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1 Abstract

The introduction of RNA velocity in single-cell studies has opened new ways
of examining cell differentiation and tissue development. Existing RNA veloc-
ity estimation methods rely on strong assumptions of predefined dynamics and
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20 cell-agnostic constant transcriptional kinetic rates, which are often violated in
21 complex and heterogeneous single-cell RNA sequencing (scRNA-seq) data. To
22 overcome these limitations, we propose DeepVelo, a novel method that esti-
23 mates the cell-specific dynamics of splicing kinetics using Graph Convolution
24 Networks (GCNs). DeepVelo generalizes RNA velocity to cell populations con-
25 taining time-dependent kinetics and multiple lineages, which are common in
26 developmental and pathological systems. We applied DeepVelo to disentangle
27 multifaceted kinetics in the processes of dentate gyrus neurogenesis, pancreatic
28 endocrinogenesis, and hindbrain development. The method infers time-varying
29 cellular rates of transcription, splicing and degradation, recovers each cell’s stage
30 in the underlying differentiation process, and detects functionally relevant driver
31 genes regulating these processes. DeepVelo relaxes the constraints of previous
32 techniques, facilitates the study of more complex differentiation and lineage de-
33 cision events in heterogeneous scRNA-seq data, and is more computationally
34 efficient than previous techniques.

35 2 Main

36 The concept of RNA velocity refers to the time derivative of the mRNA abun-
37 dance in a cell, which reflects the changing rate of RNA processing and degra-
38 dation. Current velocity estimation methods leverage the observation that the
39 abundance and ratio between unspliced pre-messenger RNAs and spliced ma-
40 ture messenger RNAs can be used to infer changes in gene expression dynamics.
41 Higher abundance and ratio of unspliced mRNAs to spliced mRNAs indicates in-
42 creasing transcription of a certain gene - in other words, up-regulation/induction
43 and a high velocity estimate. Conversely, a lower abundance and indicated ratio
44 lead to a low velocity estimate associated with down-regulation/repression. An
45 equilibrium phase occurs when this dynamical process reaches a stable steady-
46 state. Since unspliced mRNAs can be distinguished in common single-cell RNA
47 sequencing (scRNA-seq) protocols [16], the idea of estimating dynamic RNA
48 velocity using only static sequencing libraries becomes feasible.

49 The original RNA velocity approach [10] utilized the assumption that the
50 observed transcriptional phases in scRNA-seq last long enough to reach both
51 an apex of induction and a quiescent steady-state equilibrium. This technique
52 infers a per-gene steady-state ratio using linear regression, and then RNA veloc-
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53 ities are calculated as the deviation of the observed ratio from the steady-state
54 level. This workflow implies two underlying assumptions, (1)the assumption
55 of steady-state: For every gene, sufficient number of sequenced cells are at
56 the steady states; (2)the assumption of cell-agnostic kinetic rates: The
57 degradation and splicing rate for each gene is shared across all cells. These as-
58 sumptions are often violated in complex biological systems and bring about lim-
59 itations in downstream applications, particularly when cell states are partially
60 observed or undergo transcription dynamics more complex than the steady-
61 state pattern. Although a later approach, scVelo [1], attempted to generalize
62 the steady-state assumption by replacing these states with four transcriptional
63 states and modeling them with a dynamical model, the aforementioned second
64 limitation still remains. Further, scVelo assumes a cyclic trajectory within the
65 four transcriptional states for all observed genes, but this assumption also rarely
66 holds in real-world single-cell datasets with complex differentiation trajectories
67 and multifactorial kinetics [9]. Although several related works have been fur-
68 ther developed, including MultiVelo [20], Chromatin Velocity [20], protaccel [3]
69 for extending Velocity beyond RNA, VeloAE [21] for denoising velocity with
70 Deep Neural Nets, Dynamo [25] for exploiting the metabolic labeling sequenc-
71 ing data, the core velocity computation follows the original ideas and therefore
72 the aforementioned limitations still hold.

73 Overall, existing techniques assume each gene follows a pre-defined trajec-
74 tory depicted by constant cell-agnostic kinetic rates. This workflow implies that
75 each gene goes through the same velocity trajectory across all celltypes, and
76 limits the application in complex cell systems. To resolve these limitations, we
7 highlight the need for cell-specific kinetics which enables the modeling of multi-
78 lineage systems with heterogeneous cell populations. We propose DeepVelo,
79 a deep neural network based method for RNA velocity estimation. (1) Deep-
80 Velo is optimized using a newly introduced probabilistic learning framework,
81 resulting in an approach that is unbiased from pre-defined kinetic patterns. (2)
82 Empowered by Graph Convolutional Networks (GCN), DeepVelo infers gene-
83 specific and cell-specific RNA splicing and degradation rates. Therefore,
84 compared with the cell-agnostic parameters used in existing techniques [16, 4],
85 DeepVelo is able to model RNA velocity for differentiation dynamics of high
86 complexity, particularly for cell populations with heterogeneous celltypes and
87 multiple lineages.

88 We demonstrate the efficacy of DeepVelo on multiple developmental scRNA-
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89 seq datasets, including dentate gyrus neurogenesis [I1], pancreatic endocrino-
90 genesis [2], and hindbrain development [30]. DeepVelo yields more consistent
91 velocity estimates and accurately identifies transcriptional states than existing
92 models. We examine the estimated kinetic rates for individual genes and show
93 that the cell-specific rates accurately recover known differentiation trajectories
94 in challenging scenarios of time-dependent and multi-trajectory gene regulation
95 dynamics. For downstream tasks, DeepVelo can identify putative driver genes
96 of these transcriptional changes, which are more likely to characterize and be
97 involved in dictating lineage fate-decisions. The DeepVelo method is available
98 at (https://github.com/bowang-1lab/DeepVelo).

99 3 Results

100 3.1 The DeepVelo model
101 Modeling the transcriptional dynamics in single cells provides the theoretical
102 basis of RNA velocity. For each cell, the dynamics of transcription, splicing, and
103 degradation (Fig.1la) can be approximated as the following differential processes
104

S ()= By (Ou). O

ilt = Big (t)u(t) — Yi,g (t)s(t).

105 where «; 4, Bi g, 7,4 are the kinetic rates for cell ¢ and gene g. ¢ denotes a time
106 coordinate in cell development. Unspliced immature mRNA is first generated
107 by transcription of DNA and then post-transcriptionally modified and spliced
108 into mature RNA. The dynamics of unspliced RNA abundance, dq;gf), is mod-
109 eled by the first equation where «;, and 3; , denote the rates of transcription
110 and splicing, respectively. Similarly, the second equation models the dynamics
111 of spliced RNA abundance, d‘zlat), and ;4 denotes the rate for RNA degrada-
112 tion. Note these the kinetic rates are intrinsically cell-specific since there is a
113 high degree of variability in transcriptional dynamics between cells [12]. Fur-
114 ther, these intrinsic cell-specific transcriptional dynamics are likely to be similar
115 among similar celltypes [19], necessitating celltype-specific parameters. How-
116 ever, previous velocity estimation techniques [16, 4] assume global
117 constant kinetic rates across cells, leading to limitations in inferring
118 multi-lineage dynamics.
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Figure 1: Overview of the DeepVelo pipeline and velocity prediction
method. (a) DeepVelo estimates cell-specific transcription («;), RNA splicing
(8;) and RNA degradation rates (v;). (b) Overview of the velocity analysis
pipeline using DeepVelo. After read counting of unspliced and spliced mRNA,
preprocessing is done to ensure the stability of model training (Online methods),
followed by training and prediction of cell-specific kinetic parameters. These are
used to estimate the RNA velocity and perform downstream analyses, such as
visualization of velocity fields and pseudotime inference. (c) Overview of the
DeepVelo neural network model. Query cells (dark blue) and similar cells (light
blue) within a k-nearest neighborhood are input into the model. The Graph
Convolutional Network (GCN) encoder module encodes their spliced /unspliced
gene expression into latent space representations. The decoder module then
predicts the kinetic rates for RNA velocity and extrapolates gene expression
to future cell states. The model is optimized to match the extrapolation to
observed cell states at later developmental stages. After training and optimiza-
tion, these rates can be used to determine the RNA velocity vector for each cell
through cell-specific rates of transcription, splicing and degradation.
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119 DeepVelo models the kinetic rates per cell and per gene (Fig.1a), providing
120 sufficient expressive power for more faithful velocity estimates for individual
121 cells. Given the unspliced gene counts u(t) and spliced gene counts s(t) for
122 individual cells, DeepVelo estimates the derivatives of s(t) by modeling cell
123 and gene-specific coefficients o 4, §; 4,7i,¢ using a deep neural network model
124 (Fig.1b,c). Specifically, we predict a cell’s velocity vector and extrapolate the
125 cell state to match the future states extracted from the sequencing data (Fig.1c).
126 For each cell 7 in the population, we extract a group of neighbor cells .4; that
127 have similar expression profiles. We take the profiles of cell 7 and neighbor set .4;
128 as the input to DeepVelo model. The model consists of stacked layers of GCNs
129 and outputs the coefficients «; 4, B4, and 7;, in the final layer. Using these
130 coefficients, DeepVelo computes the velocity v; 4 = % for each cell accordingly
131 as in Eq.1.

132 To train the DeepVelo model, i.e. to update the parameters for accurate
133 velocity prediction, we first extrapolate the cell state by adding the velocity
134 derivative 9 onto the original profile s(t). Then, DeepVelo computes the
135 difference between the extrapolated state s(t+1) and the real profiles of a group
136 of downstream cells (The red cells in Fig.1c¢). The DeepVelo model parameters
137 are optimized to minimize this difference between the predicted future state
138 and the actually observed ones (Online methods - 5.3). After sufficient training
139 iterations, the model is finalized to provide accurate velocity estimates that take
140 into account the transcriptional dynamics unique to individual cells.

141 We tested DeepVelo on a number of developmental datasets to determine
142 RNA velocity, estimate cell-specific RNA kinetics, infer developmental pseu-
143 dotime, and prioritize genes for their potential role in differentiation through
144 driver gene estimation.

145 3.2 Recovering complex transcriptional dynamics for in-
146 dividual cells using DeepVelo

147 To test the ability to identify complex kinetics, we applied DeepVelo on a neuro-
148 genesis sScCRNA-seq dataset of the developing mouse dentate gyrus [1 1]. The data
149 consists of tissue samples from two experimental timepoints, P12 and P35 (post-
150 natal day 12 and 35), collected by a droplet-based single-cell RNA sequencing
151 protocol (10x Genomics Chromium Single-Cell Kit V1). After pre-processing
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Figure 2: Fine-grained temporal patterns in neurogenesis predicted by
DeepVelo. (a) Comparison of DeepVelo with the dynamical model from scVelo
[1]. The direction and magnitude of velocities are projected as arrows onto the
Uniform Manifold Approximation and Projection (UMAP) plot of gene expres-
sion values across cells. DeepVelo provides more consistent velocity estimates
with respect to the developmental process from immature granule cells to ma-
ture granule cells. (b) The boxplot and histogram of the overall consistency
scores for scVelo and DeepVelo, which indicate the consistency of velocity esti-
mates in a local neighborhood of the data. (c) The box plot and histogram of
the cluster/celltype-specific consistency scores, which utilize the neighborhood
consistency metric on a per cluster/celltype basis. (d)(e) The spliced /unspliced
phase portrait for Tmsb10 and PppS3ca, respectively. Celltypes are shown in the
same color as in panel (b). (f)(g) Velocity and gene expression values projected
onto UMAP plots for Tmsb10 and PppSca, respectively. Velocity and gene ex-
pression values show consistent patterns across celltypes: high velocity values
(green in velocity plot) are correctly shown in the subset of cells developing to
high gene expression values (purple in expression plot)
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152 (Online Methods - 5.1), we calculated the RNA velocities using the proposed
153 DeepVelo model and the dynamical model from scVelo [1]. The velocity plots
154 are made by projecting the velocity vectors onto the UMAP [21]-based em-
155 bedding of the data. In the velocity estimates (Fig.2a), the granule cell lineage
156 dominates the main structure, where the neuroblast cells develop into immature
157 and mature granule cells. The directions of these velocity estimates between
158 celltypes reflect the actual development orders [11].

159 When examining the main lineage toward the terminal celltype of granule
160 cells, although all models capture the principle direction, DeepVelo can show a
161 more consistent flow from the neurogenic intermediate progenitor cells (nIPC)
162 to neuroblasts, and finally to granule cells. DeepVelo particularly indicates that
163 immature granule cells differentiate into mature granule cells in a manner more
164 faithful to the true trajectory compared with the dynamical model (Fig.2a -
165 zoom-in panel).

166 The estimated velocities by DeepVelo show higher consistency in quantita-
167 tive analysis. The consistency score is computed as follows - we first compute
168 the average cosine similarity of the velocity vector of each cell to its neighbors,
169 which is defined as the overall consistency. A similar neighbor-wise consistency
170 was also proposed in scVelo [1]. However, the overall consistency could be bi-
171 ased toward over-smoothed estimations, which do not account for branching
172 lineages. Therefore, we propose the cluster/celltype-wise consistency as a com-
173 plement to the overall score, which computes the average cosine similarity of
174 each cell’s velocity to all velocity vectors of the same celltype (Online Methods
175 - 5.4). For both metrics, DeepVelo shows significant improvements over the
176 scVelo dynamical method with significantly higher average consistency scores
177 (Mann-Whitney U Test p < 1.0 x 1073% Fig.2b,c).

178 Examined at the individual gene level, DeepVelo shows biologically mean-
179 ingful velocity patterns. For example, Tmsb10 is one of the major regulators to
180 the inferred dynamics of granule lineage, and it plays an important role in the
181 development of hippocampal CA1 region [1]. In Fig.2f, velocities derived from
182 the DeepVelo are consistent across velocities of neighboring cells. The region
183 of cells showing high velocities of Tmsb10 aligns well with the region of high
184 Tmsb10 expression. The same alignment is also observed in the example of
185 another regulatory gene, Ppp3ca (Fig.2g). In further analysis (Fig.3a), we also
186 observed that DeepVelo clearly disentangles the velocity vectors between the
187 granule (blue) and endothelial lineages (orange), whereas, in the steady-state
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188 and dynamical models, both lineages have intertwined velocities. We discuss
189 this advantage of celltype-specific prediction in Section.3.3.

190 3.3 DeepVelo’s cell-specific kinetic rates enable accurate
191 quantification of time-dependent and multifaceted
192 gene dynamics

193 Due to the cell-specific estimation of (g4, 84,7 in Eq.1), DeepVelo for the
194 first time provides a profile of individual kinetic rates for each cell. This enables
195 new approaches for cell-specific trajectory analysis, visualization, and charac-
196 terization. We show the UMAP projection of all cell-specific kinetic rates of
197 2930 cells (Fig.3a). Although DeepVelo is unaware of the celltypes during
198 training, the learned kinetic rates are naturally clustered into groups aligned
199 with celltypes. Further, clusters of cells from the same lineage (e.g. the out-
200 lined granule lineage) are positioned closely compared to other cells. Overall,
201 the similarity of learned kinetic rates reflects the biological similarity of cells at
202 both the celltype and lineage levels. This indicates that DeepVelo can estimate
203 kinetics that reflects the dynamics of individual cells as opposed to the entire
204 dataset.

205 Velocity-associated kinetic rates across cells may vary for genes undergoing
206 dynamic regulation involving multiple processes. For example Battich, Stoeger,
207 and Pelkmans [3] observed varying kinetic rates in the differentiation of in-
208 testinal stem cells. These varying kinetics are often misinterpreted in existing
209 velocity methods [5]. This stems from the fact that the kinetic rates in previous
210 methods are modeled as constant cell-agnostic coefficients in first-order equa-
211 tions (Eq.2), which lack the ability to model multifaceted dynamical variation.
212 In contrast, DeepVelo estimates transcriptional dynamics for different celltypes
213 and cell states by introducing cell-specific kinetic rates, leading to better veloc-
214 ity estimation in time-dependent and complex multi-lineage systems. Here, we
215 show this improvement using two challenging scenarios:

216 (1) Estimating velocity for genes that are separately regulated in
217 two lineages. We used the previously analyzed dentate gyrus cell population
218 and determined genes with multifaceted kinetics [11]. Tmsb10 shows multiple
219 kinetic regimes and undergoes multiple trajectories. We plot the spliced and
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Figure 3: Velocity estimation for branching and time-dependent ki-
netic rates. (a) The UMAP projection of the estimated kinetic rates of 2930
cells in the dentate gyrus developmental data. Cells of the same celltypes are
clustered together by kinetic rates. Further, cells from the same lineage (e.g.
the outlined Granule lineage) are positioned closely. In general, the similarity of
learned kinetic rates reflects the biological similarity of cells, although the Deep-
Velo model is unaware of celltype labels. (b) Projection of estimated velocity
(arrows) onto the spliced /unspliced phase portrait of Tmsb10 by DeepVelo. The
endothelial cells undergo a separate trajectory on the phase portrait, aside from
the main trajectory containing neuroblast cells, granule immature and granule
mature cells. DeepVelo successfully captures both trajectories. In the zoomed
view, cells within the same region comprising of different celltypes are correctly
predicted to have distinct velocity directions. (c) Phase portrait of Tmsb10 with
RNA velocity predicted by the scVelo dynamical model. Only the main trajec-
tory of granule lineage is captured, but the endothelial cells are predicted with
incorrect directions. (d-h) A simulation of time-dependent degradation rates.
The cell color indicates its pseudotime in simulation. (d) Reference velocity
with constant kinetic rates. (e)(f) Constant and time-dependent degradation
rates as shown on phase portraits. The gene with the time-dependent rate (f)
undergoes a reversed trajectory. (g)(h) Estimated velocities by DeepVelo and
scVelo, respectively, for the simulated 500 cells with time-dependent degrada-
tion rates. DeepVelo correctly recovers the directions from regions of earlier
time to later ones.
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220 unspliced reads across all cells in this dataset, in other words, the phase por-
221 trait of Tmsb10 (Fig.2d). The cells in the granule lineage (including neuroblast,
222 granule immature and granule mature celltypes) form a cyclic trajectory. Mean-
223 while, the endothelial cells are not a part of the granule lineage and undergo a
224 separate trajectory. These two regimes are likely regulated by different kinetic
225 rates.

226 DeepVelo correctly predicted the RNA velocity patterns for both regimes
227 (Fig.3b). For the granule lineage, DeepVelo captures the direction of velocity
228 from neuroblast cells to granule immature cells and then to granule mature
229 cells. For the endothelial cells, the predicted velocity direction correctly points
230 to the position of the same celltype with amplified spliced reads. We also found
231 that DeepVelo learns to assign similar velocity directions for cells of the same
232 type. In contrast to DeepVelo, scVelo forces the RNA velocity to follow the
233 cyclic trajectory assumed by the model (Fig.3c). As a result, although scVelo
234 successfully captures the trajectory for the granule lineage, it incorrectly points
235 the velocity estimates of endothelial cells to the position of neuroblasts (Fig.3c
236 - Zoom-in panel).

237 Additionally, DeepVelo is capable of predicting distinct velocity directions
238 for cells within the same region (Fig.3b). The cells in the zoomed view, includ-
239 ing both the endothelial and neuroblast cells, employ similar RNA dynamics
240 (through the levels of spliced and unspliced reads) of Tmsb10. However, the
241 distinct directions for each celltype are correctly predicted by DeepVelo. This
242 is due to the ability of DeepVelo to estimate distinct sets of kinetic rates across
243 celltypes, as shown in Fig.3a. In contrast, scVelo uses constant kinetic rates
244 per gene and predicts a uniform direction for the same region of cells. Overall,
245 a cell-specific model such as DeepVelo broadens the application of RNA veloc-
246 ity for genes with multifaceted kinetics, such as Tmsb10 in the dentate gyrus
247 developmental data.

248 (2) Estimating velocity for genes with time-dependent kinetic rates.
249 We simulated a population of 500 cells and 30 genes using the simulator pro-
250 vided by the scVelo package [1]. We first determined the reference velocity
251 in the setting of constant kinetic rates across cells (Fig.3d,e). From here, the
252 degradation rate, gamma, of 3 out of 30 genes was set to increase over time. As
253 a result, the genes underwent a reversed trajectory as shown in the respective
254 phase portrait (Fig.3f). This simulation procedure of reversed dynamics was
255 originally proposed in Bergen et al. [5], and it sets up a challenging scenario for

11
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256 the estimation of RNA velocity. The resulting velocity plots of DeepVelo and
257 the dynamical model of scVelo are shown in Fig.3g,h, and scVelo struggles to
258 predict velocities from early to later timepoints while DeepVelo is able to re-
259 cover the correct velocity directions from regions of earlier to later pseudotime.
260 This advantage is because DeepVelo learns to find potential future cell states
261 by integrating across all genes (Online Methods - 5.3), thus it is more robust to
262 the time-reversed directions of a portion of genes in the dataset.

263 3.4 Tracking the ordering of cellular development using
264 DeepVelo and diffusion pseudotime

265 The RNA velocity estimated by DeepVelo can also be used to improve the pre-
266 diction of pseudotime for cell states across a developmental trajectory. We first
267 compute the velocity connectivity graph to represent cell-cell relationships and
268 use this graph as the basis to compute a diffusion pseudotime [10] mapping (On-
269 line Methods - 5.5). We compare the pseudotime estimates (Fig.4a) using Deep-
270 Velo with the latent time (Fig.4c) estimates by the dynamical model from scVelo
271 on a scRNA-seq dataset of pancreatic endocrinogenesis with ground-truth tem-
272 poral measurements. For the velocity plots, DeepVelo successfully demonstrates
273 the main structure of EP cells developing into terminal celltypes - alpha, beta
274 and delta (Fig.4b) with more consistent velocities (Fig.4e). For pseudotime
275 comparison, both methods provide accurate predictions. Notably, DeepVelo
276 more faithfully preserves the time ordering between the terminal states of Al-
277 pha and Beta cells (Fig.4a), where the Alpha cells are developed earlier at E12.5
278 and the Beta cells appear later at E15.5 (Fig.4f,g).
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Figure 4: Velocity and pseudotime plots for pancreatic endocrinogene-
sis [2]. (a) The pseudotime prediction from DeepVelo accurately assigns alpha
and beta cells to accurate developmental timepoints. Particularly, the progen-
itor cell cluster is correctly located at the upper left quadrant of the UMAP
projection. The difference between the terminal alpha and beta cells is well cap-
tured, where alpha cells were developed earlier at E12.5 and beta cells appeared
later until E15.5. (b) Velocity values derived from DeepVelo are projected onto
the UMAP-based embedding and visualized. DeepVelo successfully captures
the main structure of EP cells developing into the terminal celltypes of alpha,
beta and delta cells. (c),(d) For comparison, the latent time and velocity com-
puted by the dynamical model from scVelo. (e) Distribution of the overall
RNA velocity consistency scores for DeepVelo and scVelo. (f,g) The histogram
of pseudotime predictions for beta and alpha cells, by DeepVelo and the scVelo
dynamical model, respectively. Beta cells are expected to have a larger per-
centage of cells with higher pseudotime values, which is true of the DeepVelo
predicted values.
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279 3.5 DeepVelo infers functionally relevant lineage-specific
280 genes and processes in hindbrain development

281 To test velocity methods in a complex setting with multiple lineages, we ap-
282 plied methods to a mouse hindbrain development dataset [30] (Fig.5a). Specif-
283 ically, we filtered the data corresponding to the junction and differentiation
284 between the GABAergic and gliogenic lineages (Online Methods - 5.1). In a
285 multi-faceted system such as this, which is typical of developmental scRNA-
286 seq datasets, considering cell-agnostic kinetic rates is haphazard because of
287 the different RNA velocity dynamics among lineages. DeepVelo’s ability to
288 learn cell-specific kinetic rates alleviates this assumption and accounts for the
289 multi-faceted differentiation of the GABAergic and gliogenic lineages and their
290 respective celltypes. The result of DeepVelo (Fig.5b) shows the RNA velocity
291 over the developmental process from Neural stem cells to the differentiating
292 GABA interneurons and gliogenic progenitors. We performed trajectory in-
293 ference using directional PAGA [32] over the velocity graph of DeepVelo. We
294 found that DeepVelo was able to recapitulate ground-truth differentiation pat-
295 terns - specifically the branching between VZ progenitors and differentiation
296 GABA interneurons and gliogenic progenitors (Fig.5¢). The cluster of neural
297 stem cells is well recognized as the origin celltype with outward velocity arrows
298 and a low pseudotime index, while the GABA interneurons are confirmed as a
299 terminal celltype with incoming velocity arrows and a high pseudotime index.
300 In comparison, the scVelo dynamical model predicts partially inverse velocity
301 directions for the gliogenic progenitors, leading to incorrect relations in the
302 inferred trajectory (Fig.5f, highlighted regions).

303 Using the velocity vector for each cell, we built a connectivity graph (Online
304 Methods - 5.5) of the scRNA-seq data. CellRank [18] is a recent visualization
305 and analysis toolbox for scRNA-seq data that utilizes the connectivity graph
306 to predict cell’s fate mapping, which corresponds to the probability of the cell
307 differentiating to a terminal state in the lineage(s). After determining cell fate,
308 gene importance for differentiation can be calculated based on the correlation
309 of gene expression with transition and differentiation probabilities towards all
310 terminal states. The genes that display dynamical behavior across a lineage are
311 termed putative ”driver genes”, as these are the genes most likely to be involved
312 in regulating the differentiation process itself. CellRank has been reported to
313 work well with other velocity methods, such as scVelo, to infer lineage-specific
314 drivers. We incorporated this toolbox with the predicted velocity connectivity
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Figure 5: Velocity, trajectory, and driver gene estimation of devel-
oping mouse hindbrain cells. (a) The putative developmental order for six
celltypes in early mouse hindbrain development. (b) The velocity projected onto
the t-distributed stochastic neighbor embedding (tsne) plot of gene expression.
DeepVelo’s RNA velocity reveals the temporal order in the developing mouse
hindbrain, including cells from early progenitors, GABAergic, and gliogenic lin-
eages. (c) Velocity-based PAGA trajectory inference using DeepVelo’s velocity
estimates. The predicted trajectory correctly reflects the developmental rela-
tions shown in (a). (d) The top 60 driver genes with highest correlation to the
GABAergic lineage computed using DeepVelo’s velocity estimation. The hori-
zontal coordinates represent the pseudotime estimates. (e) Gene phase portrait,
velocity, and gene expression plots of selected driver genes. Known functional
genes in the GABAergic lineage - Tfap2b, Tfap2a, Lhx5, and Neurod6 - are com-
puted among the top driver genes. (f) The velocity plot and trjectory inference
using the scVelo dynamical model.
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315 graph from DeepVelo and determined driver genes in the variable gene subset
316 of the data for both the GABAergic and gliogenic lineages.

317 Within the top 100 driver genes across both lineages of interest, we ob-
318 served groups of genes showing particular abundance in specific celltypes in a
319 temporal manner (Fig.5d). For example, Tfap2a, Tfap2b, and Lhz5, which are
320 two known differentiation genes involved in the specification of GABAergic in-
321 terneurons during hindbrain development, are listed in the top 100 driver genes
322 from DeepVelo for the GABAergic lineage (Fig.5e) [34, 23]. Similar results
323 were found for the gliogenic lineage from DeepVelo, with detection of known
324 glial cell differentiation regulators in Hes! and Soz9 (Supplementary Table 1)
325 [33, 31]. DeepVelo also picked up hits that were novel and not detected by
326 scVelo, such as Neurod6 in the GABAergic developmental lineage (Fig.5e). Al-
327 though the role of Neurod6 in the differentiating GABAergic interneurons and
328 their development is unclear, previous literature has indicated the gene’s in-
329 volvement in regulating the specification of inhibitory GABAergic interneuron
330 subpopulations in the hindbrain and spinal cord [27]. This indicates a testable
331 link and hypothesis for the differentiation of these cells in the junction within
332 the GABAergic and gliogenic lineages, highlighting the ability of DeepVelo to
333 guide searches of functional genes in scRNA-seq data and potential drivers of
334 the differentiation process.

335 To compare the results of driver analysis when employing CellRank with
336 different velocity outputs, we determined driver genes for the gliogenic and
337 GABAergic lineages using both scVelo and DeepVelo. As the complete set of
338 genes driving differentiation in the complex hindbrain developmental system is
339 unknown, we sought to infer the relevance of inferred driver genes in two ways:
340 1) By considering their overlap with predicted marker genes from the original
341 analysis, as these genes are characteristic of celltype identity and should be
342 correlated with lineage specification, and 2) By considering their overlap with
343 transcription factors (TFs), as TFs are the main elements responsible for dif-
344 ferentiation and establishing transcriptional and cellular identity. We analyzed
345 and compared the top 100 driver genes for both the GABAergic and gliogenic
346 lineages predicted by the scVelo and DeepVelo methods (Supplementary Table
347 1). DeepVelo predicted driver genes that overlapped with more of the original
348 markers from Vladoiu et al. [30], for both the GABAergic and gliogenic lineages
349 (Fig.6a) (Supplementary Table 2). Further, to determine the signal across all
350 driver genes, not limiting to the top 100, we determined the rankings of known
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Figure 6: Functional enrichment of DeepVelo predicted driver genes.
(a) Overlap of the top 100 driver genes from scVelo and DeepVelo for GABAer-
gic and gliogenic lineages with annotated lineage marker genes. (b) Ranking
density of marker-overlapping driver genes (across all 2000 tested genes) for
scVelo and DeepVelo, separated by the GABAergic and gliogenic lineages, re-
spectively. (c¢) Overlap of top 100 driver genes from DeepVelo and scVelo for
both lineages with annotated transcription factors. (d) Pathway enrichment
analysis results for the top 100 scVelo and DeepVelo driver genes, respectively,
in the GABAergic and gliogenic lineages. (e) Functional signal in the enriched
pathways for scVelo and DeepVelo, based on the presence of pathways involved
directly in neurogenesis (”Neurogenesis”), not specific to neurogenesis but in-
volved in development (”Developmental non-neuronal”), and not specific to
either development or neurogenesis (”Non-specific”). (f) The top 20 DeepVelo
pathway enrichment analysis results, based on FDR corrected p-values, for the
GABAergic and gliogenic lineages, respectively.
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351 marker genes in the GABAergic and gliogenic lineages across all tested driver
352 genes. These rankings were determined based on the correlation scores, which
353 indicate the relative importance of driver genes to a specific lineage. In this case,
354 DeepVelo had higher rankings compared to scVelo for known GABAergic marker
355 genes in the driver analysis (Mann-Whitney U Test p = 1.376 x 107°7), while
356 the ranking differences in the gliogenic lineage were non-significant (Fig.6b).
357 When examining the transcription factor overlap in the top 100 driver genes,
358 DeepVelo had more hits than scVelo for the GABAergic lineage, and an equal
359 number of hits for the gliogenic lineage (Fig.6¢).

360 For further examination of the results of driver analysis, we took the top
361 100 driver genes for the GABAergic and gliogenic lineages from DeepVelo and
362 sought to determine their functional signal as gene-sets through pathway en-
363 richment analysis. Overall, 97 and 151 pathways were found to be significantly
364 enriched for the GABAergic and gliogenic lineages, respectively, for DeepVelo
365 (Fig.6d) (Supplementary Table 3). These pathways were analyzed for the pres-
366 ence of neurogenesis and developmental results, for which we did see a functional
367 enrichment in both lineages (Fig.6e). More specifically, the top 20 pathways
368 for each lineage, ranked in terms of FDR-corrected p values, revealed enrich-
369 ment of pathways relevant to neuronal differentiation processes (Fig.6f). In the
370 GABAergic lineage, enriched pathways included: requlation of neuron projec-
371 tion development, neuron differentiation, and neurogenesis (Fig.6f). The results
372 from the gliogenic lineage had an even more relevant terms, namely gliogene-
373 sis and glial cell differentiation (Fig.6f). When comparing these results with
374 pathway analysis performed on the scVelo top 100 driver genes, we observed a
375 much lower percentage of functional enrichment for neurogenesis and develop-
376 mental pathways compared to DeepVelo for the GABAergic lineage (Fisher’s
377 Exact Test p = 1.407 x 107%) (Fig.6e), while the difference between the glio-
378 genic results was non-significant. These functional pathway enrichment results
379 highlight the relevance of the driver genes predicted by the DeepVelo method
380 and increased functional relevance compared to those predicted by scVelo.

381 3.6 DeepVelo is computationally robust and efficient across
382 multiple scRNA-seq datasets

383 To examine the robustness of the DeepVelo RNA velocity estimates across set-
384 tings, we tested DeepVelo on five different scRNA-seq datasets. Apart from the
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385 previously analyzed datasets, DeepVelo also recovers accurate RNA velocity
386 vectors and developmental relations on a large-scale dentate gyrus data from
387 La Manno et al. [16] (Supplementary Fig.S3). On all tested datasets, DeepVelo
388 achieves higher average scores and lower variance in terms of the overall consis-
389 tency compared to the scVelo dynamical model and the scVelo stochastic model
390 (Supplementary Table 4).

391 We further visualized the influence of key hyperparameters - including the
392 GCN layer size, gradient descent learning rate, and number of training epochs
393 - on the dentate gyrus neurogenesis data (Supplementary Fig.S4). DeepVelo
394 is robust to changes in these hyperparameters and consistently estimates the
395 biologically accurate RNA velocity directions, especially for the main granule
396 lineage.

397 Lastly, we compared the computational runtime of DeepVelo with other
398 velocity estimation methods. Using the same CPU (central processing unit)
399 device, DeepVelo (cpu) achieved a 4 fold speedup with respect to the scVelo
400 dynamical model. Using a more powerful GPU (graphical processing unit) for
401 the deep learning backbone, DeepVelo (cpu+gpu) can be further accelerated
402 10-20 times across datasets. For example, DeepVelo completed the training
403 and estimation for the 13501 cells of developmental hindbrain data in just 36
404 seconds (Supplementary Fig.S5).

405 4 Discussion

406 DeepVelo offers a novel velocity estimation framework that goes beyond assump-
407 tions of constant RNA splicing and degradation rates, and instead estimates
408 these rates at a cell-specific level. By analyzing the performance of DeepVelo
409 and existing velocity estimation techniques, we have demonstrated that Deep-
410 Velo’s cell-specific estimation through a novel deep learning method allows for
411 the detection and specification of multiple lineages in calculating RNA veloc-
412 ity. Realistic single-cell RNA sequencing settings will likely have more than one
413 lineage/trajectory in a given sample, and thus it is imperative to develop meth-
414 ods that can account for these multifaceted dynamical systems. DeepVelo’s
415 ability to model these multifaceted dynamics was demonstrated through anal-
416 ysis of complex differentiation systems, such as the development of the dentate
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417 gyrus, pancreatic endocrinogenesis, and the hindbrain development. Lastly, we
418 demonstrated that DeepVelo can be utilized to identify functionally relevant
419 genes that are enriched along the differentiation trajectory. We envision that
420 DeepVelo will be more readily applicable to these realistic developmental set-
421 tings as compared to previous techniques.

422 DeepVelo internally predicts the first-order derivative of expression per gene
423 based on the transcriptome-wide reads of all selected genes. The ability to
424 learn the interaction/regulation between genes could be further explored, for
425 example, by replacing the GCN model with recent transformer networks [29]
426 which could explicitly model the interaction of internal gene representations.
427 This could allow for more interpretable velocity and driver-gene estimates, by
428 considering correlations of kinetics and expression patterns between genes and
429 cells. Recent work shows promising research directions by extending the velocity
430 of cellular dynamics from RNA to proteins [3], epigenomics [20], and multi-omics
431 velocities [20]. DeepVelo could be naturally updated and well fitted into these
432 settings by enriching input and output space with additional -omics information.
433 Ultimately, the estimation of cell-specific kinetics across multiple steps in the
434 central dogma may increase the signal-to-noise ratio [5] and further accurately
435 capture information related to cellular development.

436 A major limitation of driver analysis through RNA velocity estimation is
437 potentially spurious driver genes being picked up due to the correlation of gene
438 expression during differentiation. Although key regulators will display dynam-
439 ical expression behavior during lineage specification, the same is likely to be
440 true of their downstream targets and other ”passenger” genes, resulting in high
441 likelihoods towards being a driver /regulator. This is likely the reason why a sig-
442 nificant transcription factor enrichment was not observed in the top 100 driver
443 genes in the hindbrain developmental data for either scVelo or DeepVelo. We en-
444 vision a more comprehensive driver analysis technique would take into account
445 multi-lineage probabilities (preventing negative correlation between top drivers
446 of two lineages) and would factor in correlations between driver analysis results,
447 thereby removing spurious hits. Apart from the driver gene analysis, building
448 up a theorem to verify the confidence of velocity estimation is another chal-
449 lenge. Empirical metrics, such as the consistency of velocity directions among
450 neighbor cells, have been used in existing techniques [4, 24]. However, there
451 is a lack of probabilistic tools to test the kinetics estimated by either previous
452 methods or DeepVelo. We leave this to future works.
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453 RNA velocity techniques have allowed for insights into biological differen-
454 tiation from single-cell RNA sequencing data that go beyond oversimplified
455 trajectory inference models, and instead infer dynamic processes that indicate
456 the direction and magnitude of differentiation potential. Although many major
457 limitations and assumptions for RNA velocity methods still exist, we antici-
458 pate that continued methodological development in this field will lead to better
459 tools to study differentiation and development in a single-cell setting. DeepVelo
460 overcomes limitations of previous techniques in a major aspect with regards to
461 cell-specific model estimates, and can be used for more robust velocity estima-
462 tion in multi-lineage systems, yielding better biological insights into real and
463 complex developmental systems.

464 5 Online methods

465 5.1 Preprocessing the scRNA-seq data for DeepVelo

466 The dentate gyrus neurogenesis |1 1] and pancreatic endocrinogenesis [2] data are
467 available at the National Center for Biotechnology Information’s Gene Expres-
468 sion Omnibus repository. The accession number is GSE95753 and GSE132188.
469 In this work, we use the zipped data of these two sequencing datasets provided
470 by the scVelo packageBergen et al. [1](https://scVelo.org). The data is in
471 h5py file format and contains spliced and unspliced gene readout.

472 Mouse hindbrain developmental data from Vladoiu et al. [30] was used to
473 test velocity techniques for estimation at a lineage junction. As the data was not
474 available in loom format for velocity analysis, fastq files were reprocessed into
475 loom files using kallisto reference-free alignment through the loompy pipeline
476 [6]. This was done individually for each timepoint (E10, E12, E14, E16, E18,
477 PO, P5, P7, P14) and processed loom files were concatenated. For the purposes
478 of the analysis, the junction between the GABAergic and gliogenic lineages was
479 utilized. The following celltypes were subset from timepoints E10, E12, E14,
480 E16, E18, PO, P5, P7, and P14 - Neural stem cells, Proliferating VZ progenitors,
481 VZ progenitors, Differentiating GABA interneurons, gliogenic progenitors, and
482 GABA interneurons. Estimates of spliced and unspliced counts from the kallisto
483 quantification method were used for testing DeepVelo and scVelo.
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484 Processing of unspliced and spliced counts in differing formats was done
485 via three steps and using the scVelo package. First, the spliced and unspliced
486 gene matrices were normalized across genes. In more detail, preprocessing in-
487 cludes expression matrix normalization and nearest-neighbor-based smoothing.
488 We used the scv.pp.filter_and_normalize function from scVelo for these
489 steps with default parameters. We selected the top 2000 genes with the most
490 spliced and unspliced gene counts across cells. The principal components are
491 computed afterward using logarithmized spliced counts, and then we smooth
492 the expression reads using the average of 30-nearest-neighbors for each cell.
493 5.2 Modeling individual transcriptional dynamics
494 The transcriptional dynamics depicts the process from generation to degrada-
495 tion of mRNA molecules. It captures unspliced premature mRNAs u(t) with
496 transcription rate «, splicing into mature mRNAs s(¢) with rate § and the
497 degradation of spliced mRNA with rate 7. The simplified gene-specific dynam-
498 ics with constant splicing and degradation rates are

(ZZZ; = (t) - Bu (t) ) (2)

M0 = Bu(t) - s (1).

499 This equation is used in existing velocity estimation methods, and it omits the
500 difference in kinetic rates («, 8,7) across celltypes. Instead, we propose a new
501 deep learning method to capture individual cell kinetics.
502 First, we build a graph convolutional network model to predict cell-specific
503 kinetic rates. In this work, we employ a nearest neighbor graph based on the
504 gene expression of all sequenced cells G = (V, ). The vertex v; € V in the graph
505 denotes the expression reads of a cell ¢, which include its spliced and unspliced
506 gene expression v; = [s;,u;]. A cell 7 is connected to cell j (i.e. &; = 1) if
507 cell j is the one of top 30 nearest neighbors based on the Euclidean distance
508 of the gene expression. We input this neighbor graph to DeepVelo. We chose
509 the graph representation because it considers the vicinity of local cells’ gene
510 expression. This has more expressive power than the expression of individual
511 cells because of the sparse and noisy nature of sequenced reads. Taking the
512 neighborhood expression into account smooths the velocity estimation.
513 Graph convolutional network (GCN) is a type of deep neural networks that
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514 learns node embeddings based on message passing along the graph edges [15].
515 Given a graph with nodes V and adjacency matrix A, a multi-layer neural
516 network is constructed on the graph with the following layer-wise propagation
517 rule:

) — ([)—%AD—%HU)WU)) (3)
518 where H® denotes the node feature vectors at the I-th layer, A = A+ I is the
519 adjacency matrix with self—connectlons D is the diagonal degree matrix such
520 that D;; = Z A”, WO is the layer-specific trainable parameter matrix, and o
521 is the RELU actwa‘mon function.
522 In this work, the input feature H® € RV*2P to GCN is the cellular gene
523 matrix. Each row in H stands for the aforementioned vertex v;,. H contains
524 the population of N cells, and the dimension 2D equals the number of selected
525 spliced and unspliced genes combined, D = 2000 by default. The adjacency
526 matrix A € R¥*Y depicts the aforementioned nearest neighbor graph, where
527 the element at position 7, j has value 1 if the cell j is one of the nearest neighbors
528 of cell i, otherwise the value is 0. The GCN model consists of stacked graph
529 convolution layers, i.e. Eq. 3. The output of the final layer H” is processed
530 by a fully connected neural network, which then yields the estimated velocity
531 parameters o« € RV*P 5 € RV*P and v € R¥*P for all cells and genes.
532 Finally, the estimated velocity 9; € RP for each cell is computed as

U; = Bt — ViSi, (4)

533 where 3; and ; are the i-th row in 8 and v, u; and s; are the unspliced and
534 spliced reads of cell i.

DeepVelo also supports estimation of the derivative of unspliced RNA, namely

uns which is an estimation for the d“(t) in Eq.1.

0
0;" = — Bisi.
535 5.3 Probabilistic learning for RN A velocity
536 In this section, we propose a probabilistic learning framework for RNA velocity
537 to optimize the velocity prediction in Eq.4, and then introduce the specific
538 training objective following this framework.

23


https://doi.org/10.1101/2022.04.03.486877
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486877; this version posted May 30, 2022. The copyright holder for this preprint (which

539

540
541
542

543
544

545
546

547
548
549
550

551
552
553
554
555
556

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

5.3.1 Extrapolate cell states from a probabilistic perspective

The RNA velocity is defined as the time derivative of spliced mRNA (Eq. 1).
For a specific cell 7 out of the sequenced cell population €2, the velocity vector
v; contains the derivative for all genes, as

_dsp dsY dsZ@) ds{PV

R T - ) Y : ’ 5
T T i) (5)
where sl(-g) denotes the amount of spliced mRNA of one gene. s; is the spliced
gene expression vector containing [351), 352), . ,s,g‘DD].

We introduce the multivariate random variable G ;(;) to represent the (spliced)
gene expression that a cell i could have at its developmental time 7(i), where
T is an operator to obtain a cell’s current time in its developmental process.
Thus, the scRNA-seq results could be viewed as an observation of G; (;) taking
the value s;. For simplicity, let us use ¢t = 7(i) as the time of cell ¢. Similarly,
we define the random vector V;; as the possible velocities that cell 7 can take
at time ¢, and v; is an observation of V;,;. The relation between the expression
and velocity random vectors is,

G, 4
Vie = =
T dt

We can use the forward difference to approximate the derivative if the time
interval is sufficiently small, as

Vie = AGi,t = Gi,tJrl - Gi,t- (6)

Notably, it is impossible to directly observe the future stage G,y for cell
expression from scRNA-seq, because the sequencing protocol is destructive, and
the cells no longer exist after sequencing. Thus, the estimation of G4 is
required.

DeepVelo utilized the mRNA expression of developmentally close-by cells to
estimate G, ;41 and for this reason, we introduce the continuity assumption:
we assume that the sequencing data captures a continuous spectrum of cells in
consecutive development stages. Particularly, there exists a ¢+ 1 neighborhood,
Nii11, in the sequenced cell population, so that the gene expression of these
cells within the neighborhood are similar enough to the potential expression of
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557 cell 7 at t+ 1. In other words, the expected expression of the t+ 1 neighbor cells
558 have the same distribution as the expression of cell ¢ at ¢ + 1. In comparison
559 to the previous strict assumptions (i.e. the observation of steady states or the
560 global constant kinetic rates) in existing approaches, the continuity is primarily
561 satisfied in sequencing data of large cell populations. Formally, the continuity
562 can be expressed as

VieQ, INim1 CQ, st
zt+1 Z G]T Z_>])

JENG 141 <7)

= K G'T )E

P(Hj)[ i)
563 where i — j denotes that cell ¢ develops at time t + 1 into a cell that has the
564 same gene expression vector as cell j, and P(i — j) is the probability of this
565 event. The expectation of GG, ;1 over all cells in the sequenced population €2 is

E [Gi¢1] = E [ E [Gj,r(j)]}

i€Q i€Q | P(i—)

ElGg...— E ol =
L [Gz,tﬂ P(i_m,)[GJ,T(J)]] 0,

)

(8)

566 Taking in Eq.6, we have
E |G+ Vii— E |Gi.pn]| =0 9
RN [ it T Vit P(Hj)[ Jﬂ'(])]:| 9)
567 The observed sequenced expression in a large cell population can be used to
568 derive the Monte Carlo estimation of the outer expectation over cell 7. Assume
569 each cell expression vector s; is sequenced independently,
1
52 S; +v; — Z s;P(it—7)| =0 (10)
ieQ JEN 141
570 Because the v; and NV; 441 are not directly observed, given a set of estimated
571 and N 111, we use the (gene-wise) squared difference as an objective to measure
572 how close to zero the value in Eq.10 is.

2

=S st Y sP)) (1)

1€Q) jENi,t+1
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573 This equation provides a general objective for any RNA velocity methods that
574 generate the estimation of v;, N; ;41 and P(i — j).
575 5.3.2 Training the DeepVelo model
576 We follow the Eq.11 to develop the objective to optimize the parameters of
577 DeepVelo model. The objective computes the difference between the estimated
578 velocity 9; (Eq.4) of DeepVelo and possible future cell states.
579 We first select K. number of nearest neighbor cells for each cell ¢ by comput-
580 ing the pairwise distances of spliced gene expression. By default, we compute
581 the Euclidean distance of the first 30 PCA dimensions of gene expression vec-
582 tors. These selected cells compose the neighborhood of cell 7, i.e. N;. We
583 estimate the P(i — j) using
1 . ~ .
o +if Seps(s; — 84,0;) > 0 and j € N,
Palimj)= {7 Mol o) = 0md, (12)
0  otherwise,
584 where S.,s denotes the cosine similarity and Z is a normalizing factor, i.e. Z
585 equals to number of cells in N satisfying Seos(sj — 8i,0;) > 0. The intuition
586 of P., is that if the sequenced data satisfy the continuity assumption and the
587 time interval between ¢ and ¢ 4 1 is small enough, then the possible future cell
588 state j € N;,11 is also close to the cell state of current cell i. Therefore, given a
589 sufficient large K., N1 C N;. Further in Eq.12, We use the cosine similarity
590 between the estimated velocity 9; and the expression difference s; — s; to select
591 the possible target cell j that aligns with the velocity direction.
592 Notably, the Eq.6 is the forward difference operation. Similarly, we can
593 also include the backward difference V;, = G;; — G;,—; and project the cell i
594 into t — 1. We first compute the probability of cell i developed from cell j,
595 P. (i + j), as follows
1 . ~ .
o < if Seos(s; — 85, —0;) > 0 and j € N,
Poieg)=q7 Mol = om0 / (13)
0  otherwise.
596 We then used this in the computation of £_ in Eq.14. The sum of £, + £_
597 is symmetric to either v; or —v;, which creates a challenge to determine the
598 correct velocity direction. To resolve this issue, we know from Eq.1 that the
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599 velocity across cells should be positively correlated to the unspliced expression,
600 u;, and negatively correlated to the spliced, s;. We add the Pearson correlation
601 in Eq.14 term Lpeqrson t0 promote the correct direction. The aforementioned
602 objective terms are as follows

- 12

1 . ) .
£+:52 S; + U — ZSch+(Z—>J) ;
1€Q L JG./(/’Z i
1 1’ (14)
ﬁf:ﬁz Si—ﬁi—ZSjPC,(i%j> s
1€Q L jG./\N/l i
Lpearson = — (Aucorr (s, u;) + Ascorr(0;, —s;))
603 where corr denotes the Pearson correlation coefficient. We use the combination
604 of the objective terms L. = L, + L_ + Lpearson to train the DeepVelo model.
605 Au, As are constant factors to balance the scale of objective terms. The model
606 parameters are optimized to minimize the L.
607 Notably, for each gene, the optimization integrate the information of
608 other genes, because the target cell probability estimation of P(i — j) consid-
609 ers the full gene expression of cell 7 and j. From a per gene estimate perspective,
610 it corrects the target cell probability when the unspliced/spliced counts of the
611 current gene are noisy, but the majority of genes point to the correct target cell
612 j. This integration of genes is a unique advantage of DeepVelo compared to
613 existing methods, and it particularly contributes to the capability of celltype-
614 specific velocity prediction and time-dependent gene correction of DeepVelo
615 (Section 3.3).
616 The DeepVelo model is trained by gradient back-propagation using the
617 Adam [11] optimizer up to 100 epochs. The updated model at the last epoch is
618 used to compute the estimated velocities.
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5.4 Overall and celltype-wise consistency evaluation

The overall consistency score is proposed as the average cosine similarity of the
velocity vectors to their neighbors. For each cell 7,

Coverall - | s)| § Scos Uza U]
JGM(S)

where N is the 30-nearest-neighbor cells with similar spliced gene expression,
computed in the preprocessing step (Online Methods - 5.1). S, denotes the
cosine similarity operation. v;,v; are the estimated velocities from Eq.4.

The celltype-wise consistency computes the similarities within each celltypes
instead. For each cell i and the celltype T (i) it belongs to,

Ocelltype = E Scos Uz; U]
JET ()

where |7 (7)| denotes the number of cells belonging to the celltype.

5.5 Computing cell-to-cell connectivity graph

The similarity of velocity vectors of cells could model cell-to-cell connectivities.
We use the connectivity graph for downstream tasks, including driver gene
analysis and developmental trajectory inference.

The weight in the connectivity graph, w;; denotes the estimated magnitude
of connection. Higher w;; means the future state of cell ¢ is close to the current
state of cell j. w;; could be computed by possible similarity measures between
velocity v; and the gene expression difference s; — s;. Here, we used the cosine
similarity, which is also adopted in scVelo [1], therefore,

v! (s; — si)
il - 1155 — sl

w,-j =

For the visualization of the velocity plot, we adopted the same projection
computation provided by exiting methods [16, 1] to project velocity as arrows
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630 onto low-dimensional embeddings, such as tsne [28] and UMAP [21]. To sum-
631 marize, the transition probability 7; ; from a cell ¢ to possible target cell j is
632 computed by the Gaussian normalized connectivity weight w;;. Then the veloc-
633 ity vector for v; in a low-dimensional space is computed by the weighted sum
634 of Zj 7 ;0ij, where ¢;; is the direction vector pointing from cell ¢ to j in the
635 low-dimensional space.

636 5.6 Driver gene estimation and comparison

637 To determine functional signals in the driver genes, the top 100 genes based
638 on a correlation with each lineage were determined, in particular for the hind-
639 brain developmental data from [30]. Overlap with marker genes based on the
640 original analysis used to annotate celltypes was performed, as well as overlap
641 with transcription factors. Transcription factors were pulled from the manually
642 annotated Human Transcription Factors list curated by Lambert et al. [17], and
643 were lifted over to mouse data using orthologous gene-matches.

644 Analysis of marker overlap was further extended by determining the rank-
645 ing of marker genes across all tested driver genes (2000 total) for both scVelo
646 and DeepVelo per lineage in the Vladoiu et al. [30] data. The DeepVelo and
647 scVelo predicted rankings of these marker genes for both lineages were com-
648 pared, where a higher ranking of marker genes indicated a stronger signal for
649 biologically relevant genes in the driver gene analysis. Since the entire tested
650 driver gene lists were used, the number of genes per lineage was equivalent, and
651 the rankings of the two lists were compared using the Mann-Whitney U Test
652 (or Wilcoxon Rank-Sum Test), which is a non-parametric test for differences in
653 sample distributions. The two-sided version of the test was used in this case,
654 allowing either DeepVelo or scVelo to have greater or lesser rankings for relevant
655 marker genes.

656 5.7 Pathway enrichment analysis

657 To determine functional signals in the driver gene results, pathway enrichment
658 analysis was done using the ActivePathways R package [22]. The top 100 driver
659 genes, based on correlation values for both the GABAergic and gliogenic lineages
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660 from the Vladoiu et al. [30] data, were input into the ActivePathways gene-
661 set enrichment analysis model. The latest Gene-Matrix-Transposed (GMT)
662 files containing gene-set information from the Gene Ontology Molecular Func-
663 tion, GO Biological Process, and REACTOME databases were used [7, 13].
664 Pathways were labelled as being involved in ”Neurogenesis”, ” Developmental
665 non-neuronal”, and ”Non-specific” using manual annotation and the presence of
666 known terms (such as "neuron projection” or ”proliferation” for ” Neurogenesis”
667 and ”Developmental non-neuronal”, respectively). ”Non-specific” pathways in-
668 dicated those that did not have immediately obvious roles in either neurogenesis
669 or general development. To determine significant differences between pathway
670 labelling and potential enrichment of neurogenic/development specific path-
671 ways, a two-sided Fisher’s exact test based on the hypergeometric distribution
672 was done for the contingency table comprising of scVelo and DeepVelo pathway
673 results and functional labels (”Neurogenesis”, ”Developmental non-neuronal”,
674 ”Non-specific”) for the gliogenic and GABAergic lineages independently.
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a. Timepoint of DG Neurogenesis b. Timepoint of Mouse Hindbrain
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Figure S1: The developmental timepoints of sequenced cells in dendate gyrus
neurogenesis (a) and mouse hindbrain development (b) datasets.
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PCA projection of cell-specific kinetic rates at various training epochs
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Figure S2: The PCA projection of cell-specific kinetic rates at various
training epochs. (a-f) Scatter plot of the first two PCA dimensions at train-
ing epochs 10, 20, 30, 60, 90, 120. DeepVelo learns to predict similar kinetic
rates for cells of same celltype. For example, the kinetic rates of Endothelial
cells (outlined) are gradually clustered together and are located away from the
unrelated granule lineage.
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a. Velocity Pseudotime Trajectory b. Overall Consistency

DeepVelo
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Figure S3: Comparison of three velocity methods on large-scale dentate
gyrus data. (a) The velocity plot, pseudotime and trajectory inference of
DeepVelo, scVelo dynamical model and scVelo stochastic mode, respectively.
We highlighted observable incorrect predictions of compared methods in red
circles. (b, ¢) The overall consistency score and celltype-wise consistency score.
DeepVelo shows better performances regarding both metrics.
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Figure S4: DeepVelo’s robustness with respect to key hyperparame-
ters. Using different combinations of important hyperparameters, the DeepVelo
velocity plots on the dentate gyrus neurogenesis data are depicted. DeepVelo
consistently captures the correct velocity directions with respect to different
learning rates, GCN layer size and number of training epochs.
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Figure S5: Computational efficiency comparison of scVelo and Deep-
Velo across datasets. Using the same CPU device®), DeepVelo had a 4 fold
acceleration compared to the dynamical model. Using GPUs, DeepVelo can
complete training and estimation for over 13,000 cells in 36 seconds. Generally
the GPU-accelerated DeepVelo is 10-20 times faster than the accelerated dy-
namical model (8 CPUs). (%) The DeepVelo(CPU) uses the pytorch package,
which automatically utilizes 8 CPUs for the gradient optimization step. For all
other computations, the DeepVelo(CPU) runs on single CPU.
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Figure S6: Full pathway enrichment analysis results overlap. Overlap

of scVelo and DeepVelo pathway enrichment analysis results, between methods,
for the top 100 GABAergic and gliogenic driver genes.
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