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Abstract

Somatic mutations in human cells have a highly heterogeneous genomic distribution, with
increased burden in late-replication time (RT), heterochromatic domains of chromosomes. This
regional mutation density (RMD) landscape is known to vary between cancer types, in
association with tissue-specific RT or chromatin organization. Here, we hypothesized that
regional mutation rates additionally vary between individual tumors in a manner independent of
cell type, and that recurrent alterations in DNA replication programs and/or chromatin
organization may underlie this. Here, we identified various RMD signatures that describe a
global genome-wide mutation redistribution across many megabase-sized domains in >4000
tumors. We identified two novel global RMD signatures of somatic mutation landscapes that
were universally observed across various cancer types. First, we identified a mutation rate
redistribution preferentially affecting facultative heterochromatin, Polycomb-marked domains,
and enriched in subtelomeric regions. This RMD signature strongly reflects regional plasticity in
DNA replication time and in heterochromatin domains observed across tumors and cultured
cells, which was linked with a stem-like phenotype and a higher expression of cell cycle genes.
Consistently, occurrence of this global mutation pattern in cancers is associated with altered cell
cycle control via loss of activity of the RB1 tumor suppressor gene. Second, we identified
another independant global RMD signature associated with loss-of-function of the TP53
pathway, mainly affecting the redistribution of mutation rates away from late RT regions. The
local mutation supply towards 26%-75% cancer driver genes is altered in the tumors affected by
the global RMD signatures detected herein, including additionally a known pattern of a general
loss of mutation rate heterogeneity due to DNA repair failures that we quantify. Our study
highlights that somatic mutation rates at the domain scale are variable across tumors in a
manner associated with loss of cell cycle control via RB1 or TP53, which may trigger the local
remodeling of chromatin state and the RT program in cancers.

Introduction
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During cancer evolution, somatic cells accumulate a number of mutations, most of them non-
selected “passengers”. These somatic mutations are caused by different mutagenic processes,
many of which generate higher mutation rates in late DNA replication time (RT), inactive,
heterochromatic DNA. This is likely due to higher activity and/or accuracy of DNA repair in early-
replicating, active chromosomal domains *?.

These chromosomal segments are defined roughly at the megabase scale, and tend to
correspond to topologically associating domains (TADs) and RT domains *°. Regional mutation
density (RMD) of mutations in megabase-sized domains in the human genome correlates with
domain RT, local gene expression levels, chromatin accessibility (as DNAse hypersensitive
sites (DHS)), density of inactive histone marks such as H3K9me3 and inversely with density of
active marks such as H3K4me3 ®®. The RMD signatures have been shown to be tissue-
specific, and can be used to predict cancer type, and potentially subtype at high accuracy **°.
The tissue-specificity of RMD is paralleled in the tissue-specificity of active or inactive domains.
For instance, the domain that switches from late-RT to early-RT, or where genes increase in
expression levels, or that gets more accessible chromatin in a particular tissue, also exhibits a
reduced rate of somatic mutations in that tissue *°; this property may help identify the cell-of-
origin of some cancers **.

Apart from variation in active chromatin and gene expressions between tissues, recent work
suggests existence of gene expression programs that are variably active between tumors
originating from the same tissue (and also between individual cells), but are recurrently seen
across many different tissues **3. Such programs may conceivably drive, or be driven by
chromatin remodeling that activates or silences chromosomal domains. Indeed, chromatin
remodeling was widely reported to occur during tumor evolution, and this can manifest as
changes in RT between normal and cancerous cells, loss of DNA methylation in some
chromosomal domains with cell cycling, as well as a generalized loss of heterochromatin upon
transformation **%. These changes in RT, DNA methylation and heterochromatin occuring in
cancer cells may plausibly affect chromosomal stability, given the links of various DNA damage
and repair processes and chromatin organization *#°19-21,

Here, we hypothesized that chromatin remodeling that occurs variably between tumors may
generate inter-individual variation in regional mutation rates, beyond the tissue identity or cell-of-
origin identity effects on mutagenesis.

We study the RMD profiles at the megabase scale of somatic mutations from tumor whole-
genome sequences, modeling this mutational portrait as a mixture of several underlying regional
distributions, which may correspond to different mechanisms that produce or prevent mutations
preferentially in some genomic domains. To disentangle these distributions, we apply an
unsupervised factorization approach and extract RMD signatures from ~4200 whole genome
sequenced human tumors. Some of these RMD signatures represent the expected differences
between tissues/cell types, or they may represent consequences of common DNA repair
failures. However others are novel and are associated with RT variation and with chromatin
remodeling upon cell cycle disturbances. We characterize the differences between individuals in
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the usage of these different RMD distributions of mutations, suggesting that the chromatin
remodeling RMD signatures are ubiquitous amongst human cancers. They associate with
alterations in cell cycle genes RB1 and TP53 and reflect wide-spread mutation redistribution
across domains and affect mutation supply to regions harboring cancer genes.

Results
Inter-individual variability in megabase-scale regional mutation density in human tumors

We hypothesized that, in addition to the known RMD variation between cancer types, the RMD
patterns encompass variability between individual tumors that is observed independently of
tissue-of-origin. To test this, we performed a global unsupervised analysis of diversity in one-
megabase (1 Mb) RMD patterns across 4221 whole-genome sequenced tumors. To prevent
confounding by the variable SNV mutational signatures across tumors 2> we controlled for
trinucleotide composition across the 1 Mb windows by sampling (Methods). We additionally
normalized the RMDs at chromosome arm-level to control for possible confounding of large-
scale copy-number alterations (CNA) on mutation rates. Finally we removed known mutation
hotspots (e.g. CTCF binding sites, see Methods), and also exons of all protein-coding genes to
reduce confounding by selected mutations.

To validate the obtained tumor RMD features, we applied a Principal Component (PC) analysis
on the RMD profiles across all tumor samples (n=4221). Expectedly, these PCs separated
different tissues and clustering on the RMD mutational profile PCs largely reflected tissue
identity (Fig S1la-e). We note cases where the similarity of RMD profiles suggested to ‘merge’
apparently similar cancer types (e.g. RMD_cluster3 with various digestive tract cancers, or the
squamous-like RMD_clusterll, containing head-and-neck cancers, the non-melanoma skin
cancers and some esophagus and lung cancers) (Fig Sle). Conversely, RMD profiles may
subdivide some cancer types, for instance breast cancer samples in RMD_cluster6 (ovarian-
like) have visually distinct RMD profiles from the typical breast-like RMD_cluster9 (Fig lab; Fig
Slef); the former are from the triple negative breast subtype, which has similarities to ovarian
cancer by gene expression *°. This suggests that RMD profiles may be more generally useful for
subtyping. This is illustrated in the case of head-and-neck cancer, which can be split into
RMD_clusterll (squamous-like, includes non-melanoma skin cancers) and RMD_clusterl3
(this group also contains some lung cancers and so would be considered lung-like) (Fig lac; Fig
Sle).

As a control, our RMD features captured two known examples of regional redistribution of
mutation rates: one affects specific genomic loci (somatic hypermutation regions in B-
lymphocytes (Fig S1gh)), and the other causes a global homogenization (‘flattening’) of the
RMDs along the genome in MMR-deficient tumors ! (Fig S1g) and in APOBEC-mutagenized
tumors ** of various cancer types (discuss below).

Overall, even though the RMD profiles contain tissue-specific signal, there is systematic RMD
variability in certain tumor genomes observed independently of the tissue-of-origin.
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A methodology to detect inter-individual variation in regional mutation density

Aiming to separate the inter-tumor RMD variability patterns presumably independent of tissue-
of-origin from the tissue-specific RMD variability, we devised a methodology analogous to that
recently used for extracting trinucleotide SNV mutational signatures ***>?° however here applied
to 2540 megabase-sized domains instead of the typical 96-channel trinucleotide SNV spectrum.
In brief, non-negative matrix factorization (NMF) is repeatedly applied to bootstrap samples of
mutational counts per 1 Mb windows, normalized for trinucleotide composition as above, to find
NMF solutions (sets of factors) that are consistent across bootstrap runs and thus robust to
noise in the data. These solutions contain multiple RMD signatures (factors), each with RMD
window weights (all 1 Mb windows with varying contributions) and RMD sample ‘exposures’ or
activities (the weight of each tumor for that signature).

To test whether our NMF method is sufficiently powered to capture RMD inter-individual
variability, we simulated cancer genomes containing ground-truth patterns of RMD that affected
a variable number of windows, being present in variable number of tumor samples, and present
at variable intensity (fold-increase over canonical mutation rate distribution at each window) (Fig
S2a, see detailed description in Methods). We ran our NMF methodology for these different
scenarios independently. We selected the number of factors and clusters based on the
silhouette index (SI), over multiple runs of NMF (Fig S2b), and then matching the known
ground-truth signatures to estimate accuracy (Methods, Fig S3). We show an example of an
extracted RMD signature compared to its ground-truth signature in Fig 1d.

By comparing the different scenarios (Fig S4), encouragingly, we observed that even with a
small fraction of tumor samples affected by a signature (5%), the ground-truth RMD signatures
can be identified reliably, as long as the contribution of the RMD signature to the total mutation
burden is reasonably high (>=20%). In addition, we observed that the NMF setup is very robust
to the number of windows affected and is usually able to recover RMD signatures that affect as
little as 10% of all windows. Out of other characteristics that may affect power to recover RMD
signatures, we identified the signature strength/exposure (fold-enrichment) as showing the
highest effect, thus the signatures with subtle effects on RMD might not be recovered (Fig S4).
In summary, our simulations support that our NMF methodology can recover the genome-wide
RMD signatures across chromosomal domains in a wide variety of scenarios.
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Figure 1. Identifying RMD signatures by an application of a NMF-based methodology to RMD of
human tumors. a) PC2 and PC3 from a PCA in the RMD of breast, head and neck and lung human
tumors separate the subgroups within the same tissue. b) Mean RMD profiles for breast cancer samples
in cluster 6 (n = 76) and cluster 9 (n= 211), shown for chr 1g. c) Mean RMD profiles for head and neck
squamous samples in cluster 11 (n = 81) and cluster 13 (n= 41), for chr 1p. d) Example signature from a
simulation study, comparing window weights for an extracted NMF signature and its matching simulated
ground-truth signature along chr 1p. See Supplementary Figs 2-4 for additional simulation data. €) NMF
run on data from 4221 human tumors. Minimum silhouette index (SI) across clusters (RMD signatures) for
different numbers of NMF factors and clusters. Selected case (nFactor=13, nCluster=13) is marked with a
cross. f) Overview of the 13 RMD signatures extracted (rows) and their distribution across different cancer
types (columns). The circle size and, equivalently, color corresponds to the fraction of samples from a
specific cancer type exhibiting a specific signature (signature exposure >= 0.177). Total number of
samples per cancer type written beneath table. The Gini index quantifies the distribution of the signature
across different cancer types; higher index means more specificity to few cancer types.

Varying degrees of tissue-specificity in RMD patterns observed across cancer types

We applied the NMF methodology to the somatic RMD profiles of 4221 tumor WGS, here
requiring a minimum of 3 mutations/Mb per sample thus restricting to tumors with less noisy
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RMD profiles (as a limitation, we note that this may deplete some low mutation burden cancer
types preferentially). In total, we extracted a total of 13 RMD signatures based on the silhouette
index that scores the reproducibility of solutions upon 100 bootstraps (Fig lef, Fig S5).

We observed that the RMD signatures from NMF span a continuum from very tissue-specific
(high Gini index, Fig 1f), to global signatures (low Gini index). We named the 10 tissue-specific
RMD signatures according to the tissue or tissues they affect (e.g. RMD_upper-Gl, RMD_liver),
while the three global signatures that affect many cancer types were named RMDgloball,
RMDglobal2 and RMDflat (Fig 1f, Fig S5); the latter is named by the visually recognizable
pattern, and also has in part known mechanisms (see below) while RMDglobal and RMDglobal2
are to our knowledge novel.

While some RMD signatures are extremely tissue-specific and capture the genomic regions with
an increase of mutations only in that particular organ (e.g. skin in RMD_skin, or liver and some
biliary and some kidney cancers in RMD_liver) (Fig 1f, Fig S5), many RMD signatures are
observed in several cancer types which are apparently similar (Fig 1f, Fig S5). For instance,
RMD_upper-Gl signature is present in most esophagus, stomach, pancreas and biliary tumor
samples, and some intestine tumors. The RMD_lower-Gl, in turn, contains mainly the colorectal
and most of the intestinal tumors, broadly consistent with the subdivision by developmental
origin into the foregut (RMD_upper-Gl) and the midgut/hindgut (RMD_lower-Gl; Fig 1f). The
RMD_squamous signature spans some squamous lung cancers, head-and-neck cancers, some
bladder cancers (consistent with reports based on gene expression data % ), also expectedly
some cervical and esophageal tumors, however surprisingly includes some sarcomas and
uterus cancers suggesting a squamous-like phenotype. These commonalities in regional
mutation rates probably reflect similarity of chromatin organization in the cell-of-origin of tumor
types, stemming from anatomical site and/or cell type similarity, and shape the RMD profiles of
those samples. Our RMD signatures support the proposed uses of RMD profiles for elucidating
cell-of-origin and cancer development trajectories (e.g. metaplasia and/or invasion) *' by
matching to chromatin profiles.

Three prevalent patterns of megabase-scale mutation rate variation observed across
most somatic tissues

Interestingly, we identified 3 global RMD signatures, which capture the inter-individual RMD
variability observed within most cancer types (Fig 1f, Fig S5).

While the profile of RMDflat captures the known flat RMD landscape (i.e. a low variation in
mutation rates between domains) profile previously associated with MMR and NER pathway
failures 2, and with high mutagenic activity of the APOBEC3 enzymes ** . Based on these
known associations, which were recapitulated in our data (Fig S6) we hypothesized that
additional RMDflat-high tumors (52% were explained by these known factors) may result from
deficiencies in additional DNA repair pathways. Indeed we observed that deficiencies in the
homologous recombination (HR) DNA repair were commonly associated with RMDflat (Fig
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S6b); see Supplementary Text S2 for discussion. Thus various DNA repair-related defects
converge onto the RMDflat phenotype, with varying prevalence depending on the cancer type
(Fig S6c).

Unlike the homogeneous pattern resulting from high RMDflat signature exposure, the
RMDgloball and RMDglobal2 profiles have a complex pattern with their peaks appearing
distributed throughout the chromosomes. We can rule out that RMDgloball and 2 are resulting
from random noise, because (a) the silhouette index of RMDgloball and 2 (measuring
robustness of their profile to noise that is introduced in repeated NMF runs) is comparable to the
other RMD signatures, and (b) the autocorrelation of their profiles (measuring similarity in
weights of consecutive 1 Mb windows) is comparable to the other, tissue-associated RMD
signatures, which have a known biological basis (Fig S7ab).

As support to the pan-cancer analysis, we ran NMF for each cancer type independently, for the
12 cancer types with more than 100 genomes meeting criteria (Fig S8). All three global
signatures can be found also in the per-cancer-type NMF runs (Fig S9). We found signatures in
breast, lung and esophagus with a cosine similarity > 0.84 with RMDgloball, and in colon,
uterus and breast with a cosine similarity > 0.89 with RMDglobal2, supporting that the global
signatures capture inter-tumoral RMD heterogeneity recurrently observed in various human
somatic tissues.

RMDgloball signature increases mutation rate in regions with plastic replication timing
and heterochromatin

We were interested in the mechanism underlying the RMDgloball signature. To elucidate this,
we first tried to predict RMDgloball signature spectrum (the one-megabase window weights)
from epigenomic features previously reported to associate with megabase mutation rates
(reviewed in %): replication timing (RT), density of accessible chromatin (DNAse hypersensitive
sites, DHS) and ChipSeq data for a variety of histone marks (Fig 2a). We first tried to predict the
chromosome-wide profile of the RMDgloball signature using the average of each feature across
many epigenomic datasets, which failed to predict (Fig 2a). Predicting RMDgloball from each
RT/DHS/ChipSeq dataset individually and selecting the best predictor fared slightly better, with
moderate associations (R> ~= 0.2) for certain datasets with regional density of facultative
heterochromatin (H3K27me3) and constitutive heterochromatin (H3K9me3) marks (Fig 2a),
suggesting a role of heterochromatin organization in determining RMDgloball.

Remarkably, we observed that RMDgloball spectrum can be highly accurately predicted (R? up
to 0.7) from either RT, DHS, or the two heterochromatin marks above, however only when
predicting using multiple samples jointly (contrast this with inability to predict from the averaged
feature across the samples, as above (Fig 2a)). This suggests that RMDgloblall spectrum is
explained by the variation between the samples for one chromatin feature, i.e. differences
between the individual RT profiles across the genome are predictive, while the average RT
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profile across the genome is not. We observed the same trend using regional density of
chromHMM segmentation states (Fig S10).

An atlas of RT profiles in tumors and cultured cells links RT switching with RMDgloball
mutation rates

Rather than histone marks, the features that best predicted RMDgloball were the three RT
datasets (Fig 2a): (i) a collection of RT profiles from experiments [RepliChip or RepliSeq] in
multiple cell types (expRT, n = 158 samples), (ii) predicted RT in a collection of nhoncancerous
tissues, cultured primary cells and cell lines including cancer and stem cell lines (predRT, n =
597 samples), and (iii) predicted RT in human tumors (predRT-TCGA, n = 410 samples,
majority measured in technical duplicate). For the latter two RT datasets, we predicted RT from
DHS % or ATAC-seq data *°, respectively, using the Replicon tool, which infers RT profiles from
local distributions in chromatin accessibility at very high accuracy ** (see Methods).

Next, we aimed to characterize the mechanism of variability in RT across individuals or tissue
types that predicts RMDgloball mutagenesis. Such RT variability appears very widespread: by
calculating the difference in window-wise RT for each pair of RT samples, and correlating this
difference with RMDgloball window weights (Fig 2b, Fig S11), we observed that the contrast of
only two RT profiles can suffice to predict the RMDgloball spectrum using either expRT (max
observed R across all pairs =0.47), predRT (max R=0.49) and predRT-TCGA (max R=0.62)
datasets. We asked what types of biological samples yield such RT profiles where the contrast
in RT predicts RMDgloball mutability. In predRT data, the best correlations are obtained when
contrasting a pair that consists of one RT profile from a noncancerous intact tissue versus one
RT profile from primary cultured cells (Fig 2b), however not when contrasting tissue to tissue, or
primary cells to primary cells (Fig 2b). Conceivably, enrichment for proliferation-proficient, stem-
like cells when introducing tissues into culture may alter RT, and that this altered RT is reflected
in mutation rates in RMDgloball (see below for further discussion). As an illustrative example in
a classification analysis using two selected RT profiles, one from a primary cell culture
(“"ENCFF145RIZ”) and one from an intact tissue (‘ENCFF315RKI"), we observed that while the
RT profile of each sample alone does not accurately identify RMDgloball-high windows (Fig
2c). Remarkably, the differential RT of each window between these two RT samples can
accurately classify the genomic windows with high RMDgloball weights (AUC = 0.82) (Fig 2d).
In summary, regional switches of RT between tissues and cultured cells can predict regional
somatic mutation rate switches encoded in RMDgloball spectrum.
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Figure 2. RMDgloball signature is linked to regional variability in replication timing. a) Adjusted R?
of a regression predicting RMDgloball window weights from various epigenomic features (x axis) using
either the whole dataset jointly, or selecting the maximum R2 of each sample in the dataset individually,
or using the average values of the feature across the samples in the dataset. b) Correlation between
RMDgloball signature, and the difference between each pair of RT profiles (all combinations tested).
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Panel shows 1st decile (highest positive R), 5th decile (R close to 0) and 10th decile (highest negative R)
deciles ordered by correlation. ¢) RT profiles for two selected samples, where dots are megabase
windows, colored by their weight in RMDgloball signature (top decile in blue). RT of each sample
individually is modestly predictive of RMDgloball (AUCs for discriminating top-decile windows are listed
next to boxplots of RTs). d) Difference between the two RT profiles in panel c (on y axis) is predictive of
the RMDgloball signature (see AUC for discriminating top-decile windows). e) Absolute Pearson
correlation between RT-PCs and RMDgloball to identify the most correlated RT-PCs. f) Median RT
profiles across samples grouped according to RT-PC5 high versus low in 3 different cancer types.
Windows which are on the top 5% of RMDgloball weights are marked with a dot and a vertical line. g)
Association between RT-PC5-high (top tertile) versus RT-PC5-low (bottom tertile) with the expression of
genes in various RHP programs *?, and same for RT-PC6. h) Predicted RT from ENCODE data with
tissues, primary cells and cell lines (predRT-ENCODE) was projected into PCs of the tumor predRT-
TCGA data. i) Projection of experimentally determined RT data for leukemias and normal blood cells into
the same PCs of predRT-TCGA data. j) Correlation between the projection of expRT leukemia samples in
RT-PC5 and RT-PC6, and the ratio of late-to-early and early-to-late regional RT changes reported
previously *.

Cell cycling gene expression-associated RT in tumors is mirrored in RMDgloball
mutagenesis

To further characterize the source of variability within RT profiles that explains RMDgloball
signature, we applied a PCA with the predRT-TCGA dataset of RT in 410 TCGA tumors. These
RT-PCs represent the archetypes of systematic variation in RT program observed across
tumors, and we asked whether these local shifts in RT in tumors can explain the local changes
in mutation rates we observed in tumor WGS. In particular, we correlated each RT-PC with the
profile of RMDgloball mutation rate variation across megabase windows (Fig 2e, S12). We
observed that the PCs with highest amount of variance explained either represent the average
RT profile (RT-PC1, RT-PC2), or in the case of following RT-PC3 and RT-PC4 are tissue-
associated RT program, separating breast from kidney and brain tumors (Fig S12ac). However,
the following strongest pattern of systematic RT variation, the RT-PC5, does not exhibit a strong
tissue signal, but instead correlates strongly with RMDgloball mutation spectrum (R=-0.49) (Fig
2e). Indeed, when we checked the RT profiles for the top RT-PC5 and bottom RT-PC5 tumors,
we observed that local RT differences seen across different tissues overlap with the
RMDgloball-relevant windows i.e. those where mutation rate changes notably (Fig 2f). The next
best correlation of the RMDgloball spectrum with RT was with RT-PC6 (R=0.35).

Thus, the RT-PC5 and 6 summarize some type of common global variation in the tumors’ RT
program across cancer types, and they also predict RMDgloball global variation in mutation
distribution. To understand the biology underlying these RT-PCs, we asked how gene
expression changes between the TCGA tumors with high values of a RT-PC versus tumors with
low values. We considered the “recurrent heterogeneous programs” (RHP) gene sets,
representing gene expression programs that are variable in a coordinated manner between
individual cancer cells, and that were recurrently observed across different cancer cell lines 12
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In particular, the RT-PC5 pattern correlates strongly with gene expression of RHP cell cycle
genes *2 (there are two such sets, the G2/M and G1/S, and both correlate with RT-PC5 at p=9e-
40 and 1e-14, respectively) (Fig 29, Fig S12d), while the other RHP gene sets correlate less
well with RT-PC5 (next strongest p=5e-05). We additionally also asked whether the other RT-
PCs correlated with RHP cell cycle gene expression. The lower-ranking RT-PC8 and RT-PC10
did so however they (unlike RT-PC5) reflected also the epithelial-mesenchymal transition (EMT)
expression program and proteasomal degradation (Fig S12d). Therefore the RT-PC5 captures
specifically those global RT changes occuring in tumors in association with more rapid cell
cycling but not other correlated processes. Consistently, also the RT-PC6, which did have a
correlation to RMDgloball mutation spectrum even though more subtly, also correlates to some
extent with the cell cycle RHP gene expression programs (Fig 2g, Fig S12d). Overall, this
suggests that the RMDgloball regional mutability signature reflects the global RT program
alterations associated with expression of cell cycle genes, and thus likely the variable speed of
cell cycling across different tumors.

Global RT changes observed in proliferative, cancer-like cells associate with RMDgloball
mutation pattern

To further understand the biology of the systematic variation in RT captured by the RT-PCs
relevant to mutation rates, we projected the predRT and expRT data sets originating from
measurement in various tissues and cultured cells into the existing predRT-TCGA coordinate
system of RT-PCs, defined by tumor RT profiles of the TCGA. Considering the predRT profiles,
RT-PC5 separated tissues versus cultured primary cells in predRT samples (Fig 2h). One
interpretation is that RT-PC5 captures the effect of tissue culture conditions on RT profiles,
however we think this is unlikely because there is a considerable spread within the cultured cells
group, which span across the tissue-side of RT-PC5 on the one extreme of RT-PC5 and cell
line-side on the other extreme of RT-PC5 (Fig 2h). The other interpretation is that RT-PC5
captures the RT program of proliferation-capable, stem-like cells, which are normally a minority
in an intact tissue, but are selected during establishment of cell culture. We favor this latter
interpretation, which is consistent with the above-mentioned cell cycling RHP gene expression
program association with RT-PC5 and RT-PC6. Next, considering expRT data, the RT-PC5 also
separated healthy versus cancerous cells (here considered for blood cells, where both healthy
and tumor RT measurements were available (Fig 2i)). This suggests that this property captured
in RT-PC5 is more prominent in cancerous cells than in normal cells, again consistent with the
property being related with cell cycling, which is often unchecked in cancer.

In summary, the RT-PC5 is a global alteration in RT program seen in tumors, which separates
intact tissue samples or tumors with lower cell cycle gene expression on one side, and cultured
primary cells or tumors with higher cell cycle gene expression on the other side. RT-PC5
predicts the RMDgloball spectrum of window weights, suggesting that the windows with higher
mutation rate changes are those windows that undergo changes in RT in more proliferative
samples compared to less proliferative samples.

11


https://doi.org/10.1101/2022.10.24.513586
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.24.513586; this version posted December 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Within a subset of the expRT data, changes in RT were studied previously*?, reporting late-to-
early (LtoE) and early-to-late (EtoL) RT changes between noncancerous samples
(lymphoblastoid cell lines) and cancers (leukemias and cell lines). Their pre-calculated ratio of
LtoE/EtoL strongly correlate with our RT-PC6 (R=-0.72) and RT-PC5 (R=0.63) (Fig 2j),
confirming that RMDgloball is linked to the genome-wide changes in RT that occur in various
chromosomal domains during cancerous transformation.

As further support that PCA based results are robust, we saw the same trends when we initially
performed the PCA in predRT (i.e. using a mix of tissues and cell types, rather than only TCGA
tumors), and then projected the expRT data into it (Fig S13). Of note, the expRT-PC that
reflects developmental changes as reported earlier ** does not correlate with RMDgloball (Fig
Sl4a), meaning that RMDgloball mutagenesis pattern does not relate to embryonal-like
patterns of RT.

RMDgloball mutation redistribution signature associates with RB1 loss

To identify events that may drive the changes in tumoral RT we found linked with cell cycling
gene expression, we performed a genome-wide association analysis involving somatic driver
events. In particular, we aimed to detect somatic copy number alteration (CNA) events and
deleterious point mutations that are associated with RMDgloball exposure, while adjusting for
cancer type and for confounding between linked neighboring CNAs (gq plots in Fig S14b;
Methods for details). Here, we considered 1543 chromatin modifier genes, cell cycle genes,
DNA replication and repair genes and cancer genes, compared against a background of 1000
randomly chosen control genes (Methods).

For CNA, we found a strong positive association of RMDgloball mutation rate redistribution with
deletions of the RB1 tumor suppressor with important roles in cell cycle control and chromatin
organization (FDR=0.05%, and better p-value than all control genes) (Fig 3ab, Fig S15a).
Because CNA often affects large chromosomal segments, we also checked associations with
RB1 neighboring genes (Fig 3c), noting that RB1 is at the CNA frequency peak (by mean
estimated copy-number across tumors), meaning it is the likely causal gene in the CNA
segment. Strength of RMDgloball association with RB1 is gene dosage dependent (Fig S15b),
solidifying the causal link of RB1 loss with mutation rate redistribution. Further, we see that the
effect of RB1 point mutations shows a trend in the same direction as the RB1 deletions (RB1
mutations are rarer, thus this trend is nonsignificant) (Fig S15c). As independent supporting
evidence, we identified deletions in CDK®6, a negative regulator upstream of RB1, as the CNA
event negatively associated with RMDgloball with the strongest p-value, exceeding any of the
control genes considered (Fig 3a).

In addition to its effects on cell cycle regulation, RB1 has additional important roles in chromatin
organization **3®_In specific, RB1 deletions change heterochromatin marks H3K9me3 and
H3K27me3 in regions enriched at subtelomeres, and this associates with propensity to DNA
damage therein . We found these same two histone marks more highly correlated to
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RMDgloball than other tested marks (Fig 2a), and interestingly we also found that RMDgloball
spectrum window weights are also strongly enriched approximately 5 Mb at subtelomeres (Fig
4f).
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Figure 3. Genetic alterations associated with the activity of RMDgloball mutation redistribution
sighature. a) Associations between CNA deletions and tumors with higher RMDgloball exposures in a
pan-cancer analysis, adjusting for cancer type and for global CNA patterns (Methods). N=1543 cancer
genes and chromatin-related genes are shown (dots), as well as a 1000 set of randomly chosen genes
(crosses). b) Differences in RMDgloball exposures between RB1 deletion (-1 or -2 deletion) and wt for
several cancer types (those with the highest number of samples with RB1 deletion); remainder in Fig S12.
¢) Mean local CN profile in groups of tumors, grouped by RMDgloball high and low, of the segment of
chromosome 13 containing the gene RB1. Each dot represents one gene. d) Correlation between the
H3K9me3 heterochromatin profiles for samples with RB1 knock-out (“KO”) versus wild-type (“WT"). Each
dot represents a window, colored by RMDgloball window weight top decile versus the rest of the
windows. e) Associations between deleterious SNV and indel mutations in the same sets of genes as in
panel a, and the RMDgloball-high versus RMDgloball-low activity of tumor samples, in a pan-cancer
analysis.
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RMDgloball mutation redistribution affects regions that undergo heterochromatin
remodelling upon RB1 loss

Prompted by the above, we asked if the location of chromatin remodelling upon RB1 loss,
considering these two heterochromatin histone marks, matches the locations of the RMDgloball
mutation rate changes. Indeed, the changes in regional H3K9me3 profile when RB1 is wild-type
versus in isogenic RB1 k.o. cells *° predicted RMDgloball signature (adjusted R*=0.29), and so
did changes in regional H3K27me3 albeit more subtly (adjusted R?=0.18) (Fig 3d, Fig S16ab).
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The genome regions with top 10% weights in RMDgloball spectrum are the regions where the
level of H3K9me3 heterochromatin mark is more likely to be asymmetrically altered upon RB1
disruption *° (off-diagonal dots in Fig 3d). Overall, this overlap of heterochromatin remodelling
loci upon RB1 loss-of-function ** with RMDgloball mutation rates change loci in tumors, further
implicates RB1 activity in shaping the somatic mutation rate landscape.

We also tested associations between the presence of deleterious somatic point mutations in
cancer genes and chromatin and DNA repair genes, with the ‘exposure’ to the RMDgloball
mutagenic pattern. Here, we found the KRAS mutation to positively associate with RMDgloball,
at FDR=0.1% (Fig 3e, Fig S16c), and this is observed consistently across individual cancer
types (Fig S16c¢) and significantly in colon, uterus and bladder (see Fig S16de legend for
comment on lung adenocarcinoma about confounding by tobacco smoking signatures). Of note,
the KRAS gene acts downstream of RB1 loss-of-function with RB1 in developmental and in
tumor mouse phenotypes 3. Consistently, KRAS mutation and RB1 loss (either deletion or
mutation) are mutually exclusive in our tumor dataset (chi-square p < 2.2e-16), supporting that
the driver alterations in RB1 and KRAS may converge onto the same mutation rate
redistribution phenotype, the RMDgloball.

Motivated by these associations between RB1 loss-caused regional heterochromatin mark
changes '° and the RMDgloball regional mutation rates, we further investigated the local
variation in the H3K27me3 and H3K9me3 marks across ENCODE datasets. To characterize the
regional heterochromatin variation, we performed a PCA on the profiles of the two marks and
the RT (predicted) together. The resulting heterochromatin-PC4 (het-PC4) correlated
substantially with RMDgloball window weights (R=0.53) (Fig 4a). As above, the difference in
the three considered features (H3K9me, H3K27me3, RT) separated the proliferative, putatively
stem-like samples (het-PC4 positive) versus the rest of the samples (het-PC4 negative) (Fig
4b). The proliferative samples (het-PC4 positive) are later replicating in the RMDgloball top
windows (relative increase in RT [het-PC4 high vs low] = 61%) and have higher H3K27me3 and
H3K9me3 (relative increase of 55% and 78% respectively) (Fig 4c). In summary, the
chromosomal domains with highest RMDgloball weights become later-replicating and
heterochromatinized in more stem-like, proliferative cells (e.g. cell lines, primary cells), and this
chromatin/RT plasticity associated with an increase of relative mutation rates in these domains.

Gene regulation and chromatin compartments associated with the RMDgloball signhature

The regional variation in RT and heterochromatin marks (associated with variable somatic
mutation rates observed in tumors), suggests there may be concomitant changes of regional
gene expression, because early RT is broadly associated with higher gene expression *.
Therefore we asked if there are coordinated changes in gene expression levels in certain
windows between the RMDgloball-high and RMDgloball-low tumors. Indeed, we found several
windows with coordinated gene expression upregulation and downregulation between RMDg1-
high and low cancers (FDR < 25%). The coordinated downregulation windows are enriched in
higher RMDgloball weights, compared to the windows with non-coordinated gene expression
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changes (Wilcoxon test, greater; downregulation p-value = 0.03; there is a also nonsignificant
trend for coordinated upregulation) (Fig S17a). These regional changes in gene expression are
consistent with chromatin remodeling in chromosomal domains, also mirrored in regional
mutation rates (Fig S17b).
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Figure 4. RMDgloball mutation rate redistribution is linked with chromatin remodeling. A PCA was
performed on the predicted RT and the heterochromatin marks (H3K27me3 and H3K9me3) from
ENCODE data. a) Absolute Pearson correlation between heterochromatin-PCs and RMDgloball to
identify the most correlated het-PCs. b) Heterochromatin PC4 (selected for its high correlation with
RMDgloball (R=0.52)) distribution across different cell types for the 3 features. c) Mean predicted RT,
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H3K27me3 and H3K9me3 across het-PC4-high versus het-PC4-low groups in ENCODE data, split by RT
bins. d) RMDgloball signature across different Hi-C nuclear subcompartments from reference *. e)
RMDgloball signature across different SPIN nuclear compartmentalization states from *. f) RMDgloball
and RMDflat signature window weights compared to distance to telomeres. g) Schematic of the mutation
supply analysis in panels h-j. h) Distribution for the difference in mutation density, shown for 460 cancer
genes, comparing between RMDgloball-high and low tumors, using the actual values of RMDgloball
and as a baseline randomized of RMDgloball. Vertical lines show 5th and 95th percentile of the
randomized distribution. i) Mutation density for RMDgloball-high versus low tumor samples (here, top
tertile versus bottom tertile) for 5 example genes (drivers in >=4 cancer types and with the highest effect
size); dots are cancer types. j) Mean RMD profile on chromosome 3p across the RMDgloball-high versus
low tumor groups (here, top and bottom decile by RMDgloball), for two example cancer types. Vertical
lines mark the position for the BAP1 tumor suppressor gene (example gene in panel i).

To additionally characterize the regions affected by the RT/chromatin remodelling identified
herein via the RMDgloball mutation rates, we analyzed data from diverse genomic assays of
chromatin state from various prior studies (Table S3) that reported correlations with RT. We
compared the regional density of each feature with our RMDgloball spectrum window weights
(Table S3). We noted strong correlations with Hi-C subcompartments (Fig 4d), inferred from
long-range chromatin interactions at fine resolution (25 kb) *°. In particular, the B1
subcompartment was associated with RMDgloball; this subcompartment replicates during
middle S phase, and correlates positively with the Polycomb H3K27me3 mark (Fig S18a) but
negatively with H3K36me3 suggesting that it represents facultative heterochromatin *. Next, we
observed a correlation with two SPIN states (Fig 4e), which were derived by integrating nuclear
compartment mapping assays and chromatin interaction data *°. RMDgloball signature regions
are enriched in the two “Interior repressed” SPIN states *°, marking regions that are inactive,
however unlike other, typical heterochromatic regions these are located centrally in the nucleus,
rather than peripherally (next to the lamina) *° . Additionally, as mentioned above RMDgloball
important windows are enriched in subtelomeric regions (Fig 4f). In summary, the genome
domains undergoing mutation rate change as per RMDgloball signature are enriched in the B1
facultative heterochromatin subcompartment, and in the nuclear interior located repressed
chromatin.

Mutation supply towards cancer genes is altered by global RMD signatures

Since RMDgloball captures a redistribution of mutation rates genome-wide, we predicted that
this will affect the local supply of mutations to some cancer genes. To test this, we considered
460 cancer genes and the intronic mutation density thereof (to avoid effects of selection), further
normalizing to the mutation burden of the chromosome arm to avoid effects of gross CNA on
mutation rate (see Methods). We tested whether there is a difference between tumor samples
with a high RMDgloball exposure (top tertile) versus low RMDgloball exposure (bottom tertile)
tumors (Fig 4g-j). When compared to a randomized baseline (95th percentile of the random
distribution used as cutoff); 28% of the 460 cancer genes exhibit a significant increase of
mutation supply in RMDgloball-high compared to RMDgloball-low tumors (Fig 4h). Regarding
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the effect size, these genes increase mutation rates on average by 1.21-fold between the
RMDgloball-low versus high tertile tumors. The mutation rate density is shown for 5 example
genes with a high fold-difference in Fig 4i, where for instance the median mutation rate for the
BAP1 tumor suppressor increases by 1.78-fold, for the KMT2C tumor suppressor by 1.79-fold,
and for the ATM by 1.18-fold, when considering the top tertile tumors by RMDgloball signature
of mutation redistribution.

Next, we similarly considered the RMDflat signature associated with DNA repair failures and its
effects on mutability of regions containing driver genes. Tumors with RMDflat undergo an
increase in mutation rates in early replicating, euchromatic regions **?. These regions also
have a higher gene density, so we hypothesized that RMDflat commonly affects the mutation
supply to many cancer driver genes. Remarkably, 75% of the 460 tested cancer genes **
exhibit an increase in local mutation supply comparing RMDflat-low to RMDflat-high tumors,
when compared to the 95th percentile of a randomized distribution (Fig S6e). The converse
case was rarer: few cancer genes decreased in mutation supply in RMDflat-high tumors (9% are
below the 5th percentile of the random distribution). We considered the mutation supply density
for 5 example common driver genes, for which mutation supply is increased 1.8-2.5 fold
between RMDflat-high and RMDflat-low tumors (Fig S6f). Considering for instance the ARID1A
tumor suppressor gene, located in a lowly-mutated region in chromosome 1p, its mutation
supply increased 1.8-fold, 2.1-fold and 2.4-fold in MSI (i.e. MMR deficient), HR deficient and
APOBEC tumors (all RMDflat-high), respectively, compared to the ARID1A baseline mutation
supply in tumors without DNA repair deficiencies (Fig S6fg). Similarly, the BRAF oncogene
(where driver mutations are known to be highly enriched in MSI compared to MSS colorectal
tumors “?) has considerably increased mutation supply in the RMDflat-high tumors (Fig S6fg).

The RMDglobal2 is TP53-loss associated and reduces relative mutation rates in late
replicating regions

In addition to RMDgloball, there is a second, independently occurring mutation rate
redistribution signature observed across multiple tissues, the RMDglobal2. Unlike RMDgloball,
the RMDglobal2 signature mutation rates do follow a distribution resembling the canonical RMD
landscape, increasing mutation density in later RT overall, except for very late RT windows.
These acquire fewer mutations than expected from their RT in the RMDglobal2 pattern (Fig
5ab). As a consequence, mutation rates increase near linearly with RT bins in tumors with high
RMDglobal2, while in tumors with a low RMDglobal2 exposure the RT relationship to mutation
rates is better described by a quadratic fit (Fig 5c, Fig S18b). In other words, the RMDglobal2
redistribution “linearizes” the association of RMD to RT, by suppressing the more prominent
peaks in regional mutation rates, but not affecting the minor peaks and valleys.

We aimed to identify the driver event behind this redistribution of mutations away from the
latest-replicating DNA domains. We proceeded to test for associations of RMDglobal2-high (top
tertile) versus low (bottom tertile) tumor samples, with CNAs and deleterious mutations in
cancer driver, DNA repair and chromatin modifier genes. Strikingly, we found TP53 mutation to
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be uniquely strongly associated with RMDglobal2 signature (FDR = 9e-10) (Fig 5d). As
supporting evidence, we found that TP53 deletions were also positively associated (Fig 5e).
Independently, the amplifications in known oncogenes that phenocopy TP53 loss (MDM2,
MDM4 and PPM1D) are also positively associated with the ‘exposure’ of the RMDglobal2
mutation redistribution signature (Fig 5e, Fig S19). This rules out that the TP53 driver mutation
is the consequence of the RMDglobal2 redistribution, and provides evidence for a causal effect
of TP53 pathway inactivation in the mutation rate redistribution.

Since TP53 mutations were reported to be associated with increased burdens of CNA events *,
we tested whether RMDglobal2 RMD signature could be due to confounding from a multiplicity
of focal CNA events, which might modify apparent local mutation rates (we note our method for
RMD analysis does stringently control for confounding by arm-level CNAs, Methods). However,
there is only a weak correlation between the CNA burden and RMDglobal2 signature exposure
levels upon stratifying for TP53 status (R<=0.11), suggesting that RMDglobal2 largely does not
reflect changes in local DNA copy number (Fig S20).

Changes to local mutation supply because of RMD redistribution can result in epistasis-
like phenomena

RMDglobal2 signature describes variation in certain genome regions, which may affect mutation
supply to genes therein. We tested whether there is a difference in mutation rate in the cancer
genes for RMDglobal2-high (top tertile) versus low (bottom tertile) tumor samples (Fig 5f). When
compared to randomized data (5th percentile), 26% of cancer genes exhibited decreased
mutation supply; only 6% genes exhibit an increased mutation supply with high RMDglobal2
(Fig 5f). As an example, we show the mutation density of ARID1A and GATA3, which
decreased in mutation supply (as above, measured using intronic rates; the decrease implies
they are below the 5th percentile of the randomized distribution) with high RMDglobal2 (Fig 50).
We hypothesized that apparent genetic interactions, for example mutual exclusivity with TP53
might arise due to redistribution of mutations altering local mutation supply to genes. We thus
considered 13 genes bearing mutations mutually exclusive with TP53 mutations **
hypothesizing that this might in fact be due to altered local mutation supply via RMDglobal2 in
TP53 mutant cancers. Indeed we found that nearly half (6/13) of these genes were below the
5th percentile of the random distribution of local mutation rates, supporting the hypothesis (Fig
5fh). Upon inspection of the raw RMD profiles for RMDglobal2 high and low tumors for several
cancer types we noted a difference in the region where ARID1A resides (Fig 5i). Overall, this
illustrates how a global redistribution of mutation rates, here mediated by TP53 loss, can create
apparent genetic interactions that may not indicate selection on functional effects of the genetic
interaction. Thus, regional mutation rates, which vary extensively between tumors, should be
explicitly controlled for in statistical studies of epistasis in cancer genomes.
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Figure 5. A TP53-associated mechanism underlies the RMDglobal2 mutation rate redistribution
pattern. a) A quadratic association of RMDglobal2 signature with the average replication timing. b) Mean
RMD profiles in chromosome 4q for the RMDglobal2-high versus low tumor samples in esophagus
cancer. Latest RT windows (avRT<20) marked with black dots. c) Relative RMD mean profile across 10
RT bins for tumors that are RMDglobal2-high (RMDglobal2 exposures > 0.17) versus RMDglobal2-low
(RMDglobal2 exposures < 0.01), showing a linearization of the link between RT and mutation rates in
RMDglobal2-high. d) Associations between deleterious mutations in known cancer genes and chromatin-
related genes (dots) and a control set of randomly chosen genes (hollow circles), and RMDglobal2
exposures in samples (p-values from Z-test on regression coefficient). e) RMDglobal2 signature
exposures of tumor samples stratified by: wild-type for TP53 (wt), TP53 with 1 mutation (TP53_mut),
TP53 with 1 deletion (TP53_del), TP53 loss phenocopy via a amplification in MDM2, MDM4 or PPM1D
(TP53 _pheno), or TP53 with any two hits of the previously mentioned alteration (TP53 2hit). f)
Distribution of the log2 difference in the relative mutation density (intronic) for 460 cancer genes,
comparing between RMDglobal2 high tumors and RMDglobal2 low tumors, using the actual values
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(“RMDglobal2” histogram) and randomized values (“RMDglobal2 randomized” histogram). Position of the
genes mutually exclusive with TP53 marked with crosses. g) Percentage of genes above 95 percentile of
a random distribution for the random distribution, cancer genes and TP53 mutually exclusive genes. h)
Log2 relative mutation density (normalized to flanking DNA in same chromosome arm, see Fig 4g) for
RMDglobal2-high versus RMDglobal2-low for 2 example genes (TP53 mutually exclusive genes above
the 95 percentile). Each dot is a cancer type. i) Mean RMD profile across theRMDglobal2-high versus low
groups in a region of chr 1p. Vertical lines mark the position for the ARID1A gene.

Discussion and concluding remarks

Mutation rates are lower in early-replicating, euchromatic DNA compared to late-replicating
heterochromatic DNA 2™ If either RT or heterochromatin (or both) are causal to mutation
rates, which is likely the case and is often mediated by differential DNA repair 2249, then local
changes in RT or in heterochromatin status would change local mutation risk. Our study
suggests this is commonly the case: the regions in the human genome with switching RT and
switching heterochromatin status across many biological samples overlap the regions where
somatic mutation rates vary across individuals and/or tumors therein (as summarized in our
RMDgloball mutation rate redistribution signature). These regions often correspond to
Polycomb-marked facultative heterochromatin residing in the B1 nuclear compartment *° , which
is predisposed to have higher plasticity across cell types °*.

This locally variable RT observed across ~400 tumors is associated with cell cycle gene
expression, and this locally variable heterochromatin was associated with RB1 disruption in an
experimental model *° | plausibly reflecting various molecular consequences of accelerated
and/or dysregulated cell cycles on RT and heterochromatin organization. Consistently, the
changes in regional mutation rates — observed at the chromosomal domains that switch
RT/heterochromatin status — are strongly associated with somatic alterations of RB1 and CDK6
genes in tumors. Additionally, we identify that local somatic mutation rates change appreciably
due to TP53 pathway disruption in tumors, in this case most prominently in the late-replicating
heterochromatic domains (as per RMDGIobal2 signature). Our data converges onto a
mechanism where altered cell cycling, commonly occurring via somatic alterations of tumor
suppressor genes, can trigger RT changes and heterochromatin changes, which in turn alter the
local distribution of mutation rates. This affects differential mutation supply to disease genes,
altering the likelihood of obtaining pathogenic mutations and steering the course of somatic
evolution.

Methods
WGS mutation data collection and processing

We collected whole genome sequencing (WGS) somatic mutations from 6 different cohorts
(Table S1). First, we downloaded 1950 WGS somatic single-nucleotide variants (SNVs) from
the Pan-cancer Analysis of Whole Genomes (PCAWG) study at the International Cancer
Genome Consortium 2 Data portal (https://dcc.icgc.org/pcawg). Second, we obtained 4823
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WGS somatic SNVs from the Hartwig Medical Foundation (HMF) project °°
(https://www.hartwigmedicalfoundation.nl/en/). Third, we downloaded 570 WGS somatic SNVs
from the Personal Oncogenomics (POG) project >* from BC  Cancer
(https:/lwww.bcgsc.ca/downloads/POG570/). Fourth, we obtained 724 WGS somatic SNVs from
The Cancer Genome Atlas (TCGA) study as in °; we used QSS_NT>=12 mutation calling
threshold in this study.

Finally, we downloaded bam files for 781 WGS samples from the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) project >*>*® and bam files for 758 tumor samples from the MMRF
COMMPASS project *" from the GDC data portal (https://portal.gdc.cancer.gov/). Somatic
variants were called using lllumina’s Strelka2 caller *®, using the variant calling threshold
SomaticEVS >=6. Additionally, for these samples we performed a liftOver from GRCh38 to the
hg19 reference genome.

We collected the samples’ metadata (MSI status, purity, ploidy, smoking history, gender) from
data portals and/or from the supplementary data of the corresponding publications. Additionally,
we harmonized the cancer type labels across cohorts. Here, since lung tumors in HMF data are
not divided into lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) types,
we used a CNA-based classifier to tentatively annotate them in the HMF data. We downloaded
copy number alteration data from HMF and TCGA for lung tumor samples and adjusted for
batch effects between cohorts using ComBat as described in our previous work *°. We trained a
Ridge regression model with TCGA data to discriminate between LUSC and LUAD and applied
the model to predict LUSC/LUAD in the HMF lung samples. We did not assign a label to
samples with an ambiguous prediction score between 0.4 and 0.6.

Similarly, since POG breast cancer (BRCA) samples are not divided into subtypes (luminal A,
luminal B, HER2+ and triple-negative) we used a gene expression classifier to annotate them.
We downloaded gene expression data for TCGA and POG breast tumors and adjusted the data
for batch effect using ComBat as previously described *°. We trained a Ridge regression model
with TCGA data to discriminate between the breast cancer subtypes (one-versus-rest) and
applied the model to the POG breast samples to assign them to a subtype. We did not assign
23 samples that are predicted as two subtypes and 8 that are not predicted as any subtype.

Defining windows and filtered regions

We divided the hg19 assembly of the human genome into 1 Mb-sized windows. These divisions
are performed on each chromosome arm separately. To minimize errors due to misalignment of
short reads, we masked out all regions in the genome defined in the ‘CRG Alignability 75’ track
%0 with alignability <1.0. In addition, we removed the regions that are unstable when converting
between GRCh37 and GRCh38 ! and the ENCODE blacklist of problematic regions of the
genome .

Additionally, to minimize the effect of known sources of mutation rates variability at the sub-
gene scale we removed CTCF binding site regions (downloaded from the Table Browser), ETS
binding regions (downloaded from http://funseg2.gersteinlab.org/data/2.1.0) and APOBEC
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mutagenized hairpins downloaded from . Finally, we removed all coding exon regions (+-2nts,
downloaded from the Table Browser) to minimize the effect of selection on mutation rates.

Matching trinucleotide composition across megabase windows

To minimize the variability in mutational spectra confounding the analyses, we accounted for the
trinucleotide composition of each window. For this, we removed trinucleotide positions from the
genome in an iterative manner to reduce the difference in trinucleotide composition across
windows. We selected 800,000 iterations that reach a tolerance <0.0005 (difference in relative
frequency of trinucleotides between the windows). After the matching, we removed all windows
that end up with less than 500,000 usable bps. The final number of analyzed windows is 2,540.

Calculating the Regional Mutation Density (RMD) of each window

For our WGS tumor sample set (n=9,606 WGS) we counted the number of mutations in the
above-defined windows. We required a minimum number of mutations per sample of 5,876,
which corresponds to 3 muts/Mb (total genome = 1,958,707,652 bp). In total, 4221 tumor
samples remain, which we use for the downstream analyses.

To calculate the RMD, we normalized the counts of each window by: (i) the nt-at-risk available
for analysis in each window and (ii) the sum of mutation densities in each chromosome arm. To
control for whole arm copy number alterations.

To calculate the RMD applied to NMF analysis, we first subsample mutations from the few
hyper-mutator tumors, to prevent undue influence on overall analysis. We allow a maximum of
20 muts/Mb that is 39,174 muts. If the tumor mutation burden is higher we subsample the
mutations to reduce it to that maximum value. Then, as above, we normalized the RMD by: (i)
the nt-at-risk in each window [ RMD = counts * average_nt_risk / nt_at _risk ] and (ii) the sum of
mutation density in each chromosome arm [ RMD * row_mean_WG / rowMeans by chr arm ].
We multiply by the average nucleotides at risk and the mean whole genome to maintain the
values range of each sample for the bootstrapping.

Applying NMF to extract RMD signatures

We applied bootstrap resampling (R function UPmultinomial from package sampling) to the
RMD scores that we calculated for NMF as above. The result for each tumor sample is a vector
of counts with a tumor mutation burden close to the original one but normalized by the
nucleotides at risk by window and for the possible chromosome arm copy number alterations
(CNA). Then, we applied NMF (R function: nmf) to the bootstrapped RMD matrices, testing
different values of the rank parameter (1 to 20), herein referred to as nFact.

We repeated the bootstrapping and NMF 100 times for each nFact. We pooled all the results by

nFact and performed a k-medoids clustering (R function pam), with different number-of-clusters
k values (1 to 20). We calculated the silhouette index value, a clustering quality score (which
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here measures, effectively, how reproducible are the NMF solutions across runs), for each
clustering to select the best nFact and k values.

Additionally, we also applied the same NMF methodology to each cancer type separately (n =
12 cancer types that had >100 samples available).

Simulated data with ground-truth RMD signatures

For each cancer type, we calculated a vector of RMD values (i.e. regional mutation density
mean of all samples from that cancer type) based on observed data, and super-imposed
simulated ground-truth signatures onto these cancer type-derived canonical RMD patterns. We
generated 9 simulated ground-truth RMD signatures with different characteristics, varying the
number of windows affected by the signature (10, 20 or 50% of 2540 windows total) and the
fold-enrichment of mutations in those windows (x2, x3 or x5) over the RMD window value in the
canonical RMD pattern for that tissue.

In particular, we tested 9 different scenarios, varying the signature contribution to the total
mutation burden (10, 20 or 40%) and the number of tumor samples affected by the signature (5,
10 or 20%). We randomly assigned the ground-truth signatures to be super-imposed onto each
tumor sample (e.g. sample A will be affected by RMD signature 1 and 3 while sample B will be
affected by signature 4). In total, we have simulated genomes for 9 different scenarios (different
RMD signature contributions and number of tumor samples affected), each of them containing
the 9 simulated ground-truth RMD signatures.

We applied the NMF methodology for the 9 different scenarios independently and obtained NMF
signatures. For each case, we selected an NMF nFact and k-medoids clustering k, based on the
minimum cluster silhouette index (Sl) quality score. To assess the method, we compared the
extracted NMF signatures with the ground-truth simulated signatures. In particular, we
considered that an extracted NMF signature matches the ground-truth simulated signatures
when the cosine similarity is >=0.75 only for that ground-truth simulated signature and < 0.75 for
the rest.

Analysis of differential mutation supply towards cancer genes.

For 460 cancer genes from the MutPanning list ** (http://www.cancer-genes.org/), we tested if
they are enriched in intronic mutations in tumor samples with high RMDflat, RMDgloball or
RMDglobal2. An enrichment will mean that there is a higher supply of mutations in the intron
regions of those genes when the RMDsignature is high. For this, we considered the counts of
mutations in the intronic regions of the gene, normalized to the number of mutations in the
whole chromosome arm, comparing pooled tumor samples with RMD signatures high or low, by
tissue. Note that the possibly different number of eligible nucleotides-at-risk in the central
window, nor the length of the flanking chromosome arm are relevant in this analysis, because
they cancel out when comparing one group of tumor samples (split by the RMD signature) to
another group of tumor samples. We binarized the tumor samples by RMDflat, RMDgloball and
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RMDglobal2 by dividing each of them into tertiles, and keeping 1st tertile versus 3rd tertile for
further analysis. We applied a Poisson regression with the following formula:

Count_gene_intron ~ offset(count_chr_arm) + RMDflat + RMDgloball + RMDglobal2 + tissue

where “count” refers to mutation counts. By including the tissue as a variable in the regression,
we controlled for possible confounding by cancer type. The log fold-difference in mutation
supply between RMD signature high versus low tumor samples is estimated by the regression
coefficients for RMDflat, RMDgloball and RMDglobal2 variables. As a control, we repeated the
exact same analysis but randomizing the tertile assignment for the three RMD signatures prior
to the regression.

Association analysis of gene mutations with RMD global signatures.

We created a subset of 1543 relevant genes: cancer genes from the MutPanning list ** and
Cancer Gene Census list ®*, and furthermore we included genes associated with chromatin and
DNA damage ®°. As control, we used a subset of 1000 random genes selected as in .

We applied the analysis for two different features: copy number alterations (CNA) and
deleterious point mutations. For CNA, we use the CN values by gene, using a score of -2, -1, 0,
1 or 2 for each gene. We considered a gene to be amplified if CNA value was +1 or +2 and
deleted if the CNA value was -1 or -2. For deleterious mutations, we selected mutations
predicted as moderate or high impact in the Hartwig (HMF) variant calls,
(https://github.com/hartwigmedical/hmftools). We binarized the feature into 1 if the sample has
the feature (CNA, or deleterious mutations present) or O if it has not. We considered CNA
deletions and amplifications as two independent features. We binarized RMDflat, RMDgloball
and RMDglobal2 by dividing each of them in tertiles and comparing tumor samples in 1st tertile
versus 3rd tertile, by tissue.

We fit a linear model to test whether the binary genetic feature (amplification CNA, deletion CNA
or deleterious mutation in a particular gene) can be explained by the RMD signatures activity
being high versus low (i.e. upper tertile versus lower tertile). We controlled for tissue by
including it as covariate. The regression formula was:

genetic_feature ~ RMDflat + RMDgloball + RMDglobal2 + tissue

We used the regression coefficients, and p-values (according to the R function “summary”) from
the variables RMDflat, RMDgloball and RMDglobal2 to identify genetic events associated with
high levels of each RMD global signatures, suggesting possible RMD signature generating
events. In the case of CNAs, to adjust for the linkage between CNA resulting in confounding, we
added to the regression the PCs from a PCA on the CNA landscape across all genes. We
calculated the lambda (inflation factor) for the p-value distribution of associations, while
including PCs from 1 to 100 to decide the best number of PCs to include so as to minimize
lambda. We included the first 55 PCs for the deletion CNA and the first 63 PCs for the
amplification CNA association study.
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Epigenomic and related data sources

ENCODE data. We downloaded from ENCODE (https://www.encodeproject.org/) all data
available for Homo sapiens in the genome assembly hgl9 for DHS, H3F3A, H3K27me3,
H3K4mel, H3K4me3, H3K9ac, H3K9me3, HiC, DNA methylation (WGBS), H2AFZ, H3K27ac,
H3K36me3, H3K4me2, H3K79me2, H3K9me2 and H4K20mel marks. Data is described in
Table S2. For each of these features, we downloaded the narrow peaks, calculated their
weighted density for each 1Mb window as the width of the peak multiplied by the peak value.

ChromHMM chromatin states. We downloaded the 25 ChromHMM states segmented files
(“imputed12marks_segments”) for the 129 cell types available from Roadmap epigenomics
% (http://compbio.mit.edu/ChromHMMY/). We calculated the density of each state for each 1Mb
window as the fraction of the window covered by the chromatin state.

Other epigenomic data. We downloaded RT variability genomic data describing RT
heterogeneity °®, Constitutive and Developmental RT domains ®, RT changes upon
overexpression of the oncogene KDM4A | RT signatures of replication stress °, RT signatures
of tissues **, RT states ", changes in RT upon RIF1 knock-out * and RT changes due to RT
QTLs ". In addition, we downloaded data for variability in DNA methylation **’*, HMD and PMD
regions °, CpG density, gene density, lamina associated domains (LADs), asynchronous
replication domains ", early replicating fragile sites "°, SPIN states *°, A/B subcompartments *°,
DHS signatures " and H3K27me3 and H3K9me profiles for RB1 wild-type and knock-out *°.
Data described in Table S3. We calculated the density for each feature for each 1 Mb window,

and correlated this with the RMDgloball signature windows weights.

Replication timing data sources and generation

We downloaded experimental RT data, from RepliChip or RepliSeq assays, from the Replication
Domain database (https://www2.replicationdomain.com/index.php) °® in multiple human cell
types (n = 158 samples). In addition, we predicted RT using the Replicon software ' from two
type datasets: (i) in noncancerous tissues, cultured primary cells and cell lines including cancer
and stem cells (n = 597 samples) using the DHS chromatin accessibility data downloaded from
ENCODE; and (ii) in human tumors (n = 410 samples, most of them with technical replicates)
using ATAC-seq data of TCGA tumors downloaded from *. We used Replicon tool with the
default settings.

Analysis of coordinated gene expression changes

For the genomes from the HMF data set, we downloaded gene expression data (as adjusted
TPM values) from Hartwig **, available for a subset of samples for which we derived the RMD
signatures. In total, we had gene expression data for 1534 samples and 18889 protein coding
genes. We tested whether the gene expression values of the genes within one window show an
increase or decrease compared to their flanking windows in RMDgloball high (exposure >=
0.13) versus RMDgloball low (exposure < 0.06) tumor samples using a linear regression model:
gene_expression (adjTPM) ~ is_RMDgloball + is_window + is_RMDgloball:is_window + tissue
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In this analysis, we removed from the datasets samples with high RMDflat or with high
RMDglobal2 value (exposure > 0.15). We used samples from breast, colorectum, lung, ovary
and skin because they had >=5 samples in both categories (RMDgloball high and low). To
analyze the coordinated changes in gene expression we checked the coefficient and p-values of
the interaction term is_ RMDgloball:is_window.

For the genomes from the TCGA data set, we downloaded gene expression data (as TPM
values) from the Genomic Data Commons data portal (https://dcc.icgc.org/pcawg) for the same
TCGA samples for which we predicted RT. In total, we have gene expression data for 399
overlapping samples and 20092 genes. We compared the gene expression between RT-PC5
(and RT-PC6) high and low for a group of pathways which has been reported to be related with
recurrent heterogeneity across cell types *? using a regression model. We binarized RT-PC5
(and RT-PC6) by dividing each into tertiles and keeping the samples in the 1st tertile to be
compared versus the samples in the 3rd tertile. We applied a regression for all the genes in
each RHP gene set separately. We controlled for tissue by including it as covariate. The
regression formula is:

gene_expression (TPM) ~ is_RT-PC5 + tissue

We considered the regression coefficient and its p-value of the variable is_RT-PC5. We applied
the same analysis for RT-PC6.

Clustering of RMD profiles

For RMD profiles we applied a PCA to the centered data, where rows were tumor samples and
the columns were megabase windows. Next, we applied a clustering on the PC1 to PC21 using
the R function tclust for robust clustering. We tested different numbers of clusters and alpha
value (number of outliers removed). In addition, we tested the clustering using all PCs (PC1 to
PC21) and without PC1 (PC2 to PC21), selecting the clustering for k=18 and alpha = 0.02
without PC1 based on the log likelihood measurement.
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