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Abstract

Single-cell RNA sequencing is now a standard method used to reveal the molecular details of
cellular heterogeneity, but current approaches have limitations on speed, scale, and ease of use
that stem from the complex microfluidic devices or fluid handling steps required for sample
processing. We, therefore, developed a method that does not require specialized microfluidic
devices, expertise, or hardware. Our approach is based on particle-templated emulsification,
which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions
with only a vortexer. PIP-seq accommodates a wide range of emulsification formats, including
microwell plates and large-volume conical tubes, enabling thousands of samples or millions of
cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity
transcriptomes in mouse-human mixing studies, is compatible with multi-omics measurements,
and can accurately characterize cell types in human breast tissue when compared to a
commercia microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute
leukemia using PIP-seq revealed the emergence of heterogeneity within chemotherapy-resistant
cell subsets that were hidden by standard immunophenotyping. PIP-seq is asimple, flexible, and
scalable next-generation workflow that extends single-cell sequencing to new applications,

including screening, diagnostics, and disease monitoring.
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Introduction

Single-cell RNA sequencing (scRNA-seq) is an essential technology in the biological sciences
because it reveals how the properties of tissues arise from the transcriptional states of numerous
interacting cells. Defining the gene expression signatures of individual cells allows cdl type
classification, the discovery of unique cell states during development and disease, and the
prediction of regulatory mechanisms that control these states. As a result, bulk sequencing is
being rapidly replaced by single-cell methods. The first single-cell approaches isolated cells and
prepared them individually for sequencing'®. While improvements in molecular biology
increased data quality®®, the requisite isolation and processing of separate cells ultimately limited
throughput. Implementation of valve-based microfluidics reduced hands-on time’, but failed to
significantly increase cell number, and thus could not capture the heterogeneity intrinsic to most
tissues. Advances in high throughput droplet microfluidic barcoding have expanded single-cell
sequencing to tens of thousands of cells*® and fueled biological discovery, but require expensive
instruments located in core facilities and therefore remain inaccessible to many labs. Methods

for direct combinatorial indexing of cells'®! the use of nanowell arrays *

, or sample
multiplexing**'* have overcome some limitations of microfluidics, but no current method
simultaneously accommodates both low (10) and high (>10°) cell numbers, can be applied to
hundreds of independent samples and can be rapidly implemented without custom equipment.
The scalability of single-cell methodsis important for many applications, including tissue
atlas projects™*®, million cell perturbation experiments', drug development pipelines, and
developmental studies™. Droplet microfluidics has an intrinsic disadvantage at high cell numbers

due to the upper limit on drop generation speed. At high fluid velocities, droplet generation

becomes uncontrolled, resulting in polydispersed emulsions and poor bead loading that reduces
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22,23

single-cell data quality Therefore, to sequence millions of cells requires long run times,
parallel droplet generators with complex designs that are prone to clogging, or implementation of
additional barcoding steps before encapsulation®. More generally, droplet microfluidics relies on
an expensive instrument usually located in a core facility, which necessitates sample transport or
fixation that can alter RNA profiles. Centralized processing also reduces access to many labs and

does not fit experiments that need rapid or point-of-collection sample handling, like remote

fieldwork or studies using infectious samples requiring biosafety precautions'>%.

Much effort has thus gone into developing microfluidic-free single-cell methods. Split-
pool ligation'®* and tagmentation®®? perform direct combinatoria barcoding of bulk
suspensions, and significantly increase cell number; however, these laborious workflows require

enormous numbers of pipetting operations and are poorly suited for low cell inputs. Moreover,
while scalable, these methods require substantial expertise®®, and broad adoption of split-pool
barcoding will likely require robotic automation in a centralized facility. Alternatively, methods
based on nanowells prioritize simplicity and cost-effectiveness'>?*. No microfluidics are required
and wells are loaded by sedimentation, providing an instrument-free and point-of-use solution.
However, nanowell array chips do not efficiently scale in cell or sample number; the planar
arrays capture cells on a 2D surface and, thus, cannot compete with emulsions or combinatorial
indexing utilizing a 3D volume that easily scalesto millions of cells. Moreover, unless combined

with multiplexing™**

, hanowell chips are poorly suited for processing many separate samples
because they require one array per sample, and thus hundreds of arrays for hundreds of samples.
To advance the field of single-cell genomics, next-generation technologies must ssmultaneously

innovate on speed, scale, and ease of use. An ideal system would be compatible with the

barcoding of separate samples in well plates, accommodate orders-of-magnitude differences in
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93 cdl number, be completed in minutes, and be easy to run at the bench or in the field without
94  speciaized instrumentation. An approach that achieved these innovations simultaneously would
95 dignificantly enhance the usefulness of single-cell genomics, impact basic and clinical research,
96 and facilitate new diagnostics.
97 Here we describe a flexible, scalable, and instrument-free SCRNA-seq method based on
98  rapid templated emulsification of cells and barcoded hydrogel templates without microfluidics®.
99 In contrast to microfluidic emulsification, in which droplets are created sequentially and thus
100 their number scales with instrument run time, templated emulsification generates monodispersed
101 dropletsin parallel by bulk self-assembly and thus the number of droplets (and cells that can be
102  barcoded) scales only with container volume. The result is an extremely scalable, user-friendly
103 scRNA-seq method that we call PIP-seq (Particle-templated Instant Partition-seq). Templated
104  emulsification produces drops that are equivalent to those generated with microfluidics and
105 compatible with the latest innovations in multi-omic measurements. Here, we show that PIP-seq
106  generates accurate single-cell gene expression profiles from human tissues and is compatible
107  with multi-modal measurements of RNA and sgRNA (CROP-seq), or RNA and protein (CITE-
108 seq). Finaly, we demonstrate the use of PIP-seq to monitor the response of patients with mixed
109 phenotype acute leukemia (MPAL) to chemotherapy, revealing heterogeneity within cells with
110  similar immunophenotypes. In summary, PIP-seq fills an unmet technical need by improving the

111  speed, scalability, and ease of use of single-cell sequencing.

112
113 Reaults

114  Overview of the technology
115 PIP-seq uses particle templating to compartmentalize cells, barcoded hydrogd templates, and

116 lysis reagents in monodispersed water-in-oil droplets (Fig. 1a). Rapid emulsification with a
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117  standard vortexer allows cells to be encapsulated at the bench or point of collection in minutes.
118 The cells are lysed by increasing the temperature to 65°C, which activates Proteinase K,
119 releasing celular mRNA that is captured on polyacrylamide beads decorated with barcoded
120 polyT sequences (Fig. 1b). PIP-seq emulsions can be stored for days at 0°C without change in
121 dataquality (Extended data Fig. 1), allowing samples to be banked for future processing. Upon
122  resuming, oil isremoved, beads are transferred into a reverse transcription buffer, and full-length
123 cDNA issynthesized, amplified, and prepared for sequencing (Fig. 1c-d).

124 A unique and vauable feature of PIP-seq is that cell encapsulation in droplets is
125 performed in parallel using bead size to control droplet volume. In contrast to microfluidics, the
126  number of droplets scales with total container volume, not emulsification time. For example, at a
127 6% coallision rate that includes cell doublets and barcode reuse, we estimate that 3.5k cells can be
128  barcoded with 35 pL of barcoded hydrogel templates in a 500 uL tube, 225k cells can be
129  barcoded with 2 mL of barcoded hydrogel templatesin a 15mL conical tube, and 1M cells can be
130 barcoded with 10mL of barcoded hydrogel templates in a 50mL conical tube (Fig. le).
131 Regardless the tube size, only two minutes of vortexing is required for cell capture. PIP-seq is
132  equally scalable to large sample numbers. Encapsulation can be performed directly in 96, 384, or
133 1536 well plates (Fig. 1f, Extended data Fig. 2), greatly simplifying experiments testing
134  hundreds of different conditions and streamlining integration with robotic handling systems.
135 Thus, compared to current single-cell RNA-sequencing technologies, PIP-seq has the greatest

136 flexibility to cover combinations of cell and sample numbers (Fig. 1g).

137
138 Single-cell RNA-sequencing with particle-templated emulsification

139  High-throughput single-cell sequencing requires efficient cell lysis and reverse transcription of

140 mRNA using barcoded primers. In the absence of microfluidics, barcoded hydrogel templates,
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141  cdls, and lysis reagents must be combined before emulsification. To prevent cell lysis before
142  compartmentalization, we use Proteinase K (PK), a protease that has minimal activity at 4°C but
143  can be activated at higher temperatures. After emulsification, the sample is heated to efficiently
144  lyse cells. To illustrate this process, we stained cells with calcein, performed templated
145 emulsification at 4°C with PK, and imaged the droplets before and after thermal activation. Intact
146  cells appeared as compact puncta before lysis, but rapidly released calcein into the bulk of the
147  droplets after the temperature was increased (Fig. 2a, Extended data Fig. 2a,b). Thus, cells can
148 be mixed with PK in bulk before emulsification, and thermal activation triggers the release of
149 mRNA for barcoding after emulsification.

150 To ensure that temperature-activated lysis and bulk agitation do not pre-lyse cells and
151 result in mMRNA cross-contamination, we performed mouse-human cell line mixing studies. We
152  synthesized barcoded polyacrylamide beads with polyT sequences, using split-pool ligation of
153  four 6 bp randomers®. Beads contained ~10° (96*) unique barcodes, providing ample sequence
154  gpace to label a million cells. PIP-seq barcode rank plots for mixed mouse-human cell
155 suspensions allowed cell identification by UMI abundance (Fig. 2b). The fraction of mouse
156 readsin human transcriptomes was below 3%, and transcriptomes containing multiple cells were
157 rare and congistent with Poisson encapsulation of two cells (Fig. 2c,d). These results illustrate
158  that PIP-seq yields high-purity single-cell RNA-seq data with minimal transcriptome mixing and

159 low doublet formation.

160
161 Accurateand scalablereconstruction of single-cell phenotypesin complex tissue

162 Animportant application of single-cell sequencing is atlasing cell types in heterogeneous tissue.
163 To investigate the feasibility of atlasing studies, we applied PIP-seq to samples derived from

164  healthy breast tissue. In tandem, we performed scRNA-seq on tissues from the same patients
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165 using a commercialy available scRNA-seq technology (10x Genomics, Chromium v3). We
166 integrated PIP-seq data across participants and recovered expected cell types by dimensionality
167  reduction, including the two lineages of luminal epithelial cells (LEP1 and LEP2), myoepithelial
168 cdlls, fibroblasts, vascular cells, and immune cells (Fig. 3a, Extended data Fig. 3a,b)*. To
169 compare transcriptome capture between platforms, we downsampled the 10x Chromium and
170  PIP-seq datasets to an equivalent number of cells and reads (2400 cells and 36,500 reads per
171  cdl). Chromium detected more unique genes (2298 vs. 1757, median) and transcripts (7491 vs.
172  3394) per cell, with similar percentages of reads assigned to mitochondrial transcripts (2.34% vs.
173  1.32%) (Extended data Fig. 3c). To compare the transcriptome accuracy of PIP-seq, we
174  downsampled each dataset to an equivalent number of unique molecular identifiers (UMIs) per
175 cdl (2400 cels, 1500 UMIs), integrated the data, performed dimensionality reduction, and
176  identified clusters (Fig. 3b,c). We compared marker genes and the correlation between gene
177  expression profiles by cluster. Predicted marker genes were concordant between methods (Fig.
178  3d), gene expression was highly correlated (Fig. 3e, Extended data Fig. 4a), and breast tissue
179  markers from previous reports were segregated identically within integrated clusters (Extended
180 data Fig. 4b). Comparison of PIP-seq to publicly available data from 10x (v3, v2) and
181 previoudly published scRNA-seq workflows demonstrated that PIP-seq produced high-quality
182  transcriptomes across a range of sequencing depths (Extended data Fig. 5). Next, we validated
183 the scalability of PIP-seq, capturing and scRNA sequencing 138,146 breast tissue cells in a
184  single tube reaction, as well as 65,000 peripheral blood mononuclear cells (PBMC) (Extended
185 data Fig. 6a-c). At high cell numbers, we identified a population of CD34 hematopoietic
186  stem/progenitor cells in the PBMC sample, highlighting the importance of scalability in

187  detecting rare cell types (Extended data Fig 6b,c). Last, we validated that PIP-seq is compatible
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188 with antibody-based cell hashing (Extended data Fig 6d,e). Hashing can be used to further
189 increase the number of cells and conditions processed. Thus, PIP-seq is an easy-to-use, accurate

190 and scalable method to profile complex tissues.

191
192  PIP-seq for single-cell pooled CRISPR screens

193 CRISPR perturbations combined with single-cell sequencing allow unbiased discovery of
194  genotype-phenotype relationships™®*. Expanding this approach to genome-wide sgRNA
195 libraries can elucidate gene function on an unprecedented scale. However, such studies require
196  sequencing millions of cells to characterize all perturbations in libraries with tens or hundreds of
197  thousands of individua sgRNA™. To demonstrate how the throughput of PIP-seq enables
198 perturbation studies at scale, we profiled the transcriptional changes associated with a CRISPR
199 interference alelic series CROP-seq library®. This library expressed sjRNA and a
200 polyadenylated copy of the guide sequence from separate promoters. Guide RNAs were captured
201 and barcoded with the cel’s polyadenylated mRNA, making this approach immediately
202  compatible with PIP-seq. The library is designed to quantitatively titrate gene expression using
203  sgRNAs with target site mismatches®™, allowing us to compare measured gene expression to
204  expected knockdown efficiency across each gene's alldlic series (Fig. 4a). We transduced K562
205 cells containing a stable dCas9-KRAB with the CRISPRI lentiviral library and performed PIP-
206  seq to capture the transcriptional profiles and sgRNA identity of individual cdls (Fig. 4b-c). For
207  cells with single gRNA assignments, previously reported knockdown efficiencies™ correlated
208  with the normalized counts of targeted genes (Fig. 4d) and were most significant for highly
209  expressed genes (Extended data Fig. 7a,b). In addition, the knockdown of genes produced
210  known transcriptional changes. For example, gRNA targeting HSPAS resulted in endoplasmic

211  reticulum stress and increased unfolded protein response (Fig. 4e). These results validate the use

10
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212 of PIP-seq for CROP-seq experiments, paving the way for routine million-cell experiments that

213  map genotype-phenotype relationships at genome-scale.

214
215 PIP-seq identifies unique single-cell transcriptomic signatures correlated with the relapse

216  of mixed phenotype acute leukemia (MPAL)

217  Monitoring of cancer in response to therapy is an emerging application of single-cell sequencing
218 that benefits from rapid sample processing at the point of collection, and the ability to delay
219 cDNA synthesis and library preparation until multiple samples have been collected. We
220 investigated the utility of PIP-seq for understanding cancer dynamics by first validating the
221 single-cell transcriptional responses of two cancer cdl lines (H1975, PC9) to Gefitinib, an
222  epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor. We treated H1975 and PC9
223  with DMSO (vehicle control) or 1 uM Gefitinib overnight and performed PIP-seq (Fig. 5a). A
224 transcriptional response in H1975, which is resistant to Gefitinib due to EGFR mutations L858R
225 and T790M, was not observed, while Gefitinib sensitive PC9 cells showed a substantial shift in
226  gene expression (Fig. 5b). Differential gene expression analysis revealed increased levels of
227 TACSTID2 (TROP2) in PC9 cdls, consstent with its known modulation during lung
228  adenocarcinoma tumor growth® (Fig 5¢), and decreased expression of CDK4, which is known to
229  enhance sensitivity to EGFR inhibitors®” (Extended data Fig. 8). In addition, drug-resistant
230 H1975 cells spiked into a background of sensitive cells (1:9 H1975:PC9) could be detected
231 solely by their single-cell phenotypes, and at roughly the expected frequency (4.7%) (Fig. 5d).
232  Thus, PIP-seq recovered genes with reported roles in lung-cancer drug resistance and could
233  identify resistance phenotypes within a background of drug-sensitive cells.

234 Next, we applied PIP-seq to study mixed phenotype acute leukemia (MPAL), a high-risk

es38,39

235 disease characterized by multiple hematopoietic lineag . Recurrence and changes in

11
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236  immunophenotype with chemotherapy are typically monitored using flow cytometry of surface
237  markers during diagnosis, treatment, and relapse, but this provides limited insight into the drivers
238 of relapse after drug treatment. Like other single-cell RNA-seq methods, PIP-seq can be
239 multiplexed to simultaneously characterize single-cell gene expresson and surface
240  immunophenotype™. Using PIP-seg, we performed antibody-derived tag (ADT) sequencing
241  (CITE-seq) on longitudinal samples collected from MPAL patients treated with chemotherapy.
242 PIP-seq confirmed the diagnosis of these samples as B/myeloid MPAL and identified aberrant
243  expression of immune and stem cell markers that matched with clinical immunophenotypes
244 determined by flow cytometry (Supplemental Table 2, Extended data Fig. 9). However, PIP-
245  seq revedled an additional layer of complexity undetectable by traditional immunophenotyping.
246  Dimensionality reduction identified new cell clusters that emerged after drug treatment (Fig.
247  5ef, Extended data Figs. 10, 11). These clusters had similar immunophenotypes (Fig. 5g,h),
248  but contained significant transcriptional heterogeneity (Fig. 5i,k, Supplemental Tables 4,5).
249  Cdll populations up-regulating genes and pathways (oxidative phosphorylation, G2M checkpoint
250 modulation, ribosome biogenesis) implicated in a variety of cancers including acute
251  lymphoblastic leukemia®™°, but not previously linked to MPAL, were observed (Fig. 5j,).
252  Taken together, our results highlight the value of single-cell methodologies for studying the
253  heterogeneous response of cancer subpopulations to chemotherapy and the potential for the

254  integration of simple and reliable sScRNA-seq workflows into clinical research.
255
256 Discussion

257  Genomics has progressed rapidly to high throughput, multi-modal, single-cell analysis®®>:>*,

258  Further improvements in data quality, the ability to measure additional cellular properties, and

259  new computational approaches for understanding and integrating single-cell information®>" will

12
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260 continue to refine our understanding of cell states. At the same time, there remains an unmet
261 need for smplified workflows that scale in cell number and sample size, and that allow for
262  breaks in processing after initial sample collection. PIP-seq is a microfluidics-free, single-cell
263 RNA-sequencing method that produces high-quality data using a drastically simplified
264 emulsification technique. Like other high-throughput single-cell approaches, PIP-seq is
265 fundamentally a strategy to barcode mRNA from cells so that material can be pooled and
266  sequenced. The core advantage of PIP-seq is the speed and simplicity of sample processing.
267 Particle-templated emulsification forms monodispersed bead-containing emulsions in minutes
268 with a standard laboratory vortexer, removing the need for instrumentation located in core
269 facilities or hours of multichannel pipetting to perform split-pool indexing in plates. This
270 expands access to single-cell technologies in several important ways. It reduces the need for
271 sample transport, enabling immediate processing by technicians without prior training, and
272  collection and banking of samples from remote locations, including field sites. It alows
273  infectious samples that require specia precautions to be processed at the point of collection or in
274 the biosafety facilities where they are stored. More generally, rapid sample processing eliminates
275 the need for fixatives and minimizes transcriptional perturbations and batch artifacts associated
276  with processing many samplesin series.

277 In addition to workflow simplicity, PIP-seq is intrinsically scalable, handling cell inputs
278  over five orders of magnitude (10-10°%), making it well suited for screening, genome-wide
279  Perturb-seq experiments, and large cell-atlas studies. While methods based on combinatorial
280 indexing scale efficiently to large cell numbers, PIP-seq has a substantially simpler workflow
281 and is also compatible with high throughput processing of samples in plates, alowing many

282  conditions and replicates to be run simultaneously. This has important implications for data

13
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283 quality and biological discovery in single-cell experiments since the detection of true positives
284  and reduction in false positives in differential expression analysis is substantially improved by
285 incorporating replicates and statistical methods that account for biological variability™.
286 Increased flexibility in the number of samples that can be processed also enables previously
287  difficult experimental designs, like dose-response curves, time-course studies, combinatorial
288  perturbations, single-cell sequencing of organoids, and large drug screens. In addition, because
289  PIP-seq can directly emulsify in plates, it integrates with robotic fluid handling and therefore
290 comprises adrop-in solution for single-cell readouts in high-throughput experiments in academia
291  orindustry.

292 We confirmed the accuracy of PIP-seq as a single-cell genomics tool by profiling
293  heterogeneous tissue and directly comparing our results to a commercial SCRNA-seq platform
294  (10x Genomics). PIP-seq cell type classification, marker identification, and gene expression
295 levels were tightly matched with 10x data but detected fewer genes per cell. We attribute these
296 differences to the extensive optimization that the commercia platform has undergone and

297  suspect that, like other single-cell techniques®®2%>>°

, further improvements to PIP-seq
298 molecular biology will increase sensitivity. In addition, because PIP-seq emulsions are
299 functionally equivalent to those made with microfluidics, our approach is immediately
300 compatible with emerging advances, including improvements to the molecular biology of myriad
301  multi-omic profiling methods developed for other droplet microfluidic barcoding systems™**>"%,

302 Finally, we demonstrated the utility of PIP-seq in processing clinica samples. In
303 combination with barcoded antibodies, we profiled the relapse of mixed phenotype acute
304 leukemia (MPAL) after chemotherapy. MPAL is a subtype of leukemia characterized by poor

305 prognosis®, lineage ambiguity, lack of consensus regarding therapy, and significant intratumoral
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306 genetic and immunophenotypic heterogeneity®*®

. The molecular mechanisms underlying
307 treatment resistance in this complex disease remain undefined. Changes in gene expression have
308 been linked to prognosis and treatment resistance in multiple cancers. However, tumor
309 heterogeneity makes it unlikely that bulk sequencing methods would identify strong gene
310 signatures associated with resistance in clinical samples. Using PIP-seq of longitudinal samples
311 from two individuals with MPAL with disease progression after initial therapy, we identified
312 transcriptional heterogeneity beyond that observed by immunophenotype and speculate that this
313 heterogeneity may play a role in MPAL treatment resistance. We observed up-regulation of
314 genes and pathways previously associated with acute lymphoblastic leukemia in several cell
315 subsetsthat emerged after chemotherapy, as well modulation of ribosomal genesin both patients.

316  Control of trandation has been previously implicated in many cancers™ ****

, including leukemia,
317 but has not yet been linked to MPAL progression and drug resistance, suggesting that new
318 therapeutics targeting ribosomal biogenesis and/or protein tranglation may also have therapeutic
319 potential in MPAL®. Our results motivate the use of single-cell technologies for understanding
320 MPAL tumor heterogeneity and response to chemotherapy and suggest that the broad adoption
321  of such technologies for monitoring cancer progression (and tailoring treatment) is within reach.
322 In summary, single-cell RNA-sequencing provides unparalleled insight into cell heterogeneity

323  but remains underutilized in many settings. PIP-seq addresses this with a simple, rapid, and

324  scalable workflow that can be used by any lab containing standard molecular biology equipment.
325 Methods

326 ProteinaseK triggered cdlular lyss and mRNA capture. Mammalian cells were stained with
327 Cdcein AM (ThermoFisher #C3099) in 1 mL of PBS with 0.04% BSA according to

328 manufacturer’s instructions. After 30 min of incubation at room temperature on a rotisserie
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329 incubator (Isotemp, Fisher Scientific), cell suspensions were quantified with a Luna-FL
330 automated cell counter and diluted in 1X PBS with 0.04% BSA. 1500 calcein-stained cellsin 5
331 pL of were added to 35 pL of barcoded hydrogel templates with 29 U/mL Proteinase K (NEB
332 #P8107S) and 70 mM DTT (Sigma #D9779) and mixed for 10 pipet strokes. Care was taken to
333  avoid generating bubbles when mixing cells with 280 pL of 0.5% ionic Krytox in HFE 7500 oil®
334  was added to the cell-bead mixture and vortexed at 3000 RPM for 15 seconds horizontally and
335 then 2 minutes vertically with a custom vortexer (Fluent BioSciences, #/B0002776). Oil was
336 removed from below the emulsion such that less than 100 uL remained. The PIP emulsion was
337  subsampled on a C-Chip disposable hemacytometer (Fisher Scientific # DHCNOL5) before lysis
338 with each subsample consisting of 3.5 puL of PIP emulsion per field of view. The C-chip was
339 imaged in bright-field at 2X magnification. The remaining PIP emulsion was subjected to
340 enzymatic lysis at 65°C for 35 min on a PCR thermocycler (Eppendorf Mastercycler Pro) with
341 lid temperature set to 105°C. After lysis was complete, fluorescence images were captured using
342  aNikon 2000 microscope with 470 nm excitation (Thorlab M470L5).

343

344  Synthesis of barcoded bead templates. Prototype barcode bead fabrication proceeded
345 according to previous reports®. Briefly, a simple co-flow microfluidic device was used to
346  combine acrylamide premix (6% w/v Acrylamide, 0.1% Bis-Acrylimide, 0.3% w/v ammonium
347  persulfate, 0.1 x[1Tris-buffered saline-EDTA (TBSET: 10 mM Tris-HCL pH 8.0, 137 mM
348 NaCl, 20 mM EDTA, 1.4 mM KCI, 0.1% v/v Triton-X100), 50 uM acrydited primer
349  (/5Acryd/TTTTTTTAAGCAGTGGTATCAACGCAGAGTACGACTCCTCTTTCCCTACACG
350 ACGCTCTTCC) with oil (HFE-7500, 3 M Novec) containing 2% (w/v) surfactant (008-Fuoro-

351 saurfactant, Ran Technologies) and 0.4% v/v Tetramethylethylenediamine (TEMED). The
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352 emulsion was solidified at room temperature for 12 hours and beads were removed using
353  1H,1H,2H,2H-Perfluoro-1-octanol (Sigma Aldrich), washed thrice with TrissEDTA-Tween
354  buffer (TET: 10 mM Tris—=HCI pH 8.0, 10 mM EDTA, 0.1% v/v Tween-20) followed by two
355  washes with 30 mM NaCl, 10 mM Tris-HCI pH 8.0, 1 mM MgCI2, 0.1% Tween-20. The final
356 bead size was 80 microns. Split-pool barcode assembly utilized the ligation assembly approach
357  asdescribed previously®. Beads were resuspended in T4 ligation buffer (NEB #B0202S), heated
358 with a complementary oligonucleotide to 75°C for 2 min, and cooled to room temperature to
359 anneal. 100 microliters of beads were distributed into each well of a 96-well plate containing a
360 unique barcode with 1x T4 ligation buffer and 1.9 U/ul T4 DNA ligase (NEB #M0202M).
361 Ligations were incubated at 25C for 1 hour and heat inactivated at 65C for 10 minutes. Well

362  contents were combined and washed 5 times in 15mL TET. The process was repeated to add 4

363 barcodes and a UMI with polyT (NNNNNNNNNNNNTTTTTTTTTTTTTTTTTTTV). Quality
364 control steps were identical to previous reports®. Bead manufacturing methods were transferred
365 to Fluent BioSciences for scaled production, validation, and distribution. Commercialy

366 produced beads were used for several experiments, as noted.

367 Varied format emulsification. PIP emulsification in varied formats was performed in 0.5 mL
368  microcentrifuge tubes, 15 mL conical tubes and 50 mL conical tubes. Briefly, PIP particles were
369 suspended in buffer with 29 U/mL Proteinase K Proteinase K (NEB #P8107S) and 70 mM DTT
370 (Sigma #D9779) and pelleted through centrifugation. Barcoded hydrogel templates were then
371  distributed at 35 pL, 0.5 mL and 8 mL volumesin 0.5 mL, 15 mL and 50 mL tubes, respectively.
372  Fluorinated oil with surfactant (Fluent Biosciences # FB0001804) was added to each tube at 200
373  pL, 8 mL and 32 mL volumes, respectively. Emulsification was conducted on a Vortex Genie 2

374 with a custom adapter (Fluent #BS-SCR-8VX) a maximum rpm for 1 min. After
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375 emulsification, the samples were allowed to settle for 30 seconds, and excess oil was removed
376 via syringes using G22 blunt needles. The emulsion was subsampled, loaded on a C-Chip
377 disposable hemacytometer (Fisher Scientific #DHCNO15), and imaged under brightfield
378  microscopy (DIAPHOT300, Nikon) at 2x and 4x magnification.

379 Emulsification in well plates was tested using two bead buffer conditions. First, to test
380 emulsification in 96, 384, and 1536 well plates, PIP particles were suspended in 2% (v/v) Triton
381 X-100 (Sigma, X100-5ML) in 10 mM TrisHCI (Teknova, T1075), then centrifuged at 6000 rcf,
382 and the supernatant removed (Fig. 1, Extended data Fig. 2c). Depending on the well plate
383  working volume, 38 pL, 8 uL, or 3 pL of the centrifuged barcoded hydrogel templates were
384  added to 96, 384, or 1532 well plates respectively. For 96 and 384 well plates 2 uL of sample
385 was added to each well, for 1532 well plates, 1 uL was added to each well. PIP and sample
386 volumes totaled 25% of the volume of each well. The plate was then sedled (Applied
387 Biosystems, 4306311) and shaken for 5 min (IKA, 253614 and 3426400) to ensure complete
388 mixing. Well plates were centrifuged at 200 rcf for 1 min before removing the seal. Then 80 pL,
389 20 L, or 8 pL 2% (w/w) fluorosurfactant (Ran BioTechnologies, 008 Fluorosurfacant) in HFE
390 oil (3M, Novec 7500) was added to each well in 96 (Applied Biosystems, N8010560), 384
391 (Applied Biosystems, A36931), or 1532 (Nunc, 253614) well plates respectively. The addition of
392 ol represented 50% of the volume of each well for a total volume of 75% consisting of PIP,
393 sample, and ail. After resealing, PIP emulsification was performed by vortexing for 30 seconds
394  at 3200 rpm (Benchmark Scientific, BV1003). The emulsified plate was centrifuged at 200 rcf
395 for 1 min before removing the seal and imaging droplets from individual wells on a fluorescence

396 microscope (EVOS FL Auto).
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397 Second, to test well plate emulsification with cellsin 96 and 384 well plates, PIP particles
398  were suspended in buffer with 29 U/mL Proteinase K (NEB #P8107S) and 70 mM DTT (Sigma
399 #D9779) and pelleted through centrifugation. For 96-well plates (Eppendorf #0030129300), 25
400 pL of barcoded hydrogel templates were then distributed into each well with 4000 cells per well
401 (2000 cels/pL x 2 pL). 150 pL of fluorinated oil with surfactant (Fluent Biosciences #
402  FB0001804) was added to each well. Emulsification was conducted on a Vortex Genie 2 with
403 flat-head adapter at 3000 rpm for 2 minutes. For 384-well plates (Corning #3347), 15 uL of
404  barcoded hydrogel templates were then distributed into each well with 3000 cells per well (2000
405  cdlg/pL x 1.5 pL). 105 pL of fluorinated oil with surfactant (Fluent Biosciences # FB0001804)
406 was added to each well. Emulsification was conducted on a Vortex Genie 2 with a flat-head
407  adapter at 3000 rpm for 2 minutes (Fig. 1, Extended data Fig. 2a,b).

408

409 PIP-seq protocol. Unless otherwise noted, cells were centrifuged 300 x g for 5 min, washed
410 twicein 1X PBS without calcium or magnesium (ThermoFisher #70011044) with 0.04% BSA,
411  filtered with a 70 um cell strainer, and resuspended in 1X PBS with 1% Pluronic F127 (Sigma
412  #P2443). Pre-aliquoted barcoded hydrogel templates were thawed on ice. Volumes of barcoded
413 hydrogel templates, cells, and oil varied based on the number of cells as noted in each
414  experimental subsection below. A standard small-format run was as follows: 5 pyL of 500
415 cellg/pL was added to 35 pL of barcoded hydrogel templates with 29 U/mL Proteinase K and 70
416 mM DTT (Fluent BioSciences # FB0001876) and mixed for 10 strokes. Care was taken to avoid
417  generating bubbles when mixing cells with barcoded hydrogel templates. 280 pL of oil (Fluent
418 Biosciences # FB0001804) was added to the cell-bead mixture and vortexed (Vortex Genie 2,

419  Scientific Industries) using a custom adapter (Fluent BioSciences, #FB0002100) at the maximum
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420  rpm for 15 seconds horizontally and 2 minutes vertically. 230 pL of excess oil was removed and
421  the emulsion and enzymatic lysis was completed at 65°C for 35 minutes with a 4°C hold on a
422  PCR thermocycler with lid temperature set to 105°C. The remaining oil was removed. The
423  emulsion was broken as follows. Using a multichannel pipet, 180 uL of room temperature high
424  sat buffer (250 mM Tris-HCI pH 8, 375 mM KCI, 15 mM MgCl,, 50 mM DTT) was added to
425  the top of the emulsion followed by 40 pL of 100% 1H,1H,2H,2H-perfluoro-1-octanol (Sigma
426  Aldrich, 370533). The samples were vortexed for 3 seconds, briefly centrifuged, and the bottom
427  oil phase was removed. Barcoded hydrogel templates were transferred into a 1.5 ml Eppendorf
428  tube and washed 3 times with 2x RT buffer (100 mM TrissHCL pH 8.3, 150 mM KCI, 6 mM
429  MgCI2, 20 mM DTT) with 1% Pluronic F68 (Gibco #24040032). After washing, the beads were
430 pelleted, agueous removed, and the remaining bead and buffer volume was 25 ul. To this mix, 25
431  pL of reverse transcription (RT) master mix. The master mix consisted of 4.8% PEG8000, 4%
432 PM400, 25 uM template switch oligo (PIPS TSO), 1 mM dNTPs (NEB), 1 U/uL RNase
433 Inhibitor (NxGen, Lucigen), 1 U/uL reverse transcriptase (ThermoFisher, Maxima H-minus
434  EPO751). RT master mix was added, mixed, and cDNA synthesis was completed for 30 minutes
435 at 25°C, 90 minutes at 42°C, followed by 10 minutes a 85°C and a 4°C hold. Whole
436  transcriptome amplification (WTA) was performed directly on RT product without purification
437 by adding 50 pL of 1x KAPA Hifi master mix, 0.25 uM primer (PIPS WTA_primer), and
438  thermocycling 95°C for 3 min, then 16 cycles of (98°C 15 s, 67°C 20s, 68°C 4 min) followed by
439 72°C 5 min and 4°C hold. After WTA, barcoded hydrogel templates were removed using
440  Corning Spin-X filter columns (1 min at 13,000 xg), and amplified cDNA was purified using
441  0.6x Ampure XP. Libraries were generated from WTA amplified material using the Nextera XT

442  DNA Library Preparation Kit with a custom primer (PIPS_P5library) and standard Nextera P7
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443  indexing primers (N70x). Libraries were pooled and sequenced using an Illumina NextSeq 2000
444  instrument with 15% PhiX. Oligonucleotides used in this study are found in Supplemental
445 Tablel.

446

447  Human-mouse mixing studies. Human HEK 293T cells (ATCC # CRL-3216) were grown in
448 DMEM (ThermoFisher #11995073) supplemented with 10% FBS (ThermoFisher #A3840001)
449  and 1% Penicillin-Streptomycin-Glutamine (ThermoFisher #10378016). Murine NIH/3T3 célls
450 (ATCC # CRL-1658) were grown in DMEM (ThermoFisher #11995073) supplemented with
451  10% bovine calf serum (ATCC # 30-2030) and 1% Penicillin-Streptomycin-Glutamine. Cells
452  were grown to a confluence of ~70% and treated with TrypLE Express with Phenol red
453  (ThermoFisher #12605010) for 3 minutes, quenched with an equal volume of growth medium,
454  and centrifuged at 5 min a 200 x g. The supernatant was removed, and the cells were
455  resuspended in 1X DPBS without calcium or magnesium. Cells were diluted to their final
456  concentration in 1X DPBS with 0.04% BSA and mixed evenly to create a 50:50 Human:Mouse
457  mixture. Cell viability was evaluated using acridine orange/propidium iodide stain (Logos Bio #
458  F23001) and quantified with a Luna-FL automated cell counter. Cells were processed using the
459  PIP-seq protocol as described above.

460

461  72-hour hold experiments. 5 pL of a 50:50 mixture of human HEK 293T cells and murine
462  NIH/3T3 cdls (800 cells/ul) was added to 35 pL of barcoded hydrogel templates Fuent
463  BioSciences Part # FBO003067) with 29 U/mL Proteinase K and 70 mM DTT and mixed for 10
464  strokes. 280 pL of oil (Fluent Biosciences # FB0001804) was added to the cell-bead mixture,

465 which was vortexed on a digital vortexer using a custom adapter (Fluent BioSciences
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466  #FB0002084) at 3000 rpm for 15 seconds horizontally and 2 minutes vertically. 230 pL of
467  excess oil was removed and the emulsion was placed in a pre-heated digital dry bath at 66°C for
468 38 min and 4°C for 11 minutes. Control samples proceeded to emulsion breaking while 0°C hold
469 samples were placed in an ice bucket in the 4°C refrigerator for 72 hours prior to breaking
470 emulsions. Breaking, mRNA extraction, reverse transcription, WTA, and cDNA isolation,
471  adapter ligation-based library preparation and Illumina sequencing were performed as previously
472  described.

473

474  Healthy breast tissue comparison to 10X. Fresh reduction mammoplasty tissue was processed
475  as previously described®®’. Bulk mammary tissues were mechanically processed into a slurry
476  and digested overnight with collagenase type 3 (200U/mL, Worthington Biochem CLS-3) and
477  hyaluronidase (100U/mL, Sigma-Aldrich H3506) in medium containing charcoal:dextran
478  stripped FBS (GeminiBio 100-119). The digested fragments were size filtered into a sub-40
479  micron fraction and an above 100-micron fraction and cryopreserved. For PIP-seq, cells were
480 thawed and then resuspended in PBS + 0.04% BSA and passed through a 70-micron FlowMi cell
481 straineg (Sigma # BAH136800070). For 10x Genomics data, the 100-micron fraction were
482  thawed, then further digested with trypsin, followed by dispase (Stemcell Technologies #07913)
483 and DNAsel (Stemcell Technologies #07469) digestion to achieve single-cell suspension. For
484  PIP-seq, 20 pL of cels (1500 cells/ul in PBS + 0.04% BSA) was added to 200 pL of barcoded
485  hydrogel templates (Fluent BioSciences, #FB0002617) and mixed for 10 strokes. 1000 pL of oil
486  (Fluent Biosciences # FB0001804) was added to the cell-bead mixture and it was vortexed on a
487  digital vortexer using a custom adapter (Fluent BioSciences, #FB0002100) at 3000 rpm for 15

488 seconds horizontally and 2 minutes vertically. 800 puL of excess oil was removed and the
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489  emulsion was placed on a pre-heated digital dry bath at 66°C for 38 min and 4°C for 11 minutes.
490 Breaking, mRNA extraction, reverse transcription, WTA, and cDNA isolation was performed
491  under standard conditions. Adapter ligation-based library preparation was performed according
492  to manufacturer’sinstructions (Watchmaker Genomics, #7K0019-024). Samples were sequenced
493  on the lllumina NextSeq 2000, with four patient samples pooled per P3 cartridge and sequenced
494  at aread depth of approximately 36,500 reads/cell. For 10X Genomics, cells from each patient
495  were labeled with MULTIseq barcodes™, then pooled and stained with DAPI to be sorted for
496 DAPI-live cdls. Single-cell libraries were prepared according to the 10X Genomics Single Cell
497 V3 protocol (v3.1 Rev D) with the standard MULTIseq sample multiplexing protocol. The
498 libraries were sequenced on a NovaSeq $4 lane at a read depth of about 70,000 reads/cell. To
499  compare platforms, we downsampled PIP-seq and 10x data, which had different numbers of cells
500 and sequencing depth per cell. The PIP-seq data had 54,825 cells, sequenced at approximately
501 36,500 reads per cell, while the 10x data had 2420 cells sequenced at approximately 70k reads
502 per cell. Data were downsampled to 2400 cells and 36,500 reads in R (downsampleReads,
503 DropletUtils). For corrdation and marker gene comparisons, data were downsampled to 2400
504 cdls and 1500 UMIs in R (SampleUMI, Seurat v4.1.0). Markers used for breast tissue cluster
505 cdll type calling are found in Supplemental Table 2.

506

507 Single-tube large format breast tissue study. PIP-seq was performed as previously described,
508  except that cells were counted and diluted with PBS + 0.04% BSA to a concentration of 10,000
509 cels/pl. 40 pL of cell suspension was input into 800 pL of barcoded hydrogel templates (Fluent
510 BioSciences Part # FB0O003067). 4000 pL of oil (Fluent Biosciences # FB0001804) was added to

511 the cell-bead mixture and vortexed on a digital vortexer using a custom adapter (Fluent
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512  BioSciences # FB0002659) at 3000 rpm for 15 seconds horizontally and 2 minutes verticaly.
513  Excess oil was removed using a 3 mL syringe with a G22 blunt bottom syringe needle. Lysis
514  proceeded using 3300 pL of a lysis emulsion (Fluent BioSciences #FB0003039) added to the
515 cell-bead emulsion. The mixture was placed in a pre-heated digital dry bath at 37°C for 45 min
516 and 4°C for 10 minutes. Breaking, mRNA extraction, reverse transcription, WTA, and cDNA
517 isolation were performed under the same conditions as described previously. Adapter ligation-
518 based library preparation was performed according to manufacturer’ s instructions (Watchmaker
519 Genomics, #7K0019-024). 80 ng of cDNA was used to prepare four replicate library
520  preparations which were pooled and sequenced on two Illumina NextSeq 2000 P3 cartridges at a
521  read depth of 13,025 reads/cell, after concatenation.

522

523 CROP-seg. K562 CRISPRI cells were cultured in RPMI-1640 (Gibco #11875093) with 10%
524 FBS (Thermo Fisher Scientific, #10438026) and 1% penicillin/streptomycin (Thermo Fisher
525  Scientific, #15140148) in an incubator at 37°C with 5% CO2. K562 CRISPRi cels were
526  transduced with a lentivirus library containing 138 sgRNA® at a multiplicity of infection of 0.1.
527  Lentivirus-infected cells (BFP+) were sorted to high purity using a BD FACS Aria Il (100 uM
528 nozzle) and processed according to the PIP-seq scRNA-seq workflow. 3 pL of cells (333
529  cels/pl) was added to 28 L of barcoded hydrogel templates with 29 U/mL Proteinase K and 70
530 mM DTT and mixed for 10 strokes. 150 pL of 0.5% ionic Krytox in HFE 7500 oil was added to
531 the cell-bead mixture and it was vortexed at 3000 RPM for 1 minute on a Vortex Genie 2 with a
532  custom tube adapter. cDNA was processed according to the standard PIP-seq protocol to obtain
533  sequence ready libraries containing transcriptome information. To recover sSgRNA sequences, we

534 implemented an additional amplification step. We amplified 1 ng cDNA in a 50 pL reaction

24


https://doi.org/10.1101/2022.06.10.495582
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.10.495582; this version posted October 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

535 using of primers P5-PE1 (0.5uM) and Weissman_U6 (0.25uM) (Supplementary Table 1) with
536 1x Kappa HIFI. Reactions were thermocycled at 95°C for 3 min followed by 10 cycles of [95°C
537 for 20s, 70°C for 30s [-0.2°C per cycle], 72°C for 20g], followed by 8 cycles of [95°C for 20s,
538 68°C for 30s, 72°C for 20g], followed by 72°C for 4 minutes, and 4°C forever. Library PCR
539  product enriched in sgRNA sequences was purified with a double sided 0.5x/0.8x Ampure XP
540  bead cleanup and the size was determined (Agilent Tapestation).

541 Transcriptome and sgRNA libraries were pooled at 20:1 before sequencing. Reads were
542  first processed to extract sgRNA sequences. The bioinformatics pipeline was run using a custom
543  index built from the full human transcriptome (GENCODE v32) and guide RNA sequences
544  (salmon v1.2.0.). This approach led to the recovery of >14,000 unique gRNA counts across all
545  cell-associated barcodes. Cells were assigned to gRNA groups using a previously reported
546  approach®. Briefly, cells were classified as uniquely expressing a single gRNA species if the
547  guide's expression was at least 10-fold higher than the sum of all other gRNAs. Similarly, cells
548 were classified as containing multiple gRNAs in cases where the difference was smaller than
549 one. For the 581 single cells sequenced, 2 did not have any gRNA, 441 contained a single
550 gRNA, and 138 contained multiple gRNA. Cell barcodes were processed using Seurat v4.1.0. Al
551 gRNAs in the list of features were excluded from the identification of variable transcripts
552  (feature selection) and in subsequent stages of dimensionality reduction and clustering. To
553 understand the relationship between gRNAs and mRNA expression, gRNAs were ranked
554  according to their expected level of knockdown, reported previously®, and a generalized additive
555  model was used to assess groupwise trends for each set of gRNAs.

556
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557  Lung adenocarcinoma cell line experiments. PC9 was obtained from the RIKEN Bio Resource
558 Center (#RCB4455). H1975 was obtained from the American Type Culture Collection (#CRL-
559 5908). Cells were cultured in RPMI1-1640 (Gibco #11875093) with 10% fetal bovine serum
560 (FBS), penicillin, and streptomycin in an incubator a 37°C with 5% CO2. 1 uM Gefitinib
561 (Frontier Scientific, 501411677) or DMSO was added to culture flasks 24 hours before cells
562  were harvested for processing. PC9 and H1975 were both treated with Gefitinib and DMSO. To
563 perform the cell mixing study, Gefitinib treated H1975 and Gefitinib treated PCO were mixed at
564 aratio of 1:9 H1975:PC9. 5 uL of cells (400 cells/ul) were added to 28 L of barcoded
565 hydrogel templates with 22.8 U/mL Proteinase K and 28 mM DTT and mixed for 10 pipet
566  strokes. 150 pL of 0.5% ionic Krytox in HFE 7500 oil® was added to the cell-bead mixture and
567 it was vortexed at 3000 RPM for 1 minute on a Vortex Genie 2 with a custom tube adapter.
568  Triplicate tubes of 400 cells were processed per treatment condition. Data was analyzed using
569  Seurat v4.1.0.

570

571 Healthy PBMCs. Cryopreserved PBMCs were obtained from a commercial provider (AllICdls,
572 Lot #3052467). Cells were thawed and prepared for PIP-seq as previously described in the
573 MPAL study, except that the final cell dilution was made in 1X PBS + 0.04% BSA. For the high
574  cell count PBMC study. PIP-seq was performed as previously described in the high cell number
575 breast tissue study except that cells were counted and diluted with PBS + 0.04% BSA to a
576  concentration of 4300 cells/uL and 44 pL of cell suspension was input into 800 uL of barcoded
577  hydrogel templates (Fluent BioSciences Part # FB0003067). Cryopreserved PBMCs used for cell
578 hashing were obtained from a commercia provider (AllCells, and Lot #3082436) and prepared

579 for PIP-seq as described previoudly. For the cell hashing study. Cell staining and PIP-seq were
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580 performed according to PIPseq Single Cel Epitope Sequencing User Guide
581 (FB0002079). Briefly, one million PBMCs were resuspended in 47.5 pL of Cel Staining Buffer
582  (BioLegend #420201) and 2.5 pL TruStain FcX block (BioLegend #422301) was added prior to
583 mixing and incubation for 10 min on ice. Next, 1 pug of TotalSegA antibody was diluted in Cell
584  Staining Buffer and 50 uL of this antibody dilution was added to the blocked cells prior to
585 incubation on ice for 30 min. Stained cells were washed in Cell Staining Buffer three times and
586 resuspended in 1X PBS+0.04% BSA at 2000 cedls/uL. For the PIP-seq, 20 pL of this cell
587 resuspension was added to 200 pL of barcoded hydrogel templates (Fluent BioSciences
588 #FB0002617) and processed through PIP-seqg.

589

500 Mixed phenotype acute leukemia (MPAL). Patients whose samples were used in this study
591 weretreated at the University of California San Francisco. Samples were collected in accordance
592  with the Declaration of Helsinki under institutional review board-approved tissue banking
593 protocols, and written informed consent was obtained from all patients. Sample clinical
594  characteristics are found in Supplemental Table 3. Cryopreserved peripheral bone marrow
595 mononuclear cell samples (PBMCs) were thawed by hand until approximately 85% of ice
596 remained. Using a 5 mL serological pipette, 1 mL of 4°C defrosting media (DMEM with 20%
597 FBS and 2 mM EDTA) was added dropwise to each sample and then, without disturbing the
598 remaining ice pellet, the sample was carefully transferred dropwise to a pre-prepared 40 mL
599  aliquot of 4°C defrosting media. This was repeated until the contents of the entire cryovial were
600 transferred into the 50 mL conical of defrosting media. The sample was inverted 4-5 times and
601 centrifuged at 114 x g for 15 min at 4°C with no brake. The supernatant was aspirated and 10 mL

602  of room temperature RPMI 1640 with 1% Penicillin-Streptomycin-Glutamine was used to gently
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603  resuspend the cells. Cdl clumps were manually removed, and if necessary cells were filtered
604  through a 70 micron cell strainer into a fresh 50 mL conical. The sample was inverted 2-3 times
605 and centrifuged at 114 x g for 10 minutes with low brake at room temperature. The supernatant
606 was aspirated and cells were resuspended in an appropriate volume of 1X PBS + 5% FBS. Cdlls
607 were quantified with AO/PI and viability evaluated on the Luna-FL. 1-2 million cells were
608 aliquoted into a new 15mL conical and then centrifuged at 350 x g for 4 min at 4°C and then
609 thesupernatant was aspirated and the tube was placed on ice. 45uL of cold Cel Staining
610 Buffer (BioLegend, 420201) was added per million cells and resuspended gently. 5 pL Trustain
611 FcX block (BioLegend, 422301) was added per million cells and gently mixed 10 times with a
612  wide-bore pipette tip. Cells were blocked on ice for 15 minutes. A custom pool of 19 Total Seq
613 A antibodies was obtained from BioLegend. Immediately prior to use, antibodies were mixed
614 and centrifuged at 10,000 x g for 4 min at 4°C. 4.6 puL of 0.5 pug/uL antibody pool was added
615 per million of the blocked cells and gently mixed 10 times with a wide-bore pipette tip. The
616 samples were incubated on ice for 60 minutes. Next, 3.5 mL of cold Cell Staining Buffer was
617 added, gently mixed with a wide-bore pipette tip, and slowly inverted twice to mix. Cells were
618 centrifuged at 350 x g for 4 min at 4°C and then the supernatant was removed. The addition of
619 cold Cedl Staining buffer was repeated twice for a total of 3 washes. After the final supernatant
620 agpiration, stained cells were resuspended in 1X PBS with 0.04% BSA and mixed 5-10 times
621  until cells were completely suspended without visible clumps. Cell concentration was determined
622  with AO/PI and viability was evaluated on the Luna-FL. Final dilutions were made in 1X PBS
623  with 0.04% BSA. 20 uL of cells was added to 200 pL of barcoded hydrogel templates (1000

624 cels/ul) and processed according to PIPseq Single Cell Epitope Sequencing User Guide
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625 (FB0002079). Marker genes identified for patients 65 and 873 are found in Supplemental
626 Tables4 and 5, respectively.

627

628 PIP-seq bioinformatic analysis. Analysis of sequencing data was performed using custom
629  scripts to generate gene expression matrices starting from processed FASTQ sequences. The
630 pipeline comprises 4 basic steps. barcode identification and error correction, mapping to
631 reference sequences, cell calling, and gene expression matrix generation. Briefly, after
632 demultiplexing the sequencing data each read in the FASTQ is matched against a “whitelist” of
633  known barcodes. Reads were matched with a hamming distance tolerance of 1, meaning that the
634  barcode portion of a read can differ from a whitelist entry by one base and still be matched to
635 that barcode. Reads that did not match any barcode in the whitelist were discarded from further
636 analysis. Matching reads were output to a new, intermediate FASTQ file that was then used for
637 mapping against an appropriate transcriptome reference. Reference transcriptomes matching the
638  gpecies of each sample were prepared using the Salmon index function with the default k-mer
639 size of 31%®. GENCODE references were used to build the transcriptome indexes including
640 GRCh38.p13 for human, GRCm38.p6 for mouse, and the combination thereof for HEK/3T3 céll
641  mixture studies. Following barcoding, Salmon alevin v1.2.0% was used to map reads to the full
642 transcriptome. The intermediate FASTQ generated during barcoding were provided as input into
643 alevin dong with alist of all whitelisted barcodes contained in raw reads. After mapping, data
644  were output as UMI counts matrices (sparse matrix, gene list, barcode list) with dimensions of
645 all barcodes x all genes in index. An in-house python implementation of emptyDrops”, a
646 standard scRNA-seq method to separate putative cells from background, was then applied. A

647 custom threshold for each experiment was set, beneath which no true cell barcodes were

29


https://doi.org/10.1101/2022.06.10.495582
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.10.495582; this version posted October 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

648 expected to fall. As with emptyDrops, an estimated ambient profile across all barcodes beneath
649 that threshold was created. A p-value was computed by comparing the gene expression profile
650 for each barcode above the threshold against the ambient profile. Barcodes with a statistically
651 dignificant difference (Benjamini-Hochberg adjusted-p<0.001) from the ambient background
652  profile were categorized as cell-containing barcodes. The alevin output matrices were then subset
653 to only include called cell barcodes. Gene expresson matrices were normalized prior to
654  performing unsupervised clustering and UMAP dimensionality reduction. First, gene expression
655 counts for each cell were divided by the total counts for that cell and multiplied by a scaling
656 factor of 10,000. Finally, the data were transformed to natural-log scale using loglp(). The
657  Seurat package (v4.1.0) was used to perform downstream clustering, marker gene determination,
658 and visuaization in R. Seurat’s FindClusters() and RunUMAP() commands were used with
659  default settings.

660 For saturation curve comparisons, PIPseq and 10x samples were downsampled to
661 matching depths of 5K-80K reads per called cell. Downsampling was performed using seqtk for
662 PlPseq samples and using DropletUtils read10xMolInfo() function with a molecule_info.h5 file
663 directly downloaded from the 10x website. Inflection point-based cell calling was used to
664 standardize cell calls across platforms. Median transcripts/cell and genes/cell were calculated
665 from the cell fraction of the resulting count matrices. For violin plot comparisons, samples were
666 prepared to match the same processing configuration used by Ding et a (2020)%. First, samples
667 were downsampled to 53K reads per called cell and trimmed to 50bp for read 2 prior to
668 processing, sampling in the same manner described above. Each violin plot represents the cell
669 fraction from asingle replicate of an HEK/3T3 cell mixture, with human and mouse split out into

670 separate plots.
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671 Analysis of PBMC data for the high cell count study was performed using custom scripts
672 as described above, until the completion of mapping. Cell calling, clustering, and differentia
673  expression were performed using PIPseeker v1.0.0 (Fuent Biosciences) in reanalyze mode using
674 —force-cells 65000. Top differentially expressed genes from the PlIPseeker graph-based
675 clustering result were used to determine cell types by comparing to a reference gene list
676 (Supplementary Table 7). Log-normalized expression for key genes (e.g. CD34) were overlaid
677 on the UMAP projection to highlight markers associated with specific cell types (color bar in
678 1ogl0 scale). Analysis of PBMC data for the cell hashing study was performed using PlPseeker
679 v1.0.0 in count mode using STAR (v2.7.10a) and the PlPseeker human reference
680  (https.//www.fluentbio.com/products/pipseeker-for-data-analysis/). ADT analysis was performed
681 by performing barcode error correction with PIPseeker v1.0.0 (count mode) and custom scripts
682 totrim R2to thefirst 16bp. Error-corrected and trimmed FASTQs were input to CITE-seq Count
683  (v1.4.3) using the following settings: -t (hashtag whitelist) -cbf 1 -cbl 16 -umif 17 -umil 28 --
684 cdls (# called cells from RNA cell calling). The hashtag whitelist contained two TotalSeq™-A
685  anti-human Antibody hashes  (A0253 - TTCCGCCTCTCTTTG, A0255 -
686 AAGTATCGTTTCGCA). The filtered matrix output by PlPseeker for the RNA data was
687 merged with the umi-count matrix from CITE-seq Count on cell barcode to create a merged
688 matrix. The hashing data was demultiplexed in Seurat using HTODemux
689 (positive.quantile=0.99). Downstream was performed in Seurat using SCTransform() along with
690 RunPCA(), FindNeighbors(dims=1:15) and RunUMAP(dims=1:15). Cell type annotation was
691 performed with singleR (v1.4.1) and used an annotated 10x Genomics v1 chemistry dataset as a

692 reference. Cdls were classified by their max hash identity and projected in the RNA-based
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693 UMAP space. The HTO data was subjected to clustering in Seurat using the HTOHeatmap()
694  function to visualize singlets, doublets, and unclassified cells.

695 For 72-hour hold experiments, analysis was performed using custom scripts as previously
696  described. Samples were normalized to the same depth (45,000 reads/cell). Cell types were then
697 annotated as human (HEK293T) or mouse (NIH-3T3) using a purity threshold of >85% single-
698  gpecies content per barcode. Barcodes from each species were subset and transcript counts were
699 summed for each gene to generate two pseudobulk counts tables per sample. Samples were
700 aggregated separately for each species and then were analyzed with DESeg2. A contrast of O vs.
701 72 hours was performed for each species, while controlling for batch effects associated with
702  different users. For the correlation analysis, pseudobulk counts derived above were normalized to
703 transcripts per million and transformed to loglp scale. Pearson corréations (R) and slopes (m)
704  were calculated by fitting a linear model to the data. Data were then plotted in R with ggplot2
705 v3.3.5 and were aggregated into a grid using GGally v2.1.2. Additionally, the distribution of
706 celsin UMAP space at 0 and 72 hours post-lysis was examined. After processing data in Seurat
707  asdescribed, harmony batch-correction was used to integrate datasets.

708
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709  Figures

710 Figure 1. Rapid and scalable templated emulsification for single-cell genomics. (a-d) PIP-
711 seq enables the encapsulation, lysis, and barcoding of single cells. (a) Schematic of the
712  emulsification process. Barcoded particle templates, cells, and lysis reagents are combined with
713 oil and vortexed to generate monodispersed droplets. (b) Heat activation of Proteinase K results
714  inlysis and release of mRNA that is captured on bead-bound barcoded polyT oligonucleotides.
715 (c) Oil removal is followed by bulk reverse transcription of mRNA into cDNA. (d) Barcoded
716  whole transcriptome amplified cDNA is prepared for Illumina sequencing. (e-g) Efficient single
717  bead, single drop encapsulation at scale. (e) Particle templated emulsification in different sized
718  tubes (1.5 ml, 15 ml, 50 ml) produces monodispersed emulsions capable of barcoding orders of
719 magnitude different cell numbers. (f) PIP-seq is compatible with plate-based emulsification,
720 including 96-, 384- and 1536-well plate formats. (g) The estimated ability of different
721  technologiesto easily scale with respect to cell and sample number.

122

33


https://doi.org/10.1101/2022.06.10.495582
http://creativecommons.org/licenses/by-nd/4.0/

723

124

725

726

727

728

729

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.10.495582; this version posted October 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Figure 2. Heat-activated enzymatic lysis yields high purity single-cell transcriptomes. (a)
Fluorescence microscopy (Brightfield, GFP) of calcein-stained cells emulsified with barcoded
bead templates before and after heat-activated lysis. Inset: images show cell puncta (left) and
release of calcein (right) after lysis. (b-d) Cell purity assessed with mouse-human mixing
studies. (b) The digtribution of total UMIs as a function of cell barcode rank. (c-d) Purity
analysis of cell transcriptomes assessed using barnyard plots. Cells are colored by cell type: red

points are mouse reads, blue points are human reads, and green points are mixed reads.
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Figure 3. Accurate single-cell transcriptional profiling of healthy breast tissue usng PIP-
seg. (a) Clustering and identification of cell types from PIP-seq data (54,825 cells from 2
patients). (b-e) Comparison of PIP-seq to 10X Genomics data collected from the same tissue. (b)
Integration of PIP-seq and 10x data. (c-d) Cdl clustering and comparison of marker genes
between platforms. (d) Heatmaps of marker gene expression show similar patterns in PIP-seq
and 10X data. (e) Correlations in normalized gene expression, by cluster, between platforms (see

also Extended data Fig. 44).
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737  Figure 4. Transcriptome and guide RNA sequencing using PIP-seq. (a) Schematic of the
738 CROP-seq sgRNA library designed with target mismatches to modulate the activity of essential
739  genes. (b) Lentiviral transduction of the CRISPRI library in K562 cdlls. (c) Schematic of the
740  capture and barcoding of polyadenylated mRNA and sgRNA using PIP-seq. RNA and sgRNA
741  libraries are prepared separately and pooled for sequencing. (d) Quantification of gene
742  expression of sgRNA within an alelic series. SgRNA is ordered from high to low predicted
743  knockdown efficiency (Jost et. al, 2020). Non-targeting sgRNA are denoted as “Null.” (e) Pre-
744  ranked gene set enrichment analysis (GSEA) of scRNA-seq data comparing sgHSPAS
745  transduced cells to non-sgHSPAS transduced cells shows enrichment in genes related to
746  endoplasmic reticulum stress and unfolded protein response.

147
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748  Figure5. Molecular signatures of drug-resistant cancer phenotypesin cell linesand patient
749 samples. (a) A two-by-two experimental study design using lung adenocarcinoma cell lines
750  (H1975, PC9) treated with Gefitinib or DM SO. (b) Clustering of single-cell RNA-seq after drug
751 treatment shows transcriptional perturbations in Gefitinib-sensitive PC9, but not Gefitinib-
752  resistant H1975 cells. (c) Increased expression of TACSTD2 in PC9 challenged with Gefitinib.
753  (d) Identification of drug-resistant H1975 cells spiked into drug-sensitive PC9 cells based on
754  Gefitinib-induced transcriptional perturbation. (e-1) PIP-seq RNA and barcoded antibody (CITE-
755 seqg) analysis of mixed phenotype acute leukemia (MPAL). (e) Clustering of single cells for
756  patient 65 before (left panel) and after (right panel) chemotherapy. (f) Clustering of single cells
757  for patient 873 before (left panel) and after (right pandl) chemotherapy. (g-h) Antibody derived
758 tag (ADT) abundance, by cluster, before (t1) and after (t2) chemotherapy. ADTs change as a
759  function of chemotherapy but are consistent among clusters for both patients, with the exception
760 of T cel subsets. (i-1) Analysis of transcriptional heterogeneity in MPAL samples (i) Heatmap of
761 top differentially expressed marker genes by cluster after relapse in patient 63. (j) GSEA pre-
762 ranked analysis comparing transcriptomic differences between clusters 1 and 7 in patient 65
763  using gene sets. HP Acute Leukemia (M35856), Hallmark G2M Checkpoint (M5901), Hallmark
764  Oxidative Phosphorylation (M5936), and GOCC Ribosome (M17089) (k) Heatmap of top
765 differentially expressed marker genes by cluster after relapse in patient 873. (I) GSEA pre-ranked
766  analysis comparing transcriptomic differences between clusters 3 and 5 in patient 873 using gene
767  sets HP Acute Myeloid Leukemia (M36586), GOCC Ribosome (M17089), GOBP Oxidative
768  Phosphorylation (M17089), and Abnormal Myeloid Leukocyte Morphology (M37711).

769
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770 Extended data Figure 1. Flexible sample processng with PIP-seq. (a) Storage of droplets
771  after emulsification for 72 hours at 0°C did not change quality metrics. (b) Data integration
772  between time points. (c) Correlations in normalized gene expression, by sample, between time
773  pointsfor mouse and human cells.

774

775 Extended data Figure 2. (a-c) Microscope images of droplets and cells in plate emulsification
776  expeiments. (ab) Barcode bead templates, stained cells (puncta), and lysis reagents are
777  combined with oil and vortexed in (a) 96-well and (b) 384-well plates to generate monodi spersed
778  droplets. Heat activation of Proteinase K results in lysis and release of calcein dye, and full-drop
779  fluorescence. (c) Microscope images of droplets from random wells of a 384-wel plate
780 emulsification experiment.

781

782 Extended data Figure 3. Quality control analysis of PIP-seq using healthy breast tissue (a)
783 Integration and clustering of 54,825 cells from 2 patients with 2 replicates per patient. (b)
784  Coloring of UMAP by the number genes (nFeature RNA) for each cell. (c) The number of
785 unigue genes (nFeature RNA), transcripts (nCount RNA), percent mitochondrial reads, and
786  percent ribosomal reads as a function of cluster. (d) Comparison between 10X Genomics and
787  PIP-seq data after downsampling 2400 cells to 36,500 reads per cell.

788

789 Extended data Figure 4. Comparison, after down-sampling (2400 cells 1500 UMIs) of the
790 larger breast tissue PIP-seq dataset to 10x Genomics data generated from identical samples. (a)
791  Correlations in normalized gene expression, by cluster, between platforms. (b) Expression of

792  marker genes overlayed on clustersis consistent between platforms.
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793 Extended data Figure 5. Data quality assessment of PIP-seg. (a) Representative distribution of
794  reads per cel. (b) Correlation between reads and genes per cell. (c,d) Comparison of (c)
795 UMIg/cell and (d) genes/cell in current single-cell methods. (e,f) Comparison of PIP-seq to 10X
796 Genomics across a range of sequencing depths (0-80,000 reads/cell) () UMIs/cell and (f)
797  genes/cell.

798

799 Extended data Figure 6. High cell number PIP-seq. (a) ScRNA-seq of 138,146 single cells from
800 breast tissue using a single-tube emulsification in 2-minutes. (b) scRNA-seq of 65k peripheral
801 blood mononuclear cells (PBMCs) recovers a small population of CD34 cells. (c) Coloring of
802 UMAP by the normalized expression of CD34 for each cell. (d) Hashing of PBMCs
803  demonstrates compatibility of PIP-seq with barcoded antibodies.

804

805 Extended data Figure 7. (a) Gene expression for each sgRNA within an allelic series for all
806 genesin the CRISPRI library. Each sgRNA is ordered from predicted high to low knockdown
807 efficiency. Non-targeting sgRNA are denoted as “Null.” (b) The relationship between gene
808 expression and predicted knockdown of each gene. Expected changes in transcription across the
809 allelic series were prominent in highly expressed genes. p-value represents the significance of
810 the generalized additive model relating gRNA identity to knockdown efficiency for each gene.
811

812 Extended data Figure 8. Identification of Gefitinib-specific transcriptional responses in cancer
813 cdl lines. (a) Violin plots of median expression values for selected differentially expressed
814  genes. (b) The expression of selected differentially expressed genes superimposed on H1975 and

815 PC9cdl clusters.
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816 Extended data Figure 9. Clinical flow cytometry and corresponding antibody derived tag
817 (ADT) datafor patients 65 and 873 with mixed phenotypical acute leukemia (MPAL).

818

819 Extended data Figure 10. Analysis of PIP-seq data from MPAL Patient #65. (a) Integration of
820 replicates and time points. (b) Correlation between the number of cellsin each cluster before and
821  after relapse identifies expansion of clusters 1,4, and7. (¢) Volcano plots showing differential
822  geneexpression, by cluster, between t1 (before treatment) and t2 (after relapse).

823

824  Extended data Figure 11. Analysis of PIP-seq data from MPAL Patient #873. (a) Integration of
825 replicates and time points. (b) Correlation between the number of cellsin each cluster before and
826  after treatment identifies the expansion of clusters 3 and 5. (¢) Volcano plots showing differential

827  geneexpression, by cluster, between t1 (before treatment) and t2 (after relapse).
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828 Tables

829  Supplementary Table 1. Oligonucleotides used in this study.

830 Supplementary Table 2. Breast tissue marker genes (a) used for cluster cell type identification
831 and (b) identified using differential expression between clusters (FindAlIMarkers Seurat v4.1.0,
832  only.pos=FALSE, min.pct = 0.25, logfc.threshold = 0.5, test.use="bimod’).

833  Supplementary Table 3. Clinical characteristics of study participants.

834 Supplementary Table 4. Marker genes for patient 65 clusters identified using combined t1 and
835 t2 timepoints (FindAlIMarkers Seurat v4.1.0, only.pos=TRUE, min.pct = 0.25, logfc.threshold =
836 O, test.use="bimod).

837 Supplementary Table 5. Marker genes for patient 873 clusters identified using combined t1 and
838 t2 timepoints (FindAlIMarkers Seurat v4.1.0, only.pos=TRUE, min.pct = 0.25, logfc.threshold =
839 0, test.use="bimod).

840 Supplementary Table 6. Sequencing metrics.

841 Supplementary Table 7. PBMC marker genes (a) used for cluster-based cell type identification
842 and (b) identified using differential expression between clusters.

843
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