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Highlights 

● Plant species  richness and functional diversity show significant and positive relationships with 

spectral diversity 

● Spectral diversity alone explains a small fraction of the total variability in ground biodiversity 

● Slight differences among the performances of the spectral diversity metrics tested 

● The relationship between spectral and plant diversity is context-dependent 

 
Abstract 

Biodiversity monitoring is crucial for ecosystem conservation, yet field data collection is limited by 

costs, time, and extent. Remote sensing represents a convenient approach providing frequent, near-real-time 

information over wide areas. According to the Spectral Variation Hypothesis (SVH), spectral diversity (SD) 

is an effective proxy of environmental heterogeneity, which ultimately relates to plant diversity. So far, 

studies testing the relationship between SD and biodiversity have reported contradictory findings, calling 

for a thorough investigation of the key factors (e.g., metrics applied, ecosystem type) and the conditions 

under which such a relationship holds true. This study investigates the applicability of the SVH for plant 

diversity monitoring at the landscape scale by comparing the performance of three different types of SD 

metrics. Species richness and functional diversity were calculated for more than 2000 cells forming a grid 

covering the Czech Republic. Within each cell, we quantified SD using a Landsat-8 “greenest pixel” 

composite by applying: i) the standard deviation of NDVI, ii) Rao’s Q entropy index, and iii) richness of 

“spectral communities”. Habitat type (i.e., land cover) was included in the models describing the relationship 

between SD and ground biodiversity. Both species richness and functional diversity show positive and 

significant relationships with each SD metric tested. However, SD alone accounts for a small fraction of the 

deviance explained by the models. Furthermore, the strength of the relationship depends significantly on 

habitat type and is highest in natural transitional areas. Our results underline that, despite the stability in the 

significance of the link between SD and plant diversity at this scale, the applicability of SD for biodiversity 

monitoring is context-dependent and the factors mediating such a relationship must be carefully considered 

to avoid drawing misleading conclusions. 

Key words: biodiversity monitoring, plant functional traits, remote sensing, species richness, Spectral 

Variation Hypothesis, vascular plants 
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1. Introduction 

Biodiversity supports multiple ecosystem functions, which ultimately provide the ecosystem services 

essential to sustain human societies (Cardinale et al., 2012; de Groot et al., 2002). However, human 

exploitation of Earth’s natural resources has led to alterations in plant species’ distribution, composition, 

and abundance, to the extent that over one-fifth of all vascular plant species are threatened (Willis, 2017). 

Nowadays there is an urgent need to improve ways to effectively monitor biodiversity across broad spatial 

scales and to assess how plant communities respond to global change. Nonetheless, the ability to measure 

and monitor biodiversity continues to lag far behind (Skidmore et al., 2021). 

Remote sensing (hereafter RS) offers remarkable opportunities for biodiversity monitoring, from local 

to global scales (Rocchini et al., 2010; Wang and Gamon, 2019). Among the approaches studied, spectral 

diversity (SD), originally developed in the framework of the spectral variation hypothesis (SVH, Palmer et 

al., 2000, 2002), has been gaining momentum as a basis for relating the remotely sensed spectral signal to 

ground biodiversity at different spatial scales and resolutions (Fassnacht et al., 2022; Rocchini et al., 2021, 

2010; Tagliabue et al., 2020; Torresani et al., 2019). At broader spatial resolution, the underlying assumption 

is that the spatial variation in reflectance values in a given area (i.e., SD) is likely correlated with the spatial 

variation in the environment in that area and therefore related to the number of species present. At very fine 

spatial resolution, the relationship is assumed to be direct, with SD directly related to plant diversity through 

the diversity of species-specific optical traits associated with plant functional and structural properties (Ustin 

and Gamon, 2010). 

Despite the potential of RS in biodiversity monitoring systems, issues remain regarding the hypothesised 

relationship between spectral diversity and plant ground diversity (Fassnacht et al., 2022). Although several 

empirical studies have validated the use of spectral diversity to estimate plant species diversity (Levin et al., 

2007; Rocchini, 2007; Rocchini et al., 2014), others have criticised it for being unstable and not reliable in 

every context (Conti et al., 2021; Schmidtlein and Fassnacht, 2017). Such inconsistent findings may be due 

to a lack of systematic consideration of the key factors that influence the relationship between plant 

biodiversity and SD, which complicates the interpretation of spectral variation in many contexts (Fassnacht 

et al., 2022). Recently, Fassnacht et al. (2022) discussed four of the most important factors that may affect 

such a relationship: 1) the scale considered, both in terms of spatial extent (i.e., size of the study area) and 

spatial grain (i.e., pixel size); 2) reflectance changes over time (e.g., seasonality); 3) effects of the metric 

chosen for quantifying SD; and 4) the identity and number of habitat or vegetation types considered 

(Rocchini et al., 2018, 2010; Rossi et al., 2021; Schmidtlein and Fassnacht, 2017). 

Regarding the latter factor, habitat structure may strongly influence the relationship between SD and 

biodiversity, so all other factors must be adjusted accordingly. For instance, small patches of calcareous 

grassland embedded in intensively managed agricultural landscapes are very rich in species. However, when 

observed with medium resolution sensors, they have low SD, while surrounding agricultural land has high 

SD but very low species richness (Fassnacht et al., 2022). Thus, not considering the variety and types of 

habitat can be particularly problematic when multiple habitat types are examined simultaneously, as is the 

case at large to medium observation scales (Fassnacht et al., 2022; Schmidtlein and Fassnacht, 2017). 

Similarly, the SD metrics are thought to be linked to plant diversity through different pathways, which 

may lead to different results. To date, several SD metrics have been proposed as proxies for biodiversity, 

with no consensus on which metric best fulfils this role. Wang and Gamon (2019) have described three main 

classes of SD metrics: 

i) metrics based on variation in traditional vegetation reflectance indices, based on the well-known 

correlation between productivity and plant diversity (Tilman et al., 2001; Zhang et al., 2012); 

ii) metrics based on spectral information content, which condense the full-spectral information through 

statistical metrics of variability or spectral entropy; 

iii) metrics based on “spectral species” (or “spectral types”) that share similar spectral signatures and 

are derived from partitioning the spectral space. 

To date, the existing empirical studies investigating the relationship between SD and plant diversity 

have relied mainly on limited datasets (Fassnacht et al., 2022). In addition, most efforts to link plant diversity 

at the landscape scale to SD have focused on taxonomic diversity (e.g., species richness or evenness), yet 
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species influence ecosystem functions through their functional composition, diversity, and abundance (de 

Bello et al., 2010; Tilman et al., 1997). Functional diversity represents the variability in plant functional 

traits in a given area and is considered an essential component of biodiversity that determines ecosystem 

processes and stability. The spatiotemporal mapping of functional diversity at large scales could thus 

support assessing how environmental changes affect ecosystem functioning. Nonetheless, the potential of 

SD to infer functional diversity at the landscape scale remains to be demonstrated (Cavender-Bares et al., 

2022; Frye et al., 2021; Schweiger et al., 2018). 

Here we investigate whether plant diversity (species richness and functional diversity) at the landscape 

scale is related to SD. To assess the context-dependence of such a relationship, we will test the performance 

of the three types of SD metrics, taking into account the effects of the habitat types. Specifically, we rely on 

an extensive, spatially continuous dataset of field-collected data covering the Czech Republic and a multi- 

temporal Landsat-8 OLI composite. 

 
2. Materials and Methods 

2.1 Plant diversity data 

Data on plant diversity were obtained from the Pladias Database of the Czech Flora and Vegetation 

(Chytrý et al., 2021). This nationwide database contains approximately 13 million records on species 

occurrence (many of them critically reviewed and validated) and traits of almost 5 thousand taxa (species, 

subspecies, varieties, and hybrids) of the Czech vascular flora (Chytrý et al., 2021; Wild et al., 2019). We 

used the latest update of taxonomic concepts and nomenclature (Kaplan et al., 2019). More than 60% of the 

records used for our analysis were collected in the last 20 years (Wild et al., 2019) and include all native 

and spontaneously established alien vascular plant taxa, as well as some commonly cultivated crops and 

alien woody plants. The study area covers an altitudinal range from 115 to 1603 m a.s.l. with annual 

precipitation varying from about 400 mm to 1,450 mm (Brázdil et al., 2021) and a wide range of 

environmental conditions, from dry and warm forest-steppe areas to mountainous areas with subalpine 

vegetation (Chytrý et al., 2017). We counted species richness and calculated functional diversity in grid 

cells of 5’ × 3’ (approx. 6.0 × 5.5 km), forming a grid of 2551 units covering the entire Czech Republic 

(Figure 1). All marginal grid cells that were not entirely within the country were excluded from our analysis 

to avoid potential bias from undersampled units. 

To calculate functional diversity, we selected a list of optically and ecologically relevant functional 

traits. The majority of traits were available in Pladias (see Chytrý et al. 2021 for their description): Mean 

Height, Growth Form, Life Form, Leaf Shape, Flower Colour, and three traits were taken to Pladias from 

the BiolFlor database (Klotz et al. 2002): Leaf Life Span, Leaf Anatomy and Reproduction Type. We also 

added three traits from the LEDA database (Kleyer et al., 2008) that are not included in the Pladias Database: 

Specific Leaf Area (SLA), Leaf Dry Matter Content (LDMC), and Seed Mass (Appendix A). We compiled 

trait values for a minimum of 1463 species for LDMC, and for a maximum of 3087 species for Leaf Shape. 

To account for potential bias due to missing values, only those grid cells that had at least 70% coverage for 

each of the traits considered were included in the analysis, resulting in a total of 2363 grid cells. For each 

grid cell, we calculated functional diversity as the mean pairwise distance (MPD) between species in the 

functional trait space defined by the above-mentioned traits (Figure 1). Trait distances were measured using 

Gower distance, where each numerical trait is first standardised by dividing each value by the range of the 

corresponding trait, after subtracting the minimum value; consequently, the rescaled trait variable has the 

range [0,1] (Gower, 1971). 
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2.2 Spectral data 

We used the USGS Landsat 8 atmospherically corrected Surface Reflectance catalogue of data acquired 

with the Operational Land Imager (OLI) sensor and available in Google Earth Engine (GEE) (Gorelick et 

al., 2017). Specifically, we used Earth’s reflected radiance in six bands in the 520–2300 nm range of the 

electromagnetic spectrum, with a spatial resolution of 30 m and a revisit time of 16 days. To select 

reflectance data for the same phenological period in which the ground biodiversity measurements were made 

(i.e., the growing season), we processed OLI images acquired over the area of interest during the growing 

seasons (i.e., between May and August each year) from 2013 to 2017. The annual range was chosen to 

overlap with the period of field records. Despite the shorter period covered by OLI than Landsat-7 Enhanced 

Thematic Mapper Plus (ETM+), we chose the OLI dataset due to the Scan Line Corrector (SLC) ETM+ 

failure that occurred in 2003, which has affected data acquisition since then. 

To minimise weather-related noise, cloud-covered pixels were filtered out based on the Pixel quality 

attributes (pixel_qa) band (Foga et al., 2017). Then, the Normalized Difference Vegetation Index (NDVI) 

was calculated and the NDVI layer was added to each image. Finally, we generated a “greenest-pixel” 

composite image by selecting the pixels with the highest NDVI value of the overlapping images for the 

studied time period. This was done to best capture the vegetation cover and smooth out inter-annual 

variability. By selecting the greenest pixel over the entire period, we aimed to get the optimal vegetation 

cover of the area and avoid the effects of extreme events, such as floods or fires. Another reason for using 

the greenest-pixel composite is that the relationship between reflectance variability in space and vegetation 

tends to be higher when it is near the vegetation optimum, i.e., when the cover of photosynthetically active 

vegetation is greatest (Feilhauer and Schmidtlein, 2011; Thornley et al., 2022). 

2.3 Spectral diversity metrics 

We quantified the SD values within each grid cell using three different methods, each representing one 

of the main categories proposed by Wang and Gamon (2019): i) the standard deviation of NDVI (sdNDVI), 

ii) Rao’s Q quadratic entropy index (Rocchini et al., 2017), and iii) richness of “spectral communities” 

(SpecCom) (Rocchini et al., 2021). 

2.3.1 sdNDVI 

The Normalized Difference Vegetation Index (NDVI) is a traditionally used vegetation reflectance 

index positively correlated with primary production (Gillespie et al., 2008). sdNDVI has often been used as 

a continuous measure of the dispersion (variation) of NDVI values in a given area because it explains a 

reasonable portion of the variability in the in-situ diversity data (Gillespie, 2005; Gillespie et al., 2009; 

Gould, 2000; Hall et al., 2010; Levin et al., 2007). 

2.3.2 Rao’s Q 

Rao’s Q index is a continuous metric that quantifies the difference in reflectance values between two 

pixels drawn randomly with replacement from a defined set of neighbouring pixels, taking into account their 

abundance and the relative distance between them: 

[1] Q = ΣΣ dij × pi × pj 

where dij is the spectral distance between pixels i and j, and pi and pj are the relative proportions of pixels i 

and j, respectively (Rocchini et al., 2017). The advantage of applying Rao’s Q index to spectral data, as 

opposed to other diversity indices (e.g., Shannon’s H'), is its ability to explicitly account for the numerical 

size of pixels, rather than just the relative abundance (evenness) of reflectance values. To calculate Rao’s Q 
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index within each grid cell, we used the function RaoQArea written in the R language (R Core Team, 2021) 

and stored in the GitHub repository https://github.com/micheletorresani/RaoQarea. RaoQArea calculates 

Rao’s Q heterogeneity index for a limited area based on the Euclidean distance between pixels of a single- 

band raster. In our case, the RaoQArea function was applied to the single-band raster derived by selecting 

the first component from a principal component analysis (PCA) applied to a large random subset of pixels 

of the original multi-band image. PCA was performed to simplify spectral information and remove band 

collinearity. 

2.3.3 SpecCom 

To differentiate spectral communities as a function of the optical traits underlying the reflectance of 

each pixel, we used the R package biodivMapR (Féret and de Boissieu, 2022, 2020), which allows spectral 

diversity mapping based on the partitioning of the spectral space of RS images into subunits called as 

“spectral species” (following Féret and Asner, 2014). Due to the resolution of the spectral data used, a direct 

link between the identified spectral subunits and in-situ plant species is not feasible. Therefore, we refer to 

such partitions in the spectral space as “spectral communities” (sensu Rocchini et al., 2021), assuming that 

they are linked to a higher level of ecological organisation. After a series of pre-processing steps that are 

part of the package workflow, e.g., spectral normalisation (i.e., continuum removal) and dimensionality 

reduction (by PCA), the mapping of spectral communities was based on k-means clustering. Clustering was 

performed on relevant PCA axes selected by visual inspection (Féret and Asner, 2014). The number of k 

clusters was determined a priori and set to 200 after a trial-and-error procedure (Féret and de Boissieu, 

2020; Rocchini et al., 2021). Based on the resulting map of “spectral communities”, we calculated the 

categorical metric “spectral communities” richness (SpecCom) within each grid cell. 

 

2.4 Accounting for habitat type 

We hypothesised that habitat type may play a role in the relationship between SD and plant diversity 

(Schmidtlein and Fassnacht, 2017). In the present study, habitat type was defined by CORINE land cover 

(CLC) because of the broad coverage and validation of these data. We calculated the most represented CLC 

type (reference year 2012) within each 5’ × 3’ grid cell (i.e., landscape). Although we know that classifying 

the grid cell with the predominant CLC within the area is an approximation, no other options were possible 

due to the grain mismatch between the available ground and CLC data. Level I CLC nomenclature was 
used for artificial land cover types. For forests and semi-natural areas, we assigned land cover codes 

according to the Level III CLC nomenclature. For agricultural land, we used the Level II nomenclature for 

arable land and level III for pastures. As a result, the following categories were assigned to the grid cells: 

CLC 1, CLC 21, CLC 231, CLC 311, CLC 312, CLC 313, CLC 321, and CLC 324 (see Appendix B for a 

description of the CLC types used). Since CLC 321 (grasslands) was underrepresented (n grid cells= 3), we 

excluded the corresponding units from the analyses. No landscape features were masked from our spectral 

data, as this would be in contrast with the original formulation of SVH. 

 

2.5 Statistical Analyses 

All statistical analyses were performed in R 4.1.2 (R Development Core Team 2021). We modelled the 

relationship between in-situ diversity and SD through generalised additive models (GAMs) using the mgcv 

package v. 1.8.39 (Wood 2017), with species richness (SR) or functional diversity (FD) of plants as response 

variables for a total of six models. For species richness, we used a negative binomial (NB) error distribution 

to account for possible over-dispersed species richness count data. For functional diversity, we used the 

Gaussian error distribution. Each model had the following three sets of predictors terms: 
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1. An interaction between SD and the dominant CLC type. This represents the effect of CLC type on 

the relationship between SD and taxonomic or functional diversity. In other words, this models the 

possibility of different SD-SR or SD-FD relationships in different CLC types. 

2. Sampling effort, represented by the logarithm of the number of records within each grid cell. This 

corrects for the possible effects of uneven sampling effort, i.e., when grid cells may have higher 

species diversity simply because they have been sampled more. 

3. Smooth two-dimensional splines on a sphere (Wood 2017) to account for spatial autocorrelation 

(i.e. spatial pseudo-replication) in the response variable (Dormann et al., 2007). 

To account for possible non-linear patterns, the response of SR and FD to all continuous predictors was 

modelled as a second-order polynomial. An example of a full model formula as used by the mgcv R package 

is : gam(biodiv ~ poly(SD, 2, raw = F):CLC + s(longitude, latitude, bs = "sos")+ 

log(samp.eff.). 

To estimate the relative importance of effects of the three sets of predictors above, we used partitioning 

of deviance (Aragón et al. 2010; Carrete et al. 2007), an approach related to variance partitioning (Borcard 

et al. 1992). Specifically, the deviance from a null model with no predictors was partitioned to (i) a fraction 

explained by spectral diversity and its interaction with CLC, (ii) an effect of sampling effort, (iii) a fraction 

explained by spatial autocorrelation. We estimated both the independent effects of these, as well as their 

overlapping fractions, where the overlap is caused by collinearity between the predictors. 

The data and code used in the analyses are available at https://github.com/MichelaPerrone/SVH_CZ.git 

under CC-BY license. 

 
3. Results 

We found statistically significant relationships between plant diversity (species richness and functional 

diversity) and SD. The models with species richness and functional diversity as responses were similar, all 

showing positive relationships with SD. The explanatory power of the models, expressed as explained 

deviance, ranged from 71.9% to 75.1% for models explaining species richness and from 58.0% to 64.8% 

for models explaining functional diversity (Figure 2). 

We found slight differences in the deviance explained by the models among the performances of the SD 

metrics considered (Figure 2). For both species richness and functional diversity, the models where SD was 

calculated using SpecCom showed the lowest explained deviance, while the models with continuous metrics 

(i.e., sdNDVI and Rao’s Q) showed the highest explained deviance. 

 

3.1 Variation partitioning 

Variation partitioning showed that the unique contribution of SD accounts for only a small fraction of 

the total variability, ranging from 2.6% to 5.8% in SR models (Figure 3a, c, and e), and from 5.7% to 12.5% 

in FD models (Figure 3b, d, and f). Moreover, in SR models, sampling effort alone explained almost half of 

the deviance (between 46.1% and 47.7%) (Figure 3a, c, and e). In contrast, in FD models, most of the 

variability was jointly explained by SD and splines (between 25.5% and 29.6%) and by spatial 

autocorrelation (splines) alone (between 22.5% and 26.6%) (Figure 3b, d, and f). 

3.2 Effect of habitat type 

For simplicity, we focus primarily on how the direction of the relationship between SD and biodiversity 

varies with the different CLC types, therefore we describe only the effects of the interaction between the 

first power of the SD variables and ecosystem type, since it is the power that determines the direction of the 

effect (the full list of coefficient estimates can be found in Appendix C). We found that the significance, 

magnitude, and sign of the effect of SD varied depending on the CLC type dominating the landscape (i.e., 

grid cell) (Figure 3). Specifically, in the landscapes dominated by arable lands (CLC 21), coniferous forests 
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(CLC 312), and transitional woodland-shrub (CLC 324), the effect of SD was always significant and positive 

(Figure 4a, b, c, d, e, and f). In addition, the effects of SD in transitional woodland-shrubs (CLC 324) were 

remarkably high compared to the other interactions (Figure 4), suggesting that increases in SD were 

associated with a higher increase in plant diversity in transitional woodland-shrubs than in other habitat 

types. In the case of artificial surfaces (CLC 1), the effect of SD was significant and positive only when 

considering sdNDVI and Rao’s Q in both SR and FD models (Figure 4a, b, c, and d). The effect in pastures 

(CLC 231) was significant and positive in all FD models and in the SR model where SD was calculated 

through sdNDVI (Figure 4a, b, d, and f). The effect in broad-leaved forests (CLC 311) was always 

significantly positive, except in the SR model where SD was calculated using Rao’s Q (Figure 4c). The 

effect in mixed forests was, instead, significant and positive only in the SR model where SD was calculated 

through SpecCom (Figure 4e). The only case where we observed a significant negative effect of the 

interaction with the predominant habitat type was when considering artificial surfaces (CLC 1) in the models 

relating plant diversity to SpecCom (Figure 4e and f). In all other cases, the predominant habitat type did 

not affect the relationship between SD and plant diversity, as the results were not significant. 

 
4. Discussion 

 

4.1 Spectral diversity and plant diversity 

When modelling the ability of different types of SD metrics to explain the variation of plant diversity at 

the landscape scale, despite the relatively high goodness-of-fit (percentage of explained deviance) observed 

in our models, only a small fraction of the variation was explained by SD alone. SD accounted for a larger 

fraction of variation in FD models, although SR models had a better goodness-of-fit. These results suggest 

that, even at this scale, SD is linked to functional diversity slightly better than to species richness. 

Nevertheless, SD and splines combined share a relatively large fraction of variation in all models, suggesting 

that it is difficult to disentangle the influence of spatial autocorrelation of SD from the effect of SD itself. 

Overall, the unique contributions of sampling effort and splines explain a large portion of the variation in 

SR and FD models, respectively. Therefore, routinely inferring plant diversity from SD may lead to 

inaccurate results, if sampling effort and spatial autocorrelation are not accounted for in situations similar 

to ours. 

Results were generally consistent across species richness and functional diversity, suggesting that SD is 

able to reflect both aspects of plant diversity at the given landscape scale, which has been reported in 

previous studies (Frye et al., 2021). This is in agreement with the original formulation of the SVH (Palmer 

et al., 2002): the heterogeneity of the landscape estimated through SD reflects the diversity of available 

niches and thus both taxonomic and functional diversity. Indeed, SD does not attempt to directly estimate 

any specific aspect of plant biodiversity (e.g., taxonomic, phylogenetic, functional), but encompasses them 

all through physical and ecological rules (Laliberté et al., 2020; Schweiger et al., 2018; Wang and Gamon, 

2019). 

 

4.2 Spectral diversity and effects of habitat type 

The differences found in the relationship between SD and ground diversity across the habitat types 

considered were based mainly on the ability of the different metrics used (i.e., continuous and categorical) 

to capture the relationship and on the strength of the relationship. 
In landscapes dominated by artificial surfaces, the ability of continuous metrics of SD to predict 

biodiversity unexpectedly improved. This is because, unlike categorical spectral metrics, continuous metrics 

are sensitive to extreme reflectance values of background material (e.g., bare soil, litter, rocks), which can 

have a considerable influence on the SD estimation (Fassnacht et al., 2022; Wang et al., 2018b). At finer 
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resolutions, this issue can be tackled by masking out soil pixels and unvegetated areas (e.g., Gholizadeh et 

al., 2018). At coarser spatial resolutions, as in our case, such masking may result in the erroneous filtering 

of mixed pixels corresponding to scarcely vegetated - but biologically relevant – areas, resulting in a 

consequent loss of information (Schmidtlein and Fassnacht, 2017). Landscape mosaics dominated by urban 

areas are likely to be very species-rich, as semi-natural vegetation within or adjacent to cities often harbours 

more plant species than the surrounding landscape (Araújo, 2003; Kühn et al., 2004). Moreover, masking 

landscape features based on their reflectance values would contradict the original formulation of SVH, 

which states that it is the magnitude of variation in spectral characteristics of an area that relates to habitat 

(or vegetation type) heterogeneity and thus to available niche space. In contrast, in landscapes dominated 

by urban habitats, the ability of the categorical approach to make inferences about biodiversity was impaired, 

which suggests that these metrics do not properly capture the heterogeneity of this landscape type 

The categorical approach of the SpecCom metric can still offer relevant benefits (Fassnacht et al., 2022; 

Schmidtlein and Fassnacht, 2017). Estimating SD by means of spectral type classification allows 

summarising the continuity of spectral space into discrete spatial objects that are likely to correspond to 

distinct landscape features. With this approach, there is less risk of disproportionate influence of extreme 

pixel values on the spectral variation metric, since they would constitute individual categories among equally 
meaningful others (Wang and Gamon, 2019). Moreover, spectrally homogeneous spatial units can be 

identified even when plant optical characteristics change throughout the year according to species 

phenology, allowing for temporal consistency in spectral type classification. However, this is unlikely to 

work in larger regions with diverse environmental conditions and, thus, non-synchronous phenological 

states across similar ecological entities (e.g., communities). In landscapes dominated by transitional 

woodland-shrub habitats, both categorical and continuous SD metrics exhibited the strongest (albeit still 
weak) association with plant diversity. Given the inherent spatial vegetation heterogeneity of such areas, 

which can likely be detected through RS imagery, these results are unsurprising. Indeed, the habitat type is 

characterised by patchy, bushy and herbaceous vegetation with occasional scattered trees (Bossard et al. 

2000), and the resulting spectral heterogeneity can be detected even by current, non-commercial spaceborne 

sensors. 

In landscapes dominated by arable land and coniferous forests, we found the same general positive 

(although weaker) effect on the relationship between SD and diversity, indifferently of which metric was 

used. The agreement among SD metrics indicates that the relationship between SD and ground biodiversity 

is significant and stable. The landscapes dominated by arable land are widespread in Central Europe (as in 

the case of the Czech Republic, see Appendix B) and are characterised by high spectral heterogeneity, 

mostly given by the mosaic of heterogeneous and species-poor cultivation patterns. However, these 

landscapes may harbour several small “islands” of natural and semi-natural species-rich habitats (e.g., 

grasslands and shrublands), (Wang et al., 2018a) which are captured by SD. In the case of landscapes 

dominated by coniferous forests, the low spectral heterogeneity of the canopy is coupled with low plant 

diversity, which is mirrored by the positive SD-diversity relationship. 

In our study area, areas classified as pastures (CLC 231) correspond to managed grasslands and 

meadows. Therefore, the positive and significant interaction between pastures as the predominant habitat 

type and SD, observed in FD models and SR model using sdNDVI, was less expected than for other habitat 

types. Indeed, the wide mismatch between pixel resolution and size of individuals and populations of plant 

species has no negative effect on the SD-diversity relationship, as would be expected based on the smoothed 

reflectance signal (Wang et al., 2018a; Fassnacht et al., 2022). 

 

4.3 Choice of spectral diversity metrics 

We found that all our metrics of SD can explain a comparable proportion of the variability in the ground 

diversity at the scale applied. However, there were differences between categorical (i.e., SpecCom) vs 

continuous metrics (i.e., Rao’s Q and sdNDVI), with the continuous metrics performing slightly better. Their 

performance differed depending on the habitat type considered. 
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The SD metrics that we used all performed similarly, despite differences within different habitat types. 

However, some practical aspects could be crucial in the choice of the most appropriate metric. 

The application of categorical metrics for the routine production of RS biodiversity products with global 

consistency is complicated by the need for the user’s input. Indeed, it is necessary to conduct preliminary 

experiments to find the perfect compromise between the number of clusters and the computational effort 

that would allow reliable results (Féret and de Boissieu, 2020; Rocchini et al., 2021). Regarding continuous 

metrics, those used in this study differ in the spectral information used to compute SD. Indeed, metrics based 

on variation in vegetation indices (e.g., sdNDVI) rely on the information provided by specific wavebands 

that are related to vegetation condition and biomass, and allow discrimination between vegetated and non- 

vegetated areas, and between different vegetation types. However, the use of this specific (limited) set of 

spectral bands may exclude some important information about other environmental and biochemical 

properties (e.g., leaf water content, nitrogen content, pigments, and lignin) (Asner and Martin, 2009). In 

contrast, spectral entropy metrics (e.g., Rao’s Q) use all the available spectral information and describe the 

spectral “dimensionality” of the data (Wang and Gamon, 2019), but they can be computationally costly, 

possibly needing several days to be computed for large areas at a medium-high spatial resolution. As we 
showed that a simpler vegetation index-based metric (sdNDVI) performs comparably well to a spectral 

entropy-based Rao’s Q, we recommend using the simpler and computationally low-cost sdNDVI, which 

already proved performing in other studies (Gholizadeh et al., 2019). However, since previous results 

(Gholizadeh et al., 2018; Wang et al., 2018b) suggest that the most informative spectral regions for 

biodiversity assessment can vary with spatial resolution, data properties, and scale of observation, further 

analyses would be needed in order to assess whether this metric should be used in other analytical contexts. 

 
5. Conclusions 

We examined the relationship between vascular plant diversity and spectral diversity across more than 

2000 grid cells covering the Czech Republic, taking into account the effects of land cover. We investigated 

the potential of three different SD metrics to infer both species richness and functional diversity. Our results 

show little to no difference among the metrics tested at this scale, indicating that the association between 

SD and plant diversity is significant and stable. However, we cannot confirm the general validity of the 

SVH. Indeed, we showed that in our setting, only a small percentage of variation could be explained solely 

by SD and that not accounting for sampling effort and spatial autocorrelation in the models could be 

misleading. In addition, we found an obvious effect of the habitat type prevalent in the landscape on the 

relationship between SD and biodiversity, which is strongest in areas with transitional habitats between 

forest and shrubs. 

Despite the observed significance of the relationship between SD and ground plant diversity, the strong 

context-dependence of such a relationship suggests that users should always account for the contextual 

applicability of SD for mapping biodiversity across space. Along with spatial variation in biodiversity, there 

is room for testing if the information conveyed by SD could be efficiently used to monitor biodiversity 

changes over time, e.g., by assessing landscape changes based on the remotely-sensed spectral signal. 

Although the SD-biodiversity relationship was not strong compared to the other predictors analyzed, it 

was still highly significant. Thus, SD has a low potential to serve as the one single proxy for species or 

functional diversity. However, it still has potential to improve models and predictions of taxonomic or 

functional diversity. We suggest that, for this purpose, SD should be used as one of several predictors, 

alongside other well-known variables that affect diversity, such as productivity, climate, and historical 

processes (Ricklefs & Schluter 1994; Lomolino et al. 2017; Hawkins et al. 2003). 
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Figure 1. Plant species richness (number of species, top) and functional diversity expressed as mean pairwise distance in plant 

traits (MPD, bottom) within each grid cell (n = 2363) covering the Czech Republic. 

 

 

Figure 2. Total explained percentage deviance of models explaining species richness and functional diversity with three types of 

spectral diversity (sdNDVI, Rao’s Q, SpecCom), sampling effort, and spatial smoothing splines 
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Figure 3. Venn diagrams showing the percentage of explained deviance in plant diversity explained by the three groups of 

predictors: spectral diversity, sampling effort, and spatial autocorrelation (splines). Overlaps among circles represent fractions of 

the variation that cannot be unequivocally attributed to one of the overlapping predictors. For example, when spectral diversity is 

also spatially autocorrelated, some fraction of the explained deviance will be shared between splines and spectral diversity. Negative 

numbers can arise due to the spline optimisation algorithm during model fitting, are usually small, and can be interpreted as zeroes. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.05.506583doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.05.506583
http://creativecommons.org/licenses/by/4.0/


14  

 

 

 

Figure 4. Effect sizes (standardised coefficients) of interactions between SD and land-cover types in the plant diversity ~ SD models. 

The dots represent coefficient estimates; the outer error bars are 95% confidence intervals, and the inner error bars indicat e one 

standard error on each side. When the 95% coefficient interval includes a value of zero, the interaction between SD and land-cover 

type is not significant. Due to the different value ranges of CLC 324 estimates, a second x-axis with appropriate scaling is shown. 
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Appendix A 

Table A1. Functional traits used to calculate functional diversity (with their source database) (Chytrý et al., 2021; Pérez-Harguindeguy et al., 2013; Raunkiaer, 1934). 

 

Functional Trait Relevance Source Number of species Units Mean sd 

Specific leaf area (SLA) related to the potential relative growth rate LEDA 1770 m2 kg-1 24.57 13.80 

 

Leaf dry matter content (LDMC) 
related to the average density (fresh mass per fresh volume) 

of the leaf tissues. 

 

LEDA 
 

1463 
 

mg g-1 

 

207.78 
 

80.36 

 
Seed mass 

related to the stored resources in the seed that help the 

young seedling to survive and establish in the face of 

environmental hazards 

 
LEDA 

 
1760 

 
mg 

 
17.81 

 
214.80 

 

 
Mean height 

associated with growth form, position of the species in the 

vertical light gradient of the vegetation, competitive vigour, 

reproductive size, whole-plant fecundity, potential lifespan, 

and whether a species can establish and attain reproductive 

size between two disturbance events 

 

 
Pladias 

 

 
2863 

 

 
m 

 

 
1.36 

 

 
3.99 

 

 
 

Growth form 

affects canopy structure (i.e., height, vertical and horizontal 

distribution of leaves); it is associated with 

ecophysiological adaptation, including maximising 

photosynthetic production, sheltering from severe climatic 

conditions, or optimising the height and positioning of the 

foliage to avoid or resist grazing by herbivores 

 

 
 

Pladias 

 

 
 

2823 

 

 
 

- 

 

 
 

- 

 

 
 

- 

Life form position of the buds that survive the unfavourable season Pladias 2847 - - - 

 

Leaf shape 
influences the way how plants interact with the EM 

radiation 

 

Pladias 
 

3087 
 

- 
 

- 
 

- 

Leaf life span related to the nutrient-use strategy of a plant BiolFlor 2020 - - - 

Leaf anatomy related to photosynthetic activity and strategy BiolFlor 1948 - - - 

Flower colour related to pollination strategy and flower recognition Pladias 2988 - - - 

Reproduction type related to the stability of the habitat BiolFlor 2170 - - - 
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Appendix B 

Figure B1. Corine Land Cover map of the study area (reference year 2012, 100 m resolution). 

 

Figure B2. Map of the most abundant CLC type within each grid cell. 

 
Table B1. Legend of the land cover codes used, with their respective level of detail within the CLC classification and number of 

grid cells. 

 

Code CLC Level Cover type N 

1 I Artificial surfaces 46 

21 II Arable land 1381 

231 III Pastures 161 

311 III Broad-leaved forest 49 

312 III Coniferous forest 608 

313 III Mixed forest 100 

321 III Natural grasslands 3 

324 III Transitional woodland-shrub 18 
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Appendix C 

Table C1. Coefficient estimate values of the interaction between SD and land-cover type in the plant diversity ~ SD models. 

Significance codes: *** (p-value < 0.001), ** (p-value < 0.01), * (p-value < 0.05). 

 

Species Richness 
   

Functional Diversity 
 

 sdNDVI Rao’s Q SpecCom sdNDVI Rao's Q SpecCom 

CLC 1 1st power 5.38 *** 5.50 *** -3.23 *** 0.30 *** 0.33 *** -0.20 *** 

CLC 1 2nd power -1.85 * -1.58 * -1.59  -0.07  -0.09 * 0.01  

CLC 21 1st power 3.64 *** 3.85 *** 2.61 ** 0.21 *** 0.23 *** 0.30 *** 

CLC 21 2nd power -1.18 *** -1.18 *** 3.16 * -0.10 *** -0.10 *** 0.15 * 

CLC 231 1st power 1.79 * 0.09  0.76  0.30 *** 0.28 *** 0.09 * 

CLC 231 2nd power -3.26 *** -3.69 *** 1.88  -0.06 * -0.03  0.08  

CLC 311 1st power 3.42 * 2.83  4.09 *** 0.30 *** 0.30 *** 0.24 *** 

CLC 311 2nd power -3.64  -3.15  2.09  -0.17  -0.13  0.09  

CLC 312 1st power 4.92 *** 4.18 *** 4.29 *** 0.33 *** 0.27 *** 0.24 *** 

CLC 312 2nd power -2.68 *** -2.65 *** 0.79 *** -0.18 *** -0.19 *** 0.06 ** 

CLC 313 1st power 0.58  -1.71  1.90 ** 0.21  0.07  0.06  

CLC 313 2nd power -4.66 * -5.38 * 0.03  -0.01  -0.11  0.00  

CLC 324 1st power 45.28 *** 47.80 *** 9.70 *** 2.34 *** 2.09 *** 0.48 *** 

CLC 324 2nd power 26.51 *** 31.34 *** 3.86 *** 1.43 *** 1.26 *** 0.17 *** 
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