calculated by
786 multiplying drug A's effect and drug B's effect at the desired IC level.

787 Certain drugs were tested at a fixed concentration (instead of increasing doses) due to their
788 lack of inhibitory effect as a single agent. These drugs are also referred to as potentiator
789 candidates. The concentration of the potentiator candidates was estimated from previously
790 reported serum concentrations. To quantify drug interaction scores for potentiators, fold shifts
791 in ICs (FsICs) were calculated as a ratio of the observed IC₅₀ value of a drug pair
792 combination to the IC₅₀ of the active, non-potentiating drug (Fig. 1B). Log₂FsIC < 0 are
793 potentiated whereas log₂FsIC > 0 are attenuated.

794 *Quality control*

795 Assay quality was assessed in three different ways. The Z-factor was used to determine the
796 quality of the assay at the plate level. For a given plate, the Z-factor was calculated as:

$$Z' = 1 - \frac{3(\sigma_{\text{positive}} + \sigma_{\text{negative}})}{|\mu_{\text{positive}} - \mu_{\text{negative}}|}$$

797 where σ is the standard deviation of the positive and negative control (untreated cells), μ is
798 the mean of the positive and negative controls. Plates with a Z' between 0.5 - 1 indicate
799 excellent assay with a statistically reliable separation between positive and negative control.

800 The second level of assessment was at the dose-response level. The R^2 value derived from fits
801 of the dose-response curves to Hill curves was used to determine fit accuracy. We combined
802 R^2 values with a visual inspection of the fits. Any Hill curve fits with R^2 values below 0.7
803 were marked as poor fits and rejected from further analysis. Because of the intrinsic
804 resistance property of *M. abscessus*, it is challenging to obtain consistent dose-response
805 curves (81). For example, to capture data points close enough to each other to draw an
806 accurate dose response, we need to design doses to increase by 1.5x instead of 2x, which
807 limits the testing range. In addition, the noise of the dose-response curve made fitting
808 challenging. Finally, obtaining a maximum inhibitory concentration (MIC) for all drugs is
809 difficult due to the heterogeneity of *M. abscessus* (81). To overcome these difficulties, we
810 designed the experiment around IC_{50} (instead of IC_{90}), which is achieved for most drugs and
811 is more reproducible than IC_{90} (Table S1). To assess whether doses were sampled in an
812 equipotent manner for combination dose-response, the angle of the combination dose-
813 response was calculated (the ideal angle is 45°). Angle deviation beyond 22.5° of this ideal
814 equipotent dose-response was deemed too far for the approximation of isoboles in the
815 checkerboard and was eliminated from the analysis.

816 **Clinical isolate growth rate measurement**

817 To measure the growth rate of clinical isolates obtained from patient sputum at the Tufts
818 Medical Center Infectious Disease Clinic (TMC1, TMC2, and TMC3), suspended culture of
819 these isolates were grown in a 7H9 medium supplemented with 0.05% Tween 80, 0.2%
820 Glycerol, and 10% BBL Middlebrook ADC enrichment. Cultures were started from frozen
821 aliquots and allowed to grow to the mid-log phase (OD_{600} between 0.4 - 0.6), shaking at 37°C
822 overnight. Cultures were then diluted once to the lag phase and allowed to grow to the mid-
823 log phase again before performing the assay. Growth rate measurement was performed in a
824 96-well microplate, with five biological replicates per isolate. Reference strain ATCC19977
825 was also included for reference purposes. 150 μ L of culture at OD_{600} around 0.05 was
826 dispensed into each well. The microplate was sealed with an optically clear plate seal and
827 incubated inside a plate reader at 37°C. OD_{600} was recorded for 18 hours in 30 minutes
828 intervals. Doubling time was calculated using OD_{600} values closest to the log phase. Doubling
829 time was calculated as:

$$r = \frac{\ln (OD'_{600} - OD_{600})}{(T' - T)}$$

$$Doubling\ time = \frac{\ln 2}{r}$$

830 ACKNOWLEDGEMENTS

831 We thank members of the Aldridge laboratory, Veronique Dartois, Alyssa Greig, and Aisling
832 Lavelle for insightful discussion. This work was supported in part by the Stuart B. Levy
833 Center for Integrated Management of Antimicrobial Resistance at Tufts (Levy CIMAR), a
834 collaboration of Tufts Medical Center and the Tufts University Office of the Vice Provost for
835 Research Research and Scholarship Strategic Plan. BBA was supported, in part, by NIH
836 5R01AI150684 (to BBA). FPM was supported by a financial grant from Mukoviszidose
837 Institut gGmbH, Bonn, the research and development arm of the German Cystic Fibrosis
838 Association Mukoviszidose e.V (project number 2004 – FM). JK was supported by National
839 Institution of General Medical Science (T32GM008448). PAL was supported by National
840 Institution of General Medical Science (T32AI007422).

841 AUTHOR CONTRIBUTION

842 NV, YD, JLF, TS, and BBA conceived and designed the experiments. NV, YD, JK, and PL
843 performed the experiments. NV, YD, and BBA conceived and designed the computational
844 analysis. NV and YD performed the computational analysis. The manuscript was written by
845 NV, YD, TS, and BBA. All authors contributed to the technical interpretation, interpretation
846 of the results, and the editing of the manuscript.

847 REFERENCES

- 848 1. Minias A, Zukowska L, Lach J, Jagielski T, Strapagiel D, Kim SY, Koh WJ, Adam H, Bittner R, Truden S, Zolnir-Dovc M, Dziadek J. 2020. Subspecies-specific sequence detection for differentiation of *Mycobacterium abscessus* complex. *Sci Rep* 10:16415.
- 849 2. Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, Field M, Bell SC, Thomson RM, Miles JJ. 2020. The Rise of Non-Tuberculosis Mycobacterial Lung Disease. *Front Immunol* 11:303.
- 850 3. Quang NT, Jang J. 2021. Current Molecular Therapeutic Agents and Drug Candidates for *Mycobacterium abscessus*. *Front Pharmacol* 12:724725.

856 4. Wi YM. 2019. Treatment of Extrapulmonary Nontuberculous Mycobacterial Diseases.
857 Infect Chemother 51:245-255.

858 5. Johansen MD, Herrmann JL, Kremer L. 2020. Non-tuberculous mycobacteria and the
859 rise of *Mycobacterium abscessus*. Nat Rev Microbiol 18:392-407.

860 6. Maurer FP, Bruderer VL, Ritter C, Castelberg C, Bloemberg GV, Böttger EC. 2014.
861 Lack of Antimicrobial Bactericidal Activity in *Mycobacterium abscessus*.
862 Antimicrobial Agents and Chemotherapy 58:3828-3836.

863 7. Sander P, Rezwan M, Walker B, Rampini SK, Kroppenstedt RM, Ehlers S, Keller C,
864 Keeble JR, Hagemeier M, Colston MJ, Springer B, Bottger EC. 2004. Lipoprotein
865 processing is required for virulence of *Mycobacterium tuberculosis*. Mol Microbiol
866 52:1543-52.

867 8. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. 2012. *Mycobacterium*
868 *abscessus*: a new antibiotic nightmare. J Antimicrob Chemother 67:810-8.

869 9. Pawlowski AC, Stogios PJ, Koteva K, Skarina T, Evdokimova E, Savchenko A,
870 Wright GD. 2018. The evolution of substrate discrimination in macrolide antibiotic
871 resistance enzymes. Nat Commun 9:112.

872 10. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. 2012. *Mycobacterium*
873 *abscessus*: a new antibiotic nightmare. Journal of Antimicrobial Chemotherapy
874 67:810-818.

875 11. Weng Y-W, Huang C-K, Sy C-L, Wu K-S, Tsai H-C, Lee SS-J. 2020. Treatment for
876 *Mycobacterium abscessus* complex-lung disease. Journal of the Formosan Medical
877 Association 119:S58-S66.

878 12. Kurz SG, Zha BS, Herman DD, Holt MR, Daley CL, Ruminjo JK, Thomson CC.
879 2020. Summary for Clinicians: 2020 Clinical Practice Guideline Summary for the
880 Treatment of Nontuberculous Mycobacterial Pulmonary Disease. Ann Am Thorac
881 Soc 17:1033-1039.

882 13. Weng YW, Huang CK, Sy CL, Wu KS, Tsai HC, Lee SS. 2020. Treatment for
883 *Mycobacterium abscessus* complex-lung disease. J Formos Med Assoc 119 Suppl
884 1:S58-S66.

885 14. Kwak N, Dalcolmo MP, Daley CL, Eather G, Gayoso R, Hasegawa N, Jhun BW, Koh
886 W-J, Namkoong H, Park J, Thomson R, van Ingen J, Zweijpfenning SMH, Yim J-J.

887 2019. Mycobacterium abscessus pulmonary disease:
888 individual patient data meta-analysis. European Respiratory Journal 54:1801991.

889 15. Koh WJ, Stout JE, Yew WW. 2014. Advances in the management of pulmonary
890 disease due to *Mycobacterium abscessus* complex. Int J Tuberc Lung Dis 18:1141-8.

891 16. Kwak N, Dalcolmo MP, Daley CL, Eather G, Gayoso R, Hasegawa N, Jhun BW, Koh
892 WJ, Namkoong H, Park J, Thomson R, van Ingen J, Zweijpfenning SMH, Yim JJ.
893 2019. *Mycobacterium abscessus* pulmonary disease: individual patient data meta-
894 analysis. Eur Respir J 54.

895 17. Woods GL, Brown-Elliott BA, Conville PS, Desmond EP, Hall GS, Lin G, Pfyffer
896 GE, Ridderhof JC, Siddiqi SH, Wallace RJ, Jr., Warren NG, Witebsky FG. 2011.
897 CLSI Standards: Guidelines for Health Care Excellence, Susceptibility Testing of
898 *Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes*. Clinical and Laboratory
899 Standards Institute

900 Copyright ©2011 Clinical and Laboratory Standards Institute.; Except as stated below, any
901 reproduction of content from a CLSI copyrighted standard, guideline, companion
902 product, or other material requires express written consent from CLSI. All rights
903 reserved. Interested parties may send permission requests to permissions@clsi.org;.
904 CLSI hereby grants permission to each individual member or purchaser to make a
905 single reproduction of this publication for use in its laboratory procedure manual at a
906 single site. To request permission to use this publication in any other manner, e-mail
907 permissions@clsi.org, Wayne (PA).

908 18. Cokol M, Kuru N, Bicak E, Larkins-Ford J, Aldridge BB. 2017. Efficient
909 measurement and factorization of high-order drug interactions in
910 Mycobacterium tuberculosis. Science Advances 3:e1701881.

911 19. Cho YJ, Yi H, Chun J, Cho SN, Daley CL, Koh WJ, Shin SJ. 2013. The genome
912 sequence of 'Mycobacterium massiliense' strain CIP 108297 suggests the independent
913 taxonomic status of the *Mycobacterium abscessus* complex at the subspecies level.
914 PLoS One 8:e81560.

915 20. Vaara M, Siikanen O, Apajalahti J, Fox J, Frimodt-Moller N, He H, Poudyal A, Li J,
916 Nation RL, Vaara T. 2010. A novel polymyxin derivative that lacks the fatty acid tail
917 and carries only three positive charges has strong synergism with agents excluded by
918 the intact outer membrane. Antimicrob Agents Chemother 54:3341-6.

919 21. Vaara M. 2013. Novel derivatives of polymyxins. *J Antimicrob Chemother* 68:1213-9.

920 22. Corbett D, Wise A, Langley T, Skinner K, Trimby E, Birchall S, Dorali A, Sandiford
921 S, Williams J, Warn P, Vaara M, Lister T. 2017. Potentiation of Antibiotic Activity by
922 a Novel Cationic Peptide: Potency and Spectrum of Activity of SPR741.
923 *Antimicrobial agents and chemotherapy* 61:e00200-17.

924 23. Viljoen A, Raynaud C, Johansen MD, Roquet-Banères F, Herrmann J-L, Daher W,
925 Kremer L. 2019. Verapamil Improves the Activity of Bedaquiline against
926 *Mycobacterium abscessus* In Vitro and in Macrophages. *Antimicrobial agents and*
927 *chemotherapy* 63:e00705-19.

928 24. Chen J, Zhao L, Mao Y, Ye M, Guo Q, Zhang Y, Xu L, Zhang Z, Li B, Chu H. 2019.
929 Clinical Efficacy and Adverse Effects of Antibiotics Used to Treat *Mycobacterium*
930 *abscessus* Pulmonary Disease. *Frontiers in microbiology* 10:1977-1977.

931 25. Griffith DE. 1999. Risk-Benefit Assessment of Therapies for *Mycobacterium avium*
932 Complex Infections. *Drug Safety* 21:137-152.

933 26. Brown-Elliott BA, Nash KA, Wallace RJ, Jr. 2012. Antimicrobial susceptibility
934 testing, drug resistance mechanisms, and therapy of infections with nontuberculous
935 mycobacteria. *Clinical microbiology reviews* 25:545-582.

936 27. Lindman M, Dick T. Bedaquiline Eliminates Bactericidal Activity of β -Lactams
937 against *Mycobacterium abscessus*. *Antimicrobial Agents and Chemotherapy*
938 63:e00827-19.

939 28. Zhang Z, Lu J, Song Y, Pang Y. 2018. In vitro activity between linezolid and other
940 antimicrobial agents against *Mycobacterium abscessus* complex. *Diagn Microbiol*
941 *Infect Dis* 90:31-34.

942 29. Pryjma M, Burian J, Thompson CJ. 2018. Rifabutin Acts in Synergy and Is
943 Bactericidal with Frontline *Mycobacterium abscessus* Antibiotics Clarithromycin and
944 Tigecycline, Suggesting a Potent Treatment Combination. *Antimicrob Agents*
945 *Chemother* 62.

946 30. Larkins-Ford J, Greenstein T, Van N, Degefu YN, Olson MC, Sokolov A, Aldridge
947 BB. 2021. Systematic measurement of combination-drug landscapes to predict in vivo
948 treatment outcomes for tuberculosis. *Cell Systems* 12:1046-1063.e7.

949 31. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland
950 SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn
951 CF, Wallace RJ, Jr., Winthrop K. 2007. An official ATS/IDSA statement: diagnosis,
952 treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit
953 Care Med 175:367-416.

954 32. Lindman M, Dick T. 2019. Bedaquiline Eliminates Bactericidal Activity of beta-
955 Lactams against *Mycobacterium abscessus*. Antimicrob Agents Chemother 63.

956 33. Sarathy JP, Gruber G, Dick T. 2019. Re-Understanding the Mechanisms of Action of
957 the Anti-Mycobacterial Drug Bedaquiline. Antibiotics (Basel) 8.

958 34. Nie W, Duan H, Huang H, Lu Y, Bi D, Chu N. 2014. Species identification of
959 Mycobacterium abscessus subsp. abscessus and
960 Mycobacterium abscessus subsp. bolletii using
961 rpoB and hsp65, and susceptibility testing to eight antibiotics.
962 International Journal of Infectious Diseases 25:170-174.

963 35. Choi G-E, Min K-N, Won C-J, Jeon K, Shin SJ, Koh W-J. 2012. Activities of
964 moxifloxacin in combination with macrolides against clinical isolates of
965 *Mycobacterium abscessus* and *Mycobacterium massiliense*. Antimicrobial agents and
966 chemotherapy 56:3549-3555.

967 36. Moon SM, Park HY, Kim SY, Jhun BW, Lee H, Jeon K, Kim DH, Huh HJ, Ki CS,
968 Lee NY, Kim HK, Choi YS, Kim J, Lee SH, Kim CK, Shin SJ, Daley CL, Koh WJ.
969 2016. Clinical Characteristics, Treatment Outcomes, and Resistance Mutations
970 Associated with Macrolide-Resistant *Mycobacterium avium* Complex Lung Disease.
971 Antimicrob Agents Chemother 60:6758-6765.

972 37. Ganapathy US, Rio RGd, Cacho-Izquierdo M, Ortega F, Lelièvre J, Barros-Aguirre D,
973 Lindman M, Dartois V, Gengenbacher M, Dick T. 2021. A Leucyl-tRNA Synthetase
974 Inhibitor with Broad-Spectrum Antimycobacterial Activity. Antimicrobial Agents and
975 Chemotherapy 65:e02420-20.

976 38. Rominski A, Roditscheff A, Selchow P, Böttger EC, Sander P. 2017. Intrinsic
977 rifamycin resistance of *Mycobacterium abscessus* is mediated by ADP-
978 ribosyltransferase MAB_0591. J Antimicrob Chemother 72:376-384.

979 39. Ganapathy US, Dartois V, Dick T. 2019. Repositioning rifamycins for
980 Mycobacterium abscessus lung disease. *Expert Opin Drug Discov* 14:867-878.

981 40. Becker K, Haldimann K, Selchow P, Reinau LM, Dal Molin M, Sander P. 2017.
982 Lipoprotein Glycosylation by Protein-O-Mannosyltransferase (MAB_1122c)
983 Contributes to Low Cell Envelope Permeability and Antibiotic Resistance of
984 Mycobacterium abscessus. *Front Microbiol* 8:2123.

985 41. Baysarowich J, Koteva K, Hughes DW, Ejim L, Griffiths E, Zhang K, Junop M,
986 Wright GD. 2008. Rifamycin antibiotic resistance by ADP-ribosylation: Structure and
987 diversity of Arr. *Proc Natl Acad Sci U S A* 105:4886-91.

988 42. Paulowski L, Beckham KSH, Johansen MD, Berneking L, Van N, Degefu Y, Staack
989 S, Sotomayor FV, Asar L, Rohde H, Aldridge BB, Aepfelbacher M, Parret A,
990 Wilmanns M, Kremer L, Combrink K, Maurer FP. 2022. C25-modified rifamycin
991 derivatives with improved activity against Mycobacterium abscessus. *PNAS Nexus* 1.

992 43. Pryjma M, Burian J, Thompson CJ. 2018. Rifabutin Acts in Synergy and Is
993 Bactericidal with Frontline Mycobacterium abscessus Antibiotics Clarithromycin and
994 Tigecycline, Suggesting a Potent Treatment Combination. *Antimicrobial Agents and*
995 *Chemotherapy* 62:e00283-18.

996 44. Fernández-Roblas R, Esteban J, Cabria F, López JC, Jiménez MS, Soriano F. 2000. In
997 vitro susceptibilities of rapidly growing mycobacteria to telithromycin (HMR 3647)
998 and seven other antimicrobials. *Antimicrob Agents Chemother* 44:181-2.

999 45. van der Paardt A-F, Wilffert B, Akkerman OW, de Lange WCM, van Soolingen D,
1000 Sinha B, van der Werf TS, Kosterink JGW, Alffenaar J-WC. 2015. Evaluation of
1001 macrolides for possible use against multidrug-resistant *Mycobacterium*
1002 *tuberculosis*. *European Respiratory Journal* 46:444-455.

1003 46. Kannan K, Vázquez-Laslop N, Mankin AS. 2012. Selective protein synthesis by
1004 ribosomes with a drug-obstructed exit tunnel. *Cell* 151:508-20.

1005 47. Clay KD, Hanson JS, Pope SD, Rissmiller RW, Purdum PP, 3rd, Banks PM. 2006.
1006 Brief communication: severe hepatotoxicity of telithromycin: three case reports and
1007 literature review. *Ann Intern Med* 144:415-20.

1008 48. Lopeman RC, Harrison J, Rathbone DL, Desai M, Lambert PA, Cox JAG. 2020.
1009 Effect of Amoxicillin in combination with Imipenem-Relebactam against
1010 *Mycobacterium abscessus*. *Scientific reports* 10:928-928.

1011 49. Mukherjee D, Wu ML, Teo JWP, Dick T. 2017. Vancomycin and Clarithromycin
1012 Show Synergy against *Mycobacterium abscessus* In Vitro. *Antimicrob Agents
1013 Chemother* 61.

1014 50. Dupont C, Viljoen A, Thomas S, Roquet-Banères F, Herrmann J-L, Pethe K, Kremer
1015 L. 2017. Bedaquiline Inhibits the ATP Synthase in *Mycobacterium abscessus* and Is
1016 Effective in Infected Zebrafish. *Antimicrobial agents and chemotherapy* 61:e01225-
1017 17.

1018 51. Philley JV, Wallace RJ, Jr., Benwill JL, Taskar V, Brown-Elliott BA, Thakkar F,
1019 Aksamit TR, Griffith DE. 2015. Preliminary Results of Bedaquiline as Salvage
1020 Therapy for Patients With Nontuberculous Mycobacterial Lung Disease. *Chest*
1021 148:499-506.

1022 52. Lindman M, Dick T. 2019. Bedaquiline Eliminates Bactericidal Activity of β -Lactams
1023 against *Mycobacterium abscessus*. *Antimicrob Agents Chemother* 63.

1024 53. Erber J, Weidlich S, Tschaikowsky T, Rothe K, Schmid RM, Schneider J, Spinner CD.
1025 2020. Successful bedaquiline-containing antimycobacterial treatment in post-
1026 traumatic skin and soft-tissue infection by *Mycobacterium fortuitum* complex: a case
1027 report. *BMC Infectious Diseases* 20:365.

1028 54. Chohan PS, Mittal R, Javed A. 2015. Antipsychotic Medication and QT Prolongation.
1029 *Pakistan journal of medical sciences* 31:1269-1271.

1030 55. Amaral L, Viveiros M. 2017. Thioridazine: A Non-Antibiotic Drug Highly Effective,
1031 in Combination with First Line Anti-Tuberculosis Drugs, against Any Form of
1032 Antibiotic Resistance of *Mycobacterium tuberculosis* Due to Its Multi-Mechanisms of
1033 Action. *Antibiotics (Basel, Switzerland)* 6:3.

1034 56. Cantelli CR, Dassonville-Klimpt A, Sonnet P. 2021. A review of current and
1035 promising nontuberculous mycobacteria antibiotics. *Future Medicinal Chemistry*
1036 13:1367-1395.

1037 57. Chopra S, Matsuyama K, Tran T, Mallerich JP, Wan B, Franzblau SG, Lun S, Guo H,
1038 Maiga MC, Bishai WR, Madrid PB. 2012. Evaluation of gyrase B as a drug target in
1039 *Mycobacterium tuberculosis*. *J Antimicrob Chemother* 67:415-21.

1040 58. Locher CP, Jones SM, Hanelka BL, Perola E, Shoen CM, Cynamon MH, Ngwane
1041 AH, Wiid IJ, van Helden PD, Betoudji F, Nuermberger EL, Thomson JA. 2015. A
1042 novel inhibitor of gyrase B is a potent drug candidate for treatment of tuberculosis and
1043 nontuberculosis mycobacterial infections. *Antimicrob Agents Chemother* 59:1455-65.

1044 59. Novosad SA, Beekmann SE, Polgreen PM, Mackey K, Winthrop KL, Team MaS.
1045 2016. Treatment of *Mycobacterium abscessus* Infection. *Emerg Infect Dis* 22:511-4.

1046 60. Von Döhren H. 2004. Antibiotics: Actions, origins, resistance, by C. Walsh. 2003.
1047 Washington, DC: ASM Press. 345 pp. \$99.95 (hardcover). *Protein Science* 13:3059-
1048 3060.

1049 61. Lefebvre A-L, Le Moigne V, Bernut A, Veckerlé C, Compain F, Herrmann J-L,
1050 Kremer L, Arthur M, Mainardi J-L. 2017. Inhibition of the β -Lactamase Bla(Mab) by
1051 Avibactam Improves the In Vitro and In Vivo Efficacy of Imipenem against
1052 *Mycobacterium abscessus*. *Antimicrobial agents and chemotherapy* 61:e02440-16.

1053 62. Nguyen L, Thompson CJ. 2006. Foundations of antibiotic resistance in bacterial
1054 physiology: the mycobacterial paradigm. *Trends in Microbiology* 14:304-312.

1055 63. Dubée V, Bernut A, Cortes M, Lesne T, Dorchene D, Lefebvre AL, Hugonnet JE,
1056 Gutmann L, Mainardi JL, Herrmann JL, Gaillard JL, Kremer L, Arthur M. 2015. β -
1057 Lactamase inhibition by avibactam in *Mycobacterium abscessus*. *J Antimicrob
1058 Chemother* 70:1051-8.

1059 64. Baky SH, Singh BN. 1982. Verapamil hydrochloride: pharmacological properties and
1060 role in cardiovascular therapeutics. *Pharmacotherapy* 2:328-353.

1061 65. van Heeswijk RPG, Dannemann B, Hoetelmans RMW. 2014. Bedaquiline: a review
1062 of human pharmacokinetics and drug–drug interactions. *Journal of Antimicrobial
1063 Chemotherapy* 69:2310-2318.

1064 66. Plana D, Palmer AC, Sorger PK. 2022. Independent Drug Action in Combination
1065 Therapy: Implications for Precision Oncology. *Cancer Discovery* 12:606-624.

1066 67. Aono A, Morimoto K, Chikamatsu K, Yamada H, Igarashi Y, Murase Y, Takaki A,
1067 Mitarai S. 2019. Antimicrobial susceptibility testing of *Mycobacteroides*

1068 (Mycobacterium) abscessus complex, Mycolicibacterium (Mycobacterium) fortuitum,
1069 and Mycobacteroides (Mycobacterium) chelonae. *Journal of Infection and*
1070 *Chemotherapy* 25:117-123.

1071 68. McNeil MB, Chettiar S, Awasthi D, Parish T. 2019. Cell wall inhibitors increase the
1072 accumulation of rifampicin in *Mycobacterium tuberculosis*. *Access Microbiol*
1073 1:e000006.

1074 69. Wu ML, Aziz DB, Dartois V, Dick T. 2018. NTM drug discovery: status, gaps and
1075 the way forward. *Drug Discov Today* 23:1502-1519.

1076 70. Kreutzfeldt KM, McAdam PR, Claxton P, Holmes A, Seagar AL, Laurenson IF,
1077 Fitzgerald JR. 2013. Molecular Longitudinal Tracking of *Mycobacterium abscessus*
1078 spp. during Chronic Infection of the Human Lung. *PLOS ONE* 8:e63237.

1079 71. Lázár V, Snitser O, Barkan D, Kishony R. 2022. Antibiotic combinations reduce
1080 *Staphylococcus aureus* clearance. *Nature* 610:540-546.

1081 72. Nuermberger EL. 2017. Preclinical Efficacy Testing of New Drug Candidates.
1082 *Microbiol Spectr* 5.

1083 73. Parish T. 2020. In vitro drug discovery models for *Mycobacterium tuberculosis*
1084 relevant for host infection. *Expert Opin Drug Discov* 15:349-358.

1085 74. Larkins-Ford J, Degefu YN, Van N, Sokolov A, Aldridge BB. 2021. Design
1086 principles to assemble drug combinations for effective tuberculosis therapy using
1087 interpretable pairwise drug response measurements. *bioRxiv*
1088 doi:10.1101/2021.12.05.471248:2021.12.05.471248.

1089 75. Lee J, Ammerman N, Agarwal A, Naji M, Li SY, Nuermberger E. 2021. Differential
1090 In Vitro Activities of Individual Drugs and Bedaquiline-Rifabutin Combinations
1091 against Actively Multiplying and Nutrient-Starved *Mycobacterium abscessus*.
1092 *Antimicrob Agents Chemother* 65.

1093 76. Hunt-Serracin AC, Parks BJ, Boll J, Boutte CC. 2019. *Mycobacterium abscessus*
1094 Cells Have Altered Antibiotic Tolerance and Surface Glycolipids in Artificial Cystic
1095 Fibrosis Sputum Medium. *Antimicrob Agents Chemother* 63.

1096 77. Davidson RM, Hasan NA, Reynolds PR, Totten S, Garcia B, Levin A, Ramamoorthy
1097 P, Heifets L, Daley CL, Strong M. 2014. Genome sequencing of *Mycobacterium*

1098 abscessus isolates from patients in the united states and comparisons to globally
1099 diverse clinical strains. *J Clin Microbiol* 52:3573-82.

1100 78. Van N, Degefu YN, Aldridge BB. 2021. Efficient Measurement of Drug Interactions
1101 with DiaMOND (Diagonal Measurement of N-Way Drug Interactions). *Methods Mol*
1102 *Biol* 2314:703-713.

1103 79. Gadagkar SR, Call GB. 2015. Computational tools for fitting the Hill equation to
1104 dose-response curves. *J Pharmacol Toxicol Methods* 71:68-76.

1105 80. Baeder DY, Yu G, Hoze N, Rolff J, Regoes RR. 2016. Antimicrobial combinations:
1106 Bliss independence and Loewe additivity derived from mechanistic multi-hit models.
1107 *Philos Trans R Soc Lond B Biol Sci* 371.

1108 81. Maurer FP, Castelberg C, Quiblier C, Bottger EC, Somoskovi A. 2014. Erm(41)-
1109 dependent inducible resistance to azithromycin and clarithromycin in clinical isolates
1110 of *Mycobacterium abscessus*. *J Antimicrob Chemother* 69:1559-63.

1111