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1 Abstract16

The introduction of RNA velocity in single-cell studies has opened new ways17

of examining cell differentiation and tissue development. Existing RNA veloc-18

ity estimation methods rely on strong assumptions of predefined dynamics and19
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cell-agnostic constant transcriptional kinetic rates, which are often violated in20

complex and heterogeneous single-cell RNA sequencing (scRNA-seq) data. To21

overcome these limitations, we propose DeepVelo, a novel method that esti-22

mates the cell-specific dynamics of splicing kinetics using Graph Convolution23

Networks (GCNs). DeepVelo generalizes RNA velocity to cell populations con-24

taining time-dependent kinetics and multiple lineages, which are common in25

developmental and pathological systems. We applied DeepVelo to disentangle26

multifaceted kinetics in the processes of dentate gyrus neurogenesis, pancreatic27

endocrinogenesis, and hindbrain development. The method infers time-varying28

cellular rates of transcription, splicing and degradation, recovers each cell’s stage29

in the underlying differentiation process, and detects functionally relevant driver30

genes regulating these processes. DeepVelo relaxes the constraints of previous31

techniques, facilitates the study of more complex differentiation and lineage de-32

cision events in heterogeneous scRNA-seq data, and is more computationally33

efficient than previous techniques.34

2 Main35

The concept of RNA velocity refers to the time derivative of the mRNA abun-36

dance in a cell, which reflects the changing rate of RNA processing and degra-37

dation. Current velocity estimation methods leverage the observation that the38

abundance and ratio between unspliced pre-messenger RNAs and spliced ma-39

ture messenger RNAs can be used to infer changes in gene expression dynamics.40

Higher abundance and ratio of unspliced mRNAs to spliced mRNAs indicates in-41

creasing transcription of a certain gene - in other words, up-regulation/induction42

and a high velocity estimate. Conversely, a lower abundance and indicated ratio43

lead to a low velocity estimate associated with down-regulation/repression. An44

equilibrium phase occurs when this dynamical process reaches a stable steady-45

state. Since unspliced mRNAs can be distinguished in common single-cell RNA46

sequencing (scRNA-seq) protocols [16], the idea of estimating dynamic RNA47

velocity using only static sequencing libraries becomes feasible.48

The original RNA velocity approach [16] utilized the assumption that the49

observed transcriptional phases in scRNA-seq last long enough to reach both50

an apex of induction and a quiescent steady-state equilibrium. This technique51

infers a per-gene steady-state ratio using linear regression, and then RNA veloc-52
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ities are calculated as the deviation of the observed ratio from the steady-state53

level. This workflow implies two underlying assumptions, (1)the assumption54

of steady-state: For every gene, sufficient number of sequenced cells are at55

the steady states; (2)the assumption of cell-agnostic kinetic rates: The56

degradation and splicing rate for each gene is shared across all cells. These as-57

sumptions are often violated in complex biological systems and bring about lim-58

itations in downstream applications, particularly when cell states are partially59

observed or undergo transcription dynamics more complex than the steady-60

state pattern. Although a later approach, scVelo [4], attempted to generalize61

the steady-state assumption by replacing these states with four transcriptional62

states and modeling them with a dynamical model, the aforementioned second63

limitation still remains. Further, scVelo assumes a cyclic trajectory within the64

four transcriptional states for all observed genes, but this assumption also rarely65

holds in real-world single-cell datasets with complex differentiation trajectories66

and multifactorial kinetics [9]. Although several related works have been fur-67

ther developed, including MultiVelo [20], Chromatin Velocity [26], protaccel [8]68

for extending Velocity beyond RNA, VeloAE [24] for denoising velocity with69

Deep Neural Nets, Dynamo [25] for exploiting the metabolic labeling sequenc-70

ing data, the core velocity computation follows the original ideas and therefore71

the aforementioned limitations still hold.72

Overall, existing techniques assume each gene follows a pre-defined trajec-73

tory depicted by constant cell-agnostic kinetic rates. This workflow implies that74

each gene goes through the same velocity trajectory across all celltypes, and75

limits the application in complex cell systems. To resolve these limitations, we76

highlight the need for cell-specific kinetics which enables the modeling of multi-77

lineage systems with heterogeneous cell populations. We propose DeepVelo,78

a deep neural network based method for RNA velocity estimation. (1) Deep-79

Velo is optimized using a newly introduced probabilistic learning framework,80

resulting in an approach that is unbiased from pre-defined kinetic patterns. (2)81

Empowered by Graph Convolutional Networks (GCN), DeepVelo infers gene-82

specific and cell-specific RNA splicing and degradation rates. Therefore,83

compared with the cell-agnostic parameters used in existing techniques [16, 4],84

DeepVelo is able to model RNA velocity for differentiation dynamics of high85

complexity, particularly for cell populations with heterogeneous celltypes and86

multiple lineages.87

We demonstrate the efficacy of DeepVelo on multiple developmental scRNA-88
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seq datasets, including dentate gyrus neurogenesis [11], pancreatic endocrino-89

genesis [2], and hindbrain development [30]. DeepVelo yields more consistent90

velocity estimates and accurately identifies transcriptional states than existing91

models. We examine the estimated kinetic rates for individual genes and show92

that the cell-specific rates accurately recover known differentiation trajectories93

in challenging scenarios of time-dependent and multi-trajectory gene regulation94

dynamics. For downstream tasks, DeepVelo can identify putative driver genes95

of these transcriptional changes, which are more likely to characterize and be96

involved in dictating lineage fate-decisions. The DeepVelo method is available97

at (https://github.com/bowang-lab/DeepVelo).98

3 Results99

3.1 The DeepVelo model100

Modeling the transcriptional dynamics in single cells provides the theoretical101

basis of RNA velocity. For each cell, the dynamics of transcription, splicing, and102

degradation (Fig.1a) can be approximated as the following differential processes103

104
du(t)
dt

= αi,g (t)− βi,g (t) u (t) ,
ds(t)
dt

= βi,g (t) u (t)− γi,g (t) s (t) .
(1)

where αi,g, βi,g, γi,g are the kinetic rates for cell i and gene g. t denotes a time105

coordinate in cell development. Unspliced immature mRNA is first generated106

by transcription of DNA and then post-transcriptionally modified and spliced107

into mature RNA. The dynamics of unspliced RNA abundance, du(t)
dt

, is mod-108

eled by the first equation where αi,g and βi,g denote the rates of transcription109

and splicing, respectively. Similarly, the second equation models the dynamics110

of spliced RNA abundance, ds(t)
dt

, and γi,g denotes the rate for RNA degrada-111

tion. Note these the kinetic rates are intrinsically cell-specific since there is a112

high degree of variability in transcriptional dynamics between cells [12]. Fur-113

ther, these intrinsic cell-specific transcriptional dynamics are likely to be similar114

among similar celltypes [19], necessitating celltype-specific parameters. How-115

ever, previous velocity estimation techniques [16, 4] assume global116

constant kinetic rates across cells, leading to limitations in inferring117

multi-lineage dynamics.118
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Figure 1: Overview of the DeepVelo pipeline and velocity prediction
method. (a) DeepVelo estimates cell-specific transcription (αi), RNA splicing
(βi) and RNA degradation rates (γi). (b) Overview of the velocity analysis
pipeline using DeepVelo. After read counting of unspliced and spliced mRNA,
preprocessing is done to ensure the stability of model training (Online methods),
followed by training and prediction of cell-specific kinetic parameters. These are
used to estimate the RNA velocity and perform downstream analyses, such as
visualization of velocity fields and pseudotime inference. (c) Overview of the
DeepVelo neural network model. Query cells (dark blue) and similar cells (light
blue) within a k-nearest neighborhood are input into the model. The Graph
Convolutional Network (GCN) encoder module encodes their spliced/unspliced
gene expression into latent space representations. The decoder module then
predicts the kinetic rates for RNA velocity and extrapolates gene expression
to future cell states. The model is optimized to match the extrapolation to
observed cell states at later developmental stages. After training and optimiza-
tion, these rates can be used to determine the RNA velocity vector for each cell
through cell-specific rates of transcription, splicing and degradation.
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DeepVelo models the kinetic rates per cell and per gene (Fig.1a), providing119

sufficient expressive power for more faithful velocity estimates for individual120

cells. Given the unspliced gene counts u(t) and spliced gene counts s(t) for121

individual cells, DeepVelo estimates the derivatives of s(t) by modeling cell122

and gene-specific coefficients αi,g, βi,g, γi,g using a deep neural network model123

(Fig.1b,c). Specifically, we predict a cell’s velocity vector and extrapolate the124

cell state to match the future states extracted from the sequencing data (Fig.1c).125

For each cell i in the population, we extract a group of neighbor cells Ni that126

have similar expression profiles. We take the profiles of cell i and neighbor set Ni127

as the input to DeepVelo model. The model consists of stacked layers of GCNs128

and outputs the coefficients αi,g, βi,g, and γi,g in the final layer. Using these129

coefficients, DeepVelo computes the velocity vi,g = ds(t)
dt

for each cell accordingly130

as in Eq.1.131

To train the DeepVelo model, i.e. to update the parameters for accurate132

velocity prediction, we first extrapolate the cell state by adding the velocity133

derivative ds(t)
dt

onto the original profile s (t). Then, DeepVelo computes the134

difference between the extrapolated state s(t+1) and the real profiles of a group135

of downstream cells (The red cells in Fig.1c). The DeepVelo model parameters136

are optimized to minimize this difference between the predicted future state137

and the actually observed ones (Online methods - 5.3). After sufficient training138

iterations, the model is finalized to provide accurate velocity estimates that take139

into account the transcriptional dynamics unique to individual cells.140

We tested DeepVelo on a number of developmental datasets to determine141

RNA velocity, estimate cell-specific RNA kinetics, infer developmental pseu-142

dotime, and prioritize genes for their potential role in differentiation through143

driver gene estimation.144

3.2 Recovering complex transcriptional dynamics for in-145

dividual cells using DeepVelo146

To test the ability to identify complex kinetics, we applied DeepVelo on a neuro-147

genesis scRNA-seq dataset of the developing mouse dentate gyrus [11]. The data148

consists of tissue samples from two experimental timepoints, P12 and P35 (post-149

natal day 12 and 35), collected by a droplet-based single-cell RNA sequencing150

protocol (10x Genomics Chromium Single-Cell Kit V1). After pre-processing151
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Figure 2: Fine-grained temporal patterns in neurogenesis predicted by
DeepVelo. (a) Comparison of DeepVelo with the dynamical model from scVelo
[4]. The direction and magnitude of velocities are projected as arrows onto the
Uniform Manifold Approximation and Projection (UMAP) plot of gene expres-
sion values across cells. DeepVelo provides more consistent velocity estimates
with respect to the developmental process from immature granule cells to ma-
ture granule cells. (b) The boxplot and histogram of the overall consistency
scores for scVelo and DeepVelo, which indicate the consistency of velocity esti-
mates in a local neighborhood of the data. (c) The box plot and histogram of
the cluster/celltype-specific consistency scores, which utilize the neighborhood
consistency metric on a per cluster/celltype basis. (d)(e) The spliced/unspliced
phase portrait for Tmsb10 and Ppp3ca, respectively. Celltypes are shown in the
same color as in panel (b). (f)(g) Velocity and gene expression values projected
onto UMAP plots for Tmsb10 and Ppp3ca, respectively. Velocity and gene ex-
pression values show consistent patterns across celltypes: high velocity values
(green in velocity plot) are correctly shown in the subset of cells developing to
high gene expression values (purple in expression plot)
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(Online Methods - 5.1), we calculated the RNA velocities using the proposed152

DeepVelo model and the dynamical model from scVelo [4]. The velocity plots153

are made by projecting the velocity vectors onto the UMAP [21]-based em-154

bedding of the data. In the velocity estimates (Fig.2a), the granule cell lineage155

dominates the main structure, where the neuroblast cells develop into immature156

and mature granule cells. The directions of these velocity estimates between157

celltypes reflect the actual development orders [11].158

When examining the main lineage toward the terminal celltype of granule159

cells, although all models capture the principle direction, DeepVelo can show a160

more consistent flow from the neurogenic intermediate progenitor cells (nIPC)161

to neuroblasts, and finally to granule cells. DeepVelo particularly indicates that162

immature granule cells differentiate into mature granule cells in a manner more163

faithful to the true trajectory compared with the dynamical model (Fig.2a -164

zoom-in panel).165

The estimated velocities by DeepVelo show higher consistency in quantita-166

tive analysis. The consistency score is computed as follows - we first compute167

the average cosine similarity of the velocity vector of each cell to its neighbors,168

which is defined as the overall consistency. A similar neighbor-wise consistency169

was also proposed in scVelo [4]. However, the overall consistency could be bi-170

ased toward over-smoothed estimations, which do not account for branching171

lineages. Therefore, we propose the cluster/celltype-wise consistency as a com-172

plement to the overall score, which computes the average cosine similarity of173

each cell’s velocity to all velocity vectors of the same celltype (Online Methods174

- 5.4). For both metrics, DeepVelo shows significant improvements over the175

scVelo dynamical method with significantly higher average consistency scores176

(Mann-Whitney U Test p < 1.0× 10−300, Fig.2b,c).177

Examined at the individual gene level, DeepVelo shows biologically mean-178

ingful velocity patterns. For example, Tmsb10 is one of the major regulators to179

the inferred dynamics of granule lineage, and it plays an important role in the180

development of hippocampal CA1 region [1]. In Fig.2f, velocities derived from181

the DeepVelo are consistent across velocities of neighboring cells. The region182

of cells showing high velocities of Tmsb10 aligns well with the region of high183

Tmsb10 expression. The same alignment is also observed in the example of184

another regulatory gene, Ppp3ca (Fig.2g). In further analysis (Fig.3a), we also185

observed that DeepVelo clearly disentangles the velocity vectors between the186

granule (blue) and endothelial lineages (orange), whereas, in the steady-state187
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and dynamical models, both lineages have intertwined velocities. We discuss188

this advantage of celltype-specific prediction in Section.3.3.189

3.3 DeepVelo’s cell-specific kinetic rates enable accurate190

quantification of time-dependent and multifaceted191

gene dynamics192

Due to the cell-specific estimation of (αi,g, βi,g, γi,g in Eq.1), DeepVelo for the193

first time provides a profile of individual kinetic rates for each cell. This enables194

new approaches for cell-specific trajectory analysis, visualization, and charac-195

terization. We show the UMAP projection of all cell-specific kinetic rates of196

2930 cells (Fig.3a). Although DeepVelo is unaware of the celltypes during197

training, the learned kinetic rates are naturally clustered into groups aligned198

with celltypes. Further, clusters of cells from the same lineage (e.g. the out-199

lined granule lineage) are positioned closely compared to other cells. Overall,200

the similarity of learned kinetic rates reflects the biological similarity of cells at201

both the celltype and lineage levels. This indicates that DeepVelo can estimate202

kinetics that reflects the dynamics of individual cells as opposed to the entire203

dataset.204

Velocity-associated kinetic rates across cells may vary for genes undergoing205

dynamic regulation involving multiple processes. For example Battich, Stoeger,206

and Pelkmans [3] observed varying kinetic rates in the differentiation of in-207

testinal stem cells. These varying kinetics are often misinterpreted in existing208

velocity methods [5]. This stems from the fact that the kinetic rates in previous209

methods are modeled as constant cell-agnostic coefficients in first-order equa-210

tions (Eq.2), which lack the ability to model multifaceted dynamical variation.211

In contrast, DeepVelo estimates transcriptional dynamics for different celltypes212

and cell states by introducing cell-specific kinetic rates, leading to better veloc-213

ity estimation in time-dependent and complex multi-lineage systems. Here, we214

show this improvement using two challenging scenarios:215

(1) Estimating velocity for genes that are separately regulated in216

two lineages. We used the previously analyzed dentate gyrus cell population217

and determined genes with multifaceted kinetics [11]. Tmsb10 shows multiple218

kinetic regimes and undergoes multiple trajectories. We plot the spliced and219
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c.b. Tmsb10 portrait by DeepVelo Tmsb10 portrait by scVelo(dynamical)

a. UMAP of cell-specific kinetic rates True velocity, constant rate

Gene with constant rate

Gene with time-dep. rate

g. Velocity with time-dep. rates, DeepVelo

Velocity with time-dep. rates, scVelo(dynamical)

d.

e.

f.

h.

Figure 3: Velocity estimation for branching and time-dependent ki-
netic rates. (a) The UMAP projection of the estimated kinetic rates of 2930
cells in the dentate gyrus developmental data. Cells of the same celltypes are
clustered together by kinetic rates. Further, cells from the same lineage (e.g.
the outlined Granule lineage) are positioned closely. In general, the similarity of
learned kinetic rates reflects the biological similarity of cells, although the Deep-
Velo model is unaware of celltype labels. (b) Projection of estimated velocity
(arrows) onto the spliced/unspliced phase portrait of Tmsb10 by DeepVelo. The
endothelial cells undergo a separate trajectory on the phase portrait, aside from
the main trajectory containing neuroblast cells, granule immature and granule
mature cells. DeepVelo successfully captures both trajectories. In the zoomed
view, cells within the same region comprising of different celltypes are correctly
predicted to have distinct velocity directions. (c) Phase portrait of Tmsb10 with
RNA velocity predicted by the scVelo dynamical model. Only the main trajec-
tory of granule lineage is captured, but the endothelial cells are predicted with
incorrect directions. (d-h) A simulation of time-dependent degradation rates.
The cell color indicates its pseudotime in simulation. (d) Reference velocity
with constant kinetic rates. (e)(f) Constant and time-dependent degradation
rates as shown on phase portraits. The gene with the time-dependent rate (f)
undergoes a reversed trajectory. (g)(h) Estimated velocities by DeepVelo and
scVelo, respectively, for the simulated 500 cells with time-dependent degrada-
tion rates. DeepVelo correctly recovers the directions from regions of earlier
time to later ones.
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unspliced reads across all cells in this dataset, in other words, the phase por-220

trait of Tmsb10 (Fig.2d). The cells in the granule lineage (including neuroblast,221

granule immature and granule mature celltypes) form a cyclic trajectory. Mean-222

while, the endothelial cells are not a part of the granule lineage and undergo a223

separate trajectory. These two regimes are likely regulated by different kinetic224

rates.225

DeepVelo correctly predicted the RNA velocity patterns for both regimes226

(Fig.3b). For the granule lineage, DeepVelo captures the direction of velocity227

from neuroblast cells to granule immature cells and then to granule mature228

cells. For the endothelial cells, the predicted velocity direction correctly points229

to the position of the same celltype with amplified spliced reads. We also found230

that DeepVelo learns to assign similar velocity directions for cells of the same231

type. In contrast to DeepVelo, scVelo forces the RNA velocity to follow the232

cyclic trajectory assumed by the model (Fig.3c). As a result, although scVelo233

successfully captures the trajectory for the granule lineage, it incorrectly points234

the velocity estimates of endothelial cells to the position of neuroblasts (Fig.3c235

- Zoom-in panel).236

Additionally, DeepVelo is capable of predicting distinct velocity directions237

for cells within the same region (Fig.3b). The cells in the zoomed view, includ-238

ing both the endothelial and neuroblast cells, employ similar RNA dynamics239

(through the levels of spliced and unspliced reads) of Tmsb10. However, the240

distinct directions for each celltype are correctly predicted by DeepVelo. This241

is due to the ability of DeepVelo to estimate distinct sets of kinetic rates across242

celltypes, as shown in Fig.3a. In contrast, scVelo uses constant kinetic rates243

per gene and predicts a uniform direction for the same region of cells. Overall,244

a cell-specific model such as DeepVelo broadens the application of RNA veloc-245

ity for genes with multifaceted kinetics, such as Tmsb10 in the dentate gyrus246

developmental data.247

(2) Estimating velocity for genes with time-dependent kinetic rates.248

We simulated a population of 500 cells and 30 genes using the simulator pro-249

vided by the scVelo package [4]. We first determined the reference velocity250

in the setting of constant kinetic rates across cells (Fig.3d,e). From here, the251

degradation rate, gamma, of 3 out of 30 genes was set to increase over time. As252

a result, the genes underwent a reversed trajectory as shown in the respective253

phase portrait (Fig.3f). This simulation procedure of reversed dynamics was254

originally proposed in Bergen et al. [5], and it sets up a challenging scenario for255
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the estimation of RNA velocity. The resulting velocity plots of DeepVelo and256

the dynamical model of scVelo are shown in Fig.3g,h, and scVelo struggles to257

predict velocities from early to later timepoints while DeepVelo is able to re-258

cover the correct velocity directions from regions of earlier to later pseudotime.259

This advantage is because DeepVelo learns to find potential future cell states260

by integrating across all genes (Online Methods - 5.3), thus it is more robust to261

the time-reversed directions of a portion of genes in the dataset.262

3.4 Tracking the ordering of cellular development using263

DeepVelo and diffusion pseudotime264

The RNA velocity estimated by DeepVelo can also be used to improve the pre-265

diction of pseudotime for cell states across a developmental trajectory. We first266

compute the velocity connectivity graph to represent cell-cell relationships and267

use this graph as the basis to compute a diffusion pseudotime [10] mapping (On-268

line Methods - 5.5). We compare the pseudotime estimates (Fig.4a) using Deep-269

Velo with the latent time (Fig.4c) estimates by the dynamical model from scVelo270

on a scRNA-seq dataset of pancreatic endocrinogenesis with ground-truth tem-271

poral measurements. For the velocity plots, DeepVelo successfully demonstrates272

the main structure of EP cells developing into terminal celltypes - alpha, beta273

and delta (Fig.4b) with more consistent velocities (Fig.4e). For pseudotime274

comparison, both methods provide accurate predictions. Notably, DeepVelo275

more faithfully preserves the time ordering between the terminal states of Al-276

pha and Beta cells (Fig.4a), where the Alpha cells are developed earlier at E12.5277

and the Beta cells appear later at E15.5 (Fig.4f,g).278
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a.
DeepVelo pseudotime

b. DeepVelo velocity

c. d.scVelo (dynamical) latent time scVelo (dynamical) velocity

f.

Overall Consistency ScoreStart
E15.5

E12.5

Pseudotime of Beta, Alpha cells by DeepVelo

e.

g. Pseudotime of Beta, Alpha cells by scVelo

p < 1.0x10-300

Figure 4: Velocity and pseudotime plots for pancreatic endocrinogene-
sis [2]. (a) The pseudotime prediction from DeepVelo accurately assigns alpha
and beta cells to accurate developmental timepoints. Particularly, the progen-
itor cell cluster is correctly located at the upper left quadrant of the UMAP
projection. The difference between the terminal alpha and beta cells is well cap-
tured, where alpha cells were developed earlier at E12.5 and beta cells appeared
later until E15.5. (b) Velocity values derived from DeepVelo are projected onto
the UMAP-based embedding and visualized. DeepVelo successfully captures
the main structure of EP cells developing into the terminal celltypes of alpha,
beta and delta cells. (c),(d) For comparison, the latent time and velocity com-
puted by the dynamical model from scVelo. (e) Distribution of the overall
RNA velocity consistency scores for DeepVelo and scVelo. (f,g) The histogram
of pseudotime predictions for beta and alpha cells, by DeepVelo and the scVelo
dynamical model, respectively. Beta cells are expected to have a larger per-
centage of cells with higher pseudotime values, which is true of the DeepVelo
predicted values.
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3.5 DeepVelo infers functionally relevant lineage-specific279

genes and processes in hindbrain development280

To test velocity methods in a complex setting with multiple lineages, we ap-281

plied methods to a mouse hindbrain development dataset [30] (Fig.5a). Specif-282

ically, we filtered the data corresponding to the junction and differentiation283

between the GABAergic and gliogenic lineages (Online Methods - 5.1). In a284

multi-faceted system such as this, which is typical of developmental scRNA-285

seq datasets, considering cell-agnostic kinetic rates is haphazard because of286

the different RNA velocity dynamics among lineages. DeepVelo’s ability to287

learn cell-specific kinetic rates alleviates this assumption and accounts for the288

multi-faceted differentiation of the GABAergic and gliogenic lineages and their289

respective celltypes. The result of DeepVelo (Fig.5b) shows the RNA velocity290

over the developmental process from Neural stem cells to the differentiating291

GABA interneurons and gliogenic progenitors. We performed trajectory in-292

ference using directional PAGA [32] over the velocity graph of DeepVelo. We293

found that DeepVelo was able to recapitulate ground-truth differentiation pat-294

terns - specifically the branching between VZ progenitors and differentiation295

GABA interneurons and gliogenic progenitors (Fig.5c). The cluster of neural296

stem cells is well recognized as the origin celltype with outward velocity arrows297

and a low pseudotime index, while the GABA interneurons are confirmed as a298

terminal celltype with incoming velocity arrows and a high pseudotime index.299

In comparison, the scVelo dynamical model predicts partially inverse velocity300

directions for the gliogenic progenitors, leading to incorrect relations in the301

inferred trajectory (Fig.5f, highlighted regions).302

Using the velocity vector for each cell, we built a connectivity graph (Online303

Methods - 5.5) of the scRNA-seq data. CellRank [18] is a recent visualization304

and analysis toolbox for scRNA-seq data that utilizes the connectivity graph305

to predict cell’s fate mapping, which corresponds to the probability of the cell306

differentiating to a terminal state in the lineage(s). After determining cell fate,307

gene importance for differentiation can be calculated based on the correlation308

of gene expression with transition and differentiation probabilities towards all309

terminal states. The genes that display dynamical behavior across a lineage are310

termed putative ”driver genes”, as these are the genes most likely to be involved311

in regulating the differentiation process itself. CellRank has been reported to312

work well with other velocity methods, such as scVelo, to infer lineage-specific313

drivers. We incorporated this toolbox with the predicted velocity connectivity314
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a. DeepVelo velocityb.

d.

Trajectory Inferencec.

Heatmap of top driver genes, GABAergic lineage

Neural stem cells

Proliferating VZ progenitors

VZ progenitors

Differentiating GABA interneurons

Gliogenic progenitors

GABA interneurons

Developmental orders Pseudotime

e. f. scVelo (dynamical) velocity

scVelo (dynamical) trajectory

Figure 5: Velocity, trajectory, and driver gene estimation of devel-
oping mouse hindbrain cells. (a) The putative developmental order for six
celltypes in early mouse hindbrain development. (b) The velocity projected onto
the t-distributed stochastic neighbor embedding (tsne) plot of gene expression.
DeepVelo’s RNA velocity reveals the temporal order in the developing mouse
hindbrain, including cells from early progenitors, GABAergic, and gliogenic lin-
eages. (c) Velocity-based PAGA trajectory inference using DeepVelo’s velocity
estimates. The predicted trajectory correctly reflects the developmental rela-
tions shown in (a). (d) The top 60 driver genes with highest correlation to the
GABAergic lineage computed using DeepVelo’s velocity estimation. The hori-
zontal coordinates represent the pseudotime estimates. (e) Gene phase portrait,
velocity, and gene expression plots of selected driver genes. Known functional
genes in the GABAergic lineage - Tfap2b, Tfap2a, Lhx5, and Neurod6 - are com-
puted among the top driver genes. (f) The velocity plot and trjectory inference
using the scVelo dynamical model.
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graph from DeepVelo and determined driver genes in the variable gene subset315

of the data for both the GABAergic and gliogenic lineages.316

Within the top 100 driver genes across both lineages of interest, we ob-317

served groups of genes showing particular abundance in specific celltypes in a318

temporal manner (Fig.5d). For example, Tfap2a, Tfap2b, and Lhx5, which are319

two known differentiation genes involved in the specification of GABAergic in-320

terneurons during hindbrain development, are listed in the top 100 driver genes321

from DeepVelo for the GABAergic lineage (Fig.5e) [34, 23]. Similar results322

were found for the gliogenic lineage from DeepVelo, with detection of known323

glial cell differentiation regulators in Hes1 and Sox9 (Supplementary Table 1)324

[33, 31]. DeepVelo also picked up hits that were novel and not detected by325

scVelo, such as Neurod6 in the GABAergic developmental lineage (Fig.5e). Al-326

though the role of Neurod6 in the differentiating GABAergic interneurons and327

their development is unclear, previous literature has indicated the gene’s in-328

volvement in regulating the specification of inhibitory GABAergic interneuron329

subpopulations in the hindbrain and spinal cord [27]. This indicates a testable330

link and hypothesis for the differentiation of these cells in the junction within331

the GABAergic and gliogenic lineages, highlighting the ability of DeepVelo to332

guide searches of functional genes in scRNA-seq data and potential drivers of333

the differentiation process.334

To compare the results of driver analysis when employing CellRank with335

different velocity outputs, we determined driver genes for the gliogenic and336

GABAergic lineages using both scVelo and DeepVelo. As the complete set of337

genes driving differentiation in the complex hindbrain developmental system is338

unknown, we sought to infer the relevance of inferred driver genes in two ways:339

1) By considering their overlap with predicted marker genes from the original340

analysis, as these genes are characteristic of celltype identity and should be341

correlated with lineage specification, and 2) By considering their overlap with342

transcription factors (TFs), as TFs are the main elements responsible for dif-343

ferentiation and establishing transcriptional and cellular identity. We analyzed344

and compared the top 100 driver genes for both the GABAergic and gliogenic345

lineages predicted by the scVelo and DeepVelo methods (Supplementary Table346

1). DeepVelo predicted driver genes that overlapped with more of the original347

markers from Vladoiu et al. [30], for both the GABAergic and gliogenic lineages348

(Fig.6a) (Supplementary Table 2). Further, to determine the signal across all349

driver genes, not limiting to the top 100, we determined the rankings of known350
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a. b. c.

d.

e.

f.

p < 0.05 *** p > 0.05 NS

Figure 6: Functional enrichment of DeepVelo predicted driver genes.
(a) Overlap of the top 100 driver genes from scVelo and DeepVelo for GABAer-
gic and gliogenic lineages with annotated lineage marker genes. (b) Ranking
density of marker-overlapping driver genes (across all 2000 tested genes) for
scVelo and DeepVelo, separated by the GABAergic and gliogenic lineages, re-
spectively. (c) Overlap of top 100 driver genes from DeepVelo and scVelo for
both lineages with annotated transcription factors. (d) Pathway enrichment
analysis results for the top 100 scVelo and DeepVelo driver genes, respectively,
in the GABAergic and gliogenic lineages. (e) Functional signal in the enriched
pathways for scVelo and DeepVelo, based on the presence of pathways involved
directly in neurogenesis (”Neurogenesis”), not specific to neurogenesis but in-
volved in development (”Developmental non-neuronal”), and not specific to
either development or neurogenesis (”Non-specific”). (f) The top 20 DeepVelo
pathway enrichment analysis results, based on FDR corrected p-values, for the
GABAergic and gliogenic lineages, respectively.
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marker genes in the GABAergic and gliogenic lineages across all tested driver351

genes. These rankings were determined based on the correlation scores, which352

indicate the relative importance of driver genes to a specific lineage. In this case,353

DeepVelo had higher rankings compared to scVelo for known GABAergic marker354

genes in the driver analysis (Mann-Whitney U Test p = 1.376 × 10−07), while355

the ranking differences in the gliogenic lineage were non-significant (Fig.6b).356

When examining the transcription factor overlap in the top 100 driver genes,357

DeepVelo had more hits than scVelo for the GABAergic lineage, and an equal358

number of hits for the gliogenic lineage (Fig.6c).359

For further examination of the results of driver analysis, we took the top360

100 driver genes for the GABAergic and gliogenic lineages from DeepVelo and361

sought to determine their functional signal as gene-sets through pathway en-362

richment analysis. Overall, 97 and 151 pathways were found to be significantly363

enriched for the GABAergic and gliogenic lineages, respectively, for DeepVelo364

(Fig.6d) (Supplementary Table 3). These pathways were analyzed for the pres-365

ence of neurogenesis and developmental results, for which we did see a functional366

enrichment in both lineages (Fig.6e). More specifically, the top 20 pathways367

for each lineage, ranked in terms of FDR-corrected p values, revealed enrich-368

ment of pathways relevant to neuronal differentiation processes (Fig.6f). In the369

GABAergic lineage, enriched pathways included: regulation of neuron projec-370

tion development, neuron differentiation, and neurogenesis (Fig.6f). The results371

from the gliogenic lineage had an even more relevant terms, namely gliogene-372

sis and glial cell differentiation (Fig.6f). When comparing these results with373

pathway analysis performed on the scVelo top 100 driver genes, we observed a374

much lower percentage of functional enrichment for neurogenesis and develop-375

mental pathways compared to DeepVelo for the GABAergic lineage (Fisher’s376

Exact Test p = 1.407 × 10−09) (Fig.6e), while the difference between the glio-377

genic results was non-significant. These functional pathway enrichment results378

highlight the relevance of the driver genes predicted by the DeepVelo method379

and increased functional relevance compared to those predicted by scVelo.380

3.6 DeepVelo is computationally robust and efficient across381

multiple scRNA-seq datasets382

To examine the robustness of the DeepVelo RNA velocity estimates across set-383

tings, we tested DeepVelo on five different scRNA-seq datasets. Apart from the384
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previously analyzed datasets, DeepVelo also recovers accurate RNA velocity385

vectors and developmental relations on a large-scale dentate gyrus data from386

La Manno et al. [16] (Supplementary Fig.S3). On all tested datasets, DeepVelo387

achieves higher average scores and lower variance in terms of the overall consis-388

tency compared to the scVelo dynamical model and the scVelo stochastic model389

(Supplementary Table 4).390

We further visualized the influence of key hyperparameters - including the391

GCN layer size, gradient descent learning rate, and number of training epochs392

- on the dentate gyrus neurogenesis data (Supplementary Fig.S4). DeepVelo393

is robust to changes in these hyperparameters and consistently estimates the394

biologically accurate RNA velocity directions, especially for the main granule395

lineage.396

Lastly, we compared the computational runtime of DeepVelo with other397

velocity estimation methods. Using the same CPU (central processing unit)398

device, DeepVelo (cpu) achieved a 4 fold speedup with respect to the scVelo399

dynamical model. Using a more powerful GPU (graphical processing unit) for400

the deep learning backbone, DeepVelo (cpu+gpu) can be further accelerated401

10-20 times across datasets. For example, DeepVelo completed the training402

and estimation for the 13501 cells of developmental hindbrain data in just 36403

seconds (Supplementary Fig.S5).404

4 Discussion405

DeepVelo offers a novel velocity estimation framework that goes beyond assump-406

tions of constant RNA splicing and degradation rates, and instead estimates407

these rates at a cell-specific level. By analyzing the performance of DeepVelo408

and existing velocity estimation techniques, we have demonstrated that Deep-409

Velo’s cell-specific estimation through a novel deep learning method allows for410

the detection and specification of multiple lineages in calculating RNA veloc-411

ity. Realistic single-cell RNA sequencing settings will likely have more than one412

lineage/trajectory in a given sample, and thus it is imperative to develop meth-413

ods that can account for these multifaceted dynamical systems. DeepVelo’s414

ability to model these multifaceted dynamics was demonstrated through anal-415

ysis of complex differentiation systems, such as the development of the dentate416
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gyrus, pancreatic endocrinogenesis, and the hindbrain development. Lastly, we417

demonstrated that DeepVelo can be utilized to identify functionally relevant418

genes that are enriched along the differentiation trajectory. We envision that419

DeepVelo will be more readily applicable to these realistic developmental set-420

tings as compared to previous techniques.421

DeepVelo internally predicts the first-order derivative of expression per gene422

based on the transcriptome-wide reads of all selected genes. The ability to423

learn the interaction/regulation between genes could be further explored, for424

example, by replacing the GCN model with recent transformer networks [29]425

which could explicitly model the interaction of internal gene representations.426

This could allow for more interpretable velocity and driver-gene estimates, by427

considering correlations of kinetics and expression patterns between genes and428

cells. Recent work shows promising research directions by extending the velocity429

of cellular dynamics from RNA to proteins [8], epigenomics [26], and multi-omics430

velocities [20]. DeepVelo could be naturally updated and well fitted into these431

settings by enriching input and output space with additional -omics information.432

Ultimately, the estimation of cell-specific kinetics across multiple steps in the433

central dogma may increase the signal-to-noise ratio [5] and further accurately434

capture information related to cellular development.435

A major limitation of driver analysis through RNA velocity estimation is436

potentially spurious driver genes being picked up due to the correlation of gene437

expression during differentiation. Although key regulators will display dynam-438

ical expression behavior during lineage specification, the same is likely to be439

true of their downstream targets and other ”passenger” genes, resulting in high440

likelihoods towards being a driver/regulator. This is likely the reason why a sig-441

nificant transcription factor enrichment was not observed in the top 100 driver442

genes in the hindbrain developmental data for either scVelo or DeepVelo. We en-443

vision a more comprehensive driver analysis technique would take into account444

multi-lineage probabilities (preventing negative correlation between top drivers445

of two lineages) and would factor in correlations between driver analysis results,446

thereby removing spurious hits. Apart from the driver gene analysis, building447

up a theorem to verify the confidence of velocity estimation is another chal-448

lenge. Empirical metrics, such as the consistency of velocity directions among449

neighbor cells, have been used in existing techniques [4, 24]. However, there450

is a lack of probabilistic tools to test the kinetics estimated by either previous451

methods or DeepVelo. We leave this to future works.452
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RNA velocity techniques have allowed for insights into biological differen-453

tiation from single-cell RNA sequencing data that go beyond oversimplified454

trajectory inference models, and instead infer dynamic processes that indicate455

the direction and magnitude of differentiation potential. Although many major456

limitations and assumptions for RNA velocity methods still exist, we antici-457

pate that continued methodological development in this field will lead to better458

tools to study differentiation and development in a single-cell setting. DeepVelo459

overcomes limitations of previous techniques in a major aspect with regards to460

cell-specific model estimates, and can be used for more robust velocity estima-461

tion in multi-lineage systems, yielding better biological insights into real and462

complex developmental systems.463

5 Online methods464

5.1 Preprocessing the scRNA-seq data for DeepVelo465

The dentate gyrus neurogenesis [11] and pancreatic endocrinogenesis [2] data are466

available at the National Center for Biotechnology Information’s Gene Expres-467

sion Omnibus repository. The accession number is GSE95753 and GSE132188.468

In this work, we use the zipped data of these two sequencing datasets provided469

by the scVelo packageBergen et al. [4](https://scVelo.org). The data is in470

h5py file format and contains spliced and unspliced gene readout.471

Mouse hindbrain developmental data from Vladoiu et al. [30] was used to472

test velocity techniques for estimation at a lineage junction. As the data was not473

available in loom format for velocity analysis, fastq files were reprocessed into474

loom files using kallisto reference-free alignment through the loompy pipeline475

[6]. This was done individually for each timepoint (E10, E12, E14, E16, E18,476

P0, P5, P7, P14) and processed loom files were concatenated. For the purposes477

of the analysis, the junction between the GABAergic and gliogenic lineages was478

utilized. The following celltypes were subset from timepoints E10, E12, E14,479

E16, E18, P0, P5, P7, and P14 - Neural stem cells, Proliferating VZ progenitors,480

VZ progenitors, Differentiating GABA interneurons, gliogenic progenitors, and481

GABA interneurons. Estimates of spliced and unspliced counts from the kallisto482

quantification method were used for testing DeepVelo and scVelo.483
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Processing of unspliced and spliced counts in differing formats was done484

via three steps and using the scVelo package. First, the spliced and unspliced485

gene matrices were normalized across genes. In more detail, preprocessing in-486

cludes expression matrix normalization and nearest-neighbor-based smoothing.487

We used the scv.pp.filter_and_normalize function from scVelo for these488

steps with default parameters. We selected the top 2000 genes with the most489

spliced and unspliced gene counts across cells. The principal components are490

computed afterward using logarithmized spliced counts, and then we smooth491

the expression reads using the average of 30-nearest-neighbors for each cell.492

5.2 Modeling individual transcriptional dynamics493

The transcriptional dynamics depicts the process from generation to degrada-494

tion of mRNA molecules. It captures unspliced premature mRNAs u(t) with495

transcription rate α, splicing into mature mRNAs s(t) with rate β and the496

degradation of spliced mRNA with rate γ. The simplified gene-specific dynam-497

ics with constant splicing and degradation rates are498

du(t)
dt

= α (t)− βu (t) ,
ds(t)
dt

= βu (t)− γs (t) .
(2)

This equation is used in existing velocity estimation methods, and it omits the499

difference in kinetic rates (α, β, γ) across celltypes. Instead, we propose a new500

deep learning method to capture individual cell kinetics.501

First, we build a graph convolutional network model to predict cell-specific502

kinetic rates. In this work, we employ a nearest neighbor graph based on the503

gene expression of all sequenced cells G = (V , E). The vertex vi ∈ V in the graph504

denotes the expression reads of a cell i, which include its spliced and unspliced505

gene expression vi = [si, ui]. A cell i is connected to cell j (i.e. Eij = 1) if506

cell j is the one of top 30 nearest neighbors based on the Euclidean distance507

of the gene expression. We input this neighbor graph to DeepVelo. We chose508

the graph representation because it considers the vicinity of local cells’ gene509

expression. This has more expressive power than the expression of individual510

cells because of the sparse and noisy nature of sequenced reads. Taking the511

neighborhood expression into account smooths the velocity estimation.512

Graph convolutional network (GCN) is a type of deep neural networks that513
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learns node embeddings based on message passing along the graph edges [15].514

Given a graph with nodes V and adjacency matrix A, a multi-layer neural515

network is constructed on the graph with the following layer-wise propagation516

rule:517

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)), (3)

where H(l) denotes the node feature vectors at the l-th layer, Ã = A+ IN is the518

adjacency matrix with self-connections, D̃ is the diagonal degree matrix such519

that D̃ii =
∑

j Ãij, W
(l) is the layer-specific trainable parameter matrix, and σ520

is the RELU activation function.521

In this work, the input feature H(0) ∈ RN×2D to GCN is the cellular gene522

matrix. Each row in H stands for the aforementioned vertex vi. H contains523

the population of N cells, and the dimension 2D equals the number of selected524

spliced and unspliced genes combined, D = 2000 by default. The adjacency525

matrix A ∈ RN×N depicts the aforementioned nearest neighbor graph, where526

the element at position i, j has value 1 if the cell j is one of the nearest neighbors527

of cell i, otherwise the value is 0. The GCN model consists of stacked graph528

convolution layers, i.e. Eq. 3. The output of the final layer HL is processed529

by a fully connected neural network, which then yields the estimated velocity530

parameters α ∈ RN×D, β ∈ RN×D and γ ∈ RN×D for all cells and genes.531

Finally, the estimated velocity ṽi ∈ RD for each cell is computed as532

ṽi = βiui − γisi, (4)

where βi and γi are the i-th row in β and γ, ui and si are the unspliced and533

spliced reads of cell i.534

DeepVelo also supports estimation of the derivative of unspliced RNA, namely
vunsi , which is an estimation for the du(t)

dt
in Eq.1.

ṽunsi = αi − βisi.

5.3 Probabilistic learning for RNA velocity535

In this section, we propose a probabilistic learning framework for RNA velocity536

to optimize the velocity prediction in Eq.4, and then introduce the specific537

training objective following this framework.538
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5.3.1 Extrapolate cell states from a probabilistic perspective539

The RNA velocity is defined as the time derivative of spliced mRNA (Eq. 1).540

For a specific cell i out of the sequenced cell population Ω, the velocity vector541

vi contains the derivative for all genes, as542

vi :=
dsi
dt

= [
ds

(1)
i

dt
,
ds

(2)
i

dt
, . . .

ds
(|D|)
i

dt
], (5)

where s
(g)
i denotes the amount of spliced mRNA of one gene. si is the spliced543

gene expression vector containing [s
(1)
i , s

(2)
i , . . . , s

(|D|)
i ].544

We introduce the multivariate random variableGi,τ(i) to represent the (spliced)
gene expression that a cell i could have at its developmental time τ(i), where
τ is an operator to obtain a cell’s current time in its developmental process.
Thus, the scRNA-seq results could be viewed as an observation of Gi,τ(i) taking
the value si. For simplicity, let us use t = τ(i) as the time of cell i. Similarly,
we define the random vector Vi,t as the possible velocities that cell i can take
at time t, and vi is an observation of Vi,t. The relation between the expression
and velocity random vectors is,

Vi,t =
dGi,t

dt
.

We can use the forward difference to approximate the derivative if the time545

interval is sufficiently small, as546

Vi,t ≈ ∆Gi,t = Gi,t+1 −Gi,t. (6)

Notably, it is impossible to directly observe the future stage Gi,t+1 for cell547

expression from scRNA-seq, because the sequencing protocol is destructive, and548

the cells no longer exist after sequencing. Thus, the estimation of Gi,t+1 is549

required.550

DeepVelo utilized the mRNA expression of developmentally close-by cells to551

estimate Gi,t+1 and for this reason, we introduce the continuity assumption:552

we assume that the sequencing data captures a continuous spectrum of cells in553

consecutive development stages. Particularly, there exists a t+1 neighborhood,554

Ni,t+1, in the sequenced cell population, so that the gene expression of these555

cells within the neighborhood are similar enough to the potential expression of556
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cell i at t+1. In other words, the expected expression of the t+1 neighbor cells557

have the same distribution as the expression of cell i at t + 1. In comparison558

to the previous strict assumptions (i.e. the observation of steady states or the559

global constant kinetic rates) in existing approaches, the continuity is primarily560

satisfied in sequencing data of large cell populations. Formally, the continuity561

can be expressed as562

∀i ∈ Ω, ∃Ni,t+1 ⊂ Ω, s.t.

Gi,t+1 =
∑

j∈Ni,t+1

Gj,τ(j)P (i→ j)

= E
P (i→j)

[Gj,τ(j)],

(7)

where i → j denotes that cell i develops at time t + 1 into a cell that has the563

same gene expression vector as cell j, and P (i → j) is the probability of this564

event. The expectation of Gi,t+1 over all cells in the sequenced population Ω is565

E
i∈Ω

[Gi,t+1] = E
i∈Ω

[
E

P (i→j)
[Gj,τ(j)]

]
E
i∈Ω

[
Gi,t+1 − E

P (i→j)
[Gj,τ(j)]

]
= 0,

(8)

Taking in Eq.6, we have566

E
i∈Ω

[
Gi,t + Vi,t − E

P (i→j)
[Gj,τ(j)]

]
= 0 (9)

The observed sequenced expression in a large cell population can be used to567

derive the Monte Carlo estimation of the outer expectation over cell i. Assume568

each cell expression vector si is sequenced independently,569

1

Ω

∑
i∈Ω

si + vi −
∑

j∈Ni,t+1

sjP (i→ j)

 ≈ 0 (10)

Because the vi andNi,t+1 are not directly observed, given a set of estimated ṽi570

and Ñi,t+1, we use the (gene-wise) squared difference as an objective to measure571

how close to zero the value in Eq.10 is.572

L =
1

Ω

∑
i∈Ω

si + ṽi −
∑

j∈Ñi,t+1

sjP (i→ j)

2

(11)

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2022. ; https://doi.org/10.1101/2022.04.03.486877doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.03.486877
http://creativecommons.org/licenses/by-nc-nd/4.0/


This equation provides a general objective for any RNA velocity methods that573

generate the estimation of ṽi, Ñi,t+1 and P (i→ j).574

5.3.2 Training the DeepVelo model575

We follow the Eq.11 to develop the objective to optimize the parameters of576

DeepVelo model. The objective computes the difference between the estimated577

velocity ṽi (Eq.4) of DeepVelo and possible future cell states.578

We first select Kc number of nearest neighbor cells for each cell i by comput-579

ing the pairwise distances of spliced gene expression. By default, we compute580

the Euclidean distance of the first 30 PCA dimensions of gene expression vec-581

tors. These selected cells compose the neighborhood of cell i, i.e. Ni. We582

estimate the P (i→ j) using583

Pc+(i→ j) =

{
1
Z

if Scos(sj − si, ṽi) > 0 and j ∈ Ni,
0 otherwise,

(12)

where Scos denotes the cosine similarity and Z is a normalizing factor, i.e. Z584

equals to number of cells in Ni satisfying Scos(sj − si, ṽi) > 0. The intuition585

of Pc+ is that if the sequenced data satisfy the continuity assumption and the586

time interval between t and t+ 1 is small enough, then the possible future cell587

state j ∈ Ni,t+1 is also close to the cell state of current cell i. Therefore, given a588

sufficient large Kc, Ni,t+1 ⊂ Ni. Further in Eq.12, We use the cosine similarity589

between the estimated velocity ṽi and the expression difference sj − si to select590

the possible target cell j that aligns with the velocity direction.591

Notably, the Eq.6 is the forward difference operation. Similarly, we can592

also include the backward difference Vi,t = Gi,t − Gi,t−1 and project the cell i593

into t − 1. We first compute the probability of cell i developed from cell j,594

Pc−(i← j), as follows595

Pc−(i← j) =

{
1
Z

if Scos(sj − si,−ṽi) > 0 and j ∈ Ni,
0 otherwise.

(13)

We then used this in the computation of L− in Eq.14. The sum of L+ + L−596

is symmetric to either ṽi or −ṽi, which creates a challenge to determine the597

correct velocity direction. To resolve this issue, we know from Eq.1 that the598
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velocity across cells should be positively correlated to the unspliced expression,599

ui, and negatively correlated to the spliced, si. We add the Pearson correlation600

in Eq.14 term LPearson to promote the correct direction. The aforementioned601

objective terms are as follows602

L+ =
1

Ω

∑
i∈Ω

si + ṽi −
∑
j∈Ñi

sjPc+ (i→ j)

2

,

L− =
1

Ω

∑
i∈Ω

si − ṽi −∑
j∈Ñi

sjPc− (i→ j)

2

,

LPearson = − (λucorr(ṽi, ui) + λscorr(ṽi,−si)) ,

(14)

where corr denotes the Pearson correlation coefficient. We use the combination603

of the objective terms Lc = L+ + L− + LPearson to train the DeepVelo model.604

λu, λs are constant factors to balance the scale of objective terms. The model605

parameters are optimized to minimize the Lc.606

Notably, for each gene, the optimization integrate the information of607

other genes, because the target cell probability estimation of P (i→ j) consid-608

ers the full gene expression of cell i and j. From a per gene estimate perspective,609

it corrects the target cell probability when the unspliced/spliced counts of the610

current gene are noisy, but the majority of genes point to the correct target cell611

j. This integration of genes is a unique advantage of DeepVelo compared to612

existing methods, and it particularly contributes to the capability of celltype-613

specific velocity prediction and time-dependent gene correction of DeepVelo614

(Section 3.3).615

The DeepVelo model is trained by gradient back-propagation using the616

Adam [14] optimizer up to 100 epochs. The updated model at the last epoch is617

used to compute the estimated velocities.618
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5.4 Overall and celltype-wise consistency evaluation619

The overall consistency score is proposed as the average cosine similarity of the
velocity vectors to their neighbors. For each cell i,

Coverall(i) =
1

|N (s)
i |

∑
j∈N (s)

i

Scos(ṽi, ṽj),

where N (s)
i is the 30-nearest-neighbor cells with similar spliced gene expression,620

computed in the preprocessing step (Online Methods - 5.1). Scos denotes the621

cosine similarity operation. vi, vj are the estimated velocities from Eq.4.622

The celltype-wise consistency computes the similarities within each celltypes
instead. For each cell i and the celltype T (i) it belongs to,

Ccelltype =
1

|T (i)|
∑
j∈T (i)

Scos(ṽi, ṽj),

where |T (i)| denotes the number of cells belonging to the celltype.623

5.5 Computing cell-to-cell connectivity graph624

The similarity of velocity vectors of cells could model cell-to-cell connectivities.625

We use the connectivity graph for downstream tasks, including driver gene626

analysis and developmental trajectory inference.627

The weight in the connectivity graph, wij denotes the estimated magnitude
of connection. Higher wij means the future state of cell i is close to the current
state of cell j. wij could be computed by possible similarity measures between
velocity vi and the gene expression difference sj − si. Here, we used the cosine
similarity, which is also adopted in scVelo [4], therefore,

wij =
vTi (sj − si)
||vi|| · ||sj − si||

.

For the visualization of the velocity plot, we adopted the same projection628

computation provided by exiting methods [16, 4] to project velocity as arrows629
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onto low-dimensional embeddings, such as tsne [28] and UMAP [21]. To sum-630

marize, the transition probability πi,j from a cell i to possible target cell j is631

computed by the Gaussian normalized connectivity weight wij. Then the veloc-632

ity vector for vi in a low-dimensional space is computed by the weighted sum633

of
∑

j πi,jδij, where δij is the direction vector pointing from cell i to j in the634

low-dimensional space.635

5.6 Driver gene estimation and comparison636

To determine functional signals in the driver genes, the top 100 genes based637

on a correlation with each lineage were determined, in particular for the hind-638

brain developmental data from [30]. Overlap with marker genes based on the639

original analysis used to annotate celltypes was performed, as well as overlap640

with transcription factors. Transcription factors were pulled from the manually641

annotated Human Transcription Factors list curated by Lambert et al. [17], and642

were lifted over to mouse data using orthologous gene-matches.643

Analysis of marker overlap was further extended by determining the rank-644

ing of marker genes across all tested driver genes (2000 total) for both scVelo645

and DeepVelo per lineage in the Vladoiu et al. [30] data. The DeepVelo and646

scVelo predicted rankings of these marker genes for both lineages were com-647

pared, where a higher ranking of marker genes indicated a stronger signal for648

biologically relevant genes in the driver gene analysis. Since the entire tested649

driver gene lists were used, the number of genes per lineage was equivalent, and650

the rankings of the two lists were compared using the Mann-Whitney U Test651

(or Wilcoxon Rank-Sum Test), which is a non-parametric test for differences in652

sample distributions. The two-sided version of the test was used in this case,653

allowing either DeepVelo or scVelo to have greater or lesser rankings for relevant654

marker genes.655

5.7 Pathway enrichment analysis656

To determine functional signals in the driver gene results, pathway enrichment657

analysis was done using the ActivePathways R package [22]. The top 100 driver658

genes, based on correlation values for both the GABAergic and gliogenic lineages659
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from the Vladoiu et al. [30] data, were input into the ActivePathways gene-660

set enrichment analysis model. The latest Gene-Matrix-Transposed (GMT)661

files containing gene-set information from the Gene Ontology Molecular Func-662

tion, GO Biological Process, and REACTOME databases were used [7, 13].663

Pathways were labelled as being involved in ”Neurogenesis”, ”Developmental664

non-neuronal”, and ”Non-specific” using manual annotation and the presence of665

known terms (such as ”neuron projection” or ”proliferation” for ”Neurogenesis”666

and ”Developmental non-neuronal”, respectively). ”Non-specific” pathways in-667

dicated those that did not have immediately obvious roles in either neurogenesis668

or general development. To determine significant differences between pathway669

labelling and potential enrichment of neurogenic/development specific path-670

ways, a two-sided Fisher’s exact test based on the hypergeometric distribution671

was done for the contingency table comprising of scVelo and DeepVelo pathway672

results and functional labels (”Neurogenesis”, ”Developmental non-neuronal”,673

”Non-specific”) for the gliogenic and GABAergic lineages independently.674
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I Supplementary763

Timepoint of DG Neurogenesis Timepoint of Mouse Hindbraina. b.

Figure S1: The developmental timepoints of sequenced cells in dendate gyrus
neurogenesis (a) and mouse hindbrain development (b) datasets.
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PCA projection of cell-specific kinetic rates at various training epochs

Epoch 10 Epoch 20 Epoch 30

Epoch 60 Epoch 90 Epoch 120

a. b. c.

d. e. f.

Figure S2: The PCA projection of cell-specific kinetic rates at various
training epochs. (a-f) Scatter plot of the first two PCA dimensions at train-
ing epochs 10, 20, 30, 60, 90, 120. DeepVelo learns to predict similar kinetic
rates for cells of same celltype. For example, the kinetic rates of Endothelial
cells (outlined) are gradually clustered together and are located away from the
unrelated granule lineage.
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DeepVelo

scVelo
(Dynamical)

scVelo
(Stochastic)

Velocity TrajectoryPseudotimea. b.

c.

Overall Consistency

Celltype-wise Consistency

Figure S3: Comparison of three velocity methods on large-scale dentate
gyrus data. (a) The velocity plot, pseudotime and trajectory inference of
DeepVelo, scVelo dynamical model and scVelo stochastic mode, respectively.
We highlighted observable incorrect predictions of compared methods in red
circles. (b, c) The overall consistency score and celltype-wise consistency score.
DeepVelo shows better performances regarding both metrics.
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Layer size 64
Epochs 100

Learning rate 0.001 Learning rate 0.005 Learning rate 0.01

Layer size 64
Epochs 200

Layer size 128
Epochs 100

Layer size 128
Epochs 100

Figure S4: DeepVelo’s robustness with respect to key hyperparame-
ters. Using different combinations of important hyperparameters, the DeepVelo
velocity plots on the dentate gyrus neurogenesis data are depicted. DeepVelo
consistently captures the correct velocity directions with respect to different
learning rates, GCN layer size and number of training epochs.
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Figure S5: Computational efficiency comparison of scVelo and Deep-
Velo across datasets. Using the same CPU device(∗), DeepVelo had a 4 fold
acceleration compared to the dynamical model. Using GPUs, DeepVelo can
complete training and estimation for over 13,000 cells in 36 seconds. Generally
the GPU-accelerated DeepVelo is 10-20 times faster than the accelerated dy-
namical model (8 CPUs). (∗) The DeepVelo(CPU) uses the pytorch package,
which automatically utilizes 8 CPUs for the gradient optimization step. For all
other computations, the DeepVelo(CPU) runs on single CPU.
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Figure S6: Full pathway enrichment analysis results overlap. Overlap
of scVelo and DeepVelo pathway enrichment analysis results, between methods,
for the top 100 GABAergic and gliogenic driver genes.
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