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ABSTRACT 

Little is known about how exposure to limited socioeconomic resources (SER) in childhood gets 
“under the skin” to shape brain development, especially using rigorous whole-brain multivariate 
methods in large, adequately powered samples. The present study examined resting state 
functional connectivity patterns from 5,821 youth in the Adolescent Brain Cognitive 
Development (ABCD) study, employing multivariate methods across three levels: whole-brain, 
network-wise, and connection-wise. Across all three levels, SER was associated with widespread 
alterations across the connectome. However, critically, we found that parental education was the 
primary driver of neural associations of SER. These parental education associations were robust 
to additional tests for confounding by head motion, and they exhibited notable concentrations in 
somatosensory and subcortical regions. Moreover, parental education associations with the 
developing connectome were partially accounted for by home enrichment activities, child’s 
cognitive abilities, and child’s grades, indicating interwoven links between parental education, 
child stimulation, and child cognitive performance. These results add a new data-driven, 
multivariate perspective on links between household SER and the child’s developing functional 
connectome. 
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INTRODUCTION 
 

Childhood socioeconomic resources (SER), reflecting a combination of parental education and 
economic resources within home and neighborhood contexts, shape adult outcomes, particularly 
in economic (e.g., earnings, employment), educational (e.g., cognitive skills, college 
completion), and physical and mental health domains (1–3). Inequalities in access to SER is 
larger in the United States than other industrialized countries (4) and have been growing over 
time (5, 6), and thus SER-related inequalities are likely to have wide-ranging impacts on 
wellbeing across the life course (7). This implication has encouraged neuroscientists to 
investigate pathways through which SER influences the developing brain (8, 9). Yet our current 
understanding of these pathways remains highly incomplete, particularly during critical 
developmental windows such as early adolescence, marked by extensive neural reorganization 
(10) and when many serious psychosocial challenges (e.g., problems in interpersonal, academic, 
and mental health domains) first emerge (11). 
 
The human brain is organized as a complex network (12, 13), with interconnections among 
regions implicated in diverse cognitive and socioemotional functions (14). Task-free “resting 
state” functional magnetic resonance imaging (fMRI) uses coherence in spontaneous activity 
across brain regions to yield maps of functional connectivity patterns (15), which, in turn, can be 
linked to individual difference variables such as such cognition, personality traits, or 
psychopathology (16).  
 
Previous studies of the impact of SER on resting state functional connectivity patterns have 
mostly relied on region-specific approaches that focus on individual connections (e.g., amygdala-
ventromedial prefrontal connectivity) (17), requiring strong a priori knowledge about which 
connections are (and are not) implicated. There is, however, convergent evidence that 
characteristics of social, psychological, and clinical interest often involve distributed and wide-
ranging changes at tens of thousands of connections distributed across the entire brain (18), 
rather than focal changes involving individual pairs of regions. Additionally, previous studies 
often used small samples consisting of tens to hundreds of subjects. Recent widely discussed 
results (19) demonstrate that these studies are liable to produce spurious findings, and several 
thousand subjects are typically needed to derive statistically reliable conclusions. At the present 
time, however, no previous studies have investigated SER-associated functional connectivity 
patterns using multivariate methods across tens of thousands of brain connections in large, 
adequately powered samples. 
 
Additionally, SER is a multi-dimensional construct that incorporates features of parental 
education, household income, and neighborhood disadvantage (20). Different components of 
SER likely implicate different underlying environmental mechanisms (e.g., maternal education 
may impact cognitive stimulation in the home, whereas neighborhood disadvantage may operate 
through school quality). Understanding which component(s) of SER sculpt the developing brain 
is critical for designing targeted interventions and for informing housing, school, and 
redistributive policies (21, 22). But the unique effects of each dimension of SER in shaping 
brain-wide connectivity patterns remains unclear.  
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To address these gaps in understanding, we leveraged the Adolescent Brain and Cognitive 
Development (ABCD) Study (23, 24), a population-based study of 11,875 9- and 10-year-olds 
from 22 sites across the United States with substantial sociodemographic diversity (25). ABCD 
is the largest developmental neuroimaging study ever undertaken, providing a unique 
opportunity to study how SER shapes connectivity patterns of the developing brain. To 
convergently establish results at multiple levels of analysis, we employed three complementary 
multivariate methods: a whole-brain approach (multivariate predictive modeling) (26); a 
network-wise approach (network contingency analysis) (27–29), and a connection-wise approach 
(quantile-quantile modeling) (30).  
 
These analyses jointly indicated that a combination of all the three dimensions of SER (i.e., 
parental education, household income-to-needs, and neighborhood disadvantage) was associated 
with widespread individual variation in connectivity across the entire brain, with significant 
effects observed in 77 out of 120 “cells”, i.e., sets of connections linking pairs of large-scale 
brain networks. In additional analyses that dissected the unique contribution of individual 
components of SER, we found the most potent associations with parental education, even after 
controlling for the contributions of household income-to-needs and neighborhood disadvantage. 
Moreover, functional connectivity patterns associated with parental education were uniquely 
concentrated in sensorimotor and subcortical networks. Our results may help to illuminate why 
SER is associated with a variety of outcomes across the life course, while also highlighting the 
need for more research to explore proximal biopsychosocial mechanisms of SER-connectome 
associations.  
 

RESULTS 
1. Across three levels of analysis (i.e., whole-brain, network-wise, and connection-wise), 
socioeconomic resources are associated with large, brain-wide changes in functional 
connectivity 
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Figure 1: Correlations Between Actual Socioeconomic Resources Scores and Scores That Are 
Predicted Based on Whole-Brain Connectivity Patterns. We applied multivariate predictive 
models to 5,821 subjects at 19 sites to identify brain-wide connectivity patterns that are 
associated with SER scores. (Upper Left Panel) In leave-one-site-out cross-validation, functional 
connectivity patterns associated with SER scores generalized to 19 out of 19 held out sites. 
(Upper Right Panel) The overall mean correlation between observed SER scores and predicted 
SER scores (predicted exclusively from brain connectivity patterns) was 0.28, pPERM<0.0001 
(observed correlation was higher than all 10,000 correlations in the permutation distribution). 
(Lower Panel) Scatter plots for four largest held-out sites (blue, orange, green, purple) show 
consistent performance at individual sites.  
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Figure 2: Network-to-Network Connections Exhibiting Significant Effects of Socioeconomic 
Resources. We performed network contingency analysis (NCA) which identifies cells (i.e., sets of 
connections linking pairs of large-scale networks) where the number of edges related to SER 
scores exceeds the number expected by chance. A total of 77 out of 120 cells exhibited significant 
effects of SER (FDR<0.05; shaded in the figure), and these cells were notably widespread 
throughout the brain.  

  

 

Figure 3: Quantile-Quantile Model of Effects of Socioeconomic Resources on Functional 
Connections of the Connectome. The red line and its associated 95% confidence interval (in 
gray) represent the global null hypothesis that household SER scores are unrelated to functional 
connections of children’s connectomes. The plot shows strong deviation of the observed data 
(blue line) from the red line with a pattern of early “lift-off”, in which the deviation occurs 
towards the left of the plot and is sustained throughout. This pattern is consistent with 
widespread, diffuse influences of SER scores throughout the connectome.  
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Whole-Brain-Level Analysis: We built and assessed multivariate predictive models for 
socioeconomic resource (SER) scores using a leave-one-site-out cross-validation approach. At 
each fold of the cross-validation, we trained a multivariate predictive model to use individual 
differences in brain connectivity patterns to predict SER scores. We then applied the trained 
model to brain connectivity data from subjects at the held-out site, yielding predictions of their 
SER, and we repeated this sequence with each site held out once. We accounted for nuisance 
covariates (youth sex assigned at birth, age, self-reported race-ethnicity [a social construct linked 
to disparities in access to resources due to historical and present structural discrimination], and 
head motion) by applying regression coefficients for covariates learned in the train data to 
covariates in the test data, thus preserving complete independence between train and test 
datasets. We found that the correlation between actual versus predicted SER, controlling for 
covariates and averaging across the 19 folds of the cross-validation, was 0.28 (Figure 1, upper 
left panel). That is, after accounting for covariates, brain connectivity patterns accounted for 
9.0% of the variance in SER in held-out samples of youth (cross-validated r2). Cross-site 
generalizability was remarkably consistent: Correlations between predicted and actual scores 
were statistically significant in all 19 out of 19 held-out sites (all 19 site-specific permutation p-
values < 0.0001; observed correlations were higher than all 10,000 correlations in the 
permutation distribution).  

Network-Level Analysis: The human brain is organized into a number of large-scale networks 
(31) defining a set of “cells”, which are sets of connections linking pairs of large-scale networks. 
We performed network contingency analysis (NCA) (27–29), which identifies cells in which the 
count of connections associated with SER (controlling for covariates) exceeds the count expected 
by chance, established by non-parametric permutation tests. As shown in Figure 2, a total of 77 
out of 120 cells exhibited significant associations with SER (FDR<0.05; shaded in the Figure 2), 
and these cells were notably widespread throughout the brain spanning all large-scale networks.  

Connection-Level Analysis: We additionally assessed associations with SER on a connection-
by-connection basis using quantile-quantile modeling (30). We first calculated the p-value at 
each connection for the association between that connection and SER (controlling for 
covariates). We then rank ordered these p-values and plotted them against the rank-ordered 
distribution of p-values expected under the global null hypothesis, which was calculated with 
non-parametric permutation-based methods (Figure 3). If there is no association between SER 
and brain functional connections, this plot should follow the 45° line shown in in red in Figure 3. 
But the observed plot strongly deviated from this line. Moreover, “lift off”, where the observed 
distribution deviates from the 95% confidence interval of the null line, occurred very early and 
persisted through the range of the x-axis. This result is consistent with widespread associations 
of SER with most functional connections across the brain. 

2. Parental education is the primary driver of brain-wide changes in functional 
connectivity, with household income-to-needs and neighborhood disadvantage having 
weaker (or absent) unique effects. 

The preceding results established strong and widespread influences of SER on children’s 
connectomes across whole-brain, network-wise, and connection-wise levels of analysis. We next 
sought to identify unique contributions of the three components of the SER variable: parental 
education, household income-to-needs, and neighborhood disadvantage. We thus repeated the 
preceding analyses, this time with one of these three dimensions of SER as the variable of 
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interest and the other dimensions entered as additional covariates. We repeated these analyses 
three times in total with each SER dimension as the variable-of-interest. 

Results showed that parental education (controlling for household income-to-needs and 
neighborhood disadvantage; left column in Figure 4) exhibited consistently strong effects at all 
three levels of analysis. Household income-to-needs (controlling for parental education and 
neighborhood disadvantage; middle column of Figure 4) showed modest but statistically 
significant effects in multivariate predictive modeling analysis, no significant cells in network 
analysis, and did not deviate from the null hypothesis line in quantile-quantile analysis. 
Neighborhood disadvantage (controlling for parental education and household income-to-needs; 
right column of Figure 4) did not show any statistically significant effects in any of the three 
analyses. 

3. Parental education connectomic associations were robust to additional tests for potential 
confounds including head motion 

Given evidence that parental education is the primary driver of SER associations with the 
connectome, we subjected parental education to additional robustness tests in a low head motion 
subsample (mean FD<0.2mm, N=2844) to assess potential confounds associated with head 
motion, which has emerged a serious confound in youth functional connectivity studies. We 
focused on multivariate predictive modeling, which yields a single scalar performance measure 
(out-of-sample correlation), making it ideal for conducting these robustness tests. We found that 
in this low motion sample, out-of-sample correlations between observed and predicted parental 
education (both uncontrolled and controlling for household income-to-needs and neighborhood 
disadvantage) remained highly statistically significant (uncontrolled rcv=0.24; controlled rcv = 
0.12; pPERMS’s <0.0001; see Table S3).  

Because correlations observed in testing samples are typically lower when models are trained on 
a smaller training subsample (32), we additionally performed resampling tests (see Supplement) 
to assess whether observed performance in the low motion subsample differs significantly from 
performance in randomly drawn subsamples of the same size. These resampling tests were non-
significant (see Table S3), indicating that the observed out-of-sample parental education 
correlations in the actual low motion subsample does not statistically differ from other 
subsamples of the same size. Taken together, these results provide additional evidence that 
associations between parental education and children’s functional connectomes are unlikely to be 
due to confounding with head motion. 
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Figure 4: Parental education has widespread and unique effects on children’s resting state 
connectomes. We used whole-brain-level (top row), network-level (middle row), and connection-
level (bottom row) methods to identify unique effects on children’s resting state connectomes of 
three SER variables: parental education (left column), household income-to-needs (middle 
column), and neighborhood disadvantage (right column), Across the three-levels of analysis, 
parental education (controlling for household income-to-needs and neighborhood disadvantage) 
demonstrated consistent strong effects. Household income-to-needs (controlling for parental 
education and neighborhood disadvantage) showed modest, statistically significant effects in 
multivariate predictive modeling analysis, but showed no significant cells in network analysis 
and did not deviate from the null hypothesis line in quantile-quantile analysis. Neighborhood 
disadvantage (controlling for parental education and household income-to-needs) did not show 
any statistically significant effects in all three analyses. rcv = cross-validated out-of-sample 
correlation between actual scores and predicted scores using resting state connectivity data; * = 
observed correlation higher than all 10,000 correlations in the permutation distribution 

 

4. Parental education exhibits a sensorimotor/subcortical pattern that differentiates it from 
other youth phenotypes also associated with resting state connectivity  

Given evidence of robust associations between parental education and resting state functional 
connectivity, we next compared the parental education connectivity pattern with corresponding 
connectivity patterns observed for general cognitive ability and the general factor of 
psychopathology, i.e., “P factor”, which were recently studied by our group in this same ABCD 
sample (28, 33). We focused on connectivity patterns observed with network contingency 
analysis, which is well-suited for localizing associations to sets of connections linking pairs of 
networks. Bubble graphs (Figure 5) capture the proportion of significant cells associated with 
each network for each variable. Consistent with our previous reports, the general factor of 
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psychopathology implicated interconnections between the default mode network and a number 
of control networks (28), while general cognitive ability implicated highly distributed 
connectivity patterns involving all networks (33). Though there was some overlap across the 
three variables, parental education preferentially implicated somatosensory/subcortical networks, 
with especially prominent involvement of the visual and subcortical networks. Non-parametric 
tests of concentration showed that the proportion of significant cells within 
somatosensory/subcortical networks exceeded what is expected by chance (pPERM=0.003). 

 

Figure 5: Parental Education Effects are Concentrated in Somatosensory/Subcortical 
Networks. We compared parental education connectivity patterns with corresponding patterns 
observed for general cognitive ability and the general factor of psychopathology (P Factor). The 
bubble graph captures the proportion of significant cells, i.e. sets of connections linking large-
scale networks, associated with each network. The graph shows each variable has a distinct 
profile across the connectome, with parental education preferentially implicating 
somatosensory/subcortical networks. 

 

5. Parental education’s associations with the functional connectome are related to home 
enrichment activities, child’s grades, and child’s cognitive abilities.  

Previous literature, reviewed in (34), suggests that parental education may impact children’s 
behavioral and cognitive outcomes through provision of greater cognitive stimulation and 
parenting behaviors that promote academic and social competence (e.g., warmth and support). 
To gain some initial insight into why parental education was associated with children’s brain 
connectivity patterns, we performed an exploratory analysis that accounted for potential 
additional explanatory variables: 1) parent-reported enrichment activities (e.g., having 
intellectual discussions, reading with the child); 2) child-reported family support (e.g., smiling at 
the child, discussing the child’s worries, providing support); 3) child-reported school support 
(e.g., availability of extracurricular activities, praise when the child does a good job); 4) child’s 
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grades in school; and 5) child’s general cognitive ability. This analysis was performed in a 
subsample of 3,223 children for whom all the preceding variables were available. We focused on 
whole-brain predictive modeling, which affords a single dependent measure (out-of-sample 
brain-phenotype association) as well as quantitative bootstrap-based tests for attenuation of this 
association (see Supplement). Results showed that home enrichment activities, child’s grades, 
and child’s general cognitive ability each individually significantly attenuated the association 
between parental education and youth brain connectivity patterns (Table 1). In contrast, these 
associations were not meaningfully attenuated by controlling for family supportiveness and 
school supportiveness. In combination, 29% of the multivariate association between parental 
education and the functional connectome was accounted for by these five candidate explanatory 
variables.   

 
Contextualizing  
Variable 

Parental  
Education rcv 

Attenuation 
Magnitude 

Attenuation  
p value  

No Contextualizing Variables 0.247 -- -- 

Enrichment Activities‡ 0.230 0.016 0.0439 

Family Support§ 0.247 -0.001 n.s. 

School Support¶ 0.246 0.000 n.s. 

Child’s Grades 0.219 0.028 0.0001* 

Child’s General Cognitive Ability# 0.189 0.058 0.0001* 

All Contextualizing Variables 0.175 0.071 0.0001* 
‡ Intellectual/Cultural Orientation subscale of the Family Environment Scale 
§ Acceptance subscale of the Children’s Report of Parental Behavior Inventory 
¶ School Environment subscale of the School Risk and Protective Factors Survey 
# Latent Variable Created from ABCD Neurocognitive Battery 
% Latent Variable Created from Child Behavior Checklist – Parent Report 
* Observed attenuation larger than all 10,000 in the permutation distribution. 

 

Table 1: Associations Between Parental Education and Brain Connectivity Patterns 
Controlling for Aspects of the Family and School Environment and Child Characteristics. We 
quantified the attenuation of the relationship between parental education and brain connectivity 
patterns after controlling individually and jointly for six candidate explanatory variables. 
Overall, 1/3 of the multivariate association between parental education and brain connectivity 
patterns was accounted for by the six candidate explanatory variables. rcv = cross-validated out-
of-sample correlation between actual scores and predicted scores using resting state 
connectivity data. 

 

DISCUSSION 
 

Using data from a large population-based sample of 5,821 9- and 10-year-olds in the ABCD 
Study, we evaluated associations between socioeconomic resources (SER) and youth functional 
connectomes using whole-brain, network-wise, and connection-wise approaches. Across these 
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three levels of analysis, we observed widespread associations between SER and the developing 
connectome, with convergent evidence that parental education was the primary driver of these 
associations. Moreover, these parental education associations with the functional connectome 
were concentrated in somatosensory and subcortical networks, suggesting a spatial “footprint” 
for parental education effects that is somewhat distinct from other recently studied constructs 
(i.e., general cognitive ability and general psychopathology). Overall, these results add a new 
data-driven multivariate perspective on links between household SER and the child’s developing 
functional connectome. Moreover, they potentially illuminate a primary role for parental 
education in explaining how socioeconomic adversity gets “under the skin” to shape the 
developing brain. 
 
Previous examinations of the associations between SER and functional connectivity patterns in 
the brain have largely relied on regionalist and apriorist methods (e.g., 31, 32), see (17) for a 
review. That is, SER-brain associations have been examined within individual pre-selected 
regions (e.g., amygdala – ventromedial prefrontal connectivity) based on prior theory. In 
addition, previous studies have generally been small, involving tens to hundreds of subjects (17), 
and these sample sizes may generally be too small for reliable statistical inference (19). Against 
the backdrop of this previous work, our study takes breaks new ground in taking a multivariate, 
brain-wide, data-driven approach. In whole-brain analysis, we found functional connectivity 
patterns across the entire connectome captured 9.0% of the variance in SER in held-out subjects, 
with statistically significant generalization of these SER-associated connectivity patterns to all 
19 out of 19 held-out sites. In network-wise analysis, we found SER has distributed effects 
throughout the brain, with statistically significant effects observed at 77 of 120 cells (i.e., sets of 
connections linking large-scale networks). In connection-wise analysis, we found strong 
deviations between observed versus expected p-value distributions, with a notable pattern of 
“early lift-off” (see Figure 3), indicating the presence of highly distributed SER-related 
associations throughout the connectome.  
 
Interestingly, our results are reminiscent of the distributed architecture of complex traits now 
recognized in genetics (37). There too, it was initially assumed that complex traits were 
represented by few genetic loci, each of large effect, leading to the popularity of candidate genes 
studies in which loci were selected for study based on prior theory. However, the polygenic 
nature of complex human traits is now considered the norm, wherein phenotypes result from the 
cumulative impact of hundreds of thousands of genetic variants, each of very small effect (38, 
39). We here demonstrate a similar pattern in which SER-brain associations with the brain are 
analogously highly “poly-connectic”, implicating thousands of connections across the 
connectome, see also (40). Our results highlight the need for developmental neuroscience 
research on the effects of poverty on the brain to expand the toolkit of analysis methods beyond 
region-specific approaches to better capture what are likely to be highly distributed brain-wide 
effects (18, 41, 42). 
 
We disentangled neural patterns of three indices of SER (parental education, household income-
to-needs, and neighborhood disadvantage) using three different multivariate methods, each 
focused on different levels of analysis (whole-brain, network-wise, and connection-wise). These 
three methods convergently supported the conclusion that parental education has the most potent 
relationships with brain connectivity patterns in this large, population-based sample. Each of the 
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three preceding method has its own strengths and weaknesses. For example, predictive modeling 
is optimized for aggregating widespread signals across the brain (40), but it is poor at localizing 
signals (43). Meanwhile, NCA is better for localizing effects but makes assumptions about 
network boundaries that may turn out to be suboptimal. Quantile-quantile modeling makes no 
assumptions about network boundaries but is not well suited for quantifying multivariate effect 
sizes. By using these three methods in combination, however, we address the limitations of each 
method and provide evidence of the robustness of our results across different analytic choices.  
 
Parental education neural associations were preferentially concentrated in 
somatosensory/subcortical regions. This result agrees with previous seed-based studies that also 
found SER effects on connectivity patterns of amygdala, hippocampus, and striatum (35, 36, 44). 
The present study nonetheless goes beyond previous work in providing a brain-wide comparative 
perspective (i.e., parental education-associated connectivity is more concentrated in 
somatosensory/subcortical networks compared to other networks)—something that cannot be 
readily revealed by seed-based methods. Moreover, we showed this pattern of preferential 
somatosensory/subcortical concentration contrasts with general psychopathology (which is 
concentrated in default network and control networks; 11) and general cognitive ability (which is 
widespread across all networks; 12). Taken together, these results point to a distinctive spatial 
profile across the connectome of parental education that should be the focus of further 
investigation.  
 
Several recent studies have also examined associations between SER and resting state functional 
connectivity in the same ABCD study dataset and reached somewhat different conclusions (45–
47). These studies generally found much weaker brain-behavior associations than what is 
reported here. In addition, one study (46) found significant unique effects of neighborhood 
disadvantage, which were not observed here. Key differences in analytic approach may shed 
light on these divergent findings. The present study used connection-resolution connectomic data 
for each subject, encompassing 87,153 connections per connectome, as the input datatype for all 
analyses. In contrast, these other studies used summary statistics (available through the ABCD 
Data Exploration and Analysis Portal; https://deap.nimhda.org) in which each subject’s 
connectome is reduced to 78 numbers representing mean connectivity between each pair among 
12 large-scale networks. In Supplement Figure S5 and Table S3, we report results from the 
current study alongside results that would have been seen were we to have used these summary 
statistics. We found that for SER, as well as for parental education, household income-to-needs, 
and neighborhood disadvantage, between 68 to 80% of the multivariate signal associated with 
these variables is lost when using the cell mean summary data (with 78 features per subject) 
rather than the connection resolution data (with 87,153 features per subject). It is likely that this 
signal loss, as well as other differences in analysis choices (discussed in Supplement §11), 
explain the weaker effect sizes observed in these studies and the different pattern of effects. Of 
note, the use of summary statistics in place of connection-level data has not been extensively 
validated, and the preceding results suggest the need for caution in adopting this approach.  
 
One pathway through which SER (and particularly parental education) is thought to shape youth 
cognitive and socioemotional development is through the provision of cognitively-stimulating 
activities (48–50) that shape both cognitive skills (e.g., general cognitive abilities and academic 
skills (51–53) and non-cognitive skills including socioemotional skills (e.g., emotion regulation 
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and impulse control). To better understand the proximal pathways through which parental 
education relates to whole-brain resting-state connectivity patterns, we conducted additional 
multivariate predictive modeling analyses with additional control variables. Home enrichment 
activities, child’s grades, and child’s cognitive abilities partially attenuated the multivariate 
association between parental education and resting-state connectivity patterns. This finding 
suggests there are rich, interwoven links between parental education, cognitive stimulation, and 
child cognitive/academic outcomes (34, 53). The full set of five contextualizing variables 
accounted for nearly 30% of the multivariate association between parental education and resting-
state connectivity patterns. Regarding the remaining 70% of the effect, it is possible that the 
contextualizing variables that we assessed were measured imperfectly, and improved 
measurement would lead to larger attenuation. Alternatively, it is possible that other 
contextualizing variables that were not assessed at the current time in the ABCD dataset play an 
important role in the parental education-functional connectivity association.  
 
One such variable is parental educational expectations, which are found to predict youth 
achievement longitudinally and over-and-above SER (54). Another may be genotype (55), 
wherein genetic variants shared by parent and child may account for some of the parental 
education-functional connectivity association (note: children’s genetic data are collected in the 
ABCD study but parents’ are not). A third possibility is that these connectivity patterns linked to 
parental education have behavioral sequalae at later ages (e.g., mid- to late adolescence), and 
thus they do not share variance with the contextualizing variables measured at ages 9 and 10. 
Overall, although the present study firmly establishes distributed functional connectivity patterns 
associated with levels of parental education, the specific pathways through which parental 
education becomes linked to brain connectivity await further elucidation (22).   
 
This study has limitations and caution should be taken in interpreting its results. A key limitation 
is that this study uses cross-sectional data from the baseline wave of the ABCD study. This type 
of data cannot be used to infer causal relationships between modeled variables (56), and stronger 
inferences about “mediation” and/or causal relationships require other kinds of data, such as 
longitudinal data or experimental manipulations (56, 57). Additionally, the results of the current 
study should not be used to perpetuate static, deficit interpretations of development (58). The 
brain is a highly plastic organ with abundant capacities to learn/relearn, modify, and adjust, 
consistent with the observation that substantial neural change and reorganization extends through 
late adolescence up to young adulthood (59, 60). It is altogether possible that many of the SER-
associated neural patterns we observed represent compensatory adjustments that help youth 
adaptively navigate features of their local environmental milieu (e.g., constrained opportunities, 
uncertainty) (61). It is also noteworthy that SER need not be static during childhood, and this 
includes parental education. A recent analysis (62) in a nationally-representative cohort reported 
that 17% of mothers completed additional education after the transition to motherhood. 
Moreover, this figure was further elevated (43%) among the most disadvantaged mothers, thus 
challenging assumptions about the “typical” sequence of life events. For parents who want to 
pursue additional schooling and/or certifications, policies and programs that provide childcare 
and workforce training can be effective (63). These observations point to future directions of 
research involving interventions on parental education levels and suggest potential downstream 
policy implications of the present results. 
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In sum, in a large, rigorously characterized sample of youth, we identified highly distributed, 
brain-wide functional connectivity patterns linked to SER. Moreover, we demonstrated that 
parental education was the primary driver of these associations, advancing our understanding of 
how socio-environmental factors are linked to the developing connectome. 
 
 

METHODS 
 
1. Sample and Data 
The ABCD study is a multisite longitudinal study with 11,875 children between 9-10 years of 
age from 22 sites across the United States. The study conforms to the rules and procedures of 
each site’s Institutional Review Board, and all participants provide informed consent (parents) or 
assent (children). Data for this study are from ABCD Release 3.0. 
 
2. Data Acquisition, fMRI Preprocessing, and Connectome Generation 
High spatial (2.4 mm isotropic) and temporal resolution (TR=800 ms) resting state fMRI was 
acquired in four separate runs (5min per run, 20 minutes total). Preprocessing was performed 
using fMRIPrep version 1.5.0 (64). Briefly, T1-weighted (T1w) and T2-weighted images were 
run through recon-all using FreeSurfer v6.0.1, spatially normalized, rigidly coregistered to the 
T1, motion corrected, normalized to standard space, and transformed to CIFTI space.  
 
Connectomes were generated for each functional run using the Gordon 333 parcel atlas (65), 
augmented with parcels from high-resolution subcortical (66) and cerebellar (67) atlases. 
Volumes exceeding a framewise displacement (FD) threshold of 0.5mm were marked to be 
censored. Covariates were regressed out of the time series in a single step, including: linear 
trend, 24 motion parameters (original translations/rotations + derivatives + quadratics, 
aCompCorr 5 CSF and 5 WM components and ICA-AROMA aggressive components, high pass 
filtering at 0.008Hz, and censored volumes. Next, correlation matrices were calculated. Full 
details of preprocessing and connectome generation can be found in the Supplement as well as 
the automatically-generated FMRI Prep Supplement. 
 
3.  Inclusion/Exclusion 
There are 11,875 subjects in the ABCD Release 3.0 dataset. Subjects were excluded for: failing 
ABCD QC, insufficient number of runs each 4 minutes or greater, failing visual QC of 
registrations and normalizations, and missing data required for regression modeling. This left us 
with N=5,821 subjects across 19 sites for the main sample analysis, and details of exclusions are 
provided in the Supplement. 
 
4.  Neuroimaging Analysis 
To quantify brain-wide relationships between functional connectivity patterns and outcome 
variables of interest including SER, we used principal component regression (PCR) predictive 
modeling (26, 68) (see Figure S2). In brief, this method performs dimensionality reduction on 
resting state connectomes, fits a regression model on the resulting components, and applies this 
model out of sample in a leave-one-site-out cross-validation framework. To identify network-
wise brain-behavior relationships, we used network contingency analysis (NCA) (27–29). In 
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brief, for each cell (set of connections linking pairs of large-scale networks), this method 
identifies whether the count of connections significantly related to an outcome variable of 
interest exceeds what is expected by chance. To quantify connection-wise brain-behavior 
relationships, we used quantile-quantile modeling (30). In brief, we first calculated the p-value at 
each connection for the association between that connection and an outcome variable of interest. 
We then rank ordered these p-values and compared them to the rank-ordered distribution of p-
values expected under the global null hypothesis. 
 
In implementing the three preceding methods, we control for the effect of a number of nuisance 
covariates, specifically sex assigned at birth, self-reported race-ethnicity, age, age squared, mean 
FD and mean FD squared. For all three methods, we assessed statistical significance with non-
parametric permutation tests, in which the procedure of Freedman and Lane (69) was used to 
account for covariates. In addition, exchangeability blocks were used to account for twin, family, 
and site structure and were entered into Permutation Analysis of Linear Models (PALM) (70) to 
produce permutation orderings. Details on all the preceding neuroimaging analyses are provided 
in the Supplement. 
 
5.  Latent Variable Modeling  
We constructed a latent variable for socioeconomic resources by applying exploratory factor 
analysis to household income-to-needs, parental education, and neighborhood disadvantage. 
Household income-to-needs represents the ratio of a household’s income relative to its need 
based on family size, and details on its calculation are provided in the Supplement. Parental 
education was the average educational achievement of parents or caregivers. Neighborhood 
disadvantage scores reflect an ABCD consortium-supplied variable (reshist_addr1_adi_wsum). 
In brief, participant’s primary home address was used to generate Area Deprivation Index (ADI) 
values, which were weighted based on results from Kind et al (71) to create an aggregate 
measure.  
 
The general psychopathology factor (P-factor) was produced from bifactor modeling of the 
parent-rated Child Behavior Checklist (CBCL) (72), and was described in detail in our previous 
studies in ABCD (73, 74). The general cognitive ability (GCA) variable was produced from 
bifactor modeling of the ABCD neurocognitive battery, and was also described in detail in our 
previous studies in ABCD (33, 73). Additional details on construction of the preceding latent 
variables are provided in the Supplement. 
 
6.  Code Availability 
The ABCD data used in this report came from NDA Study 901, 10.15154/1520591, which can 
be found at https://nda.nih.gov/study.html?id=901. Code for running analyses can be found at 
https://github.com/SripadaLab/ABCD_Resting_Socioeconomic_Resources. 
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Supplemental Methods and Results 
 
1. Sample and Data 
The ABCD study is a multisite longitudinal study with 11,875 children between 9-10 years of age 
from 22 sites across the United States. The study conforms to the rules and procedures of each 
site’s Institutional Review Board, and all participants provide informed consent (parents) or 
assent (children). Data for this study are from ABCD Release 3.0. 
 
2. Data Acquisition, fMRI Preprocessing, and Connectome Generation 
Imaging protocols were harmonized across sites and scanners. High spatial (2.4 mm isotropic) 
and temporal resolution (TR=800 ms) resting state fMRI was acquired in four separate runs 
(5min per run, 20 minutes total). The entire data pipeline described below was run through 
automated scripts on the University of Michigan’s high-performance cluster, and is described 
below. 
 
Preprocessing was performed using fMRIPrep version 1.5.0 (64), and detailed methods 
automatically generated by fRMIPrep software are provided in the fMRIPrep Supplement. T1-
weighted (T1w) and T2-weighted images were run through recon-all using FreeSurfer v6.0.1. 
T1w images were also spatially normalized nonlinearly to MNI152NLin6Asym space using ANTs 
2.2.0. Each functional run was corrected for fieldmap distortions, rigidly coregistered to the T1, 
motion corrected, and normalized to standard space. ICA-AROMA was run to generate 
aggressive noise regressors. Anatomical CompCor was run and the top 5 principal components 
of both CSF and white matter were retained. Functional data were transformed to CIFTI space 
using HCP’s Connectome Workbench. All preprocessed data were visually inspected at two 
separate stages to ensure only high-quality data was included: After co-registration of the 
functional data to the structural data and after registration of the functional data to MNI template 
space. 
 
Connectomes were generated for each functional run using the Gordon 333 parcel atlas (65), 
augmented with parcels from high-resolution subcortical (66) and cerebellar (67) atlases. 
Volumes exceeding a framewise displacement threshold of 0.5mm were marked to be 
censored. Covariates were regressed out of the time series in a single step, including: linear 
trend, 24 motion parameters (original translations/rotations + derivatives + quadratics), 
aCompCorr 5 CSF and 5 WM components and ICA-AROMA aggressive components, high pass 
filtering at 0.008Hz, and censored volumes. Next, correlation matrices were calculated for each 
run. Each matrix was then Fisher r-to-z transformed, and then averaged across runs for each 
subject yielding their final connectome.  
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Figure S1: Quality Control-Resting State Functional Connectivity Plot 
 
We used multiple procedures listed above to limit the effect of head motion on resting state 
connectivity maps. To assess the effectiveness of these procedures, we produced a quality 
control resting state functional connectivity (QC-RSFC) plot (75, 76). This plot shows the 
relationship between mean framewise displacement and connectivity for edges binned by 
distance. Motion effects produce a sloped line (distance-dependent artifact), while a flat line is 
indicative of minimal motion-related effects. The RSFC-QC plot for our ABCD resting state data 
showed a flat line (Figure S1), providing additional evidence that our stringent motion correction 
strategies were effective. 
 
3. Inclusion/Exclusion 
There are 11,875 subjects in the ABCD Release 3.0 dataset. Screening was initially done using 
ABCD raw QC to limit to subjects with 2 or more good runs of resting data as well as a good T1 
and T2 image (QC score, protocol compliance score, and complete all =1). This resulted in 
9580 subjects with 2 or more runs that entered preprocessing. Each run was subsequently 
visually inspected for registration and warping quality, and only those subjects who still had 2 or 
more good runs were retained (N=8858). After connectome generation, runs were excluded if 
they had less than 4 minutes of uncensored data, and next subjects were retained only if they 
had 2 or more good runs (N=6568). Finally, subjects who were missing data required for SER 
factor modeling were dropped and sites with fewer than 75 subjects were dropped. This left us 
with N=5821 subjects across 19 sites for the neuroimaging analysis, and demographic 
characteristics of the overall and included sample are shown in Table S1. 
 

 Included Excluded 
N 5821 6057 
Age (mean (s.d.)) 9.96 (0.62)  9.87 (0.62) 
Female (%) 2920 (50.2) 2762 (45.6) 
Race-Ethnicity (%)   

White 3469 (59.6) 2710 (44.7) 
Black 667 (11.5) 1115 (18.4) 

Hispanic 1052 (18.1) 1359 (22.4) 
Asian 86 (1.5) 187 (3.1) 
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Other 547 (9.4) 686 (11.3) 
No answer -- -- 

Highest Parental Education (%)   
< HS Diploma 177 (3.0) 416 (6.9) 

Bachelor 1614 (27.7) 1401 (23.1) 
HS Diploma/GED 406 (7.0) 726 (12.0) 

Post Graduate Degree 2163 (37.2) 1881 (31.1) 
Some College 1461 (25.1) 1619 (26.7) 

No answer 0 (0.0) 14 (0.2) 
Household Marital Status – 
Married (%) 4202 (72.2) 3789 (62.6) 
Household Income (%)   

<50K 1585 (27.2) 1944 (32.1) 
>=100k 2513 (43.2) 2082 (34.4) 

>=50k & <100K  1723 (29.6) 1387 (22.9) 
No answer 0 (0.0) 644 (10.6) 

 

Table S1: Demographic Characteristics of Included Versus Excluded Subjects 
 
 
4. Principal Components Regression-Based Multivariate Predictive Modeling 
 
 

 
Figure S2: Steps of Principal Component Regression Predictive Modeling. 
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We implemented principal component regression (PCR) (77) as a multivariate predictive 

modeling method for identifying brain behavior relationships (26) (see Figure S2). The method 
involves two key steps: 1) Use principal components analysis (PCA) to find a set of components 
that capture inter-individual differences in brain features; 2) Use multiple regression in a cross-
validation framework to link expression scores for these components to phenotypes of interest. 
In previous work, we often used the more general name brain basis set (BBS) for this approach 
to capture commonalities with work by our group and others that use alternative methods for 
step 1 (e.g., independent component analysis (78, 79) or community detection (80, 81)). We 
chose the PCR approach for this study because our previous work showed it has high test-
retest reliability (82) and predictive accuracy (68, 83), and generally performs as well or better 

than alternative methods such as support vector regression and ridge regression (82).   
 
We performed PCA dimensionality reduction on an n subjects by p connectivity features matrix, 
yielding n principal components (i.e., directions in the feature space) that represent inter-
individual differences in connectivity. Per-subject expressions scores for a subset of k of these 
connectivity components then entered multiple regression modeling to identify linear 
associations with phenotypes of interest (here, GCA scores). Of note, we selected k using 5-fold 
cross validation within the training data, as in our previous work (82).  
 
To assess accuracy and generalizability of PCR predictive models, we used leave-one-site-out 
cross-validation. In each fold of the cross-validation, data from one of the 19 sites served as the 
held-out test dataset and data from the other 18 sites served as the training dataset. 
Additionally, to ensure separation of train and test datasets, at each fold of the cross-validation, 
a new PCA was performed on connectomes in the training dataset, and expression scores of 
these brain components were calculated for the test set. Note that by employing leave-one-site-
out, members of twinships and sibships are never present in both training and test samples. We 
assessed the performance of PCR predictive models with cross-validated Pearson’s correlation 
and cross-validated partial eta squared.  
 
In each fold of the leave-one-site out cross-validation, PCR predictive models were trained in 
the train partition with the following covariates (unless explicitly stated otherwise for specific 
analyses): sex, race-ethnicity, age, age squared, mean FD and mean FD squared. To maintain 
strict separation between training and test datasets, regression coefficients for the covariates 
learned from the training sample were applied to the test sample to calculate effect size 
measures (Pearson’s correlationcross-validated and R2

cross-validated). This procedure is described in 
detail in our previous publications (33, 83).  
 
We assessed the significance of all cross-validation-based correlations with non-parametric 
permutation tests. We randomly permuted the 5,821 subjects’ outcome variable values 10,000 
times and reran the PCR predictive modeling stream at each iteration, yielding a null distribution 
of correlation values. The procedure of Freedman and Lane (69) was used to account for 
covariates. In addition, exchangeability blocks were used to account for twin, family, and site 
structure and were entered into Permutation Analysis of Linear Models (PALM) (70) to produce 
permutation orderings, as described in detail in the Supplement. 
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5. Network Contingency Analysis (NCA) 
 

 
Figure S3: Steps for Network Contingency Analysis. 
 
NCA is a count-based approach to quantifying altered connectivity (see Figure S3), see our 
prior work (27, 28, 84) for more details, and see also (29) for a related statistical treatment. In 
the current application, we applied the approach to “cells”; each cell is the set of connections 
linking a pair of the 16 networks in the Gordon parcellation augmented with additional networks 
(120 total cells). In Step 1 of the analysis, we fit a multiple regression model at each edge of the 
connectome with edge connectivity weight as the outcome variable and SER-related variables 
as the predictor of interest, while including sex, race-ethnicity, age, age2, mean FD, and mean 
FD2 as covariates. In step 2, we identified all connections in which the SER-related variable 
effect exceeds (is more significant than) a p<0.05 threshold (“NCA threshold”). In Step 3, we 
counted the suprathreshold connections separately for each cell, assessing whether this 
number exceeds the number that would be expected by chance alone. The distribution under 
chance was generated by non-parametric permutation tests (85). We randomly shuffled 
subjects’ edgewise connectivity weights 10,000 times (i.e., subjecti’s edge weights were 
randomly switched with subjectj’s) and recalculated the count of suprathreshold edges for each 
cell at each iteration. Permutation p-values were then calculated and corrected for multiple 
comparisons across 120 cells using the false discovery rate (86) with alpha set at p<0.05. The 
procedure of Freedman and Lane (69) was used to account for covariates. In addition, 
exchangeability blocks were used to account for twin, family, and site structure and were 
entered into Permutation Analysis of Linear Models (PALM) (70) to produce permutation 
orderings.  

 
6.  Quantile-Quantile Modeling 
Quantile-quantile modeling is technique to simultaneously assess whether a collection of many 
statistical tests deviates from the expected null (30) and is commonly used in genome wide 
association studies (87). We adapt this approach to assess brain-wide associations by 
substituting genomic SNPs with edges from the connectome. In the first step, an association 
test is performed for each edge of the connectome by fitting a multiple regression model with 
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the phenotype of interest as the outcome variable and edge connectivity weight as the predictor 
of interest, while including sex, race-ethnicity, age, age2, mean FD, and mean FD2 as 
covariates. In step 2, the observed p-values for the estimated effect size at each edge are then 
negative-log transformed, and then sorted from smallest to largest. In step 3, the rank-ordered 
negative-log transformed p-values are plotted versus negative-log transformed linearly scaled 
points on the x-axis - ie: the x-y coordinates for the plotted points are (-log(1), -log(largest p-
value)), (-log(n-1/n), -log(2nd largest p-value)), … (-log(1/n), -log(smallest p-value)). In step 4, 
the previous 3 steps are repeated in a permutation framework to generate the non-parametric 
null distribution. For the permutations, the procedure of Freedman and Lane [52] was used to 
account for covariates and exchangeability blocks were used to account for twin, family, and site 
structure and were entered into Permutation Analysis of Linear Models (PALM) [53] to produce 
permutation orderings. The mean from the permutation-based null distribution is plotted in red, 
and the 95th percentile range of the permutation distribution is shaded in gray. If there is no 
association between the phenotype of interest and brain functional connections, the points 
corresponding to the observed edgewise association tests will fall within the 95th percentile of 
the permutation null distribution.  
 
7.  Head Motion Robustness Tests 
 
    

Subsample parental education 
variable 

rcv pPERM resampling 
test p-value  

low motion uncontrolled 0.24 0.0001* 0.49 
 

controlled 0.12 0.0001* 0.29 

Table S2: Tests of Robustness of Parental Education Associations with Children’s 
Functional Connectomes. controlled = controlling for the effects of household income-to-
needs and neighborhood disadvantage; rcv = cross-validated out-of-sample correlation between 
actual scores and predicted scores using resting state connectivity data; * = observed 
correlation higher than all 10,000 correlations in the permutation distribution 

 
To further assess potential confounding with head motion, we performed “resampling difference 
tests” (28) on a low motion subsample (with mean framewise displacement < 0.2 mm). First, we 
generated 10,000 random subsamples of the same size as the low motion subsample and 
performed multivariate predictive modeling for the parental education variable in each of these 
random subsamples. We next located the observed out-of-sample correlation for parental 
education in the actual low motion subsample in this resampling distribution. We declared the 
result significant if the observed correlation was below the 5th percentile, indicating that the 
observed correlation is lower than those from random subsamples of the same size than one 
should expect by chance.  
 
 
8.  Concentration Analysis 
We performed a concentration analysis to assess whether cells significantly associated with 
outcome variables of interest (based on the previously described NCA analysis) were 
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concentrated within three functional clusters. In the first step, all cells were assigned to three 
functional clusters: somatosensory/subcortical, default/control, other. In step 2, we calculated 
the concentration of significant cells within each cluster (our statistic of interest), defined as the 
average number of NCA significant cells for a functional cluster normalized by the total number 
of NCA significant cells across all three clusters. In step 3, the non-parametric permutation null 
distribution of this statistic of interest was constructed by repeatedly shuffling cell labels across 
the entire connectome and recomputing this statistic. The p-value of the observed concentration 
of NCA results per cluster was calculated as the proportion of the permutation distribution 
greater than observed. 
 
9.  Attenuation Analyses 
We performed multivariate predictive modeling with a set of basic covariates (model 1) and a 
set of additional covariates (model 2), and we quantified the attenuation in out-of-sample 
predictive performance between the two models (attributable to the addition of these 
covariates). We assessed the statistical significance of this attenuation using bootstrap analysis. 
We resampled subjects with replacement within each ABCD site, then repeated the above 
multivariate predictive models, i.e., model 1 and model 2, with each bootstrapped sample, and 
calculated the magnitude of attenuation at each iteration. This was repeated 10,000 times 
yielding a distribution of bootstrapped attenuation values. The p-value of the observed 
attenuation value was calculated as the proportion of bootstrapped values that were less than 0 
(i.e., indicating attenuation). Note for these bootstrapped analyses, we set the number of 
components for predictive modeling to be 400, i.e., approximately the mean selected for the 
observed data, to avoid computational demands from selecting component number by nested 
cross-validation in each of 10,000 bootstrap iterations.  
 
10.  Latent Variable Modeling for Socioeconomic Resources, General 
Psychopathology, and General Cognitive Ability 
 

 
 
Figure S4: Factor Model of Socioeconomic Resources. Path estimates reflect standardized 
factor loadings. 
 
We constructed a latent variable for socioeconomic resources by applying factor analysis to 
household income-to-needs, highest parental education, and neighborhood disadvantage in 
10,578 participants that had all three variables (see Figure S4). The latent variable accounted 
for 47% of the variance in the observed scores. Household Income-to-Needs combines 
information on household income, poverty lines, and family size. Household Income covered all 
sources of income for family members, including wages, benefits, child support payments, and 
others. It was assessed in bins as follows: 1 <5,000, 2 5,000 - 11,999, 3 12,000 - 15,999, 4 
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16,000 - 24,999, 5 25,000 - 34,999, 6 35,000 - 49,999, 7 50,000 - 74,999, 8 75,000 - 99,999, 9 
100,000 - 199,999, 10 More than 200,000, and we assigned each subject the midpoint for their 
bin. Household size was calculated from the ABCD Parent Demographic Survey. The poverty 
line was calculated for a household of that size based on the 2021 US Poverty Guidelines 
($8,340 + $4,540 per person in the household). Finally, Household Income-to-Needs was 
calculated as the ratio of the combined income midpoint over the poverty line. Highest Parental 
Educational was the highest educational achievement by either parent or caregiver. 
Neighborhood disadvantage scores reflect an ABCD consortium-supplied variable 
(reshist_addr1_adi_wsum). Participant’s primary home address was used to generate Area 
Deprivation Index (ADI) values, which were weighted based on results from Kind et al (71) to 
create an aggregate measure. Higher scores on the factor indicate greater neighborhood 
disadvantage including higher percent of families living in poverty, increased unemployment, 
and lower levels of educational attainment at the neighborhood level. 
 
General Psychopathology Factor 
The general psychopathology factor (P-factor) used here is based on the parent-rated Child 
Behavior Checklist (CBCL) (72), age 6 to 18 form. A bifactor model was fit to eight CBCL 
scales, with a general P factor that all scales loaded onto (average scale loading = .69) and two 
specific factors. Further details as well as the factor model are provided in our previous 
publication in ABCD (73, 74).  
 
General Cognitive Ability Factor 
The general cognitive ability (GCA) factor used here is based on latent variable modeling of the 
ABCD Neurocognitive Battery. We used exploratory factor analysis and parallel analysis to 
arrive a three-factor solution. A subsequent bifactor model showed very good fit by conventional 
standards ( (34)=443.16, p<0.001, RMSEA=0.03, CFI=0.99, TLI=0.98, SRMR=0.02), with the 

general factor capturing 75% of the variation in task scores [coefficient  hierarchical (88)], and 

three domain-specific factors together accounting for 13% of the variation in task scores. 
Further details as well as the factor model are provided in our previous publication in ABCD 
(33). 
 
11.  Comparison of Connection Resolution Results with Results Using Cell Mean 
Summary Statistics 
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Figure S5: Effect Sizes for Connection Resolution Results Compared to Cell Mean 
Resolution Results. We compared multivariate predictive modeling analysis with connection 
resolution data (with 87,153 features per subject) and cell mean resolution data (with 78 
features per subject). We found between 68 to 80% of the multi-variate signal associated with 
SER-related variables is lost when using the cell mean summary data rather than connection-
resolution data. 
 
 
 Out-of-Sample rcv  

Variable† CONNECTION CELL SUMMARY % Reduction 

SER 0.272 0.079 71 

Parental Education 0.280 0.084 70 

Household Income-To-Needs 0.220 0.071 68 

Neighborhood Disadvantage 0.092 0.018 80 

Table S3: Effect Sizes and Percent Reduction in Effect Size for Connection Resolution 
Results Compared to Cell Mean Results. rcv = cross-validated out-of-sample correlation 
between actual scores and predicted scores using resting state connectivity data. 

 
All analyses reported in the Main Manuscript were performed on whole-brain connectomes, 
each with 87,153 connections. Recent studies (45–47) of SER and SER-related variables in 
ABCD use summary statistics in which each subject’s connectome is reduced to 78 numbers 
representing mean connectivity between each pair among 12 large-scale networks, and these 
summary statistics are available through the ABCD Data Exploration and Analysis Portal; 
https://deap.nimhda.org. We repeated our multivariate predictive modeling approach with 
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summary statistics data to assess whether the underlying signal associated with SER-related 
variables is preserved in the summary data. That is, we performed the same principal 
component regression with leave-one-site-out cross-validation described in §4 of Supplemental 
Methods, this time with 78 summary features per subject rather than 87,153 connections per 
subject. As shown in Figure S5 and Table S2, we found that between 68 to 80% of the multi-
variate signal associated with SER-related variables is lost when using the cell mean summary 
data rather than connection-resolution data. It is possible that this sizable reduction in signal 
explains the weaker effect sizes observed in these recent studies (45–47) as well as the 
different pattern of effects observed. Of note, there were in addition other differences in the 
current study that could contribute to differing results. We performed ICA AROMA to further 
reduce motion artifacts (89). In addition, we used a minimum post-censoring scan length 
threshold, 8 minutes based on (19), due to less reliable connectivity estimates with shorter scan 
lengths (90). 
  
11.  Code Availability 
The ABCD data used in this report came from NDA Study 901, 10.15154/1520591, which can 
be found at https://nda.nih.gov/study.html?id=901. Code for running analyses can be found at 
https://github.com/SripadaLab/ABCD_Resting_Socioeconomic_Resources. 
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