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Abstract

DNA loop extrusion emerges as a key process establishing genome structure and function.
We introduce MoDLE, a computational tool for fast, stochastic modeling of molecular
contacts from DNA loop extrusion capable of simulating realistic contact patterns genome
wide in a few minutes. MoDLE accurately simulates contact maps in concordance with
existing molecular dynamics approaches and with Micro-C data, and does so orders of
magnitude faster than existing approaches. MoDLE runs efficiently on machines ranging
from laptops to high performance computing clusters, and opens up for exploratory and
predictive modeling of 3D genome structure in a wide range of settings.
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Background

DNA loop-extrusion, in which DNA is progressively reeled into transient loops, emerges as a
key process in genome structure and function. The growing list of cellular processes where
loop-extrusion plays a critical role now includes transcriptional regulation [1,2], DNA repair
[3], VDJ-recombination [4], and cell division [5]. Recent single-molecule imaging experiments
have provided direct observations of loop extrusion in vitro [6,7].

High-throughput chromosome conformation capture sequencing, including Hi-C [8] and
Micro-C [9,10], have advanced our abilities to map three-dimensional (3D) genome
organization through quantification of spatially proximal genome regions. The resulting data
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is usually rendered as a matrix of intrachromosomal and interchromosomal contact
frequencies. These data increasingly deepen our understanding of 3D genome organization,
and show DNA loop extrusion as a key process shaping genome structure [11-13]. In fact,
topologically associating domains (TADs), which show up as sub-megabase-sized domains
covering most of higher eukaryote genomes, are formed by loop extrusion [12]. TADs are
relevant units of gene expression regulation, and are associated with disease when
disrupted [14].

DNA loop extrusion is carried out by ring-shaped proteins (including cohesin and condensin)
belonging to the Structural Maintenance of Chromosomes (SMC) family. These proteins are
often referred to as loop extrusion factors (LEFs) [15]. The exact mechanism of how loop
extrusion takes place in interphase is not fully understood. There is, however, convincing
evidence that SMCs bind DNA to perform ATP-dependent loop extrusion in a symmetric or
asymmetric fashion. Recent evidence suggests that cohesin can extrude DNA with a
“swing-and-clamp” mechanism [16], and in a nontopological configuration where DNA is not
encircled by the cohesin ring [17,18]. A loop starts extruding when a LEF binds to a genomic
region, and continues processively until it is stalled by a DNA-bound CCCTC binding factor
(CTCF) oriented with its N-terminus pointing towards the extruding cohesin complex. A pair
of CTCFs arranged in a convergent orientation can thus stall loop growth on both sides
creating semi-stable loops visible in Hi-C as a characteristic "dot" at TAD corners [19].
Similarly, when extruding loops are stalled only on one side, a “stripe” can be observed
along one or both TAD borders [20]. The protein WAPL transiently releases cohesin from
chromatin, terminating the loop extrusion process [21,22]. The resulting loop-extrusion
patterns have been found in a range of Hi-C datasets so far, emphasizing the evolutionary
conserved role of loop extrusion in shaping 3D genome organization [19,23].

Disrupting any of the key proteins involved in DNA loop extrusion has a dramatic effect on
genome 3D structure. WAPL depletion causes an increase in loop stability, with an
accumulation of axial elements and weakening of compartments [21,24]. Depletion of
cohesin causes a large fraction of TADs and loops to disappear [24—26]. Similarly, depletion
of CTCF induces loss of loops and TADs [24,27].

Modeling and simulation of DNA-DNA contact patterns is a powerful approach for
understanding underlying molecular mechanisms and for predicting the effect of DNA
perturbations. Polymer simulations and molecular dynamics (MD) have been used for
modeling of TADs to study their structure and dynamics [28—31]. Computational modeling
and simulation of loop extrusion has proven useful for predicting the effects of perturbations
to TAD borders, and to properly understand patterns seen in Hi-C data. Initial models [15,32]
of loop extrusion used the Gillespie algorithm to characterize looping properties and
chromatin compaction, and did not sample contact maps. Subsequent models used HOOMD
particle simulation [33] to perform homopolymer simulations where modeled LEFs extrude
the polymers and halt at boundaries with properties defined from CTCF motif instance
orientation and ChlP-seq signal strength [11,25]. Recently, to efficiently simulate larger
genome regions, a combination of one-dimensional (1D) simulations with 3D polymer
modeling has been applied to sample multiple conformations combined into contact maps.
LEF binding, release and stalling probabilities are then modeled explicitly [34—36]. These
simulations are typically implemented using the OpenMM molecular simulation framework
[37]. The simulations can be used to explore and rule out molecular mechanisms. For
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example, Banigan et. al assessed the level of DNA compaction that can be achieved by
different loop extrusion mechanisms, and concluded that one-sided loop extrusion alone fails
to achieve the level of compaction observed in large metazoan genomes [36]. Other
approaches embed epigenetic data in combination with crosslinking proteins to model and
study conformational variability across complex chromatin regions [38,39]. To the best of our
knowledge, no standalone software for modeling and simulation of loop extrusion exists.

We introduce MoDLE (Modeling of DNA Loop Extrusion), a high-performance stochastic
model of DNA loop extrusion capable of efficiently simulating contacts from loop extrusion
genome wide. In contrast to MD simulation approaches, simulating loop extrusion contacts
using MoDLE is a straightforward process only requiring two input files and execution
through a command line interface (CLI). MoDLE can simulate a contact matrix with the
molecular interactions generated by DNA loop extrusion on the entire human genome in a
matter of minutes using less than 1 GB of RAM. Typical use cases include predicting Hi-C
contact patterns from ChlP-seq (or similar) data, and predicting the effect of alterations,
mutations, and structural variation to TAD borders. MoDLE opens up for rapid simulation and
parameter exploration of DNA loop extrusion on genomes of any size, including large
mammalian genomes.

Results

MoDLE: Modeling of DNA Loop Extrusion

MoDLE uses fast stochastic simulation to sample DNA-DNA contacts generated by loop
extrusion. Binding and release of LEFs and barriers and the extrusion process is modeled as
an iterative process (see Fig. 1). At the beginning of a simulation MoDLE goes through a
burn-in phase where LEFs are progressively bound to DNA, without sampling molecular
contacts. The burn-in phase runs until the average loop size has stabilized. Active LEFs are
extruded through randomly sampled strides along the DNA in reverse and forward
directions. Each epoch, LEFs are released with a probability based on the average LEF
processivity and extrusion speed. LEFs that are released in the current epoch will rebind to
randomly sampled DNA regions in the next epoch. Extrusion barriers (e.g. CTCF binding
sites) are modeled using a two-state (bound and unbound) Markov process. Each extrusion
barrier consists of a position, a blocking direction and the Markov process transition
probabilities. The occupancy of each extrusion barrier can be specified individually through
the score field in the input BED file. Alternatively, users can specify a uniform barrier
occupancy that is applied to all extrusion barriers. MoDLE accepts a large number of
optional parameters to specify the model's behavior. For example, users can specify the
number of LEFs to be instantiated for each Mbp of simulated DNA using the --lef-density
parameter. LEF-barrier and LEF-LEF collisions are processed each simulation epoch.
Collision information is used to update candidate strides to satisfy the constraints imposed
by collision events, and to compute how extrusion in the next epoch should proceed.

During a simulation, sampled molecular contacts are accumulated into a specialized contact
matrix data structure with low memory overhead. MoDLE execution continues until a target
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number of epochs or a target number of loop extrusion contacts are simulated. Finally,
contacts generated by all simulation instances for a given chromosome are written to an
output file in cooler format [40] (Fig. 1).

With default settings, MoDLE will run over 500 simulation instances for each chromosome
simulated. Thus, simulation instances can run in parallel, making efficient use of the
computational resources of modern multi-core CPUs. We designed MoDLE such that each
simulation instance requires less than 10 MB of memory to simulate loop extrusion on large
mammalian chromosomes, such as chromosome 1 from the human genome. To achieve
high-performance, MoDLE stores most of its data in contiguous memory. Data is indexed
such that extrusion barriers and extrusion units in a simulation instance can be efficiently
traversed in 5’-3’ and 3’-5’ directions. This allows MoDLE to bind/release LEFs, process
collisions, register contacts and extrude DNA in linear time-complexity.

More design and implementation details are available in Additional file 1 as well as MoDLE'’s
GitHub repository github.com/paulsengroup/modle.
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Fig 1: Schematic and simplified overview of MoDLE. Input files specify genome regions to
be simulated (e.g. a chrom.sizes file) and their barrier positions (e.g. CTCF binding sites
and orientation) in BED format. Optional parameters control the specifics of a simulation.
Loop Extruding Factors (LEFs) bind to, extrude and release from the regions and interact
with modeled barriers according to input parameters. Loop extrusion and intra-TAD
contacts of a randomized subset of loops are recorded each epoch and aggregated into
an output cooler file containing the final simulated contact frequencies. Simulation halts
when a target number of epochs or a target number of loop extrusion contacts have been
simulated.

Comparison with Micro-C data and MD simulations

To assess MoDLE'’s ability to reproduce contact data features known to be stemming from
loop extrusion, we simulated genome-wide DNA-DNA contacts based on available CTCF
and RAD21 ChiIP-seq data in H1-hESC cells (see Methods). MoDLE is capable of simulating
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loop extrusion molecular contacts and intra-TAD contacts separately (see Section 9,
Additional file 1 for details). A rendering of the resulting loop extrusion molecular contacts
heatmaps show characteristic stripe and dot patterns at TAD borders (Fig. 2A). Simulated
TAD contacts show enrichment of contacts within TADs, including a nested structure of the
TADs (Fig. 2B). In combination, these patterns resemble well-characterized patterns
observed in Micro-C and Hi-C data (Fig. 2C).

Even though no stand-alone software exists for direct side-by-side comparison, we adapted
available code based on OpenMM [36] to systematically compare the output with that of
MoDLE (see Methods). We chose OpenMM for comparison as it is an efficient and widely
used system for simulating loop extrusion [12,34-36,41].

Using the same input data, we simulated contacts in five different 10 Mbp regions on five
different chromosomes. In general, MoDLE produces contact patterns similar to OpenMM
(Fig. 2D and Supplementary Fig. 1, Additional file 2), and MoDLE output and OpenMM
correlate strongly (Pearson p=0.93; see Supplementary Fig. 2, Additional file 2). By
comparing contacts with corresponding Micro-C and Hi-C data (Fig. 2D), we see a median
pixel accuracy (i.e. the ability to correctly classify pixels as a dot/stripe or not, relative to all
pixels; see Methods) of 0.69 for MoDLE and 0.68 for OpenMM, signifying that MoDLE
indeed simulates contacts observed in Micro-C similar to OpenMM (Fig. 2E). Note that
contacts generated by OpenMM involve 3D polymer modeling and thus, unlike MoDLE,
considers random polymer contacts. As a consequence, contacts not generated by
loop-extrusion will be included in the OpenMM output. Therefore, long-range contacts
(~2-3Mbp) are generally not as enriched in the MoDLE output as these contacts are mainly
compartmental or dominated by random polymer interactions. This can be seen when
employing a diagonal-by-diagonal correlation between MoDLE and OpenMM, which shows
that the two methods correlate better at short range contacts than at long range contacts
(see Supplementary Fig. 3). It implies that MODLE does not by default recapitulate the
relationship between the distance from the diagonal and the contact frequencies as seen in
Hi-C or Micro-C data. However, when LEF processivity is increased, this trend is gradually
approached (see Supplementary Fig. 4). Comparing the output of MoDLE and OpenMM in A
and B compartments separately shows minimal difference of performance between
compartments (Supplementary Fig. 5).

Altering MoDLE'’s input parameters to in silico mimicking depletion of CTCF and WAPL,
shows an expected loss of TAD insulation patterns [27] upon in silico depletion of CTCF, and
more pronounced stripe and dot patterns [22] when mimicking WAPL depletion (Fig. 2F).
Similarly, altering the parameters specifying LEF density, LEF processivity and LEF-LEF
collisions shows relevant and predictable consequences in the data output (see
Supplementary Fig. 6-10). We conclude that MoDLE is capable of simulating loop extrusion
and TAD contact patterns similar to existing state-of-the-art molecular dynamics (OpenMM)
approaches.
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Fig. 2: Comparison of MoDLE with OpenMM and Micro-C data. A: Slmulated MoDLE
contact frequencies solely mediated by LEFs. B: Intra-TAD contacts (only) generated with
MoDLE. C: Lower triangle: Loop extrusion and intra-TAD contacts from MoDLE in the
same region as for A and B. Upper triangle: Micro-C data from the same region. D



https://doi.org/10.1101/2022.04.13.488157
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.13.488157; this version posted September 14, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Side-by-side comparison of Micro-C data, MoDLE output and OpenMM output for a region
on chromosome 3 in H1-hESC. E: Quantitative comparison of the accuracy (fraction of
correctly classified pixels relative to all pixels) of MoDLE and OpenMM in reproducing
stripe and dot pixel-patterns observed in modeled regions in H1-hESC cells (see
Methods). F: in silico simulated molecular contacts mimicking CTCF and WAPL depletion.
Left: Wildtype (WT) output of MoDLE in a region on chromosome 6 in H1-hESC. Middle:
effect on MoDLE output when CTCF barriers weakly associate with their binding sites.
Right: effect on MoDLE output when LEFs are less likely to be released from DNA, thus
mimicking WAPL depletion.

Benchmarking of execution time and memory usage

MoDLE is designed for fast genome-wide simulation of loop extrusion contact patterns. A
genome-wide run with default settings, simulating loop extrusion on the entire human
genome using barriers from H1-hESC (38,815 CTCF barriers and 61,766 LEFs; see
Methods) takes ~40 seconds on a compute server (server A; see Table 1) and ~5 minutes
on a laptop (laptop A; see Table 1), generating over 370 million contacts. To systematically
compare MoDLE execution time and memory usage with OpenMM, we generated synthetic
input datasets with increasing genome size (1-500 Mbp) and number of CTCF barriers (4
barriers per Mbp of DNA simulated) (see Methods for details). The inputs were identical in
MoDLE and OpenMM. Each measurement was repeated 10 times for MoDLE and 5 times
for OpenMM. For MoDLE we run benchmarks using 1-52 CPU cores, while for OpenMM we
tested the CPU (server C; see Table 1) and GPU (server D; see Table 1) implementations.
We computed median elapsed wall clock time and peak memory usage for MoDLE and
OpenMM. The resulting comparisons show that MoDLE simulations using 52 CPU cores
complete within 0.7-71 seconds from the smallest to the largest genome region. OpenMM
requires 2 hours and 35 minutes for the smallest genome region and over 41 hours for a
genomic region of 250Mbp (Fig. 3A). Due to very long execution times, OpenMM runs above
250Mbp were not performed. For the compared genome regions, MoDLE is 4000-5000
times faster than OpenMM (Fig. 3A). OpenMM simulations without GPU acceleration were
particularly slow and were only used to simulate genome regions below 5 Mbp, and required
up to 35 hours 20 minutes of execution time (Fig. 3A). Thus, in practice running OpenMM
requires access to GPUs, while MoDLE runs efficiently using CPUs.

Comparing peak memory usage, MoDLE uses less memory than OpenMM for regions
smaller than 200Mbp, and requires more memory for larger systems. Nevertheless, memory
usage of both MoDLE and OpenMM scales linearly for increasing genome region sizes and
is for all practical purposes within reasonable limits on today’s computers regardless of
genome size (Fig. 3A-B).

Multithreading efficiently reduces MoDLE'’s execution time for increasingly large genome
sizes. With multithreading (52 CPU cores on server B; see Table 1), MoDLE can simulate
loop extrusion contacts for a genome size of 500 Mbp in a little over one minute (Fig. 3C).
Using a single thread (1 CPU core on server B; see Table 1), the same run takes around 12
minutes (Fig. 3C), which is still reasonable from a practical perspective and much faster than
GPU accelerated OpenMM simulations. MoDLE peak memory usage is only slightly affected
by multithreading, as each simulation instance only requires an additional 1-10 MB of
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memory (Fig. 3D). When simulating more than one chromosome, peak memory usage does
not follow a simple linear pattern (Fig. 3D), as it is affected by the order in which simulation
tasks are executed. This can lead to scenarios where for a brief period, two or more contact
matrices are stored in system memory. We conclude that MoDLE, in contrast to OpenMM,
runs efficiently even on systems with few CPU cores, such as laptop computers.

Further, we analyzed the strong scaling properties of MoDLE by simulating loop extrusion on
the entire human genome (GRCh38; 3088Mbp). Increasing the number of CPU cores from 1
to 52, MoDLE execution time scales close to theoretical optimum (see Methods for details)
(Fig. 3D; blue lines). Simulating loop extrusion on the human genome takes from 1 hour and
21 minutes (1 CPU core on server B; see Table 1) to 1 minute and 48 seconds (52 CPU
cores on server B; see Table 1). We conclude that MoDLE can efficiently run on machines
with a wide range of capabilities, ranging from laptop computers with 4-8 CPU cores, to
multi-socket servers with over 50 CPU cores. Memory usage increases with the number of
CPU cores, but never beyond reasonable limits on modern computers (Fig. 3D; orange line).

In conclusion, MoDLE is orders of magnitude faster than OpenMM in simulating loop
extrusion contacts, and is especially efficient in simulating large genome regions or large
input data sets. MoDLE can run efficiently on machines ranging from low-powered laptop
computers to powerful multi-socket servers.
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Fig. 3: Benchmarking MoDLE and OpenMM.

A: Median memory usage (in MBs) of MoDLE with multithreading (blue) compared to
OpenMM with GPU (orange) for chromosome regions ranging in size from 1 to 250 Mbp.
Inset shows comparison between MoDLE (blue) OpenMM with CPU (gray) for
chromosome regions ranging in size from 1-5 Mbp. B: Median elapsed execution time
(hours) of MoDLE with multithreading (blue), OpenMM with CPU (gray), OpenMM with
GPU (orange) and the ratio of OpenMM (GPU) to MoDLE. Dotted lines are extrapolated.
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C: Comparison of the median elapsed execution time (seconds) of MoDLE with (blue) and
without (pink) multithreading for chromosome regions ranging in size from 1 to 500 Mbp.
D: Comparison of median elapsed execution time (hours) of MoDLE utilizing from 1-52
CPU cores. Blue line shows elapsed wall clock time (hours), whereas the orange line
shows the CPU time (hours). The dotted line illustrates the corresponding theoretical
perfect scaling of the executing time. Green line shows median peak memory usage (right
axis; MB).
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Genome wide parameter optimization

Since MoDLE simulates genome-wide loop extrusion in a few minutes, systematic
exploration of features underlying loop extrusion becomes feasible. To illustrate this point,
we optimized the parameters underlying the modeled binding kinetics of CTCF. MoDLE
implements this as a Markov process with an “Unbound” and a “Bound” state. With this
model, the self-transition probabilities P, and Py specify how stably associated CTCF is

once bound to DNA. The stationary distribution of the Markov chain reflects the probability of
a given CTCF binding site to be bound (nB) in a simulation epoch (see Fig 4A). Simulation of

loop extrusion contacts using MoDLE or OpenMM can take advantage of ChiP-seq data
from CTCF or cohesin to infer CTCF binding probabilities. Yet, when ChlIP-seq data is not
available it is possible to simulate loop extrusion using a constant and uniform CTCF binding
probability that is chosen to optimize similarity with the Micro-C (or Hi-C) data. To optimize
these parameters, we make use of an approach based on Bayesian optimization using
Gaussian processes (see Methods). This optimization procedure attempts to minimize an
objective function without making assumptions on its analytic form. To assess MoDLE’s
performance we devised an objective function representing the similarity in stripe position
and length between two contact matrices using H1-hESC Micro-C data (see Methods for
details). After convergence (Fig. 4B), the optimization procedure revealed a range of
near-optimal combinations of transition probabilities and CTCF occupancy probabilities
instead of a single, optimal combination (Fig. 4C). Comparing the resulting loop contacts of
selected parameter combinations with the optimal combination (nB = 0.747 and

P, =0. 963) confirms that CTCF can occupy its motif instances with probabilities ranging
widely between 0.6 - 0.9 as long as the the stability of binding (PUU) is high (> 0.8). However,
low binding stabilites (PUU < 0.8) can also yield near-optimal concordance with the Micro-C

data when CTCF occupancies > 0.9. Notably, the latter parameter combination is
compatible with a dynamic exchange model where CTCF transiently occupies its motif
instances, but still maintains stable loops [42]. From a selected set of parameter
combinations (Fig. 4C), we simulated genome-wide loop extrusion contacts aiming at
comparing these with Hi-C and Micro-C data. The resulting comparison shows that even
uniform, optimized CTCF binding probabilities (Fig. 4C red star) can recapitulate many of the
features seen in Micro-C and Hi-C data (Fig. 4D). Visualization of simulated contacts using a
near-optimal parameter combination from another part of the plot (Fig. 4C; orange pentagon)
reinforces that a range of parameter combinations can recapitulate the patterns seen in the
Hi-C and Micro-C data (Fig. 4D). Selecting a suboptimal or non-optimal combination of
parameters (Fig. 4C, green triangle and blue square) results in unrealistic contact patterns
(Fig. 4D; see Supplementary Fig. 11 for an extensive comparison of different parameter
combinations). In conclusion, MoDLE opens up for efficient exploration of parameters
underlying DNA-DNA contact dynamics genome wide.
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Fig. 4: Genome-wide optimization of CTCF binding kinetics underlying loop extrusion. A:
A Markov chain with an Unbound (red) and Bound (blue) state underlies MoDLE loop
extrusion barrier modeling. The self-transition probability for the Bound state (PBB) reflects

how stably barrier elements (i.e. CTCF) are bound to their binding sites. The stationary
distribution of the Markov chain (nB) provides the CTCF binding probability at a given

epoch in the simulation. The bottom diagram (red/blue boxes) shows an illustration of how
the binding state (Bound in blue, and Unbound in red) of a single CTCF site would change
during a simulation depending on P, and P, B: Convergence of the objective function

during the Bayesian optimization procedure. The objective function is a dissimilarity score
comparing the pixels showing stripes and dots in the observed Micro-C data with the
corresponding stripes and dots in the MoDLE output. See Methods (part 6) for details. C:
Comparison of objective function in the parameter search space of P, and T, Optimal,

near-optimal, suboptimal and non-optimal combinations are highlighted with a red star,
orange pentagon, blue square and green triangle respectively. D: Side-by-side comparison
of H1-hESC Micro-C data (top panel) and progressively less optimal combinations of P,

and T, parameters.

Predicting effects of TAD border alterations

To illustrate how MoDLE can be used to predict the effects of alterations to borders between
TADs, we picked the well-characterized HoxD cluster which harbors several coordinated
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chromatin looping changes critical for proper limb formation in tetrapods [43,44]. We focused
on deletions between the centromeric and telomeric domain (C-Dom and T-Dom,
respectively) known to cause an increase in interactions between the two domains, including
a rewiring of multiple enhancers. First, using the same parameter optimization approach
described above, we inferred CTCF barrier occupancies in the wildtype condition based on
JM8.N4 data. Then, we inactivated (in silico) inter-domain barrier elements by setting the
occupancy of the CTCF motif instances to 0, and used MoDLE to simulate the resulting
changes to the predicted loop extrusion contact maps. MoDLE correctly predicts that loops
protrude beyond the deleted borders merging the two (C-Dom and T-Dom) TADs (Fig. 5).
We also confirm that the border is highly resilient and requires a deletion of a large region
encompassing the entire HoxD cluster to merge the TADs (see Fig. 5D-E). Inspecting
enhancer signals in the region (Fig. 5E upper panel) confirms that the merging of the two
domains indeed involves a rewiring of interactions of several enhancer elements, and a
depletion of stripes at their borders. In conclusion, MoDLE can be used to predict changes to
loop extrusion contact patterns from in silico alterations of TAD border properties.

Chromosome 2
(GRCmM38)
74.5Mbp

Fig. 5: Using MoDLE to predict effects of deletions to TAD borders in the HoxD locus. A:
Micro-C data in JM8.N4 mESC WT cells showing the interactions surrounding the HoxD
cluster and the centromeric (C-DOM) and telomeric (T-DOM) domains in a non-mutated
wildtype (WT) condition. B: MoDLE output from the same region in the WT condition. C:
MoDLE output produced with a partial deletion of the border between the domains, D:
MoDLE output with a complete deletion of the border between the domains. E: Differential
contact map showing the ratio of MoDLE (WT condition; panel B) vs. MoDLE (full deletion,
panel D). Regions enriched in MoDLE full deletion are shown in red, whereas regions
enriched in MoDLE WT are shown in blue.
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Optimization of individual barrier parameters

In the absence of CTCF or Cohesin ChIP-seq data, MoDLE can utilize Micro-C or Hi-C data
in combination with CTCF motif instances to effectively infer the occupancy of each
individual barrier. To illustrate this, we selected a 5Mb region on chromosome 1 with 2103
CTCF candidate binding sites, corresponding to over 4000 parameters to be inferred. The
large number of parameters for this genome region renders a Gaussian optimization
approach computationally infeasible and inadequate. Thus, we developed a system to
optimize extrusion barrier parameters using genetic algorithms (GA) (see Methods part 10
for details). A comparison of the input Micro-C data (Fig. 6A) and the corresponding
optimized MoDLE output (Fig. 6B) shows that even without ChIP-seq information, MoDLE
can be used to infer CTCF barrier occupancies individually to reproduce patterns seen in the
Micro-C data. Comparing this MoDLE output with the corresponding output from MoDLE
based on Rad21 ChIP-seq data (Fig. 6C) shows that TADs and borders are placed in
analogous regions, yet with local differences in barrier strengths and stripe lengths. From
MoDLE data simulated using optimized barrier occupancies (Fig. 6D) it is possible to
compute the modeled binding profile of the LEF during the simulation (Fig. 6E; see section 9,
Additional file 1 for details). Comparing these with ChlP-seq profiles of CTCF and Rad21
(Fig. 6F and G, respectively) shows that peaks and valleys coincide in a large fraction of
regions, signifying that MoDLE can indeed infer biologically meaningful signals from its input
data. We conclude that MoDLE, in the absence of ChlP-seq input data, can reliably infer
CTCF occupancies of individual barriers to simulate loop extrusion contact patterns and to
recapitulate binding profiles of CTCF and cohesin ChlP-seq data.

o
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Fig. 6: Optimization of individual barriers and computation of barrier and LEF profiles. A:
Micro-C (hESC) data from a 5Mb region on chromosome 1 (20-25Mbp). B: MoDLE output
for the same region, where individual barriers are optimized from Micro-C data. C: MoDLE
output for the same region using Rad21 ChlP-seq data as input, D: Computed barrier
occupancy profile from MoDLE trained on Micro-C data (normalized with PUU = 0.7), E:

Computed LEF occupancy profile from MoDLE trained on Micro-C data. F: CTCF
ChlIP-seq data from the same region, G: Rad21 ChIP-seq data from the same region.
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Discussion

Efficient and realistic simulation of DNA-DNA spatial contacts is increasingly required for
modeling and exploring genome structure and regulation. For example, our ability to reliably
predict effects of mutations to TAD borders relies on available tools for simulating and
comparing spatial contact data from normal and pathogenic states [14]. Further, simulations
can be invaluable for exploring general genome folding principles [11] or underlying
principles of loop extrusion [12,35,36]. Efficient tools for loop extrusion simulation will
contribute to increasing our understanding of mechanisms ranging from gene regulation
[1,2], to DNA repair [3]. MoDLE represents, to the best of our knowledge, the first
command-line tool for high-throughput loop extrusion contact simulation. We expect MoDLE
to supplement, rather than replace existing MD tools; especially in cases where large
genome regions or large data sets need to be analyzed or simulated. This would in particular
be the case for large-scale exploration of parameters underlying genome structure
properties, as exemplified here for the binding kinetics of CTCF. In cases where Hi-C data is
not available, we expect MoDLE to be useful for high-throughput loop extrusion contact
prediction based on ChlP-seq, ATAC-seq or similar data in combination with CTCF motif
instances (as exemplified in Fig. 2 and 4). In such cases, MoDLE could be useful for
prediction of enhancer-promoter contacts aiding identification of functional regulatory
interactions [45]. When Hi-C (or similar) data is available in a wildtype condition, MoDLE can
be used for large scale prediction of mutations or alterations to TAD borders (as shown in
Fig. 5 and 6). This would be useful for prioritization of mutations in genome editing settings.

New developments in experimental techniques augmented by integrated computational
modeling, will continue to shed light on new genome organization principles at a rapid pace
[46]. With MoDLE'’s focus on computational speed and its modular architecture, new
developments and knowledge are expected to easily be integrated into the tool to increase
the complexity and realism of the underlying modeling parameters.

Conclusions

We have developed MoDLE (Modeling of DNA Loop Extrusion), allowing high-performance
stochastic modeling of DNA loop extrusion. MoDLE simulates loop extrusion contact
matrices on large genome regions in a few minutes, even on low-powered laptop computers.
MoDLE is available as a command line tool and can be accessed at
github.com/paulsengroup/modle.

Methods

1. MoDLE implementation and design overview
MoDLE is implemented in C++17 and is compiled with CMake. MoDLE uses a
producer-consumer architecture where a single producer (a thread) communicates with
multiple consumers through asynchronous message passing. The producer thread is
responsible for reading input files and generating a set of simulation tasks to be consumed
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by a pool of worker threads. Tasks are implemented as light-weight C++ structs that are
computationally cheap to generate and consume. A single task contains all the information
needed for simulating DNA loop extrusion on a single chromosome in a specific simulation
instance. Simulation instances are for the most part independent from each other and can
thus run in parallel. We designed MoDLE such that each simulation instance requires less
than 10 MB of memory to simulate loop extrusion on large mammalian chromosomes, such
as chromosome 1 from the human genome. The space complexity of the thread—local state
is linear with respect to the number of LEFs or extrusion barriers, whichever is largest. For a
more detailed overview of MoDLE’s implementation see Section 1, Additional file 1.

Most of MoDLE’s memory budget is used to store molecular contacts generated by loop
extrusion. MoDLE stores one instance of its custom contact matrix data structure for each
chromosome that is being actively simulated. The space complexity of a contact matrix
instance depends on the chromosome length, diagonal width and bin size. With default
settings, representing contacts for chromosome 1 of the human genome requires
approximately 120 MB of memory. Common operations on the contact matrix class are
made thread-safe using lock striping implemented through hashing. For more details
regarding the specialized contact matrix data structure refer to Section 2, Additional file 1.
To achieve high-performance, MoDLE stores most of its data in contiguous memory using
simple data structures such as vectors and bitsets (see Section 3, Additional file 1). Data is
indexed such that extrusion barriers and extrusion units in a simulation instance can be
efficiently traversed in 5’-3’ and 3'-5’ directions (see Section 8, Additional file 1). This allows
MoDLE to bind/release LEFs, process collisions, register contacts and extrude DNA in linear
time-complexity and with good locality of reference. The only step relying on an algorithm
with super-linear time complexity is indexing, which has a worst-case time complexity of
0(n log n) while approaching 0(n) for the typical case.

More design and implementation details are available in Additional file 1. The latest MoDLE
source code can be obtained in MoDLE’s GitHub repository:
github.com/paulsengroup/modle

2. Running a simulation instance

The entire simulation instance is executed by a single worker thread and consists of the
following phases:

e Wait until one or more tasks are available on the task queue.

e Setup the simulation internal state based on the task specification, this includes
seeding the PRNG and setting the initial state for the extrusion barriers based on the
occupancy (see Sections 1,3 and 4, Additional file 1).

e Run the simulation loop until a stopping criterion is met.

A single simulation epoch is articulated in the following steps:

e Select (inactive) LEFs that are currently not associated with DNA, and activate them.
This is done by loading LEFs to a random position on the chromosome that is being
simulated. The position is sampled from a uniform distribution (see Section 5,
Additional file 1).

e Index extrusion units moving in the same direction so that they can be visited in 5’-3’
and 3’-5’ order (see Section 8, Additional file 1).
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e Randomly select a subset of the active LEFs and use their position along the
chromosome to generate molecular contacts in the chromosome contact matrix (see
Section 9, Additional file 1).

Generate candidate moves for each extrusion unit (see Section 10, Additional file 1).
Update the extrusion barrier states by computing the next state in the Markov chain
used to model extrusion barriers (see Section 6, Additional file 1).

e Detect collision events between LEFs and extrusion barriers as well as between
LEFs (see Sections 12b-d, and g, Additional file 1).

e Update the candidate moves for extrusion units involved in collision events to satisfy
the constraints imposed by the collision events (see Sections 12e-g, Additional file 1).

e Advance LEFs’ extrusion units by their respective moves (see Section 5, Additional
file 1). Because of the preceding steps, this will yield a new valid simulation state, as
moves have been updated to satisfy all the constraints imposed by collision events.

e lterate over active LEFs and release them based on the outcome of a Bernoulli trial
whose probability of success is computed based on the average LEF processivity
and LEF state (e.g. LEFs whose extrusion units are involved in collision events with a
pair of extrusion barriers in convergent orientation have a lower probability of being
released). LEFs that are being released go back in the pool of available LEFs and
will be loaded on a new genomic region during the next epoch (see Sections 5,
Additional file 1).

MoDLE will continue iterating through the above steps until one of the simulation stopping
criteria is met:

e Agiven number of epochs have been simulated

e Enough contacts have been registered to reach a target contact density.

Both stopping criteria can be modified by users. By default, MoDLE will simulate loop
extrusion until reaching an average contact density of 1 contact per pixel.

3. Hardware specifications

Analysis and benchmark code used to generate the data accompanying was run using the
hardware specifications listed in Table 1.

Table 1: Hardware specifications of computational resources used for simulation and
benchmarking

. Operating Accelerator
Identifier | CPU model System memory system (GPU)
. 64 GB (4x 16 GB .

Intel Core i9-9880H y Arch Linux NVIDIA Quadro
Laptop A DDR4 UDIMM 2667 .

(8 cores) MT/s dual-channel) (Linux v5.17.1) RTX 4000 (8 GB)

2x 2048 GB (32x 64 GB, | RHEL 8.5
ServerA | AMD EPYC 7742 RDIMM DDR4 2933 | (Linux

(2x 64 cores) MT/s eight-channel) | v4.18.0-305)

2x 192 GB (12x 16 GB, N/A
Server B | Intel Xeon Gold 6138 | RDIMM DDR4 2666 | RHEL 7.9.2009

(2x 20 cores) MT/s six-channel) (Linux

v3-40-0-1166-6-H

~
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2X
192 GB (12x 16 GB,
Server ¢ | Intel Xeon Gold RDIMM DDR4 2933
6230R MT/s six-channel)
(2x 26 cores)
2X 384 GB (24x 16 GB, 4x
Server D Intel Xeon Gold 6126 | RDIMM DDR4 2666 NVIDIA Tesla
(2x 12 cores) MT/s six-channel) P100 (16 GB)

4. MoDLE simulations

MoDLE’s data used for the heat map comparison shown in Fig. 2 were generated using the
heatmap_comparison_pt1 Nextflow [47] workflow available on GitHub [48] and archived on
Zenodo [49].

The list of candidate extrusion barrier positions and directions were generated by running
MAST from the MEME suite [50] on GRCh38.p13 (GCF_000001405.39 [51] using the CTCF
frequency matrix MA0139.1 from JASPAR 2022 [52].

The list of candidate barriers was then filtered using CTCF and RAD21 ChiIP-seq data
(fold-change over control and optimal IDR thresholded peaks). In brief, candidate barriers
were intersected with the narrow-peak BED files for CTCF and RAD21. Then, each filtered
barrier region was assigned with an occupancy computed by passing the RAD21
fold-change over control signal through a logistic function. Finally, the output of the logistic
function was binned at 1 kbp to yield a barrier occupancy that is proportional to the number
of CTCF motif instances as well as RAD21 fold-change over control signal. This procedure is
largely based on [Fudenberg 2016]. The result of the procedure outlined above is a list of
extrusion barrier occupancies binned at 1 kbp resolution. CTCF and RAD21 ChlP-seq for
H1-hESC data was downloaded from ENCODE [53,54] (ENCFF255FRL [55], ENCFF473IZV
[56], ENCFF821AQO [57] and ENCFF913JGA [58].

Contact matrices were generated using MoDLE v1.0.0-rc.7 with the parameters from
Supplementary Table 1, Additional file 3. Parameters not listed in the table were left at
default.

Contact matrices produced by MoDLE were then subsampled to an average contact density
of 3 using cooltools random-sample v0.5.1 [59]. The resulting cooler files were then
converted to multi-resolution cooler files using cooler zoomify [40]. Finally, multi—resolution
contact matrices were visualized in HiGlass (v1.11.7) [60].

5. Molecular dynamics (OpenMM) simulations

Molecular dynamics data used for the heat map comparison in Fig. 2 were generated using
the heatmap_comparison_pt1 Nextflow workflow available on GitHub [48] and archived on
Zenodo [49]. This workflow uses OpenMM [37] to run MD simulations.

Simulation code is largely based on [61]. Simulations were carried out on 10 Mbp regions
from chromosomes 2, 3, 5, 7 and 17 using a monomer size of 1 kbp and 200 kbp for LEF
processivity and separation. Extrusion barrier positions, directions and occupancy were
generated following the procedure outlined in Methods (part 1).
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Contact matrices were generated with Polychrom [62] using a bin size of 5 kbp. The
resulting cooler files were then converted to multi-resolution cooler files using cooler zoomify
v0.8.11 [40].

6. Assessing loop extrusion feature similarities from contact

frequencies

To objectively compare the contact matrices produced by MoDLE with contact matrices
generated from Micro-C experiments and MD simulations we developed a specialized
scoring algorithm. The algorithm was inspired by Stripenn [63].

The score is computed on rows and columns of a pair of contact matrices of identical
resolutions transformed as follows.

First, both matrices are convolved using the difference of Gaussian (DoG). This highlights
stripe and dot patterns found in contact matrices. Next, the transformed contact matrices are
discretized using a step function mapping values below a certain threshold to 0 and all the
others to 1. This results in two binary matrices, where non-zero pixels can be interpreted as
part of a stripe or dot. Finally, we take advantage of the fact that stripes produced by loop
extrusion always should start from the matrix diagonal. Thus, given a row or column of pixels
starting on the matrix diagonal, and extending away from it, we stipulate that the last
non-zero pixel in the vector of values represents the end of a stripe produced by DNA loop
extrusion.

Given the above, we can measure the similarity of stripes between two contact matrices by
considering the same row of pixels in a pair of contact matrices, computing the last non-zero
pixels in both rows, and counting the number of matches. The same approach can be
applied to columns of pixels. Finally, counting mismatches instead of matches can be used
as a measure of dissimilarity. Contact matrix convolution and discretization, as well as
computing this special score can be done using MoDLE’s helper tools (modle_tools
transform and modle_tools evaluate respectively).

7. Contact matrix comparison

For comparison with MoDLE and OpenMM output, we used available Hi-C and Micro-C data
from H1-hESC because these were of high resolution and had accompanying ChlP-seq data
for both CTCF and RAD21 (4DNFIFJH2524 [64], ADNFI9GMP2J8 [65], ENCFF255FRL [55],
ENCFF473IZV [56], ENCFF821AQO [57] and ENCFF913JGA [58]). To assess stripe
similarity of a pair of contact matrices we used the scoring algorithm described in Methods
(part 6). The score was computed using Micro-C data as the ground truth. Pixel accuracy
was computed as the ratio of correctly classified pixels to the total number of pixels ina 3
Mbp subdiagonal window around each barrier. The Pearson correlation between OpenMM
and MoDLE was calculated based on all corresponding 5 kbp-pixel values in the 3 Mbp
subdiagonal window of the OpenMM simulation regions.

8. Benchmark methodology

Benchmarks were run on a computing cluster using the run_benchmarks Nextflow workflow
available on GitHub [48] and archived on Zenodo [49].

We ran two suites of benchmarks to assess the performance of MoDLE and compare it with
that of molecular dynamics simulations based on OpenMM.
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The first suite (Fig. 3A-C) compared the performance of MoDLE and OpenMM when
simulating loop extrusion on an artificial chromosome with increasing length (ranging from 1
to 250 Mbp).

This benchmark was run using MoDLE (1 and 52 CPU cores) as well as OpenMM GPU and
CPU implementation (1 CPU core, 1 GPU and 8 CPU cores respectively). CPU benchmarks
were run on server C while benchmarks relying on GPU acceleration were run on server D
(see Table 1). For OpenMM CPU implementation we limited the number of CPU cores to 8
(16 SMT cores) as the CPU implementation is known to not scale well past 16 threads [66].
OpenMM CPU implementation was used to simulate chromosome lengths up to 5 Mbp for
practical reasons. MoDLE was run with default settings except for the number of cells, which
was set to 104 to match the maximum number of available SMT cores.

OpenMM simulations were run using a monomer size of 2 kbp and LEF processivity and
separation of 200 kbp.

The second suite of benchmarks involved simulating loop extrusion on the human genome
(GRCh38) using MoDLE with a number of CPU cores ranging from 1 to 52. MoDLE was run
with default settings except for the number of cells which was set to 104. The extrusion
barrier annotation was generated as described in Methods (part 1).

In both cases, measurements were repeated 10 times for MoDLE and 5 times for OpenMM.

9. Genome-wide extrusion barrier parameter optimization

The genome-wide optimization of parameters affecting extrusion barrier occupancies was
carried out using the gw_param_optimization Nextflow workflow available on GitHub [48]
and archived on Zenodo [49].

The first step in the optimization procedure is running Stripenn v1.1.65.7 [63] on the
H1-hESC Micro-C (4DNFI9QGMP2J8 [67]) dataset to identify architectural stripes, which
resulted in the identification of 5254 stripes. A small subset of these stripes were visually
validated by comparing the annotated stripes with stripes that are visible from Micro-C data.
Annotated stripes were split into two equally sized datasets by random sampling without
replacement. One dataset was used for parameter optimization while the other was used for
validation.

Parameter optimization is performed through the Bayesian optimization from scikit-optimize
v0.9.0 [68] using an objective function based on the scoring metric described in Methods
(part 6).

The parameters that are being optimized are the extrusion barrier occupancy (nB) and PUU,

the self-transition probability of the unbound state.
The evaluation of the objective function proceeds as follows:
e A new genome-wide simulation is performed using the parameters proposed by the
optimizer.
e The resulting cooler file is transformed with modle_tools transform by applying the
difference of Gaussians followed by a binary discretization step, where pixel values
above a certain threshold are discretized to 1 and all the others to 0.
e The score described in Methods (part 6) is then computed row and column-wise on
the entire genome using modle_tools eval, producing two BigWig files. Here, the
transformed Micro-C 4DNFI9GMP2J8 [67] dataset is used as reference.
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e Scores are intersected with the extrusion barrier dataset for optimization and
validation considering stripe direction (i.e. vertical stripes are intersected with
column-wise scores while horizontal stripes are intersected with row-wise scores).

e Scores resulting from the intersection are then averaged, producing a floating-point
number that is then returned to the optimizer, which will try to minimize this number.

In the transformation step a o of 1.0 and 1.6 are used to generate the less and more blurry
contact matrices to subtract when computing the difference of Gaussians. For the binary
discretization of the Micro-C data a threshold of 1.5 was used, while simulated data was
discretized using 0.75 as threshold.

The optimizer evaluated the objective function 400 times, each time computing the average
score for the training and validation datasets.

Finally, the parameters that yielded the best score on the training dataset were used to
generate a contact matrix in cooler format (see Fig. 4D, bottom panel).

10. Local extrusion barrier parameter optimization

The local extrusion barrier parameter optimization was carried out using the
extrusion_barrier_param_optimization Nextflow workflow available on GitHub [48] and
archived on Zenodo [49].

In brief, this workflow takes as input an extrusion barrier annotation consisting of barrier
position and direction, and then optimizes the parameters for each individual barrier to
maximize similarities with a reference HiC matrix.

The optimization approach is based on evolutionary algorithms (EAs) and was developed
using primitives from the DEAP library [69].

Optimization was performed on a 5 Mbp region of the human chromosome 1 (20-25 Mbp,
GRCh38) using the list of candidate CTCF binding sites overlapping this region as extrusion
barrier annotation, for a total of 2103 extrusion barriers. Candidate CTCF binding sites were
annotated using MAST as described in Methods (part 4). The H1-hESC Micro-C
(4DNFI9GMP2J8 [70]) matrix was used as reference.

At a high level, the optimization workflow consists of running the same optimization script
three times, using the output of an optimization run as input for the next run. The first run is
tuned to favor exploration over exploitation, while the second and third runs used more
conservative optimization parameters to progressively reduce the rate of exploration and
favor exploitation.

The following is an overview of how the optimization strategy was developed:

- The optimization uses y, A as evolution strategy, where p is the population size and A
is the number of offspring produced each generation. With this strategy, offspring that
make it through the selection stage replace the previous population entirely. By
default p = 256 and A = 512.

- Individuals are represented as two lists of real numbers of size N, where N is the
number of extrusion barriers to be optimized. The first list of numbers represent s
extrusion barrier occupancies (nB) while the second list represents the self-transition

probability of the unbound state (PUU).

- Individuals are mutated by adding a relatively small offsets to T?B and P;U. Offsets are

drawn from a normal distribution with p = 0 and o set based on the desired degree
of exploration. Values are clamped between 0.0 and 1.0, so mutating an individual
always leads to another valid individual.
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- The two-point crossover operator is used for mating.

- During selection, offsprings are sorted based on their fithess, and the top p offsprings
are selected to proceed to the next generation.

- The population is initialized differently depending on whether results from a previous
optimization run are available.

- Results from previous optimization are available: population initialized through
random sampling with replacement from the set of fittest individuals that ever
lived in the previous optimization run.

- Otherwise, population is randomly initialized by generating p individuals with
T, and PUU set to random numbers drawn from the uniform distribution

U(0.0,1.0).
- Fitness is computed using a slightly modified version of the scoring function f(;)

described in Methods (part 6). Function f(;) is not effective at guiding the
optimization when occupancy is relatively low (e.g. < 0.5) and there are no stripes or
dots in the reference matrix, as any parameter combination resulting in such a low
occupancy produces no visible stripe or dot. To this end, we define a penalty function
p(T[B) that returns a coefficient between 1.0 and 2.0. The returned coefficient is close

to 2.0 when T, approaches 0.5, and rapidly falls to 1.0 when T, moves towards 0.0
or 1.0. T, very close to 1.0 are also penalized. See Supplementary Fig. 12 for more

details regarding the penalty function p(nB).
The output of the scoring function f(;) and penalty function p(T[B) are multiplied

together to produce the score used to compute the fitness of an individual s(;,

nB) = f(;) . p(nB). The fitness of an individual is computed as the average of the

scores s(;, T[B) computed in correspondence of each extrusion barrier object of the

optimization.
- The optimization runs until one of the following conditions is met:
- Atarget number of generations have been simulated (i.e. 1000 generations).
- Optimizer failed to significantly improve the population fithess (e.g. less than
1% fitness improvement over the last 25 generations).
- The population variability approaches 0.

To improve the performance of the optimizer on these regions we split the population into
mainland population and one or more insular populations, and change some aspects of the
optimization strategy.

First we initialize and optimize the mainland population (u = 256 and A = 512). When one of
the stopping criteria is met, the fittest individuals from mainland are used to initialize the
population of m islands. For each island, we randomly select and mask k consecutive alleles
or barriers. k is generated by rounding a number drawn from a normal distribution with

u = 25and o = 5.0. Crucially, masked barriers are inactive and are not allowed to mutate.
For one of the m islands, instead of masking a random stretch of extrusion barriers, we
inactivate all weak barriers when initializing the population. Thus, we replace alleles with

m, < 0. 5 with the m, = 0.0; PUU = 1.0 allele. In this case, all loci are allowed to mutate.
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Islands have u = 128 and A = 256. Islands evolve independently from each other and from
the mainland, and follow the same stopping criteria used for the mainland.

Once all islands have been optimized, half of the mainland individuals are replaced with
individuals from any of the islands. Island individuals are selected using fitness proportionate
selection (i.e. random sampling with replacement, weighted by fitness).

Mainland and island optimization continue alternating until a total target number of mainland
generations have been simulated, or when an optimization cycle fails to significantly improve
the average mainland population fitness.

11.  Simulations to predict the effect of TAD border

alterations

Data for this section was generated using the comparison_with_mut Nextflow workflow
available on GitHub [48] and archived on Zenodo [49].

Simulations were carried out using GRCm38.p6 as reference genome (GCF_000001635.26
[71].

CTCF and RAD21 ChlP-seq fold-change over control for JM8.N4 was generated by
processing data from GSE90994 [72], (SRR5085152 [73], SRR5085153 [74], SRR5085154
[75], SRR5085155 [76], SRR5085156 [77], SRR5085157 [78] using the ENCODE ChIP-seq
pipeline v2 [79] using ENCODE4 genomic datasets for GRCm38.

The wild-type extrusion barrier annotation was generated following the procedure outlined in
Methods (part 4).

The barrier annotation was further refined using the parameter optimization strategy
described in Methods (part 10) using a JM8.N4 Micro-C dataset as reference
(4DNFINNZDDXV [80]).

The optimized extrusion barrier annotation was then mutated by removing extrusion barriers
overlapping the del1-13d9lac and delattP-Rel5d9lac regions from Supplemental Figure S2 in
Rodriguez-Carballo 2017 [43].
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ChlIP-seq data for the following accession number was downloaded from the Gene
Expression Omnibus: GSM4665702 [87].

ChlIP-seq sequencing data for GSE90994 [88] were downloaded from EBI’s mirror of the
SRA: SRR5085152 [89], SRR5085153 [90], SRR5085154 [91], SRR5085155 [92],
SRR5085156 [93], SRR5085157 [94].

H1-hESC Hi-C and Micro-C data, as well as JM8.N4 Micro-C data in multi-resolution cooler
format (4DNFIFJH2524 [64], 4DNFI9GMP2J8 [67], 4DNFINNZDDXYV [80] were downloaded
from the 4DNucleome Data Portal [95].

The frequency matrix in MEME format for the CTCF motif (MA0139.1) was downloaded from
JASPAR 2022 CORE non-redundant database [52].
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