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One-Sentence Summary:  21 

High-resolution lineage tracking and dynamic covariance mapping (DCM) define three distinct 22 

phases during early gut microbiome invasion. 23 
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Abstract 24 

The stability and dynamics of ecological communities are dictated by interaction networks 25 

typically quantified at the level of species.1-10 But how such networks are influenced by intra-26 

species variation (ISV) is poorly understood.11-14 Here, we use ~500,000 chromosomal barcodes 27 

to track high-resolution intra-species clonal lineages of Escherichia coli invading mice gut with 28 

the increasing complexity of gut microbiome: germ-free, antibiotic-perturbed, and innate 29 

microbiota. By co-clustering the dynamics of intra-species clonal lineages and those of gut bacteria 30 

from 16S rRNA profiling, we show the emergence of complex time-dependent interactions 31 

between E. coli clones and resident gut bacteria. With a new approach, dynamic covariance 32 

mapping (DCM), we differentiate three phases of invasion in susceptible communities: 1) initial 33 

loss of community stability as E. coli enters; 2) recolonization of some gut bacteria; and 3) 34 

recovery of stability with E. coli coexisting with resident bacteria in a quasi-steady state. 35 

Comparison of the dynamics, stability and fitness from experimental replicates and different 36 

cohorts suggest that phase 1 is driven by mutations in E. coli before colonization, while phase 3 is 37 

by de novo mutations. Our results highlight the transient nature of interaction networks in 38 

microbiomes driven by the persistent coupling of ecological and evolutionary dynamics.  39 
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Introduction 40 

How an ecological network responds to perturbation, such as an invasion, depends on the 41 

structure of the community interaction matrix1,2 that quantifies pairwise effects of each species on 42 

other’s population growth. Due to limited experimental resolution, this matrix is typically 43 

described at the level of species or higher-level taxonomic groupings3-10,15,16. This core concept of 44 

ecology has been scrutinized in diverse systems of plants, animals, and microbes under both 45 

natural and lab conditions7,10,17-21. However, a species rarely exists as a homogenous population 46 

due to spatial partitioning and genomic variation from pre-existing or de novo mutations22. Despite 47 

the prevalence of intra-species variation (ISV) in nature, how the ISV of an invading species affects 48 

the community matrix is not fully known.  Indeed, the role of ISV on community composition and 49 

stability has rarely been tested experimentally11-13. Theoretical studies have also yielded 50 

contradictory results regarding the role of intraspecific variation on species coexistence14.  51 

 52 

Here, we experimentally determine the impact of intraspecific variation on community 53 

dynamics during E. coli invasion in the mouse gut microbiome. The mouse gut microbiome, 54 

depending on host phenotype and genetics, consists of ~1012 individual bacterial cells, which can 55 

be partitioned into ~103  species23. The relatively high mutation rate, large population size, and 56 

frequency-dependent selection could lead to ~105 clones existing in a population of a single 57 

bacterial species. Some of these clones present at very low frequency could nonetheless provide 58 

rapid adaptation24,25. Numerous whole-genome sequencing studies with barcoding technologies 59 

highlight the diversity of intra-species clonal lineages24-29, although limited to a few thousand cells 60 

of a single species or hundreds of cells in species-rich consortia. This shallow coverage of intra-61 

species lineage dynamics is yet to determine the extent of coupling between ecological and 62 

evolutionary processes30,31. Instead, deciphering the effect of intra-species clonal variation on 63 

community dynamics requires the ability to track intraspecific clonal lineages at very high 64 

resolutions.  65 

 66 

We used high-density chromosomal barcoding to track the clonal lineages of E. coli that 67 

were introduced into mice with different degrees of complexity in their resident bacterial 68 

community. First, this enabled us to define the ISV dynamics at a frequency as low as 1 in every 69 

~107 cells of E. coli. Second, the ISV dynamics enabled us to define the dominant and persistent 70 
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E. coli clonal lineages (“clones”), including those present at low frequencies. Third, by correlating 71 

this ISV dynamics with the composition of the resident bacteria from 16S profiling, we found that 72 

specific clonal lineages interact with specific resident bacterial families. Notably, such interactions 73 

were reproducible across mice colonization replicates that were susceptible to E. coli invasion. 74 

Fourth, we expand the definition of community matrix interactions, traditionally defined between 75 

species or families, to include both intra-species and between-species interactions. This resulted 76 

in a new approach, which we call dynamic covariance mapping (DCM), which could quantify the 77 

time-dependence of the community interaction matrix and its effect on community stability. Fifth, 78 

using DCM, we were able to define distinct temporal phases during colonization, which uniquely 79 

arise due to the specific interaction between E. coli clones and certain families of the resident 80 

microbiota. 81 

 82 

Results 83 

 84 

High-resolution clonal tracking during gut bacterial community invasion 85 

We previously used the Tn7 transposon machinery to introduce ~500,000 distinct chromosomal 86 

DNA barcodes into a population of ~108 E. coli cells24. Since the barcodes are transmitted from 87 

parent to daughter cells, this allowed the tracking of the clonal lineage dynamics of E. coli at a 88 

resolution of ~1/106 cells as the population adapted to antibiotic resistance during in vitro lab 89 

evolution24. Such high-resolution chromosomal barcoding techniques have been used for single-90 

species analysis but never in a complex and species-rich ecological community32.  We used 91 

barcodes to simultaneously track high-resolution clonal lineage dynamics of an E. coli population 92 

colonizing mouse guts (Fig. 1a).  93 

 94 

It is well-established that higher diversity and species richness of an ecological community makes 95 

it less susceptible33 to invasion including the gut microbiota. However, this resistance to invasion 96 

can be compromised upon environmental perturbations, such as antibiotic treatments, that reduce 97 

community diversity, making them susceptible even to non-pathogenic bacteria. Additionally, the 98 

gut itself presents a complex “biogeographical” environment, where distinct selective niches arise 99 

from heterogeneity in the availability of metabolites, nutrients, and immune effectors, as well as, 100 

epithelial topography and mucus architecture34. With these considerations in mind, we designed 101 
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mice cohorts with different complexities in their gut bacterial microbiomes (Fig. 1a): mice with 102 

innate microbiome (cohort 1, “im”) and mice with reduced microbiome due to pre-treatment of 103 

antibiotics (cohort 2, “rm”); and germ-free mice (cohort 3, “gf”). Lastly, as a control for the 104 

community dynamics in the absence of colonization, we had another cohort of mice that received 105 

antibiotic treatment but was not gavaged by E. coli (cohort 4, “nc”). Cohorts 2 and 4 were pre-106 

treated with an antibiotic cocktail (metronidazole, neomycin, ampicillin, and vancomycin) for 107 

three weeks followed by three days of no treatment to flush out the antibiotics. On day zero, E. 108 

coli were introduced in mice of cohorts 1, 2, and 3. Then, for all cohorts, fecal samples were taken 109 

at 3h, 6h, 12h, and 24h on day one and then once daily for two weeks. The multiple sampling on 110 

day one was required to capture the kinetics of transit through the gut of the colonizing bacteria29. 111 

Extraction of bacterial genomic DNA from the feces, followed by PCR amplification of the E. coli 112 

barcoded region and next-generation sequencing, afforded high-resolution lineage tracking during 113 

gut colonization (Fig. 1c-e and Extended Data Fig. 1a). We also simultaneously tracked the 114 

community dynamics of resident bacteria using 16S rRNA profiling (Fig. 2b, 3b, and Extended 115 

Data Fig. 4b).  116 

 117 

The global tempo of E. coli colonization and its impact on the gut microbial community is reflected 118 

by the fluctuations in the diversity of chromosomal barcodes and 16S rRNA dynamics. Thus, we 119 

calculated the effective diversity index 𝐷!  of the barcoded E. coli population that captures three 120 

complementary notions of lineage diversity. Specifically, 𝑞 = 0 reflects the total number of unique 121 

barcodes (its “richness”), 𝑞 = 1 is the frequency-weighted lineage diversity equal to the 122 

exponential of Shannon entropy, and 𝑞 = ∞ reflects the reciprocal of the frequency of the most 123 

abundant barcode. The effective diversity of the chromosomal barcodes for im, rm, and gf cohort 124 

is shown in Fig. 1f. Similarly, we calculated the diversity index of the gut community composition 125 

from 16S rRNA, where the amplicon sequence variants (ASV) are defined at the level of bacterial 126 

families (Fig. 1f). Analogous to barcode diversity, 𝑞 = 0 is the total number of unique bacterial 127 

families, 𝑞 = 1 is the frequency-weighted family diversity, and 𝑞 = ∞ is the reciprocal of the 128 

frequency of the most abundant family. Expectedly, the gut community of the im cohort was 129 

resistant to the invasion of the E. coli K12, where after an initial of ~106 to ~108 colony-forming 130 

units (CFU)/gram of feces within ~3h, the bacterial load reduced to below ~104 CFU/gram by 131 

day 6 (Fig. 1b). The bacterial community dynamics are unperturbed by the entry of E. coli into the 132 
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community (Fig. 1g). The inability of the E. coli population to establish in the im cohort is also 133 

reflected in the more rapid transit of the barcodes through the gut, whereby the peak in barcode 134 

diversity (q=0 in Fig. 1f) for mice im2-4 mice is ~3h compared to ~6h for the rm and gf mice.  135 

 136 

In contrast, E. coli successfully colonized the rm cohort, reaching bacterial loads of ~108 colony-137 

forming units (CFU)/gram of feces within ~6h (Fig. 1b), which coincided with the maximal 138 

barcode diversity (Fig. 1f). The absence of resident bacteria in the gf cohort resulted in E. coli 139 

reaching a higher bacterial load of ~1010 CFU/gram of sample within ~6h. Interestingly, despite 140 

the difference in their CFU levels (Fig. 1b), both the gf and rm cohorts reach optimal diversity in 141 

~6h (Fig. 1e). Moreover, even the unsuccessful colonization of the im cohort reached an optimal 142 

diversity around 3h, and the diversity is overlapping with the im, rm, and gf cohort. Altogether, 143 

these results suggest that the very early dynamics of entry of E. coli (~6 h) is primarily dictated by 144 

adaptation to the biogeography of the mouse gut rather than by the diversity of the microbial 145 

community. After this time-point, the different cohorts exhibited distinct behavior for their 146 

diversity (Fig. 1f,g). 147 

 148 

Notably, the CFU counts for mice in the same cohort are broadly indistinguishable (Fig. 1b) despite 149 

the complexity of the underlying clonal dynamics viewed at higher resolution (Fig. 1c-e). 150 

Additionally, although barcodes begin appearing within ~3h (Fig. 1e), they were not observed in 151 

the CFU counts for the rm and gf cohorts (Fig. 1b). Barcodes that appeared first were not always 152 

the dominant ones at the end (Extended Data Fig. 1a). This observation is most drastic in the im 153 

cohort. Three mice (im1, im2, and im3) showed a reduction in barcode frequency accompanying 154 

the drop in CFU but manifested an increase in diversity towards day 6 (Fig. 1b,f). One mouse 155 

(im4) maintained a high barcode diversity despite the drop in CFU. These results highlight the 156 

stochasticity of transmission kinetics through the intestinal gut’s distinct “island” niches34, which 157 

is not reflected simply by measuring the total bacterial count of the invading species.  158 

 159 

In accordance with previous lower-resolution colonization experiments29,35, we observed soft 160 

clonal sweeps of barcodes that eventually became dominant (>5%) after ~2 days (Extended Data 161 

Fig. 1b, rm mice; Extended Data Fig. 1c, gf mice). This clonal sweep was stronger in the gf than 162 

in the rm mice, as only one barcode reached >5% in the rm, whereas several dominant barcodes 163 
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co-segregated over two weeks in the gf. These dominant barcodes originated at frequencies 164 

around 10-7 (Fig. 1d-e). The sweep in the gf and rm mice is manifested by a drop in barcode 165 

frequency-dependent diversity (q=1 in Fig. 1f). The drop in diversity occurs earlier in the rm cohort 166 

(~2 days), compared to gf (~7 days in 𝑞 = 1, ~4 days in 𝑞 = ∞). Interestingly, despite the earlier 167 

clonal diversity drop in rm, which coincides with the resurgence in bacterial community diversity 168 

(Fig. 1g), rm maintains a greater clonal diversity compared to the gf towards the end of the 2-week 169 

period (Fig. 1f). This suggests that gf, adjusting only to the selective pressure imposed by gut 170 

biogeography, is subject to a stronger intra-species competition.  In contrast, the resurgence of the 171 

resident bacterial community in the case of rm (Fig. 1g) leads to the coexistence and co-dominance 172 

of multiple barcodes in the E. coli population (Fig. 1f). Altogether, this highlights the interaction 173 

of the resident community and the clonal lineages of the invading species. 174 

 175 

Clone-specific interaction between E. coli and other bacteria 176 

 177 

Next, we determined the impact of the colonizing species on the composition of the resident 178 

bacterial community. While the community in the im cohort was more resistant to invasion, the 179 

introduction of E. coli in the gut microbiome led to a reduction in the abundance of some resident 180 

bacterial communities in the rm cohort (16S rRNA in Fig. 2b and 16S rRNA in Extended Data 181 

Fig. 4b). This quick initial collapse happens within the first ~3h and is clearly manifested in rm2 182 

(16S rRNA in Fig. 2b). However, the establishment of E. coli was accompanied by the resurgence 183 

of the bacterial community around day 4, followed by the coexistence of E. coli and the resident 184 

bacterial community. Notably, Sutterellaceae was unperturbed by the introduction of E. coli in all 185 

four mice. Although Muribaculaceae was unperturbed only in rm 1 and rm 3, it was the first 186 

bacterial family to rebound in rm 2 and rm 3 (Fig. 2b). The canonical member of a gut microbiome, 187 

Lactobacillaceae, had an intermediate abundance when E. coli was introduced, but this declined 188 

after E. coli established in the gut microbiome. In the no-colonization cohort (nc), the community 189 

also exhibited a rebound due to the release from the antibiotic treatment (Fig. 1g and 3b). However, 190 

the resident community of the nc cohort was dominated by  Lactobacillaceae and was less diverse 191 

than the resident community of the rm cohort. These results demonstrated the impact of E. coli 192 

introduction on bacterial community composition. 193 

 194 
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To determine if there are interactions between specific E. coli clones and bacterial families, we 195 

first identified the dominant E. coli lineages using barcode dynamics (Fig. 1c-e). The barcode 196 

lineage dynamics reflects its effective fitness (selection coefficient) over time32, and thus 197 

similarities in barcode lineage dynamics can be indicative of E. coli clones under similar selection 198 

coefficients. We performed a shape-based clustering analysis of linage dynamics using the Pearson 199 

correlation as the similarity measure computed for pairs of barcodes with mean frequency >5e-5 200 

and persisted for at least 12 of the 18-time points (Extended Data Fig. 3). These represent ~5-10% 201 

of the total barcoded E. coli observed in the rm and gf mice (Extended Data Fig. 3b,c). Clusters of 202 

persistent barcodes were defined as putative clonal lineages hereafter and ranked based on average 203 

frequency (Extended Data Fig. 3). Interestingly, in this procedure, the clonal cluster C1 always 204 

contained the dominant barcode lineages that exhibited the sweeps, even if C1 cluster itself did 205 

not have the largest number of barcodes (Extended Data Fig. 3). This observation validates the 206 

lineage clustering approach. A LOESS regression of the top 10 clonal clusters of E. coli highlights 207 

the persistence of extremely rare barcodes in the colonizing population (Fig. 2a & Fig. 3a) 208 

 209 

Considering the diversity of these clonal lineage clusters, we asked whether individual clusters 210 

were associated and potentially interacting with specific bacterial families. We performed co-211 

clustering of the dynamics of putative clonal lineages of E. coli and those of the 16S rRNA 212 

bacterial community profiles using the k-shaped algorithm36 (Fig. 2c, Extended Data Fig. 4c 213 

Extended Data Fig. 5). These analyses revealed a consistent picture across the rm cohort. The 214 

dominant cluster, C1, was always grouped with Lachnospiraceae, whereas two other low-215 

frequency clusters, C7 and C8 grouped persistently with Lactobacillaceae, the canonical member 216 

of gut microbiota (Fig. 2c). Interestingly, it was previously shown in invasion studies of pathogenic 217 

strains of E. coli and Lachnospiraceae that these bacteria utilize similar sugars and thrive in the 218 

same environment37.  219 

 220 

To demonstrate that the degree of co-clustering of E. coli clonal lineages and bacterial families 221 

was specific to the rm cohort, we applied the shaped-based co-clustering of barcode lineages for 222 

the gf (Fig. 3a) and the nc cohort (Fig. 3b). The extent of co-clustering was measured using the 223 

mixing index, 𝐷",$ = 1 − (max|𝐹(𝑐) − 𝐹(𝑚)|) (Fig. 3c-d and Extended Data Fig. 5), which 224 

compares the clustering distance from clonal lineages to bacterial families 𝐹(𝑚) with the distance 225 
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 9 

between clonal lineages 𝐹(𝑐) (Fig. 3d). Indeed, the co-clustering between clones and bacterial 226 

families was strongest in the rm cohort(Fig. 3d). Expectedly, co-clustering was weakest when the 227 

16S rRNA community dynamics of im and rm were paired with the gf cohort clonal lineages (Fig. 228 

3d).  229 

 230 

Moreover, we applied the same analyses to the im cohort to test if there is a similar heterogeneous 231 

interaction between the invading E. coli population and the bacterial community, even if the 232 

invasion was unsuccessful. Indeed, the shaped-based co-clustering showed heterogenous 233 

interaction between E. coli lineages and bacterial families (Extended Data Fig. 4). The extent of 234 

co-clustering in the im cohort is weaker than in rm (Fig. 3c-d, im is blue, rm is orange), which is 235 

in agreement with the resilience of the im community to the invasion. However, despite the 236 

unsuccessful E. coli invasion in the im mice, the co-clustering between E. coli clonal lineages and 237 

bacterial families is strongest when they come from the same biological cohort (Fig. 3c), 238 

suggesting intra- and inter-species interactions (Extended Data Fig. 4c), even if only transient. 239 

Altogether, the high-resolution lineage tracking demonstrated that intraspecific variation could 240 

lead to clone-specific interactions in bacterial communities during invasions, including those that 241 

may not lead to establishment.  242 

 243 

Dynamic covariance mapping defines phases of colonization 244 

 245 

The barcode and 16S rRNA time series suggest distinct phases in the colonization dynamics in rm 246 

mice (Fig. 2a-b). Specifically, the entry of the invading E. coli population is manifested by the rise 247 

of the dominant clone frequency in phase 1. This is accompanied by an increase in CFU and 248 

barcode diversity (Fig. 1b,f) and a drop in resident bacterial community diversity (Fig. 1g and  Fig. 249 

2b). In phase 2, relative stasis and lower fluctuations in the dominant clone frequencies as the 250 

resident bacterial community re-emerges. Lastly, in phase 3, the dominant clones of E. coli 251 

coexisting with the resident community undergo large fluctuations. These phases are distinct from 252 

the much simpler dynamics of clonal lineages observed in the gf cohort (Fig. 3a), which suggests 253 

that the phases in rm are driven by interactions between the colonizing E. coli and the resident 254 

community.  255 

 256 
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To unambiguously define these phases and the dynamic stability of the community, we developed 257 

the method of dynamic covariance mapping (DCM) that estimates the time-dependent community 258 

matrix of pairwise interactions at the level clones. Specifically, the community dynamics can be 259 

described by a vector of time-series, 𝑍(𝑡) = {𝑧%(𝑡), 𝑧&(𝑡), … }', featuring 10 time-series 260 

corresponding to the dominant E. coli clones and 7 for bacterial families. Although the full time 261 

evolution of 𝑧(𝑡) is complex and unknown 2,9,38,39, the Jacobian matrix 𝐽 of its linearized dynamical 262 

system, representing the community matrix of pairwise interactions, can be estimated as the 263 

covariance of one time-series and another’s time derivative9, 𝐽 = 〈cov(𝑧̇( , 𝑧))〉.  The eigenvalues 264 

of the Jacobian matrix report on the dynamics and stability of the system2,38,39. When the real part 265 

of an eigenvalue is negative, the system is stable against perturbation along the direction of the 266 

associated eigenvector, and conversely, when positive, the system becomes unstable. The 267 

magnitude of the imaginary part of an eigenvalue implies oscillatory behaviors.  268 

 269 

We quantified the Jacobian over a progressively shifting time window and performed eigenvalue 270 

decomposition (Fig. 4, Supplementary Movie 1a-d). The real parts of eigenvalues corresponding 271 

to early time-points were positive, reflecting that the system is unstable due to the introduction of 272 

E. coli. This is accompanied by the drop in bacterial community diversity (Fig. 4c left panel). This 273 

was followed by a second phase, with the real parts of eigenvalues moving from positive to 274 

negative, corresponding to the recovery of system stability and the resurgence of some bacterial 275 

families (Fig. 4a, c (middle panel)). Finally, in phase 3, the system became dynamically stable but 276 

with notable oscillations in both the 16S and the clonal dynamics (Fig. 4c, (right panel)). These 277 

results highlight the rapid time dependence of the community interaction matrix. 278 

 279 

We then determined how reproducible and consistent these three phases are across the mice cohorts 280 

(Supplementary Movie 1a-d). For each time interval, there are ~17 eigenvalues corresponding to 281 

the Jacobian matrix. Using a Uniform Manifold Approximation and Projection (UMAP) (Fig. 4b), 282 

we found that the eigenvalues as a function of time broadly overlap across different mice, with the 283 

boundaries of the 3 phases unambiguously determined (unbiased clustering in the UMAP; 284 

Extended Data Fig. 6d). Interestingly, application of DCM to the unsuccessful invasion in the im 285 

mice also revealed two distinct phases for im1-3 (Extended Data Fig. 6g), corresponding to the 286 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2022. ; https://doi.org/10.1101/2022.12.30.522336doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

entry of barcoded E. coli (~3h to 12h) followed by the collapse in barcode diversity due dramatic 287 

drop in bacterial load (Fig. 1b,f and Extended Data Fig. 1a). 288 

 289 

Are these distinct temporal phases primarily driven by the 16S, clonal dynamics, or both? To 290 

answer this question, we combined all eigenvalues from the clone dynamics of the rm and gf cohort 291 

and projected them onto a single UMAP (Extended Data Fig. 6h). This revealed that the entire 2-292 

week dynamics of E. coli in the gf cohort and rm cohort are not overlapping at all. Also, rm clone 293 

DCM analysis revealed that without the bacterial community dynamics effect, they cluster within 294 

the mouse rather than the cohort. This suggests that the E. coli clonal dynamics in the rm cohort 295 

were largely driven by the interaction between clones and the bacterial community.  296 

 297 

Estimates of the relative fitness of the gut community during the 3 phases of colonization  298 

 299 

Since the gut is a multi-species system, the effective fitness manifested by clones or bacterial 300 

families reflects their adaptation to the mouse’s intestinal biogeography, interactions with other 301 

species and clones, and impacts from mutations. This complexity reflects the fundamental 302 

coupling of evolutionary and ecological forces. To determine how the 3 phases defined from DCM 303 

correspond to the fitness experienced by E. coli’s clones and bacterial families, we estimated the 304 

relative per-capita growth rate of the clones from the time derivative of their normalized frequency 305 

(Methods). Within the rm cohort, we partitioned these relative fitness estimates according to the 306 

three DCM-identified phases and found that the dominant clone cluster C1 experienced a positive 307 

fitness as the E. coli population adapts to the gut biogeography (>50% of relative fitness is positive; 308 

Fig. 5a). Similarly, its most dominant interactor (Fig. 2b), Lachnospiraceae, was also driven by 309 

positive fitness(Fig. 5d). Experienced relative fitness was symmetric for the next two dominant 310 

clones C2 and C3. The relative fitness experienced by low segregating clones shifted from positive 311 

in phase 1 to negative in the other phases (Fig. 5b). 312 

 313 

The system reached a quasi-steady state where there was an equal fraction of positive and negative 314 

fitness changes (Fig. 5c orange curves for dominant clones C1, C2, and C3), corroborating the 315 

eigenvalue decomposition analyses, which indicates a stable oscillator in phase 3. In single-species 316 

systems, this implies a mutation-selection balance whereby there is an equal fraction of beneficial 317 
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and deleterious mutations. However, in species-rich communities, the oscillation is primarily 318 

driven by co-evolution from clone-specific interactions. Indeed, the estimated fitness for the gf 319 

cohort (Extended Data Fig. 6) revealed minimal fitness changes, suggesting that the contribution 320 

of de novo mutations in the 2-week period was less compared to the rm cohort with complex 321 

interactions in resident bacterial communities. 322 

 323 

The dynamic similarity in phase 1 is driven by similar barcodes 324 

How similar are the clones across different mice, and are they driven by the same barcodes? To 325 

this end, we performed pairwise clustering using the Pearson correlation as the similarity of the 326 

clone time-series. In both rm and gf cohorts, we observed that the dominant clonal lineages (C1 327 

and, to a lesser extent, C2) have similar time series (Fig. 6a, d). By calculating the overlap 328 

coefficient between barcodes in each clone, we found that the dominant clonal lineages are more 329 

likely to be the same barcodes (Fig. 6e). Considering that the dominant clones in the rm cohort 330 

change their dynamics primarily in phase 1 (Fig. 4), this suggests that the reproducibility of 331 

dominant barcode dynamics and their consistent interaction with Lachnospiraceae is likely driven 332 

by standing genetic variation in the colonizing population. That is, the gavage E. coli pool has 333 

genetic variation 24 which drives its early adaptation dynamics in the gut. In further support of this 334 

proposition, the effect of standing genetic variation was strongest in the colonization of gf mice 335 

(Fig. 6b), where the similarity in clonal dynamics across mice was driven by strong barcode 336 

similarity. 337 

 338 

In the rm cohort, for clonal lineages that were less dominant but exhibited persistent oscillations 339 

in phase 3 (Fig. 5), their similarity in barcode dynamics was not accompanied by similarity in 340 

barcode identity. This indicates that even within 2 weeks, the clonal lineages in a mouse gut start 341 

to diversify in phase 3, and according to relative fitness, this diversification in dynamics is more 342 

likely driven by ecological effects (e.g., stochasticity in the interaction with resident bacterial 343 

species) than de novo mutations.  344 

 345 
Discussion 346 
 347 
Our experimental and computational framework offers a generalized approach to quantify 348 

microbial community interaction matrix and its consequences on dynamic and stability, 349 
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particularly following perturbations triggered by invading species. With our experimental 350 

barcoding protocol, we demonstrate that intra-species variation leads to time-dependent 351 

interactions, even during the early stages of community colonization. Although the dynamics are 352 

complex, the global colonization dynamics are surprisingly replicable and can be defined by 3 353 

phases that arise from the coupling of ecological and evolutionary dynamics. This seems 354 

contradictory to other studies showing a lack of reproducibility and replicability of microbiome 355 

composition across mice replicates40. However, we note the onset of divergence between the mice 356 

cohort (Fig. 4b) after 2 weeks due to stochasticity of de novo mutations. We cannot yet comment 357 

on the long-term implication of ISV at the resolution afforded by this experiment since our barcode 358 

diversity is exhausted after a clonal sweep. This would require a “renewal” or regeneration of new 359 

DNA barcodes, as recently done in yeast41. 360 

 361 

Additionally, intra-species diversity is present not only in the colonizing species but also in the 362 

resident community; thus, our chromosomal barcoding approach could be extended to species that 363 

are innate to the gut microbiota. The high-resolution colonization dynamics could also be extended 364 

by pathogenic barcoding species, such as P. aerogenousa and S. enterica, which are more 365 

aggressive colonizers than E. coli K12. Therefore, we argue that the gut microbiome for us is an 366 

ecological system, such that all the approaches presented here could be broadly applicable to most 367 

microbial ecological networks. However, the gut microbiome has particularities. More 368 

specifically, the gut microbiota itself is shaped by the genetics and phenotypes of the mice, which 369 

we do not explore in this study. Indeed, the mice themselves, in general, are not homogenous and 370 

could have an impact on the gut composition. In human microbiomes, it was shown that genetic 371 

variation in humans could itself impact the diversity of the microbiomes42.  In the future, the impact 372 

of host diversity will be explored by performing colonization experiments on mice with diverse 373 

genetic backgrounds.  374 

 375 

Broadly, the DCM that we developed here represents a model- and parameter-free approach to 376 

analyzing the stability and distinct temporal phases of a microbial system, starting simply from 377 

high-resolution time series abundance data. Our result showed that these phases of invasion and 378 

the intra- and inter-species interactions are highly reproducible among mice replicates is rather 379 

unexpected considering the variability in microbiome compositions which is the norm in the 380 
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microbiome field43. We argue that although specific compositions may be highly variable across 381 

mice, the overall tempo of ecological and evolutionary dynamics, as manifested by the DCM 382 

analysis, are more reproducible features of the microbiota. To this end, the DCM and its future 383 

incarnations could provide a framework for predicting the microbiota’s response to perturbations, 384 

especially in the context of the invasion of pathogenic species44 and fecal transplant to treat human 385 

disorders45.  386 

 387 

Methods 388 

 389 

Experimental procedures 390 

(i) E. coli barcoded population generation 391 
 392 
Barcoded E. coli populations were generated as previously described24 using the Tn7 transposon 393 

library.  The first step is transforming the recipient E. coli MG1655 cells with the Tn7 helper 394 

plasmid and induction of the transposase integration machinery. The second step is the 395 

transformation of the Tn7 integration plasmid library, which integrates the barcodes into the 396 

chromosome of the bacteria. The Tn7 integration plasmids with barcode and spectinomycin 397 

cassette were extracted from TransforMax EC100D pir + cells (Lucigen) with a Qiagen midi kit. 398 

Then E. coli MG165 cells were transformed with the Tn7 helper plasmid to induce the transposase 399 

integration machinery. Transformed cells with Tn7 helper plasmid were grown overnight in LB 400 

supplemented with 100 μg/ml ampicillin at 30 °C. In these cells, transposon machinery was 401 

induced with arabinose to transform with Tn7 integration plasmids. After overnight incubation on 402 

the bench, they were plated on LB agar plates containing 100 μg/ml spectinomycin. Randomly 403 

picked colonies were checked for chromosomal incorporation of barcode cassettes by targeting the 404 

Tn7 integration site. We scraped all the colonies from the plates, then pooled, thoroughly mixed, 405 

and aliquoted them with 15% glycerol. These stocks were stored at −80 °C pending the mice 406 

colonization experiments. 407 

(ii) Mice evolution experiments 408 
 409 
We used several cohorts of mice to determine colonization dynamics in their gut: Cohort 1 (im) 410 

mice with innate microbiota followed by E. coli colonization (4 replicates); Cohort 2 (rm) or mice 411 

with reduced microbiota and pre-treated with an antibiotic cocktail followed by E. coli 412 
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colonization (4 replicates); Cohort 3 (gf) or mice that were initially germ-free and colonized with 413 

barcoded E. coli barcode (4 replicates); and Cohort 4 (nc) or mice with microbiota and pre-treated 414 

with an antibiotic cocktail but not colonized by E. coli (4 replicates). Cohorts 2 and 4 (rm and nc) 415 

were administered an antibiotic cocktail (metronidazole 1 g/L, neomycin 1g/L, ampicillin 1g/L, 416 

and vancomycin 0.5 g/L) for four weeks to reduce the complexity of the gut microbiota. Under 417 

these conditions, 99.5% of the cecal bacteria are eliminated at the end of treatment46,47. Then, we 418 

let them recover for three days without antibiotics before introducing the barcoded population, 419 

which we set as our day zero. After gavage of the barcoded population, fecal samples were taken 420 

at 3, 6, 12, and 24 hours and once daily until day 14 for rm and day 15 for gf. The nc cohort fecal 421 

samples were collected for ten days. During the day of fecal collection, we split the sample, one 422 

for bacterial load measurements (see below) and another for storage at -80 ˚C until subsequent 423 

genomic analysis. 80 μl of the feces homogenate was placed with 20 μl of 100% glycerol to make 424 

20% glycerol stocks for later recovery of live bacteria. 425 

(iii) Bacterial load measurement  426 
 427 

To measure the bacterial load in the fecal samples, we spread them with increasing dilutions on 428 

LB plates with spectinomycin 50 μg/ml to select for the colonizing E. coli. The chromosomal 429 

barcode contains the spectinomycin resistance cassette (spR)24. Measurements of bacterial loads 430 

were done in 3 independent replicates. 431 

(iv) Genomic DNA extraction in fecal samples, chromosomal barcode amplification, and 432 
next-generation sequencing   433 

 434 

Genomic DNA (gDNA) was extracted from whole fecal pellets using the QIAamp Fast DNA Stool 435 

Mini kit (Cat: 51604). A two-step PCR was used to amplify the chromosomal barcodes and then 436 

append the Illumina adapter sequences. For the first PCR, anywhere between 20 to 100 ng of 437 

template per sample was used with PrimeSTAR GXL DNA Polymerase from TAKARA (Cat: 438 

R050B ). The parameters for this 1st  reaction were as follows: 94 °C for 5 min, 30X (95 °C for 439 

10s, 53 °C for 15 s, 68 °C for 45 s), 68 °C for 5 min, hold at 4 °C. The Primers for this PCR are 440 

the following: 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’, 5’-GTCTCGTGG 441 

GCTCGGAGATGTGTATAAGAGACAG-3’. The resulting amplicon sequence from this PCR is 442 

the following:  5’-gatatcggatcctagtaagccacgttttaattaatcagatccctcaatagccacaacaactggcgggcaaacagtc 443 
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gttgctgattggtcgtcggcagcgtcagatgtgtataagagacagtcgcgccggNNNNNNNNNNNNNNNtatctcggtagtg444 

ggatacgacgataccgaagacagctcatgttatatcccgccgttaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtgg445 

accgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccctggcgc446 

ccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccctgtctcttatacacatctccgag447 

cccacgagacgccactcgagttatttgccgactaccttggtgatctcgcctttcacgtag-3’. The contiguous 15 Ns in this 448 

amplicon sequence corresponds to the random nucleotides that serve as our chromosomal 449 

barcodes24. The product from this PCR was purified and cleaned with NucleoSpin Gel and PCR 450 

clean-up kit from TAKARA. A 2nd PCR was performed with high-fidelity PrimeSTAR GXL DNA 451 

Polymerase (Takara Cat: R050B) to add the Nextera indices (Nextera XT primers Set A 96 452 

Indexes, 384 Samples, Cat# FC-131-2001). We followed the suggested cycling conditions, which 453 

are as follows: 94 °C for 5 min, 12X (95 °C for 10 s, 55 °C for 15 s, 68 °C for 45 s), 68 °C for 5 454 

min, hold at 4 °C. The primers for this 2nd reaction were the following: 455 

5’CAAGCAGAAGACGGCATACGAGAT[I7]GTCTCGTGGGCTCGG-3’ and 5’-456 

AATGATACGGCGACCACCGAGATCTACAC[I5]TCGTCGGCAGCGTC-3’. PCR products 457 

from all reaction tubes were purified with magnetic beads (Beckman Coulter) and pooled together, 458 

spiked with 15% of PhiX DNA, and sequenced using either Miseq or Nextseq Illlumina chips at 459 

Université of Montréal’s IRIC Genomic Platform. Bioinformatic analyses are described in the 460 

Analysis section below. 461 

(v) 16S profiling  462 
Similar to the chromosomal barcode amplification, we used a two-step PCR to amplify the 463 

genomic region of interest and prepare the library for Illumina sequencing. The 16S rRNA V4 464 

region was PCR-amplified with buffer and polymerase PrimeSTAR GXL DNA Polymerase 465 

(Takara, Cat: R050B). The cycling conditions for the PCR are as follows: 98 °C for 3 min, 35X 466 

(95 °C for 10 s, 60 °C for 15 s, 68 °C for 35 s), 68 °C for 5 min, hold at 4 °C. The primers for the 467 

reaction are the following: 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGYRYRGT 468 

GCCAGCMGCCGCGGTAA-3’ and 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA 469 

GGGACTACHVGGGTWTCTAAT-3’. PCR products were purified with Nucleospin Gel and a 470 

PCR purification kit from TAKARA (Cat: 740609). Illumina sequencing adaptors were added to 471 

respective samples with PCR using the same primers and protocols similar to the barcode 472 

amplification. The PCR amplicons of the samples were then pooled after a purification and 473 
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concentration equalization process with the AMPureXP Kit (Beckman Coulter). The libraries were 474 

processed in an Illumina MiSeq v2 (500 cycles and paired-end).  475 

 476 

Analysis 477 
 478 
(i) Barcode extraction from the FASTQ file and determining putative “true” lineages 479 
To understand how clonal populations of cells change over time, we first identified and extracted 480 

the barcode sequences from our raw sequencing data. To prepare reads for extraction, we 481 

prepended them with one N and a corresponding ‘?’ quality score. This was required to extract 482 

barcodes from the reads using the bartender_extractor_com component from the tool Bartender48. 483 

We discarded reads with an average Phred quality score below 30 (corresponding to the ‘?’ 484 

character) and kept reads with at most one mismatch in the sequence following the variable region, 485 

which is [TATC]. For each remaining read, a raw 15-nucleotide sequence barcode was extracted. 486 

However, not all of these raw barcodes match the true synthesized barcodes due to mutations in 487 

the sequencing and/or PCR. To correct for sequencing errors in the raw barcodes, we used the 488 

bartender_single_com on the raw barcodes with default settings. Here, it was assumed that an 489 

infrequent barcode with one or two mismatches from a frequent barcode was a mutant of the more 490 

frequent barcode and hence, added to the latter. This step produced a list of putative barcode 491 

lineages for the sample. Additionally, since we have multiple time points per mouse, we wanted 492 

to ensure that barcode identities were consistent across the biological samples. Thus, we pooled 493 

all the raw barcodes from the same mouse as a single list. We then applied the same 494 

bartender_single_com procedure to the pooled list. This step resulted in a comprehensive list of 495 

raw barcode sequences mapped to their consensus sequence for all samples from one mouse. From 496 

this list, we iteratively mapped each raw barcode sequence against all individual samples to yield 497 

the number of reads per time point per barcode lineage. For each mouse, we sequentially assigned 498 

a numeric ID to the barcode lineage to produce a list of barcode lineage trajectories for one mouse. 499 

This analysis pipeline is available on github (https://github.com/melisgncl/high-resolution-mouse-500 

barcoding.git). 501 

 502 

(ii) Visualizing barcode dynamics 503 
 504 
To compare barcode trajectories within and between mice cohorts, we aimed to use consistent 505 

color coding for barcode lineages. First, we assigned a unique color to all lineages that reached a 506 
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relative frequency of 5e-05 in their respective mouse. The frequency 𝑓((𝑘) of barcode lineage 𝑘 in 507 

condition 𝑖 is: 508 

  𝑓((𝑘) =
*!(,)
∑ *!())"

         (1) 509 

where 𝑥((𝑘) is the barcode read count. This operation was applied to each mouse, such that the 510 

color scheme was consistent when the dynamics were compared (Fig. 1c-e and Extended Data Fig. 511 

1). For example, a barcode lineage that was assigned the color “magenta [#c20078]” will always 512 

have this color in all the figures. Conversely, no other barcode was assigned the same color. To 513 

create the Muller-type plots for each mouse (Extended Data Fig. 1), the barcode frequencies at 514 

every time point were represented in linear scale. In each mouse, the barcodes were sorted by the 515 

maximum frequency they attained over the time-series. This produced a stacked area plot where 516 

dominant barcodes were shown starting from the bottom of the panel and progressively lower-517 

frequency barcodes were shown at the top. The same data was used to plot the frequency 518 

trajectories in log10-transformation (Fig. 1c-e). Barcodes that reached a minimum frequency of 519 

1e-05 throughout its time-series were shown in color, whereas the remaining barcodes were shown 520 

in grey for clarity. 521 

 522 

(iii) Quantification of barcode diversity 523 
 524 
The simplest way to quantify the diversity of barcoded lineages in a population is to count the 525 

number of unique barcodes observed at a particular time point (Fig. 1c-e). However, if lineages 526 

differ widely in frequency, then this measure may not be very informative and will suffer from 527 

substantial sampling bias (since very low-frequency barcodes will be under-sampled). A more 528 

general approach is to quantify the diversity of barcodes using the effective diversity index49  529 

  𝐷	! = C∑ 𝑓,
!

, E%/(%1!)        (2) 530 

where	𝑓, is the frequency of the kth barcode lineage, and q is the “order” of the diversity index.  531 

When 𝑞 = 0, the index simply counts the absolute diversity in the sample, i.e., the total number of 532 

unique barcode lineage. This measure is equivalent to the species richness used in ecological 533 

studies 50. When 𝑞 = 1, the index weights each barcode lineage by its frequency. This measure is 534 

equivalent to the exponential of the Shannon entropy 𝐻; 535 

  𝐻 = −∑ 𝑓,, log(𝑓,)        (3) 536 
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When 𝑞 → ∞, the index is equal to the reciprocal of the proportional abundance of the most 537 

common barcode lineages. Thus, only the higher-frequency lineages contribute to the value of this 538 

index. By comparing the diversity index across these three orders for 𝑞, we could describe the 539 

complex dynamics of the barcode composition over the course of the experiment. In the trivial 540 

case when all barcode frequencies were equal, the effective diversity index would be equal to the 541 

absolute number of barcodes regardless of the order of 𝑞. We should expect absolute diversity 542 

(𝑞 = 0) to be no greater than the maximum theoretical diversity of the barcode library. 543 

Additionally, we should also expect this measure to decrease over time as barcodes are lost from 544 

the population since diversity is exhausted In time within host transit and dynamics. 545 

 546 

(iv) Barcode lineage clustering 547 
 548 
To identify the clonal lineages, we clustered the barcode lineages for each mouse based on the 549 

similarity of their time series behavior. To maximize the accuracy of this clustering, we excluded 550 

barcodes with insufficient time points. Specifically, for each mouse, we retained only the lineages 551 

that i) exhibited non-zero frequency over at least 12 out of 18 time points for the rm cohort and ii) 552 

the mean frequency over the entire time series is >=5e-5. Similarly, for the gf cohort which had 1 553 

time-point less, we retained barcodes with i) non-zero frequency for at least 11 out of 17 time-554 

points and ii) the mean frequency over the entire time-series is >=5e-5. For the im cohort, we keep 555 

lineages with i) at least 5 time points and ii) the mean frequency over the entire time-series is >=5e-556 

6. This ensured that all barcode lineages included in the clustering had a sufficient number of 557 

points for pairwise comparison. This procedure meant that the lineage clustering focused on 558 

dominant and persistent clones; barcodes that immediately went to extinction were excluded. 559 

Altogether, this procedure was performed on a subset of ~300 to ~1300 lineages for each mouse, 560 

representing ~5% to ~10% of total barcodes. Since this analysis focuses on the dominant and 561 

persistent lineages, this fraction also represents ~7% to ~50% of the total number of E. coli cells 562 

(or raw barcode counts) at the end of the colonization experiment. The distance ∆𝐹() between two 563 

frequency trajectories 𝑓( an 𝑓) was calculated as 564 

  ∆𝐹() = 1 − 𝜌(log 𝑓( , log 𝑓))       (4) 565 

where 𝜌(log 𝑓( , log 𝑓)) is the Pearson correlation coefficient between the trajectories. A distance 566 

close to 0 indicated a strong positive correlation between the lineages, whereas a distance close to 567 
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2 indicated a strong negative correlation. From the resulting pairwise distance matrix, we applied 568 

hierarchical clustering using the “linkage” method from the scipy.cluster.hierarchy module in 569 

SciPy. We used the “average” agglomerative clustering method, which implements the algorithm 570 

unweighted pair group method with arithmetic mean (UPGMA)51. This method computes the 571 

distance between two clusters as the arithmetic mean of the distances between all lineages in both 572 

clusters. Then, for each cluster, we fitted a consensus trajectory using the local regression (loess). 573 

Loess is a form of moving average where a line is fit locally using neighboring points weighted by 574 

their distance from the current point. These moving averages were referred in the text as “clonal 575 

lineage clusters” or simply “clones”.  576 

 To determine the optimal clustering threshold, we note two general trends (Extended Data 577 

Fig. 2b-d). First, the loess of clusters with very few lineages will be sensitive to sequencing error. 578 

Thus, we include only clusters with at least 8 barcodes for the rm and gf cohorts and at least 5 579 

barcodes for the im cohort. Second, when the threshold is too small, there are many clusters, but 580 

multiple clusters are similar to each other. This is manifested by the value of the smallest distance 581 

between the loess average of any cluster pair (black dots). Third, when the threshold is too large, 582 

there are very few clusters where barcodes with distinct dynamics are grouped together. In 583 

clustering, the practice was to find the cross-over between the smallest distance between cluster 584 

centroids (our loess average) and the number of clusters. This cut-off was indicated as the red 585 

curve in Extended Data Fig. 2b-d). Based on these cut-offs, we arrived at 4 to 21 clusters for im, 586 

10 clusters for the rm cohort, and 6 or 7 for gf (Extended Data Fig. 3).  587 

 588 

(v) Quantification of community dynamics by 16S profiling  589 
 590 

The paired-end MiSeq Illumina reads resulting from sequencing of the 16S rRNA V4 region were 591 

processed using the dada2 v1.22 pipeline52. Primer sequences were removed using cutadapt v2.853 592 

before amplicon sequence variant (ASV)  inference. Forward and reverse read pairs were trimmed 593 

to a run-specific length defined by a minimum quality score (Phred score>= 25) using the 594 

filterAndTrim function of the dada2 R package52. Error rates were estimated from sequence 595 

composition and quality by applying a core denoising algorithm for each sequencing run. Then 596 

pairs were merged if they overlapped using the mergePairs function. Bimeras, which were 597 

chimeric sequences, were removed with the removeBimeraDenovo. Taxonomy was assigned using 598 
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the assignTaxonomy function that maps reads onto the SILVA (v. 138) reference database54. We 599 

excluded sequences that matched mitochondrial or chloroplast DNAs. In each mouse, the relative 600 

abundance of a taxonomic unit 𝑖 at time 𝑡 is given by: 601 

  𝑎((𝑡) =
2!(3)

∑ 2"(3)"
         (5) 602 

where 𝑟(𝑡) is the absolute abundance (number of reads) for the unit. Similar to the barcode 603 

dynamics, we calculated the community’s effective diversity index but at the level of the family 604 

(see Quantification of barcode diversity). For further analyses, families with frequency lower than 605 

1e-03 were grouped as “Other”, while the rest of the groups were clustered under their bacterial 606 

family classification. 607 

 608 

(vi) Co-clustering of E. coli clonal lineages and community dynamics from 16S 609 
 610 

To detect the potential interactions between the bacterial community and E. coli clones, as might 611 

be manifested in the correlation between their time-series, we recognized that the interactions 612 

could introduce local and transient stretching or lags. Thus, a straightforward Pearson correlation 613 

is ill-suited to detect such interactions. Therefore, we calculated the pairwise distances using the 614 

shape-based metric (SBD)36. Briefly, the SBD is an iterative algorithm that detects the shape 615 

similarity of two time-series, regardless of amplitude or phase differences (Extended Data Fig. 5). 616 

For the community dynamics, we used the log-transformed relative abundances of taxa at the 617 

family level with a minimum of 7 non-zero time points. For the clonal dynamics, we used loess 618 

smoothing arising from the clustering of E. coli barcodes. We z-normalized the time series vectors 619 

to remove the amplitude effect and then calculated the shape-based distance (SBD)36  implemented 620 

in the tsclust package55 to calculate our distance matrix. Lastly, tree linkage was performed using 621 

the “average” (UPGMA) method to generate dendrograms (Fig. 2c and Extended Data Fig. 4c). 622 

 623 

(vii) Assessing the biological significance of the co-clustering of clones and community 624 
dynamics 625 

 626 
To validate that our co-clustering method between the community and clonal dynamics is 627 

significant, we calculated a metric called “mixing index”. The underlying rationale was that if 628 

indeed, clustering of an E. coli clonal lineage with a bacterial family is biologically meaningful, 629 

then this clustering should be strongest when both clonal lineage dynamics and 16S come from 630 
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the same mice or same cohort. To assess the mixing index, we collect clone-clone cophenetic 631 

distances (𝑐) and clone-species cophenetic distances (𝑚)  from their respective co-clustering. 632 

(Cophenetic distance is the distance between two leaves of a hierarchical tree and is defined as the 633 

height of the closest node that leads to both leaves). Then the distance between the empirical 634 

cumulative distributions of 𝑐 and 𝑚, denoted as 𝐹(𝑐) and 𝐹(𝑚) respectively, is quantified as 635 

  𝐷",$ = 1 − (𝑚𝑎𝑥|(𝐹(𝑐) − 𝐹(𝑚)|)      (6) 636 

Higher values of the mixing index imply that clones and families are more likely to be adjacent 637 

leaves in the co-clustering three than clones amongst themselves. As an illustration, we show in  638 

Extended Data Fig. 5c the mixing indices for trees where clones and families are fully mixed, 639 

partly mixed, and fully unmixed. We applied the mixing index to co-clustering trees arising from 640 

different pairs of clonal lineages (im or rm or gf) and bacterial families (im or rm or nc). 641 

Furthermore, to determine the robustness of the mixing with respect to the method for determining 642 

the dominant clonal lineages (section iv), we evaluated the mixing index different cut-off 643 

thresholds for lineage clustering (Extended Data Fig. 2). The mixing index values are shown as 644 

violin plots in Fig. 3c-d. We found that the mixing index is largest when the clonal lineages and 645 

bacterial families come from the same mouse cohort. The statistical significance between the 646 

mixing indexes was quantified by a two-tailed t-test. 647 

 648 

(viii) Replicability of clonal lineages in different mice from the same cohort 649 
 650 

To determine the replicability of clonal lineage dynamics across different mice, we applied 651 

hierarchical clustering using distance matrices derived from pairwise Pearson correlation followed 652 

by UPGMA linkage (Fig. 5a,d). The input to these analyses was the loess average of the clonal 653 

lineages from each mouse (section iv. Barcode lineage clustering). 654 

 655 

(ix) Quantification of barcode similarity between mice from the same cohort 656 
 657 

To determine if the similarity in clonal lineage dynamics in different mice is driven by the same 658 

barcodes, we evaluated the overlap index in raw barcode identity for each cluster. In general, the 659 

overlap coefficient quantifies the  Simpson similarity between two sets A and B that are not 660 

necessarily of the same size:  661 
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  𝑂𝐶(𝐴, 𝐵) = |5∩7|
89:
	
(|5|,|7|)

       (7) 662 

A value close to 1 indicates a high number of common elements, whereas a value near 0 indicates 663 

little overlap. We calculated the overlap index for all pairs of clonal lineage clusters in mice from 664 

the same cohort (see Fig. 5b,e). To determine that the overlap index did not arise by chance, we 665 

generated different compositions of sets A and B drawn randomly from our total pool of barcodes. 666 

For each composition, we calculated the overlap index (Eq. 7). This was performed 1000 times to 667 

arrive at a distribution of 𝑂𝐶(𝐴, 𝐵) values. The significance of the observed overlap index 𝑥 668 

between the real clusters A and B was expressed as a z-score on the simulated distribution of 669 

overlap indices: 670 

  𝑍 = *1;
<

         (8) 671 

where 𝜇 is the mean and 𝜎 the standard deviation of the sample distribution. Lastly, significant 672 

overlap coefficient values with  |Z| > 1.96 or p-value 0.05 are shown in blue in Fig. 6c,g, and their 673 

size is scaled proportionally to their p-value. 674 

 675 

(x) Dynamic Covariance Mapping (DCM) 676 
 677 

Microbes in species-rich communities participate in dynamic interaction networks whose time 678 

dependence can generally be quantified as a dynamical system by a set of ODEs (ordinary 679 

differential equations)56. However, a major limitation of existing methods for assessing the 680 

stability of nonlinear dynamical systems of ODEs is parametrization since they are not known a 681 

priori, and at best, they are inferred from noisy, sparsely sampled data. Here we developed a 682 

parameter-free methodology to quantify the Eco-Evo feedback of interactions on community 683 

dynamics from non-equilibrial time-series data. The dynamic covariance method (DCM) uses our 684 

unique high-resolution temporal data to quantify time-dependent interactions as they occur during 685 

the experiment. We start with the general case of a community composed of N members, 686 

representing E. coli clonal lineages and family-level bacterial taxa. A community vector 𝑧(𝑡) can 687 

be defined as an N-dimensional vector of log10-transformed abundance time-series for the E. coli 688 

clonal lineages and family-level bacterial taxa: 689 

  𝑧(𝑡) = ⟨𝐶(𝑡), 𝐹(𝑡)⟩        (9) 690 
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A non-detection in the community vector is replaced with a pseudo count of 1e-6. The vector 𝑧(𝑡) 691 

describes the time-varying state of the community. Theoretically, its dynamics can be described 692 

by a system of ODEs      693 

  𝑧̇ = 𝜙(𝑧, 𝑡)         (10) 694 

However, the functional form of 𝜙(𝑧, 𝑡) is unknown, but we can determine the generic behavior 695 

of the system near a specific snapshot (say, 𝑧= = 𝑧(𝑡 = 𝑡=)) through linearization:  696 

  𝑧̇ = 𝜙(𝑧=, 𝑡=) + 𝐽>(𝑧 − 𝑧=)       (11) 697 

where 𝐽> is the 𝑁 × 𝑁  Jacobian that defines the gradient of 𝜙(𝑧, 𝑡) approximated over the time 698 

interval 𝜏 around 𝑡=. The element of a Jacobian matrix measures the sensitivity of a species i’s 699 

population growth rate to the abundance change of species j and is defined as the interaction 700 

strength of species j on species i in an ecological community57,58; in practice, it can be estimated 701 

by the covariance of species i’ time derivatives and species j’s abundance time-series over the time 702 

interval	𝜏:9 703 

  𝐽> = 〈cov(𝑧̇( , 𝑧))〉	        (12) 704 

Here, subscripts i and j span from 1 to N and include both E. coli clonal lineages and family-level 705 

bacterial taxa. Following the dynamical systems theory34, the dynamics near (𝑧=, 𝑡=) can be 706 

captured by the spectral distribution of eigenvalues (𝜆,, with k from 1 to N) of the Jacobian in the 707 

complex plane (representing both the real component Re(𝜆,) and the imaginary component 708 

Im(𝜆,)). The vector 𝑧(𝑡) deviates from 𝑧= at a rate of exp(Re(𝜆,)𝑡) and oscillates at a period of 709 

2𝜋/Im(𝜆,) along the direction of the eigenvector associated with 𝜆,. The condition for 𝑧= to be a 710 

stable equilibrium (i.e., the community can withstand small perturbations) thus requires Re(𝜆,) <711 

0 for all k.  712 

In practice, we computed 𝐽> over a specific time interval 𝜏 for progressively increasing time 713 

periods (3h-6h, 3h-12h, …, and 3h-15 days), with altogether a total of 16 or 17-time intervals for 714 

the rm and gf cohort and 7 or 8 17-time intervals for the im cohort. Since there are N eigenvalues 715 

for each time interval, we sought a simpler representation of the community’s dynamic behavior. 716 

To this end, we used Uniform Manifold Approximation and Projection (UMAP) 59 to reduce the 717 

dimensionality of the eigenspace as a function of time. The input to this UMAP dimensionality 718 

reduction is a (2𝑁) × (4𝑛) matrix, where the 2N columns correspond to the real and imaginary 719 

components of the eigenvalue 𝜆, while the 4𝑛 rows correspond to the number of mice multiplied 720 

by the number of 𝜏 time intervals. In the UMAP’s 2D representation, the 2𝑁-dimensional 721 
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eigenvalue is shown as a point (Fig. 4b, Extended Data Fig. 6e-g,  Supplementary Movie 1a-d, and 722 

Supplementary Movie 2a-d). As shown in the Fig. 4b, the UMAP projection demonstrated that 723 

eigenvalues grouped together by time interval which suggests similar dynamic behaviors during 724 

colonization in different rm mice. Additionally, as the movie shows, the eigenvalues show distinct 725 

“jumps” on the UMAP projection, indicating distinct temporal phases. To define these distinct 726 

phases, we clustered the eigenvalues on their UMAP projection using the Nbclust60 package in R, 727 

implementing the centroid algorithm. To determine the robustness of identifying the distinct 728 

phases, we regenerated UMAPs using all possible neighborhood parameters (from 2 to 56, with 729 

the maximum value corresponding to the total number of points on the UMAP, i.e., 4𝑛). We also 730 

tested other clustering algorithms (ward.D, ward.D2, single, complete, average, mcquitty, median, 731 

centroid, kmeans), which all showed 2 or 3 clusters (Extended Data Fig. 6a-d). In the case of the 732 

two clusters for the rm cohort, the first corresponds to E. coli’s entry and the second to its 733 

coexistence with the bacterial community. In the case of three clusters, there is an intermediate 734 

phase (the 2nd phase) showing the resurgence of some bacterial species in the microbiota for the 735 

rm cohort.  736 
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 895 
 896 
Figure 1. Intra-species population dynamics during gut colonization. a, Population of ~108 E. 897 
coli cells with ~5x105 unique chromosomal barcodes is introduced into mice with innate 898 
microbiota (cohort 1) and mice with reduced microbiota by antibiotic pre-treatment (cohort 2). 899 
Community-level and intra-species dynamics were then tracked in fecal samples over a 2-week 900 
period. As controls, samples were also collected in mice with only the colonizing E. coli (germ-901 
free, cohort 3) and in mice with only the resident bacteria (cohort 4). b, E. coli bacterial load 902 
measured as colony-forming units (CFU) per gram of sampled feces for the colonized mice cohorts 903 
with innate microbiota (im), reduced microbiota (rm), and germ-free (gf). c-e, Frequency of the 904 
chromosomal barcodes during colonization. The most frequent 1000 barcodes are colored 905 
uniquely, whereas the rest are shown in gray. Identical barcodes are colored similarly across mouse 906 
replicates and cohorts. f, Effective diversity index of E. coli chromosomal barcodes, 907 
𝐷 = C∑ 𝑝(

!?
(@% E%

(%1!)⁄! where 𝑝( is the frequency of barcode 𝑖, 𝑅 is the total barcode count, and 𝑞 908 
is the order of the diversity.  Effective diversity reports the count of unique barcodes (𝑞 = 0), 909 
frequency-weighted diversity (𝑞 = 1), or inverse frequency of the dominant barcode (𝑞 = ∞). 910 
g, Effective diversity for the microbiota based on the frequency of bacterial families from 16S 911 
rRNA profiling. 912 
  913 
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 914 
 915 
Figure 2. Clone-specific community interactions in the gut for the rm cohort. a, Dominant 916 
clones are determined by clustering of barcodes that persisted for most of the 2-week period. 917 
Pairwise pearson correlation of the barcode’s frequency time-series is used as the distance 918 
metric. These dominant barcodes represent ~5 - 7% of total unique barcodes. The putative 919 
dominant clones are ranked based on their average frequency at the end of the timeseries. b, 920 
Community dynamics (16S rRNA profiling) are analyzed at the level of the family. E. coli is a 921 
member of Enterobacteriaceae, which is shown as a thicker line. c, Co-clustering E. coli clones 922 
with the different bacterial families suggest clone-specific community interactions. The clone-923 
species interactions are broadly reproducible across different mice, whereby the dynamics of C1 924 
is related to Lachnospiraceae, and C8 and/or C10 are related to Lactobacillaceae 925 
.  926 
  927 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2022. ; https://doi.org/10.1101/2022.12.30.522336doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.30.522336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

 928 
 929 
Figure 3. E. coli clone and bacterial community interactions are strongest when coming from 930 
the same cohort. a, Dominant and persistent clones of E. coli in pre-germ-free mice showing 931 
simpler lineage dynamics compared to cohorts 1 and 2. b, Community dynamics mice with 932 
reduced microbiota, but non-gavaged with E. coli, showing the recovery of bacterial community 933 
from the treatment of antibiotic cocktail. c-d, Co-clustering of clones and families depends on 934 
environmental conditions. Co-clustering is measured by a mixing coefficient that compares the 935 
distances in the hierarchical tree among families with distances between families and clones 936 
(Extended Data Fig. 5).  937 
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 939 
 940 
Figure 4. Distinct phases of colonization quantified by the Dynamic Covariance Mapping. 941 
a, Dynamic covariance mapping (DCM). i) The time series 𝑧(𝑡) is a concatenated vector of the 942 
family and E. coli clone frequencies. ii) The evolution of 𝑧(𝑡) is governed by a system of ODEs 943 
that can be linearly approximated by the Jacobian matrix 𝐽> , which is the co-variance between the 944 
time-series i and the time-derivative of the time-series j. The Jacobian is calculated over a time 945 
interval 𝜏. 𝑡= is the start of the experiment.  iii) The expanded interaction matrix includes inter-946 
family, intra-clone, and family-clone interactions. b, 2D UMAP projection of the eigenvalues of 947 
the time-dependent covariance matrix 𝐽>. The eigenvalues cluster into three distinct time domains 948 
that reflect the phases of colonization shown in Fig. 2a. c, Stability analysis over the three phases 949 
in Fig. 2a mouse rm1.  Phase I is transient instability corresponding to the entry of E. coli and the 950 
collapse of resident bacteria. Phase II is the return to a stable regime and the re-emergence of the 951 
community species. Phase III is quasi-dynamic equilibrium with both oscillations in the clonal and 952 
community dynamics (see Supplementary Movie1a-d).  d, Time-varying eigenvalues of the mouse 953 
rm1 were ranked and colored according to their magnitude. Ranking revealed that the first four 954 
eigenvalues dominate the whole dynamics. 955 
  956 
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 957 
 958 
Figure 5. Relative fitness of the dominant clones and bacterial families. a-f, The relative fitness 959 
is estimated from the slope of the clone and family frequency. The cumulative distribution is 960 
defined over the 3 phases in Fig. 4. Vertical dashed lines indicate neutral (s=0). Horizontal dashed 961 
lines indicate 50%. The dominant clone C1 is primarily driven by adaptive changes in phase 1 and 962 
then reverts to equal fractions of deleterious and beneficial mutations in phase 3, which is 963 
consistent with dynamic equilibrium. Fitness at the community level shows that the dominant 964 
interactor of C1, Lachnospiraceae, is also experiencing strong adaptive changes in phase 1 and 965 
equal fractions of beneficial and deleterious fitness effects in phase 3. 966 
 967 
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 968 
 969 
Figure 6. The similarity of clonal dynamics across mice is partly driven by identical barcodes.  970 
a, Similarity between the time series of dominant clones across all 4 gf mice quantified by Pearson 971 
correlation. Matrix elements are clustered based on hierarchy (dendrograms indicated). Colors 972 
indicate the clone’s identity, while the shape indicates the mouse of origin. b, The similarity in 973 
barcode identity between the different clones is quantified by the overlap coefficient, 𝑂𝐶(𝐴, 𝐵) =974 
|𝐴 ∩ 𝐵|/𝑚𝑖𝑛(|𝐴|, |𝐵|), where A and B are the sets of unique raw DNA barcodes that belong to 975 
two dominant clones. Identities of matrix elements are similar to panel a. c, Scatter plot of the 976 
similarity in dynamics between two clones by Pearson correlation vs. similarity in their barcode 977 
identity by overlap coefficient. Overlap coefficients satisfying p-value <0.05 from bootstrapping 978 
are shown in blue; otherwise, they are shown in grey (Methods). The size of the circle is 979 
proportional to the significance of the overlap coefficient. d-g, Similarity in dynamics and barcode 980 
identity for the colonization in mice with the resident microbiome.  981 
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 983 
 984 

Extended Data Fig. 1. Barcode dynamics in im, rm, and gf cohorts. a-c, Barcode dynamics 985 
for cohort 1, cohort 2, and cohort 3 in linear scale. Each column corresponds to replicate mouse 1 986 
to 4, respectively. The color corresponds to Fig. 1c-e. 987 
 988 
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 991 

 992 
Extended Data Fig. 2. Determining the number of dominant clonal lineages. a, The pipeline 993 
for estimation of putative clones from the frequency time series of the chromosomal barcodes. 994 
b-d, A specific value for the threshold distance (Pearson correlation) in the hierarchical clustering 995 
defines a total number of clusters (blue curve) as well as a distance between the most similar clones 996 
(“Smallest distance”, black dots). When the threshold is large, there are many clusters, but some 997 
are similar to each other. Conversely, when the threshold is small, there are too few clusters, where 998 
even barcodes that do not have similar time series are grouped together (Methods). In practice, the 999 
cut-off is chosen to be the cross-over between the smallest distance between cluster centroids (our 1000 
loess average) and the number of clusters. The chosen cut-off is indicated by the red curve. The 1001 
resulting clusters are shown in Extended Data Fig. 3. 1002 
 1003 
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 1005 
 1006 
Extended Data Fig. 3. Dominant E. coli clonal lineages clusters. a, Dominant barcode clusters 1007 
in mice with innate microbiota (im). Colored lines correspond to unique chromosomal barcodes in 1008 
the cluster. Black lines correspond to the LOESS average. The number of unique raw barcodes 1009 
that belong to the cluster is indicated. The clonal lineage clusters (or simply “clones”) are ordered, 1010 
starting from the left, based on their average barcode frequency on the last day. b, Dominant 1011 
clusters for the mice with reduced microbiota (rm). The colors correspond to Figure 2a. c, 1012 
Dominant clusters for the germ-free mice (gf). The colors correspond to Figure 3a. 1013 
 1014 
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 1016 
 1017 
Extended Data Fig. 4. Clone-specific community interactions in the gut for the im cohort.  1018 
a, Dominant and persistent E. coli clones invading an innate microbiome show less reproducible 1019 
clonal dynamics compared to gf and rm cohorts. Particularly, mice im1-3 have less than  6 clones, 1020 
but im4 has 21 distinct clones. b, Community dynamics are similar for im1-3 where the 1021 
Enterobacteriaceae (thick line), to which E. coli belongs, drops below the resolution limit of the 1022 
16S rRNA profiling but persists in im4. Interestingly, this distinction in dynamics between mice 1023 
im1-3 and mouse im4 is not perceptible from the CFU (Fig. 1b). 1024 
 1025 
 1026 
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 1028 
 1029 
Extended Data Fig. 5. Schema for shaped-based co-clustering between E. coli clone and 1030 
community dynamics. a, Schema for co-clustering of the clonal lineage and family composition 1031 
time series using a shape-based distance metric. b, Schema for calculating the mixing index from 1032 
a given hierarchical clustering tree. We collect clone-clone cophenetic distances (𝑐) and clone-1033 
species cophenetic distances (𝑚). Then the distance between the empirical cumulative 1034 
distributions of 𝑐 and 𝑚, denoted as 𝐹(𝑐) and 𝐹(𝑚) respectively, is quantified as 𝐷",$ = 1 −1035 
(𝑚𝑎𝑥|(𝐹(𝑐) − 𝐹(𝑚)|).  Higher values of the mixing index imply that clones and families are 1036 
more likely to be adjacent leaves in the co-clustering tree than clones amongst themselves. c-d, 1037 
Illustrative examples (panel c) of different extents of co-clustering between clones and families 1038 
and their corresponding mixing indices (panel d). 1039 
 1040 
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 1043 
 1044 
Extended Data Fig. 6. Robustness of UMAP clustering and DCM analysis. a, We generated 1045 
all possible UMAPs for the eigenvalues of the gf cohort using every possible value of the n-1046 
neighbor criteria (Methods and ref. 59). Then, we applied nine different clustering algorithms to 1047 
determine the groupings of eigenvalues on these UMAPs. These groups indicate the phases of 1048 
invasion defined in the text. Shown is the probability of the number of groups (clusters). Robustly, 1049 
there are 2 or 3 groups or phases on the UMAP.  b, Similar to panel a,  panel b shows that the 1050 
presence of 3 clusters in the four gf mice is driven by gf3. c-d, Similar to panel a for the invasion 1051 
in mice with innate (c) and reduced microbiota (d), respectively. e, The chosen UMAP for the gf 1052 
cohort (panel a). f, The gf cohort, where gf3 is excluded, shows distinctly 2 phases (see also 1053 
Supplementary Movie 2a-d). g, The phases defined on the UMAP of the im cohort. h, We 1054 
combined all eigenvalues from the rm clone dynamics and gf cohort and projected them onto a 1055 
single UMAP. The rm clones are shown on the left panel, while the gf clones are shown on the 1056 
right. Projection of rm and gf cohorts’ clonal lineages on the same UMAP shows that rm1-4 clones 1057 
grouped amongst themselves together with gf3. At 3h, gf3 already exhibits high barcode diversity, 1058 
indicating that most of the barcode has transited the gut (Fig. 1f, 3a third panel, and Extended Data 1059 
Fig. 1c third panel), in contrast to the other mice in the gf cohort. 1060 
 1061 
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 1064 
 1065 
Extended Data Fig. 7. Estimated fitness of the gf cohort. The cumulative distribution is 1066 
partitioned into the two phases defined in Extended Data Fig. 6f. The dominant clone C1 exhibit 1067 
primarily adaptive dynamics during phase 1 of the colonization. 1068 
 1069 
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