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Abstract

With the increasing availability of neuroimaging data from multiple modalities—each providing a

different lens through which to study brain structure or function—new techniques for comparing,

integrating, and interpreting information within and across modalities have emerged. Recent de-

velopments include hypothesis tests of associations between neuroimaging modalities, which can

be used to determine the statistical significance of intermodal associations either throughout the

entire brain or within anatomical subregions or functional networks. While these methods pro-

vide a crucial foundation for inference on intermodal relationships, they cannot be used to answer

questions about where in the brain these associations are most pronounced. In this paper, we in-

troduce a new method, called CLEAN-R, that can be used both to test intermodal correspondence

throughout the brain and also to localize this correspondence. Our method involves first adjusting

for the underlying spatial autocorrelation structure within each modality before aggregating infor-

mation within small clusters to construct a map of enhanced test statistics. Using structural and

functional magnetic resonance imaging data from a subsample of children and adolescents from

the Philadelphia Neurodevelopmental Cohort, we conduct simulations and data analyses where we

illustrate the high statistical power and nominal type I error levels of our method. By constructing

an interpretable map of group-level correspondence using spatially-enhanced test statistics, our
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method offers insights beyond those provided by earlier methods.

Keywords: Clusterwise inference, Data integration, Intermodal correspondence, Permutation,

Spatial autocorrelation

1. Introduction

A growing emphasis on extracting, synthesizing, and interpreting patterns from multiple neu-

roimaging modalities has simultaneously prompted innovation in methods development. One area

of expanding interest is in intermodal coupling, where many researchers have sought to study and

quantify correspondence between two modalities (for example, between structural and functional

brain measurements). Methodological developments in this area have included statistical estima-

tion of individual-level maps measuring intermodal coupling [1, 2, 3, 4, 5] and hypothesis tests for

establishing statistical significance of intermodal associations [6, 7, 8, 9]. In this paper, we focus

on the latter class of methods, examining and seeking to resolve gaps in previous methods for

hypothesis testing of intermodal correspondence.

1.1. Intermodal correspondence testing: global testing without localization.

Previous methods for hypothesis testing of intermodal correspondence aimed to address ques-

tions of whether or not correspondence exists throughout the entire brain or within pre-defined sub-

regions of the brain. Developed by Alexander-Bloch et al. [6], the “spin test” formalized the notion

of using spatially-constrained randomization for testing intermodal correspondence using group-

level imaging measurements. A few years later, Burt et al. [7] proposed Brain Surrogate Maps with

Autocorrelated Spatial Heterogeneity (BrainSMASH), using spatially-constrained null modeling

based on reconstructing empirical variograms in spatially permuted data. More recently, we de-

scribed the simple permutation-based intermodal correspondence test (SPICE), the first method to

leverage participant-level as opposed to group-averaged brain maps, using a traditional permutation

framework by randomly shuffling individual participants’ maps, rather than using spatially-derived

null models of group-averaged brain maps [9].

Each of these recent methodological advancements for testing intermodal correspondence in-

volves computing a single global test statistic (e.g., Pearson correlation) measuring correspondence

across the entire brain (or across a pre-defined brain region, such as a functional brain network de-

scribed by Yeo et al. [10])—without differentiating the degree of correspondence across the brain or

within those pre-defined regions. Localizing where in the brain intermodal correspondence is most

prominent could facilitate more nuance and interpretability in these analyses. For example, spatial

localization could tell us whether structure-function correspondence across the brain is driven pri-

marily by a subset of brain regions. While existing methods for testing intermodal correspondence

are statistically powerful, they are limited in that they cannot be used to visualize or quantify local
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Figure 1: Maps of vertex-level partial Pearson correlations (adjusting for age and sex) between (a) CBF and ALFF in
N=831 PNC participants and (b) cortical thickness and n-back task activation in N=789 PNC participants. Grayed-
out areas are not statistically significant (i.e. FDR-adjusted p-values are greater than 0.05).

intermodal correspondence without pre-defining sub-regions where intermodal correspondence is

suspected (e.g., functional networks).

1.2. Unique challenges in localizing intermodal correspondence.

A common approach for spatially mapping and testing intermodal correspondence involves

a mass-univariate analysis, where location-specific measures of association are quantified using

location-specific (e.g., vertex- or voxel-wise) correlations or partial correlations. For example, in

Figure 1, we map partial correlations (adjusting for age and sex) between two pairs of modalities

in around 800 children and adolescents from the Philadelphia Neurodevelopmental Cohort (PNC).

(A more detailed description of the PNC data and processing is provided in Section 3.1 and in

Section S2 of the Supplementary Material). In such an analysis, measurements at each location

in the brain are modeled separately, and p-values are used to “threshold out” locations in brain

without significant intermodal correspondence, adjusting for multiple comparisons using the false

discovery rate (FDR, as in Figure 1) or family-wise error rate (FWER). However, in smaller sample

settings, mass-univariate methods suffer from low statistical power and poor replicability.

In the context of analyzing and localizing associations between a single imaging modality and

a non-imaging phenotype of interest, another common approach is clusterwise inference. This is

typically considered more powerful than mass-univariate, since univariate test statistics are ag-

gregated in the spatial domain [11, 12, 13]. Inference using clusterwise inference approaches uses

permutation across subjects, controlling FWER at the nominal level [14].
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A fundamental limitation inherent to using univariate test statistics (including mass-univariate

or standard clusterwise inference methods) is the absence of modeling complex spatial autocorre-

lation patterns inherent in neuroimaging data. As an illustration, we consider Figure 2, where we

quantify and visualize the underlying spatial autocorrelation structures in four different imaging

modalities from the PNC by using empirical variograms. Here, it is clear that there is heterogeneity

in brain-wise spatial autocorrelation exhibited across different imaging modalities. We therefore

anticipate that between-modality variability will be a critical issue in localizing intermodal cor-

respondence. Importantly, such heterogeneity in spatial autocorrelation in multimodal data may

interfere with scientific interpretation or lead to a severe loss of power in the context of applying

univariate statistical methods.

1.3. Motivating clusterwise inference with modality-specific modeling of spatial autocorrelation to

test and localize intermodal correspondence.

Recognizing the unique challenge of leveraging spatial information in an analysis of multiple

imaging modalities with inherently different underlying spatial structures, we propose CLEAN-

R, a novel method that combines insights from Weinstein et al. [9] and Park and Fiecas [13] to

address this important gap in existing methodology. The general framework for our proposed

method is as follows (described in greater detail in Section 2). First, we remove nuisance covari-

ate effects and spatial variations separately for each modality, using an approach following Park

and Fiecas [13] in the context of the general linear model (GLM) for a single imaging modality.

Next, we aggregate location-specific test statistics within optimized cluster-level radii to construct

enhanced statistics that spatially map intermodal correspondence throughout the brain. In addi-

tion, we use the permutation framework of Weinstein et al. [9], controlling the type I error rate

and FWER at the nominal level. Finally, we propose a statistical framework to localize brain

regions where there are significant group differences in intermodal correspondence. Our method is

inherently computationally efficient and can be implemented using our publicly available software

(www.github.com/junjypark/CLEAN).

In Section 3, we apply CLEAN-R to the data from the large-scale PNC study to demonstrate

our method in practice and compare its performance with other approaches to hypothesis testing

and spatial localization of intermodal correspondence. Using data from the PNC, we construct

data-driven simulations under both null and non-null cases, and show that CLEAN-R controls

FWER and exhibits high statistical power for both global hypothesis testing and spatial localization

of intermodal correspondence. Importantly, we find that clusterwise inference without modeling

modality-specific autocorrelation suffers from poor replicability across different sub-samples from

the PNC, which highlights the added value of spatial adjustment used in CLEAN-R.
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Figure 2: Group-averaged empirical variograms in four neuroimaging modalities from the Philadelphia Neurodevel-
opmental Cohort (PNC) [15], described in Section 3 and Section S2 of the Supplementary Material. The empirical
variogram provides a measure of how strong the spatial autocorrelation between different points in an image depends
on the distance h between those points [16]. For each imaging data modality from the PNC, we compute the empirical
variogram for each participant (Vi(h) for the ith participant across different h) and then average it across subjects to
obtain group-averaged empirical variogram (V (h) =

∑N
i=1 Vi(h)/N). We use geodesic distance to measure distances

(in millimeters) between vertex pairs on the cortical surface. For comparison, we also plot hypothetical theoretical
variograms with exponential (solid line) and Gaussian (dotted line) structures, which informs the parametric assump-
tions used in our models for spatial adjustment, discussed in Section 2.2.

2. Methods

2.1. Notation and null hypothesis

We consider a dataset consisting of participant-level measurements from two different neu-

roimaging modalities. For example, xi could be an image of brain structure for the ith participant,

and yi a measure of brain function for the same participant. We assume that data from both modal-

ities are available for all N study participants, and that each modality consists of V measurements
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(e.g., vertices on the cortical surface). Letting xi(v) and yi(v) be the ith individual’s measure-

ments from both modalities at location (or vertex) v, we define x(v) = (x1(v), . . . , xN (v))′ and

y(v) = (y1(v), . . . , yN (v))′ to be vectors of data derived from each modality at a single image loca-

tion v across all N study participants, where v = 1, . . . , V . We can also represent participant-level

images (across all locations) as vectors xi = (xi(1), . . . , xi(V ))′ and yi = (yi(1), . . . , yi(V ))′.

We express our global null hypothesis that there is no correspondence between the two modalities

as follows:

H0 : rx(v),y(v) = 0 for all v = 1, . . . , V, (1)

where ru,v is the Pearson correlation between vectors u and v. In the presence of participant-level

nuisance covariates (e.g. age and sex), we express the global null hypothesis in terms of partial

correlations, by replacing x(v) and y(v) with x⋆(v) and y⋆(v), respectively, where x⋆(v) and y⋆(v)

are the estimated residuals we obtain after regressing out nuisance covariates from x(v) and y(v)

(separately for each v), while preserving the same dimension as the original data. If H0 is true,

our interpretation is that there is no location v in the entire brain where there is an association

between x(v) and y(v).

2.2. CLEAN-R: Clusterwise inference leveraging spatial autocorrelation in neuroimaging for testing

intermodal correlations r

2.2.1. Leveraging modality-specific spatial autocorrelation

As illustrated in Figure 2, there is substantial variability in the underlying spatial structures

of different neuroimaging modalities, and we anticipate this will have implications for how to best

handle spatial autocorrelation in the context of intermodal association studies. Therefore, we

propose accounting for differences in the spatial autocorrelation structure of each modality before

conducting intermodal correspondence testing. To do this, we extend the framework in modeling

brain-wise spatial autocorrelation from Park and Fiecas [13] to account for underlying differences

between the spatial structures across modalities.

Park and Fiecas [13] first explicitly model the spatial autocorrelation structure of participant-

level images by using a spatial Gaussian process. Analogously, we make parametric assumptions

about the covariance structure of x⋆
i and y⋆

i to facilitate adjustment for spatial autocorrelation.

Specifically, we assume x⋆
i

i.i.d∼ MVN (0,ΣX) and y⋆
i

i.i.d∼ MVN (0,ΣY ), where the covariances

decompose into the sum of their respective spatial and non-spatial variances as follows:

ΣX = σ2
XΦ(ϕX) + τ2XIV and ΣY = σ2

Y Φ(ϕY ) + τ2Y IV , (2)
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where Φ(ϕX) and Φ(ϕY ) are the assumed parametric spatial autocorrelation functions and τ2X and

τ2Y are the nugget effects measuring residual non-spatial variability in xi and yi. After determining

appropriate parametric assumptions, we estimate parameters in Equation (2) using the method-of-

moments approach described by Park and Fiecas [13].

It is important to emphasize that the use of parametric assumptions in our proposed method

must be justified through exploratory analyses using empirical variograms, as we have illustrated in

Figure 2, and that using an incorrect spatial autocorrelation function (SACF) might result in loss

of power. In particular, in Figure 2, we directly compare group-averaged empirical variograms from

four different neuroimaging modalities (blue and red dots) to hypothetical theoretical variograms

based on exponential (solid lines) and Gaussian or squared exponential (dotted lines) parameteriza-

tions. We observe a close alignment between the theoretical exponential variograms and empirical

variograms for all four modalities; therefore, we consider an exponential covariance structure to be

a reasonable parametric assumption—that is, we assume the (v, v∗)th element of the spatial auto-

correlation functions, Φ(ϕX) and Φ(ϕY ), are exp(−ϕX × dv,v∗) and exp(−ϕY × dv,v∗), respectively,

where dv,v∗ is the geodesic distance between locations v and v∗. Emphasizing that the current

parametric assumptions are based specifically on Figure 2, we advise future researchers to conduct

similar exploratory visualizations before making any parametric assumptions and proceeding with

subsequent steps.

It is also worth noting that Equation (2) provides an explicit random effects formulation of the

Gaussian process, which is equivalent to setting x⋆
i = bX

i + δXi where bX
i ∼ MVN (0, σ2

XΦ(ϕX)),

δXi ∼ MVN (0, τ2XIV ) and bX
i and δXi are independent (and similarly, setting y⋆

i = bY
i +δYi where

δYi ∼ MVN (0, τ2Y IV ) and bY
i and δYi are independent). As bX

i and bY
i represent the portion of

x⋆
i and y⋆

i , respectively, explained solely by spatial autocorrelation and not by any other factors

that are truly of interest (e.g., intermodal correspondence) we consider these to be unwanted or

“nuisance” sources of variation and replace them with δ̂
X

i and δ̂
Y

i , defined for the ith subject by

δ̂
X

i = τ̂2XΣ̂
−1

X x⋆
i and δ̂

Y

i = τ̂2Y Σ̂
−1

Y y⋆
i . (3)

Thus, we characterize δ̂
X

i and δ̂
Y

i to be linear transformations of x⋆
i and y⋆

i , respectively, which

have been adjusted for their unique underlying spatial autocorrelation structures.

We note that when the spatial parameters above are estimated via restricted maximum likeli-

hood (REML), b̂X
i and b̂Y

i have the desirable property of being the empirical best linear unbiased

predictions (eBLUP) of the spatial variations, making δ̂
X

i = x⋆
i − b̂X

i and δ̂
Y

i = x⋆
i − b̂Y

i good

predictions of the non-spatial variation from x⋆
i and y⋆

i , respectively [17]. In practice, the method-

of-moments approach we use for estimation yields estimates that are very close to those from

REML, but are much more computationally efficient.
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Lastly, while inverting Σ̂X and Σ̂Y (Equation (3)) can be computationally intensive, especially

for high-dimensional imaging data, we approximate the inverse of Σ̂X and Σ̂Y with Σ̂
−1

X,NNGP and

Σ̂
−1

Y,NNGP, respectively, which we obtain via a nearest-neighbor Gaussian process (NNGP) [18, 19].

NNGP is a computationally efficient way to obtain a close approximation of the inverse of the

parametric spatial covariance matrix using information from a subset of neighbors, which was also

adopted in CLEAN [13].

2.2.2. Proposed spatially-enhanced clusterwise inference for testing intermodal correspondence

In this section, we describe implementing clusterwise inference after adjusting for modality-

specific spatial variations to improve the sensitivity of localized signals. In contrast to existing

clusterwise inference methods commonly used in neuroimaging, the proposed method utilizes spa-

tial information in two ways: (i) modeling and adjusting for noise (Section 2.2.1) and (ii) aggregating

test statistics from nearby locations (current section). Briefly, (ii) involves computing vertex-level

statistics (using δ̂
X

i and δ̂
Y

i from (i)), and then combining these to obtain cluster-level statistics.

The steps for computing spatially-enhanced vertex-level test statistics are summarized in the re-

mainder of this section and in pseudocode included in Section S1 of the Supplementary Material

(Algorithm S1.1).

First, we compute the vertex-level test statistics using the Fisher-transformed Pearson correla-

tion between the two modalities at each location:

γ̂(v) = atanh
(
r̂
δ̂
X(v),δ̂Y (v)

)
=

1

2
log

(
1 + r̂

δ̂
X(v),δ̂Y (v)

1− r̂
δ̂
X(v),δ̂Y (v)

)
, (4)

where δ̂
X
(v) = (δ̂X1 (v), . . . , δ̂XN (v))′ and δ̂

Y
(v) = (δ̂Y1 (v), . . . , δ̂

Y
N (v))′ (from Equation (3)). We note

that γ̂(v) is approximately normally distributed with mean 0 under the null hypothesis.

Second, we compute cluster-level test statistics using γ̂(v) in Equation (4) as a building block.

Let Nh(v) denote the set of vertices that fall within radius h from a central vertex v. Nh(v) is

initially defined for each location and different possible radii. Figure 3 illustrates a single vertex

on the cortical surface (black dot) and its neighbor set Nh(v) with different values of h. Suppose

for each vertex, we consider clusters defined by m different radii, h1, . . . , hm. Assuming h1 = 0,

Nh1(v) is the cluster consisting of only the central vertex v. Thus, the correspondence measure for

this cluster is equal to γ̂(v), and the test statistic for location v for a cluster with radius up to hj

(j = 2, . . . ,m) are computed as the standardized sums of γ̂(v∗) for all v∗ ∈ Nhj
(v). It motivates

the construction of a unified cluster-level test statistic for v by

T (v) = max


(∑

v∗∈Nh(v)
γ̂(v∗)

)2
V̂arH0(

∑
v∗∈Nh(v)

γ̂(v∗))

∣∣∣∣∣∣∣h = h1, . . . , hm

 , (5)
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Figure 3: Example clusters surrounding vertex v (black dot) in the left hemisphere, with a maximum radius of 20mm
on the cortical surface (measured as a geodesic distance). Our proposed method involves defining candidate clusters
for each vertex, with different maximum radii ranging from 0 to 20mm. As we describe in Section 2.2, we compare test
statistics that have been aggregated across image locations within different sized clusters surrounding each vertex
to determine the optimal sized cluster to enhance the test statistic measuring intermodal correspondence at each
location.

so that the optimal cluster size for a given vertex can be determined by the magnitude of cluster-

level test statistics with different radii. Accordingly, a global statistic for testing H0 (Equation (1))

is

T = max
v=1,...,V

T (v). (6)

Following Park and Fiecas [13], in the analyses below we consider h1 = 0 to hm = 20mm in

increments of 1mm (as in Figure 3) as a default; however, we explore other maximum radii hm in

the Supplementary Material (Section S3).

An important step in conducting statistical inference with the proposed statistic is the selection

of a threshold (tα), or critical value, to control FWER at α (e.g. 0.05). Once a brain-wise thresh-

old is set, we can localize significant intermodal correspondence at vertices whose T (v) exceeds the

threshold. Specifically, we propose permuting data across participants within one modality, follow-

ing Weinstein et al. [9]. Because our null hypothesis is expressed in terms of within-participant

intermodal correlations, randomly shuffling participants within one modality destroys any associa-

tions between two modalities derived from the same individual; thus, an empirical null distribution

made up of inter-individual correlations is appropriate for testing the null hypothesis (Equation
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(1)). In the presence of participant-level covariate information, we preserve the order of the co-

variates and the shuffled modality in each permutation because our hypothesis addresses residual

(partial) correlation of two modalities after regressing out non-imaging covariates. For the kth

permutation (k = 1, . . . ,K), we construct T (k)(v) using Equation (5) then construct its maximum

across all vertices,

T (k) = max
v=1,...,V

T (k)(v). (7)

and choose the threshold tα bt the (1 − α) × 100th percentile of the empirical null distributions

constructed by T (1), . . . , T (K).

2.3. Testing and localizing group differences in intermodal correspondence

In this section, we extend CLEAN-R for testing and localizing group differences in intermodal

correspondence, utilizing the advantages of clusterwise inference and autocorrelation modeling in-

volved in CLEAN-R. In this setting, we restate the null hypothesis (Equation (1)) in terms of

the difference in intermodal correlations between two groups (say, groups A and B) at vertex v

(e.g., H0 : rXA(v),YA(v) = rXB(v),YB(v) for all v). Let γ̂A(v) and γ̂B(v) denote separately estimated

location-specific association measures (as in Equation (4)) for each group. To test and localize

differences in intermodal correspondence these two groups, we replace γ̂(v) in Equation (5) with

(γ̂A(v) − γ̂B(v)). The spatially-enhanced statistic used for testing differences between groups at

vertex v is analogously given by

TA−B(v) = max


(∑

v∗∈Nh(v)

(
γ̂A(v

∗)− γ̂B(v
∗)
))2

V̂arH0

(∑
v∗∈Nh(v)

(
γ̂A(v∗)− γ̂B(v∗)

))
∣∣∣∣∣∣∣∣∣h = h1, . . . , hm

 . (8)

After permuting participants separately within each group, an empirical null distribution for both

global and local tests of group differences in correspondence is obtained analogously to (7); that is,

T
(k)
A−B(v) = max


(∑

v∗∈Nh(v)

(
γ̂
(k)
A (v∗)− γ̂

(k)
B (v∗)

))2

V̂arH0

(∑
v∗∈Nh(v)

(
γ̂A(v∗)− γ̂B(v∗)

))
∣∣∣∣∣∣∣∣∣h = h1, . . . , hm

 , (9)

and similar to T (k) (Equation (7)), T
(k)
A−B = maxv=1,...,V T

(k)
A−B(v).

2.4. Comparison to other methods for testing intermodal correspondence

In this section, we compare different approaches in testing intermodal correspondence, including

BrainSMASH [7], the spin test [6], SPICE [9], and classical approaches such as mass univariate and

clusterwise inference without spatial adjustment.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.04.25.489462doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.25.489462
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.4.1. Permutation null versus spatial null

Although all methods we consider use some form of permutation or spatial randomization to

generate null maps, they are fundamentally different. We summarize key distinctions between

permutation and spatial null models in Figure 4. The spin test and BrainSMASH take different

approaches to spatial randomization to generate null maps. Both methods first use a group-averaged

map in each modality. Then, the spin test repeatedly rotates an imaging modality (projected onto

a spherical surface) and computes test statistics measuring correspondence between the “rotated”

map and original second map to generate an empirical null distribution. BrainSMASH randomly

shuffles vertex-level (or parcel-level) measurements across the brain (thus destroying both the spatial

autocorrelation structure as well as any genuine intermodal associations), then applies Gaussian

smoothing to generate surrogate maps with similar empirical variograms as the original map.

While BrainSMASH is an important development in hypothesis testing involving neuroimaging

data, several limitations warrant further consideration, including the implicit assumption that the

spatial autocorrelation structure of both modalities is similar, and that stationarity can be assumed

throughout the brain, as well as within anatomical subregions and functional networks when more

localized tests of intermodal correspondence are considered. We also point out that, by considering

a group-averaged map in each modality, neither the spin test nor BrainSMASH can adjust for

confounders or other nuisance covariates, such as age or sex. For example, if a group-averaged map

is constructed after regressing out confounding variables, then it just becomes zero for all locations

(due to properties of GLM residuals), making an evaluation of correspondence infeasible.

In contrast, permutation null methods that shuffle images from a single modality across partic-

ipants (including CLEAN-R, SPICE, and mass-univariate methods) provide a clear null hypothesis

defined non-parametrically. By using participant-level rather than group-averaged data, we can

easily adjust for confounders through residualization. Also, these methods can be implemented in

an efficient and scalable manner. Based on our implementation, BrainSMASH and other methods

involving spatial null models summarized by Markello and Misic [8], are much more computationally

intensive.

Because of differences in null hypotheses and underlying assumptions, we note that direct

comparisons with the spatial null methods (the spin test and BrainSMASH) may not always be

possible. Therefore, in our analysis in Section 3, we primarily focus on comparing methods based

on the permutation null mapping, and subsequently discuss results from the spatial null methods

in Section 3.2.3.

2.4.2. On true spatial autocorrelation

A key distinction between CLEAN-R and existing methods for clusterwise inference is its spatial

autocorrelation modeling. Despite their wide utility, Figure 2 suggests that in the presence of

spatial autocorrelation, existing clusterwise inference methods are misspecified because these are
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Figure 4: Summary and comparison of CLEAN-R to other methods for testing intermodal correspondence. We
distinguish between two broad classes of methods for hypothesis testing of intermodal correspondence based on the
types of null models used: either permutation null or spatial null. While methods using a permutation null approach
leverage participant-level data to generate an empirical null distribution based on between-participant intermodal
associations, spatial null models rely on group-level brain measurements. While a comparison across all these methods
is warranted due to the popularity of the two spatial null models by Alexander-Bloch et al. [6] and Burt et al. [7],
differences in the input data and capabilities (e.g., covariate adjustment and spatial localization) of these methods
restrict which methods can be considered in the analyses described in Section 3.
Note: In the null hypothesis for BrainSMASH, ySA denotes a spatial autocorrelation (SA)-preserving “surrogate”
brain map, which Burt et al. [7] use to evaluate whether any observed correlations between x̄ and ȳ are genuine or
are merely driven by spatial autocorrelation.

based on univariate statistics, which ignore spatial autocorrelation. We note that a parametric

assumption of brain-wise stationarity in CLEAN-R may also be misspecified, because empirical

variogram implicitly assumes spatial stationarity. Still, we believe that the proposed approach

is closer in approximating the true underlying autocorrelation structure, which can be validated

through evaluation of statistical power.

2.5. Software and computational efficiency

CLEAN-R can be implemented using software available at www.github.com/junjypark/CLEAN.

A detailed algorithm is also summarized in Section S1 of the Supplementary Material (Algorithm

S1.1). Importantly, the proposed permutation strategy is inherently computationally efficient be-

cause permuting information across participants (along with corresponding covariate information)
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does not affect the variance component estimates of the original model. Therefore, permutation is

not limited to shuffling x⋆
i (v) but is also applicable to δ̂

X

i (v) from the proposed model.

For example, applying CLEAN-R to a sample of N=50—with nearly 10,000 vertices in each

hemisphere for each person and using 10, 000 permutations—takes under 14 minutes. This includes

the time to fit four covariance regression models (one for each modality in each hemisphere), and

it can be even more efficient with parallelization, which is also supported by our software.

3. Simulations and data analysis

3.1. Multimodal neuroimaging data from the Philadelphia Neurodevelopmental Cohort

The Philadelphia Neurodevelopmental Cohort (PNC) is a large-scale research initiative led

by the Brain Behavior Laboratory at the University of Pennsylvania and Children’s Hospital of

Philadelphia, which recruited N=9,498 children and adolescents ages 8-21 years old who consented

or received parental consent to participate [20]. A subset of 1,601 participants from the PNC

underwent structural and functional MRI scans at the Hospital of University of Pennsylvania in

the same Siemens TIM Trio 3T scanner according to protocols described in detail by Satterthwaite

et al. [15]. In this paper, we consider data from four different neuroimaging modalities to examine

intermodal associations involving two different pairs of modalities in the PNC: (i) cerebral blood

flow (CBF) and amplitude of low frequency fluctuations (ALFF) and (ii) cortical thickness and

n-back activation, discussed below in Section 3.1.1.

Participant-level images from each modality were collected and processed according to stan-

dardized protocols described in Satterthwaite et al. [15]. A brief summary of data collection,

processing, and quality control is also included in Section S2 of the Supplementary Material. To

represent participant-level images on the cortical surface, we use Freesurfer version 5.3 to resam-

ple voxelwise measurements from each imaging modality to the fsaverage5 atlas [21]. Resulting

images consist of 10,242 vertices per hemisphere per participant. For all analyses, the number of

vertices in the left and right hemispheres reduces to V=9,354 and V=9,361, respectively after we

exclude portions of each hemisphere corresponding to the medial wall, a byproduct of working with

a surface-based representation of brain images [22]. Vertices in the medial wall are then added back

for visualization purposes, where we used the fsbrain package in R [23].

In each analysis, we exclude participants who did not have data available, did not meet quality

control criteria for both imaging modalities, or had other health-related reasons for exclusion (e.g.,

taking psychoactive medications or previous psychiatric hospitalization). For CBF/ALFF, our

cohort consists of N=831 individuals (mean age 15.62 (SD 3.36), 478 (57.52%) females), while for

cortical thickness/n-back, we analyzed data from N=789 individuals (mean age 14.96 (SD 3.19),

446 (56.53%) females). In permutation null methods for testing intermodal correspondence, we first

fit a linear regression model at each image location (i.e., at 9,354 locations in the left hemisphere and

9,361 in the right hemisphere), where we include age and sex as covariates and subtract out their
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estimated effects in order to adjust for these (non-spatial) sources of variation. (Note: in Section

3.3 where we evaluate sex differences in correspondence between CBF and ALFF, we adjust for age

but not sex).

3.1.1. H0 in context

Increased blood flow to different areas of the brain allows for neuronal activity in those regions,

and relating these two processes through the comparison of neuroimaging modalities can help us

to better understand this innate biological process, how it changes throughout development, and

how it differs across people. Using arterial spin labeling (ASL) to quantify cerebral blood flow

(CBF) throughout the brain and the amplitude of low-frequency fluctuations (ALFF) in resting-

state blood-oxygen-level-dependent (BOLD) fMRI as a proxy for neuronal activity, in this study

we examine the relationship between CBF and ALFF among PNC participants. Recently, Baller

et al. [24] documented the evolution of individual-level “coupling” between CBF and ALFF over

the course of childhood and adolescence among PNC participants. These authors found significant

coupling between CBF and ALFF at the participant-level, both throughout the cortex and in some

specific regions, noting differences in the degree of coupling throughout the cortex among different

age groups and by sex. In the current work, we leverage participant-level data to map, test, and

localize intermodal correspondence between these two fMRI-derived brain maps at the group-level

(in contrast, Baller et al. mapped these relationships for individual participants). Adding to Baller

et al.’s findings, we expect to reject the null hypothesis in support of the notion that blood flow

and neuronal activity are strongly related. We will further be able to localize what subregions of

the brain are most strongly implicated in the CBF/ALFF relationship.

It is also informative to consider a setting in which we do not expect to see strong intermodal

associations. Thus, we also test correspondence between cortical thickness and n-back task activa-

tion. We also compared these modalities in our previous work [9]; however, in our current work,

we now leverage spatial information with CLEAN-R and may detect signal that is highly localized

to specific areas of the brain, which was not possible in our earlier work.

In Section 1, we considered vertex-level Pearson correlations from the full samples of both

imaging modality pairs from an exploratory analysis using the PNC data (Figure 1). As these cor-

relations were estimated in relatively large samples of around 800 participants each, it is reasonable

to consider Figure 1 as somewhat of a “ground truth,” providing insight into which regions we

might hope to find evidence for localized intermodal correspondence in analyses in smaller samples.

It also allow us compare different methods in terms of replicability in smaller samples.

3.2. Data-driven simulation study in the Philadelphia Neurodevelopmental Cohort study.

We conduct a set of data-driven simulation studies using real data from the PNC to evaluate

and compare the power and false positive rate of CLEAN-R in to other permutation-based methods

for testing intermodal correspondence. This type of non-parametric resampling-based approach to
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simulation is often used in settings where the target data of interest are inherently complex and

would be difficult if not impossible to emulate through parametric simulations. Resampling-based

simulations have been used in previous studies validating methods in neuroimaging [25, 26], as

well as numerous other applications in biomedical research (e.g., pharmacoepidemiology [27] and

RNA-seq data analysis [28]).

In our simulations, we consider two different sample sizes (N = 50 and N = 100). In each

design, we sample N participants randomly (without replacement) based on the null and alternative

hypotheses, and repeated this 1000 times, resulted in 1000 simulated datasets in total. To evaluate

the false positive rate of each method, in each sample, we ensure that the subject’s IDs in one

modality do not match with the IDs in the other modality. To evaluate power, each pair of

modalities is derived from the same individual (i.e., we do not mis-match IDs in each pair of

modalities).

In summary, our entire simulation study considers eight scenarios (with 1000 simulations per

scenario), which are characterized by a combination of the following:

1. The pair of modalities under investigation: (a) CBF and ALFF (widespread signal) or (b)

cortical thickness and n-back activation (sparse signal).

2. The number of participants to be sampled (without replacement) from the full group of PNC

participants (after exclusion criteria): (a) N = 50 or (b) N = 100

3. Hypotheses: (a) null (for type I error rate) and (b) alternative (for power).

Due to the design of our simulation studies, we focus on comparing the methods that use a

permutation null to evaluate type I error rates and power (SPICE, mass univariate, and CLEAN-R

with and without spatial autocorrelation modeling). Results from these simulations are presented

below in Section 3.2.1). When we evaluate localization in Section 3.2.2, we do not consider SPICE

because it does not provide location-specific measures of intermodal correspondence (rather, it can

only be used for global testing). Lastly, we note that the proposed simulation method does not

translate well for evaluating the two spatial null modeling (the spin test [6] and BrainSMASH [7]).

However, where appropriate, we discuss comparisons with these methods in Section 3.2.3.

3.2.1. Simulation results: type I error and power

Simulation results for our global tests of intermodal correspondence are included in Figure 5. All

four methods show nominal 5% type I error rates for testing CBF/ALFF and cortical thickness/n-

back correspondence in simulation settings where the null hypothesis is true. Statistical power for

tests of correspondence between CBF and ALFF suggest that CLEAN-R performs similarly to the

SPICE test and outperforms the spatially un-adjusted clusterwise approach and the mass-univariate

approach. Because the SPICE test does not provide localization of intermodal coupling, CLEAN-R

is especially appealing as it achieves high statistical power and also has the added benefit of spatial

localization, which we illustrate and discuss below.
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Figure 5: Rates of rejecting global null hypotheses from four permutation-based approaches for testing intermodal cor-
respondence in data-driven simulation studies using data from the Philadelphia Neurodevelopmental Cohort (PNC).
From 1,000 simulations conducted under the null hypothesis (using 2,000 permutations per test) for each pair of
modalities and each sample size, type I error rates are the proportion of simulations where H0 was rejected. From
1,000 simulations conducted using within-participant data for each pair of modalities and sample size, power (or the
rate of rejecting H0 in the observed data) is the proportion of simulations where H0 was rejected. 95% binomial
confidence intervals (black segments) are provided, showing that the type I error rates in every setting are close to
the nominal level of 0.05.

For tests of cortical thickness and n-back, no method exhibits high power. However, power for

CLEAN-R was higher than any other method. Given the small regions exhibiting signal in the full

sample correlation maps (Figure 1b), correspondence between cortical thickness and n-back may

be localized to extremely small regions, making statistical power lower for methods that do not

leverage enhanced cluster-level statistics as in CLEAN-R.

3.2.2. Simulation results: localization of intermodal correspondence

Figure 6 maps statistical power from each of the three methods that involve estimating vertex-

level test statistics (i.e. T (v) from Equation (5)). For tests of correspondence between CBF and

ALFF, CLEAN-R is the only method to outline clear regions of strong statistical power for tests

of correspondence, adding to our understanding of anatomical regions and functional networks

that may be driving significant results in global correspondence tests. For tests of correspondence

between cortical thickness and n-back, no method delineates specific areas of the brain with high

statistical power.
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Figure 6: Statistical power from three different methods mapped throughout cortex. Map values between 0 and
100% indicate the proportion of simulations where H0 was rejected at a particular location. Power for global tests
of coupling between each pair of modalities according to each method are provided in Figure 5. At each vertex
v, statistical power is the proportion of the 1000 simulations where the vertex-level test statistic (e.g. T (v) as in
Equation (5)) exceeds the FWER-controlling threshold tα.

In the Supplementary Material, we provide several additional comparisons to the results pre-

sented in Figure 6. In Figure S3.1, we evaluate the impact of the choice of the maximum radius

hm on localization of statistical power. We repeat the data-driven simulation design, setting the

maximum radius hm to 5, 10, 15, 20, 25, and 30mm. Localization of power does not drastically

change as we increase hm from 20 to 25 or 30, and given that a smaller maximum radius is more

computationally efficient, we consider our selection of a maximum radius of 20mm to be adequate.

3.2.3. Comparison to spatial null modeling approaches

Despite inherent differences between permutation null and spatial null modeling methods, a

comparison is warranted as the spatial null approaches have been widely adopted in studies of

intermodal correspondence over the last few years [8]. Therefore, we apply the spin test and

BrainSMASH to group-averaged data from each subsample of N=50 and 100 PNC participants

considered in our simulations above for comparison. For the spatial null modeling methods, we

use only 200 “permutations” (i.e., spherical rotations in the spin test and permutation of vertices

in BrainSMASH in this context) due to the computational burden of running many simulations
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and permutations for each method. To make the spatial model refitting involved in each iteration

of BrainSMASH computationally feasible to repeat across many simulations, we use parcellated

brain maps with V = 501 regions per hemisphere, described by Schaefer et al. [29], instead of the

Freesurfer vertex-level images with nearly 10,000 vertices per hemisphere.

In tests of correspondence between group-level maps of CBF and ALFF, we find that the power

of the spin test is 97.7% and 100% for data averaged over N = 50 and N = 100 participants,

respectively. For BrainSMASH, the power is 100% for group-averaged data in samples of both

N = 50 and N = 100. However, for cortical thickness and n-back, there was no case that resulted

in a significant p-value from either method in either sample size. The seemingly extreme result can

be partially explained by the spin test and BrainSMASH using group-averaged maps as input, which

are very similar across different samples (i.e., highly invariant to resampling different participants),

because the sample means for each modality (x̄ =
∑N

i=1 xi/N and ȳ =
∑N

i=1 yi/N) converge to the

corresponding population means as N gets larger.

Therefore, the permutation null considered in our type I error simulations in Section 3.2 cannot

be used to evaluate the type I error levels of these methods. Instead, we evaluate these methods’

type I error rates given the variability across different draws from each method’s null distribution,

which are used as test statistics for computing a p-value under each method’s null. For the spin

test, a draw from the “rotation null” hypothesis is used, so that the rotated mean maps from one

modality are compared to the observed mean maps of another. We find the spin test’s type I error

rates are 3.7% (95% binomial confidence interval (CI) 2.7-5.1%) for N = 50 and 3.6% (CI 2.6-4.9%)

for N = 100 between CBF and ALFF, and 5.1% (CI 3.9-6.6%) for N = 50 and 5% (CI 3.8-6.5%)

for N = 100 between cortical thickness and n-back. For BrainSMASH, a spatial autocorrelation-

preserving surrogate brain map is used, and we find type I error rates of 7.9% (CI 6.4-9.7%) for

N = 50 and 7.2% (CI 5.8-9.0%) for N = 100 between CBF and ALFF, and 9.1% (CI 7.5-11.0%) for

N = 50 and 8.4% (CI 6.8-10.3%) for N = 100 between cortical thickness and n-back. Our finding

of type I error rate inflation in BrainSMASH may be suggestive that, in our current implementation

of BrainSMASH, the generated surrogate maps may not properly mimic the spatial structure of

the observed data. Furthermore, given the variability in the spatial autocorrelation structures of

different modalities (Figure 2), it is conceivable that BrainSMASH may be sensitive to the choice

of which modality is used for generating surrogate maps. To our knowledge, the impact of the

choice of which modality from which to generate surrogate brain maps on statistical inference and

false positive rates has not yet been studied. In contrast, a strength of permutation null methods,

including CLEAN-R and SPICE, is that they are insensitive to the choice of modality involved in

permutations.

3.3. Data analysis: global testing and localization of sex differences

Finally, we apply CLEAN-R and the two other methods for testing and localizing intermodal

correspondence to examine associations between CBF and ALFF—first within stratified subgroups
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Figure 7: Testing and localizing intermodal correspondence between cerebral blood flow (CBF) and amplitude of low
frequency fluctuations (ALFF) among N = 478 females and N = 353 males in the Philadelphia Neurodevelopmental
Cohort. The p-values from global significance tests are provided above each map. Panel (a) includes test statistic
maps from CLEAN-R, clusterwise inference without spatial adjustment, and mass-univariate tests of correspondence
between CBF and ALFF applied separately in males and females. We used permutation to methods control FWER
at the rate of α using permutation, and thresholded vertices if their statistics is less than the FWER-controlling
threshold. Panel (b) includes thresholded test statistic maps from testing sex differences in correspondence between
CBF and ALFF, using an extension of the original CLEAN-R methodology discussed in Section 2.3. CLEAN-R
localizes significant sex differences in intermodal correspondence to four vertices (two in each hemisphere), which are
encircled in yellow. Neither the clusterwise method without spatial adjustment nor the mass-univariate approach
localize intermodal correspondence to any specific vertices.

of males (N = 353) and females (N = 478) from the PNC, and then to test and localize between-

group differences (while controlling for age) using the methodology described in Section 2.3. Here,

we focus on CBF/ALFF only, as cortical thickness/n-back did not show high levels of localized

power from any method in our analysis above.

Results from sex-stratified global tests of correspondence using each method as well as maps of

test statistics for localization of intermodal correspondence among males and females are shown in

Figure 7(a). Un-adjusted global p-values for each method (shown above each set of maps) suggest

that all three methods may detect significant overall correspondence between CBF and ALFF in

both males and females. However, CLEAN-R provides the most interpretable maps for localizing

CBF/ALFF associations, amplifying and detecting signal of intermodal correspondence even in very

small regions that are undetected by the mass-univariate and spatially un-adjusted implementation

of CLEAN-R.
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In Figure 7(b), we compare sex differences in correspondence between CBF and ALFF. In global

tests for overall sex differences in correspondence throughout the entire brain, CLEAN-R is the only

to suggest localized correspondence between CBF and ALFF at any vertices (p=0.03). In a study

of the same population, Baller et al. [24] evaluated sex differences in intermodal coupling [3], and

using an adaptation of Alexander-Bloch et al. [6]’s spin test for testing network enrichment, found

significant sex differences in CBF-ALFF coupling that were especially pronounced within Yeo et al.

[10]’s frontoparietal control network. We note that two of the four significant vertices identified by

CLEAN-R lie in the frontoparietal control network; however, given the small number of significant

vertices, a follow-up study including a power analysis would be necessary to confirm this.

4. Discussion

4.1. Summary

In this paper, we proposed CLEAN-R, a new method for statistical inference on and local-

ization of correspondence between two neuroimaging modalities. CLEAN-R offers insights and

interpretability beyond what has been offered by previous methods for testing intermodal corre-

spondence (e.g., global tests) by providing spatial localization of intermodal correspondence while

preserving high replicability, including in relatively small samples (e.g., N = 50). While the idea

of localization itself is a classical topic in neuroimaging (e.g., mass-univariate analyses, such as in

Figure 1, and clusterwise inference for the general linear model [11, 13]), our proposed method

offers greater replicability for localizing intermodal associations by accounting for modality-specific

spatial autocorrelation. In practice, our method will broaden the scope of questions that can be

asked and strengthen evidence derived from multimodal neuroimaging research by enhancing the

statistical rigor of methods used for testing and localizing intermodal correspondence as well as test-

ing and localizing group differences in correspondence. With a better understanding which regions

of the brain are driving significant between two modalities, the interpretability and actionability of

neuroimaging research will dramatically improve.

Using data from the Philadelphia Neurodevelopmental Cohort (PNC), we illustrated our method’s

performance in practice in comparison to existing methods. Specifically, we showed that CLEAN-

R exhibits high statistical power for detecting global correspondence between cerebral blood flow

(CBF) and amplitude of low frequency fluctuations (ALFF). While the finding that CBF and ALFF

are related is not new, our methodology for approaching this question offers new insight, by pro-

viding a more interpretable way to map this relationship, which might inform our understanding of

which regions of the brain are driving statistically significant global tests. This aspect of intermodal

correspondence testing was not part of spatial null modeling approaches [6, 7] or our previously

proposed permutation method [9], since these methods involved quantifying global associations

across the brain (or across pre-defined subregions), which cannot be mapped spatially.
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Although we did not identify vertices with high replicability in the correspondence between

cortical thickness and n-back, which is expected due to the sparsity of signal (Figure 1) CLEAN-

R’s power was notably higher than other methods in small-sample data-driven simulation studies

(Figure 5). In our earlier work [9], we also found some evidence for significant associations between

n-back activation and cortical thickness for certain age groups when testing correspondence within

functional brain networks. While other global tests require pre-defining local brain regions to detect

highly localized associations, CLEAN-R’s spatially-enhanced global test statistic amplifies signal

of localized associations, while controlling for false positives.

Outside the realm of intermodal correspondence analysis and testing, this paper contributes to

important ongoing discussions on clusterwise inference in neuroimaging research. Expanding on

ideas from Park and Fiecas [13], in our current work we argue that modeling spatial autocorrelation

can mitigate the problems brought to light, for example, by Eklund et al. [14] and Noble et al. [30].

Also, compared to existing approaches that mostly focus on the spatial autocorrelation of the test

statistics map [7], which could make the parametrization of spatial covariance structure intractable,

our proposed approach offers a straightforward and interpretable way to account for parametric

spatial Gaussian process via empirical variogram analysis.

4.2. Limitations and future directions

The assumption of brain-wise spatial stationarity in CLEAN-R may be a limitation, as this

assumption has been subject to criticism in previous work on both clusterwise inference [14] and

intermodal correspondence testing [9]. Despite the support for the assumption of stationary pro-

cesses via variogram analysis within each cortical hemisphere in the context of our current study

(Figure 2), such an analysis may not capture more heterogeneous covariance structures for specific

subregions of the brain, as we discuss in [9]. But while the stationarity assumption warrants careful

consideration, it is conceivable that even with imperfect assumptions about the spatial structure of

the data, using spatially adjusted data makes aggregating information within clusters more tenable

than using non-adjusted spatial data. We believe a more flexible nonstationary spatial Gaussian

process would result in even higher replicability by meeting the data generating model closely.

Nonetheless, as we emphasize in Section 2.2.1, the current implementation of CLEAN-R calls for

careful exploratory analyses (as in Figure 2) to determine both whether the stationarity assumption

is met (e.g., based on the shape of empirical variograms) and which parametric assumption is most

suitable (e.g., by comparing empirical variograms to theoretical variograms). In theory, future re-

searchers could easily apply CLEAN-R to any set of neuroimaging modalities, including volumetric

data in 3D space. But in practice, the performance of our method could be contingent on what

assumptions are made, which may be context-specific. The impact of CLEAN-R’s stationarity

assumption on inference remains an important question, which we look forward to investigating in

the future.
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Our method has room for improvement and extension. First, one possible way to circum-

vent the parametric assumptions would be to consider Ye et al. [31]’s non-parametric variogram

model, which could more flexibly account for different sources of autocorrelation in images due not

only to spatial proximity but also functional networks. Second, because the proposed clusterwise

inference is limited to using spatial information only, it would also be interesting to consider alter-

native approaches to defining clusters, such as Noble et al. [32]’s functional network-based clusters,

which improved statistical power in fMRI-based association studies. Third, it would be interesting

to extend the current methodology to localize time-varying correspondence between two imaging

modalities—for example, using the Adolescent Brain Cognitive Development (ABCD) study that

contains a rich collection of longitudinal data from multiple modalities [33, 12]. These limitations

of the current paper present numerous opportunities for future research.

4.3. Conclusions

CLEAN-R has numerous strengths, including its high statistical power, and in particular, its

ability to spatially localize intermodal associations with high replicability in small samples, as sug-

gested by our resampling-based simulation studies using real data. Another tremendous advantage

of CLEAN-R is its computational efficiency. Spatial modeling of each modality is required only

once per analysis, and a test involving thousands of permutations can be completed in a matter

of a few minutes for several hundred subjects. In contrast, methods involving spatial null models

(e.g. Alexander-Bloch et al. [6], Burt et al. [7]) can be much more computationally intensive by

generating an empirical null distribution that involves altering high-dimensional images repeatedly.

An R package and detailed documentation are publicly available on GitHub, making CLEAN-R an

efficient, powerful, and user-friendly approach to test and localize intermodal correspondence.
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Suppementary Material

S1. CLEAN-R algorithm.

The following algorithm summarizes Section 2.2 in the paper.

Algorithm S1.1

Input data: xi, yi

(i = 1, . . . , N)

Participant-level images from two modalities. Each image

is represented as a V -dimensional vector—that is, xi =(
xi(1), . . . , xi(V )

)
and yi =

(
yi(1), . . . , yi(V )

)
—where each

element of each vector maps to a specific location in a brain

image (e.g., vertex on the cortical surface)

zi

(i = 1, . . . , N)

Participant-level covariates/confounders.

D Distance matrix (dimension V ×V ) with entry dv,v⋆ denot-

ing the geodesic distance between two vertices v and v⋆.

Parameters: K Number of permutations.

h1, h2, . . . , hm Candidate cluster radii.

α Family-wise error rate to be controlled (e.g. 0.05).

Output: T (v) Location-specific test statistic for all vertices v = 1, . . . , V .

tα Global critical value.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part 1: exploratory analysis to examine spatial stationarity.

Compare averaged empirical variograms to theoretical variograms (e.g., exponential, Gaussian). Determine

an appropriate parametric assumption about the spatial structure of each modality. See Figure 2 in the

main text for an example.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part 2: covariate adjustment.

for v in 1, 2, . . . , V do
Fit GLM for each vertex:

xi(v) = ziβ
X(v) + ϵXi (v) and extract x⋆

i (v) = xi(v)− ziβ̂
X
(v).

yi(v) = ziβ
Y (v) + ϵYi (v) and extract x⋆

i (v) = yi(v)− ziβ̂
Y
(v).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part 3: spatial adjustment.

Using x⋆
i =

(
x⋆
i (1), . . . , x

⋆
i (V )

)
and y⋆

i =
(
y⋆i (1), . . . , y

⋆
i (V )

)
(i = 1, . . . , N) from Part 2, fit covariance

regression (see Appendix A of Park and Fiecas [13]) and estimate spatial covariance parameters associ-

ated with each modality (separately in each hemisphere), using parametric assumptions determined from

exploratory analysis in Part 1.

ΣX = σ2
XΦ(ϕX) + τ2XIV

ΣY = σ2
Y Φ(ϕY ) + τ2Y IV
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Use estimates of ΣX , ΣY , τ
2
X , and τ2Y for spatial adjustment. In case V is large, replace Σ̂

−1

X and Σ̂
−1

Y

with their NNGP approximations (see Appendix B of [13]).

δ̂
X

i = τ̂2XΣ̂
−1

X x⋆
i

δ̂
Y

i = τ̂2Y Σ̂
−1

Y y⋆
i

Obtain V ×N matrices δ̂
X

=
[
δ̂
X

1 δ̂
X

2 . . . δ̂
X

N

]
and δ̂

Y
=
[
δ̂
Y

1 δ̂
Y

2 . . . δ̂
Y

N

]
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part 4: vertex-level Fisher-transformed correlations in observed and permuted data.

Original data: for v in 1, 2, . . . , V do

Define γ̂(v) = atanh
(
r̂ˆδ

X

(v),
ˆδ
Y

(v)

)

Permuted data: for k in 1, 2, . . . ,K do

P(k) = kth random permutation matrix (dimension N ×N)

δ̂
Y (k)

= δ̂
Y
P(k) (P(k) permutes the columns of δ̂

Y
)

for v in 1, 2, . . . , V do

γ̂(k)(v) = atanh
(
r̂
ˆδ
X

(v),
ˆδ
Y (k)

(v)

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part 5: cluster-level test statistics in observed and permuted data.

for v in 1, 2, . . . , V do

for h in h1, h2, . . . , hm do

Nh(v) = {v⋆ | dv,v⋆ < h} (set of locations with distance ≤ h from v)

V̂arH0(
∑

v⋆∈Nh(v)
γ̂(v∗)): sample variance of

∑
v⋆∈Nh(v)

γ̂(k)(v⋆) across k.

Original data:

T (v) = max

{ (∑
v∈Nh(v) γ̂(v

⋆)
)2

V̂arH0
(
∑

v⋆∈Nh(v) γ̂(v
⋆))

∣∣∣∣∣h = h1, . . . , hm

}
Permuted data:

for k in 1, 2, . . . ,K do

T (k)(v) = max

{ (∑
v⋆∈Nh(v) γ̂

(k)(v⋆)
)2

V̂arH0
(
∑

v⋆∈Nh(v) γ̂(v
⋆))

∣∣∣∣∣h = h1, . . . , hm

}

Critical value to maintain FWER < α:

tα = (1− α)× 100th percentile of max
v=1,...V

T (k)(v).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part 6: global hypothesis testing and spatial localization.

Test global null hypothesis:

Reject H0 if at least one T (v) is greater than tα; fail to reject H0 otherwise
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Spatial localization of intermodal correspondence:

Choose v with T (v) greater than tα.

Modifications to Algorithm 1 to implement other methods in this paper for testing & localizing

intermodal correspondence.

“Yes” and “no” in the table below express whether or not each part of the algorithm is included in imple-

mentation of these other approaches.

Cluster-leveraging without
spatial adjustment

Mass-univariate

Part 1
(exploratory analysis to examine
spatial stationarity)

no no

Part 2
(covariate adjustment)

yes yes

Part 3
(spatial adjustment)

no no

Part 4
(vertex-level Fisher-transformed
correlations in observed and per-
muted data)

yes, with modifications:

replace δ̂
X

i with x⋆
i

replace δ̂
Y

i with y⋆
i

yes, with modifications:

replace δ̂
X

i with x⋆
i

replace δ̂
Y

i with y⋆
i

Part 5
(cluster-level test statsitics in ob-
served and permuted data)

yes yes, with modification:

set hm = 0, so that we
don’t incorporate informa-
tion from neighbors (i.e.,
cluster has radius 0).

Part 6
(global hypothesis testing and
spatial localization)

yes yes

S2. Multimodal neuroimaging data collection and processing

In this study, we analyze a subset of neuroimaging data collected as part of the Philadelphia Neu-

rodevelopmental Cohort (PNC) [20]. PNC investigators recruited a total of N=9,498 children and

adolescents ages 8-21. A subset of PNC participants (N=1,601) underwent multimodal magnetic

resonance imaging (MRI) scans at the Hospital of University of Pennsylvania in the same Siemens

TIM Trio 3T scanner [15], including structural MRI and resting-state and task-based functional

MRI (fMRI). T1-weighted images were acquired via a magnetization-prepared, rapid acquisition

gradient echo (MPRAGE) protocol, during which participants’ heads were stabilized using foam

pads in an effort to reduce motion during image acquisition. For quality control purposes, image

quality was rated by three experienced image analysts [34].

Cortical thickness measurements were extracted from T1-weighted structural images (with 0.9 ×
0.9 ×1mm voxel resolution). Specifically, we quantified cortical thickness as the minimum distance

between pial and white matter surfaces [22].
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fMRI data collection included both resting-state (i.e., task-free) as well as imaging during task

completion. fMRI data collection used a blood oxygen level dependent (BOLD) sequence with

a single-short, interleaved multi-slice, gradient-echo, echo planar imaging sequence and a voxel

resolution of 3× 3× 3 mm voxels over 46 slices. Preprocessing of fMRI scans included the eXtensible

Connectivity Pipeline (XCP) Engine to reduce noise in images introduced by participant motion in

the scanner [37].

Cerebral blood flow (CBF) and amplitude of low-frequency fluctuations (ALFF) were extracted

and quantified from resting-state fMRI measurements, which were collected over the course of ap-

proximately 6 minutes. CBF measurements were quantified using parameters from arterial spin

labeling (ASL) measurements (e.g., calculated as a function of the difference in signal between con-

trol and label acquisitions, the longitudinal relaxation rate of blood, and other fixed parameters).

Measurements of the amplitude of low-frequency fluctuations (ALFF) were were calculated as the

sum of amplitudes within the 0.01-0.08 Hertz low frequency range. Additional details on the quan-

tification of CBF and ALFF measurements are provided by Baller et al. [24], who analyzed the

same cohort of participants from the PNC.

fMRI acquisition also occurred while participants completed the n-back task sequence, which

has been previously shown to trigger activity within the executive function network [35]. In this

sequence, participants were shown various pictures sequentially on a screen. They were instructed

to push a button if the stimulus they saw was identical to the nth previous stimulus. For example,

a 2-back sequence would involve pressing the button if the current picture matched the one that

appeared just before the previous one. In a “0-back” sequence, participants were instructed to

simply press the button every time a new stimulus appeared (regardless of its relationship to previous

stimuli). For the current study, we quantified n-back activation as the percentage change in fMRI

measurements between the 2-back and 0-back sequences by using the FEAT tool in the FSL library

[36].

Voxel-wise measurements from both structural and functional MRI data were converted into

cortical surface image representations using Freesurfer (version 5.3) [21]. Measurements were pro-

jected to the fsaverage5 template, which consisted of 10,242 vertices per hemisphere for each modal-

ity (total V = 20, 484). However, after removing the medial wall (a byproduct of working with a

surface-based representation of brain images), the number of vertices reduced to 9,354 and 9,361 in

the left and right hemispheres, respectively (total V = 18, 715 included in analyses).
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S3. Supplementary figures

Figure 8: Examination of the impact of choice of maximum cluster radius (hm) on statistical power of CLEAN-R for
localizing intermodal correspondence between cerebral blood flow (CBF) and amplitude of low frequency fluctuations
(ALFF) in 1000 random subsets of N=50 and 100 from the Philadelphia Neurodevelopmental Cohort (PNC). Following
the methods described in Sections 2.2.1 and 2.2.2, for each sub-sample of N=50 or 100, we compare location-statistic
test statistics (T (v)) measuring correspondence between CBF and ALFF at each image location (v = 1, . . . , V ) to
tα, the global threshold used to determine significance (while controlling the family-wise error rate (FWER) < α).
Similar to Figure 6 in the manuscript, at each location (v), statistical power is the proportion of the 1000 simulations
where T (v) > tα.
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