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Abstract

In asexual populations that don’t undergo recombination, such as cancer, deleterious
mutations are expected to accrue readily due to genome-wide linkage between
mutations. Despite this mutational load of often thousands of deleterious mutations,
many tumors thrive. How tumors survive the damaging consequences of this mutational
load is not well understood. Here, we investigate the functional consequences of
mutational load in 10,295 human tumors by quantifying their phenotypic response
through changes in gene expression. Using a generalized linear mixed model (GLMM),
we find that high mutational load tumors up-regulate proteostasis machinery related to
the mitigation and prevention of protein misfolding. We replicate these expression
responses in cancer cell lines and show that the viability in high mutational load cancer
cells is strongly dependent on complexes that degrade and refold proteins. This
indicates that upregulation of proteostasis machinery is causally important for high
mutational burden tumors and uncovers new therapeutic vulnerabilities.
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Introduction

Cancer develops from an accumulation of somatic mutations over time. While a
small subset of these mutations drive tumor progression, the vast majority of remaining
mutations, known as passengers, don’t help and might hinder cancer growth. The role
that passengers play in tumor progression has traditionally received little attention
despite their abundance and variation across cancer types. The number of passengers
in a tumor can vary by over four orders of magnitude, even within the same cancer type,
from just a few to tens of thousands of point mutations”.

Whether these passengers are neutral or damaging to tumors has long been a
matter of debate?-'°. Some have argued that passengers are functionally unimportant to
tumors given that most non-synonymous mutations are not removed by negative
selection in somatic tissues?3. This is in direct contrast to the human germ-line, where
non-synonymous mutations are functionally damaging to most genes'’ and signals of
negative selection are pervasive®. The common explanation for why damaging protein-
coding mutations are removed in the human-germline but maintained in somatic tissues
is that most genes are only important for multi-cellular function at the organismal level
(e.g. during development), but not during somatic growth?'2.

However, the notion that non-synonymous mutations are only selectively neutral
in somatic tissues is surprising given their known functional consequences in the germ-
line. Non-synonymous mutations are known to be damaging in the human germ-line
due to their effects on protein folding and stability'?, which ought to be shared between
somatic and germline evolution. An alternative explanation is that non-synonymous
mutations are indeed damaging in somatic evolution, but negative selection is too
inefficient at removing them due to linkage effects driven by the lack of recombination in
somatic cells'®. Without recombination to break apart combinations of mutations,
selection must act on beneficial drivers and deleterious passengers that arise in the
same genome together. This makes it less efficient for selection to individually favor
beneficial drivers or remove deleterious passengers'. As a result, a substantial number
of weakly damaging passengers can accrue in cancer due to inefficient negative
selection over time. In support of this model, tumors with very small numbers of
passengers — where linkage effects are expected to be negligible — have recently been
shown to exhibit signatures of negative selection and weed out damaging non-
synonymous mutations'. In contrast, the remaining majority (>95%) of tumors, which
contain much larger numbers of linked mutations, display patterns of inefficient negative
selection. This provides evidence in favor of the inefficient selection model and implies
that most tumors carry a correspondingly large deleterious mutational load.

If individual passengers are in fact substantially damaging in cancer, successful
tumors with thousands of linked mutations must find ways to maintain their viability by
mitigating this large mutational load. While paths to mitigation are difficult to predict for
non-coding mutations, tumors with mutations in protein-coding genes are expected to
minimize the damaging phenotypic effects of protein mis-folding stress. Here, we
investigate this hypothesis by analyzing tumor tissues with paired mutational and gene
expression profiles to assess how the physiological state of cancer cells change as they
accumulate protein coding mutations. Using a general linear mixed effects regression
model (GLMM), we leverage variation across 10,295 tumors from 33 cancer types and
find that complexes that re-fold proteins (chaperones), degrade proteins (proteasome)
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and splice mRNA (spliceosome) are up-regulated in high mutation load tumors. We
validate these results by showing that similar physiological responses occur in high
mutational load cancer cell lines as well. Finally, we establish a causal connection by
showing that high mutational load cell lines are particularly sensitive when proteasome
and chaperone function is disrupted through downregulation of expression via short-
hairpin RNA (shRNA) knock-down or targeted therapies. Collectively, these data
indicate that the viability of high mutational load tumors is strongly dependent on the up-
regulation of complexes that degrade and refold proteins, revealing a generic
vulnerability of cancer that can potentially be therapeutically exploited.

Results

Quantifying transcriptional response to mutational load in human tumors.

We first performed a genome-wide screen to systematically identify which genes
are transcriptionally upregulated in response to mutational load in human tumors. To do
so, we utilized publicly available whole-exome and gene expression data from 10,295
human tumors across 33 cancer types from The Cancer Genome Atlas (TCGA)'516. We
considered multiple classes of mutations to define mutational load and investigated their
degree of collinearity, focusing on protein-coding regions since the use of whole-exome
data limits the ability to accurately assess mutations in non-coding regions. We find that
there is a high degree of collinearity among synonymous, non-synonymous and
nonsense point mutations in protein coding genes (R > 0.9) but weak collinearity
between point mutations and copy number alterations (R < 0.05) (Supplemental Figure
1). Thus, we decided to focus on the aggregate effects of protein-coding mutations and
for all analyses defined mutational load as log1o of the total number of point mutations in
protein-coding genes. For simplicity, we used all mutations rather than focusing only on
passenger mutations since identifying genuine drivers against a background of linked
passenger events can be difficult, especially for tumors with many mutations.

Since gene expression can vary across tumors due to many factors, such as
cancer type, tumor purity and other unknown factors, we utilized a generalized linear
mixed model (GLMM) to measure the association of mutational load and gene
expression while accounting for these potential confounders (Fig. 1A). Within the
GLMM, tumor purity and mutational load were modeled as fixed effects whereas cancer
type was modeled as a random effect since it varies across groups of patients and can
be interpreted as repeated measurements across groups. The following GLMM was
applied separately to each gene,

Y~pBo+ f1X1+ P2X2 +v+e

where Y is a vector of normalized expression values across all tumors, fo is the fixed
intercept, S1is the fixed slope for the predictor variable X1 which is a vector of mutational
load values for each tumor, B2 is the fixed slope for the predictor variable X2 which is a
vector of the purity of each tumor, v is the random intercept for each cancer type, and e
is a Gaussian error term (Methods).
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125 Using this approach, we applied the GLMM to all tumors in TCGA and identified
126 5,330 genes that are significantly up-regulated in response to mutational load (B > 0,
127 FDR < 0.05). Next, we linked these genes to cellular function by performing gene set
128  enrichment to known protein complexes (CORUM database'’, Fig. 1B) and pathways
129  (KEGG database®, Fig. 1C) using gprofiler2'®. As expected for tumors with many

130  mutations, pathways and protein complexes related to cell cycle, DNA replication and
131  DNA repair were enriched in tumors with a high mutational load. However, some of the
132 most significant enrichment terms were for protein complexes and pathways that

133 regulate translation (mitochondrial ribosomes), protein degradation (proteasome

134  complex), and protein folding (CCT complex/HSP60), consistent with the hypothesis
135  that high mutational load tumors experience protein misfolding stress. Surprisingly, we
136  also found that the spliceosome, a large protein complex that regulates alternative

137  splicing in cells, is up-regulated in response to mutational load. This suggests that

138 transcription itself could also be regulated in response to protein misfolding stress, as
139 seen in other studies?%?.
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140
141 Figure 1. General linear mixed effects model (GLMM) identifies protein complexes and pathways

142 up-regulated in response to mutational load in human tumors. (A) Overview of the GLMM used to
143 measure the association of mutation load with gene expression while controlling for potential co-variates
144  (purity and cancer type). Genes with a significant, positive B1regression coefficient and false discovery
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145 rate (FDR) < 0.05 are used for gene set enrichment analysis. (B-C) Circular bar plots of protein

146  complexes from the CORUM database (left) and pathways from the KEGG database (right) that are
147  significantly enriched (p < 0.05) in response to mutational load. Length of bars denote negative log10 of
148 adjusted p-value and colors denote broad functional groups enriched in both databases.

149

150

151 Gene silencing through alternative splicing in high mutational load tumors.

152

153 We next investigated in detail how these protein complexes could mitigate the
154  damaging effects of protein misfolding in high mutational load tumors by examining the
155  role of the spliceosome in gene silencing. We hypothesized that the up-regulation of the
156  spliceosome in high mutational load tumors prevents further protein misfolding by

157  regulating pre-mRNA transcripts to be degraded rather than translated. The down-

158  regulation of gene expression via alternative splicing events, such as intron retention, is
159  one known mechanism to silence genes by funneling transcripts to mRNA decay

160  pathways.??-24

161 To test whether gene expression is down-regulated in high mutational load

162  tumors through intron retention, we utilized previously called alternative splicing events
163 in TCGA?. Alternative splicing events within this dataset were quantified through a

164  metric called percent spliced in or PSI. PSl is calculated as the number of reads that
165 overlap the alternative splicing event (e.g. for intron retention, either at intronic regions
166  or those at the boundary of exon to intron junctions) divided by the total number of

167  reads that support and don’t support the alternative splicing event. Thus, PSI| estimates
168  the probability of alternative splicing events only at specific exonic boundaries in the
169  entire transcript population without requiring information on the complete underlying

170  composition of each full length-transcript.

171 Using these alternative splicing calls, we reasoned that if a transcript contains an
172  intron retention event and is downregulated in expression, the transcript is more likely to
173  have been degraded by mRNA decay pathways. For all genes, we first quantified

174  whether intron retention events were present based on a threshold value >80% PSI. For
175  each gene with an intron retention event, we quantified whether the expression of the
176  same gene was under-expressed. Each gene was counted as under-expressed if it was
177  one standard deviation below the mean expression within the same cancer type. To

178  control for mutations that might affect patterns of expression, (i.e., expression

179  quantitative trait loci or eQTL effects), alternative splicing events that contained a point
180  mutation within the same gene were removed from the analysis (which only represent
181  ~1% of intron retention events across all tumors; Methods). We find that relative to all
182  transcripts with intron retention events, the number of transcripts that are under-

183  expressed increases with tumor mutational load (Fig. 2A), suggesting that the degree of
184  intron-retention driven mRNA decay is elevated in high mutational load tumors. This

185  trend is robust to other PSI value thresholds (>50-90% PSI), even for other alternative
186  splicing events (e.g., exon skipping, mutually exclusive exons, etc.) and when not

187 filtering for potential eQTL effects (Supplemental Figure 2 and 3).

188 We next investigated which genes are more likely to be silenced through mRNA
189  decay between low and high mutational load tumors. For each intron retention event,
190  we calculated whether PSI values were significantly different in low mutational load

191  tumors (<10 total protein-coding mutations) compared to high mutational load tumors
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(>1000 total protein-coding mutations) using a t-test. This approach identified 606 and
201 genes that have more and less intron retention events in high mutational load
tumors, respectively. Using gene set enrichment analysis, we find that cytoplasmic
ribosomes contain more intron retention events in high mutational load tumors,
potentially leading to their down-regulation through mRNA decay to prevent further
protein mis-folding (Fig. 2B). Genes that contain fewer intron retention events in high
mutational load tumors, which are less likely to undergo mRNA decay, are primarily
related to mRNA splicing.

A B

Metabolism of RNA

0.070 Processing of Capped Intron-Containing Pre—-mRNA
mRNA Splicing — Major Pathway
mRNA Splicing
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Figure 2. Gene silencing is elevated in high mutational load tumors likely through the coupling of
intron retention with mRNA decay. (A) Counts of the number of under-expressed transcripts with intron
retention events, relative to counts of all intron retention events in tumors binned by the total number of
protein-coding mutations. Intron retention events with PSI > 80% are counted. Error bars are 95%
confidence intervals determined by bootstrap sampling. (B) Barplot of significant protein complexes in the
CORUM database (in red) and Reactome pathway database (in blue) with more (bottom) and less (top)
intron retention events in high mutational load tumors compared to low mutational load tumors.

Regulation of translation, protein folding and protein degradation in high
mutational load tumors.

Next, we investigated in detail how the remaining proteostasis complexes that
were significant in our genome-wide screen, which regulate protein synthesis,
degradation and folding, could mitigate protein misfolding in high mutational load
tumors. To do so, we expanded our gene sets to include other chaperone families, all
ribosomal complexes and proteasomal subunits (Fig. 3A). Using the GLMM framework
detailed above, we find that the expression of nearly all individual genes in chaperone
families that participate in protein folding (HSP60, HSP70 and HSP90), protein
disaggregation (HSP100), and have organelle-specific roles (ER and mitochondrial) are
significantly up-regulated in response to mutational load. Interestingly, however, small
heat shock proteins, which don’t participate in protein folding or disaggregation, are
significantly down-regulated in response to increased protein coding mutations. The role

®
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224 of small heat shock proteins is primarily to hold unfolded proteins in a reversible state
225  for re-folding or degradation by other chaperones?® and thus, could possibly be down-
226  regulated due to their inefficiency in mitigating protein misfolding.

227 We further examined differences in expression of different structural components
228  of the proteasome, a large protein complex responsible for degradation of intracellular
229  proteins. Consistent with the over-expression of chaperone families that mitigate protein
230  mis-folding, both the 19s regulatory particle (which recognizes and imports proteins for
231 degradation) and the 20s core (which cleaves peptides) of the proteasome are up-

232 regulated in response to mutational load in TCGA (Fig. 3A). In addition, we find that

233 specifically mitochondrial — but not cytoplasmic — ribosome complexes are up-

234  regulated in high mutational load tumors. As previously reported in yeast?” and human
235  cells?®, mitochondrial ribosome biogenesis has been shown to occur under conditions of
236  chronic protein misfolding as a mechanism of compartmentalization and degradation of
237  proteins. In contrast, translation of proteins through cytosolic ribosome biogenesis has
238  been previously characterized to be attenuated and slowed to prevent further protein
239  mis-folding?®. This decrease in expression of cytoplasmic ribosomes is also consistent
240  with observed patterns of alternative splicing coupled to mRNA decay pathways in high
241  mutational load tumors (Fig. 2B).

242 Finally, we performed a jackknife re-sampling procedure to confirm that specific
243  cancer types aren’t driving patterns of association within the GLMM. This was achieved
244 by removing each cancer type from the regression model one at a time, and re-

245  calculating regression coefficients on the remaining set of samples. Overall, regression
246  coefficients were stable across cancer types and trends were unchanged (Supplemental
247  Figure 4). In addition, we also confirmed that patient age was not driving patterns of
248  association of mutational load and gene expression within the GLMM (Supplemental
249  Figure 5). Taken together, this suggests that protein re-folding, protein disaggregation,
250  protein degradation, and down-regulation of cytoplasmic translation are potential

251  mechanisms to mitigate and prevent protein misfolding in high mutational load tumors.
252

253  Validating proteostasis expression responses in cancer cell lines and

254  establishing a causal connection through perturbation experiments.

255

256 We next sought to validate these results by examining whether the expression
257  patterns observed in human tumors replicate within cancer cell lines from the Cancer
258  Cell Line Encyclopedia (CCLE)°. Unlike TCGA, samples within each cancer type in
259  CCLE can be small and are unbalanced (i.e., some cancer types have <10 samples and
260  others have >100 samples). Since GLMMs may not be able to estimate among-

261  population variance accurately in these cases?®!, we utilized a simple generalized linear
262  model (GLM) instead to measure the effect of mutational load on patterns of expression
263  without over-constraining the model. Indeed, we find that expression patterns seen in
264  human tumors broadly replicate in cancer cell lines (Fig. 3). Similar to the expression
265 analysis in TCGA, we also confirmed through a jackknife re-sampling procedure that
266  specific cancer types aren’t driving patterns of association within the GLM

267  (Supplemental Figure 6). Overall, this indicated that the expression patterns observed
268 are cell autonomous (i.e., independent of organismal effects such as the immune

269  system, age or microenvironment) and consistent across high mutational load cancer
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270  cells. Importantly, it also demonstrates that cancer cell lines are a reasonable model to
271  causally interrogate these effects further through functional and pharmacological
272 perturbation experiments.

273
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0% 10% 50% 90% 100% 0% 10%  50% 90% 100%
Cytoplasmic Ribosomes OO—[D— —[I:'— L]
Mitochondrial Ribosomes (] —D:'— o I:Ij
19S Regulatory Particle
20S Core
HSP 90 o [} —{T+—
ER Chaperones [ —[I:l— —EI:'—
Mitochondrial Chaperones —[I]— —EI}
-0.50 -0.25 0.00 0.25 -0.5 0.0 0.5 1.0
Effect Size (Beta Coefficient)
TCGA (Human Tumors) CCLE (Cancer Cell Lines)
Cytoplasmic Ribosomes II]-. ° ﬂ]—.“ L]
Mitochondrial Ribosomes —I:Ijittﬂ —:I:'— °
19S Regulatory Particle
20S Core
o - - [——
SmallHs  { | — — | b
ER Chaperones -[I:l— -Dji
Mitochondrial Chaperones —[D L —:D—
0 20 40 0 5 10 15
Negative Log10 of Adjusted P-Value
E Chaperones Proteasome E Ribosomes
274
275
276

277  Figure 3. Protein folding, degradation, and synthesis are regulated in both high mutational load
278  tumors (TCGA) and cell lines (CCLE). Box plots of B+ regression coefficients (top panels) and negative
279 log+ adjusted p-values (bottom panels) measuring the association of mutation load and the expression of
280  individual genes in chaperone (purple), proteasome (yellow), and ribosome (green) complexes. Shown
281  are regression coefficients from human tumors (TCGA) on the left and cell lines (CCLE) on the right.

282  Percentages and grey lines on top panels show the quantile distribution of regression coefficients

283  measuring the association of mutational load and expression for all genes in the genome within each
284  dataset. Vertical grey line on bottom panels shows threshold of significance (p = 0.05).
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285 To establish a causal relationship between the over-expression of proteostasis
286  machinery and maintenance of cell viability under high mutational load, we utilized

287  expression knock-down (shRNA) estimates from project Achilles®? for the same cancer
288 cell lines as in CCLE. We sought to measure how mutational load impacts cell viability
289  when protein complexes and gene families undergo a loss of function through

290  expression knock-down. Since the shRNA screen was performed on an individual gene
291 Dbasis, we utilized a GLM framework that aggregates expression knock-down estimates
292  of all genes within a given proteostasis gene family to jointly measure how mutational
293  load impacts cell viability after loss of function. Specifically, we included an additional
294  categorical variable of the gene name within each gene family to allow for a change in
295  the intercept within each gene in the GLM when measuring the association of

296 mutational load and cell viability after expression knock-down. In addition, we similarly
297 evaluated whether specific cancer types were driving patterns of association within the
298  GLM through jackknife re-sampling by cancer type (Fig. 4A).

299 Overall, we find that elevated mutational load is associated with decreased cell
300 viability when the function of most chaperone gene families are disrupted through

301 expression knock-down (Fig. 4A). However, only chaperones within the HSP100 family,
302  which have the unique ability to rescue and reactivate existing protein aggregates in
303  cooperation with other chaperone families®3, show a significant negative relationship
304 between mutational load and cell viability across almost all cancer types. Similarly, we
305 find specificity in the vulnerability that mutational load generates when the function of
306 the proteasome and different ribosomal complexes are disrupted (Fig. 4A). Mutational
307 load significantly decreases cell viability only when expression knock-down of the 19s
308 regulatory particle of the proteasome is disrupted, suggesting that targeting the protein
309 import machinery of the proteasome is more effective than targeting the protein cleaving
310  machinery in the 20s core. Finally, mutational load significantly increases cell viability
311  when cytoplasmic ribosomes — which are already down-regulated in response to

312  mutational load (Fig. 2B) — undergo a loss of function through expression knock-down.
313  Conversely, expression knock-down of mitochondrial ribosomes significantly decreases
314  viability with increased mutational load in cell lines, which is also consistent with the
315 patterns of expression observed.

316 Since functional redundancy in the human genome can make expression knock-
317 down estimates within individual genes noisy, we also examined how drugs targeting
318 the function of whole complexes impacts viability with mutational load across all cancer
319 types and when removing individual cancer types through jackknife re-sampling. To do
320  so, we utilized drug sensitivity screening data in project PRISM3* within CCLE and used
321 asimple GLM to measure the association of mutational load and cell viability after drug
322 inhibition. We find that treatment with the majority of proteasome inhibitors (6/8) and
323  ubiquitin-specific proteasome inhibitors (2/3), which target protein degradation

324  complexes, are significantly associated with a decrease in cell viability in high

325 mutational load cell lines. Similarly, most HSP90 inhibitors decrease cell viability with
326  mutational load (8/10), although only a few drugs show a significant relationship. This
327  variability in the efficacy of drugs with similar mechanisms of action likely reflects that
328 the efficacy to disrupt the function of proteostasis machinery is dependent on the

329  specific molecular affinity of a compound to its target and downstream effectors. While
330 these are the only relevant proteostasis drugs in the PRISM dataset that are currently


https://doi.org/10.1101/2022.06.08.495407
http://creativecommons.org/licenses/by/4.0/

331
332
333
334
335

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495407; this version posted June 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

available, we anticipate that drugs targeting other chaperone machinery or splicing
complexes could also target other potential vulnerabilities in high mutational load
cancers. Collectively, these results indicate that elevated expression of protein
degradation and folding machinery is causally related to the maintenance of viability in
in high mutational load cell lines, and likely in high mutational load tumors by extension.
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Figure 4. Viability in high mutational load cell lines decreases when proteostasis machinery is
disrupted. (A) Heatmap of B1regression coefficients jointly measuring the association of mutational load
and cell viability after expression knockdown of individual genes in proteostasis complexes. (B) Heatmap
of B1regression coefficients measuring the association mutational load and cell viability after inhibition of
proteostasis machinery via drugs. Both panels show how stable regression estimates are when including
all cancer types (‘All Cancers’) shown in black boxes and when removing each individual cancer type on
the y-axis. Colors denote a positive (blue), zero (grey), or negative (red) relationship of mutational load
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and cell viability after expression knock-down or drug inhibition. Stars denote whether the relationship is
significant (* = p < 0.05; ** = p <0.005; *** = p < 0.0005).

Lastly, we find that most drugs in the PRISM database do not significantly
decrease cell viability with mutational load (Fig. 5A), suggesting that high mutational
load cancer cells are not generically vulnerable to all classes of drugs. Specifically, we
find that drugs which inhibit transcription, cytoskeleton organization, protein
degradation, chaperones, protein synthesis and promote apoptosis are most effective at
targeting high mutational load cancer cells — delineating additional potential therapeutic
vulnerabilities in high mutational burden tumors (Fig. 5B).

A B
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Figure 5. Targeting proteostasis machinery is a key vulnerability in high mutational load cell lines.
(A) Bar plot of the number of drugs in the PRISM database significantly (black) and not significantly (grey)
associated with mutational load and cell viability using a simple generalized linear model (GLM). (B)
Fraction of drugs in broad functional categories significantly negatively associated with mutational load
and cell viability from the GLM. Confidence intervals were determined by randomly sampling 50 drugs in
each functional category 100 times. Dashed line is the median of randomly sampled drugs across all
categories.
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367 Discussion

368 Here, we test the hypothesis that cancer cells regulate their proteostasis

369 machinery to mitigate the damaging effects of passenger mutations, which can

370  destabilize and misfold proteins. Misfolded proteins can arise from non-synonymous or
371 nonsense passengers which cause abnormal amino acid modifications or pre-mature
372  truncations in proteins. Even synonymous passengers, which are traditionally thought to
373  be functionally silent, can lead to misfolding of proteins through changes in mRNA

374  stability3®, translational pausing®®37, and non-optimal codon usage.®-3° As a resullt,

375  protein misfolding can be damaging in cells not only due to a loss of function of the

376  original protein, but also due to a gain in toxicity caused by the aggregation of aberrant
377 peptides. It is intriguing to consider the possibility that the need to manage protein

378  misfolding stress is a hallmark of somatic evolution in cancer.

379 To maintain viability by minimizing these cytotoxic effects, we find that high

380  mutational load tumors — similar to yeast*?, bacteria*'#?, and viruses*® — up-regulate the
381 expression of chaperones, which allow mutated proteins that would otherwise be

382  misfolded to retain function. We find evidence suggesting that specific chaperone

383 families that actively participate in protein re-folding (HSP60, HSP90 and HSP70) or
384  disaggregation (HSP100) are up-regulated in response to mutational load, while other
385 chaperone machinery that salvage proteins (Small HS) are downregulated. In addition,
386  we find degradation of mutated proteins through up-regulation of the proteasome to be
387 another possible strategy high mutational load tumors use to mitigate protein misfolding
388  stress.

389 Finally, we find additional mechanisms that high mutational load tumors use to
390 not just mitigate but also prevent protein misfolding. By utilizing post-transcriptional

391  processes that couple alternative splicing with mRNA decay pathways known to occur
392 in normal human tissues?>4445, high mutational load tumors appear to selectively

393  prevent protein production by regulating certain pre-mRNA transcripts to be degraded
394 rather than translated. We find evidence suggesting that the targets of this coordinated
395  un-productive splicing are primarily related to cytoplasmic ribosomal gene expression
396 that controls the translation of proteins, consistent with observations in other

397  organisms?*®—48_Intriguingly, we find that while cytoplasmic ribosome expression is

398 attenuated, mitochondrial ribosome biogenesis in human tumors is up-regulated in

399  response to mutational load. This could both be another mechanism that high

400  mutational load tumors use to compartmentalize and degrade proteins?’ and reflect the
401 increased energetic demands of proteostasis maintenance®.

402 The expression responses observed here are not only consistent with protein
403  misfolding stress in other organisms, but also cross-validate in cancer cell lines, where
404  we find similar expression responses to mutational load. This provides further evidence
405  of a generic, cell intrinsic phenomenon occurring that cannot be explained by extrinsic
406 organismal effects, such as aging, changes in the immune system or microenvironment.
407  Furthermore, we move beyond correlations of gene expression responses to mutational
408 load and establish a causal connection by demonstrating that mitigation of protein

409  misfolding through protein degradation and re-folding is necessary for high mutational
410 load cancer cells to maintain viability through perturbation experiments via knockdown
411  experiments with shRNA and drug profiling.
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412 The results presented here have many implications. First, they suggest that while
413  there is direct selection during somatic evolution for pathogenic drivers that allow cancer
414  cells to continually proliferate, damaging passengers that destabilize proteins must also
415 cause cancer cells to experience second-order indirect selection for alterations that

416  allow tumors to overcome this proteostasis imbalance. This could occur through

417  phenotypic plasticity, shifts in methylation and chromatin structure, or through

418 compensatory point mutations and duplications, consistent with other studies®%-5".

419 Indeed, gene duplication, where one copy can still perform the required function while
420 the other copy is non-functional, is another known mechanism that allows cells to

421  maintain robustness to damaging mutations in many eukaryotic organisms®23, In

422  support of this, whole genome-duplication, which is common in cancer, has recently
423  been shown as another potential mechanism that tumor cells could use to maintain

424  robustness to deleterious passengers®*. However, duplication events are also known to
425  be deleterious due to gene dosage effects that cause protein imbalance®, which could
426  further exacerbate protein misfolding. Further experimental studies are needed to

427  distinguish how cancer cells compensate for protein misfolding and the role that

428 genome duplication may play in this process.

429 Second, the extra demands of proteostasis maintenance presents important

430  vulnerabilities in high mutational load cancers that could be exploited. The clinical use of
431  chaperone inhibitors for cancer treatment has been explored for over two decades®¢-58
432 but no study, to our knowledge, has compared the efficacy of chaperone inhibitor use in
433 tumors stratified by mutational load. Similarly, the clinical use of proteasome inhibitors,
434 which are currently only approved for the treatment of multiple myeloma and mantle-cell
435  lymphoma®® has not been directed specifically to high mutational load tumors. While
436 the efficacy of proteasome inhibitors in multiple myeloma patients is linked to the protein
437  misfolding stress response®'6? | it is currently unknown whether high mutational load
438  tumors are more susceptible to these inhibitors. Outside of drugs in the clinic, the need
439  for cancers to compensate for protein misfolding could also present additional

440  vulnerabilities due to evolutionary trade-offs, where the improvement in fitness of one
441  trait comes at the expense of another. Previous work in yeast has identified strong

442  trade-offs between the adaptive mechanisms that allow for the tolerance of

443  mistranslation and survival under conditions of starvation*®. Whether similar conditions
444  could be exploited in high mutational load cancer cells warrants additional further

445  investigation.

446 Finally, our results contribute to an accumulating body of evidence that cancer
447  and aging are different manifestations of related underlying evolutionary processes®-9°.
448  The same forces of mutation and inefficient selection in somatic evolution generates a
449  persistent problem of deleterious mutation accumulation in normal somatic tissues and
450  during tumor growth. Disruption of proteostasis is a known hallmark of aging in normal
451  tissues®®. Many transcriptional responses observed in high mutational load tumors —
452  such as shifts in regulation of alternative splicing®’, protein degradation®®, and protein
453  re-folding®® — are also observed in normal aging tissues which contain somatic

454  mutations. Despite this, aging tissues appear to utilize different strategies to deal with
455  proteostasis disruption — such as up-regulation of chaperones in the Small HS family”®
456  and autophagy’' — which are not a pre-dominant response observed here in high

457  mutational load tumors. Whether different combinations of strategies are used by high

13


https://doi.org/10.1101/2022.06.08.495407
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495407; this version posted June 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

458  mutational load cancer cells use to overcome their mutational load or whether all the
459  strategies identified here are needed to maintain proteostasis is unclear. Differences in
460 these proteostasis strategies could be due to different selection pressures during

461  somatic evolution, the degree of mutational load required to induce a stress response,
462  differences in energetic costs of protein maintenance, or the interplay that exists

463  between apoptosis and proteostasis. Further studies are needed to elucidate the

464  precise dynamics and physiological consequences of inefficient negative selection in
465  somatic evolution, how this impacts cellular growth, and the mechanisms somatic cells
466  use to maintain robustness to proteostasis disruption.
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479 Methods

480 Data availability and resources. \Whole-exome, somatic mutation calls of 10,486

481  cancer patients across 33 cancer types in The Cancer Genome Atlas (TCGA) were
482  downloaded from the Multi-Center Mutation Calling in Multiple Cancers (MC3) project'®
483  (https://gdc.cancer.gov/about-data/publications/mc3-2017). For the same patients in
484  TCGA, RNA-seq data of log> transformed RSEM normalized counts were downloaded
485  from the UCSC Xena Browser’? (https://xenabrowser.net/datapages/) and copy number
486  alterations (CNAs), including amplifications and deletions, called via ABSOLUTE were
487  downloaded from COSMIC (v91)"3 (https://cancer.sanger.ac.uk/cosmic/download).

488  Tumor purity estimates for TCGA were downloaded from the Genomic Database

489  Commons (GDC)"™ (https://gdc.cancer.gov/about-data/publications/pancanatlas). Data
490 for all cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE) were downloaded
491  from DepMap?® (https://depmap.org/portal/download/all/). Specifically, mutation calls
492  (Version 21Q3) from whole-exome sequencing data, copy number alternations

493  quantified by ABSOLUTE (Version CCLE 2019), log2 transformed TPM normalized

494  counts (Version 21Q3) from RNA-seq data, shRNA data from project Achilles®?

495  normalized using DEMETER (DEMETER2 Data v6), and primary drug sensitivity
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496  screens of replicate collapsed log fold changes relative to DMSO from project PRISM3*
497  (Version 19Q4) were used.

498  Statistical analysis. The ImerTest and Imer package in R was used to apply a separate
499  generalized linear mixed model (GLMM) for each gene in the genome to identify groups
500 of genes whose expression is up-regulated in response to mutational load in TCGA. For
501 each gene, expression values across all patients were z-score normalized in all

502 analyses to ensure fair comparisons across genes. Known co-variates of tumor purity
503 and cancer type were included in the GLMM. Tumor purity and mutational load were
504 modeled as fixed effects, whereas cancer type was modeled as a random effect (i.e.
505 random intercept) since it varies across groups of patients and can be interpreted as
506 repeated measurements across groups. For all analyses, mutational load was defined
507 as log1o of the number of synonymous, nonsynonymous and nonsense mutations per
508 tumor. For each gene, the parameters used in the GLMM were as follows,

509 Y~Po+ [1X1 + [2X2 +v+e

510 whereY is a vector of expression values of each tumor, fo is the fixed intercept, £1is
511 the fixed slope for the predictor variable X4 which is a vector of mutational load values
512 for each tumor, B2 is the fixed slope for the predictor variable X2 which is a vector of the
513  purity of each tumor, v is the random intercept for each cancer type, and e is a

514  Gaussian error term.

515 Unlike TCGA, samples within each cancer type in CCLE can be small and are
516 unbalanced (i.e. some cancer types have <10 samples and others have >100 samples).
517 In these cases, mixed effects models may not be able to estimate among-population
518 variance accurately®'. Thus, for all regression-based analyses in CCLE, a simple

519  generalized linear model (GLM) was used instead. Cell viability values across all cell
520 lines were z-score normalized by gene in all analyses to ensure fair comparisons across
521 genes. To assess whether the same sets of genes are up-regulated in response to

522 mutational load in CCLE using the GLM, a similar procedure to the GLMM was

523  performed. A separate GLM was applied for each gene with the following parameters,

524 Y~fo+ f1X1te

525 whereY is a vector normalized expression values of each cell line, Bo is the fixed

526 intercept, S1is the fixed slope for the predictor variable X1 which is a vector of mutational
527 load values for each tumor, and e is a Gaussian error term. A similar GLM framework as
528 above was used to estimate the association of mutational load and cell viability after
529  shRNA knock-down of individual genes in proteostasis complexes with the following

530 parameters,

531 Y~po+ f1X1+ f2X2 +e

532

533  where Y is a vector of normalized cell viability estimates after expression knock-down of
534  an individual gene across all cell lines, So is the fixed reference intercept, £1is the fixed
535  slope for the predictor variable X1 which is a vector of mutational load values for each
536  cell line, B2is a change in the intercept for X> which is a categorical variable of individual
537 genes within each proteostasis complex, and e is a Gaussian error term. To estimate
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538  the association of mutational load and cell viability after pharmacologic inhibition of
539  proteostasis machinery, the following GLM was applied to each relevant drug in PRISM:

540 Y~fo+ f1X1te

541 whereY is a vector normalized cell viability estimates after drug inhibition across all cell

542 ines, Bo is the fixed intercept, B4 is the fixed slope for the predictor variable X1 which is a

543  vector of mutational load values for each tumor, and e is a Gaussian error term.

544

545  Model validation. For both the GLM and GLMM, model assumptions of homogeneity of
546  variance were verified by plotting residuals versus fitted values in the model and

547  residuals versus each covariate in the model. Multi-collinearity with other mutational

548 classes (e.g. such as copy number alterations, CNAs) were considered but not found to
549  correlate with point mutations (Supplemental Figure 1). A jackknife re-sampling

550  procedure was used for outlier analysis and to determine whether specific cancer types

551 are driving patterns of association within the GLM and GLMM. Briefly, each cancer type

552 was removed from the regression model one at a time, and regression coefficients were
553  re-estimated. Overall, regression coefficients were fairly stable across cancer types and
554  trends remained the same (Supplemental Figure 4 and 6).

555 Proteostasis gene sets. Genes for chaperone complexes were identified from’® and
556  genes that are co-chaperones were not considered. Proteasome and ribosomal
557 complexes were identified from CORUM'.

558 Gene set enrichment analysis. All gene set enrichment analysis was performed using
559  gprofiler2 with default parameters. For all sets of genes, significance was determined
560  after correcting for multiple hypothesis testing (FDR < 0.05). For gene set enrichment
561 analysis used to identify genes up-regulated in TCGA in response to mutational load, all
562 terms in CORUM database were reported and enrichment terms in the KEGG database
563  of diseases not related to cancer (e.g. 'Influenza A') were omitted from the main figures
564  for clarity and space. For gene sets used to identify terms differentially splice in between
565  high and low mutational load tumors, all terms in the CORUM and the REACTOME

566  database were reported in the main figures. The full set of enrichment terms for all

567 analyses is reported in Supplemental Table 1.

568  Alternative splicing analysis. Alternative splicing events were quantified through a
569  previously established metric called PSI. PSl is calculated as the number of reads that
570  overlap the alternative splicing event (e.g. for intron retention, either at intronic regions
571  orthose at the boundary of exon to intron junctions) divided by the total number of

572  reads that support and don’t support the alternative splicing event. PSI summarizes
573  alternative splicing events at specific exonic boundaries in the entire transcript

574  population without needing to know the complete underlying composition of each full
575  length-transcript.

576 Alternative splicing calls for all tumors in TCGA were downloaded from TCGA
577  SpliceSeqg®®. Default splice event filters (percentage of samples with PSI values >75%)
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from the database were applied. To test whether gene expression is down-regulated in
high mutational load tumors through alternative splicing, we calculated whether
alternative splicing events were present based on different threshold values of percent
spliced in (PSI) from 90% to 50%. (Supplemental Figure 3). For each alternative splicing
event in a gene, we quantified whether the expression of the same gene was under-
expressed. Each gene was counted as under-expressed if it was one standard deviation
below the mean expression within each cancer type. Genes that contained a point
mutation within the same alternative splicing event were removed to control for eQTL
effects. We note that intron retention events removed from this analysis represent only
~1% of intron retention events across all tumors and similar trends are found when this
filtering scheme is not applied (Supplemental Figure 2). In addition, we evaluated
whether this trend is robust to other alternative splicing events (i.e., Alternate Donor
Sites, Alternate Promoters, Alternate Terminators, Exon Skipping Events, ME=Mutually
Exclusive Exon; Supplemental Figure 3).

To investigate which genes are differentially spliced in between low and high
mutational load tumors for specific alternative splicing events (i.e. intron retention), a t-
test was used to calculate whether PSI values were significantly different in tumors with
< 10 protein-coding mutations compared to tumors with > 1000 protein-coding
mutations. Each alternative splicing event within a gene was required to have less than
25% of missing PSI values and a mean difference between the two groups of >0.01 to
be considered. This approach identified 606 and 201 significant genes that have more
and fewer intron retention events in high mutational load tumors, respectively, after
correcting for multiple hypothesis testing (FDR < 0.05).

Drug category annotation and enrichment analysis. A separate GLM was ran for all
drugs in the PRISM database to evaluate whether they are associated with mutational
load and cell viability. All drugs that were negatively associated with mutational load and
viability were queried on PubMed based on their reported mechanism of action in
PRISM and grouped into broad categories (Supplemental Table 1). Categories of drug
mechanism of action were first chosen based on their role in metabolism and known
hallmarks of cancer. Additional categories not directly related to known cancer
associated functional groups were made for drugs that could not otherwise be grouped
(i.e. ‘lon Channel Regulation’, Viral Replication Inhibitor', etc.). Drugs with ambiguous
mechanism of action (e.g. 'cosmetic', 'coloring agent') were grouped into ‘Other’. The
abstracts of up to 10 associated papers were used to examine for evidence connecting
drug mechanisms of action to 33 broad categories. In total, 700 drug mechanism of
action were grouped and annotated into 33 broad categories. These broad categories
were used to assess whether high mutational load cancer cell lines are generically
vulnerable to drugs or whether certain categories are more likely to contain drugs
effective against high mutational load cell lines. To control for differences in the number
of drugs within each category, 50 drugs were randomly sampled, and the fraction of
drugs significantly associated with mutational load in each category was calculated 100
times to generate confidence intervals.
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621 Code and software availability. All code used for analysis will be made publicly
622 available on Github under the open-source MIT License upon publication.

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

641

642

18


https://doi.org/10.1101/2022.06.08.495407
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495407; this version posted June 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

643
644 Supplemental Figures
645
A TCGA
CNA -0.03 -0.02 -0.02 -0.02 -0.02 ...
Amplifications = 0.01 0.01 0.01 0.01 0.01 0.3 ..
Deletions -0.04 -0.04 -0.04 -0.04 —0.04. 0.3 .
Corr
1.0
Nonsense ... 004 001 00z
0.0
Nonsynonymous -0.04 0.01 -0.02
-0.5
Synonymous ..... 004 001 002 "
Protein.Coding ... -0.04 0.01 -0.02
SNV .. -0.04 0.01 -0.03
O 2] o () o ) e
@é ob\(\ @o" & Q)(\e ‘,\\00 ‘\\é‘ Oe
¢ & & & ¢
N 8 O éo Q A\
6@ é‘ é(\ &Q
QK éo(\ v
B CCLE
CNA -0.11 -0.1 -0.07 -0.11 —0.08. 0.15 .
Amplifications  -0.04 -0.03 -0.01 -0.05 -0.05 0.05 . 0.15
Deletions -0.11 -0.1 -0.07 -0.11 —0.07. 0.05 .
Corr
1.0
Nonsense 0.29 -0.07 -0.05 -0.08 - 0.5
0.0
Nonsynonymous 0.48 -0.11 -0.05 -0.11
-,
Synonymous ... 0.48 0.29 -0.07 -0.01 -0.07 -1.0
Protein.Coding ... -0.1 -0.03 -0.1
SNV -0.11 -0.04 -0.11
Q o) & o () o & el
B 00\0 *(Qo" \\6‘00 %Q)o‘-’ \é\\o(\ Q,;\\OQ o
N (\0(\ O eo QQ) \\{\\O
& oF & &
Qk eo(\ v
646

647  Supplemental Figure 1. No collinearity of point mutations and copy number alterations in human
648  tumors (TCGA) and cancer cell lines (CCLE). Heatmap of Pearson’s correlation coefficients between
649  different classes of mutations in A. CCLE (cancer cell lines) and B. TCGA (human tumors). Colors denote
650  magnitude of correlation coefficients and whether the relationship is positive (red), negative (blue) or

651 negligible (white). CNAs are defined as the combined number of amplifications and deletions, while SNVs
652  are the combined number of all point mutations.
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655 Supplemental Figure 2. Intron retention events that overlap with mutations do not account for the
656  association of gene silencing in high mutational load tumors. A. Counts of the number of intron

657 retention events filtered (in red) due to overlap with a mutation present in the same gene (and thus

658 corresponding to potential eQTLs) compared the number of remaining alternative splicing events with no
659  overlap with a mutation (in blue). Alternative splicing events filtered represent ~1% of all alternative

660  splicing events across all tumors. B-C. Counts of the number of under-expressed transcripts with intron
661 retention events, relative to counts of all intron retention events in tumors binned by the total number of
662 protein-coding mutations. Shown are when trends when (B) not filtering alternative splicing events due to
663  overlap with mutations and (C) when events are filtered (same as Fig. 2A). Intron retention events with
664  PSI > 80% are counted. Error bars are 95% confidence intervals determined by bootstrap sampling.

665  These results further support the prediction that gene silencing is elevated in high mutational load tumors
666  and likely mediated by the coupling of intron retention with mRNA decay

670
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Supplemental Figure 3. The number of under-expressed transcripts increases with the mutational
load of tumors for different PSI value thresholds and alternative splicing events. A. Counts of the
number of under-expressed transcripts with intron retention events, relative to counts of all intron
retention events in tumors binned by the total number of protein-coding mutations. Intron retention events
with different PSI thresholds are shown colored. B. Counts of the number of under-expressed transcripts
that contain different classes alternative splicing events, relative to counts of all alternative splicing events
of the same class in tumors binned by the total number of protein-coding mutations. Alternative splicing
events of different classes are shown colored (AA=Alternate Acceptor Sites, AD=Alternate Donor Sites,
AP=Alternate Promoter, AT=Alternate Terminator, ES=Exon Skip, ME=Mutually Exclusive Exons, Rl=
Retained Intron). Error bars are 95% confidence intervals determined by bootstrap sampling.
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Supplemental Figure 4. Association between expression in proteostasis complexes and
mutational load is not driven by a single cancer type in TCGA. Box plots of regression coefficients
from the GLMM measuring the association of the expression of each individual gene with the mutational
load of tumors in TCGA colored by different proteostasis complexes. Shown are regression estimates

after removing each individual cancer type (x-axis) and re-running the GLMM.

22


https://doi.org/10.1101/2022.06.08.495407
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.08.495407; this version posted June 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

19S Regulatory Particle 20S Core Cytoplasmic Ribosomes ER Chaperones
0.50
.
N *+$+*+ -+*+*!+ + | . .
1 ﬁ
| Syt THERS
c
K] ! ¢ .
K] .
=q=) . . . . 1 .
S -0.25 .
o
g
i Group
HSP 100 HSP 60 HSP 70 HSP 20

5 ‘ 19S Regulatory Particle
@ 050 1 B3 20sC
o ore
E‘ 1 . Cytoplasmic Ribosomes
W oo2s
° i . - * ‘ ER Chaperones
s * ‘ B3 HsP 100
]
§ o000 4 ! . B3 HsP 6o
k| 1 : B3 Hsp70
.% 025 } \ B8 HsP 9o
g . . - Mitochondrial Chaperones
c " e 4 o o o o B3 Miochondrial Ribosomes
g Mitochondrial Chaperones Mitochondrial Ribosomes Small HS 2 1 Z z ’oT z Z . Small HS
Q 0.50 - ® ¥ b © ~ ®
m
c
2
©
= 025
| Hem—=H
g , .

: gLIME

8 §$ 838R 88 8 9§ 838 RS 8 8§ 38 38R 8 8

1 T 1 ‘? 1 ﬂf 1 1 T 1 ‘? 1 d? 1 1 T 1 ‘? 1 ? 1

o Q Q Q Q o (=] o Q Q Q (=3 o (=3 o Qo Q Qo Qo o (=]

- @ - wn o ~ @ - @ ~ wn ©w ~ @ - @ A w ©o ~ @
Age Groups

Supplemental Figure 5. Association between the expression in proteostasis complexes and
mutational load is not driven by patient age. Boxplots of regression coefficients from the GLMM
measuring the association of the expression of each individual gene with the mutational load of tumors
from TCGA colored by different proteostasis complexes. Shown are regression coefficients when running
the GLMM on tumors stratified by different age groups (x-axis).
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