

1 **Microfluidics-free single-cell genomics with templated emulsification**

2

3 Iain C. Clark¹, Kristina M. Fontanez², Robert H. Meltzer², Yi Xue², Corey Hayford², Aaron
4 May-Zhang², Chris D'Amato², Ahmad Osman², Jesse Q. Zhang², Pabodha Hettige², Jacob S.A.
5 Ishibashi², Cyrille L. Delley³, Daniel W. Weisgerber³, Joseph M. Replogle⁴, Marco Jost^{4,5}, Kiet
6 T. Phong⁶, Vanessa E. Kennedy⁷, Cheryl A. C. Peretz⁸, Esther A. Kim⁹, Siyou Song⁹, William
7 Karlton¹⁰, Jonathan S. Weissman^{4,11}, Catherine C. Smith⁷, Zev J. Gartner^{6,12}, Adam R. Abate^{3,*}

8

9 ¹Department of Bioengineering, University of California, Berkeley, California Institute for
10 Quantitative Biosciences, Berkeley, California, USA.

11 ²Fluent Biosciences, Watertown, MA, USA.

12 ³Department of Bioengineering and Therapeutic Sciences, University of California, San
13 Francisco, San Francisco, California, USA.

14 ⁴Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology;
15 Cambridge, MA, USA.

16 ⁵Present address: Department of Microbiology, Harvard Medical School, Boston, Massachusetts,
17 USA.

18 ⁶Department of Pharmaceutical Chemistry, University of California San Francisco, San
19 Francisco, CA, USA.

20 ⁷Department of Medicine, University of California San Francisco, San Francisco, CA, USA.

21 ⁸Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.

22 ⁹Division of Plastic and Reconstructive Surgery, University of California San Francisco, San
23 Francisco, CA, USA.

24 ¹⁰Departments of Pathology and Laboratory Medicine, University of California San Francisco,

25 San Francisco, CA, USA.

26 ¹¹Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA

27 02142, USA.

28 ¹²Chan Zuckerberg Biohub, San Francisco, CA, USA.

29 *Corresponding author: Adam R. Abate, adam@abatelab.org

30 **Abstract**

31 Single-cell RNA sequencing is now a standard method used to reveal the molecular details of
32 cellular heterogeneity, but current approaches have limitations on speed, scale, and ease of use
33 that stem from the complex microfluidic devices or fluid handling steps required for sample
34 processing. We, therefore, developed a method that does not require specialized microfluidic
35 devices, expertise, or hardware. Our approach is based on particle-templated emulsification,
36 which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions
37 with only a vortexer. PIP-seq accommodates a wide range of emulsification formats, including
38 microwell plates and large-volume conical tubes, enabling thousands of samples or millions of
39 cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity
40 transcriptomes in mouse-human mixing studies, is compatible with multi-omics measurements,
41 and can accurately characterize cell types in human breast tissue when compared to a
42 commercial microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute
43 leukemia using PIP-seq revealed the emergence of heterogeneity within chemotherapy-resistant
44 cell subsets that were hidden by standard immunophenotyping. PIP-seq is a simple, flexible, and
45 scalable next-generation workflow that extends single-cell sequencing to new applications,
46 including screening, diagnostics, and disease monitoring.

47 **Introduction**

48 Single-cell RNA sequencing (scRNA-seq) is an essential technology in the biological sciences
49 because it reveals how the properties of tissues arise from the transcriptional states of numerous
50 interacting cells. Defining the gene expression signatures of individual cells allows cell type
51 classification, the discovery of unique cell states during development and disease, and the
52 prediction of regulatory mechanisms that control these states. As a result, bulk sequencing is
53 being rapidly replaced by single-cell methods. The first single-cell approaches isolated cells and
54 prepared them individually for sequencing¹⁻⁴. While improvements in molecular biology
55 increased data quality^{5,6}, the requisite isolation and processing of separate cells ultimately limited
56 throughput. Implementation of valve-based microfluidics reduced hands-on time⁷, but failed to
57 significantly increase cell number, and thus could not capture the heterogeneity intrinsic to most
58 tissues. Advances in high throughput droplet microfluidic barcoding have expanded single-cell
59 sequencing to tens of thousands of cells^{8,9} and fueled biological discovery, but require expensive
60 instruments located in core facilities and therefore remain inaccessible to many labs. Methods
61 for direct combinatorial indexing of cells^{10,11}, the use of nanowell arrays¹², or sample
62 multiplexing^{13,14} have overcome some limitations of microfluidics, but no current method
63 simultaneously accommodates both low (10) and high ($>10^6$) cell numbers, can be applied to
64 hundreds of independent samples and can be rapidly implemented without custom equipment.

65 The scalability of single-cell methods is important for many applications, including tissue
66 atlas projects¹⁵⁻¹⁸, million cell perturbation experiments¹⁹, drug development pipelines²⁰, and
67 developmental studies²¹. Droplet microfluidics has an intrinsic disadvantage at high cell numbers
68 due to the upper limit on drop generation speed. At high fluid velocities, droplet generation
69 becomes uncontrolled, resulting in polydispersed emulsions and poor bead loading that reduces

70 single-cell data quality^{22,23}. Therefore, to sequence millions of cells requires long run times,
71 parallel droplet generators with complex designs that are prone to clogging, or implementation of
72 additional barcoding steps before encapsulation²⁴. More generally, droplet microfluidics relies on
73 an expensive instrument usually located in a core facility, which necessitates sample transport or
74 fixation that can alter RNA profiles. Centralized processing also reduces access to many labs and
75 does not fit experiments that need rapid or point-of-collection sample handling, like remote
76 fieldwork or studies using infectious samples requiring biosafety precautions^{12,25}.

77 Much effort has thus gone into developing microfluidic-free single-cell methods. Split-
78 pool ligation^{10,11} and tagmentation^{26,27} perform direct combinatorial barcoding of bulk
79 suspensions, and significantly increase cell number; however, these laborious workflows require
80 enormous numbers of pipetting operations and are poorly suited for low cell inputs. Moreover,
81 while scalable, these methods require substantial expertise²⁸, and broad adoption of split-pool
82 barcoding will likely require robotic automation in a centralized facility. Alternatively, methods
83 based on nanowells prioritize simplicity and cost-effectiveness^{12,25}. No microfluidics are required
84 and wells are loaded by sedimentation, providing an instrument-free and point-of-use solution.
85 However, nanowell array chips do not efficiently scale in cell or sample number; the planar
86 arrays capture cells on a 2D surface and, thus, cannot compete with emulsions or combinatorial
87 indexing utilizing a 3D volume that easily scales to millions of cells. Moreover, unless combined
88 with multiplexing^{13,14}, nanowell chips are poorly suited for processing many separate samples
89 because they require one array per sample, and thus hundreds of arrays for hundreds of samples.
90 To advance the field of single-cell genomics, next-generation technologies must simultaneously
91 innovate on speed, scale, and ease of use. An ideal system would be compatible with the
92 barcoding of separate samples in well plates, accommodate orders-of-magnitude differences in

93 cell number, be completed in minutes, and be easy to run at the bench or in the field without
94 specialized instrumentation. An approach that achieved these innovations simultaneously would
95 significantly enhance the usefulness of single-cell genomics, impact basic and clinical research,
96 and facilitate new diagnostics.

97 Here we describe a flexible, scalable, and instrument-free scRNA-seq method based on
98 rapid templated emulsification of cells and barcoded hydrogel templates without microfluidics²⁹.
99 In contrast to microfluidic emulsification, in which droplets are created sequentially and thus
100 their number scales with instrument run time, templated emulsification generates monodispersed
101 droplets in parallel by bulk self-assembly and thus the number of droplets (and cells that can be
102 barcoded) scales only with container volume. The result is an extremely scalable, user-friendly
103 scRNA-seq method that we call PIP-seq (Particle-templated Instant Partition-seq). Templated
104 emulsification produces drops that are equivalent to those generated with microfluidics and
105 compatible with the latest innovations in multi-omic measurements. Here, we show that PIP-seq
106 generates accurate single-cell gene expression profiles from human tissues and is compatible
107 with multi-modal measurements of RNA and sgRNA (CROP-seq), or RNA and protein (CITE-
108 seq). Finally, we demonstrate the use of PIP-seq to monitor the response of patients with mixed
109 phenotype acute leukemia (MPAL) to chemotherapy, revealing heterogeneity within cells with
110 similar immunophenotypes. In summary, PIP-seq fills an unmet technical need by improving the
111 speed, scalability, and ease of use of single-cell sequencing.

112

113 **Results**

114 **Overview of the technology**

115 PIP-seq uses particle templating to compartmentalize cells, barcoded hydrogel templates, and
116 lysis reagents in monodispersed water-in-oil droplets (**Fig. 1a**). Rapid emulsification with a

117 standard vortexer allows cells to be encapsulated at the bench or point of collection in minutes.
118 The cells are lysed by increasing the temperature to 65°C, which activates Proteinase K,
119 releasing cellular mRNA that is captured on polyacrylamide beads decorated with barcoded
120 polyT sequences (**Fig. 1b**). PIP-seq emulsions can be stored for days at 0°C without change in
121 data quality (**Extended data Fig. 1**), allowing samples to be banked for future processing. Upon
122 resuming, oil is removed, beads are transferred into a reverse transcription buffer, and full-length
123 cDNA is synthesized, amplified, and prepared for sequencing (**Fig. 1c-d**).

124 A unique and valuable feature of PIP-seq is that cell encapsulation in droplets is
125 performed in parallel using bead size to control droplet volume. In contrast to microfluidics, the
126 number of droplets scales with total container volume, not emulsification time. For example, at a
127 6% collision rate that includes cell doublets and barcode reuse, we estimate that 3.5k cells can be
128 barcoded with 35 μ L of barcoded hydrogel templates in a 500 μ L tube, 225k cells can be
129 barcoded with 2 mL of barcoded hydrogel templates in a 15mL conical tube, and 1M cells can be
130 barcoded with 10mL of barcoded hydrogel templates in a 50mL conical tube (**Fig. 1e**).
131 Regardless the tube size, only two minutes of vortexing is required for cell capture. PIP-seq is
132 equally scalable to large sample numbers. Encapsulation can be performed directly in 96, 384, or
133 1536 well plates (**Fig. 1f, Extended data Fig. 2**), greatly simplifying experiments testing
134 hundreds of different conditions and streamlining integration with robotic handling systems.
135 Thus, compared to current single-cell RNA-sequencing technologies, PIP-seq has the greatest
136 flexibility to cover combinations of cell and sample numbers (**Fig. 1g**).

137

138 **Single-cell RNA-sequencing with particle-templated emulsification**

139 High-throughput single-cell sequencing requires efficient cell lysis and reverse transcription of
140 mRNA using barcoded primers. In the absence of microfluidics, barcoded hydrogel templates,

141 cells, and lysis reagents must be combined before emulsification. To prevent cell lysis before
142 compartmentalization, we use Proteinase K (PK), a protease that has minimal activity at 4°C but
143 can be activated at higher temperatures. After emulsification, the sample is heated to efficiently
144 lyse cells. To illustrate this process, we stained cells with calcein, performed templated
145 emulsification at 4°C with PK, and imaged the droplets before and after thermal activation. Intact
146 cells appeared as compact puncta before lysis, but rapidly released calcein into the bulk of the
147 droplets after the temperature was increased (**Fig. 2a, Extended data Fig. 2a,b**). Thus, cells can
148 be mixed with PK in bulk before emulsification, and thermal activation triggers the release of
149 mRNA for barcoding after emulsification.

150 To ensure that temperature-activated lysis and bulk agitation do not pre-lyse cells and
151 result in mRNA cross-contamination, we performed mouse-human cell line mixing studies. We
152 synthesized barcoded polyacrylamide beads with polyT sequences, using split-pool ligation of
153 four 6 bp randomers³⁰. Beads contained $\sim 10^8$ (96⁴) unique barcodes, providing ample sequence
154 space to label a million cells. PIP-seq barcode rank plots for mixed mouse-human cell
155 suspensions allowed cell identification by UMI abundance (**Fig. 2b**). The fraction of mouse
156 reads in human transcriptomes was below 3%, and transcriptomes containing multiple cells were
157 rare and consistent with Poisson encapsulation of two cells (**Fig. 2c,d**). These results illustrate
158 that PIP-seq yields high-purity single-cell RNA-seq data with minimal transcriptome mixing and
159 low doublet formation.

160
161 **Accurate and scalable reconstruction of single-cell phenotypes in complex tissue**
162 An important application of single-cell sequencing is atlasing cell types in heterogeneous tissue.
163 To investigate the feasibility of atlasing studies, we applied PIP-seq to samples derived from
164 healthy breast tissue. In tandem, we performed scRNA-seq on tissues from the same patients

165 using a commercially available scRNA-seq technology (10x Genomics, Chromium v3). We
166 integrated PIP-seq data across participants and recovered expected cell types by dimensionality
167 reduction, including the two lineages of luminal epithelial cells (LEP1 and LEP2), myoepithelial
168 cells, fibroblasts, vascular cells, and immune cells (**Fig. 3a, Extended data Fig. 3a,b**³¹). To
169 compare transcriptome capture between platforms, we downsampled the 10x Chromium and
170 PIP-seq datasets to an equivalent number of cells and reads (2400 cells and 36,500 reads per
171 cell). Chromium detected more unique genes (2298 vs. 1757, median) and transcripts (7491 vs.
172 3394) per cell, with similar percentages of reads assigned to mitochondrial transcripts (2.34% vs.
173 1.32%) (**Extended data Fig. 3c**). To compare the transcriptome accuracy of PIP-seq, we
174 downsampled each dataset to an equivalent number of unique molecular identifiers (UMIs) per
175 cell (2400 cells, 1500 UMIs), integrated the data, performed dimensionality reduction, and
176 identified clusters (**Fig. 3b,c**). We compared marker genes and the correlation between gene
177 expression profiles by cluster. Predicted marker genes were concordant between methods (**Fig.**
178 **3d**), gene expression was highly correlated (**Fig. 3e, Extended data Fig. 4a**), and breast tissue
179 markers from previous reports were segregated identically within integrated clusters (**Extended**
180 **data Fig. 4b**). Comparison of PIP-seq to publicly available data from 10x (v3, v2) and
181 previously published scRNA-seq workflows demonstrated that PIP-seq produced high-quality
182 transcriptomes across a range of sequencing depths (**Extended data Fig. 5**). Next, we validated
183 the scalability of PIP-seq, capturing and scRNA sequencing 138,146 breast tissue cells in a
184 single tube reaction, as well as 65,000 peripheral blood mononuclear cells (PBMC) (**Extended**
185 **data Fig. 6a-c**). At high cell numbers, we identified a population of CD34 hematopoietic
186 stem/progenitor cells in the PBMC sample, highlighting the importance of scalability in
187 detecting rare cell types (**Extended data Fig 6b,c**). Last, we validated that PIP-seq is compatible

188 with antibody-based cell hashing (**Extended data Fig 6d,e**). Hashing can be used to further
189 increase the number of cells and conditions processed. Thus, PIP-seq is an easy-to-use, accurate
190 and scalable method to profile complex tissues.

191
192 **PIP-seq for single-cell pooled CRISPR screens**

193 CRISPR perturbations combined with single-cell sequencing allow unbiased discovery of
194 genotype-phenotype relationships³²⁻³⁴. Expanding this approach to genome-wide sgRNA
195 libraries can elucidate gene function on an unprecedented scale. However, such studies require
196 sequencing millions of cells to characterize all perturbations in libraries with tens or hundreds of
197 thousands of individual sgRNA¹⁹. To demonstrate how the throughput of PIP-seq enables
198 perturbation studies at scale, we profiled the transcriptional changes associated with a CRISPR
199 interference allelic series CROP-seq library³⁵. This library expressed sgRNA and a
200 polyadenylated copy of the guide sequence from separate promoters. Guide RNAs were captured
201 and barcoded with the cell's polyadenylated mRNA, making this approach immediately
202 compatible with PIP-seq. The library is designed to quantitatively titrate gene expression using
203 sgRNAs with target site mismatches³⁵, allowing us to compare measured gene expression to
204 expected knockdown efficiency across each gene's allelic series (**Fig. 4a**). We transduced K562
205 cells containing a stable dCas9-KRAB with the CRISPRi lentiviral library and performed PIP-
206 seq to capture the transcriptional profiles and sgRNA identity of individual cells (**Fig. 4b-c**). For
207 cells with single gRNA assignments, previously reported knockdown efficiencies³⁵ correlated
208 with the normalized counts of targeted genes (**Fig. 4d**) and were most significant for highly
209 expressed genes (**Extended data Fig. 7a,b**). In addition, the knockdown of genes produced
210 known transcriptional changes. For example, gRNA targeting HSPA5 resulted in endoplasmic
211 reticulum stress and increased unfolded protein response (**Fig. 4e**). These results validate the use

212 of PIP-seq for CROP-seq experiments, paving the way for routine million-cell experiments that
213 map genotype-phenotype relationships at genome-scale.

214

215 **PIP-seq identifies unique single-cell transcriptomic signatures correlated with the relapse**
216 **of mixed phenotype acute leukemia (MPAL)**

217 Monitoring of cancer in response to therapy is an emerging application of single-cell sequencing
218 that benefits from rapid sample processing at the point of collection, and the ability to delay
219 cDNA synthesis and library preparation until multiple samples have been collected. We
220 investigated the utility of PIP-seq for understanding cancer dynamics by first validating the
221 single-cell transcriptional responses of two cancer cell lines (H1975, PC9) to Gefitinib, an
222 epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor. We treated H1975 and PC9
223 with DMSO (vehicle control) or 1 μ M Gefitinib overnight and performed PIP-seq (**Fig. 5a**). A
224 transcriptional response in H1975, which is resistant to Gefitinib due to EGFR mutations L858R
225 and T790M, was not observed, while Gefitinib sensitive PC9 cells showed a substantial shift in
226 gene expression (**Fig. 5b**). Differential gene expression analysis revealed increased levels of
227 *TACSTD2* (*TROP2*) in PC9 cells, consistent with its known modulation during lung
228 adenocarcinoma tumor growth³⁶ (**Fig 5c**), and decreased expression of *CDK4*, which is known to
229 enhance sensitivity to EGFR inhibitors³⁷ (**Extended data Fig. 8**). In addition, drug-resistant
230 H1975 cells spiked into a background of sensitive cells (1:9 H1975:PC9) could be detected
231 solely by their single-cell phenotypes, and at roughly the expected frequency (4.7%) (**Fig. 5d**).
232 Thus, PIP-seq recovered genes with reported roles in lung-cancer drug resistance and could
233 identify resistance phenotypes within a background of drug-sensitive cells.

234 Next, we applied PIP-seq to study mixed phenotype acute leukemia (MPAL), a high-risk
235 disease characterized by multiple hematopoietic lineages^{38,39}. Recurrence and changes in

236 immunophenotype with chemotherapy are typically monitored using flow cytometry of surface
237 markers during diagnosis, treatment, and relapse, but this provides limited insight into the drivers
238 of relapse after drug treatment. Like other single-cell RNA-seq methods, PIP-seq can be
239 multiplexed to simultaneously characterize single-cell gene expression and surface
240 immunophenotype⁴⁰. Using PIP-seq, we performed antibody-derived tag (ADT) sequencing
241 (CITE-seq) on longitudinal samples collected from MPAL patients treated with chemotherapy.
242 PIP-seq confirmed the diagnosis of these samples as B/myeloid MPAL and identified aberrant
243 expression of immune and stem cell markers that matched with clinical immunophenotypes
244 determined by flow cytometry (**Supplemental Table 2, Extended data Fig. 9**). However, PIP-
245 seq revealed an additional layer of complexity undetectable by traditional immunophenotyping.
246 Dimensionality reduction identified new cell clusters that emerged after drug treatment (**Fig.**
247 **5e,f, Extended data Figs. 10, 11**). These clusters had similar immunophenotypes (**Fig. 5g,h**),
248 but contained significant transcriptional heterogeneity (**Fig. 5i,k, Supplemental Tables 4,5**).
249 Cell populations up-regulating genes and pathways (oxidative phosphorylation, G2M checkpoint
250 modulation, ribosome biogenesis) implicated in a variety of cancers including acute
251 lymphoblastic leukemia⁴¹⁻⁵⁰, but not previously linked to MPAL, were observed (**Fig. 5j,l**).
252 Taken together, our results highlight the value of single-cell methodologies for studying the
253 heterogeneous response of cancer subpopulations to chemotherapy and the potential for the
254 integration of simple and reliable scRNA-seq workflows into clinical research.
255

256 **Discussion**

257 Genomics has progressed rapidly to high throughput, multi-modal, single-cell analysis^{40,51-54}.
258 Further improvements in data quality, the ability to measure additional cellular properties, and
259 new computational approaches for understanding and integrating single-cell information⁵⁵⁻⁵⁷ will

260 continue to refine our understanding of cell states. At the same time, there remains an unmet
261 need for simplified workflows that scale in cell number and sample size, and that allow for
262 breaks in processing after initial sample collection. PIP-seq is a microfluidics-free, single-cell
263 RNA-sequencing method that produces high-quality data using a drastically simplified
264 emulsification technique. Like other high-throughput single-cell approaches, PIP-seq is
265 fundamentally a strategy to barcode mRNA from cells so that material can be pooled and
266 sequenced. The core advantage of PIP-seq is the speed and simplicity of sample processing.
267 Particle-templated emulsification forms monodispersed bead-containing emulsions in minutes
268 with a standard laboratory vortexer, removing the need for instrumentation located in core
269 facilities or hours of multichannel pipetting to perform split-pool indexing in plates. This
270 expands access to single-cell technologies in several important ways. It reduces the need for
271 sample transport, enabling immediate processing by technicians without prior training, and
272 collection and banking of samples from remote locations, including field sites. It allows
273 infectious samples that require special precautions to be processed at the point of collection or in
274 the biosafety facilities where they are stored. More generally, rapid sample processing eliminates
275 the need for fixatives and minimizes transcriptional perturbations and batch artifacts associated
276 with processing many samples in series.

277 In addition to workflow simplicity, PIP-seq is intrinsically scalable, handling cell inputs
278 over five orders of magnitude (10-10⁶), making it well suited for screening, genome-wide
279 Perturb-seq experiments, and large cell-atlas studies. While methods based on combinatorial
280 indexing scale efficiently to large cell numbers, PIP-seq has a substantially simpler workflow
281 and is also compatible with high throughput processing of samples in plates, allowing many
282 conditions and replicates to be run simultaneously. This has important implications for data

283 quality and biological discovery in single-cell experiments since the detection of true positives
284 and reduction in false positives in differential expression analysis is substantially improved by
285 incorporating replicates and statistical methods that account for biological variability⁵⁸.
286 Increased flexibility in the number of samples that can be processed also enables previously
287 difficult experimental designs, like dose-response curves, time-course studies, combinatorial
288 perturbations, single-cell sequencing of organoids, and large drug screens. In addition, because
289 PIP-seq can directly emulsify in plates, it integrates with robotic fluid handling and therefore
290 comprises a drop-in solution for single-cell readouts in high-throughput experiments in academia
291 or industry.

292 We confirmed the accuracy of PIP-seq as a single-cell genomics tool by profiling
293 heterogeneous tissue and directly comparing our results to a commercial scRNA-seq platform
294 (10x Genomics). PIP-seq cell type classification, marker identification, and gene expression
295 levels were tightly matched with 10x data but detected fewer genes per cell. We attribute these
296 differences to the extensive optimization that the commercial platform has undergone and
297 suspect that, like other single-cell techniques^{3-6,12,25,59}, further improvements to PIP-seq
298 molecular biology will increase sensitivity. In addition, because PIP-seq emulsions are
299 functionally equivalent to those made with microfluidics, our approach is immediately
300 compatible with emerging advances, including improvements to the molecular biology of myriad
301 multi-omic profiling methods developed for other droplet microfluidic barcoding systems^{40,57,60}.

302 Finally, we demonstrated the utility of PIP-seq in processing clinical samples. In
303 combination with barcoded antibodies, we profiled the relapse of mixed phenotype acute
304 leukemia (MPAL) after chemotherapy. MPAL is a subtype of leukemia characterized by poor
305 prognosis⁶¹, lineage ambiguity, lack of consensus regarding therapy, and significant intratumoral

306 genetic and immunophenotypic heterogeneity^{62,63}. The molecular mechanisms underlying
307 treatment resistance in this complex disease remain undefined. Changes in gene expression have
308 been linked to prognosis and treatment resistance in multiple cancers. However, tumor
309 heterogeneity makes it unlikely that bulk sequencing methods would identify strong gene
310 signatures associated with resistance in clinical samples. Using PIP-seq of longitudinal samples
311 from two individuals with MPAL with disease progression after initial therapy, we identified
312 transcriptional heterogeneity beyond that observed by immunophenotype and speculate that this
313 heterogeneity may play a role in MPAL treatment resistance. We observed up-regulation of
314 genes and pathways previously associated with acute lymphoblastic leukemia in several cell
315 subsets that emerged after chemotherapy, as well modulation of ribosomal genes in both patients.
316 Control of translation has been previously implicated in many cancers^{41-46,64}, including leukemia,
317 but has not yet been linked to MPAL progression and drug resistance, suggesting that new
318 therapeutics targeting ribosomal biogenesis and/or protein translation may also have therapeutic
319 potential in MPAL⁶⁵. Our results motivate the use of single-cell technologies for understanding
320 MPAL tumor heterogeneity and response to chemotherapy and suggest that the broad adoption
321 of such technologies for monitoring cancer progression (and tailoring treatment) is within reach.
322 In summary, single-cell RNA-sequencing provides unparalleled insight into cell heterogeneity
323 but remains underutilized in many settings. PIP-seq addresses this with a simple, rapid, and
324 scalable workflow that can be used by any lab containing standard molecular biology equipment.

325 **Methods**

326 **Proteinase K triggered cellular lysis and mRNA capture.** Mammalian cells were stained with
327 Calcein AM (ThermoFisher #C3099) in 1 mL of PBS with 0.04% BSA according to
328 manufacturer's instructions. After 30 min of incubation at room temperature on a rotisserie

329 incubator (Isotemp, Fisher Scientific), cell suspensions were quantified with a Luna-FL
330 automated cell counter and diluted in 1X PBS with 0.04% BSA. 1500 calcein-stained cells in 5
331 μ L of were added to 35 μ L of barcoded hydrogel templates with 29 U/mL Proteinase K (NEB
332 #P8107S) and 70 mM DTT (Sigma #D9779) and mixed for 10 pipet strokes. Care was taken to
333 avoid generating bubbles when mixing cells with 280 μ L of 0.5% ionic Krytox in HFE 7500 oil⁶⁶
334 was added to the cell-bead mixture and vortexed at 3000 RPM for 15 seconds horizontally and
335 then 2 minutes vertically with a custom vortexer (Fluent BioSciences, #FB0002776). Oil was
336 removed from below the emulsion such that less than 100 μ L remained. The PIP emulsion was
337 subsampled on a C-Chip disposable hemacytometer (Fisher Scientific # DHCN015) before lysis
338 with each subsample consisting of 3.5 μ L of PIP emulsion per field of view. The C-chip was
339 imaged in bright-field at 2X magnification. The remaining PIP emulsion was subjected to
340 enzymatic lysis at 65°C for 35 min on a PCR thermocycler (Eppendorf Mastercycler Pro) with
341 lid temperature set to 105°C. After lysis was complete, fluorescence images were captured using
342 a Nikon 2000 microscope with 470 nm excitation (Thorlab M470L5).

343

344 **Synthesis of barcoded bead templates.** Prototype barcode bead fabrication proceeded
345 according to previous reports³⁰. Briefly, a simple co-flow microfluidic device was used to
346 combine acrylamide premix (6% w/v Acrylamide, 0.1% Bis-Acrylimide, 0.3% w/v ammonium
347 persulfate, 0.1 $\square \times \square$ Tris-buffered saline–EDTA (TBSET: 10 mM Tris–HCL pH 8.0, 137 mM
348 NaCl, 20 mM EDTA, 1.4 mM KCl, 0.1% v/v Triton-X100), 50 uM acrydited primer
349 (/5Acryd/TTTTTTAAGCAGTGGTATCAACGCAGAGTACGACTCCTCTTCCCTACACG
350 ACGCTCTTCC) with oil (HFE-7500, 3 M Novec) containing 2% (w/v) surfactant (008-Fluoro-
351 surfactant, Ran Technologies) and 0.4% v/v Tetramethylethylenediamine (TEMED). The

352 emulsion was solidified at room temperature for 12 hours and beads were removed using
353 1H,1H,2H,2H-Perfluoro-1-octanol (Sigma Aldrich), washed thrice with Tris-EDTA-Tween
354 buffer (TET: 10 mM Tris-HCl pH 8.0, 10 mM EDTA, 0.1% v/v Tween-20) followed by two
355 washes with 30 mM NaCl, 10 mM Tris-HCl pH 8.0, 1 mM MgCl₂, 0.1% Tween-20. The final
356 bead size was 80 microns. Split-pool barcode assembly utilized the ligation assembly approach
357 as described previously³⁰. Beads were resuspended in T4 ligation buffer (NEB #B0202S), heated
358 with a complementary oligonucleotide to 75°C for 2 min, and cooled to room temperature to
359 anneal. 100 microliters of beads were distributed into each well of a 96-well plate containing a
360 unique barcode with 1x T4 ligation buffer and 1.9 U/ul T4 DNA ligase (NEB #M0202M).
361 Ligations were incubated at 25C for 1 hour and heat inactivated at 65C for 10 minutes. Well
362 contents were combined and washed 5 times in 15mL TET. The process was repeated to add 4
363 barcodes and a UMI with polyT (NNNNNNNNNNNNNTTTTTTTTTTTTTV). Quality
364 control steps were identical to previous reports³⁰. Bead manufacturing methods were transferred
365 to Fluent BioSciences for scaled production, validation, and distribution. Commercially
366 produced beads were used for several experiments, as noted.

367 **Varied format emulsification.** PIP emulsification in varied formats was performed in 0.5 mL
368 microcentrifuge tubes, 15 mL conical tubes and 50 mL conical tubes. Briefly, PIP particles were
369 suspended in buffer with 29 U/mL Proteinase K Proteinase K (NEB #P8107S) and 70 mM DTT
370 (Sigma #D9779) and pelleted through centrifugation. Barcoded hydrogel templates were then
371 distributed at 35 µL, 0.5 mL and 8 mL volumes in 0.5 mL, 15 mL and 50 mL tubes, respectively.
372 Fluorinated oil with surfactant (Fluent Biosciences # FB0001804) was added to each tube at 200
373 µL, 8 mL and 32 mL volumes, respectively. Emulsification was conducted on a Vortex Genie 2
374 with a custom adapter (Fluent #FBS-SCR-8VX) at maximum rpm for 1 min. After

375 emulsification, the samples were allowed to settle for 30 seconds, and excess oil was removed
376 via syringes using G22 blunt needles. The emulsion was subsampled, loaded on a C-Chip
377 disposable hemacytometer (Fisher Scientific #DHCN015), and imaged under brightfield
378 microscopy (DIAPHOT300, Nikon) at 2x and 4x magnification.

379 Emulsification in well plates was tested using two bead buffer conditions. First, to test
380 emulsification in 96, 384, and 1536 well plates, PIP particles were suspended in 2% (v/v) Triton
381 X-100 (Sigma, X100-5ML) in 10 mM TrisHCl (Teknova, T1075), then centrifuged at 6000 rcf,
382 and the supernatant removed (**Fig. 1, Extended data Fig. 2c**). Depending on the well plate
383 working volume, 38 μ L, 8 μ L, or 3 μ L of the centrifuged barcoded hydrogel templates were
384 added to 96, 384, or 1532 well plates respectively. For 96 and 384 well plates 2 μ L of sample
385 was added to each well, for 1532 well plates, 1 μ L was added to each well. PIP and sample
386 volumes totaled 25% of the volume of each well. The plate was then sealed (Applied
387 Biosystems, 4306311) and shaken for 5 min (IKA, 253614 and 3426400) to ensure complete
388 mixing. Well plates were centrifuged at 200 rcf for 1 min before removing the seal. Then 80 μ L,
389 20 μ L, or 8 μ L 2% (w/w) fluorosurfactant (Ran BioTechnologies, 008 Fluorosurfacant) in HFE
390 oil (3M, Novec 7500) was added to each well in 96 (Applied Biosystems, N8010560), 384
391 (Applied Biosystems, A36931), or 1532 (Nunc, 253614) well plates respectively. The addition of
392 oil represented 50% of the volume of each well for a total volume of 75% consisting of PIP,
393 sample, and oil. After resealing, PIP emulsification was performed by vortexing for 30 seconds
394 at 3200 rpm (Benchmark Scientific, BV1003). The emulsified plate was centrifuged at 200 rcf
395 for 1 min before removing the seal and imaging droplets from individual wells on a fluorescence
396 microscope (EVOS FL Auto).

397 Second, to test well plate emulsification with cells in 96 and 384 well plates, PIP particles
398 were suspended in buffer with 29 U/mL Proteinase K (NEB #P8107S) and 70 mM DTT (Sigma
399 #D9779) and pelleted through centrifugation. For 96-well plates (Eppendorf #0030129300), 25
400 μL of barcoded hydrogel templates were then distributed into each well with 4000 cells per well
401 (2000 cells/μL x 2 μL). 150 μL of fluorinated oil with surfactant (Fluent Biosciences #
402 FB0001804) was added to each well. Emulsification was conducted on a Vortex Genie 2 with
403 flat-head adapter at 3000 rpm for 2 minutes. For 384-well plates (Corning #3347), 15 μL of
404 barcoded hydrogel templates were then distributed into each well with 3000 cells per well (2000
405 cells/μL x 1.5 μL). 105 μL of fluorinated oil with surfactant (Fluent Biosciences # FB0001804)
406 was added to each well. Emulsification was conducted on a Vortex Genie 2 with a flat-head
407 adapter at 3000 rpm for 2 minutes (**Fig. 1, Extended data Fig. 2a,b**).

408

409 **PIP-seq protocol.** Unless otherwise noted, cells were centrifuged 300 x g for 5 min, washed
410 twice in 1X PBS without calcium or magnesium (ThermoFisher #70011044) with 0.04% BSA,
411 filtered with a 70 μm cell strainer, and resuspended in 1X PBS with 1% Pluronic F127 (Sigma
412 #P2443). Pre-aliquoted barcoded hydrogel templates were thawed on ice. Volumes of barcoded
413 hydrogel templates, cells, and oil varied based on the number of cells as noted in each
414 experimental subsection below. A standard small-format run was as follows: 5 μL of 500
415 cells/μL was added to 35 μL of barcoded hydrogel templates with 29 U/mL Proteinase K and 70
416 mM DTT (Fluent BioSciences # FB0001876) and mixed for 10 strokes. Care was taken to avoid
417 generating bubbles when mixing cells with barcoded hydrogel templates. 280 μL of oil (Fluent
418 Biosciences # FB0001804) was added to the cell-bead mixture and vortexed (Vortex Genie 2,
419 Scientific Industries) using a custom adapter (Fluent BioSciences, #FB0002100) at the maximum

420 rpm for 15 seconds horizontally and 2 minutes vertically. 230 μ L of excess oil was removed and
421 the emulsion and enzymatic lysis was completed at 65°C for 35 minutes with a 4°C hold on a
422 PCR thermocycler with lid temperature set to 105°C. The remaining oil was removed. The
423 emulsion was broken as follows. Using a multichannel pipet, 180 μ L of room temperature high
424 salt buffer (250 mM Tris-HCl pH 8, 375 mM KCl, 15 mM MgCl₂, 50 mM DTT) was added to
425 the top of the emulsion followed by 40 μ L of 100% 1H,1H,2H,2H-perfluoro-1-octanol (Sigma
426 Aldrich, 370533). The samples were vortexed for 3 seconds, briefly centrifuged, and the bottom
427 oil phase was removed. Barcoded hydrogel templates were transferred into a 1.5 ml Eppendorf
428 tube and washed 3 times with 2x RT buffer (100 mM Tris-HCL pH 8.3, 150 mM KCl, 6 mM
429 MgCl₂, 20 mM DTT) with 1% Pluronic F68 (Gibco #24040032). After washing, the beads were
430 pelleted, aqueous removed, and the remaining bead and buffer volume was 25 μ l. To this mix, 25
431 μ L of reverse transcription (RT) master mix. The master mix consisted of 4.8% PEG8000, 4%
432 PM400, 2.5 μ M template switch oligo (PIPS_TSO), 1 mM dNTPs (NEB), 1 U/ μ L RNase
433 Inhibitor (NxGen, Lucigen), 1 U/ μ L reverse transcriptase (ThermoFisher, Maxima H-minus
434 EP0751). RT master mix was added, mixed, and cDNA synthesis was completed for 30 minutes
435 at 25°C, 90 minutes at 42°C, followed by 10 minutes at 85°C and a 4°C hold. Whole
436 transcriptome amplification (WTA) was performed directly on RT product without purification
437 by adding 50 μ L of 1x KAPA Hifi master mix, 0.25 μ M primer (PIPS_WTA_primer), and
438 thermocycling 95°C for 3 min, then 16 cycles of (98°C 15 s, 67°C 20s, 68°C 4 min) followed by
439 72°C 5 min and 4°C hold. After WTA, barcoded hydrogel templates were removed using
440 Corning Spin-X filter columns (1 min at 13,000 xg), and amplified cDNA was purified using
441 0.6x Ampure XP. Libraries were generated from WTA amplified material using the Nextera XT
442 DNA Library Preparation Kit with a custom primer (PIPS_P5library) and standard Nextera P7

443 indexing primers (N70x). Libraries were pooled and sequenced using an Illumina NextSeq 2000
444 instrument with 15% PhiX. Oligonucleotides used in this study are found in **Supplemental**
445 **Table 1.**

446

447 **Human-mouse mixing studies.** Human HEK 293T cells (ATCC # CRL-3216) were grown in
448 DMEM (ThermoFisher #11995073) supplemented with 10% FBS (ThermoFisher #A3840001)
449 and 1% Penicillin-Streptomycin-Glutamine (ThermoFisher #10378016). Murine NIH/3T3 cells
450 (ATCC # CRL-1658) were grown in DMEM (ThermoFisher #11995073) supplemented with
451 10% bovine calf serum (ATCC # 30-2030) and 1% Penicillin-Streptomycin-Glutamine. Cells
452 were grown to a confluence of ~70% and treated with TrypLE Express with Phenol red
453 (ThermoFisher #12605010) for 3 minutes, quenched with an equal volume of growth medium,
454 and centrifuged at 5 min at 200 x g. The supernatant was removed, and the cells were
455 resuspended in 1X DPBS without calcium or magnesium. Cells were diluted to their final
456 concentration in 1X DPBS with 0.04% BSA and mixed evenly to create a 50:50 Human:Mouse
457 mixture. Cell viability was evaluated using acridine orange/propidium iodide stain (Logos Bio #
458 F23001) and quantified with a Luna-FL automated cell counter. Cells were processed using the
459 PIP-seq protocol as described above.

460

461 **72-hour hold experiments.** 5 μ L of a 50:50 mixture of human HEK 293T cells and murine
462 NIH/3T3 cells (800 cells/ μ L) was added to 35 μ L of barcoded hydrogel templates Fluent
463 BioSciences Part # FB0003067) with 29 U/mL Proteinase K and 70 mM DTT and mixed for 10
464 strokes. 280 μ L of oil (Fluent Biosciences # FB0001804) was added to the cell-bead mixture,
465 which was vortexed on a digital vortexer using a custom adapter (Fluent BioSciences

466 #FB0002084) at 3000 rpm for 15 seconds horizontally and 2 minutes vertically. 230 μ L of
467 excess oil was removed and the emulsion was placed in a pre-heated digital dry bath at 66°C for
468 38 min and 4°C for 11 minutes. Control samples proceeded to emulsion breaking while 0°C hold
469 samples were placed in an ice bucket in the 4°C refrigerator for 72 hours prior to breaking
470 emulsions. Breaking, mRNA extraction, reverse transcription, WTA, and cDNA isolation,
471 adapter ligation-based library preparation and Illumina sequencing were performed as previously
472 described.

473

474 **Healthy breast tissue comparison to 10X.** Fresh reduction mammoplasty tissue was processed
475 as previously described^{31,67}. Bulk mammary tissues were mechanically processed into a slurry
476 and digested overnight with collagenase type 3 (200U/mL, Worthington Biochem CLS-3) and
477 hyaluronidase (100U/mL, Sigma-Aldrich H3506) in medium containing charcoal:dextran
478 stripped FBS (GeminiBio 100-119). The digested fragments were size filtered into a sub-40
479 micron fraction and an above 100-micron fraction and cryopreserved. For PIP-seq, cells were
480 thawed and then resuspended in PBS + 0.04% BSA and passed through a 70-micron FlowMi cell
481 strainer (Sigma # BAH136800070). For 10x Genomics data, the 100-micron fraction were
482 thawed, then further digested with trypsin, followed by dispase (Stemcell Technologies #07913)
483 and DNaseI (Stemcell Technologies #07469) digestion to achieve single-cell suspension. For
484 PIP-seq, 20 μ L of cells (1500 cells/ μ L in PBS + 0.04% BSA) was added to 200 μ L of barcoded
485 hydrogel templates (Fluent BioSciences, #FB0002617) and mixed for 10 strokes. 1000 μ L of oil
486 (Fluent Biosciences # FB0001804) was added to the cell-bead mixture and it was vortexed on a
487 digital vortexer using a custom adapter (Fluent BioSciences, #FB0002100) at 3000 rpm for 15
488 seconds horizontally and 2 minutes vertically. 800 μ L of excess oil was removed and the

489 emulsion was placed on a pre-heated digital dry bath at 66°C for 38 min and 4°C for 11 minutes.
490 Breaking, mRNA extraction, reverse transcription, WTA, and cDNA isolation was performed
491 under standard conditions. Adapter ligation-based library preparation was performed according
492 to manufacturer's instructions (Watchmaker Genomics, #7K0019-024). Samples were sequenced
493 on the Illumina NextSeq 2000, with four patient samples pooled per P3 cartridge and sequenced
494 at a read depth of approximately 36,500 reads/cell. For 10X Genomics, cells from each patient
495 were labeled with MULTIseq barcodes¹³, then pooled and stained with DAPI to be sorted for
496 DAPI-live cells. Single-cell libraries were prepared according to the 10X Genomics Single Cell
497 V3 protocol (v3.1 Rev D) with the standard MULTIseq sample multiplexing protocol. The
498 libraries were sequenced on a NovaSeq S4 lane at a read depth of about 70,000 reads/cell. To
499 compare platforms, we downsampled PIP-seq and 10x data, which had different numbers of cells
500 and sequencing depth per cell. The PIP-seq data had 54,825 cells, sequenced at approximately
501 36,500 reads per cell, while the 10x data had 2420 cells sequenced at approximately 70k reads
502 per cell. Data were downsampled to 2400 cells and 36,500 reads in R (downsampleReads,
503 DropletUtils). For correlation and marker gene comparisons, data were downsampled to 2400
504 cells and 1500 UMIs in R (SampleUMI, Seurat v4.1.0). Markers used for breast tissue cluster
505 cell type calling are found in **Supplemental Table 2**.

506
507 **Single-tube large format breast tissue study.** PIP-seq was performed as previously described,
508 except that cells were counted and diluted with PBS + 0.04% BSA to a concentration of 10,000
509 cells/µL. 40 µL of cell suspension was input into 800 µL of barcoded hydrogel templates (Fluent
510 BioSciences Part # FB0003067). 4000 µL of oil (Fluent Biosciences # FB0001804) was added to
511 the cell-bead mixture and vortexed on a digital vortexer using a custom adapter (Fluent

512 BioSciences # FB0002659) at 3000 rpm for 15 seconds horizontally and 2 minutes vertically.
513 Excess oil was removed using a 3 mL syringe with a G22 blunt bottom syringe needle. Lysis
514 proceeded using 3300 μ L of a lysis emulsion (Fluent BioSciences #FB0003039) added to the
515 cell-bead emulsion. The mixture was placed in a pre-heated digital dry bath at 37°C for 45 min
516 and 4°C for 10 minutes. Breaking, mRNA extraction, reverse transcription, WTA, and cDNA
517 isolation were performed under the same conditions as described previously. Adapter ligation-
518 based library preparation was performed according to manufacturer's instructions (Watchmaker
519 Genomics, #7K0019-024). 80 ng of cDNA was used to prepare four replicate library
520 preparations which were pooled and sequenced on two Illumina NextSeq 2000 P3 cartridges at a
521 read depth of 13,025 reads/cell, after concatenation.

522
523 **CROP-seq.** K562 CRISPRi cells were cultured in RPMI-1640 (Gibco #11875093) with 10%
524 FBS (Thermo Fisher Scientific, #10438026) and 1% penicillin/streptomycin (Thermo Fisher
525 Scientific, #15140148) in an incubator at 37°C with 5% CO₂. K562 CRISPRi cells were
526 transduced with a lentivirus library containing 138 sgRNA³⁵ at a multiplicity of infection of 0.1.
527 Lentivirus-infected cells (BFP+) were sorted to high purity using a BD FACS Aria III (100 μ M
528 nozzle) and processed according to the PIP-seq scRNA-seq workflow. 3 μ L of cells (333
529 cells/ μ L) was added to 28 μ L of barcoded hydrogel templates with 29 U/mL Proteinase K and 70
530 mM DTT and mixed for 10 strokes. 150 μ L of 0.5% ionic Krytox in HFE 7500 oil was added to
531 the cell-bead mixture and it was vortexed at 3000 RPM for 1 minute on a Vortex Genie 2 with a
532 custom tube adapter. cDNA was processed according to the standard PIP-seq protocol to obtain
533 sequence ready libraries containing transcriptome information. To recover sgRNA sequences, we
534 implemented an additional amplification step. We amplified 1 ng cDNA in a 50 μ L reaction

535 using of primers P5-PE1 (0.5uM) and Weissman_U6 (0.25uM) (**Supplementary Table 1**) with
536 1x Kappa HIFI. Reactions were thermocycled at 95°C for 3 min followed by 10 cycles of [95°C
537 for 20s, 70°C for 30s [-0.2°C per cycle], 72°C for 20s], followed by 8 cycles of [95°C for 20s,
538 68°C for 30s, 72°C for 20s], followed by 72°C for 4 minutes, and 4°C forever. Library PCR
539 product enriched in sgRNA sequences was purified with a double sided 0.5x/0.8x Ampure XP
540 bead cleanup and the size was determined (Agilent Tapestation).

541 Transcriptome and sgRNA libraries were pooled at 20:1 before sequencing. Reads were
542 first processed to extract sgRNA sequences. The bioinformatics pipeline was run using a custom
543 index built from the full human transcriptome (GENCODE v32) and guide RNA sequences
544 (salmon v1.2.0.). This approach led to the recovery of >14,000 unique gRNA counts across all
545 cell-associated barcodes. Cells were assigned to gRNA groups using a previously reported
546 approach³². Briefly, cells were classified as uniquely expressing a single gRNA species if the
547 guide's expression was at least 10-fold higher than the sum of all other gRNAs. Similarly, cells
548 were classified as containing multiple gRNAs in cases where the difference was smaller than
549 one. For the 581 single cells sequenced, 2 did not have any gRNA, 441 contained a single
550 gRNA, and 138 contained multiple gRNA. Cell barcodes were processed using Seurat v4.1.0. All
551 gRNAs in the list of features were excluded from the identification of variable transcripts
552 (feature selection) and in subsequent stages of dimensionality reduction and clustering. To
553 understand the relationship between gRNAs and mRNA expression, gRNAs were ranked
554 according to their expected level of knockdown, reported previously³⁵, and a generalized additive
555 model was used to assess groupwise trends for each set of gRNAs.

556

557 **Lung adenocarcinoma cell line experiments.** PC9 was obtained from the RIKEN Bio Resource
558 Center (#RCB4455). H1975 was obtained from the American Type Culture Collection (#CRL-
559 5908). Cells were cultured in RPMI-1640 (Gibco #11875093) with 10% fetal bovine serum
560 (FBS), penicillin, and streptomycin in an incubator at 37°C with 5% CO₂. 1 μM Gefitinib
561 (Frontier Scientific, 501411677) or DMSO was added to culture flasks 24 hours before cells
562 were harvested for processing. PC9 and H1975 were both treated with Gefitinib and DMSO. To
563 perform the cell mixing study, Gefitinib treated H1975 and Gefitinib treated PC9 were mixed at
564 a ratio of 1:9 H1975:PC9. 5 μL of cells (400 cells/μL) were added to 28 μL of barcoded
565 hydrogel templates with 22.8 U/mL Proteinase K and 28 mM DTT and mixed for 10 pipet
566 strokes. 150 μL of 0.5% ionic Krytox in HFE 7500 oil⁶⁶ was added to the cell-bead mixture and
567 it was vortexed at 3000 RPM for 1 minute on a Vortex Genie 2 with a custom tube adapter.
568 Triplicate tubes of 400 cells were processed per treatment condition. Data was analyzed using
569 Seurat v4.1.0.

570
571 **Healthy PBMCS.** Cryopreserved PBMCS were obtained from a commercial provider (AllCells,
572 Lot #3052467). Cells were thawed and prepared for PIP-seq as previously described in the
573 MPAL study, except that the final cell dilution was made in 1X PBS + 0.04% BSA. *For the high*
574 *cell count PBMC study.* PIP-seq was performed as previously described in the high cell number
575 breast tissue study except that cells were counted and diluted with PBS + 0.04% BSA to a
576 concentration of 4300 cells/μL and 44 μL of cell suspension was input into 800 μL of barcoded
577 hydrogel templates (Fluent BioSciences Part # FB0003067). Cryopreserved PBMCS used for cell
578 hashing were obtained from a commercial provider (AllCells, and Lot #3082436) and prepared
579 for PIP-seq as described previously. *For the cell hashing study.* Cell staining and PIP-seq were

580 performed according to PIPseq Single Cell Epitope Sequencing User Guide
581 (FB0002079). Briefly, one million PBMCs were resuspended in 47.5 μ L of Cell Staining Buffer
582 (BioLegend #420201) and 2.5 μ L TruStain FcX block (BioLegend #422301) was added prior to
583 mixing and incubation for 10 min on ice. Next, 1 μ g of TotalSeqA antibody was diluted in Cell
584 Staining Buffer and 50 μ L of this antibody dilution was added to the blocked cells prior to
585 incubation on ice for 30 min. Stained cells were washed in Cell Staining Buffer three times and
586 resuspended in 1X PBS+0.04% BSA at 2000 cells/ μ L. For the PIP-seq, 20 μ L of this cell
587 resuspension was added to 200 μ L of barcoded hydrogel templates (Fluent BioSciences
588 #FB0002617) and processed through PIP-seq.

589

590 **Mixed phenotype acute leukemia (MPAL).** Patients whose samples were used in this study
591 were treated at the University of California San Francisco. Samples were collected in accordance
592 with the Declaration of Helsinki under institutional review board-approved tissue banking
593 protocols, and written informed consent was obtained from all patients. Sample clinical
594 characteristics are found in **Supplemental Table 3**. Cryopreserved peripheral bone marrow
595 mononuclear cell samples (PBMCs) were thawed by hand until approximately 85% of ice
596 remained. Using a 5 mL serological pipette, 1 mL of 4°C defrosting media (DMEM with 20%
597 FBS and 2 mM EDTA) was added dropwise to each sample and then, without disturbing the
598 remaining ice pellet, the sample was carefully transferred dropwise to a pre-prepared 40 mL
599 aliquot of 4°C defrosting media. This was repeated until the contents of the entire cryovial were
600 transferred into the 50 mL conical of defrosting media. The sample was inverted 4-5 times and
601 centrifuged at 114 x g for 15 min at 4°C with no brake. The supernatant was aspirated and 10 mL
602 of room temperature RPMI 1640 with 1% Penicillin-Streptomycin-Glutamine was used to gently

603 resuspend the cells. Cell clumps were manually removed, and if necessary cells were filtered
604 through a 70 micron cell strainer into a fresh 50 mL conical. The sample was inverted 2-3 times
605 and centrifuged at 114 x g for 10 minutes with low brake at room temperature. The supernatant
606 was aspirated and cells were resuspended in an appropriate volume of 1X PBS + 5% FBS. Cells
607 were quantified with AO/PI and viability evaluated on the Luna-FL. 1-2 million cells were
608 aliquoted into a new 15mL conical and then centrifuged at 350 x g for 4 min at 4°C and then
609 the supernatant was aspirated and the tube was placed on ice. 45 μ L of cold Cell Staining
610 Buffer (BioLegend, 420201) was added per million cells and resuspended gently. 5 μ L Trustain
611 FcX block (BioLegend, 422301) was added per million cells and gently mixed 10 times with a
612 wide-bore pipette tip. Cells were blocked on ice for 15 minutes. A custom pool of 19 TotalSeq
613 A antibodies was obtained from BioLegend. Immediately prior to use, antibodies were mixed
614 and centrifuged at 10,000 x g for 4 min at 4°C. 4.6 μ L of 0.5 μ g/ μ L antibody pool was added
615 per million of the blocked cells and gently mixed 10 times with a wide-bore pipette tip. The
616 samples were incubated on ice for 60 minutes. Next, 3.5 mL of cold Cell Staining Buffer was
617 added, gently mixed with a wide-bore pipette tip, and slowly inverted twice to mix. Cells were
618 centrifuged at 350 x g for 4 min at 4°C and then the supernatant was removed. The addition of
619 cold Cell Staining buffer was repeated twice for a total of 3 washes. After the final supernatant
620 aspiration, stained cells were resuspended in 1X PBS with 0.04% BSA and mixed 5-10 times
621 until cells were completely suspended without visible clumps. Cell concentration was determined
622 with AO/PI and viability was evaluated on the Luna-FL. Final dilutions were made in 1X PBS
623 with 0.04% BSA. 20 μ L of cells was added to 200 μ L of barcoded hydrogel templates (1000
624 cells/ μ L) and processed according to PIPseq Single Cell Epitope Sequencing User Guide

625 (FB0002079). Marker genes identified for patients 65 and 873 are found in **Supplemental**
626 **Tables 4 and 5**, respectively.

627

628 **PIP-seq bioinformatic analysis.** Analysis of sequencing data was performed using custom
629 scripts to generate gene expression matrices starting from processed FASTQ sequences. The
630 pipeline comprises 4 basic steps: barcode identification and error correction, mapping to
631 reference sequences, cell calling, and gene expression matrix generation. Briefly, after
632 demultiplexing the sequencing data each read in the FASTQ is matched against a “whitelist” of
633 known barcodes. Reads were matched with a hamming distance tolerance of 1, meaning that the
634 barcode portion of a read can differ from a whitelist entry by one base and still be matched to
635 that barcode. Reads that did not match any barcode in the whitelist were discarded from further
636 analysis. Matching reads were output to a new, intermediate FASTQ file that was then used for
637 mapping against an appropriate transcriptome reference. Reference transcriptomes matching the
638 species of each sample were prepared using the Salmon *index* function with the default k-mer
639 size of 31⁶⁸. GENCODE references were used to build the transcriptome indexes including
640 GRCh38.p13 for human, GRCm38.p6 for mouse, and the combination thereof for HEK/3T3 cell
641 mixture studies. Following barcoding, Salmon *alevin* v1.2.0⁶⁹ was used to map reads to the full
642 transcriptome. The intermediate FASTQ generated during barcoding were provided as input into
643 *alevin* along with a list of all whitelisted barcodes contained in raw reads. After mapping, data
644 were output as UMI counts matrices (sparse matrix, gene list, barcode list) with dimensions of
645 *all barcodes x all genes in index*. An in-house python implementation of emptyDrops⁷⁰, a
646 standard scRNA-seq method to separate putative cells from background, was then applied. A
647 custom threshold for each experiment was set, beneath which no true cell barcodes were

648 expected to fall. As with emptyDrops, an estimated ambient profile across all barcodes beneath
649 that threshold was created. A p-value was computed by comparing the gene expression profile
650 for each barcode above the threshold against the ambient profile. Barcodes with a statistically
651 significant difference (Benjamini-Hochberg adjusted- $p < 0.001$) from the ambient background
652 profile were categorized as cell-containing barcodes. The *alevin* output matrices were then subset
653 to only include called cell barcodes. Gene expression matrices were normalized prior to
654 performing unsupervised clustering and UMAP dimensionality reduction. First, gene expression
655 counts for each cell were divided by the total counts for that cell and multiplied by a scaling
656 factor of 10,000. Finally, the data were transformed to natural-log scale using `log1p()`. The
657 Seurat package (v4.1.0) was used to perform downstream clustering, marker gene determination,
658 and visualization in R. Seurat's `FindClusters()` and `RunUMAP()` commands were used with
659 default settings.

660 For saturation curve comparisons, PIPseq and 10x samples were downsampled to
661 matching depths of 5K-80K reads per called cell. Downsampling was performed using `seqtk` for
662 PIPseq samples and using `DropletUtils read10xMolInfo()` function with a `molecule_info.h5` file
663 directly downloaded from the 10x website. Inflection point-based cell calling was used to
664 standardize cell calls across platforms. Median transcripts/cell and genes/cell were calculated
665 from the cell fraction of the resulting count matrices. For violin plot comparisons, samples were
666 prepared to match the same processing configuration used by Ding et al (2020)²⁸. First, samples
667 were downsampled to 53K reads per called cell and trimmed to 50bp for read 2 prior to
668 processing, sampling in the same manner described above. Each violin plot represents the cell
669 fraction from a single replicate of an HEK/3T3 cell mixture, with human and mouse split out into
670 separate plots.

671 Analysis of PBMC data for the high cell count study was performed using custom scripts
672 as described above, until the completion of mapping. Cell calling, clustering, and differential
673 expression were performed using PIPseeker v1.0.0 (Fluent Biosciences) in *reanalyze* mode using
674 –force-cells 65000. Top differentially expressed genes from the PIPseeker graph-based
675 clustering result were used to determine cell types by comparing to a reference gene list
676 (Supplementary Table 7). Log-normalized expression for key genes (e.g. CD34) were overlaid
677 on the UMAP projection to highlight markers associated with specific cell types (color bar in
678 log10 scale). Analysis of PBMC data for the cell hashing study was performed using PIPseeker
679 v1.0.0 in *count* mode using STAR (v2.7.10a) and the PIPseeker human reference
680 (<https://www.fluentbio.com/products/pipseeker-for-data-analysis/>). ADT analysis was performed
681 by performing barcode error correction with PIPseeker v1.0.0 (*count* mode) and custom scripts
682 to trim R2 to the first 16bp. Error-corrected and trimmed FASTQs were input to CITE-seq Count
683 (v1.4.3) using the following settings: -t (hashtag whitelist) -cbf 1 -cbl 16 -umif 17 -umil 28 --
684 cells (# called cells from RNA cell calling). The hashtag whitelist contained two TotalSeq™-A
685 anti-human Antibody hashes (A0253 - TTCCGCCTCTCTTTG, A0255 -
686 AAGTATCGTTTCGCA). The filtered matrix output by PIPseeker for the RNA data was
687 merged with the umi-count matrix from CITE-seq Count on cell barcode to create a merged
688 matrix. The hashing data was demultiplexed in Seurat using HTODemux
689 (positive.quantile=0.99). Downstream was performed in Seurat using SCTtransform() along with
690 RunPCA(), FindNeighbors(dims=1:15) and RunUMAP(dims=1:15). Cell type annotation was
691 performed with singleR (v1.4.1) and used an annotated 10x Genomics v1 chemistry dataset as a
692 reference. Cells were classified by their max hash identity and projected in the RNA-based

693 UMAP space. The HTO data was subjected to clustering in Seurat using the HTOHeatmap()
694 function to visualize singlets, doublets, and unclassified cells.

695 For 72-hour hold experiments, analysis was performed using custom scripts as previously
696 described. Samples were normalized to the same depth (45,000 reads/cell). Cell types were then
697 annotated as human (HEK293T) or mouse (NIH-3T3) using a purity threshold of >85% single-
698 species content per barcode. Barcodes from each species were subset and transcript counts were
699 summed for each gene to generate two pseudobulk counts tables per sample. Samples were
700 aggregated separately for each species and then were analyzed with DESeq2. A contrast of 0 vs.
701 72 hours was performed for each species, while controlling for batch effects associated with
702 different users. For the correlation analysis, pseudobulk counts derived above were normalized to
703 transcripts per million and transformed to log1p scale. Pearson correlations (R) and slopes (m)
704 were calculated by fitting a linear model to the data. Data were then plotted in R with ggplot2
705 v3.3.5 and were aggregated into a grid using GGally v2.1.2. Additionally, the distribution of
706 cells in UMAP space at 0 and 72 hours post-lysis was examined. After processing data in Seurat
707 as described, harmony batch-correction was used to integrate datasets.

708

709 **Figures**

710 **Figure 1. Rapid and scalable templated emulsification for single-cell genomics. (a-d)** PIP-
711 seq enables the encapsulation, lysis, and barcoding of single cells. **(a)** Schematic of the
712 emulsification process. Barcoded particle templates, cells, and lysis reagents are combined with
713 oil and vortexed to generate monodispersed droplets. **(b)** Heat activation of Proteinase K results
714 in lysis and release of mRNA that is captured on bead-bound barcoded polyT oligonucleotides.
715 **(c)** Oil removal is followed by bulk reverse transcription of mRNA into cDNA. **(d)** Barcoded
716 whole transcriptome amplified cDNA is prepared for Illumina sequencing. **(e-g)** Efficient single
717 bead, single drop encapsulation at scale. **(e)** Particle templated emulsification in different sized
718 tubes (1.5 ml, 15 ml, 50 ml) produces monodispersed emulsions capable of barcoding orders of
719 magnitude different cell numbers. **(f)** PIP-seq is compatible with plate-based emulsification,
720 including 96-, 384- and 1536-well plate formats. **(g)** The estimated ability of different
721 technologies to easily scale with respect to cell and sample number.

722

723 **Figure 2. Heat-activated enzymatic lysis yields high purity single-cell transcriptomes. (a)**
724 Fluorescence microscopy (Brightfield, GFP) of calcein-stained cells emulsified with barcoded
725 bead templates before and after heat-activated lysis. Inset: images show cell puncta (left) and
726 release of calcein (right) after lysis. **(b-d)** Cell purity assessed with mouse-human mixing
727 studies. **(b)** The distribution of total UMIs as a function of cell barcode rank. **(c-d)** Purity
728 analysis of cell transcriptomes assessed using barnyard plots. Cells are colored by cell type: red
729 points are mouse reads, blue points are human reads, and green points are mixed reads.

730 **Figure 3. Accurate single-cell transcriptional profiling of healthy breast tissue using PIP-**
731 **seq. (a)** Clustering and identification of cell types from PIP-seq data (54,825 cells from 2
732 patients). **(b-e)** Comparison of PIP-seq to 10X Genomics data collected from the same tissue. **(b)**
733 Integration of PIP-seq and 10x data. **(c-d)** Cell clustering and comparison of marker genes
734 between platforms. **(d)** Heatmaps of marker gene expression show similar patterns in PIP-seq
735 and 10X data. **(e)** Correlations in normalized gene expression, by cluster, between platforms (see
736 also Extended data Fig. 4a).

737 **Figure 4. Transcriptome and guide RNA sequencing using PIP-seq. (a)** Schematic of the
738 CROP-seq sgRNA library designed with target mismatches to modulate the activity of essential
739 genes. **(b)** Lentiviral transduction of the CRISPRi library in K562 cells. **(c)** Schematic of the
740 capture and barcoding of polyadenylated mRNA and sgRNA using PIP-seq. RNA and sgRNA
741 libraries are prepared separately and pooled for sequencing. **(d)** Quantification of gene
742 expression of sgRNA within an allelic series. sgRNA is ordered from high to low predicted
743 knockdown efficiency (Jost et. al, 2020). Non-targeting sgRNA are denoted as “Null.” **(e)** Pre-
744 ranked gene set enrichment analysis (GSEA) of scRNA-seq data comparing sgHSPA5
745 transduced cells to non-sgHSPA5 transduced cells shows enrichment in genes related to
746 endoplasmic reticulum stress and unfolded protein response.

747

748 **Figure 5. Molecular signatures of drug-resistant cancer phenotypes in cell lines and patient**
749 **samples.** **(a)** A two-by-two experimental study design using lung adenocarcinoma cell lines
750 (H1975, PC9) treated with Gefitinib or DMSO. **(b)** Clustering of single-cell RNA-seq after drug
751 treatment shows transcriptional perturbations in Gefitinib-sensitive PC9, but not Gefitinib-
752 resistant H1975 cells. **(c)** Increased expression of *TACSTD2* in PC9 challenged with Gefitinib.
753 **(d)** Identification of drug-resistant H1975 cells spiked into drug-sensitive PC9 cells based on
754 Gefitinib-induced transcriptional perturbation. **(e-l)** PIP-seq RNA and barcoded antibody (CITE-
755 seq) analysis of mixed phenotype acute leukemia (MPAL). **(e)** Clustering of single cells for
756 patient 65 before (left panel) and after (right panel) chemotherapy. **(f)** Clustering of single cells
757 for patient 873 before (left panel) and after (right panel) chemotherapy. **(g-h)** Antibody derived
758 tag (ADT) abundance, by cluster, before (t1) and after (t2) chemotherapy. ADTs change as a
759 function of chemotherapy but are consistent among clusters for both patients, with the exception
760 of T cell subsets. **(i-l)** Analysis of transcriptional heterogeneity in MPAL samples **(i)** Heatmap of
761 top differentially expressed marker genes by cluster after relapse in patient 63. **(j)** GSEA pre-
762 ranked analysis comparing transcriptomic differences between clusters 1 and 7 in patient 65
763 using gene sets: HP Acute Leukemia (M35856), Hallmark G2M Checkpoint (M5901), Hallmark
764 Oxidative Phosphorylation (M5936), and GOCC Ribosome (M17089) **(k)** Heatmap of top
765 differentially expressed marker genes by cluster after relapse in patient 873. **(l)** GSEA pre-ranked
766 analysis comparing transcriptomic differences between clusters 3 and 5 in patient 873 using gene
767 sets HP Acute Myeloid Leukemia (M36586), GOCC Ribosome (M17089), GOBP Oxidative
768 Phosphorylation (M17089), and Abnormal Myeloid Leukocyte Morphology (M37711).
769

770 **Extended data Figure 1. Flexible sample processing with PIP-seq.** **(a)** Storage of droplets
771 after emulsification for 72 hours at 0°C did not change quality metrics. **(b)** Data integration
772 between time points. **(c)** Correlations in normalized gene expression, by sample, between time
773 points for mouse and human cells.

774

775 **Extended data Figure 2. (a-c)** Microscope images of droplets and cells in plate emulsification
776 experiments. **(a,b)** Barcode bead templates, stained cells (puncta), and lysis reagents are
777 combined with oil and vortexed in **(a)** 96-well and **(b)** 384-well plates to generate monodispersed
778 droplets. Heat activation of Proteinase K results in lysis and release of calcein dye, and full-drop
779 fluorescence. **(c)** Microscope images of droplets from random wells of a 384-well plate
780 emulsification experiment.

781

782 **Extended data Figure 3. Quality control analysis of PIP-seq using healthy breast tissue** **(a)**
783 Integration and clustering of 54,825 cells from 2 patients with 2 replicates per patient. **(b)**
784 Coloring of UMAP by the number genes (nFeature RNA) for each cell. **(c)** The number of
785 unique genes (nFeature RNA), transcripts (nCount RNA), percent mitochondrial reads, and
786 percent ribosomal reads as a function of cluster. **(d)** Comparison between 10X Genomics' and
787 PIP-seq data after downsampling 2400 cells to 36,500 reads per cell.

788

789 **Extended data Figure 4.** Comparison, after down-sampling (2400 cells 1500 UMIs) of the
790 larger breast tissue PIP-seq dataset to 10x Genomics data generated from identical samples. **(a)**
791 Correlations in normalized gene expression, by cluster, between platforms. **(b)** Expression of
792 marker genes overlayed on clusters is consistent between platforms.

793 **Extended data Figure 5.** Data quality assessment of PIP-seq. **(a)** Representative distribution of
794 reads per cell. **(b)** Correlation between reads and genes per cell. **(c,d)** Comparison of (c)
795 UMIs/cell and (d) genes/cell in current single-cell methods. **(e,f)** Comparison of PIP-seq to 10X
796 Genomics across a range of sequencing depths (0-80,000 reads/cell) (e) UMIs/cell and (f)
797 genes/cell.

798

799 **Extended data Figure 6.** High cell number PIP-seq. **(a)** scRNA-seq of 138,146 single cells from
800 breast tissue using a single-tube emulsification in 2-minutes. **(b)** scRNA-seq of 65k peripheral
801 blood mononuclear cells (PBMCs) recovers a small population of CD34 cells. **(c)** Coloring of
802 UMAP by the normalized expression of *CD34* for each cell. **(d)** Hashing of PBMCs
803 demonstrates compatibility of PIP-seq with barcoded antibodies.

804

805 **Extended data Figure 7.** **(a)** Gene expression for each sgRNA within an allelic series for all
806 genes in the CRISPRi library. Each sgRNA is ordered from predicted high to low knockdown
807 efficiency. Non-targeting sgRNA are denoted as “Null.” **(b)** The relationship between gene
808 expression and predicted knockdown of each gene. Expected changes in transcription across the
809 allelic series were prominent in highly expressed genes. p-value represents the significance of
810 the generalized additive model relating gRNA identity to knockdown efficiency for each gene.

811

812 **Extended data Figure 8.** Identification of Gefitinib-specific transcriptional responses in cancer
813 cell lines. **(a)** Violin plots of median expression values for selected differentially expressed
814 genes. **(b)** The expression of selected differentially expressed genes superimposed on H1975 and
815 PC9 cell clusters.

816 **Extended data Figure 9.** Clinical flow cytometry and corresponding antibody derived tag
817 (ADT) data for patients 65 and 873 with mixed phenotypical acute leukemia (MPAL).

818

819 **Extended data Figure 10.** Analysis of PIP-seq data from MPAL Patient #65. **(a)** Integration of
820 replicates and time points. **(b)** Correlation between the number of cells in each cluster before and
821 after relapse identifies expansion of clusters 1,4, and7. **(c)** Volcano plots showing differential
822 gene expression, by cluster, between t1 (before treatment) and t2 (after relapse).

823

824 **Extended data Figure 11.** Analysis of PIP-seq data from MPAL Patient #873. **(a)** Integration of
825 replicates and time points. **(b)** Correlation between the number of cells in each cluster before and
826 after treatment identifies the expansion of clusters 3 and 5. **(c)** Volcano plots showing differential
827 gene expression, by cluster, between t1 (before treatment) and t2 (after relapse).

828 **Tables**

829 **Supplementary Table 1.** Oligonucleotides used in this study.

830 **Supplementary Table 2.** Breast tissue marker genes **(a)** used for cluster cell type identification
831 and **(b)** identified using differential expression between clusters (FindAllMarkers Seurat v4.1.0,
832 only.pos=FALSE, min.pct = 0.25, logfc.threshold = 0.5, test.use='bimod').

833 **Supplementary Table 3.** Clinical characteristics of study participants.

834 **Supplementary Table 4.** Marker genes for patient 65 clusters identified using combined t1 and
835 t2 timepoints (FindAllMarkers Seurat v4.1.0, only.pos=TRUE, min.pct = 0.25, logfc.threshold =
836 0, test.use='bimod').

837 **Supplementary Table 5.** Marker genes for patient 873 clusters identified using combined t1 and
838 t2 timepoints (FindAllMarkers Seurat v4.1.0, only.pos=TRUE, min.pct = 0.25, logfc.threshold =
839 0, test.use='bimod').

840 **Supplementary Table 6.** Sequencing metrics.

841 **Supplementary Table 7.** PBMC marker genes (a) used for cluster-based cell type identification
842 and (b) identified using differential expression between clusters.

843

844 **Acknowledgments:** We thank members of the Abate laboratory for helpful advice and
845 discussions. **Funding:** ICC was supported by K22AI152644 and DP2AI154435 from the NIH.
846 This work was supported by grants 1R44GM145185, 1R43CA239978-01 and 1R43GM137648-
847 01A1 to Fluent BioSciences. MJ was supported by K99GM130964 from the NIH. JMR was
848 supported by F31NS115380 from the NIH. JSW was supported by NIH 1RM1 HG009490-01
849 and Howard Hughes Medical Institute. CCS was supported by the Damon Runyon Cancer
850 Research Foundation (CI-99-18), the American Cancer Society (132032-RSG-18-063-01-TBG),
851 and the Leukemia & Lymphoma Society.

852
853 **Author contributions:** Conceptualization, ICC, ARA; Methodology, ICC, KMF, RHM, CD,
854 ARA; Investigation, ICC, KMF, YX, DW, KTP, CDA, AO, JQZ, PH, JSAl, VK, CP; Formal
855 Analysis, ICC, CH, AM-Z; Resources KMF, RHM, JMR, JSW, CCS, ZJG, ARA; Manuscript
856 preparation, ICC, CCS, CACP, ARA; Supervision, ICC, KMF, RHM, CCS, ZJG, ARA.

857
858 **Competing interests:** ARA filed a patent related to templated emulsification and is a founder of
859 Fluent Biosciences. ICC consults for Fluent Biosciences and is on its Scientific Advisory Board.
860 KMF, RM, YX, CH, AO, PH, JSAl, JQZ, AM-Z, CDA, AO, JQZ, PH, and JI are employees at
861 Fluent Biosciences and are working to commercialize the PIP-seq technology. MJ consults for
862 Maze Therapeutics and Gate Biosciences. JMR consults for Maze Therapeutics and Waypoint
863 Bio. JSW declares outside interest in 5 AM Venture, Amgen, Chroma Medicine, DEM
864 Biosciences, KSQ Therapeutics, Maze Therapeutics, Tenaya Therapeutics, Tessera Therapeutics
865 and Velia Therapeutics.

866

867 **Data and materials availability:** Sequencing data were deposited into GEO SuperSeries
868 accession number GSE202919. The Reviewer access token is: ezipsugojfuvvql. All code will be
869 made available from the corresponding author upon reasonable request.

870 **References**

871 1 Eberwine, J. *et al.* Analysis of gene expression in single live neurons. *Proc Natl Acad Sci*
872 *U S A* **89**, 3010-3014 (1992). <https://doi.org/10.1073/pnas.89.7.3010>

873 2 Tang, F. *et al.* mRNA-Seq whole-transcriptome analysis of a single cell. *Nature Methods*
874 **6**, 377-382 (2009). <https://doi.org/10.1038/nmeth.1315>

875 3 Hagemann-Jensen, M. *et al.* Single-cell RNA counting at allele and isoform resolution
876 using Smart-seq3. *Nat Biotechnol* **38**, 708-714 (2020). <https://doi.org/10.1038/s41587-020-0497-0>

878 4 Hahaut, V., Pavlinic, D., Cowan, C. & Picelli, S. Lightning Fast and Highly Sensitive
879 Full-Length Single-cell sequencing using FLASH-Seq. *bioRxiv*, 2021.2007.2014.452217
880 (2021). <https://doi.org/10.1101/2021.07.14.452217>

881 5 Picelli, S. *et al.* Full-length RNA-seq from single cells using Smart-seq2. *Nature*
882 *Protocols* **9**, 171-181 (2014). <https://doi.org/10.1038/nprot.2014.006>

883 6 Picelli, S. *et al.* Smart-seq2 for sensitive full-length transcriptome profiling in single
884 cells. *Nature Methods* **10**, 1096-1098 (2013). <https://doi.org/10.1038/nmeth.2639>

885 7 Ziegenhain, C. *et al.* Comparative Analysis of Single-Cell RNA Sequencing Methods.
886 *Mol Cell* **65**, 631-643 e634 (2017). <https://doi.org/10.1016/j.molcel.2017.01.023>

887 8 Macosko, E. Z. *et al.* Highly Parallel Genome-wide Expression Profiling of Individual
888 Cells Using Nanoliter Droplets. *Cell* **161**, 1202-1214 (2015).
889 <https://doi.org/10.1016/j.cell.2015.05.002>

890 9 Zilionis, R. *et al.* Single-cell barcoding and sequencing using droplet microfluidics.
891 *Nature Methods* **12**, 44-73 (2016). <https://doi.org/10.1038/nprot.2016.154>

892 10 Rosenberg, A. B. *et al.* Single-cell profiling of the developing mouse brain and spinal
893 cord with split-pool barcoding. *Science* **360**, 176-182 (2018).
894 <https://doi.org/10.1126/science.aam8999>

895 11 Cao, J. *et al.* Comprehensive single-cell transcriptional profiling of a multicellular
896 organism. *Science* **357**, 661-667 (2017). <https://doi.org/10.1126/science.aam8940>

897 12 Gierahn, T. M. *et al.* Seq-Well: portable, low-cost RNA sequencing of single cells at high
898 throughput. *Nat Methods* **14**, 395-398 (2017). <https://doi.org/10.1038/nmeth.4179>

899 13 McGinnis, C. S. *et al.* MULTI-seq: sample multiplexing for single-cell RNA sequencing
900 using lipid-tagged indices. *Nat Methods* **16**, 619-626 (2019).
901 <https://doi.org/10.1038/s41592-019-0433-8>

902 14 Stoeckius, M. *et al.* Cell Hashing with barcoded antibodies enables multiplexing and
903 doublet detection for single cell genomics. *Genome Biol* **19**, 224 (2018).
904 <https://doi.org/10.1186/s13059-018-1603-1>

905 15 Consortium, T. T. S. & Quake, S. R. The Tabula Sapiens: a multiple organ single cell
906 transcriptomic atlas of humans. *bioRxiv*, 2021.2007.2019.452956 (2022).
907 <https://doi.org/10.1101/2021.07.19.452956>

908 16 Haniffa, M. *et al.* A roadmap for the Human Developmental Cell Atlas. *Nature* **597**, 196-
909 205 (2021). <https://doi.org/10.1038/s41586-021-03620-1>

910 17 Melms, J. C. *et al.* A molecular single-cell lung atlas of lethal COVID-19. *Nature* **595**,
911 114-119 (2021). <https://doi.org/10.1038/s41586-021-03569-1>

912 18 Han, X. *et al.* Construction of a human cell landscape at single-cell level. *Nature* **581**,
913 303-309 (2020). <https://doi.org/10.1038/s41586-020-2157-4>

914 19 Reppogle, J. M. *et al.* Mapping information-rich genotype-phenotype landscapes with
915 genome-scale Perturb-seq. *bioRxiv*, 2021.2012.2016.473013 (2021).
916 <https://doi.org/10.1101/2021.12.16.473013>

917 20 Heath, J. R., Ribas, A. & Mischel, P. S. Single-cell analysis tools for drug discovery and
918 development. *Nat Rev Drug Discov* **15**, 204-216 (2016).
919 <https://doi.org/10.1038/nrd.2015.16>

920 21 Cao, J. *et al.* The single-cell transcriptional landscape of mammalian organogenesis.
921 *Nature* **566**, 496-502 (2019). <https://doi.org/10.1038/s41586-019-0969-x>

922 22 Utada, A. S., Fernandez-Nieves, A., Stone, H. A. & Weitz, D. A. Dripping to jetting
923 transitions in coflowing liquid streams. *Physical review letters* **99**, 094502 (2007).
924 <https://doi.org/10.1103/PhysRevLett.99.094502>

925 23 Clark, I. C. & Abate, A. R. Microfluidic bead encapsulation above 20 kHz with triggered
926 drop formation. *Lab Chip* **18**, 3598-3605 (2018). <https://doi.org/10.1039/c8lc00514a>

927 24 Datlinger, P. *et al.* Ultra-high-throughput single-cell RNA sequencing and perturbation
928 screening with combinatorial fluidic indexing. *Nat Methods* **18**, 635-642 (2021).
929 <https://doi.org/10.1038/s41592-021-01153-z>

930 25 Aicher, T. P. *et al.* Seq-Well: A Sample-Efficient, Portable Picowell Platform for
931 Massively Parallel Single-Cell RNA Sequencing. *Methods Mol Biol* **1979**, 111-132
932 (2019). https://doi.org/10.1007/978-1-4939-9240-9_8

933 26 Amini, S. *et al.* Haplotype-resolved whole-genome sequencing by contiguity-preserving
934 transposition and combinatorial indexing. *Nature Genetics* **46**, 1343-1349 (2014).
935 <https://doi.org/10.1038/ng.3119>

936 27 Cusanovich, D. A. *et al.* Multiplex single cell profiling of chromatin accessibility by
937 combinatorial cellular indexing. *Science* **348**, 910-914 (2015).
938 <https://doi.org/10.1126/science.aab1601>

939 28 Ding, J. *et al.* Systematic comparison of single-cell and single-nucleus RNA-sequencing
940 methods. *Nat Biotechnol* **38**, 737-746 (2020). <https://doi.org/10.1038/s41587-020-0465-8>

941 29 Hatori, M. N., Kim, S. C. & Abate, A. R. Particle-Templated Emulsification for
942 Microfluidics-Free Digital Biology. *Anal Chem* **90**, 9813-9820 (2018).
943 <https://doi.org/10.1021/acs.analchem.8b01759>

944 30 Delle, C. L. & Abate, A. R. Modular barcode beads for microfluidic single cell
945 genomics. *Sci Rep* **11**, 10857 (2021). <https://doi.org/10.1038/s41598-021-90255-x>

946 31 Murrow, L. M. *et al.* Changes in epithelial proportions and transcriptional state underlie
947 major premenopausal breast cancer risks. *bioRxiv*, 430611 (2020).
948 <https://doi.org/10.1101/430611>

949 32 Datlinger, P. *et al.* Pooled CRISPR screening with single-cell transcriptome readout. *Nat
950 Methods* **14**, 297-301 (2017). <https://doi.org/10.1038/nmeth.4177>

951 33 Dixit, A. *et al.* Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell
952 RNA Profiling of Pooled Genetic Screens. *Cell* **167**, 1853-1866 e1817 (2016).
953 <https://doi.org/10.1016/j.cell.2016.11.038>

954 34 Replogle, J. M. *et al.* Combinatorial single-cell CRISPR screens by direct guide RNA
955 capture and targeted sequencing. *Nat Biotechnol* **38**, 954-961 (2020).
956 <https://doi.org/10.1038/s41587-020-0470-y>

957 35 Jost, M. *et al.* Titrating gene expression using libraries of systematically attenuated
958 CRISPR guide RNAs. *Nat Biotechnol* **38**, 355-364 (2020).
959 <https://doi.org/10.1038/s41587-019-0387-5>

960 36 Lin, J. C. *et al.* TROP2 is epigenetically inactivated and modulates IGF-1R signalling in
961 lung adenocarcinoma. *EMBO Mol Med* **4**, 472-485 (2012).
962 <https://doi.org/10.1002/emmm.201200222>

963 37 Malumbres, M. CDK4/6 Inhibitors resTORe Therapeutic Sensitivity in HER(2)(+) Breast
964 Cancer. *Cancer Cell* **29**, 243-244 (2016). <https://doi.org/10.1016/j.ccr.2016.02.016>

965 38 Alexander, T. B. *et al.* The genetic basis and cell of origin of mixed phenotype acute
966 leukaemia. *Nature* **562**, 373-379 (2018). <https://doi.org/10.1038/s41586-018-0436-0>

967 39 Kotrova, M. *et al.* Distinct bilineal leukemia immunophenotypes are not genetically
968 determined. *Blood* **128**, 2263-2266 (2016). <https://doi.org/10.1182/blood-2016-07-725861>

970 40 Stoeckius, M. *et al.* Simultaneous epitope and transcriptome measurement in single cells.
971 *Nat Methods* **14**, 865-868 (2017). <https://doi.org/10.1038/nmeth.4380>

972 41 Barna, M. *et al.* Suppression of Myc oncogenic activity by ribosomal protein
973 haploinsufficiency. *Nature* **456**, 971-975 (2008). <https://doi.org/10.1038/nature07449>

974 42 Kang, J. *et al.* Ribosomal proteins and human diseases: molecular mechanisms and
975 targeted therapy. *Signal Transduct Target Ther* **6**, 323 (2021).
976 <https://doi.org/10.1038/s41392-021-00728-8>

977 43 Kampen, K. R., Sulima, S. O., Vereecke, S. & De Keersmaecker, K. Hallmarks of
978 ribosomopathies. *Nucleic Acids Res* **48**, 1013-1028 (2020).
979 <https://doi.org/10.1093/nar/gkz637>

980 44 Fancello, L., Kampen, K. R., Hofman, I. J., Verbeeck, J. & De Keersmaecker, K. The
981 ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer
982 types. *Oncotarget* **8**, 14462-14478 (2017). <https://doi.org/10.18632/oncotarget.14895>

983 45 Rao, S. *et al.* Inactivation of ribosomal protein L22 promotes transformation by induction
984 of the stemness factor, Lin28B. *Blood* **120**, 3764-3773 (2012).
985 <https://doi.org/10.1182/blood-2012-03-415349>

986 46 De Keersmaecker, K. *et al.* Exome sequencing identifies mutation in CNOT3 and
987 ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. *Nat Genet* **45**,
988 186-190 (2013). <https://doi.org/10.1038/ng.2508>

989 47 Chen, C. *et al.* Oxidative phosphorylation enhances the leukemogenic capacity and
990 resistance to chemotherapy of B cell acute lymphoblastic leukemia. *Sci Adv* **7** (2021).
991 <https://doi.org/10.1126/sciadv.abd6280>

992 48 Nelson, M. A. *et al.* Intrinsic OXPHOS limitations underlie cellular bioenergetics in
993 leukemia. *Elife* **10** (2021). <https://doi.org/10.7554/eLife.63104>

994 49 Lobrich, M. & Jeggo, P. A. The impact of a negligent G2/M checkpoint on genomic
995 instability and cancer induction. *Nat Rev Cancer* **7**, 861-869 (2007).
996 <https://doi.org/10.1038/nrc2248>

997 50 Didier, C. *et al.* G2/M checkpoint stringency is a key parameter in the sensitivity of AML
998 cells to genotoxic stress. *Oncogene* **27**, 3811-3820 (2008).
999 <https://doi.org/10.1038/sj.onc.1211041>

1000 51 Demaree, B. *et al.* Joint profiling of DNA and proteins in single cells to dissect genotype-
1001 phenotype associations in leukemia. *Nat Commun* **12**, 1583 (2021).
1002 <https://doi.org/10.1038/s41467-021-21810-3>

1003 52 Shahi, P., Kim, S. C., Haliburton, J. R., Gartner, Z. J. & Abate, A. R. Abseq: Ultrahigh-
1004 throughput single cell protein profiling with droplet microfluidic barcoding. *Sci Rep* **7**,
1005 44447 (2017). <https://doi.org/10.1038/srep44447>

1006 53 Gaiti, F. *et al.* Epigenetic evolution and lineage histories of chronic lymphocytic
1007 leukaemia. *Nature* **569**, 576-580 (2019). <https://doi.org/10.1038/s41586-019-1198-z>

1008 54 Ma, S. *et al.* Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and
1009 Chromatin. *Cell* **183**, 1103-1116 e1120 (2020). <https://doi.org/10.1016/j.cell.2020.09.056>

1010 55 Hao, Y. *et al.* Dictionary learning for integrative, multimodal, and scalable single-cell
1011 analysis. *bioRxiv*, 2022.2002.2024.481684 (2022).
1012 <https://doi.org/10.1101/2022.02.24.481684>

1013 56 Ghazanfar, S., Guibentif, C. & Marioni, J. C. StabMap: Mosaic single cell data
1014 integration using non-overlapping features. *bioRxiv*, 2022.2002.2024.481823 (2022).
1015 <https://doi.org/10.1101/2022.02.24.481823>

1016 57 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587
1017 e3529 (2021). <https://doi.org/10.1016/j.cell.2021.04.048>

1018 58 Squair, J. W. *et al.* Confronting false discoveries in single-cell differential expression.
1019 *Nat Commun* **12**, 5692 (2021). <https://doi.org/10.1038/s41467-021-25960-2>

1020 59 Hughes, T. K. *et al.* Second-Strand Synthesis-Based Massively Parallel scRNA-Seq
1021 Reveals Cellular States and Molecular Features of Human Inflammatory Skin
1022 Pathologies. *Immunity* **53**, 878-894 e877 (2020).
1023 <https://doi.org/10.1016/j.jimmuni.2020.09.015>

1024 60 De Rop, F. V. *et al.* Hydrop enables droplet-based single-cell ATAC-seq and single-cell
1025 RNA-seq using dissolvable hydrogel beads. *Elife* **11** (2022).
1026 <https://doi.org/10.7554/eLife.73971>

1027 61 Mejstrikova, E. *et al.* Prognosis of children with mixed phenotype acute leukemia treated
1028 on the basis of consistent immunophenotypic criteria. *Haematologica* **95**, 928-935
1029 (2010). <https://doi.org/10.3324/haematol.2009.014506>

1030 62 Takahashi, K. *et al.* Integrative genomic analysis of adult mixed phenotype acute
1031 leukemia delineates lineage associated molecular subtypes. *Nat Commun* **9**, 2670 (2018).
1032 <https://doi.org/10.1038/s41467-018-04924-z>

1033 63 Granja, J. M. *et al.* Single-cell multiomic analysis identifies regulatory programs in
1034 mixed-phenotype acute leukemia. *Nat Biotechnol* **37**, 1458-1465 (2019).
1035 <https://doi.org/10.1038/s41587-019-0332-7>

1036 64 Ebright, R. Y. *et al.* Deregulation of ribosomal protein expression and translation
1037 promotes breast cancer metastasis. *Science* **367**, 1468-1473 (2020).
1038 <https://doi.org/10.1126/science.aay0939>

1039 65 Khot, A. *et al.* First-in-Human RNA Polymerase I Transcription Inhibitor CX-5461 in
1040 Patients with Advanced Hematologic Cancers: Results of a Phase I Dose-Escalation
1041 Study. *Cancer Discov* **9**, 1036-1049 (2019). <https://doi.org/10.1158/2159-8290.CD-18-1455>

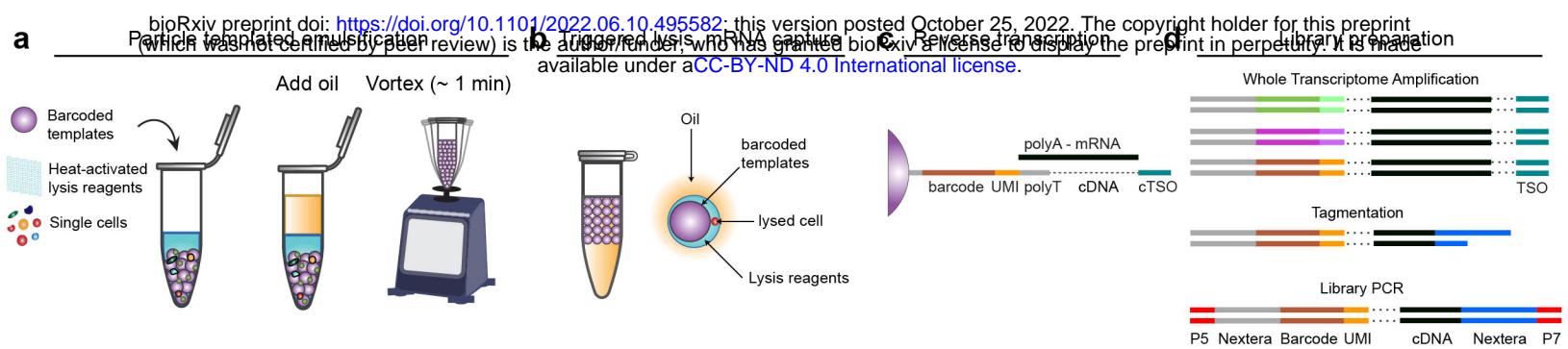
1043 66 DeJournette, C. J. *et al.* Creating biocompatible oil-water interfaces without synthesis:
1044 direct interactions between primary amines and carboxylated perfluorocarbon surfactants.
1045 *Analytical Chemistry* **85**, 10556-10564 (2013). <https://doi.org/10.1021/ac4026048>

1046 67 Labarge, M. A., Garbe, J. C. & Stampfer, M. R. Processing of human reduction
1047 mammoplasty and mastectomy tissues for cell culture. *J Vis Exp* (2013).
1048 <https://doi.org/10.3791/50011>

1049 68 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast
1050 and bias-aware quantification of transcript expression. *Nat Methods* **14**, 417-419 (2017).
1051 <https://doi.org/10.1038/nmeth.4197>

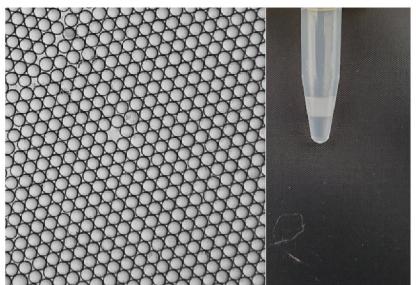
1052 69 Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently estimates
1053 accurate gene abundances from dscRNA-seq data. *Genome Biol* **20**, 65 (2019).
1054 <https://doi.org/10.1186/s13059-019-1670-y>

1055 70 Lun, A. T. L. *et al.* EmptyDrops: distinguishing cells from empty droplets in droplet-
1056 based single-cell RNA sequencing data. *Genome Biol* **20**, 63 (2019).
1057 <https://doi.org/10.1186/s13059-019-1662-y>
1058

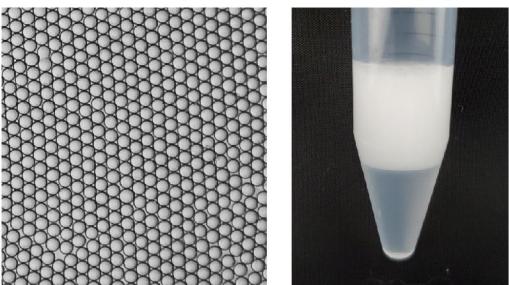


e Cell Number Scalability

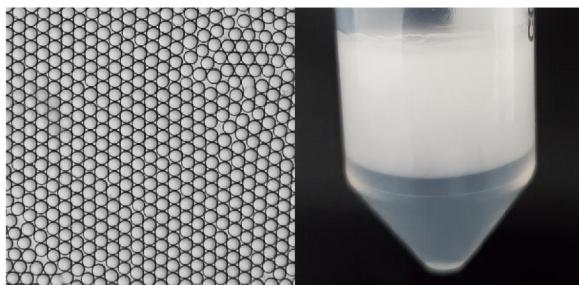
500ul tube (35ul PIPs ~4k cell input)



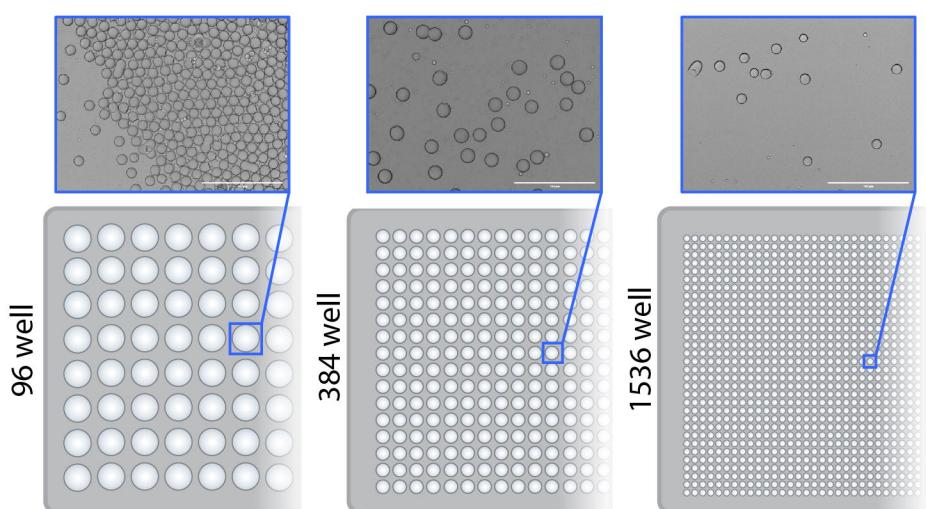
15 mL Falcon (2 mL PIPs ~250k cell input)



50 mL Falcon (10mL PIPs ~1M cells cell input)



f Sample Number Scalability



g scRNA-seq Scalability

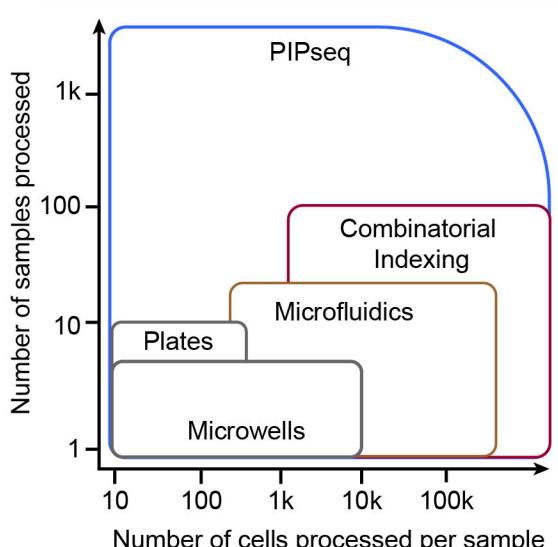


Figure 1

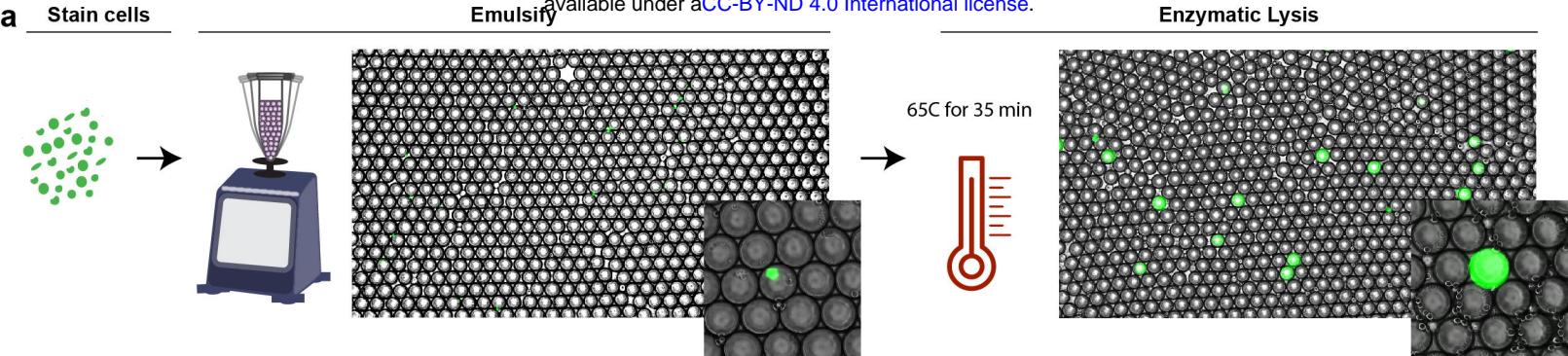
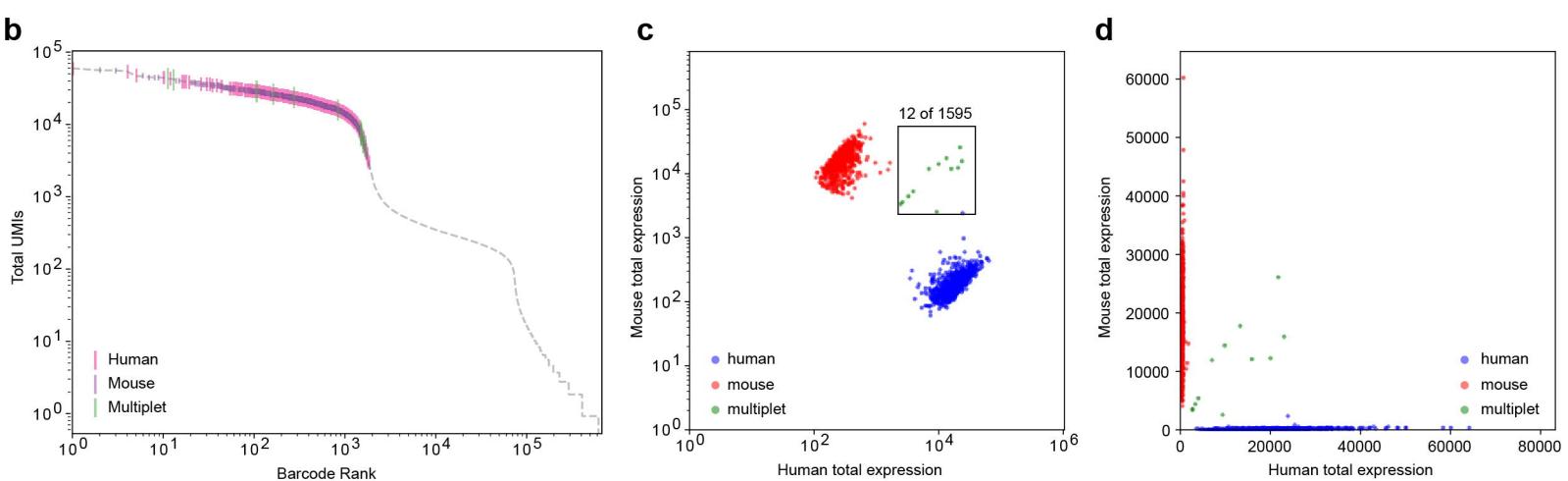


Figure 2

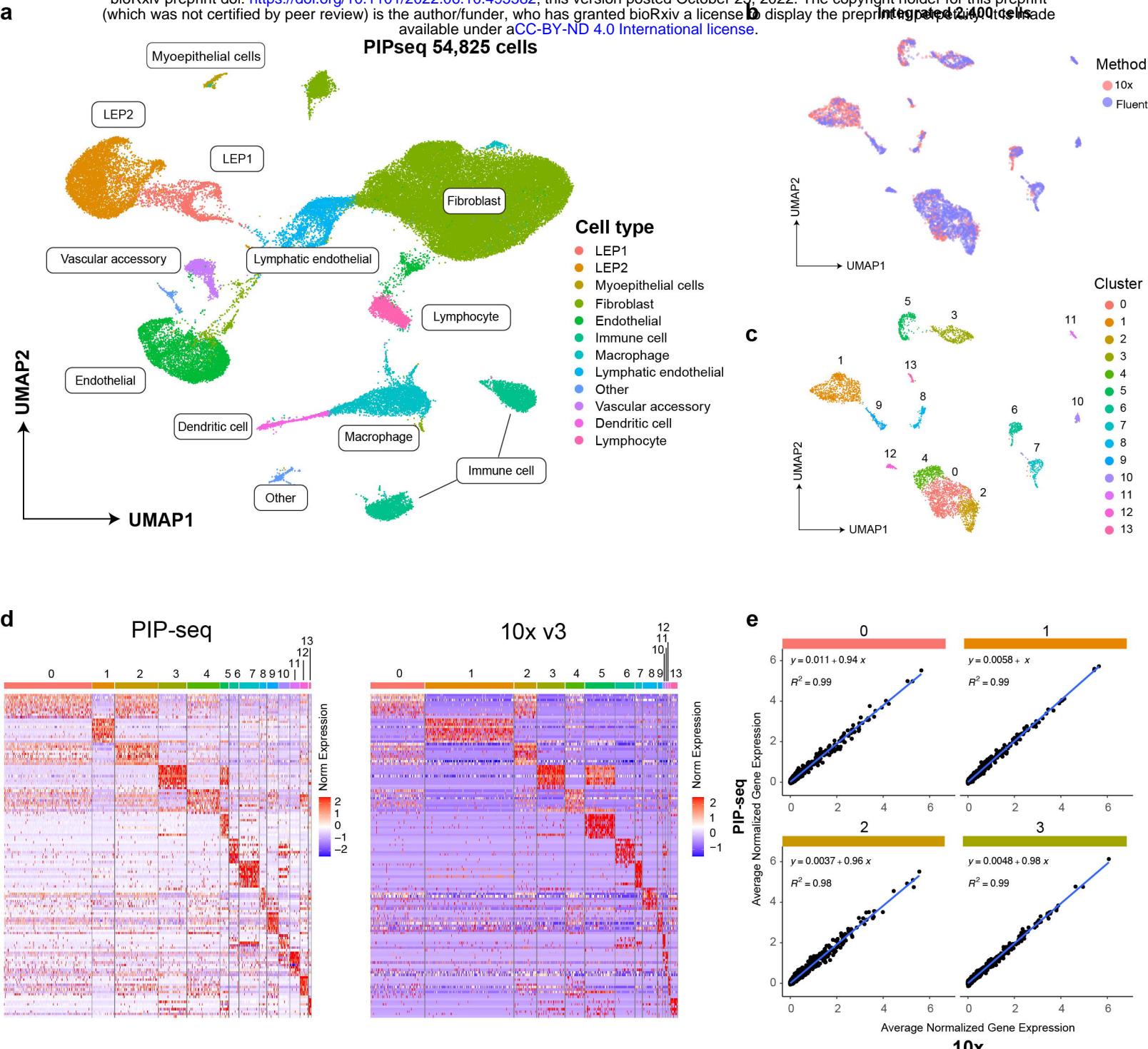


Figure 3

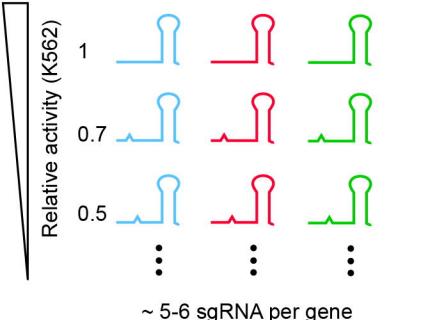
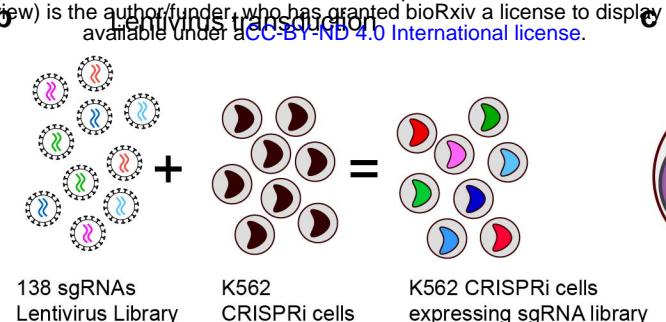
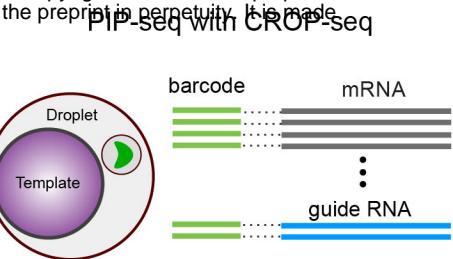
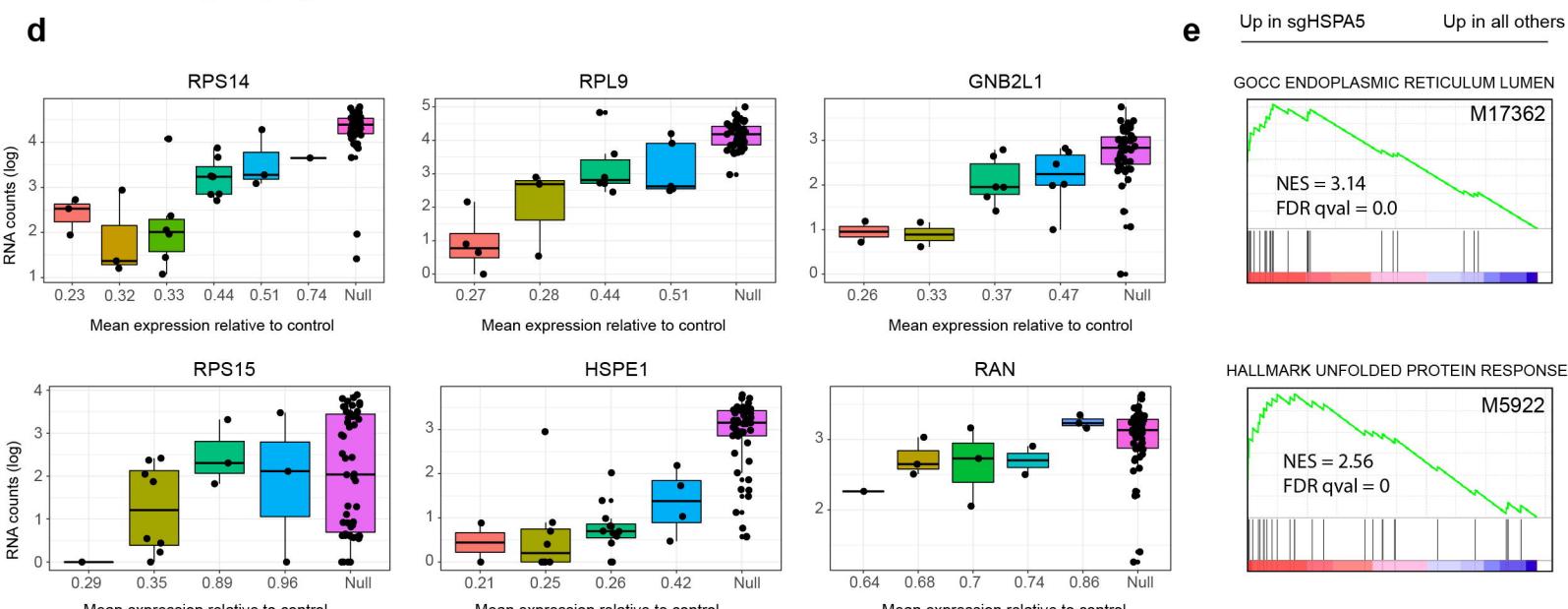


Figure 4

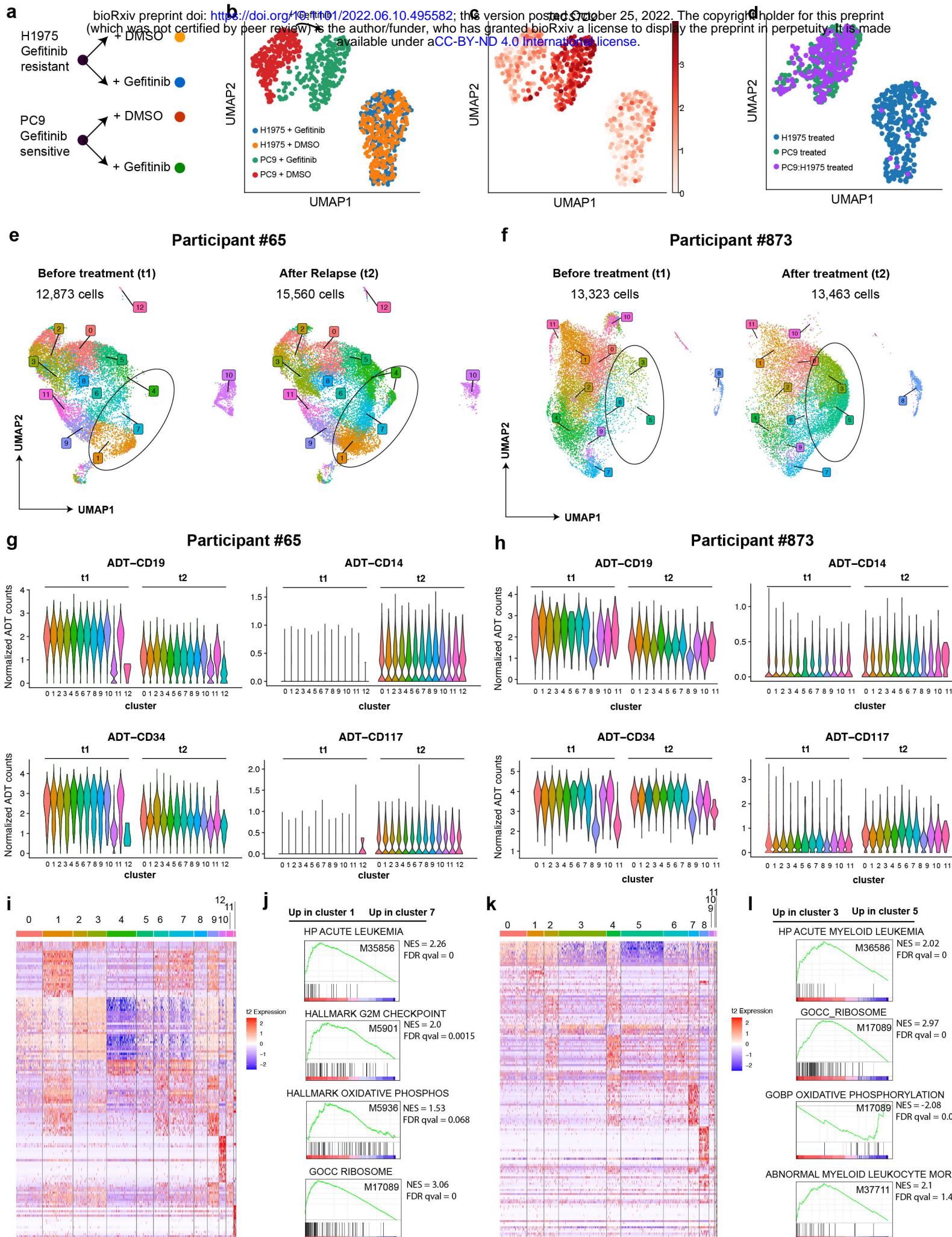
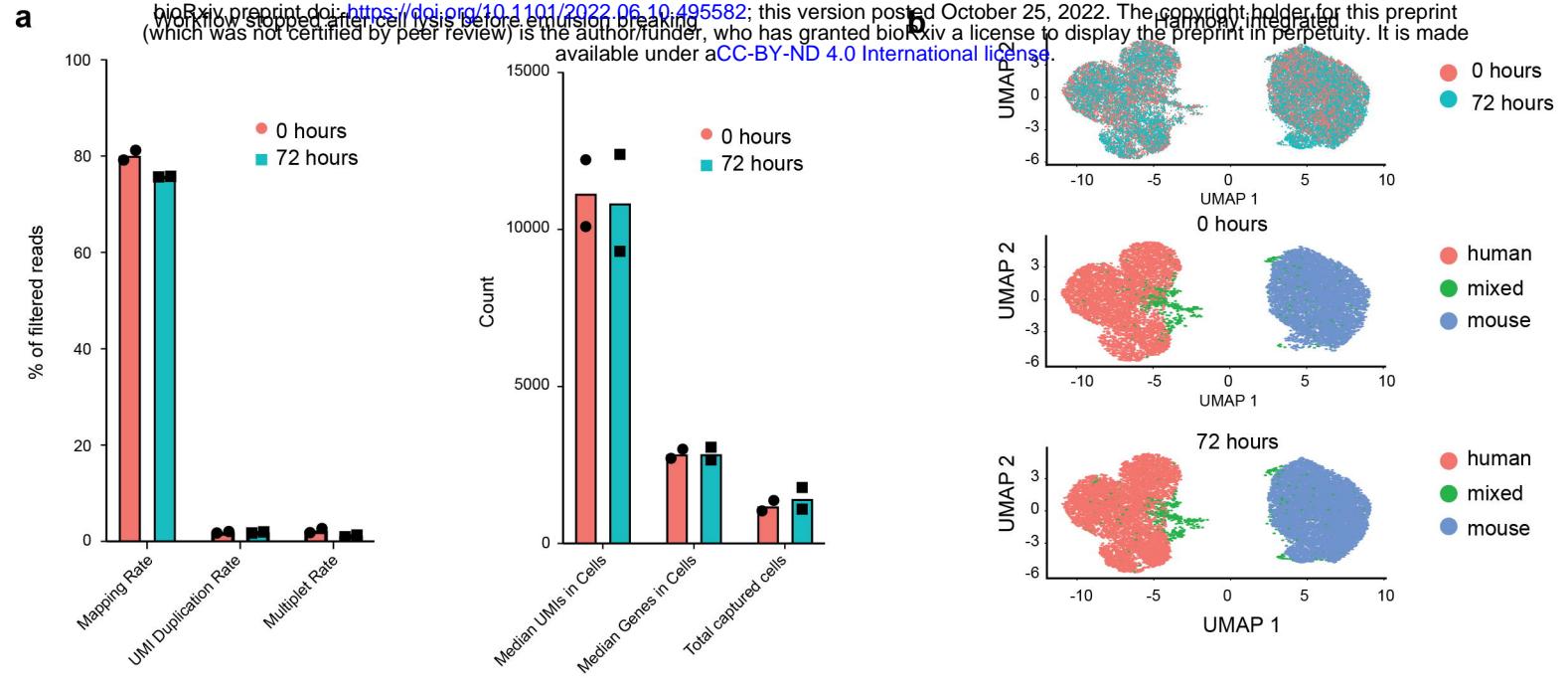
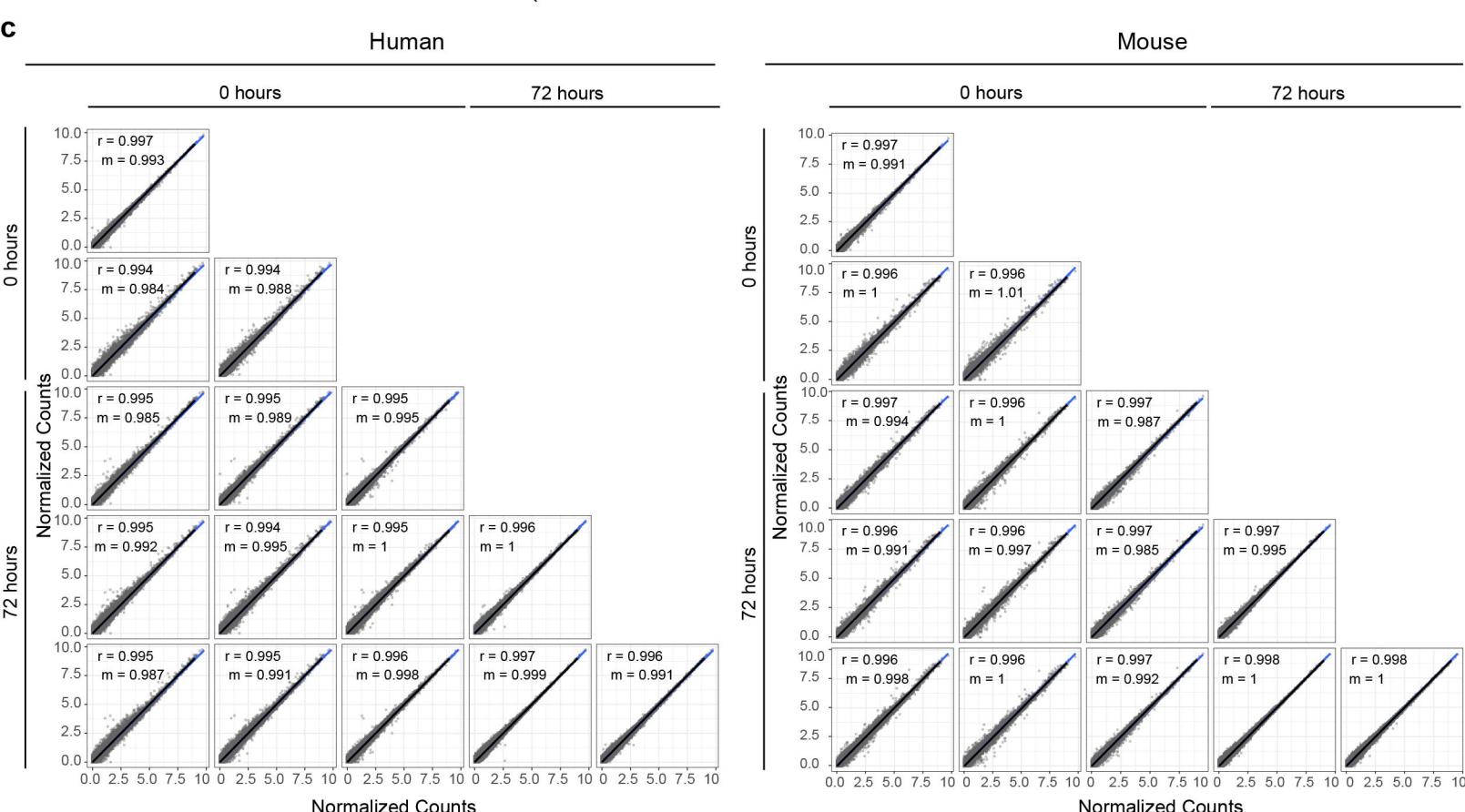
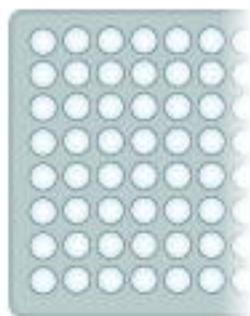
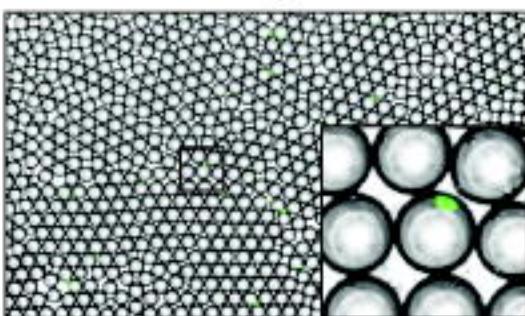
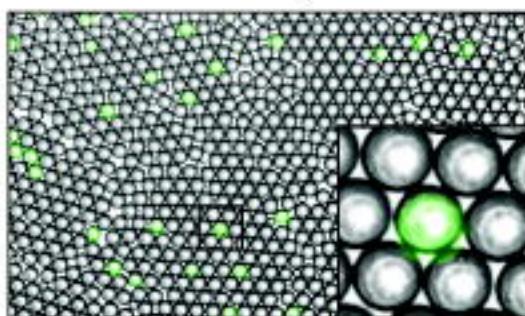


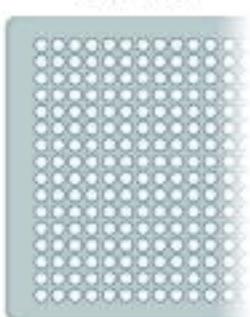
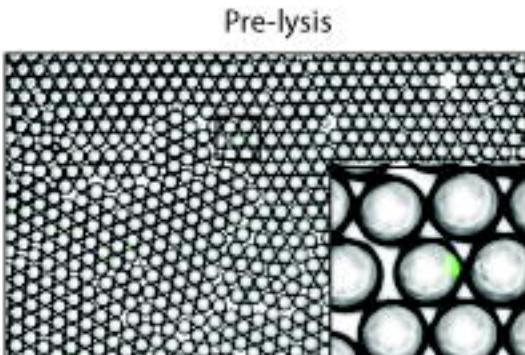
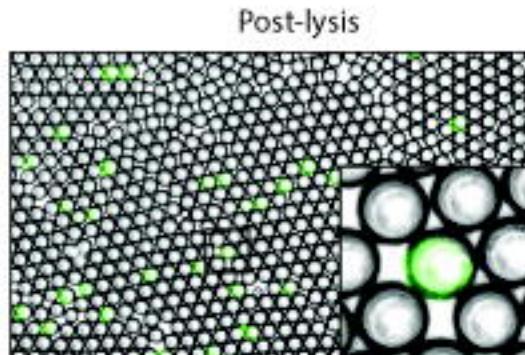
Figure 5



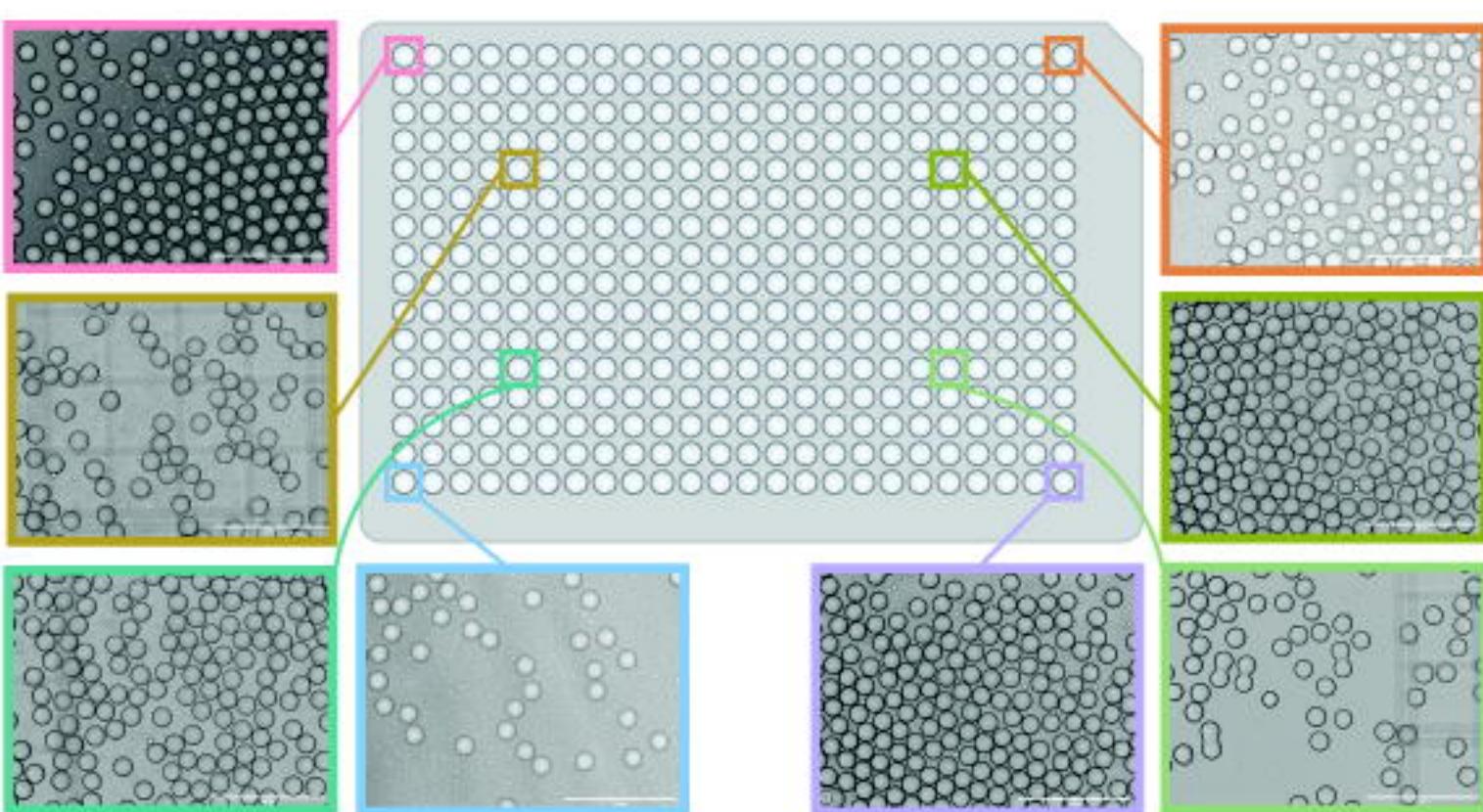
a

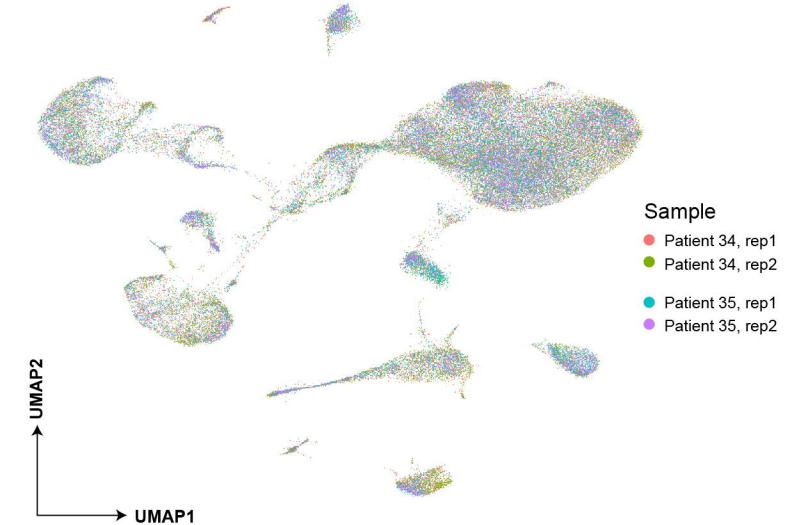
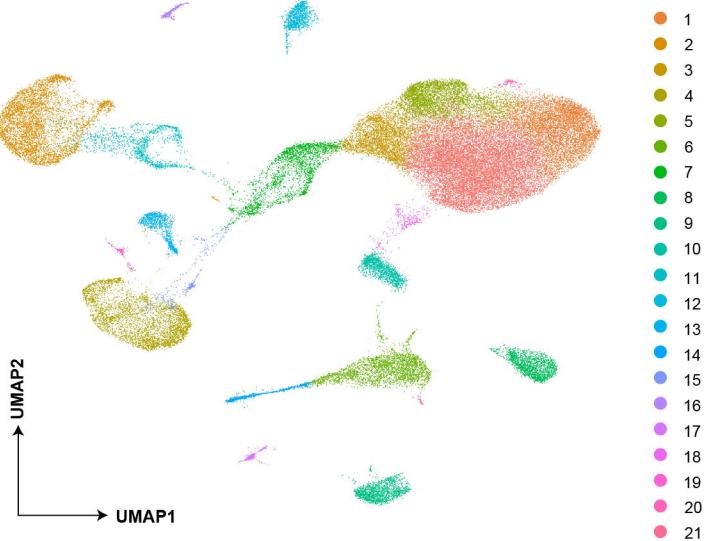
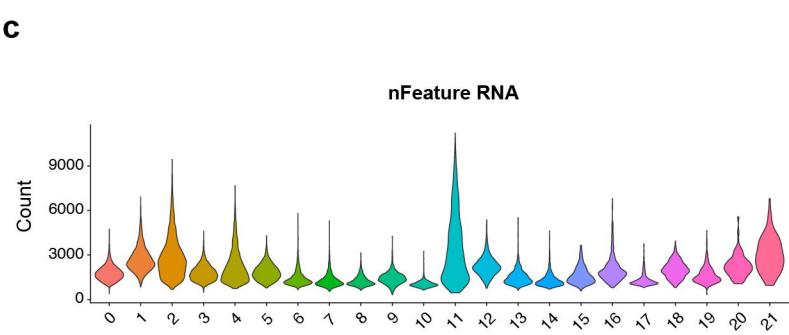


b



c

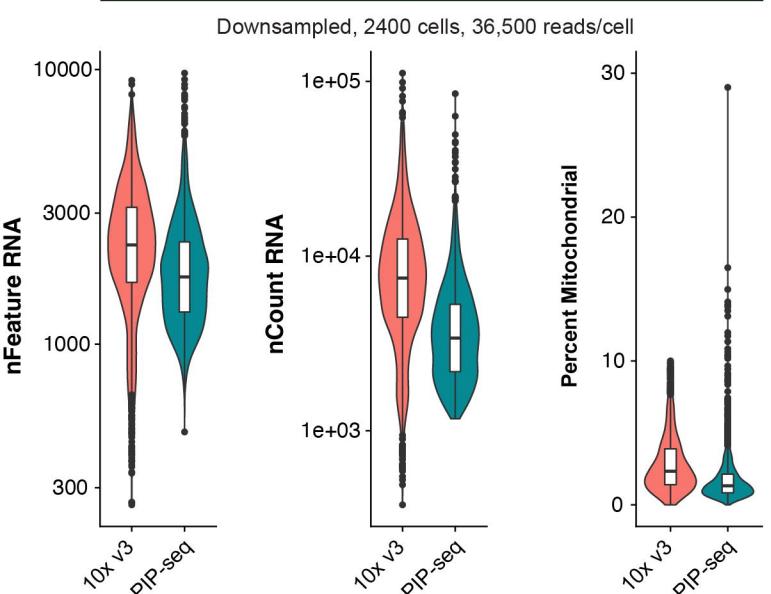
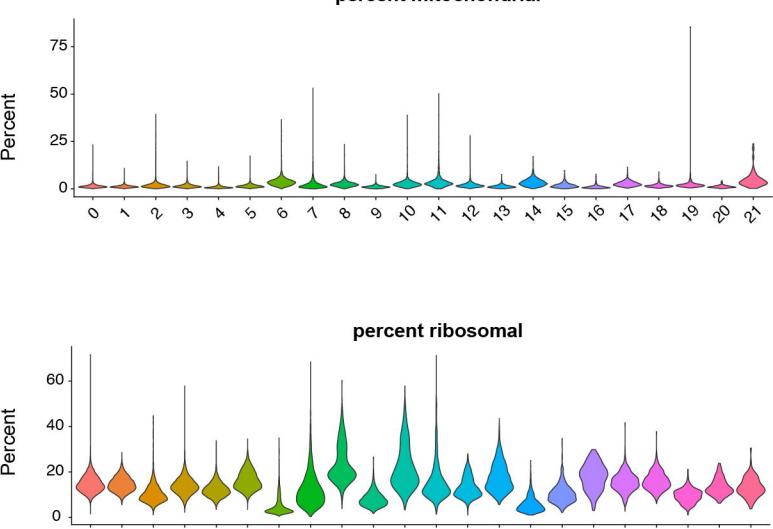




d

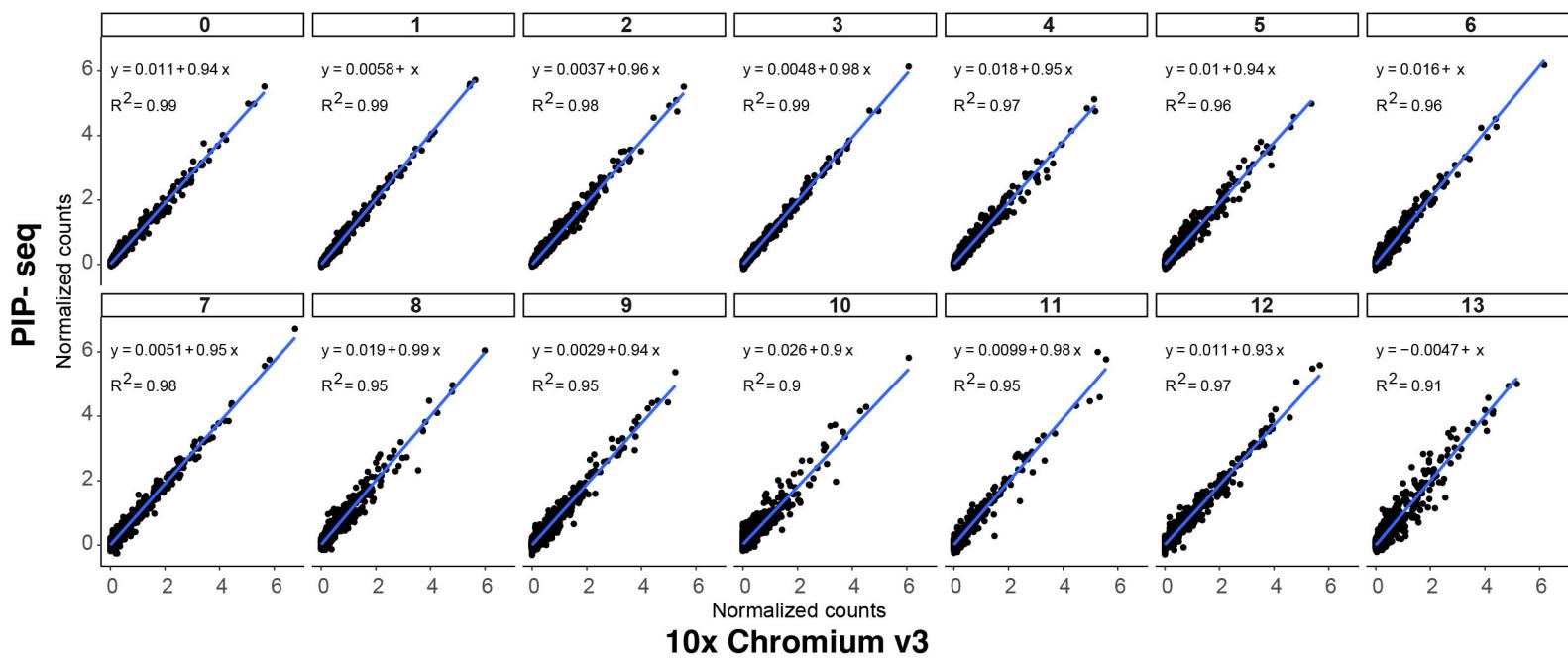
Median

	nFeature RNA	nCount RNA	% Mito
10x	2298	7491	2.34
PIPseq	1757	3394	1.32

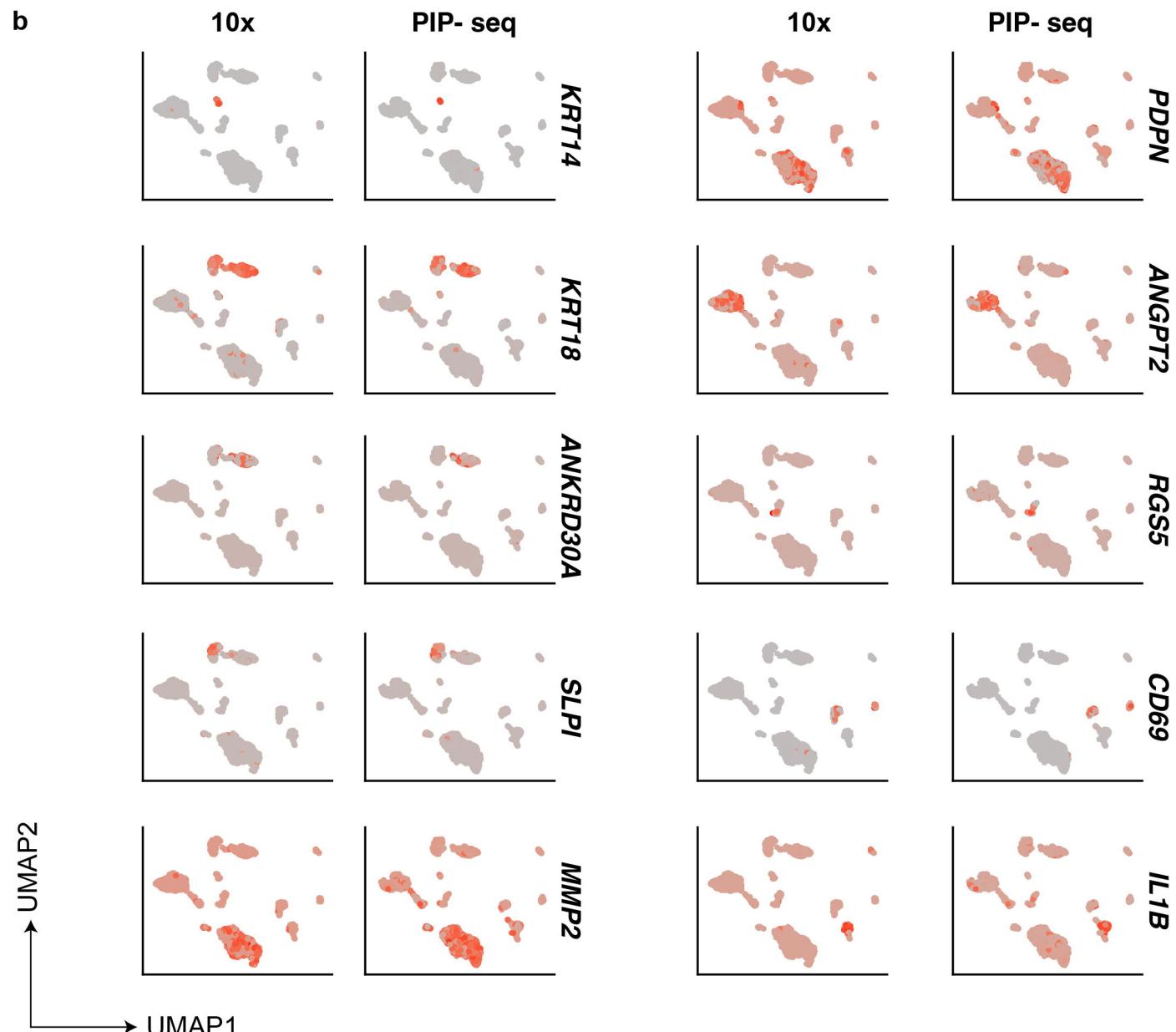


Extended data Figure 3

a

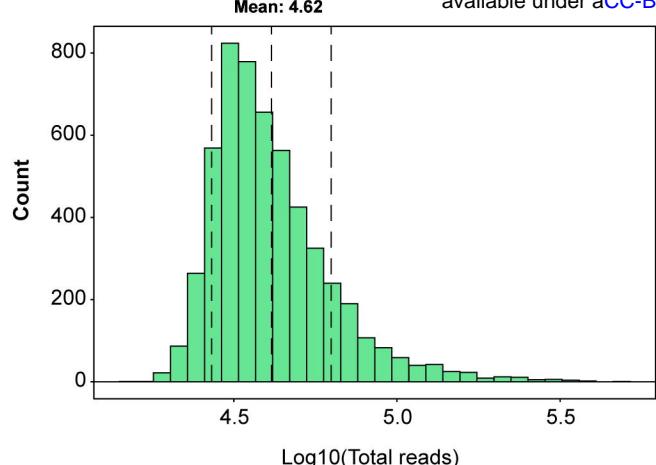


b

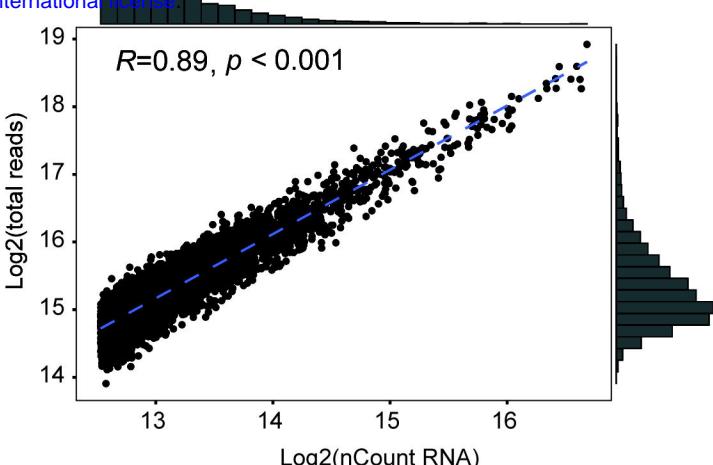


Extended data Figure 4

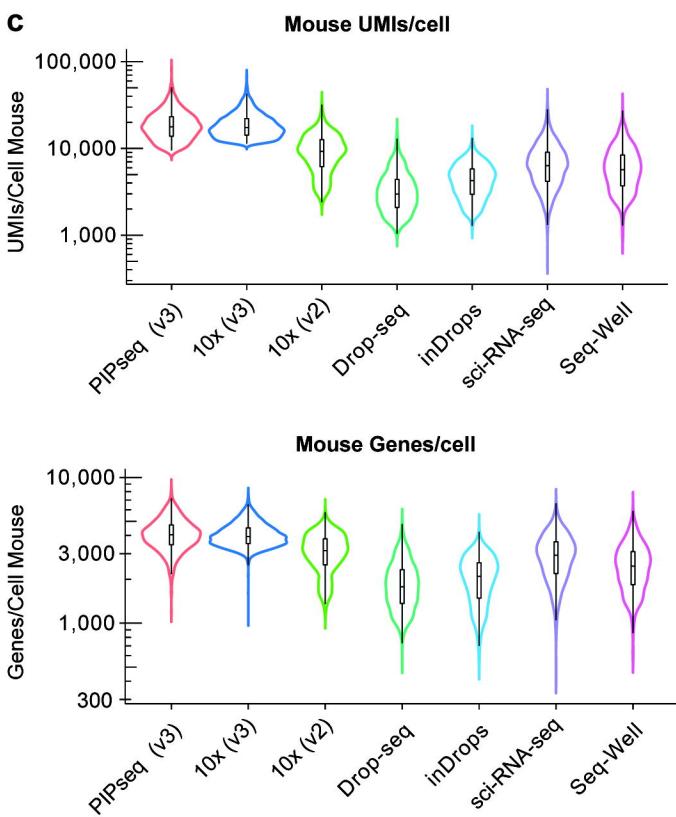
a



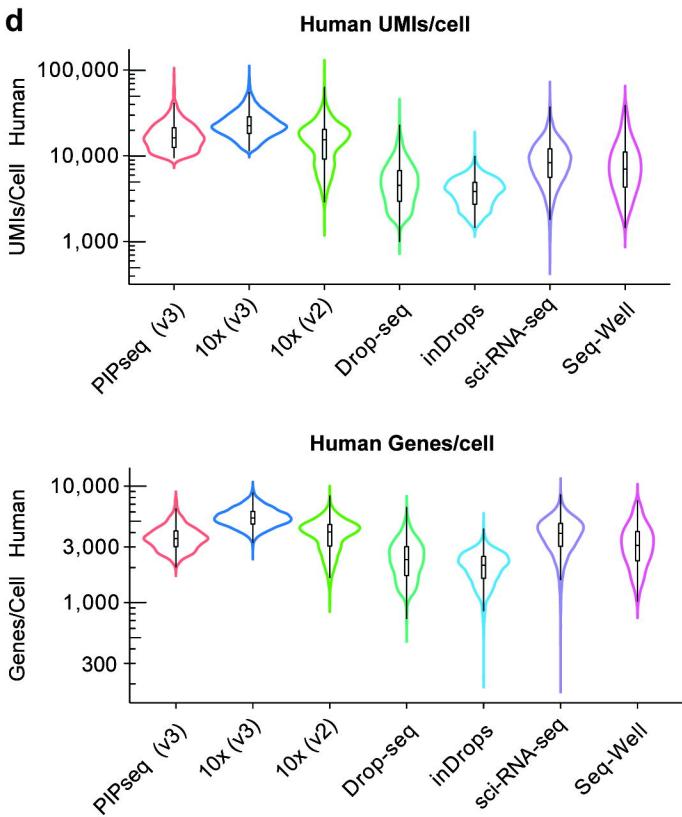
b



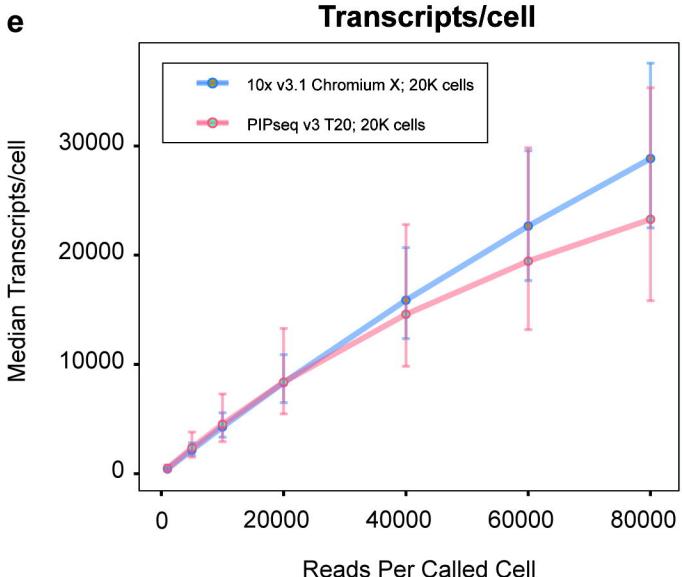
c



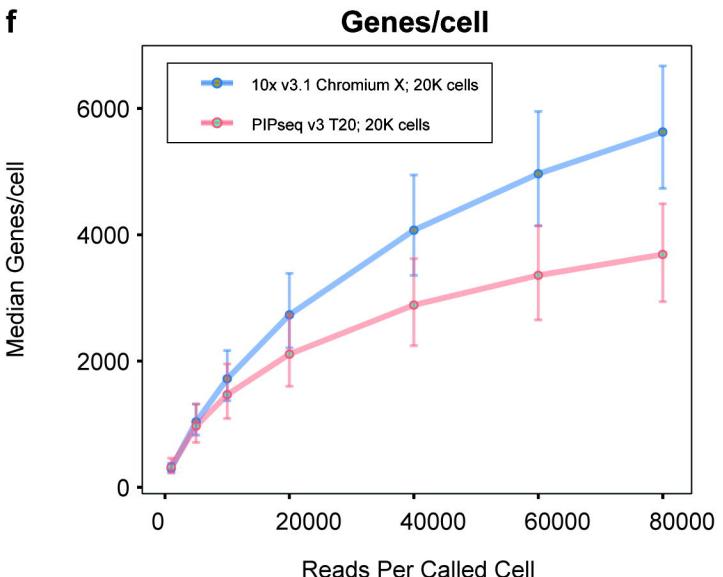
d



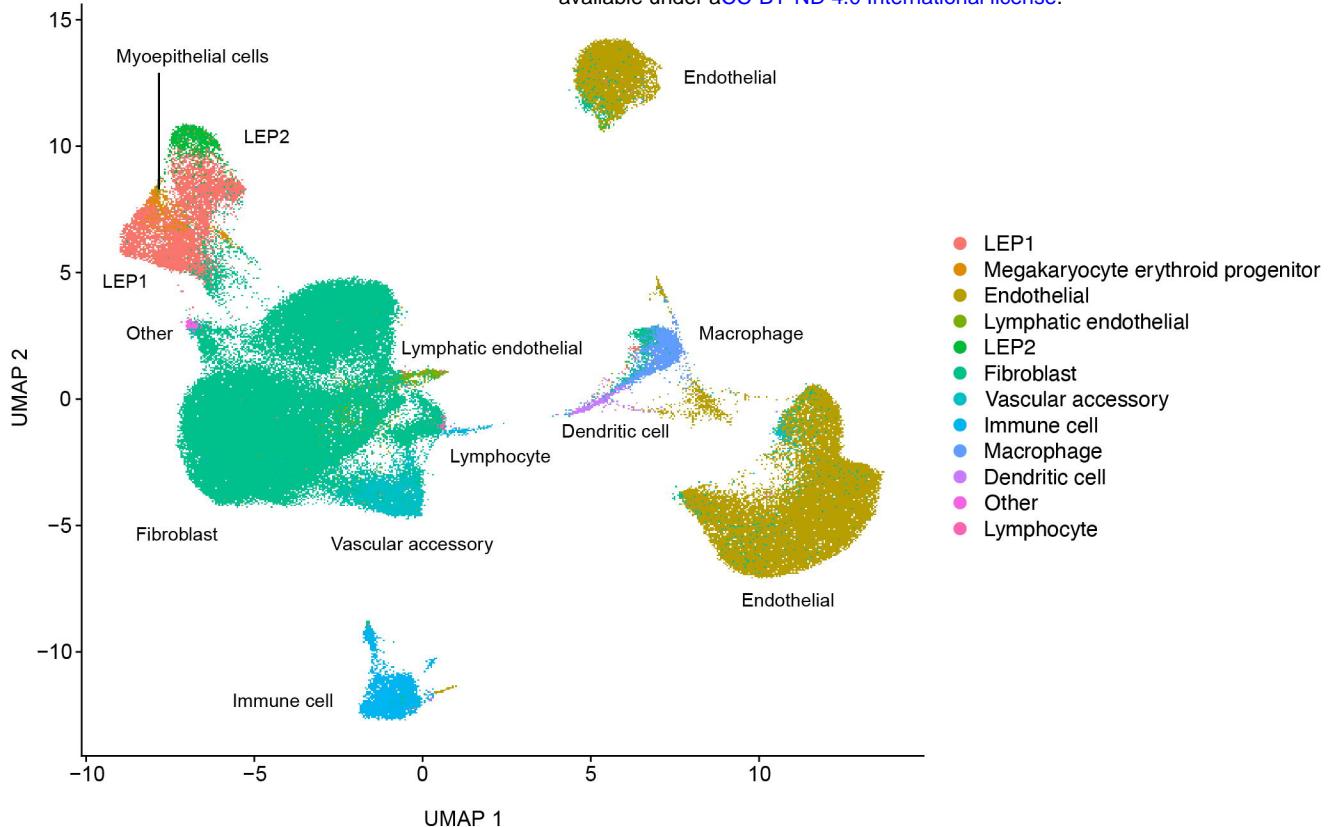
e



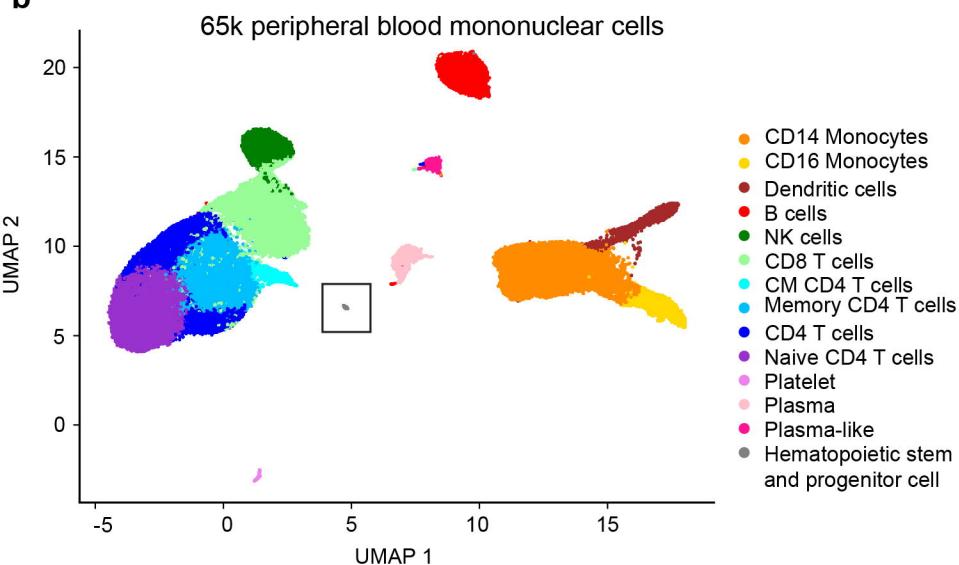
f



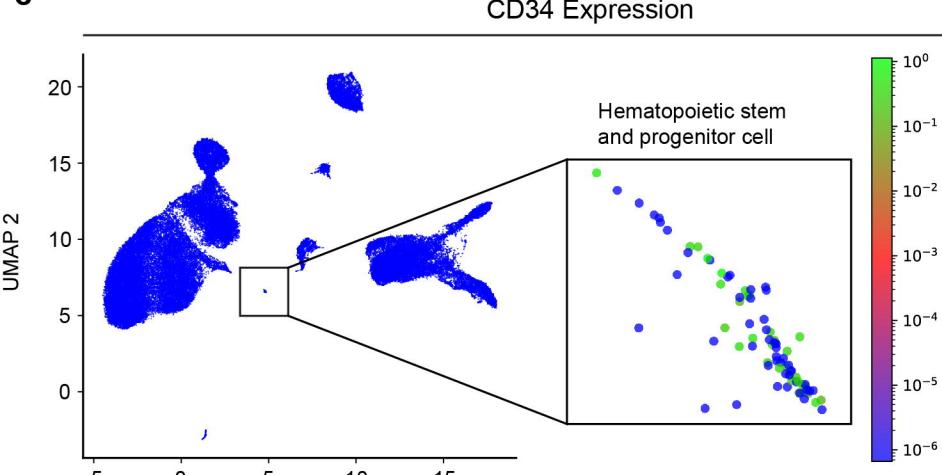
a



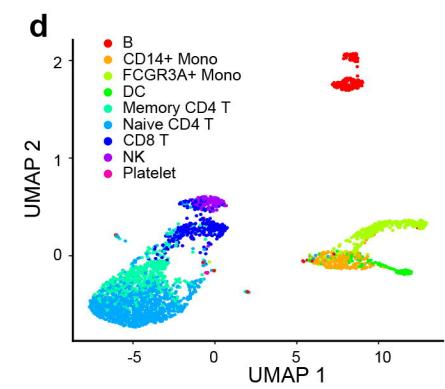
b



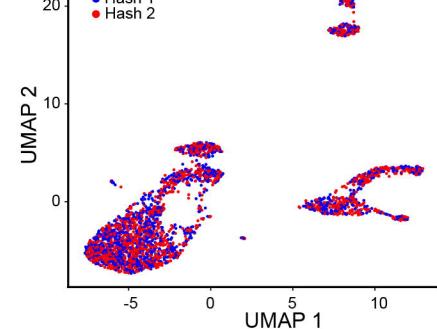
c



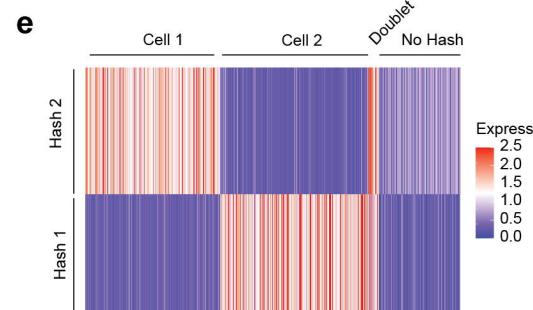
d



Max Hash

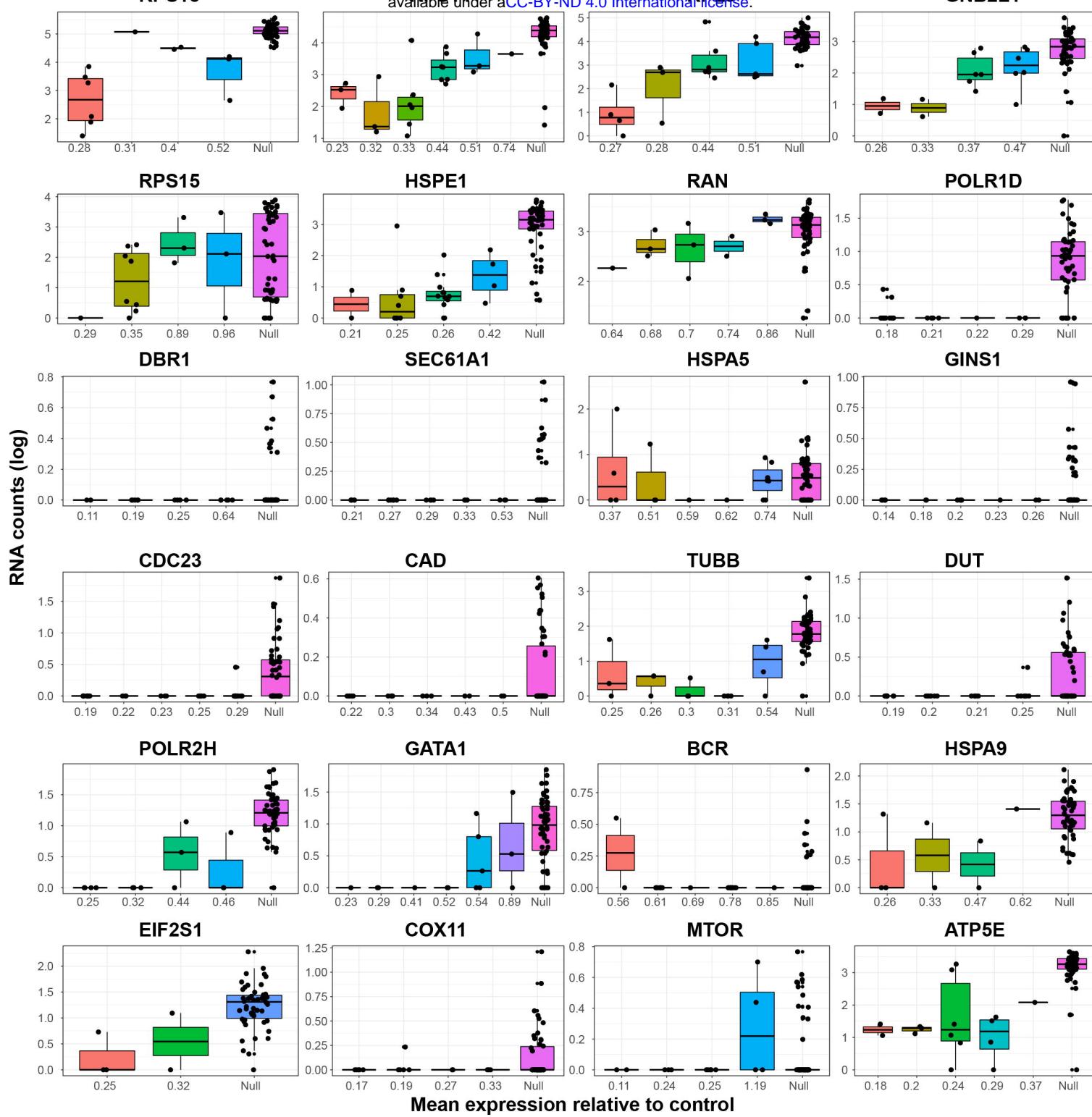


e

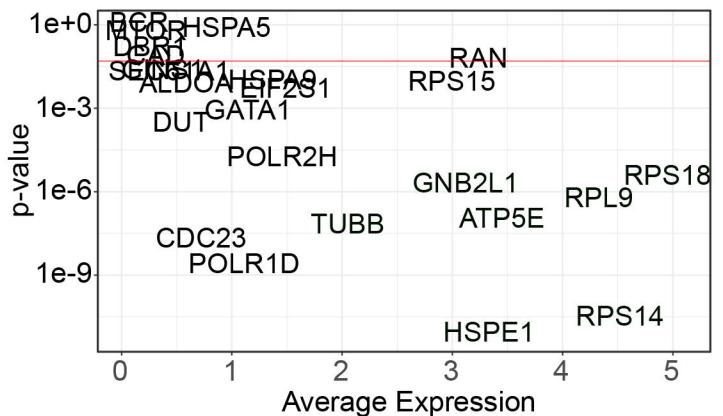


Extended data Figure 6

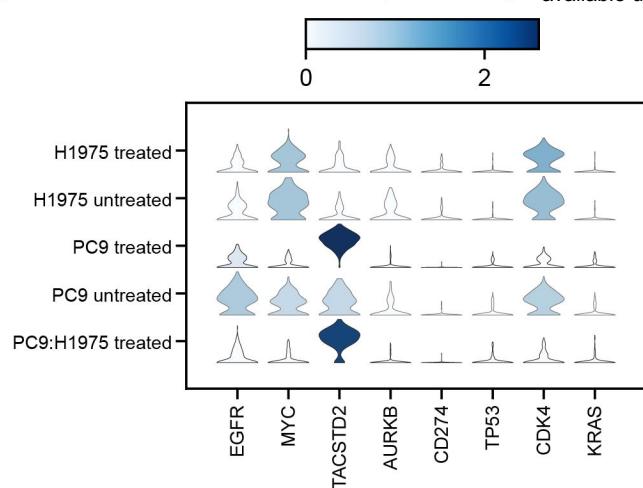
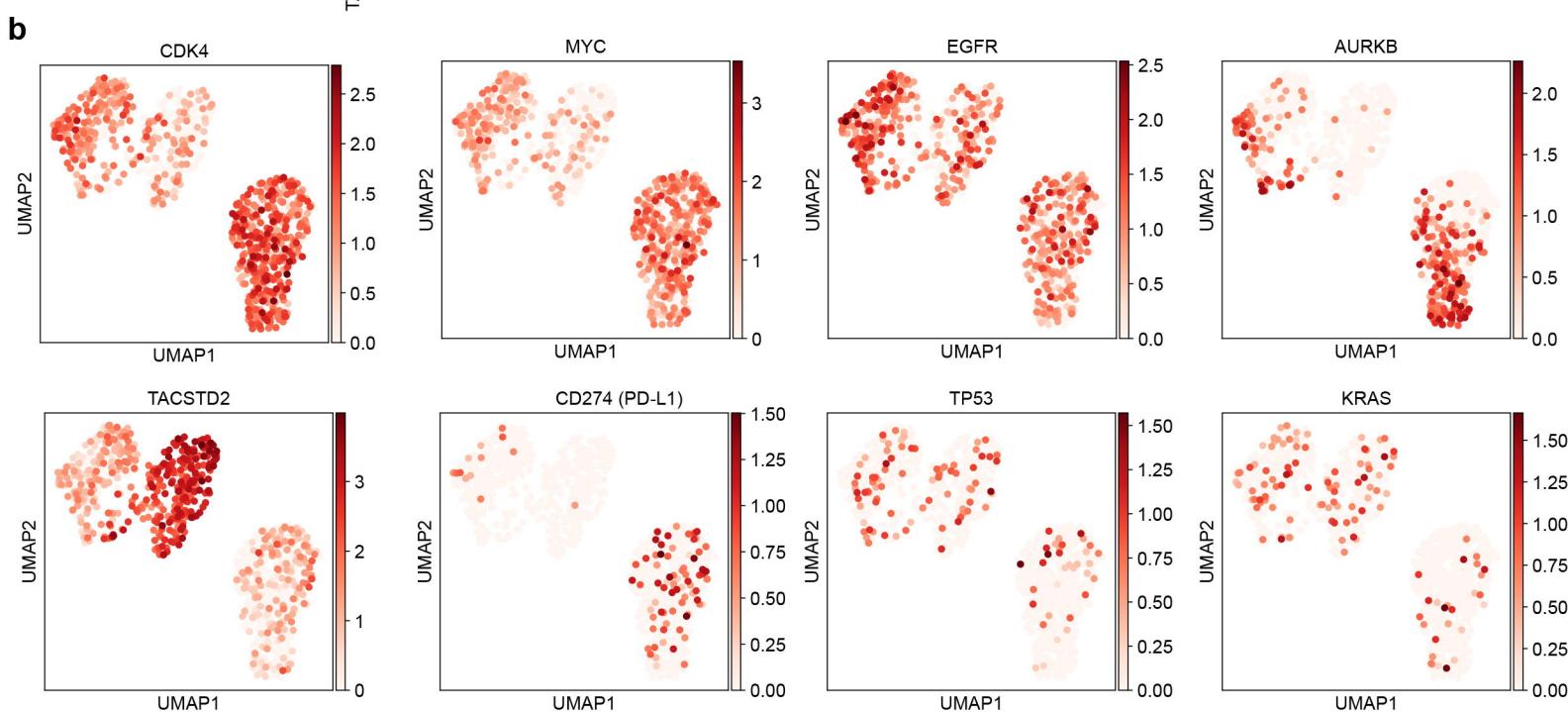
a

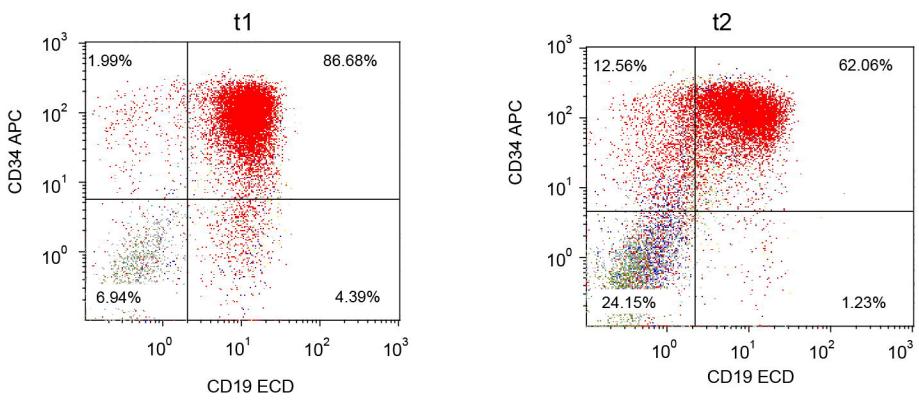


b

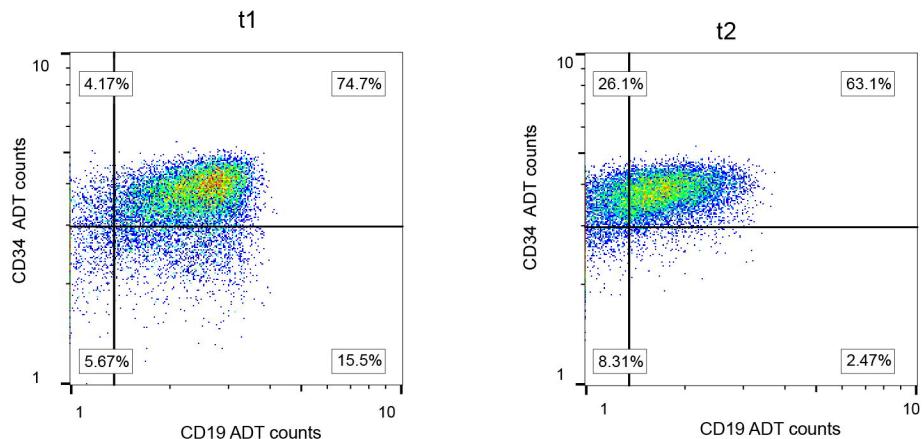


Extended data Figure 7

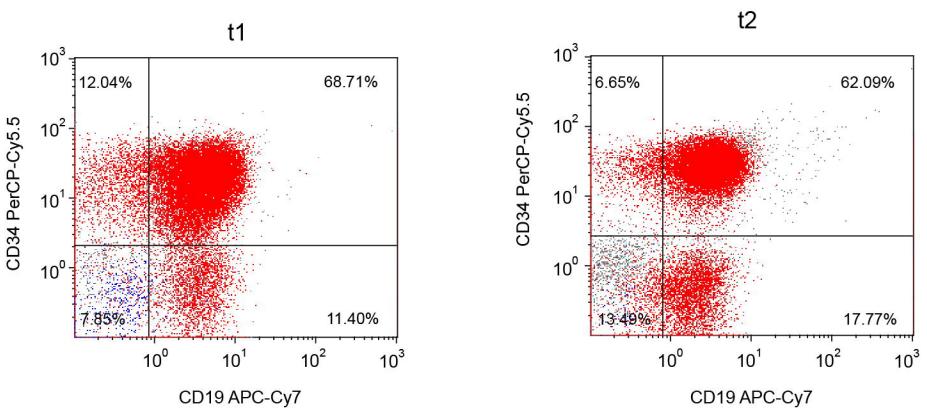




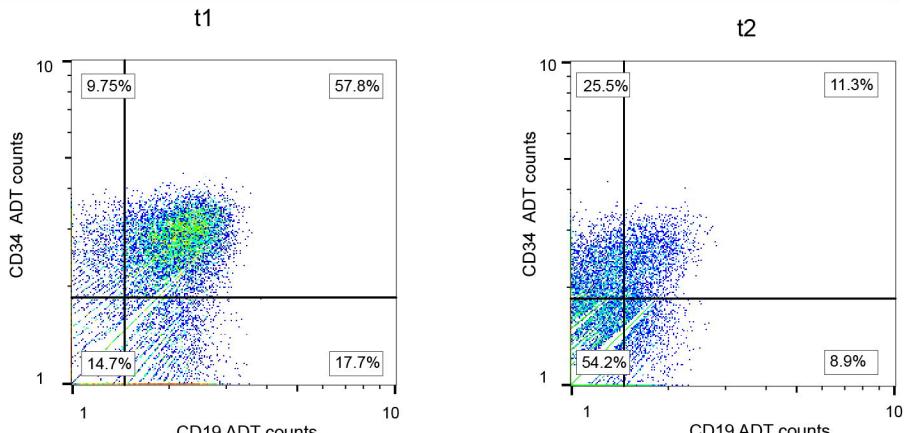
Patient 873 ADT data



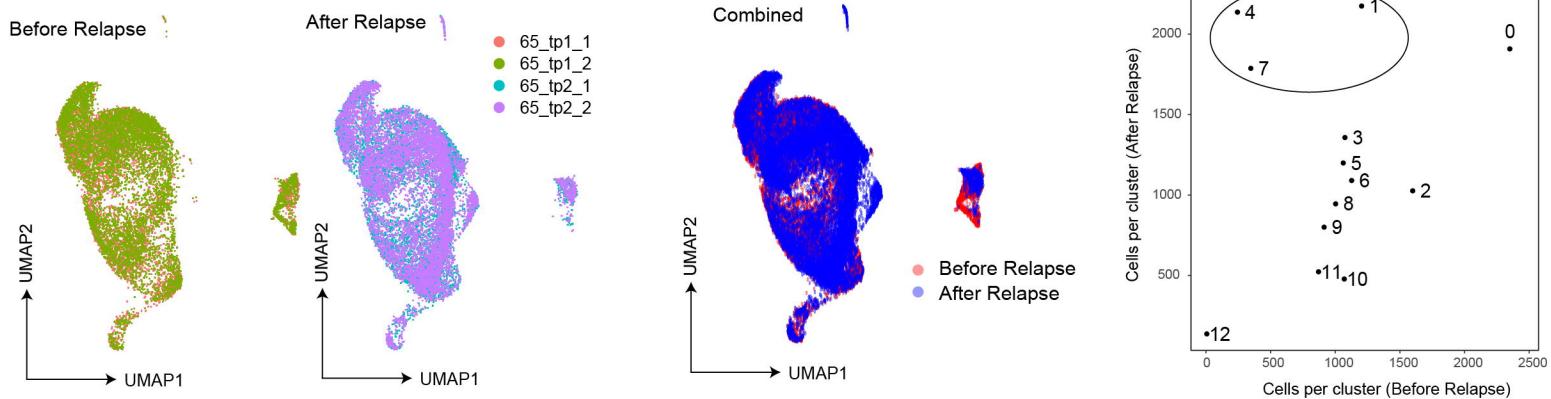
Patient 65 Clinical Flow Data



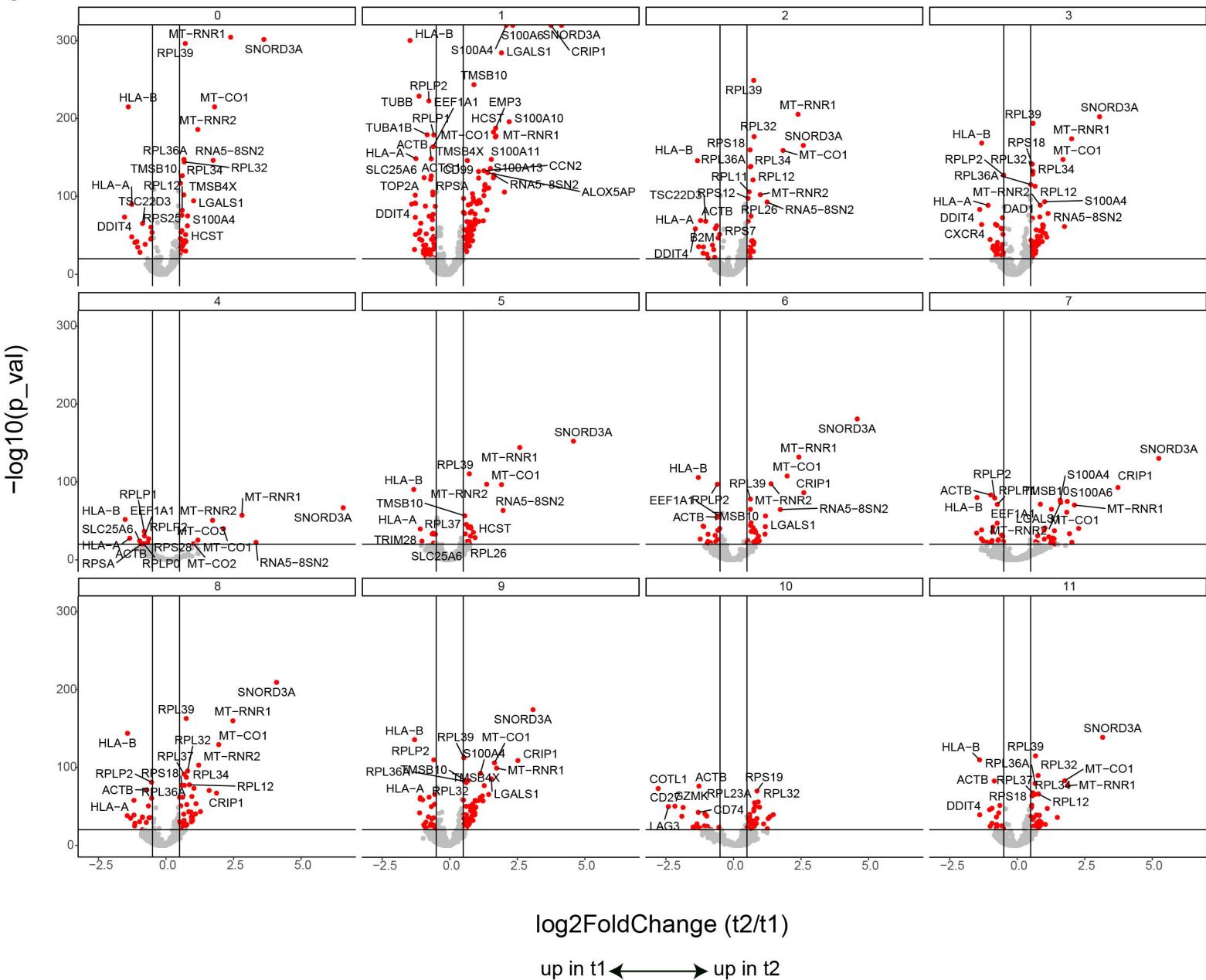
Patient 65 ADT data



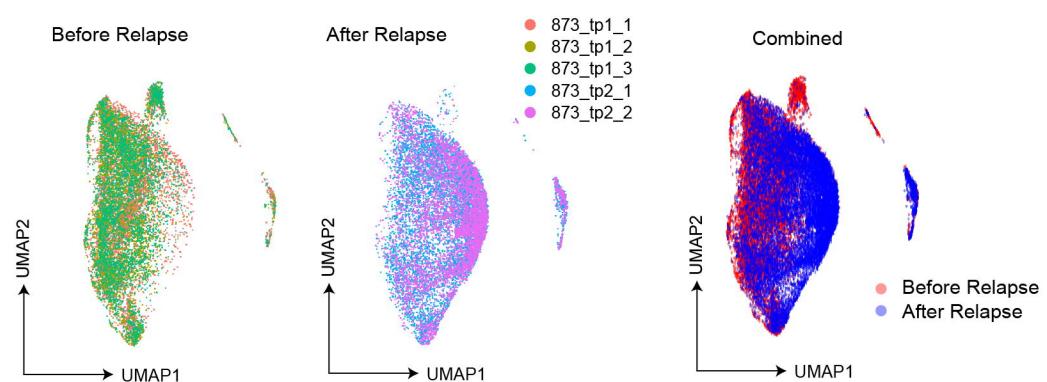
Data integration



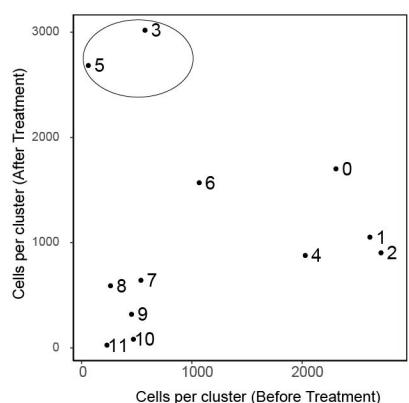
c



Data integration



b



c

