bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522336; this version posted December 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10

11
12

13

14
15

16
17

18

19

20

21

22
23

available under aCC-BY-NC-ND 4.0 International license.

Intra- and inter-species interactions drive early phases of invasion in mice gut

microbiota

Melis Gencel,'? Gisela Marrero Cofino®, Cang Hui*, Zahra Sahaf!?, Louis Gauthier!?, Derek
Tsang®, Dana Philpott®, Sheela Ramathan®, Alfredo Menendez?, Shimon Bershtein’, Adrian W.R.

Serohijos!?"

!Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal,
Quebec, Canada H3T 1J4

’Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, 2900

Edouard—Montpetit, Montréal, Quebec, Canada H3T 1J4

3Département de microbiologie et d'infectiologie, Université de Sherbrooke, 12e avenue Nord,

Sherbrooke, Québec, Canada JIH 5N4
‘Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7602, South Africa

>Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario,
Canada M5S 148

’Département d’immunologie et biologie cellulaire, Université de Sherbrooke, 12e avenue Nord,

Sherbrooke, Québec, Canada JIH 5N4
’Department of Life Sciences, Ben-Gurion University of the Negev, Be er Sheva, Israel 7R62+VH

*Correspondence: adrian.serohijos@umontreal.ca

One-Sentence Summary:

High-resolution lineage tracking and dynamic covariance mapping (DCM) define three distinct

phases during early gut microbiome invasion.
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Abstract

The stability and dynamics of ecological communities are dictated by interaction networks
typically quantified at the level of species.!'!? But how such networks are influenced by intra-
species variation (ISV) is poorly understood.!'"'* Here, we use ~500,000 chromosomal barcodes
to track high-resolution intra-species clonal lineages of Escherichia coli invading mice gut with
the increasing complexity of gut microbiome: germ-free, antibiotic-perturbed, and innate
microbiota. By co-clustering the dynamics of intra-species clonal lineages and those of gut bacteria
from 16S rRNA profiling, we show the emergence of complex time-dependent interactions
between E. coli clones and resident gut bacteria. With a new approach, dynamic covariance
mapping (DCM), we differentiate three phases of invasion in susceptible communities: 1) initial
loss of community stability as E. coli enters; 2) recolonization of some gut bacteria; and 3)
recovery of stability with E. coli coexisting with resident bacteria in a quasi-steady state.
Comparison of the dynamics, stability and fitness from experimental replicates and different
cohorts suggest that phase 1 is driven by mutations in E. coli before colonization, while phase 3 is
by de novo mutations. Our results highlight the transient nature of interaction networks in

microbiomes driven by the persistent coupling of ecological and evolutionary dynamics.
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Introduction

How an ecological network responds to perturbation, such as an invasion, depends on the
structure of the community interaction matrix'? that quantifies pairwise effects of each species on
other’s population growth. Due to limited experimental resolution, this matrix is typically
described at the level of species or higher-level taxonomic groupings®!%15:16, This core concept of
ecology has been scrutinized in diverse systems of plants, animals, and microbes under both
natural and lab conditions’'%!72!, However, a species rarely exists as a homogenous population
due to spatial partitioning and genomic variation from pre-existing or de novo mutations®?. Despite
the prevalence of intra-species variation (ISV) in nature, how the ISV of an invading species affects
the community matrix is not fully known. Indeed, the role of ISV on community composition and

11-13

stability has rarely been tested experimentally''-'>. Theoretical studies have also yielded

contradictory results regarding the role of intraspecific variation on species coexistence'*.

Here, we experimentally determine the impact of intraspecific variation on community
dynamics during E. coli invasion in the mouse gut microbiome. The mouse gut microbiome,
depending on host phenotype and genetics, consists of ~10'? individual bacterial cells, which can
be partitioned into ~103 species?®. The relatively high mutation rate, large population size, and
frequency-dependent selection could lead to ~10° clones existing in a population of a single
bacterial species. Some of these clones present at very low frequency could nonetheless provide
rapid adaptation?*?°, Numerous whole-genome sequencing studies with barcoding technologies

highlight the diversity of intra-species clonal lineages?*2°

, although limited to a few thousand cells
of a single species or hundreds of cells in species-rich consortia. This shallow coverage of intra-
species lineage dynamics is yet to determine the extent of coupling between ecological and
evolutionary processes®*3!. Instead, deciphering the effect of intra-species clonal variation on
community dynamics requires the ability to track intraspecific clonal lineages at very high

resolutions.

We used high-density chromosomal barcoding to track the clonal lineages of E. coli that
were introduced into mice with different degrees of complexity in their resident bacterial
community. First, this enabled us to define the ISV dynamics at a frequency as low as 1 in every

~107 cells of E. coli. Second, the ISV dynamics enabled us to define the dominant and persistent
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71  E. coli clonal lineages (“clones”), including those present at low frequencies. Third, by correlating
72 this ISV dynamics with the composition of the resident bacteria from 16S profiling, we found that
73 specific clonal lineages interact with specific resident bacterial families. Notably, such interactions
74  were reproducible across mice colonization replicates that were susceptible to E. coli invasion.
75  Fourth, we expand the definition of community matrix interactions, traditionally defined between
76  species or families, to include both intra-species and between-species interactions. This resulted
77  in a new approach, which we call dynamic covariance mapping (DCM), which could quantify the
78  time-dependence of the community interaction matrix and its effect on community stability. Fifth,
79  using DCM, we were able to define distinct temporal phases during colonization, which uniquely
80 arise due to the specific interaction between E. coli clones and certain families of the resident
81  microbiota.
82
83  Results
84
85  High-resolution clonal tracking during gut bacterial community invasion
86  We previously used the Tn7 transposon machinery to introduce ~500,000 distinct chromosomal
87  DNA barcodes into a population of ~10® E. coli cells**. Since the barcodes are transmitted from
88  parent to daughter cells, this allowed the tracking of the clonal lineage dynamics of E. coli at a
89  resolution of ~1/10° cells as the population adapted to antibiotic resistance during in vitro lab
90  evolution?. Such high-resolution chromosomal barcoding techniques have been used for single-
91  species analysis but never in a complex and species-rich ecological community*?. We used
92  barcodes to simultaneously track high-resolution clonal lineage dynamics of an E. coli population
93  colonizing mouse guts (Fig. 1a).
94
95  Itis well-established that higher diversity and species richness of an ecological community makes
96 it less susceptible® to invasion including the gut microbiota. However, this resistance to invasion
97  can be compromised upon environmental perturbations, such as antibiotic treatments, that reduce
98  community diversity, making them susceptible even to non-pathogenic bacteria. Additionally, the
99  gutitself presents a complex “biogeographical” environment, where distinct selective niches arise
100  from heterogeneity in the availability of metabolites, nutrients, and immune effectors, as well as,

101  epithelial topography and mucus architecture®*. With these considerations in mind, we designed
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102 mice cohorts with different complexities in their gut bacterial microbiomes (Fig. 1a): mice with
103  innate microbiome (cohort 1, “im”) and mice with reduced microbiome due to pre-treatment of
104  antibiotics (cohort 2, “rm”); and germ-free mice (cohort 3, “gf”). Lastly, as a control for the
105  community dynamics in the absence of colonization, we had another cohort of mice that received
106  antibiotic treatment but was not gavaged by E. coli (cohort 4, “nc”). Cohorts 2 and 4 were pre-
107  treated with an antibiotic cocktail (metronidazole, neomycin, ampicillin, and vancomycin) for
108  three weeks followed by three days of no treatment to flush out the antibiotics. On day zero, E.
109  coli were introduced in mice of cohorts 1, 2, and 3. Then, for all cohorts, fecal samples were taken
110  at 3h, 6h, 12h, and 24h on day one and then once daily for two weeks. The multiple sampling on
111  day one was required to capture the kinetics of transit through the gut of the colonizing bacteria®.
112 Extraction of bacterial genomic DNA from the feces, followed by PCR amplification of the E. coli
113 barcoded region and next-generation sequencing, afforded high-resolution lineage tracking during
114 gut colonization (Fig. Ic-e and Extended Data Fig. 1a). We also simultaneously tracked the
115  community dynamics of resident bacteria using 16S rRNA profiling (Fig. 2b, 3b, and Extended
116  Data Fig. 4b).

117

118  The global tempo of E. coli colonization and its impact on the gut microbial community is reflected
119 by the fluctuations in the diversity of chromosomal barcodes and 16S rRNA dynamics. Thus, we

120 calculated the effective diversity index YD of the barcoded E. coli population that captures three

121  complementary notions of lineage diversity. Specifically, g = 0 reflects the total number of unique
122 barcodes (its “richness”), q =1 is the frequency-weighted lineage diversity equal to the
123 exponential of Shannon entropy, and g = oo reflects the reciprocal of the frequency of the most
124  abundant barcode. The effective diversity of the chromosomal barcodes for im, rm, and gf cohort
125  1is shown in Fig. 1f. Similarly, we calculated the diversity index of the gut community composition
126  from 16S rRNA, where the amplicon sequence variants (ASV) are defined at the level of bacterial
127  families (Fig. 1f). Analogous to barcode diversity, ¢ = 0 is the total number of unique bacterial
128  families, ¢ = 1 is the frequency-weighted family diversity, and g = oo is the reciprocal of the
129  frequency of the most abundant family. Expectedly, the gut community of the im cohort was
130  resistant to the invasion of the E. coli K12, where after an initial of ~10° to ~10® colony-forming
131 units (CFU)/gram of feces within ~3h, the bacterial load reduced to below ~10* CFU/gram by
132 day 6 (Fig. 1b). The bacterial community dynamics are unperturbed by the entry of E. coli into the
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133 community (Fig. 1g). The inability of the E. coli population to establish in the im cohort is also
134 reflected in the more rapid transit of the barcodes through the gut, whereby the peak in barcode
135  diversity (qg=0 in Fig. 1f) for mice im2-4 mice is ~3h compared to ~6h for the rm and gf mice.
136

137 In contrast, E. coli successfully colonized the rm cohort, reaching bacterial loads of ~10% colony-
138  forming units (CFU)/gram of feces within ~6h (Fig. 1b), which coincided with the maximal
139  barcode diversity (Fig. 1f). The absence of resident bacteria in the gf cohort resulted in E. coli
140  reaching a higher bacterial load of ~10'® CFU/gram of sample within ~6h. Interestingly, despite
141  the difference in their CFU levels (Fig. 1b), both the gf and rm cohorts reach optimal diversity in
142 ~6h (Fig. 1e). Moreover, even the unsuccessful colonization of the im cohort reached an optimal
143 diversity around 3h, and the diversity is overlapping with the im, rm, and gf cohort. Altogether,
144 these results suggest that the very early dynamics of entry of E. coli (~6 h) is primarily dictated by
145  adaptation to the biogeography of the mouse gut rather than by the diversity of the microbial
146  community. After this time-point, the different cohorts exhibited distinct behavior for their
147  diversity (Fig. 1f,g).

148

149  Notably, the CFU counts for mice in the same cohort are broadly indistinguishable (Fig. 1b) despite
150  the complexity of the underlying clonal dynamics viewed at higher resolution (Fig. 1c-e).
151  Additionally, although barcodes begin appearing within ~3h (Fig. 1e), they were not observed in
152 the CFU counts for the rm and gf cohorts (Fig. 1b). Barcodes that appeared first were not always
153  the dominant ones at the end (Extended Data Fig. 1a). This observation is most drastic in the im
154 cohort. Three mice (im1, im2, and im3) showed a reduction in barcode frequency accompanying
155  the drop in CFU but manifested an increase in diversity towards day 6 (Fig. 1b,f). One mouse
156  (im4) maintained a high barcode diversity despite the drop in CFU. These results highlight the
157  stochasticity of transmission kinetics through the intestinal gut’s distinct “island” niches**, which
158 is not reflected simply by measuring the total bacterial count of the invading species.

159

160  In accordance with previous lower-resolution colonization experiments®>*>, we observed soft
161  clonal sweeps of barcodes that eventually became dominant (>5%) after ~2 days (Extended Data
162  Fig. 1b, rm mice; Extended Data Fig. 1c, gf mice). This clonal sweep was stronger in the gf than

163  in the rm mice, as only one barcode reached >5% in the rm, whereas several dominant barcodes
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164  co-segregated over two weeks in the gf. These dominant barcodes originated at frequencies
165 around 1077 (Fig. 1d-e). The sweep in the gf and rm mice is manifested by a drop in barcode
166  frequency-dependent diversity (q=1 in Fig. 1f). The drop in diversity occurs earlier in the rm cohort
167  (~2 days), compared to gf (~7 days in ¢ = 1, ~4 days in g = o). Interestingly, despite the earlier
168  clonal diversity drop in rm, which coincides with the resurgence in bacterial community diversity
169  (Fig. 1g), rm maintains a greater clonal diversity compared to the gf towards the end of the 2-week
170  period (Fig. 1f). This suggests that gf, adjusting only to the selective pressure imposed by gut
171  biogeography, is subject to a stronger intra-species competition. In contrast, the resurgence of the
172 resident bacterial community in the case of rm (Fig. 1g) leads to the coexistence and co-dominance
173  of multiple barcodes in the E. coli population (Fig. 1f). Altogether, this highlights the interaction
174  of the resident community and the clonal lineages of the invading species.

175

176  Clone-specific interaction between E. coli and other bacteria

177

178  Next, we determined the impact of the colonizing species on the composition of the resident
179  bacterial community. While the community in the im cohort was more resistant to invasion, the
180  introduction of E. coli in the gut microbiome led to a reduction in the abundance of some resident
181  bacterial communities in the rm cohort (16S rRNA in Fig. 2b and 16S rRNA in Extended Data
182  Fig. 4b). This quick initial collapse happens within the first ~3h and is clearly manifested in rm2
183  (16S rRNA in Fig. 2b). However, the establishment of E. coli was accompanied by the resurgence
184  of the bacterial community around day 4, followed by the coexistence of E. coli and the resident
185  bacterial community. Notably, Sutterellaceae was unperturbed by the introduction of E. coli in all
186  four mice. Although Muribaculaceae was unperturbed only in rm 1 and rm 3, it was the first
187  bacterial family to rebound in rm 2 and rm 3 (Fig. 2b). The canonical member of a gut microbiome,
188  Lactobacillaceae, had an intermediate abundance when E. coli was introduced, but this declined
189  after E. coli established in the gut microbiome. In the no-colonization cohort (nc), the community
190  also exhibited a rebound due to the release from the antibiotic treatment (Fig. 1g and 3b). However,
191  the resident community of the nc cohort was dominated by Lactobacillaceae and was less diverse
192 than the resident community of the rm cohort. These results demonstrated the impact of E. coli
193 introduction on bacterial community composition.

194
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195  To determine if there are interactions between specific E. coli clones and bacterial families, we
196  first identified the dominant E. coli lineages using barcode dynamics (Fig. 1c-e). The barcode
197  lineage dynamics reflects its effective fitness (selection coefficient) over time*’, and thus
198  similarities in barcode lineage dynamics can be indicative of E. coli clones under similar selection
199  coefficients. We performed a shape-based clustering analysis of linage dynamics using the Pearson
200  correlation as the similarity measure computed for pairs of barcodes with mean frequency >5¢7
201  and persisted for at least 12 of the 18-time points (Extended Data Fig. 3). These represent ~5-10%
202  of the total barcoded E. coli observed in the rm and gf mice (Extended Data Fig. 3b,c). Clusters of
203  persistent barcodes were defined as putative clonal lineages hereafter and ranked based on average
204  frequency (Extended Data Fig. 3). Interestingly, in this procedure, the clonal cluster C1 always
205  contained the dominant barcode lineages that exhibited the sweeps, even if C1 cluster itself did
206  not have the largest number of barcodes (Extended Data Fig. 3). This observation validates the
207  lineage clustering approach. A LOESS regression of the top 10 clonal clusters of E. coli highlights
208  the persistence of extremely rare barcodes in the colonizing population (Fig. 2a & Fig. 3a)

209

210  Considering the diversity of these clonal lineage clusters, we asked whether individual clusters
211  were associated and potentially interacting with specific bacterial families. We performed co-
212 clustering of the dynamics of putative clonal lineages of E. coli and those of the 16S rRNA
213 bacterial community profiles using the k-shaped algorithm3® (Fig. 2c, Extended Data Fig. 4c
214  Extended Data Fig. 5). These analyses revealed a consistent picture across the rm cohort. The
215  dominant cluster, C1, was always grouped with Lachnospiraceae, whereas two other low-
216  frequency clusters, C7 and C8 grouped persistently with Lactobacillaceae, the canonical member
217  of gut microbiota (Fig. 2¢). Interestingly, it was previously shown in invasion studies of pathogenic
218  strains of E. coli and Lachnospiraceae that these bacteria utilize similar sugars and thrive in the
219  same environment®’.

220

221  To demonstrate that the degree of co-clustering of E. coli clonal lineages and bacterial families
222 was specific to the rm cohort, we applied the shaped-based co-clustering of barcode lineages for
223 the gf (Fig. 3a) and the nc cohort (Fig. 3b). The extent of co-clustering was measured using the
224  mixing index, D.,, = 1 — (max|F(c) — F(m)|) (Fig. 3c-d and Extended Data Fig. 5), which

225  compares the clustering distance from clonal lineages to bacterial families F (m) with the distance
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226  between clonal lineages F(c) (Fig. 3d). Indeed, the co-clustering between clones and bacterial
227  families was strongest in the rm cohort(Fig. 3d). Expectedly, co-clustering was weakest when the
228  16S rRNA community dynamics of im and rm were paired with the gf cohort clonal lineages (Fig.
229  3d).

230

231  Moreover, we applied the same analyses to the im cohort to test if there is a similar heterogeneous
232 interaction between the invading E. coli population and the bacterial community, even if the
233 invasion was unsuccessful. Indeed, the shaped-based co-clustering showed heterogenous
234 interaction between E. coli lineages and bacterial families (Extended Data Fig. 4). The extent of
235  co-clustering in the im cohort is weaker than in rm (Fig. 3¢-d, im is blue, rm is orange), which is
236  in agreement with the resilience of the im community to the invasion. However, despite the
237  unsuccessful E. coli invasion in the im mice, the co-clustering between E. coli clonal lineages and
238  Dbacterial families is strongest when they come from the same biological cohort (Fig. 3c),
239  suggesting intra- and inter-species interactions (Extended Data Fig. 4c), even if only transient.
240  Altogether, the high-resolution lineage tracking demonstrated that intraspecific variation could
241  lead to clone-specific interactions in bacterial communities during invasions, including those that
242 may not lead to establishment.

243

244 Dynamic covariance mapping defines phases of colonization

245

246  The barcode and 16S rRNA time series suggest distinct phases in the colonization dynamics in rm
247  mice (Fig. 2a-b). Specifically, the entry of the invading E. coli population is manifested by the rise
248  of the dominant clone frequency in phase 1. This is accompanied by an increase in CFU and
249  barcode diversity (Fig. 1b,f) and a drop in resident bacterial community diversity (Fig. 1g and Fig.
250  2b). In phase 2, relative stasis and lower fluctuations in the dominant clone frequencies as the
251  resident bacterial community re-emerges. Lastly, in phase 3, the dominant clones of E. coli
252 coexisting with the resident community undergo large fluctuations. These phases are distinct from
253 the much simpler dynamics of clonal lineages observed in the gf cohort (Fig. 3a), which suggests
254  that the phases in rm are driven by interactions between the colonizing E. coli and the resident
255  community.

256
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257  To unambiguously define these phases and the dynamic stability of the community, we developed
258  the method of dynamic covariance mapping (DCM) that estimates the time-dependent community
259  matrix of pairwise interactions at the level clones. Specifically, the community dynamics can be
260  described by a vector of time-series, Z(t) = {z,(t),z,(t),...}7, featuring 10 time-series
261  corresponding to the dominant E. coli clones and 7 for bacterial families. Although the full time
262  evolution of z(t) is complex and unknown 2383 the Jacobian matrix J of its linearized dynamical
263  system, representing the community matrix of pairwise interactions, can be estimated as the
264  covariance of one time-series and another’s time derivative®, J = {(cov(Z;, z;)). The eigenvalues
265  of the Jacobian matrix report on the dynamics and stability of the system?3%3°, When the real part
266  of an eigenvalue is negative, the system is stable against perturbation along the direction of the
267  associated eigenvector, and conversely, when positive, the system becomes unstable. The
268  magnitude of the imaginary part of an eigenvalue implies oscillatory behaviors.

269

270  We quantified the Jacobian over a progressively shifting time window and performed eigenvalue
271 decomposition (Fig. 4, Supplementary Movie l1a-d). The real parts of eigenvalues corresponding
272 to early time-points were positive, reflecting that the system is unstable due to the introduction of
273 E. coli. This is accompanied by the drop in bacterial community diversity (Fig. 4c left panel). This
274  was followed by a second phase, with the real parts of eigenvalues moving from positive to
275  negative, corresponding to the recovery of system stability and the resurgence of some bacterial
276  families (Fig. 4a, c (middle panel)). Finally, in phase 3, the system became dynamically stable but
277  with notable oscillations in both the 16S and the clonal dynamics (Fig. 4c, (right panel)). These
278  results highlight the rapid time dependence of the community interaction matrix.

279

280  We then determined how reproducible and consistent these three phases are across the mice cohorts
281  (Supplementary Movie la-d). For each time interval, there are ~17 eigenvalues corresponding to
282  the Jacobian matrix. Using a Uniform Manifold Approximation and Projection (UMAP) (Fig. 4b),
283  we found that the eigenvalues as a function of time broadly overlap across different mice, with the
284  boundaries of the 3 phases unambiguously determined (unbiased clustering in the UMAP;
285  Extended Data Fig. 6d). Interestingly, application of DCM to the unsuccessful invasion in the im

286  mice also revealed two distinct phases for im1-3 (Extended Data Fig. 6g), corresponding to the

10
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287  entry of barcoded E. coli (~3h to 12h) followed by the collapse in barcode diversity due dramatic
288  drop in bacterial load (Fig. 1b,f and Extended Data Fig. 1a).

289

290  Are these distinct temporal phases primarily driven by the 16S, clonal dynamics, or both? To
291  answer this question, we combined all eigenvalues from the clone dynamics of the rm and gf cohort
292 and projected them onto a single UMAP (Extended Data Fig. 6h). This revealed that the entire 2-
293 week dynamics of E. coli in the gf cohort and rm cohort are not overlapping at all. Also, rm clone
294  DCM analysis revealed that without the bacterial community dynamics effect, they cluster within
295  the mouse rather than the cohort. This suggests that the E. coli clonal dynamics in the rm cohort
296  were largely driven by the interaction between clones and the bacterial community.

297

298  Estimates of the relative fitness of the gut community during the 3 phases of colonization
299

300  Since the gut is a multi-species system, the effective fitness manifested by clones or bacterial
301  families reflects their adaptation to the mouse’s intestinal biogeography, interactions with other
302  species and clones, and impacts from mutations. This complexity reflects the fundamental
303  coupling of evolutionary and ecological forces. To determine how the 3 phases defined from DCM
304  correspond to the fitness experienced by E. coli’s clones and bacterial families, we estimated the
305 relative per-capita growth rate of the clones from the time derivative of their normalized frequency
306 (Methods). Within the rm cohort, we partitioned these relative fitness estimates according to the
307  three DCM-identified phases and found that the dominant clone cluster C1 experienced a positive
308 fitness as the E. coli population adapts to the gut biogeography (>50% of relative fitness is positive;
309  Fig. 5a). Similarly, its most dominant interactor (Fig. 2b), Lachnospiraceae, was also driven by
310  positive fitness(Fig. 5d). Experienced relative fitness was symmetric for the next two dominant
311  clones C2 and C3. The relative fitness experienced by low segregating clones shifted from positive
312  inphase | to negative in the other phases (Fig. 5b).

313

314  The system reached a quasi-steady state where there was an equal fraction of positive and negative
315  fitness changes (Fig. 5c orange curves for dominant clones C1, C2, and C3), corroborating the
316  eigenvalue decomposition analyses, which indicates a stable oscillator in phase 3. In single-species

317  systems, this implies a mutation-selection balance whereby there is an equal fraction of beneficial
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318 and deleterious mutations. However, in species-rich communities, the oscillation is primarily
319  driven by co-evolution from clone-specific interactions. Indeed, the estimated fitness for the gf
320  cohort (Extended Data Fig. 6) revealed minimal fitness changes, suggesting that the contribution
321  of de novo mutations in the 2-week period was less compared to the rm cohort with complex
322  interactions in resident bacterial communities.

323

324  The dynamic similarity in phase 1 is driven by similar barcodes

325 How similar are the clones across different mice, and are they driven by the same barcodes? To
326  this end, we performed pairwise clustering using the Pearson correlation as the similarity of the
327  clone time-series. In both rm and gf cohorts, we observed that the dominant clonal lineages (C1
328 and, to a lesser extent, C2) have similar time series (Fig. 6a, d). By calculating the overlap
329  coefficient between barcodes in each clone, we found that the dominant clonal lineages are more
330 likely to be the same barcodes (Fig. 6e). Considering that the dominant clones in the rm cohort
331  change their dynamics primarily in phase 1 (Fig. 4), this suggests that the reproducibility of
332 dominant barcode dynamics and their consistent interaction with Lachnospiraceae is likely driven
333 by standing genetic variation in the colonizing population. That is, the gavage E. coli pool has
334  genetic variation 2* which drives its early adaptation dynamics in the gut. In further support of this
335  proposition, the effect of standing genetic variation was strongest in the colonization of gf mice
336  (Fig. 6b), where the similarity in clonal dynamics across mice was driven by strong barcode
337  similarity.

338

339 In the rm cohort, for clonal lineages that were less dominant but exhibited persistent oscillations
340 in phase 3 (Fig. 5), their similarity in barcode dynamics was not accompanied by similarity in
341  barcode identity. This indicates that even within 2 weeks, the clonal lineages in a mouse gut start
342 to diversify in phase 3, and according to relative fitness, this diversification in dynamics is more
343  likely driven by ecological effects (e.g., stochasticity in the interaction with resident bacterial
344  species) than de novo mutations.

345

346  Discussion

347

348  Our experimental and computational framework offers a generalized approach to quantify

349  microbial community interaction matrix and its consequences on dynamic and stability,
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350 particularly following perturbations triggered by invading species. With our experimental
351  Dbarcoding protocol, we demonstrate that intra-species variation leads to time-dependent
352  interactions, even during the early stages of community colonization. Although the dynamics are
353  complex, the global colonization dynamics are surprisingly replicable and can be defined by 3
354  phases that arise from the coupling of ecological and evolutionary dynamics. This seems
355  contradictory to other studies showing a lack of reproducibility and replicability of microbiome
356  composition across mice replicates*’. However, we note the onset of divergence between the mice
357  cohort (Fig. 4b) after 2 weeks due to stochasticity of de novo mutations. We cannot yet comment
358  onthe long-term implication of ISV at the resolution afforded by this experiment since our barcode
359  diversity is exhausted after a clonal sweep. This would require a “renewal” or regeneration of new
360 DNA barcodes, as recently done in yeast*!.

361

362  Additionally, intra-species diversity is present not only in the colonizing species but also in the
363  resident community; thus, our chromosomal barcoding approach could be extended to species that
364  are innate to the gut microbiota. The high-resolution colonization dynamics could also be extended
365 by pathogenic barcoding species, such as P. aerogenousa and S. enterica, which are more
366  aggressive colonizers than E. coli K12. Therefore, we argue that the gut microbiome for us is an
367  ecological system, such that all the approaches presented here could be broadly applicable to most
368 microbial ecological networks. However, the gut microbiome has particularities. More
369  specifically, the gut microbiota itself is shaped by the genetics and phenotypes of the mice, which
370  we do not explore in this study. Indeed, the mice themselves, in general, are not homogenous and
371  could have an impact on the gut composition. In human microbiomes, it was shown that genetic
372  variation in humans could itself impact the diversity of the microbiomes*?. In the future, the impact
373  of host diversity will be explored by performing colonization experiments on mice with diverse
374  genetic backgrounds.

375

376  Broadly, the DCM that we developed here represents a model- and parameter-free approach to
377 analyzing the stability and distinct temporal phases of a microbial system, starting simply from
378  high-resolution time series abundance data. Our result showed that these phases of invasion and
379  the intra- and inter-species interactions are highly reproducible among mice replicates is rather

380  unexpected considering the variability in microbiome compositions which is the norm in the
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381  microbiome field®. We argue that although specific compositions may be highly variable across
382  mice, the overall tempo of ecological and evolutionary dynamics, as manifested by the DCM
383  analysis, are more reproducible features of the microbiota. To this end, the DCM and its future
384  incarnations could provide a framework for predicting the microbiota’s response to perturbations,
385  especially in the context of the invasion of pathogenic species* and fecal transplant to treat human
386  disorders®.

387

388  Methods

389

390 Experimental procedures

391 (i) E. coli barcoded population generation
392
393 Barcoded E. coli populations were generated as previously described?* using the Tn7 transposon

394  library. The first step is transforming the recipient E. coli MG1655 cells with the Tn7 helper
395 plasmid and induction of the transposase integration machinery. The second step is the
396 transformation of the Tn7 integration plasmid library, which integrates the barcodes into the
397  chromosome of the bacteria. The Tn7 integration plasmids with barcode and spectinomycin
398  cassette were extracted from TransforMax EC100D pir + cells (Lucigen) with a Qiagen midi kit.
399  Then E. coli MG165 cells were transformed with the Tn7 helper plasmid to induce the transposase
400  integration machinery. Transformed cells with Tn7 helper plasmid were grown overnight in LB
401  supplemented with 100 pg/ml ampicillin at 30 °C. In these cells, transposon machinery was
402  induced with arabinose to transform with Tn7 integration plasmids. After overnight incubation on
403  the bench, they were plated on LB agar plates containing 100 pug/ml spectinomycin. Randomly
404  picked colonies were checked for chromosomal incorporation of barcode cassettes by targeting the
405  Tn7 integration site. We scraped all the colonies from the plates, then pooled, thoroughly mixed,
406  and aliquoted them with 15% glycerol. These stocks were stored at —80 °C pending the mice

407  colonization experiments.

408  (ii) Mice evolution experiments
409
410  We used several cohorts of mice to determine colonization dynamics in their gut: Cohort 1 (im)

411  mice with innate microbiota followed by E. coli colonization (4 replicates); Cohort 2 (rm) or mice

412  with reduced microbiota and pre-treated with an antibiotic cocktail followed by E. coli
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413  colonization (4 replicates); Cohort 3 (gf) or mice that were initially germ-free and colonized with
414  barcoded E. coli barcode (4 replicates); and Cohort 4 (nc) or mice with microbiota and pre-treated
415  with an antibiotic cocktail but not colonized by E. coli (4 replicates). Cohorts 2 and 4 (rm and nc)
416  were administered an antibiotic cocktail (metronidazole 1 g/L, neomycin 1g/L, ampicillin 1g/L,
417  and vancomycin 0.5 g/L) for four weeks to reduce the complexity of the gut microbiota. Under
418  these conditions, 99.5% of the cecal bacteria are eliminated at the end of treatment*®*’. Then, we
419  let them recover for three days without antibiotics before introducing the barcoded population,
420  which we set as our day zero. After gavage of the barcoded population, fecal samples were taken
421  at 3,6, 12, and 24 hours and once daily until day 14 for rm and day 15 for gf. The nc cohort fecal
422 samples were collected for ten days. During the day of fecal collection, we split the sample, one
423  for bacterial load measurements (see below) and another for storage at -80 °C until subsequent
424  genomic analysis. 80 pl of the feces homogenate was placed with 20 pl of 100% glycerol to make

425  20% glycerol stocks for later recovery of live bacteria.

426  (iii) Bacterial load measurement
427

428  To measure the bacterial load in the fecal samples, we spread them with increasing dilutions on
429 LB plates with spectinomycin 50 pg/ml to select for the colonizing E. coli. The chromosomal
430  barcode contains the spectinomycin resistance cassette (spR)**. Measurements of bacterial loads

431  were done in 3 independent replicates.

432  (iv) Genomic DNA extraction in fecal samples, chromosomal barcode amplification, and
433 next-generation sequencing
434

435  Genomic DNA (gDNA) was extracted from whole fecal pellets using the QIAamp Fast DNA Stool
436  Mini kit (Cat: 51604). A two-step PCR was used to amplify the chromosomal barcodes and then
437  append the Illumina adapter sequences. For the first PCR, anywhere between 20 to 100 ng of
438  template per sample was used with PrimeSTAR GXL DNA Polymerase from TAKARA (Cat:
439  RO50B ). The parameters for this 1% reaction were as follows: 94 °C for 5 min, 30X (95 °C for
440  10s, 53 °C for 15 s, 68 °C for 45 s), 68 °C for 5 min, hold at 4 °C. The Primers for this PCR are
441  the following: 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’, 5’-GTCTCGTGG

442  GCTCGGAGATGTGTATAAGAGACAG-3’. The resulting amplicon sequence from this PCR is

443  the following: 5’-gatatcggatcctagtaagccacgttttaattaatcagatccctcaatagccacaacaactggegggcaaacagte

15


https://doi.org/10.1101/2022.12.30.522336
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.30.522336; this version posted December 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

444  gttgctgattggtcgtcggcagegtcagatgtgtataagagacagtcgcgccggNNNNNNNNNNNNNNNtatcteggtagtg
445  ggatacgacgataccgaagacagctcatgttatatcccgecgttaaccaccatcaaacaggattttcgectgetggggcaaaccagegtgg

446  accgcttgctgeaactctctcagggecaggeggtgaagggcaatcagetgttgeccgtetcactggtgaaaagaaaaaccaceetggege

447  ccaatacgcaaaccgcctctceceegegegttggecgattcattaatgeagetggeacgacaggtttcecctgtctcttatacacatctccgag

448  cccacgagacgccactcgagttatttgecgactaccttggtgatctegectttcacgtag-3’. The contiguous 15 Ns in this
449  amplicon sequence corresponds to the random nucleotides that serve as our chromosomal
450  barcodes®. The product from this PCR was purified and cleaned with NucleoSpin Gel and PCR
451  clean-up kit from TAKARA. A 2" PCR was performed with high-fidelity PrimeSTAR GXL DNA
452  Polymerase (Takara Cat: R0O50B) to add the Nextera indices (Nextera XT primers Set A 96
453  Indexes, 384 Samples, Cat# FC-131-2001). We followed the suggested cycling conditions, which
454  are as follows: 94 °C for 5 min, 12X (95 °C for 10 s, 55 °C for 15 s, 68 °C for 45 s), 68 °C for 5
455 min, hold at 4 °C. The primers for this 2™ reaction were the following:
456 5’CAAGCAGAAGACGGCATACGAGATI[I7]GTCTCGTGGGCTCGG-3’ and 5’-
457 AATGATACGGCGACCACCGAGATCTACAC[ISITCGTCGGCAGCGTC-3’. PCR products
458  from all reaction tubes were purified with magnetic beads (Beckman Coulter) and pooled together,
459  spiked with 15% of PhiX DNA, and sequenced using either Miseq or Nextseq Illlumina chips at
460  Université of Montréal’s IRIC Genomic Platform. Bioinformatic analyses are described in the

461  Analysis section below.

462 (V) 16S profiling
463  Similar to the chromosomal barcode amplification, we used a two-step PCR to amplify the

464  genomic region of interest and prepare the library for Illumina sequencing. The 16S rRNA V4
465 region was PCR-amplified with buffer and polymerase PrimeSTAR GXL DNA Polymerase
466  (Takara, Cat: RO5S0B). The cycling conditions for the PCR are as follows: 98 °C for 3 min, 35X
467 (95 °C for 10 s, 60 °C for 15 s, 68 °C for 35 s), 68 °C for 5 min, hold at 4 °C. The primers for the
468  reaction are the following: 5’>-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGYRYRGT
469 GCCAGCMGCCGCGGTAA-3’ and 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA
470  GGGACTACHVGGGTWTCTAAT-3’. PCR products were purified with Nucleospin Gel and a
471  PCR purification kit from TAKARA (Cat: 740609). Illumina sequencing adaptors were added to
472  respective samples with PCR using the same primers and protocols similar to the barcode

473  amplification. The PCR amplicons of the samples were then pooled after a purification and
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474  concentration equalization process with the AMPureXP Kit (Beckman Coulter). The libraries were

475  processed in an Illumina MiSeq v2 (500 cycles and paired-end).

476

477  Analysis

478

479 (i) Barcode extraction from the FASTQ file and determining putative “true” lineages

480  To understand how clonal populations of cells change over time, we first identified and extracted
481 the barcode sequences from our raw sequencing data. To prepare reads for extraction, we
482  prepended them with one N and a corresponding ‘?° quality score. This was required to extract
483  barcodes from the reads using the bartender extractor com component from the tool Bartender*®.
484  We discarded reads with an average Phred quality score below 30 (corresponding to the ‘?’
485  character) and kept reads with at most one mismatch in the sequence following the variable region,
486  which is [TATC]. For each remaining read, a raw 15-nucleotide sequence barcode was extracted.
487  However, not all of these raw barcodes match the true synthesized barcodes due to mutations in
488  the sequencing and/or PCR. To correct for sequencing errors in the raw barcodes, we used the
489  bartender single com on the raw barcodes with default settings. Here, it was assumed that an
490  infrequent barcode with one or two mismatches from a frequent barcode was a mutant of the more
491  frequent barcode and hence, added to the latter. This step produced a list of putative barcode
492  lineages for the sample. Additionally, since we have multiple time points per mouse, we wanted
493  to ensure that barcode identities were consistent across the biological samples. Thus, we pooled
494  all the raw barcodes from the same mouse as a single list. We then applied the same
495  bartender single com procedure to the pooled list. This step resulted in a comprehensive list of
496  raw barcode sequences mapped to their consensus sequence for all samples from one mouse. From
497  this list, we iteratively mapped each raw barcode sequence against all individual samples to yield
498  the number of reads per time point per barcode lineage. For each mouse, we sequentially assigned
499  anumeric ID to the barcode lineage to produce a list of barcode lineage trajectories for one mouse.
500  This analysis pipeline is available on github (https://github.com/melisgncl/high-resolution-mouse-
501  barcoding.git).

502

503 (ii) Visualizing barcode dynamics
504
505 To compare barcode trajectories within and between mice cohorts, we aimed to use consistent

506  color coding for barcode lineages. First, we assigned a unique color to all lineages that reached a
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507 relative frequency of 5e-05 in their respective mouse. The frequency f; (k) of barcode lineage k in

508 condition i is:

i(k
509 £.(k) = % (1)

510  where x;(k) is the barcode read count. This operation was applied to each mouse, such that the
511  color scheme was consistent when the dynamics were compared (Fig. 1c-e and Extended Data Fig.
512 1). For example, a barcode lineage that was assigned the color “magenta [#c20078]” will always
513 have this color in all the figures. Conversely, no other barcode was assigned the same color. To
514  create the Muller-type plots for each mouse (Extended Data Fig. 1), the barcode frequencies at
515  every time point were represented in linear scale. In each mouse, the barcodes were sorted by the
516 maximum frequency they attained over the time-series. This produced a stacked area plot where
517  dominant barcodes were shown starting from the bottom of the panel and progressively lower-
518  frequency barcodes were shown at the top. The same data was used to plot the frequency
519  trajectories in loglO-transformation (Fig. 1c-e). Barcodes that reached a minimum frequency of
520  1e-05 throughout its time-series were shown in color, whereas the remaining barcodes were shown
521  in grey for clarity.

522

523  (iii)  Quantification of barcode diversity
524
525  The simplest way to quantify the diversity of barcoded lineages in a population is to count the

526  number of unique barcodes observed at a particular time point (Fig. 1c-e). However, if lineages
527  differ widely in frequency, then this measure may not be very informative and will suffer from
528  substantial sampling bias (since very low-frequency barcodes will be under-sampled). A more

529  general approach is to quantify the diversity of barcodes using the effective diversity index*

530 ap = (Zkfkq)l/(l_q) @)

531  where f} is the frequency of the kth barcode lineage, and ¢ is the “order” of the diversity index.
532 When g = 0, the index simply counts the absolute diversity in the sample, i.e., the total number of
533  unique barcode lineage. This measure is equivalent to the species richness used in ecological
534  studies *°. When g = 1, the index weights each barcode lineage by its frequency. This measure is

535  equivalent to the exponential of the Shannon entropy H;

536 H = =% filog(fi) 3)
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537  When g = oo, the index is equal to the reciprocal of the proportional abundance of the most
538  common barcode lineages. Thus, only the higher-frequency lineages contribute to the value of this
539 index. By comparing the diversity index across these three orders for g, we could describe the
540  complex dynamics of the barcode composition over the course of the experiment. In the trivial
541  case when all barcode frequencies were equal, the effective diversity index would be equal to the
542  absolute number of barcodes regardless of the order of q. We should expect absolute diversity
543 (@ =0) to be no greater than the maximum theoretical diversity of the barcode library.
544  Additionally, we should also expect this measure to decrease over time as barcodes are lost from
545  the population since diversity is exhausted In time within host transit and dynamics.

546

547  (iv)  Barcode lineage clustering
548
549  To identify the clonal lineages, we clustered the barcode lineages for each mouse based on the

550  similarity of their time series behavior. To maximize the accuracy of this clustering, we excluded
551  barcodes with insufficient time points. Specifically, for each mouse, we retained only the lineages
552  that 1) exhibited non-zero frequency over at least 12 out of 18 time points for the rm cohort and i1)
553  the mean frequency over the entire time series is >=5e-5. Similarly, for the gf cohort which had 1
554  time-point less, we retained barcodes with 1) non-zero frequency for at least 11 out of 17 time-
555  points and i1) the mean frequency over the entire time-series is >=5e-5. For the im cohort, we keep
556  lineages with 1) at least 5 time points and i1) the mean frequency over the entire time-series is >=5e-
557 6. This ensured that all barcode lineages included in the clustering had a sufficient number of
558  points for pairwise comparison. This procedure meant that the lineage clustering focused on
559  dominant and persistent clones; barcodes that immediately went to extinction were excluded.
560  Altogether, this procedure was performed on a subset of ~300 to ~1300 lineages for each mouse,
561  representing ~5% to ~10% of total barcodes. Since this analysis focuses on the dominant and
562  persistent lineages, this fraction also represents ~7% to ~50% of the total number of E. coli cells

563  (or raw barcode counts) at the end of the colonization experiment. The distance AF;; between two
564  frequency trajectories f; an f; was calculated as

565 AF;j =1—p(logf;,logf;) 4)

566  where p(log f;,log f;) is the Pearson correlation coefficient between the trajectories. A distance

567 close to 0 indicated a strong positive correlation between the lineages, whereas a distance close to
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568 2 indicated a strong negative correlation. From the resulting pairwise distance matrix, we applied
569  hierarchical clustering using the “linkage” method from the scipy.cluster.hierarchy module in
570  SciPy. We used the “average” agglomerative clustering method, which implements the algorithm
571  unweighted pair group method with arithmetic mean (UPGMA)3!. This method computes the
572  distance between two clusters as the arithmetic mean of the distances between all lineages in both
573  clusters. Then, for each cluster, we fitted a consensus trajectory using the local regression (loess).
574  Loess is a form of moving average where a line is fit locally using neighboring points weighted by
575  their distance from the current point. These moving averages were referred in the text as “clonal
576  lineage clusters” or simply “clones”.

577 To determine the optimal clustering threshold, we note two general trends (Extended Data
578  Fig. 2b-d). First, the loess of clusters with very few lineages will be sensitive to sequencing error.
579  Thus, we include only clusters with at least 8 barcodes for the rm and gf cohorts and at least 5
580  barcodes for the im cohort. Second, when the threshold is too small, there are many clusters, but
581  multiple clusters are similar to each other. This is manifested by the value of the smallest distance
582  between the loess average of any cluster pair (black dots). Third, when the threshold is too large,
583  there are very few clusters where barcodes with distinct dynamics are grouped together. In
584  clustering, the practice was to find the cross-over between the smallest distance between cluster
585  centroids (our loess average) and the number of clusters. This cut-off was indicated as the red
586  curve in Extended Data Fig. 2b-d). Based on these cut-offs, we arrived at 4 to 21 clusters for im,
587 10 clusters for the rm cohort, and 6 or 7 for gf (Extended Data Fig. 3).

588

589  (v) Quantification of community dynamics by 16S profiling
590

591  The paired-end MiSeq Illumina reads resulting from sequencing of the 16S rRNA V4 region were
592  processed using the dada2 v1.22 pipeline®?. Primer sequences were removed using cutadapt v2.83
593  before amplicon sequence variant (ASV) inference. Forward and reverse read pairs were trimmed
594  to a run-specific length defined by a minimum quality score (Phred score>= 25) using the
595  filterAndTrim function of the dada2 R package®’. Error rates were estimated from sequence
596  composition and quality by applying a core denoising algorithm for each sequencing run. Then
597  pairs were merged if they overlapped using the mergePairs function. Bimeras, which were

598  chimeric sequences, were removed with the removeBimeraDenovo. Taxonomy was assigned using
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599 the assignTaxonomy function that maps reads onto the SILVA (v. 138) reference database’*. We
600 excluded sequences that matched mitochondrial or chloroplast DNAs. In each mouse, the relative

601  abundance of a taxonomic unit { at time t is given by:

602 a;(t) = % (5)

603  where r(t) is the absolute abundance (number of reads) for the unit. Similar to the barcode
604  dynamics, we calculated the community’s effective diversity index but at the level of the family
605  (see Quantification of barcode diversity). For further analyses, families with frequency lower than
606  le-03 were grouped as “Other”, while the rest of the groups were clustered under their bacterial
607  family classification.

608

609 (vi)  Co-clustering of E. coli clonal lineages and community dynamics from 16S
610

611  To detect the potential interactions between the bacterial community and E. coli clones, as might
612  be manifested in the correlation between their time-series, we recognized that the interactions
613  could introduce local and transient stretching or lags. Thus, a straightforward Pearson correlation
614  is ill-suited to detect such interactions. Therefore, we calculated the pairwise distances using the
615  shape-based metric (SBD)*. Briefly, the SBD is an iterative algorithm that detects the shape
616  similarity of two time-series, regardless of amplitude or phase differences (Extended Data Fig. 5).
617  For the community dynamics, we used the log-transformed relative abundances of taxa at the
618  family level with a minimum of 7 non-zero time points. For the clonal dynamics, we used loess
619  smoothing arising from the clustering of E. coli barcodes. We z-normalized the time series vectors
620  toremove the amplitude effect and then calculated the shape-based distance (SBD)*¢ implemented
621  in the fsclust package® to calculate our distance matrix. Lastly, tree linkage was performed using
622  the “average” (UPGMA) method to generate dendrograms (Fig. 2c¢ and Extended Data Fig. 4c).
623

624  (vii) Assessing the biological significance of the co-clustering of clones and community
625 dynamics
626

627  To validate that our co-clustering method between the community and clonal dynamics is
628  significant, we calculated a metric called “mixing index”. The underlying rationale was that if
629 indeed, clustering of an E. coli clonal lineage with a bacterial family is biologically meaningful,

630 then this clustering should be strongest when both clonal lineage dynamics and 16S come from
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631  the same mice or same cohort. To assess the mixing index, we collect clone-clone cophenetic
632  distances (c¢) and clone-species cophenetic distances (m) from their respective co-clustering.
633  (Cophenetic distance is the distance between two leaves of a hierarchical tree and is defined as the
634  height of the closest node that leads to both leaves). Then the distance between the empirical
635  cumulative distributions of ¢ and m, denoted as F(c) and F (m) respectively, is quantified as

636 D¢y = 1 — (max|(F(c) — F(m)|) (6)

637  Higher values of the mixing index imply that clones and families are more likely to be adjacent
638  leaves in the co-clustering three than clones amongst themselves. As an illustration, we show in
639  Extended Data Fig. 5c the mixing indices for trees where clones and families are fully mixed,
640  partly mixed, and fully unmixed. We applied the mixing index to co-clustering trees arising from
641  different pairs of clonal lineages (im or rm or gf) and bacterial families (im or rm or nc).
642  Furthermore, to determine the robustness of the mixing with respect to the method for determining
643  the dominant clonal lineages (section iv), we evaluated the mixing index different cut-off
644  thresholds for lineage clustering (Extended Data Fig. 2). The mixing index values are shown as
645  wviolin plots in Fig. 3c-d. We found that the mixing index is largest when the clonal lineages and
646  bacterial families come from the same mouse cohort. The statistical significance between the
647  mixing indexes was quantified by a two-tailed t-test.

648

649  (viii) Replicability of clonal lineages in different mice from the same cohort
650

651  To determine the replicability of clonal lineage dynamics across different mice, we applied
652 hierarchical clustering using distance matrices derived from pairwise Pearson correlation followed
653 by UPGMA linkage (Fig. 5a,d). The input to these analyses was the loess average of the clonal
654  lineages from each mouse (section iv. Barcode lineage clustering).

655

656 (ix)  Quantification of barcode similarity between mice from the same cohort
657

658  To determine if the similarity in clonal lineage dynamics in different mice is driven by the same
659  barcodes, we evaluated the overlap index in raw barcode identity for each cluster. In general, the
660 overlap coefficient quantifies the Simpson similarity between two sets 4 and B that are not

661  necessarily of the same size:
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662 OC(A,B) = Sm(ALIED

(7

663 A value close to 1 indicates a high number of common elements, whereas a value near 0 indicates
664 little overlap. We calculated the overlap index for all pairs of clonal lineage clusters in mice from
665  the same cohort (see Fig. 5b,e). To determine that the overlap index did not arise by chance, we
666  generated different compositions of sets 4 and B drawn randomly from our total pool of barcodes.
667  For each composition, we calculated the overlap index (Eq. 7). This was performed 1000 times to
668 arrive at a distribution of OC(A, B) values. The significance of the observed overlap index x
669  between the real clusters 4 and B was expressed as a z-score on the simulated distribution of
670  overlap indices:

671 7="F (8)

672  where u is the mean and o the standard deviation of the sample distribution. Lastly, significant
673  overlap coefficient values with |Z| > 1.96 or p-value 0.05 are shown in blue in Fig. 6¢,g, and their
674  size is scaled proportionally to their p-value.

675

676  (x) Dynamic Covariance Mapping (DCM)
677

678  Microbes in species-rich communities participate in dynamic interaction networks whose time
679  dependence can generally be quantified as a dynamical system by a set of ODEs (ordinary
680  differential equations)’®. However, a major limitation of existing methods for assessing the
681  stability of nonlinear dynamical systems of ODEs is parametrization since they are not known a
682  priori, and at best, they are inferred from noisy, sparsely sampled data. Here we developed a
683  parameter-free methodology to quantify the Eco-Evo feedback of interactions on community
684  dynamics from non-equilibrial time-series data. The dynamic covariance method (DCM) uses our
685  unique high-resolution temporal data to quantify time-dependent interactions as they occur during
686  the experiment. We start with the general case of a community composed of N members,
687  representing E. coli clonal linecages and family-level bacterial taxa. A community vector z(t) can
688  be defined as an N-dimensional vector of logio-transformed abundance time-series for the E. coli
689  clonal lineages and family-level bacterial taxa:

690 z(t) = (C(t), F (1)) )
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691 A non-detection in the community vector is replaced with a pseudo count of 1e-6. The vector z(t)
692  describes the time-varying state of the community. Theoretically, its dynamics can be described
693 by a system of ODEs

694 z=¢(z1t) (10)
695  However, the functional form of ¢(z, t) is unknown, but we can determine the generic behavior
696  of the system near a specific snapshot (say, z, = z(t = t;)) through linearization:

697 z = ¢(20,t0) +J:(z — zo) (1)
698  where J; is the N X N Jacobian that defines the gradient of ¢(z,t) approximated over the time
699 interval T around t,. The element of a Jacobian matrix measures the sensitivity of a species i’s
700  population growth rate to the abundance change of species j and is defined as the interaction
701  strength of species j on species i in an ecological community>’-*%; in practice, it can be estimated
702 by the covariance of species i’ time derivatives and species j’s abundance time-series over the time
703  interval 7:°

704 Jr = {cov(Z;, z)) (12)
705  Here, subscripts i and j span from 1 to N and include both E. coli clonal lineages and family-level
706  bacterial taxa. Following the dynamical systems theory®*, the dynamics near (z,,t,) can be
707  captured by the spectral distribution of eigenvalues (4, with k£ from 1 to N) of the Jacobian in the
708  complex plane (representing both the real component Re(4;) and the imaginary component
709  Im(Ay)). The vector z(t) deviates from z, at a rate of exp(Re(4,)t) and oscillates at a period of
710  2m/Im(A;) along the direction of the eigenvector associated with 4,. The condition for z, to be a
711  stable equilibrium (i.e., the community can withstand small perturbations) thus requires Re(1;) <
712 0 forall £.

713 In practice, we computed J; over a specific time interval t for progressively increasing time
714 periods (3h-6h, 3h-12h, ..., and 3h-15 days), with altogether a total of 16 or 17-time intervals for
715  the rm and gf cohort and 7 or 8 17-time intervals for the im cohort. Since there are N eigenvalues
716  for each time interval, we sought a simpler representation of the community’s dynamic behavior.
717  To this end, we used Uniform Manifold Approximation and Projection (UMAP)  to reduce the
718  dimensionality of the eigenspace as a function of time. The input to this UMAP dimensionality
719  reduction is a (2N) X (4n) matrix, where the 2N columns correspond to the real and imaginary
720  components of the eigenvalue 1;, while the 4n rows correspond to the number of mice multiplied

721 by the number of 7 time intervals. In the UMAP’s 2D representation, the 2N-dimensional
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722 eigenvalue is shown as a point (Fig. 4b, Extended Data Fig. 6e-g, Supplementary Movie 1a-d, and
723 Supplementary Movie 2a-d). As shown in the Fig. 4b, the UMAP projection demonstrated that
724  eigenvalues grouped together by time interval which suggests similar dynamic behaviors during
725  colonization in different rm mice. Additionally, as the movie shows, the eigenvalues show distinct
726 “jumps” on the UMAP projection, indicating distinct temporal phases. To define these distinct
727  phases, we clustered the eigenvalues on their UMAP projection using the Nbclust® package in R,
728  implementing the centroid algorithm. To determine the robustness of identifying the distinct
729  phases, we regenerated UMAPs using all possible neighborhood parameters (from 2 to 56, with
730  the maximum value corresponding to the total number of points on the UMAP, i.e., 4n). We also
731  tested other clustering algorithms (ward.D, ward.D2, single, complete, average, mcquitty, median,
732 centroid, kmeans), which all showed 2 or 3 clusters (Extended Data Fig. 6a-d). In the case of the
733  two clusters for the rm cohort, the first corresponds to E. coli’s entry and the second to its
734  coexistence with the bacterial community. In the case of three clusters, there is an intermediate
735  phase (the 2" phase) showing the resurgence of some bacterial species in the microbiota for the

736  rm cohort.
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Figure 1. Intra-species population dynamics during gut colonization. a, Population of ~10% E.
coli cells with ~5x103 unique chromosomal barcodes is introduced into mice with innate
microbiota (cohort 1) and mice with reduced microbiota by antibiotic pre-treatment (cohort 2).
Community-level and intra-species dynamics were then tracked in fecal samples over a 2-week
period. As controls, samples were also collected in mice with only the colonizing E. coli (germ-
free, cohort 3) and in mice with only the resident bacteria (cohort 4). b, E. coli bacterial load
measured as colony-forming units (CFU) per gram of sampled feces for the colonized mice cohorts
with innate microbiota (im), reduced microbiota (rm), and germ-free (gf). c-e, Frequency of the
chromosomal barcodes during colonization. The most frequent 1000 barcodes are colored
uniquely, whereas the rest are shown in gray. Identical barcodes are colored similarly across mouse
replicates and cohorts. f, Effective diversity index of E. coli chromosomal barcodes,

ip = (Zle piq)l/(l_q)where p; 1s the frequency of barcode i, R is the total barcode count, and g
is the order of the diversity. Effective diversity reports the count of unique barcodes (g = 0),
frequency-weighted diversity (@ = 1), or inverse frequency of the dominant barcode (g = o0).

g, Effective diversity for the microbiota based on the frequency of bacterial families from 16S
rRNA profiling.
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Figure 2. Clone-specific community interactions in the gut for the rm cohort. a, Dominant
clones are determined by clustering of barcodes that persisted for most of the 2-week period.
Pairwise pearson correlation of the barcode’s frequency time-series is used as the distance
metric. These dominant barcodes represent ~5 - 7% of total unique barcodes. The putative
dominant clones are ranked based on their average frequency at the end of the timeseries. b,
Community dynamics (16S rRNA profiling) are analyzed at the level of the family. E. coli is a
member of Enterobacteriaceae, which is shown as a thicker line. ¢, Co-clustering E. coli clones
with the different bacterial families suggest clone-specific community interactions. The clone-
species interactions are broadly reproducible across different mice, whereby the dynamics of C1
is related to Lachnospiraceae, and C8 and/or C10 are related to Lactobacillaceae
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Figure 3. E. coli clone and bacterial community interactions are strongest when coming from
the same cohort. a, Dominant and persistent clones of E. coli in pre-germ-free mice showing
simpler lineage dynamics compared to cohorts 1 and 2. b, Community dynamics mice with
reduced microbiota, but non-gavaged with E. coli, showing the recovery of bacterial community
from the treatment of antibiotic cocktail. ¢-d, Co-clustering of clones and families depends on
environmental conditions. Co-clustering is measured by a mixing coefficient that compares the
distances in the hierarchical tree among families with distances between families and clones
(Extended Data Fig. 5).
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Figure 4. Distinct phases of colonization quantified by the Dynamic Covariance Mapping.
a, Dynamic covariance mapping (DCM). i) The time series z(t) is a concatenated vector of the
family and E. coli clone frequencies. ii) The evolution of z(t) is governed by a system of ODEs
that can be linearly approximated by the Jacobian matrix J, , which is the co-variance between the
time-series i and the time-derivative of the time-series j. The Jacobian is calculated over a time
interval 7. t, is the start of the experiment. 1iii) The expanded interaction matrix includes inter-
family, intra-clone, and family-clone interactions. b, 2D UMAP projection of the eigenvalues of
the time-dependent covariance matrix J,. The eigenvalues cluster into three distinct time domains
that reflect the phases of colonization shown in Fig. 2a. ¢, Stability analysis over the three phases
in Fig. 2a mouse rm1. Phase I is transient instability corresponding to the entry of E. coli and the
collapse of resident bacteria. Phase II is the return to a stable regime and the re-emergence of the
community species. Phase I1I is quasi-dynamic equilibrium with both oscillations in the clonal and
community dynamics (see Supplementary Moviela-d). d, Time-varying eigenvalues of the mouse
rm1 were ranked and colored according to their magnitude. Ranking revealed that the first four
eigenvalues dominate the whole dynamics.
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959  Figure 5. Relative fitness of the dominant clones and bacterial families. a-f, The relative fitness
960 s estimated from the slope of the clone and family frequency. The cumulative distribution is
961  defined over the 3 phases in Fig. 4. Vertical dashed lines indicate neutral (s=0). Horizontal dashed
962 lines indicate 50%. The dominant clone C1 is primarily driven by adaptive changes in phase 1 and
963  then reverts to equal fractions of deleterious and beneficial mutations in phase 3, which is
964  consistent with dynamic equilibrium. Fitness at the community level shows that the dominant
965 interactor of Cl1, Lachnospiraceae, is also experiencing strong adaptive changes in phase 1 and
966  equal fractions of beneficial and deleterious fitness effects in phase 3.
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Figure 6. The similarity of clonal dynamics across mice is partly driven by identical barcodes.
a, Similarity between the time series of dominant clones across all 4 gf mice quantified by Pearson
correlation. Matrix elements are clustered based on hierarchy (dendrograms indicated). Colors
indicate the clone’s identity, while the shape indicates the mouse of origin. b, The similarity in
barcode identity between the different clones is quantified by the overlap coefficient, OC(A,B) =
|A N B|/min(]|A]|,|B]), where A and B are the sets of unique raw DNA barcodes that belong to
two dominant clones. Identities of matrix elements are similar to panel a. ¢, Scatter plot of the
similarity in dynamics between two clones by Pearson correlation vs. similarity in their barcode
identity by overlap coefficient. Overlap coefficients satisfying p-value <0.05 from bootstrapping
are shown in blue; otherwise, they are shown in grey (Methods). The size of the circle is
proportional to the significance of the overlap coefficient. d-g, Similarity in dynamics and barcode
identity for the colonization in mice with the resident microbiome.
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Extended Data Fig. 1. Barcode dynamics in im, rm, and gf cohorts. a-c, Barcode dynamics

for cohort 1, cohort 2, and cohort 3 in linear scale. Each column corresponds to replicate mouse 1
to 4, respectively. The color corresponds to Fig. 1c-e.
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993  Extended Data Fig. 2. Determining the number of dominant clonal lineages. a, The pipeline
994  for estimation of putative clones from the frequency time series of the chromosomal barcodes.
995  b-d, A specific value for the threshold distance (Pearson correlation) in the hierarchical clustering
996  defines a total number of clusters (blue curve) as well as a distance between the most similar clones
997  (“Smallest distance”, black dots). When the threshold is large, there are many clusters, but some
998  are similar to each other. Conversely, when the threshold is small, there are too few clusters, where
999  even barcodes that do not have similar time series are grouped together (Methods). In practice, the
1000  cut-off is chosen to be the cross-over between the smallest distance between cluster centroids (our
1001  loess average) and the number of clusters. The chosen cut-off is indicated by the red curve. The
1002  resulting clusters are shown in Extended Data Fig. 3.
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1007  Extended Data Fig. 3. Dominant E. coli clonal lineages clusters. a, Dominant barcode clusters
1008  in mice with innate microbiota (im). Colored lines correspond to unique chromosomal barcodes in
1009  the cluster. Black lines correspond to the LOESS average. The number of unique raw barcodes
1010  that belong to the cluster is indicated. The clonal lineage clusters (or simply “clones”) are ordered,
1011  starting from the left, based on their average barcode frequency on the last day. b, Dominant
1012 clusters for the mice with reduced microbiota (rm). The colors correspond to Figure 2a. ¢,
1013 Dominant clusters for the germ-free mice (gf). The colors correspond to Figure 3a.
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Extended Data Fig. 4. Clone-specific community interactions in the gut for the im cohort.
a, Dominant and persistent E. coli clones invading an innate microbiome show less reproducible
clonal dynamics compared to gf and rm cohorts. Particularly, mice im1-3 have less than 6 clones,
but im4 has 21 distinct clones. b, Community dynamics are similar for im1-3 where the
Enterobacteriaceae (thick line), to which E. coli belongs, drops below the resolution limit of the
16S rRNA profiling but persists in im4. Interestingly, this distinction in dynamics between mice
im1-3 and mouse im4 is not perceptible from the CFU (Fig. 1b).
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1030  Extended Data Fig. 5. Schema for shaped-based co-clustering between E. coli clone and
1031  community dynamics. a, Schema for co-clustering of the clonal lineage and family composition
1032 time series using a shape-based distance metric. b, Schema for calculating the mixing index from
1033 a given hierarchical clustering tree. We collect clone-clone cophenetic distances (¢) and clone-
1034 species cophenetic distances (m). Then the distance between the empirical cumulative
1035  distributions of ¢ and m, denoted as F(c) and F(m) respectively, is quantified as D.,,, = 1 —
1036  (max|(F(c) — F(m)|). Higher values of the mixing index imply that clones and families are
1037  more likely to be adjacent leaves in the co-clustering tree than clones amongst themselves. ¢-d,
1038  Illustrative examples (panel c) of different extents of co-clustering between clones and families
1039  and their corresponding mixing indices (panel d).
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1044

1045  Extended Data Fig. 6. Robustness of UMAP clustering and DCM analysis. a, We generated
1046  all possible UMAPs for the eigenvalues of the gf cohort using every possible value of the n-
1047  neighbor criteria (Methods and ref. 3°). Then, we applied nine different clustering algorithms to
1048  determine the groupings of eigenvalues on these UMAPs. These groups indicate the phases of
1049  invasion defined in the text. Shown is the probability of the number of groups (clusters). Robustly,
1050  there are 2 or 3 groups or phases on the UMAP. b, Similar to panel a, panel b shows that the
1051  presence of 3 clusters in the four gf mice is driven by gf3. ¢-d, Similar to panel a for the invasion
1052  in mice with innate (¢) and reduced microbiota (d), respectively. e, The chosen UMAP for the gf
1053  cohort (panel a). f, The gf cohort, where gf3 is excluded, shows distinctly 2 phases (see also
1054  Supplementary Movie 2a-d). g, The phases defined on the UMAP of the im cohort. h, We
1055  combined all eigenvalues from the rm clone dynamics and gf cohort and projected them onto a
1056  single UMAP. The rm clones are shown on the left panel, while the gf clones are shown on the
1057  right. Projection of rm and gf cohorts’ clonal lineages on the same UMAP shows that rm1-4 clones
1058  grouped amongst themselves together with gf3. At 3h, gf3 already exhibits high barcode diversity,
1059  indicating that most of the barcode has transited the gut (Fig. 1f, 3a third panel, and Extended Data
1060  Fig. 1c third panel), in contrast to the other mice in the gf cohort.
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Extended Data Fig. 7. Estimated fitness of the gf cohort. The cumulative distribution is
partitioned into the two phases defined in Extended Data Fig. 6f. The dominant clone C1 exhibit

primarily adaptive dynamics during phase 1 of the colonization.
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