

1 **Intra- and inter-species interactions drive early phases of invasion in mice gut**
2 **microbiota**

3

4 Melis Gencel,^{1,2} Gisela Marrero Cofino³, Cang Hui⁴, Zahra Sahaf^{1,2}, Louis Gauthier^{1,2}, Derek
5 Tsang⁵, Dana Philpott⁵, Sheela Ramathan⁶, Alfredo Menendez³, Shimon Bershtain⁷, Adrian W.R.
6 Serohijos^{1,2,*}

7 *¹Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit, Montréal,*
8 *Quebec, Canada H3T 1J4*

9 *²Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, 2900*
10 *Édouard-Montpetit, Montréal, Quebec, Canada H3T 1J4*

11 *³Département de microbiologie et d'infectiologie, Université de Sherbrooke, 12e avenue Nord,*
12 *Sherbrooke, Québec, Canada J1H 5N4*

13 *⁴Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7602, South Africa*

14 *⁵Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario,*
15 *Canada M5S 1A8*

16 *⁶Département d'immunologie et biologie cellulaire, Université de Sherbrooke, 12e avenue Nord,*
17 *Sherbrooke, Québec, Canada J1H 5N4*

18 *⁷Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel 7R62+VH*

19 **Correspondence: adrian.serohijos@umontreal.ca*

20

21 **One-Sentence Summary:**

22 High-resolution lineage tracking and dynamic covariance mapping (DCM) define three distinct
23 phases during early gut microbiome invasion.

24 Abstract

25 The stability and dynamics of ecological communities are dictated by interaction networks
26 typically quantified at the level of species.¹⁻¹⁰ But how such networks are influenced by intra-
27 species variation (ISV) is poorly understood.¹¹⁻¹⁴ Here, we use ~500,000 chromosomal barcodes
28 to track high-resolution intra-species clonal lineages of *Escherichia coli* invading mice gut with
29 the increasing complexity of gut microbiome: germ-free, antibiotic-perturbed, and innate
30 microbiota. By co-clustering the dynamics of intra-species clonal lineages and those of gut bacteria
31 from 16S rRNA profiling, we show the emergence of complex time-dependent interactions
32 between *E. coli* clones and resident gut bacteria. With a new approach, dynamic covariance
33 mapping (DCM), we differentiate three phases of invasion in susceptible communities: 1) initial
34 loss of community stability as *E. coli* enters; 2) recolonization of some gut bacteria; and 3)
35 recovery of stability with *E. coli* coexisting with resident bacteria in a quasi-steady state.
36 Comparison of the dynamics, stability and fitness from experimental replicates and different
37 cohorts suggest that phase 1 is driven by mutations in *E. coli* before colonization, while phase 3 is
38 by *de novo* mutations. Our results highlight the transient nature of interaction networks in
39 microbiomes driven by the persistent coupling of ecological and evolutionary dynamics.

40 **Introduction**

41 How an ecological network responds to perturbation, such as an invasion, depends on the
42 structure of the community interaction matrix^{1,2} that quantifies pairwise effects of each species on
43 other's population growth. Due to limited experimental resolution, this matrix is typically
44 described at the level of species or higher-level taxonomic groupings^{3-10,15,16}. This core concept of
45 ecology has been scrutinized in diverse systems of plants, animals, and microbes under both
46 natural and lab conditions^{7,10,17-21}. However, a species rarely exists as a homogenous population
47 due to spatial partitioning and genomic variation from pre-existing or *de novo* mutations²². Despite
48 the prevalence of intra-species variation (ISV) in nature, how the ISV of an invading species affects
49 the community matrix is not fully known. Indeed, the role of ISV on community composition and
50 stability has rarely been tested experimentally¹¹⁻¹³. Theoretical studies have also yielded
51 contradictory results regarding the role of intraspecific variation on species coexistence¹⁴.

52

53 Here, we experimentally determine the impact of intraspecific variation on community
54 dynamics during *E. coli* invasion in the mouse gut microbiome. The mouse gut microbiome,
55 depending on host phenotype and genetics, consists of $\sim 10^{12}$ individual bacterial cells, which can
56 be partitioned into $\sim 10^3$ species²³. The relatively high mutation rate, large population size, and
57 frequency-dependent selection could lead to $\sim 10^5$ clones existing in a population of a single
58 bacterial species. Some of these clones present at very low frequency could nonetheless provide
59 rapid adaptation^{24,25}. Numerous whole-genome sequencing studies with barcoding technologies
60 highlight the diversity of intra-species clonal lineages²⁴⁻²⁹, although limited to a few thousand cells
61 of a single species or hundreds of cells in species-rich consortia. This shallow coverage of intra-
62 species lineage dynamics is yet to determine the extent of coupling between ecological and
63 evolutionary processes^{30,31}. Instead, deciphering the effect of intra-species clonal variation on
64 community dynamics requires the ability to track intraspecific clonal lineages at very high
65 resolutions.

66

67 We used high-density chromosomal barcoding to track the clonal lineages of *E. coli* that
68 were introduced into mice with different degrees of complexity in their resident bacterial
69 community. First, this enabled us to define the ISV dynamics at a frequency as low as 1 in every
70 $\sim 10^7$ cells of *E. coli*. Second, the ISV dynamics enabled us to define the dominant and persistent

71 *E. coli* clonal lineages (“clones”), including those present at low frequencies. Third, by correlating
72 this ISV dynamics with the composition of the resident bacteria from 16S profiling, we found that
73 specific clonal lineages interact with specific resident bacterial families. Notably, such interactions
74 were reproducible across mice colonization replicates that were susceptible to *E. coli* invasion.
75 Fourth, we expand the definition of community matrix interactions, traditionally defined between
76 species or families, to include both intra-species and between-species interactions. This resulted
77 in a new approach, which we call dynamic covariance mapping (DCM), which could quantify the
78 time-dependence of the community interaction matrix and its effect on community stability. Fifth,
79 using DCM, we were able to define distinct temporal phases during colonization, which uniquely
80 arise due to the specific interaction between *E. coli* clones and certain families of the resident
81 microbiota.

82

83 **Results**

84

85 **High-resolution clonal tracking during gut bacterial community invasion**

86 We previously used the Tn7 transposon machinery to introduce ~500,000 distinct chromosomal
87 DNA barcodes into a population of ~10⁸ *E. coli* cells²⁴. Since the barcodes are transmitted from
88 parent to daughter cells, this allowed the tracking of the clonal lineage dynamics of *E. coli* at a
89 resolution of ~1/10⁶ cells as the population adapted to antibiotic resistance during *in vitro* lab
90 evolution²⁴. Such high-resolution chromosomal barcoding techniques have been used for single-
91 species analysis but never in a complex and species-rich ecological community³². We used
92 barcodes to simultaneously track high-resolution clonal lineage dynamics of an *E. coli* population
93 colonizing mouse guts (Fig. 1a).

94

95 It is well-established that higher diversity and species richness of an ecological community makes
96 it less susceptible³³ to invasion including the gut microbiota. However, this resistance to invasion
97 can be compromised upon environmental perturbations, such as antibiotic treatments, that reduce
98 community diversity, making them susceptible even to non-pathogenic bacteria. Additionally, the
99 gut itself presents a complex “biogeographical” environment, where distinct selective niches arise
100 from heterogeneity in the availability of metabolites, nutrients, and immune effectors, as well as,
101 epithelial topography and mucus architecture³⁴. With these considerations in mind, we designed

102 mice cohorts with different complexities in their gut bacterial microbiomes (Fig. 1a): mice with
103 innate microbiome (cohort 1, “im”) and mice with reduced microbiome due to pre-treatment of
104 antibiotics (cohort 2, “rm”); and germ-free mice (cohort 3, “gf”). Lastly, as a control for the
105 community dynamics in the absence of colonization, we had another cohort of mice that received
106 antibiotic treatment but was not gavaged by *E. coli* (cohort 4, “nc”). Cohorts 2 and 4 were pre-
107 treated with an antibiotic cocktail (metronidazole, neomycin, ampicillin, and vancomycin) for
108 three weeks followed by three days of no treatment to flush out the antibiotics. On day zero, *E.*
109 *coli* were introduced in mice of cohorts 1, 2, and 3. Then, for all cohorts, fecal samples were taken
110 at 3h, 6h, 12h, and 24h on day one and then once daily for two weeks. The multiple sampling on
111 day one was required to capture the kinetics of transit through the gut of the colonizing bacteria²⁹.
112 Extraction of bacterial genomic DNA from the feces, followed by PCR amplification of the *E. coli*
113 barcoded region and next-generation sequencing, afforded high-resolution lineage tracking during
114 gut colonization (Fig. 1c-e and Extended Data Fig. 1a). We also simultaneously tracked the
115 community dynamics of resident bacteria using 16S rRNA profiling (Fig. 2b, 3b, and Extended
116 Data Fig. 4b).

117

118 The global tempo of *E. coli* colonization and its impact on the gut microbial community is reflected
119 by the fluctuations in the diversity of chromosomal barcodes and 16S rRNA dynamics. Thus, we
120 calculated the effective diversity index qD of the barcoded *E. coli* population that captures three
121 complementary notions of lineage diversity. Specifically, $q = 0$ reflects the total number of unique
122 barcodes (its “richness”), $q = 1$ is the frequency-weighted lineage diversity equal to the
123 exponential of Shannon entropy, and $q = \infty$ reflects the reciprocal of the frequency of the most
124 abundant barcode. The effective diversity of the chromosomal barcodes for im, rm, and gf cohort
125 is shown in Fig. 1f. Similarly, we calculated the diversity index of the gut community composition
126 from 16S rRNA, where the amplicon sequence variants (ASV) are defined at the level of bacterial
127 families (Fig. 1f). Analogous to barcode diversity, $q = 0$ is the total number of unique bacterial
128 families, $q = 1$ is the frequency-weighted family diversity, and $q = \infty$ is the reciprocal of the
129 frequency of the most abundant family. Expectedly, the gut community of the im cohort was
130 resistant to the invasion of the *E. coli* K12, where after an initial of $\sim 10^6$ to $\sim 10^8$ colony-forming
131 units (CFU)/gram of feces within ~ 3 h, the bacterial load reduced to below $\sim 10^4$ CFU/gram by
132 day 6 (Fig. 1b). The bacterial community dynamics are unperturbed by the entry of *E. coli* into the

133 community (Fig. 1g). The inability of the *E. coli* population to establish in the im cohort is also
134 reflected in the more rapid transit of the barcodes through the gut, whereby the peak in barcode
135 diversity ($q=0$ in Fig. 1f) for mice im2-4 mice is ~ 3 h compared to ~ 6 h for the rm and gf mice.

136

137 In contrast, *E. coli* successfully colonized the rm cohort, reaching bacterial loads of $\sim 10^8$ colony-
138 forming units (CFU)/gram of feces within ~ 6 h (Fig. 1b), which coincided with the maximal
139 barcode diversity (Fig. 1f). The absence of resident bacteria in the gf cohort resulted in *E. coli*
140 reaching a higher bacterial load of $\sim 10^{10}$ CFU/gram of sample within ~ 6 h. Interestingly, despite
141 the difference in their CFU levels (Fig. 1b), both the gf and rm cohorts reach optimal diversity in
142 ~ 6 h (Fig. 1e). Moreover, even the unsuccessful colonization of the im cohort reached an optimal
143 diversity around 3h, and the diversity is overlapping with the im, rm, and gf cohort. Altogether,
144 these results suggest that the very early dynamics of entry of *E. coli* (~ 6 h) is primarily dictated by
145 adaptation to the biogeography of the mouse gut rather than by the diversity of the microbial
146 community. After this time-point, the different cohorts exhibited distinct behavior for their
147 diversity (Fig. 1f,g).

148

149 Notably, the CFU counts for mice in the same cohort are broadly indistinguishable (Fig. 1b) despite
150 the complexity of the underlying clonal dynamics viewed at higher resolution (Fig. 1c-e).
151 Additionally, although barcodes begin appearing within ~ 3 h (Fig. 1e), they were not observed in
152 the CFU counts for the rm and gf cohorts (Fig. 1b). Barcodes that appeared first were not always
153 the dominant ones at the end (Extended Data Fig. 1a). This observation is most drastic in the im
154 cohort. Three mice (im1, im2, and im3) showed a reduction in barcode frequency accompanying
155 the drop in CFU but manifested an increase in diversity towards day 6 (Fig. 1b,f). One mouse
156 (im4) maintained a high barcode diversity despite the drop in CFU. These results highlight the
157 stochasticity of transmission kinetics through the intestinal gut's distinct "island" niches³⁴, which
158 is not reflected simply by measuring the total bacterial count of the invading species.

159

160 In accordance with previous lower-resolution colonization experiments^{29,35}, we observed soft
161 clonal sweeps of barcodes that eventually became dominant ($>5\%$) after ~ 2 days (Extended Data
162 Fig. 1b, rm mice; Extended Data Fig. 1c, gf mice). This clonal sweep was stronger in the gf than
163 in the rm mice, as only one barcode reached $>5\%$ in the rm, whereas several dominant barcodes

164 co-segregated over two weeks in the gf. These dominant barcodes originated at frequencies
165 around 10^{-7} (Fig. 1d-e). The sweep in the gf and rm mice is manifested by a drop in barcode
166 frequency-dependent diversity ($q=1$ in Fig. 1f). The drop in diversity occurs earlier in the rm cohort
167 (~2 days), compared to gf (~7 days in $q = 1$, ~4 days in $q = \infty$). Interestingly, despite the earlier
168 clonal diversity drop in rm, which coincides with the resurgence in bacterial community diversity
169 (Fig. 1g), rm maintains a greater clonal diversity compared to the gf towards the end of the 2-week
170 period (Fig. 1f). This suggests that gf, adjusting only to the selective pressure imposed by gut
171 biogeography, is subject to a stronger intra-species competition. In contrast, the resurgence of the
172 resident bacterial community in the case of rm (Fig. 1g) leads to the coexistence and co-dominance
173 of multiple barcodes in the *E. coli* population (Fig. 1f). Altogether, this highlights the interaction
174 of the resident community and the clonal lineages of the invading species.

175

176 **Clone-specific interaction between *E. coli* and other bacteria**

177

178 Next, we determined the impact of the colonizing species on the composition of the resident
179 bacterial community. While the community in the im cohort was more resistant to invasion, the
180 introduction of *E. coli* in the gut microbiome led to a reduction in the abundance of some resident
181 bacterial communities in the rm cohort (16S rRNA in Fig. 2b and 16S rRNA in Extended Data
182 Fig. 4b). This quick initial collapse happens within the first ~3h and is clearly manifested in rm2
183 (16S rRNA in Fig. 2b). However, the establishment of *E. coli* was accompanied by the resurgence
184 of the bacterial community around day 4, followed by the coexistence of *E. coli* and the resident
185 bacterial community. Notably, *Sutterellaceae* was unperturbed by the introduction of *E. coli* in all
186 four mice. Although *Muribaculaceae* was unperturbed only in rm 1 and rm 3, it was the first
187 bacterial family to rebound in rm 2 and rm 3 (Fig. 2b). The canonical member of a gut microbiome,
188 *Lactobacillaceae*, had an intermediate abundance when *E. coli* was introduced, but this declined
189 after *E. coli* established in the gut microbiome. In the no-colonization cohort (nc), the community
190 also exhibited a rebound due to the release from the antibiotic treatment (Fig. 1g and 3b). However,
191 the resident community of the nc cohort was dominated by *Lactobacillaceae* and was less diverse
192 than the resident community of the rm cohort. These results demonstrated the impact of *E. coli*
193 introduction on bacterial community composition.

194

195 To determine if there are interactions between specific *E. coli* clones and bacterial families, we
196 first identified the dominant *E. coli* lineages using barcode dynamics (Fig. 1c-e). The barcode
197 lineage dynamics reflects its effective fitness (selection coefficient) over time³², and thus
198 similarities in barcode lineage dynamics can be indicative of *E. coli* clones under similar selection
199 coefficients. We performed a shape-based clustering analysis of lineage dynamics using the Pearson
200 correlation as the similarity measure computed for pairs of barcodes with mean frequency $>5e^{-5}$
201 and persisted for at least 12 of the 18-time points (Extended Data Fig. 3). These represent ~5-10%
202 of the total barcoded *E. coli* observed in the rm and gf mice (Extended Data Fig. 3b,c). Clusters of
203 persistent barcodes were defined as putative clonal lineages hereafter and ranked based on average
204 frequency (Extended Data Fig. 3). Interestingly, in this procedure, the clonal cluster C1 always
205 contained the dominant barcode lineages that exhibited the sweeps, even if C1 cluster itself did
206 not have the largest number of barcodes (Extended Data Fig. 3). This observation validates the
207 lineage clustering approach. A LOESS regression of the top 10 clonal clusters of *E. coli* highlights
208 the persistence of extremely rare barcodes in the colonizing population (Fig. 2a & Fig. 3a)

209

210 Considering the diversity of these clonal lineage clusters, we asked whether individual clusters
211 were associated and potentially interacting with specific bacterial families. We performed co-
212 clustering of the dynamics of putative clonal lineages of *E. coli* and those of the 16S rRNA
213 bacterial community profiles using the k-shaped algorithm³⁶ (Fig. 2c, Extended Data Fig. 4c
214 Extended Data Fig. 5). These analyses revealed a consistent picture across the rm cohort. The
215 dominant cluster, C1, was always grouped with *Lachnospiraceae*, whereas two other low-
216 frequency clusters, C7 and C8 grouped persistently with *Lactobacillaceae*, the canonical member
217 of gut microbiota (Fig. 2c). Interestingly, it was previously shown in invasion studies of pathogenic
218 strains of *E. coli* and *Lachnospiraceae* that these bacteria utilize similar sugars and thrive in the
219 same environment³⁷.

220

221 To demonstrate that the degree of co-clustering of *E. coli* clonal lineages and bacterial families
222 was specific to the rm cohort, we applied the shaped-based co-clustering of barcode lineages for
223 the gf (Fig. 3a) and the nc cohort (Fig. 3b). The extent of co-clustering was measured using the
224 mixing index, $D_{c,m} = 1 - (\max|F(c) - F(m)|)$ (Fig. 3c-d and Extended Data Fig. 5), which
225 compares the clustering distance from clonal lineages to bacterial families $F(m)$ with the distance

226 between clonal lineages $F(c)$ (Fig. 3d). Indeed, the co-clustering between clones and bacterial
227 families was strongest in the rm cohort (Fig. 3d). Expectedly, co-clustering was weakest when the
228 16S rRNA community dynamics of im and rm were paired with the gf cohort clonal lineages (Fig.
229 3d).

230

231 Moreover, we applied the same analyses to the im cohort to test if there is a similar heterogeneous
232 interaction between the invading *E. coli* population and the bacterial community, even if the
233 invasion was unsuccessful. Indeed, the shaped-based co-clustering showed heterogeneous
234 interaction between *E. coli* lineages and bacterial families (Extended Data Fig. 4). The extent of
235 co-clustering in the im cohort is weaker than in rm (Fig. 3c-d, im is blue, rm is orange), which is
236 in agreement with the resilience of the im community to the invasion. However, despite the
237 unsuccessful *E. coli* invasion in the im mice, the co-clustering between *E. coli* clonal lineages and
238 bacterial families is strongest when they come from the same biological cohort (Fig. 3c),
239 suggesting intra- and inter-species interactions (Extended Data Fig. 4c), even if only transient.
240 Altogether, the high-resolution lineage tracking demonstrated that intraspecific variation could
241 lead to clone-specific interactions in bacterial communities during invasions, including those that
242 may not lead to establishment.

243

244 **Dynamic covariance mapping defines phases of colonization**

245

246 The barcode and 16S rRNA time series suggest distinct phases in the colonization dynamics in rm
247 mice (Fig. 2a-b). Specifically, the entry of the invading *E. coli* population is manifested by the rise
248 of the dominant clone frequency in phase 1. This is accompanied by an increase in CFU and
249 barcode diversity (Fig. 1b,f) and a drop in resident bacterial community diversity (Fig. 1g and Fig.
250 2b). In phase 2, relative stasis and lower fluctuations in the dominant clone frequencies as the
251 resident bacterial community re-emerges. Lastly, in phase 3, the dominant clones of *E. coli*
252 coexisting with the resident community undergo large fluctuations. These phases are distinct from
253 the much simpler dynamics of clonal lineages observed in the gf cohort (Fig. 3a), which suggests
254 that the phases in rm are driven by interactions between the colonizing *E. coli* and the resident
255 community.

256

257 To unambiguously define these phases and the dynamic stability of the community, we developed
258 the method of dynamic covariance mapping (DCM) that estimates the time-dependent community
259 matrix of pairwise interactions at the level clones. Specifically, the community dynamics can be
260 described by a vector of time-series, $Z(t) = \{z_1(t), z_2(t), \dots\}^T$, featuring 10 time-series
261 corresponding to the dominant *E. coli* clones and 7 for bacterial families. Although the full time
262 evolution of $z(t)$ is complex and unknown^{2,9,38,39}, the Jacobian matrix J of its linearized dynamical
263 system, representing the community matrix of pairwise interactions, can be estimated as the
264 covariance of one time-series and another's time derivative⁹, $J = \langle \text{cov}(\dot{z}_i, z_j) \rangle$. The eigenvalues
265 of the Jacobian matrix report on the dynamics and stability of the system^{2,38,39}. When the real part
266 of an eigenvalue is negative, the system is stable against perturbation along the direction of the
267 associated eigenvector, and conversely, when positive, the system becomes unstable. The
268 magnitude of the imaginary part of an eigenvalue implies oscillatory behaviors.

269
270 We quantified the Jacobian over a progressively shifting time window and performed eigenvalue
271 decomposition (Fig. 4, Supplementary Movie 1a-d). The real parts of eigenvalues corresponding
272 to early time-points were positive, reflecting that the system is unstable due to the introduction of
273 *E. coli*. This is accompanied by the drop in bacterial community diversity (Fig. 4c left panel). This
274 was followed by a second phase, with the real parts of eigenvalues moving from positive to
275 negative, corresponding to the recovery of system stability and the resurgence of some bacterial
276 families (Fig. 4a, c (middle panel)). Finally, in phase 3, the system became dynamically stable but
277 with notable oscillations in both the 16S and the clonal dynamics (Fig. 4c, (right panel)). These
278 results highlight the rapid time dependence of the community interaction matrix.

279
280 We then determined how reproducible and consistent these three phases are across the mice cohorts
281 (Supplementary Movie 1a-d). For each time interval, there are ~17 eigenvalues corresponding to
282 the Jacobian matrix. Using a Uniform Manifold Approximation and Projection (UMAP) (Fig. 4b),
283 we found that the eigenvalues as a function of time broadly overlap across different mice, with the
284 boundaries of the 3 phases unambiguously determined (unbiased clustering in the UMAP;
285 Extended Data Fig. 6d). Interestingly, application of DCM to the unsuccessful invasion in the im
286 mice also revealed two distinct phases for im1-3 (Extended Data Fig. 6g), corresponding to the

287 entry of barcoded *E. coli* (~3h to 12h) followed by the collapse in barcode diversity due dramatic
288 drop in bacterial load (Fig. 1b,f and Extended Data Fig. 1a).

289
290 Are these distinct temporal phases primarily driven by the 16S, clonal dynamics, or both? To
291 answer this question, we combined all eigenvalues from the clone dynamics of the rm and gf cohort
292 and projected them onto a single UMAP (Extended Data Fig. 6h). This revealed that the entire 2-
293 week dynamics of *E. coli* in the gf cohort and rm cohort are not overlapping at all. Also, rm clone
294 DCM analysis revealed that without the bacterial community dynamics effect, they cluster within
295 the mouse rather than the cohort. This suggests that the *E. coli* clonal dynamics in the rm cohort
296 were largely driven by the interaction between clones and the bacterial community.

297
298 **Estimates of the relative fitness of the gut community during the 3 phases of colonization**
299

300 Since the gut is a multi-species system, the effective fitness manifested by clones or bacterial
301 families reflects their adaptation to the mouse's intestinal biogeography, interactions with other
302 species and clones, and impacts from mutations. This complexity reflects the fundamental
303 coupling of evolutionary and ecological forces. To determine how the 3 phases defined from DCM
304 correspond to the fitness experienced by *E. coli*'s clones and bacterial families, we estimated the
305 relative per-capita growth rate of the clones from the time derivative of their normalized frequency
306 (Methods). Within the rm cohort, we partitioned these relative fitness estimates according to the
307 three DCM-identified phases and found that the dominant clone cluster C1 experienced a positive
308 fitness as the *E. coli* population adapts to the gut biogeography (>50% of relative fitness is positive;
309 Fig. 5a). Similarly, its most dominant interactor (Fig. 2b), *Lachnospiraceae*, was also driven by
310 positive fitness (Fig. 5d). Experienced relative fitness was symmetric for the next two dominant
311 clones C2 and C3. The relative fitness experienced by low segregating clones shifted from positive
312 in phase 1 to negative in the other phases (Fig. 5b).

313
314 The system reached a quasi-steady state where there was an equal fraction of positive and negative
315 fitness changes (Fig. 5c orange curves for dominant clones C1, C2, and C3), corroborating the
316 eigenvalue decomposition analyses, which indicates a stable oscillator in phase 3. In single-species
317 systems, this implies a mutation-selection balance whereby there is an equal fraction of beneficial

318 and deleterious mutations. However, in species-rich communities, the oscillation is primarily
319 driven by co-evolution from clone-specific interactions. Indeed, the estimated fitness for the gf
320 cohort (Extended Data Fig. 6) revealed minimal fitness changes, suggesting that the contribution
321 of *de novo* mutations in the 2-week period was less compared to the rm cohort with complex
322 interactions in resident bacterial communities.

323

324 **The dynamic similarity in phase 1 is driven by similar barcodes**

325 How similar are the clones across different mice, and are they driven by the same barcodes? To
326 this end, we performed pairwise clustering using the Pearson correlation as the similarity of the
327 clone time-series. In both rm and gf cohorts, we observed that the dominant clonal lineages (C1
328 and, to a lesser extent, C2) have similar time series (Fig. 6a, d). By calculating the overlap
329 coefficient between barcodes in each clone, we found that the dominant clonal lineages are more
330 likely to be the same barcodes (Fig. 6e). Considering that the dominant clones in the rm cohort
331 change their dynamics primarily in phase 1 (Fig. 4), this suggests that the reproducibility of
332 dominant barcode dynamics and their consistent interaction with *Lachnospiraceae* is likely driven
333 by standing genetic variation in the colonizing population. That is, the gavage *E. coli* pool has
334 genetic variation²⁴ which drives its early adaptation dynamics in the gut. In further support of this
335 proposition, the effect of standing genetic variation was strongest in the colonization of gf mice
336 (Fig. 6b), where the similarity in clonal dynamics across mice was driven by strong barcode
337 similarity.

338

339 In the rm cohort, for clonal lineages that were less dominant but exhibited persistent oscillations
340 in phase 3 (Fig. 5), their similarity in barcode dynamics was not accompanied by similarity in
341 barcode identity. This indicates that even within 2 weeks, the clonal lineages in a mouse gut start
342 to diversify in phase 3, and according to relative fitness, this diversification in dynamics is more
343 likely driven by ecological effects (e.g., stochasticity in the interaction with resident bacterial
344 species) than *de novo* mutations.

345

346 **Discussion**

347

348 Our experimental and computational framework offers a generalized approach to quantify
349 microbial community interaction matrix and its consequences on dynamic and stability,

350 particularly following perturbations triggered by invading species. With our experimental
351 barcoding protocol, we demonstrate that intra-species variation leads to time-dependent
352 interactions, even during the early stages of community colonization. Although the dynamics are
353 complex, the global colonization dynamics are surprisingly replicable and can be defined by 3
354 phases that arise from the coupling of ecological and evolutionary dynamics. This seems
355 contradictory to other studies showing a lack of reproducibility and replicability of microbiome
356 composition across mice replicates⁴⁰. However, we note the onset of divergence between the mice
357 cohort (Fig. 4b) after 2 weeks due to stochasticity of *de novo* mutations. We cannot yet comment
358 on the long-term implication of ISV at the resolution afforded by this experiment since our barcode
359 diversity is exhausted after a clonal sweep. This would require a “renewal” or regeneration of new
360 DNA barcodes, as recently done in yeast⁴¹.

361

362 Additionally, intra-species diversity is present not only in the colonizing species but also in the
363 resident community; thus, our chromosomal barcoding approach could be extended to species that
364 are innate to the gut microbiota. The high-resolution colonization dynamics could also be extended
365 by pathogenic barcoding species, such as *P. aerogenous* and *S. enterica*, which are more
366 aggressive colonizers than *E. coli* K12. Therefore, we argue that the gut microbiome for us is an
367 ecological system, such that all the approaches presented here could be broadly applicable to most
368 microbial ecological networks. However, the gut microbiome has particularities. More
369 specifically, the gut microbiota itself is shaped by the genetics and phenotypes of the mice, which
370 we do not explore in this study. Indeed, the mice themselves, in general, are not homogenous and
371 could have an impact on the gut composition. In human microbiomes, it was shown that genetic
372 variation in humans could itself impact the diversity of the microbiomes⁴². In the future, the impact
373 of host diversity will be explored by performing colonization experiments on mice with diverse
374 genetic backgrounds.

375

376 Broadly, the DCM that we developed here represents a model- and parameter-free approach to
377 analyzing the stability and distinct temporal phases of a microbial system, starting simply from
378 high-resolution time series abundance data. Our result showed that these phases of invasion and
379 the intra- and inter-species interactions are highly reproducible among mice replicates is rather
380 unexpected considering the variability in microbiome compositions which is the norm in the

381 microbiome field⁴³. We argue that although specific compositions may be highly variable across
382 mice, the overall tempo of ecological and evolutionary dynamics, as manifested by the DCM
383 analysis, are more reproducible features of the microbiota. To this end, the DCM and its future
384 incarnations could provide a framework for predicting the microbiota's response to perturbations,
385 especially in the context of the invasion of pathogenic species⁴⁴ and fecal transplant to treat human
386 disorders⁴⁵.

387

388 **Methods**

389

390 **Experimental procedures**

391 **(i) *E. coli* barcoded population generation**

392 Barcoded *E. coli* populations were generated as previously described²⁴ using the Tn7 transposon
393 library. The first step is transforming the recipient *E. coli* MG1655 cells with the Tn7 helper
394 plasmid and induction of the transposase integration machinery. The second step is the
395 transformation of the Tn7 integration plasmid library, which integrates the barcodes into the
396 chromosome of the bacteria. The Tn7 integration plasmids with barcode and spectinomycin
397 cassette were extracted from TransforMax EC100D pir + cells (Lucigen) with a Qiagen midi kit.
398 Then *E. coli* MG165 cells were transformed with the Tn7 helper plasmid to induce the transposase
399 integration machinery. Transformed cells with Tn7 helper plasmid were grown overnight in LB
400 supplemented with 100 µg/ml ampicillin at 30 °C. In these cells, transposon machinery was
401 induced with arabinose to transform with Tn7 integration plasmids. After overnight incubation on
402 the bench, they were plated on LB agar plates containing 100 µg/ml spectinomycin. Randomly
403 picked colonies were checked for chromosomal incorporation of barcode cassettes by targeting the
404 Tn7 integration site. We scraped all the colonies from the plates, then pooled, thoroughly mixed,
405 and aliquoted them with 15% glycerol. These stocks were stored at -80 °C pending the mice
406 colonization experiments.

408 **(ii) Mice evolution experiments**

409 We used several cohorts of mice to determine colonization dynamics in their gut: Cohort 1 (im)
410 mice with innate microbiota followed by *E. coli* colonization (4 replicates); Cohort 2 (rm) or mice
411 with reduced microbiota and pre-treated with an antibiotic cocktail followed by *E. coli*

413 colonization (4 replicates); Cohort 3 (gf) or mice that were initially germ-free and colonized with
414 barcoded *E. coli* barcode (4 replicates); and Cohort 4 (nc) or mice with microbiota and pre-treated
415 with an antibiotic cocktail but not colonized by *E. coli* (4 replicates). Cohorts 2 and 4 (rm and nc)
416 were administered an antibiotic cocktail (metronidazole 1 g/L, neomycin 1g/L, ampicillin 1g/L,
417 and vancomycin 0.5 g/L) for four weeks to reduce the complexity of the gut microbiota. Under
418 these conditions, 99.5% of the cecal bacteria are eliminated at the end of treatment^{46,47}. Then, we
419 let them recover for three days *without antibiotics* before introducing the barcoded population,
420 which we set as our day zero. After gavage of the barcoded population, fecal samples were taken
421 at 3, 6, 12, and 24 hours and once daily until day 14 for rm and day 15 for gf. The nc cohort fecal
422 samples were collected for ten days. During the day of fecal collection, we split the sample, one
423 for bacterial load measurements (see below) and another for storage at -80 °C until subsequent
424 genomic analysis. 80 µl of the feces homogenate was placed with 20 µl of 100% glycerol to make
425 20% glycerol stocks for later recovery of live bacteria.

426 **(iii) Bacterial load measurement**

427

428 To measure the bacterial load in the fecal samples, we spread them with increasing dilutions on
429 LB plates with spectinomycin 50 µg/ml to select for the colonizing *E. coli*. The chromosomal
430 barcode contains the spectinomycin resistance cassette (spR)²⁴. Measurements of bacterial loads
431 were done in 3 independent replicates.

432 **(iv) Genomic DNA extraction in fecal samples, chromosomal barcode amplification, and**
433 **next-generation sequencing**

434

435 Genomic DNA (gDNA) was extracted from whole fecal pellets using the QIAamp Fast DNA Stool
436 Mini kit (Cat: 51604). A two-step PCR was used to amplify the chromosomal barcodes and then
437 append the Illumina adapter sequences. For the first PCR, anywhere between 20 to 100 ng of
438 template per sample was used with PrimeSTAR GXL DNA Polymerase from TAKARA (Cat:
439 R050B). The parameters for this 1st reaction were as follows: 94 °C for 5 min, 30X (95 °C for
440 10s, 53 °C for 15 s, 68 °C for 45 s), 68 °C for 5 min, hold at 4 °C. The Primers for this PCR are
441 the following: 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3', 5'-GTCTCGTGG
442 GCTCGGAGATGTGTATAAGAGACAG-3'. The resulting amplicon sequence from this PCR is
443 the following: 5'-gatatcgatcctagtaagccacgttttaatcagatccctcaatagccacaactggcgggcaaacagtc

444 gttgctgattggctcgccggcagcgtcagatgtataagagacagtgcgcggNNNNNNNNNNNNNNtatctcggtatgt
445 ggatacgacgataccgaagacagacgtcatgttatccgcgttaaccaccatcaaacaggatttcgcctgctggggcaaaccagcgtgg
446 accgcttgcgtcaactctcaggcggcaggcggtgaagggcaatcagctgtgcggctcactggtaaaaagaaaaaccaccctggcgc
447 ccaatacgcaaacgcctccccgcgcgtggccgattcattaatgcagctggcacgacaggttccctgtcttatacacatctccgag
448 cccacgagacgcactcgagttttggcactacccggatctgccttcacgtag-3'. The contiguous 15 Ns in this
449 amplicon sequence corresponds to the random nucleotides that serve as our chromosomal
450 barcodes²⁴. The product from this PCR was purified and cleaned with NucleoSpin Gel and PCR
451 clean-up kit from TAKARA. A 2nd PCR was performed with high-fidelity PrimeSTAR GXL DNA
452 Polymerase (Takara Cat: R050B) to add the Nextera indices (Nextera XT primers Set A 96
453 Indexes, 384 Samples, Cat# FC-131-2001). We followed the suggested cycling conditions, which
454 are as follows: 94 °C for 5 min, 12X (95 °C for 10 s, 55 °C for 15 s, 68 °C for 45 s), 68 °C for 5
455 min, hold at 4 °C. The primers for this 2nd reaction were the following:
456 5'CAAGCAGAAGACGGCATACGAGAT[I7]GTCTCGTGGCTCGG-3' and 5'-
457 AATGATACGGCGACCACCGAGATCTACAC[I5]TCGTCGGCAGCGTC-3'. PCR products
458 from all reaction tubes were purified with magnetic beads (Beckman Coulter) and pooled together,
459 spiked with 15% of PhiX DNA, and sequenced using either MiSeq or NextSeq Illumina chips at
460 Université de Montréal's IRIC Genomic Platform. Bioinformatic analyses are described in the
461 Analysis section below.

462 **(v) 16S profiling**

463 Similar to the chromosomal barcode amplification, we used a two-step PCR to amplify the
464 genomic region of interest and prepare the library for Illumina sequencing. The 16S rRNA V4
465 region was PCR-amplified with buffer and polymerase PrimeSTAR GXL DNA Polymerase
466 (Takara, Cat: R050B). The cycling conditions for the PCR are as follows: 98 °C for 3 min, 35X
467 (95 °C for 10 s, 60 °C for 15 s, 68 °C for 35 s), 68 °C for 5 min, hold at 4 °C. The primers for the
468 reaction are the following: 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGYRYRGT
469 GCCAGCMGCCGCGTAA-3' and 5'-GTCTCGTGGCTCGGAGATGTGTATAAGAGACA
470 GGGACTACHVGGGTWTCTAAT-3'. PCR products were purified with Nucleospin Gel and a
471 PCR purification kit from TAKARA (Cat: 740609). Illumina sequencing adaptors were added to
472 respective samples with PCR using the same primers and protocols similar to the barcode
473 amplification. The PCR amplicons of the samples were then pooled after a purification and

474 concentration equalization process with the AMPureXP Kit (Beckman Coulter). The libraries were
475 processed in an Illumina MiSeq v2 (500 cycles and paired-end).

476

477 **Analysis**

478

479 **(i) Barcode extraction from the FASTQ file and determining putative “true” lineages**

480 To understand how clonal populations of cells change over time, we first identified and extracted
481 the barcode sequences from our raw sequencing data. To prepare reads for extraction, we
482 prepended them with one N and a corresponding ‘?’ quality score. This was required to extract
483 barcodes from the reads using the *bartender_extractor_com* component from the tool *Bartender*⁴⁸.
484 We discarded reads with an average *Phred* quality score below 30 (corresponding to the ‘?’
485 character) and kept reads with at most one mismatch in the sequence following the variable region,
486 which is [TATC]. For each remaining read, a raw 15-nucleotide sequence barcode was extracted.
487 However, not all of these raw barcodes match the true synthesized barcodes due to mutations in
488 the sequencing and/or PCR. To correct for sequencing errors in the raw barcodes, we used the
489 *bartender_single_com* on the raw barcodes with default settings. Here, it was assumed that an
490 infrequent barcode with one or two mismatches from a frequent barcode was a mutant of the more
491 frequent barcode and hence, added to the latter. This step produced a list of putative barcode
492 lineages for the sample. Additionally, since we have multiple time points per mouse, we wanted
493 to ensure that barcode identities were consistent across the biological samples. Thus, we pooled
494 all the raw barcodes from the same mouse as a single list. We then applied the same
495 *bartender_single_com* procedure to the pooled list. This step resulted in a comprehensive list of
496 raw barcode sequences mapped to their consensus sequence for all samples from one mouse. From
497 this list, we iteratively mapped each raw barcode sequence against all individual samples to yield
498 the number of reads per time point per barcode lineage. For each mouse, we sequentially assigned
499 a numeric ID to the barcode lineage to produce a list of barcode lineage trajectories for one mouse.
500 This analysis pipeline is available on github (<https://github.com/melisgncl/high-resolution-mouse-barcoding.git>).
501

502

503 **(ii) Visualizing barcode dynamics**

504

505 To compare barcode trajectories within and between mice cohorts, we aimed to use consistent
506 color coding for barcode lineages. First, we assigned a unique color to all lineages that reached a

507 relative frequency of 5e-05 in their respective mouse. The frequency $f_i(k)$ of barcode lineage k in
508 condition i is:

509
$$f_i(k) = \frac{x_i(k)}{\sum_j x_i(j)}$$
 (1)

510 where $x_i(k)$ is the barcode read count. This operation was applied to each mouse, such that the
511 color scheme was consistent when the dynamics were compared (Fig. 1c-e and Extended Data Fig.
512 1). For example, a barcode lineage that was assigned the color “magenta [#c20078]” will always
513 have this color in all the figures. Conversely, no other barcode was assigned the same color. To
514 create the Muller-type plots for each mouse (Extended Data Fig. 1), the barcode frequencies at
515 every time point were represented in linear scale. In each mouse, the barcodes were sorted by the
516 maximum frequency they attained over the time-series. This produced a stacked area plot where
517 dominant barcodes were shown starting from the bottom of the panel and progressively lower-
518 frequency barcodes were shown at the top. The same data was used to plot the frequency
519 trajectories in log10-transformation (Fig. 1c-e). Barcodes that reached a minimum frequency of
520 1e-05 throughout its time-series were shown in color, whereas the remaining barcodes were shown
521 in grey for clarity.

522

523 **(iii) Quantification of barcode diversity**

524

525 The simplest way to quantify the diversity of barcoded lineages in a population is to count the
526 number of unique barcodes observed at a particular time point (Fig. 1c-e). However, if lineages
527 differ widely in frequency, then this measure may not be very informative and will suffer from
528 substantial sampling bias (since very low-frequency barcodes will be under-sampled). A more
529 general approach is to quantify the diversity of barcodes using the effective diversity index⁴⁹

530
$${}^q D = \left(\sum_k f_k^q \right)^{1/(1-q)}$$
 (2)

531 where f_k is the frequency of the k th barcode lineage, and q is the “order” of the diversity index.

532 When $q = 0$, the index simply counts the absolute diversity in the sample, i.e., the total number of
533 unique barcode lineage. This measure is equivalent to the species richness used in ecological
534 studies⁵⁰. When $q = 1$, the index weights each barcode lineage by its frequency. This measure is
535 equivalent to the exponential of the Shannon entropy H ;

536
$$H = - \sum_k f_k \log(f_k)$$
 (3)

537 When $q \rightarrow \infty$, the index is equal to the reciprocal of the proportional abundance of the most
538 common barcode lineages. Thus, only the higher-frequency lineages contribute to the value of this
539 index. By comparing the diversity index across these three orders for q , we could describe the
540 complex dynamics of the barcode composition over the course of the experiment. In the trivial
541 case when all barcode frequencies were equal, the effective diversity index would be equal to the
542 absolute number of barcodes regardless of the order of q . We should expect absolute diversity
543 ($q = 0$) to be no greater than the maximum theoretical diversity of the barcode library.
544 Additionally, we should also expect this measure to decrease over time as barcodes are lost from
545 the population since diversity is exhausted in time within host transit and dynamics.

546

547 (iv) Barcode lineage clustering

548

549 To identify the clonal lineages, we clustered the barcode lineages for each mouse based on the
550 similarity of their time series behavior. To maximize the accuracy of this clustering, we excluded
551 barcodes with insufficient time points. Specifically, for each mouse, we retained only the lineages
552 that i) exhibited non-zero frequency over at least 12 out of 18 time points for the rm cohort and ii)
553 the mean frequency over the entire time series is $\geq 5e-5$. Similarly, for the gf cohort which had 1
554 time-point less, we retained barcodes with i) non-zero frequency for at least 11 out of 17 time-
555 points and ii) the mean frequency over the entire time-series is $\geq 5e-5$. For the im cohort, we keep
556 lineages with i) at least 5 time points and ii) the mean frequency over the entire time-series is $\geq 5e-6$.
557 This ensured that all barcode lineages included in the clustering had a sufficient number of
558 points for pairwise comparison. This procedure meant that the lineage clustering focused on
559 dominant and persistent clones; barcodes that immediately went to extinction were excluded.
560 Altogether, this procedure was performed on a subset of ~ 300 to ~ 1300 lineages for each mouse,
561 representing $\sim 5\%$ to $\sim 10\%$ of total barcodes. Since this analysis focuses on the dominant and
562 persistent lineages, this fraction also represents $\sim 7\%$ to $\sim 50\%$ of the total number of *E. coli* cells
563 (or raw barcode counts) at the end of the colonization experiment. The distance ΔF_{ij} between two
564 frequency trajectories f_i and f_j was calculated as

565
$$\Delta F_{ij} = 1 - \rho(\log f_i, \log f_j) \quad (4)$$

566 where $\rho(\log f_i, \log f_j)$ is the Pearson correlation coefficient between the trajectories. A distance
567 close to 0 indicated a strong positive correlation between the lineages, whereas a distance close to

568 2 indicated a strong negative correlation. From the resulting pairwise distance matrix, we applied
569 hierarchical clustering using the “linkage” method from the *scipy.cluster.hierarchy* module in
570 SciPy. We used the “average” agglomerative clustering method, which implements the algorithm
571 unweighted pair group method with arithmetic mean (UPGMA)⁵¹. This method computes the
572 distance between two clusters as the arithmetic mean of the distances between all lineages in both
573 clusters. Then, for each cluster, we fitted a consensus trajectory using the local regression (loess).
574 Loess is a form of moving average where a line is fit locally using neighboring points weighted by
575 their distance from the current point. These moving averages were referred in the text as “clonal
576 lineage clusters” or simply “clones”.

577 To determine the optimal clustering threshold, we note two general trends (Extended Data
578 Fig. 2b-d). First, the loess of clusters with very few lineages will be sensitive to sequencing error.
579 Thus, we include only clusters with at least 8 barcodes for the rm and gf cohorts and at least 5
580 barcodes for the im cohort. Second, when the threshold is too small, there are many clusters, but
581 multiple clusters are similar to each other. This is manifested by the value of the smallest distance
582 between the loess average of any cluster pair (black dots). Third, when the threshold is too large,
583 there are very few clusters where barcodes with distinct dynamics are grouped together. In
584 clustering, the practice was to find the cross-over between the smallest distance between cluster
585 centroids (our loess average) and the number of clusters. This cut-off was indicated as the red
586 curve in Extended Data Fig. 2b-d). Based on these cut-offs, we arrived at 4 to 21 clusters for im,
587 10 clusters for the rm cohort, and 6 or 7 for gf (Extended Data Fig. 3).

588

589 **(v) Quantification of community dynamics by 16S profiling**

590

591 The paired-end MiSeq Illumina reads resulting from sequencing of the 16S rRNA V4 region were
592 processed using the *dada2* v1.22 pipeline⁵². Primer sequences were removed using *cutadapt* v2.8⁵³
593 before amplicon sequence variant (ASV) inference. Forward and reverse read pairs were trimmed
594 to a run-specific length defined by a minimum quality score (Phred score \geq 25) using the
595 *filterAndTrim* function of the *dada2* R package⁵². Error rates were estimated from sequence
596 composition and quality by applying a core denoising algorithm for each sequencing run. Then
597 pairs were merged if they overlapped using the *mergePairs* function. Bimeras, which were
598 chimeric sequences, were removed with the *removeBimeraDenovo*. Taxonomy was assigned using

599 the *assignTaxonomy* function that maps reads onto the *SILVA* (v. 138) reference database⁵⁴. We
600 excluded sequences that matched mitochondrial or chloroplast DNAs. In each mouse, the relative
601 abundance of a taxonomic unit i at time t is given by:

602
$$a_i(t) = \frac{r_i(t)}{\sum_j r_j(t)} \quad (5)$$

603 where $r(t)$ is the absolute abundance (number of reads) for the unit. Similar to the barcode
604 dynamics, we calculated the community's effective diversity index but at the level of the family
605 (see *Quantification of barcode diversity*). For further analyses, families with frequency lower than
606 1e-03 were grouped as “Other”, while the rest of the groups were clustered under their bacterial
607 family classification.

608

609 **(vi) Co-clustering of *E. coli* clonal lineages and community dynamics from 16S**

610

611 To detect the potential interactions between the bacterial community and *E. coli* clones, as might
612 be manifested in the correlation between their time-series, we recognized that the interactions
613 could introduce local and transient stretching or lags. Thus, a straightforward Pearson correlation
614 is ill-suited to detect such interactions. Therefore, we calculated the pairwise distances using the
615 shape-based metric (SBD)³⁶. Briefly, the SBD is an iterative algorithm that detects the shape
616 similarity of two time-series, regardless of amplitude or phase differences (Extended Data Fig. 5).
617 For the community dynamics, we used the log-transformed relative abundances of taxa at the
618 family level with a minimum of 7 non-zero time points. For the clonal dynamics, we used loess
619 smoothing arising from the clustering of *E. coli* barcodes. We z-normalized the time series vectors
620 to remove the amplitude effect and then calculated the shape-based distance (SBD)³⁶ implemented
621 in the *tsclust* package⁵⁵ to calculate our distance matrix. Lastly, tree linkage was performed using
622 the “average” (UPGMA) method to generate dendograms (Fig. 2c and Extended Data Fig. 4c).

623

624 **(vii) Assessing the biological significance of the co-clustering of clones and community**
625 **dynamics**

626

627 To validate that our co-clustering method between the community and clonal dynamics is
628 significant, we calculated a metric called “mixing index”. The underlying rationale was that if
629 indeed, clustering of an *E. coli* clonal lineage with a bacterial family is biologically meaningful,
630 then this clustering should be strongest when both clonal lineage dynamics and 16S come from

631 the same mice or same cohort. To assess the mixing index, we collect clone-clone *cophenetic*
632 distances (c) and clone-species *cophenetic* distances (m) from their respective co-clustering.
633 (Cophenetic distance is the distance between two leaves of a hierarchical tree and is defined as the
634 height of the closest node that leads to both leaves). Then the distance between the empirical
635 cumulative distributions of c and m , denoted as $F(c)$ and $F(m)$ respectively, is quantified as

636
$$D_{c,m} = 1 - (\max|F(c) - F(m)|) \quad (6)$$

637 Higher values of the mixing index imply that clones and families are more likely to be adjacent
638 leaves in the co-clustering three than clones amongst themselves. As an illustration, we show in
639 Extended Data Fig. 5c the mixing indices for trees where clones and families are fully mixed,
640 partly mixed, and fully unmixed. We applied the mixing index to co-clustering trees arising from
641 different pairs of clonal lineages (im or rm or gf) and bacterial families (im or rm or nc).
642 Furthermore, to determine the robustness of the mixing with respect to the method for determining
643 the dominant clonal lineages (section iv), we evaluated the mixing index different cut-off
644 thresholds for lineage clustering (Extended Data Fig. 2). The mixing index values are shown as
645 violin plots in Fig. 3c-d. We found that the mixing index is largest when the clonal lineages and
646 bacterial families come from the same mouse cohort. The statistical significance between the
647 mixing indexes was quantified by a two-tailed t-test.

648

649 **(viii) Replicability of clonal lineages in different mice from the same cohort**

650

651 To determine the replicability of clonal lineage dynamics across different mice, we applied
652 hierarchical clustering using distance matrices derived from pairwise Pearson correlation followed
653 by UPGMA linkage (Fig. 5a,d). The input to these analyses was the loess average of the clonal
654 lineages from each mouse (section iv. Barcode lineage clustering).

655

656 **(ix) Quantification of barcode similarity between mice from the same cohort**

657

658 To determine if the similarity in clonal lineage dynamics in different mice is driven by the same
659 barcodes, we evaluated the overlap index in raw barcode identity for each cluster. In general, the
660 overlap coefficient quantifies the Simpson similarity between two sets A and B that are not
661 necessarily of the same size:

662
$$OC(A, B) = \frac{|A \cap B|}{\min(|A|, |B|)}$$
 (7)

663 A value close to 1 indicates a high number of common elements, whereas a value near 0 indicates
664 little overlap. We calculated the overlap index for all pairs of clonal lineage clusters in mice from
665 the same cohort (see Fig. 5b,e). To determine that the overlap index did not arise by chance, we
666 generated different compositions of sets A and B drawn randomly from our total pool of barcodes.
667 For each composition, we calculated the overlap index (Eq. 7). This was performed 1000 times to
668 arrive at a distribution of $OC(A, B)$ values. The significance of the observed overlap index x
669 between the real clusters A and B was expressed as a z-score on the simulated distribution of
670 overlap indices:

671
$$Z = \frac{x - \mu}{\sigma}$$
 (8)

672 where μ is the mean and σ the standard deviation of the sample distribution. Lastly, significant
673 overlap coefficient values with $|Z| > 1.96$ or p-value 0.05 are shown in blue in Fig. 6c,g, and their
674 size is scaled proportionally to their p-value.

675

676 **(x) Dynamic Covariance Mapping (DCM)**

677

678 Microbes in species-rich communities participate in dynamic interaction networks whose time
679 dependence can generally be quantified as a dynamical system by a set of ODEs (ordinary
680 differential equations)⁵⁶. However, a major limitation of existing methods for assessing the
681 stability of nonlinear dynamical systems of ODEs is parametrization since they are not known a
682 priori, and at best, they are inferred from noisy, sparsely sampled data. Here we developed a
683 parameter-free methodology to quantify the Eco-Evo feedback of interactions on community
684 dynamics from non-equilibrium time-series data. The dynamic covariance method (DCM) uses our
685 unique high-resolution temporal data to quantify time-dependent interactions as they occur during
686 the experiment. We start with the general case of a community composed of N members,
687 representing *E. coli* clonal lineages and family-level bacterial taxa. A community vector $z(t)$ can
688 be defined as an N -dimensional vector of \log_{10} -transformed abundance time-series for the *E. coli*
689 clonal lineages and family-level bacterial taxa:

690
$$z(t) = (C(t), F(t))$$
 (9)

691 A non-detection in the community vector is replaced with a pseudo count of 1e-6. The vector $z(t)$
692 describes the time-varying state of the community. Theoretically, its dynamics can be described
693 by a system of ODEs

694
$$\dot{z} = \phi(z, t) \tag{10}$$

695 However, the functional form of $\phi(z, t)$ is unknown, but we can determine the generic behavior
696 of the system near a specific snapshot (say, $z_0 = z(t = t_0)$) through linearization:

697
$$\dot{z} = \phi(z_0, t_0) + J_\tau(z - z_0) \tag{11}$$

698 where J_τ is the $N \times N$ Jacobian that defines the gradient of $\phi(z, t)$ approximated over the time
699 interval τ around t_0 . The element of a Jacobian matrix measures the sensitivity of a species i 's
700 population growth rate to the abundance change of species j and is defined as the interaction
701 strength of species j on species i in an ecological community^{57,58}; in practice, it can be estimated
702 by the covariance of species i 's time derivatives and species j 's abundance time-series over the time
703 interval τ :⁹

704
$$J_\tau = \langle \text{cov}(\dot{z}_i, z_j) \rangle \tag{12}$$

705 Here, subscripts i and j span from 1 to N and include both *E. coli* clonal lineages and family-level
706 bacterial taxa. Following the dynamical systems theory³⁴, the dynamics near (z_0, t_0) can be
707 captured by the spectral distribution of eigenvalues (λ_k , with k from 1 to N) of the Jacobian in the
708 complex plane (representing both the real component $\text{Re}(\lambda_k)$ and the imaginary component
709 $\text{Im}(\lambda_k)$). The vector $z(t)$ deviates from z_0 at a rate of $\exp(\text{Re}(\lambda_k)t)$ and oscillates at a period of
710 $2\pi/\text{Im}(\lambda_k)$ along the direction of the eigenvector associated with λ_k . The condition for z_0 to be a
711 stable equilibrium (i.e., the community can withstand small perturbations) thus requires $\text{Re}(\lambda_k) <$
712 0 for all k .

713 In practice, we computed J_τ over a specific time interval τ for progressively increasing time
714 periods (3h-6h, 3h-12h, ..., and 3h-15 days), with altogether a total of 16 or 17-time intervals for
715 the rm and gf cohort and 7 or 8 17-time intervals for the im cohort. Since there are N eigenvalues
716 for each time interval, we sought a simpler representation of the community's dynamic behavior.
717 To this end, we used Uniform Manifold Approximation and Projection (UMAP)⁵⁹ to reduce the
718 dimensionality of the eigenspace as a function of time. The input to this UMAP dimensionality
719 reduction is a $(2N) \times (4n)$ matrix, where the $2N$ columns correspond to the real and imaginary
720 components of the eigenvalue λ_k while the $4n$ rows correspond to the number of mice multiplied
721 by the number of τ time intervals. In the UMAP's 2D representation, the $2N$ -dimensional

722 eigenvalue is shown as a point (Fig. 4b, Extended Data Fig. 6e-g, Supplementary Movie 1a-d, and
723 Supplementary Movie 2a-d). As shown in the Fig. 4b, the UMAP projection demonstrated that
724 eigenvalues grouped together by time interval which suggests similar dynamic behaviors during
725 colonization in different rm mice. Additionally, as the movie shows, the eigenvalues show distinct
726 “jumps” on the UMAP projection, indicating distinct temporal phases. To define these distinct
727 phases, we clustered the eigenvalues on their UMAP projection using the Nbclust⁶⁰ package in *R*,
728 implementing the *centroid* algorithm. To determine the robustness of identifying the distinct
729 phases, we regenerated UMAPs using all possible neighborhood parameters (from 2 to 56, with
730 the maximum value corresponding to the total number of points on the UMAP, i.e., $4n$). We also
731 tested other clustering algorithms (ward.D, ward.D2, single, complete, average, mcquitty, median,
732 centroid, kmeans), which all showed 2 or 3 clusters (Extended Data Fig. 6a-d). In the case of the
733 two clusters for the rm cohort, the first corresponds to *E. coli*’s entry and the second to its
734 coexistence with the bacterial community. In the case of three clusters, there is an intermediate
735 phase (the 2nd phase) showing the resurgence of some bacterial species in the microbiota for the
736 rm cohort.

737

738 1 Novak, M. *et al.* Characterizing Species Interactions to Understand Press Perturbations:
739 What Is the Community Matrix? *Annual Review of Ecology, Evolution, and Systematics*
740 **47**, 409-432 (2016).

741 2 May, R. M. Will a large complex system be stable? *Nature* **238**, 413-414 (1972).

742 3 Giordano, G. & Altafini, C. in *2017 IEEE 56th Annual Conference on Decision and*
743 *Control (CDC)*. 5348-5353.

744 4 Hairston, N. G. Evolution under Interspecific Competition: Field Experiments on
745 Terrestrial Salamanders. *Evolution* **34**, 409-420 (1980).

746 5 Kokkoris, G. D., Vincent, A. A. J., Loreau, M. & Troumbis, A. Y. Variability in
747 Interaction Strength and Implications for Biodiversity. *Journal of Animal Ecology* **71**,
748 362-371 (2002).

749 6 Levins, R. Discussion paper: the qualitative analysis of partially specified systems. *Ann N*
750 *Y Acad Sci* **231**, 123-138 (1974).

751 7 Marino, S., Baxter, N. T., Huffnagle, G. B., Petrosino, J. F. & Schloss, P. D.
752 Mathematical modeling of primary succession of murine intestinal microbiota. *Proc Natl*
753 *Acad Sci U S A* **111**, 439-444 (2014).

754 8 Tilman, D. The Importance of the Mechanisms of Interspecific Competition. *The*
755 *American Naturalist* **129**, 769-774 (1987).

756 9 Hui, C. & Richardson, D. M. How to Invade an Ecological Network. *Trends Ecol Evol*
757 **34**, 121-131 (2019).

758 10 Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: Networks,
759 competition, and stability. *Science* **350**, 663-666 (2015).

760 11 Carrara, F., Giometto, A., Seymour, M., Rinaldo, A. & Altermatt, F. Inferring species
761 interactions in ecological communities: a comparison of methods at different levels of
762 complexity. *Methods in Ecology and Evolution* **6**, 895-906 (2015).

763 12 Hromada, S. *et al.* Negative interactions determine Clostridioides difficile growth in
764 synthetic human gut communities. *Mol Syst Biol* **17**, e10355 (2021).

765 13 Wang, X., Peron, T., Dubbeldam, J. L., Kèfi, S. & Moreno, Y. Interspecific competition
766 shapes the structural stability of mutualistic networks. *arXiv preprint arXiv:2102.02259*
767 (2021).

768 14 Stump, S. M., Song, C. L., Saavedra, S., Levine, J. M. & Vasseur, D. A. Synthesizing the
769 effects of individual-level variation on coexistence. *Ecol Monogr* **92** (2022).

770 15 Kehe, J. *et al.* Positive interactions are common among culturable bacteria. *Sci Adv* **7**
771 (2021).

772 16 Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Community composition of microbial
773 microcosms follows simple assembly rules at evolutionary timescales. *Nature
774 Communications* **12** (2021).

775 17 Allesina, S. & Tang, S. Stability criteria for complex ecosystems. *Nature* **483**, 205-208
776 (2012).

777 18 Berg, S., Christianou, M., Jonsson, T. & Ebenman, B. Using sensitivity analysis to
778 identify keystone species and keystone links in size-based food webs. *Oikos* **120**, 510-519
779 (2011).

780 19 Berlow, E. L. *et al.* Simple prediction of interaction strengths in complex food webs.
781 *Proc Natl Acad Sci U S A* **106**, 187-191 (2009).

782 20 Metcalf, S. J. Qualitative Models to Complement Quantitative Ecosystem Models for the
783 Analysis of Data-Limited Marine Ecosystems and Fisheries. *Reviews in Fisheries Science*
784 **18**, 248-265 (2010).

785 21 Xiao, Y. *et al.* Mapping the ecological networks of microbial communities. *Nat Commun*
786 **8**, 2042 (2017).

787 22 Poyet, M. *et al.* A library of human gut bacterial isolates paired with longitudinal
788 multiomics data enables mechanistic microbiome research. *Nat Med* **25**, 1442-1452
789 (2019).

790 23 Beresford-Jones, B. S. *et al.* The Mouse Gastrointestinal Bacteria Catalogue enables
791 translation between the mouse and human gut microbiotas via functional mapping. *Cell
792 Host & Microbe* **30**, 124-138.e128 (2022).

793 24 Jasinska, W. *et al.* Chromosomal barcoding of *E. coli* populations reveals lineage
794 diversity dynamics at high resolution. *Nat Ecol Evol* **4**, 437-452 (2020).

795 25 Lam, L. H. & Monack, D. M. Intraspecies competition for niches in the distal gut dictate
796 transmission during persistent *Salmonella* infection. *PLoS Pathog* **10**, e1004527 (2014).

797 26 Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The
798 dynamics of molecular evolution over 60,000 generations. *Nature* **551**, 45-50 (2017).

799 27 Levy, S. F. *et al.* Quantitative evolutionary dynamics using high-resolution lineage
800 tracking. *Nature* **519**, 181-186 (2015).

801 28 Venkataram, S. *et al.* Development of a Comprehensive Genotype-to-Fitness Map of
802 Adaptation-Driving Mutations in Yeast. *Cell* **166**, 1585-1596 e1522 (2016).

803 29 Barroso-Batista, J. *et al.* The first steps of adaptation of *Escherichia coli* to the gut are
804 dominated by soft sweeps. *PLoS Genet* **10**, e1004182 (2014).

805 30 Blundell, J. R. & Levy, S. F. Beyond genome sequencing: lineage tracking with barcodes
806 to study the dynamics of evolution, infection, and cancer. *Genomics* **104**, 417-430 (2014).

807 31 Ferreiro, A., Crook, N., Gasparrini, A. J. & Dantas, G. Multiscale Evolutionary
808 Dynamics of Host-Associated Microbiomes. *Cell* **172**, 1216-1227 (2018).

809 32 Levy, S. F. *et al.* in *Nature* Vol. 519 181-186 (2015).

810 33 Mallon, C. A., van Elsas, J. D. & Salles, J. F. Microbial Invasions: The Process, Patterns,
811 and Mechanisms. *Trends Microbiol* **23**, 719-729 (2015).

812 34 Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. in *Cell Host and Microbe*
813 Vol. 21 433-442 (Elsevier Inc., 2017).

814 35 Barroso-Batista, J. *et al.* Specific Eco-evolutionary Contexts in the Mouse Gut Reveal
815 *Escherichia coli* Metabolic Versatility. *Curr Biol* **30**, 1049-1062 e1047 (2020).

816 36 Paparrizos, J. & Gravano, L. k-Shape: Efficient and Accurate Clustering of Time Series.
817 *Sigmod'15: Proceedings of the 2015 Acm Sigmod International Conference on*
818 *Management of Data*, 1855-1870 (2015).

819 37 Eberl, C. *et al.* *E. coli* enhance colonization resistance against *Salmonella Typhimurium*
820 by competing for galactitol, a context-dependent limiting carbon source. *Cell Host &*
821 *Microbe* **29**, 1680-+ (2021).

822 38 May, R. M. Stability and complexity in model ecosystems. *Monogr Popul Biol* **6**, 1-235
823 (1973).

824 39 Strogatz, S. H. Exploring complex networks. *Nature* **410**, 268-276 (2001).

825 40 Franklin, C. L. & Ericsson, A. C. Microbiota and reproducibility of rodent models. *Lab*
826 *Anim (NY)* **46**, 114-122 (2017).

827 41 Nguyen Ba, A. N. *et al.* High-resolution lineage tracking reveals travelling wave of
828 adaptation in laboratory yeast. *Nature* **575**, 494-499 (2019).

829 42 Suzuki, T. A. *et al.* Codiversification of gut microbiota with humans. *Science* **377**, 1328-
830 1332 (2022).

831 43 Schloss, P. D. Identifying and Overcoming Threats to Reproducibility, Replicability,
832 Robustness, and Generalizability in Microbiome Research. *mBio* **9** (2018).

833 44 Vich Vila, A. *et al.* Gut microbiota composition and functional changes in inflammatory
834 bowel disease and irritable bowel syndrome. *Sci Transl Med* **10** (2018).

835 45 Baruch, E. N. *et al.* Fecal microbiota transplant promotes response in immunotherapy-
836 refractory melanoma patients. *Science* **371**, 602-609 (2021).

837 46 Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R.
838 Recognition of commensal microflora by toll-like receptors is required for intestinal
839 homeostasis. *Cell* **118**, 229-241 (2004).

840 47 Seki, E. *et al.* TLR4 enhances TGF-beta signaling and hepatic fibrosis. *Nat Med* **13**,
841 1324-1332 (2007).

842 48 Zhao, L., Liu, Z., Levy, S. F. & Wu, S. Bartender: a fast and accurate clustering
843 algorithm to count barcode reads. *Bioinformatics* **34**, 739-747 (2018).

844 49 Hill, M. O. Diversity and Evenness: A Unifying Notation and Its Consequences. *Ecology*
845 **54**, 427-432 (1973).

846 50 Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the
847 measurement and comparison of species richness. *Ecology Letters* **4**, 379-391 (2001).

848 51 Virtanen, P. *et al.* Author Correction: SciPy 1.0: fundamental algorithms for scientific
849 computing in Python. *Nat Methods* **17**, 352 (2020).

850 52 Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon
851 data. *Nat Methods* **13**, 581-583 (2016).

852 53 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *2011* **17**, 3 (2011).

854 54 Quast, C. *et al.* The SILVA ribosomal RNA gene database project: improved data
855 processing and web-based tools. *Nucleic Acids Res* **41**, D590-596 (2013).

856 55 Montero, P. & Vilar, J. A. TSclust: An R Package for Time Series Clustering. *Journal of*
857 *Statistical Software* **62**, 1 - 43 (2014).

858 56 Faust, K. & Raes, J. Microbial interactions: from networks to models. *Nat Rev Microbiol*
859 **10**, 538-550 (2012).

860 57 Lotka, A. J. *Elements of physical biology*. (Williams & Wilkins, 1925).

861 58 Volterra, V. Fluctuations in the Abundance of a Species considered Mathematically1. *Nature* **118**, 558-560 (1926).

863 59 McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold
864 Approximation and Projection. *Journal of Open Source Software* **3** (2018).

865 60 Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust: An R Package for
866 Determining the Relevant Number of Clusters in a Data Set. *Journal of Statistical*
867 *Software* **61**, 1 - 36 (2014).

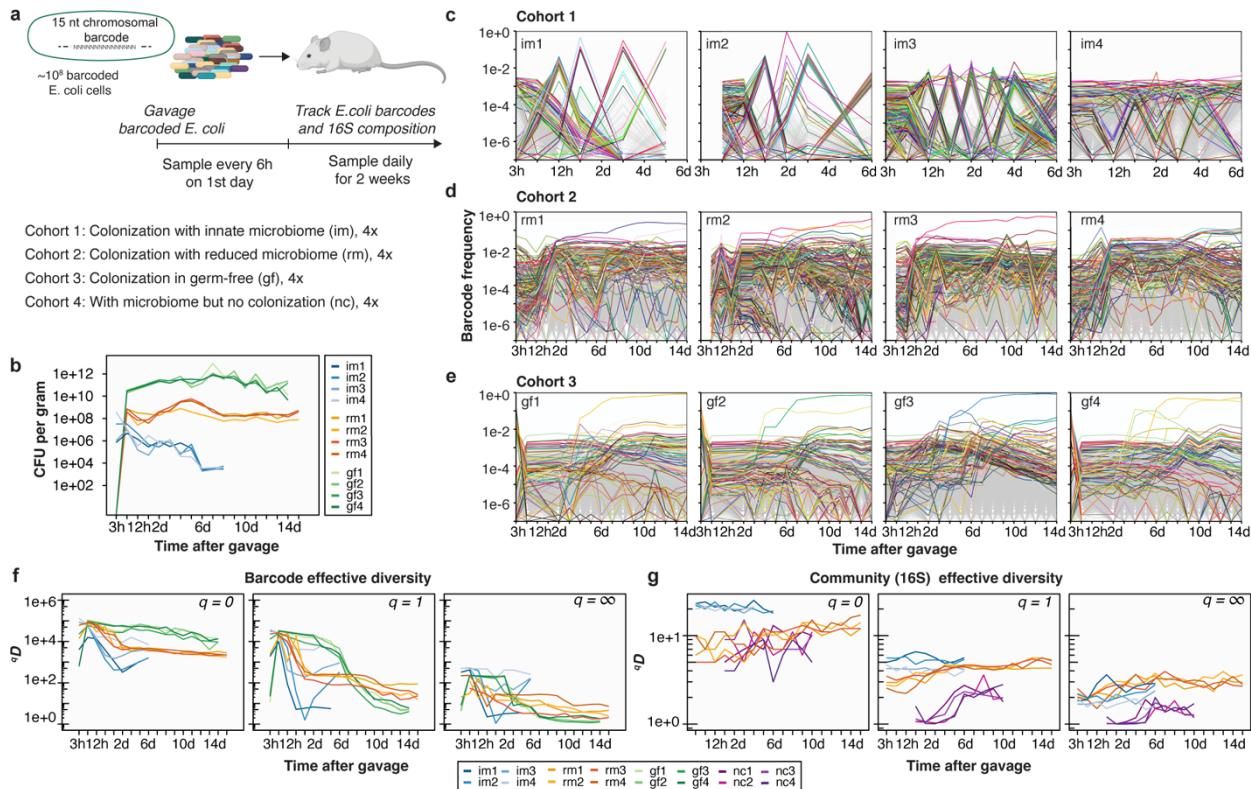
868
869

870 **Acknowledgments** The authors thank Stephen Michnick and James Omichinski for discussions
871 and Jesse Shapiro lab for protocols on 16S rRNA profiling. We thank the mice facilities at
872 Université Sherbrooke and the University of Toronto. This work was supported by Canadian
873 Institute for Health Research grant 408523 (AS), Canada Research Chairs (AS), National Research
874 Foundation (South Africa) grant 89967 (CH), and a fellowship from Fonds de recherche du Québec
875 – Nature et technologies (LG).

876

877 **Author contributions** AS, MG, and SB conceptualized this study. GMC, AF, and SR performed
878 the *E. coli* colonization experiments in mice with innate and antibiotic-perturbed microbiota. DT
879 and DP performed the colonization experiments in germ-free mice. MG performed the genomic
880 extraction, barcode amplification, 16S rRNA profiling with the help of ZS. MG implemented all
881 the bioinformatic analysis with the help of LG. AS, MG, and CH developed the dynamic
882 covariance mapping approach. AS and MG wrote the the manuscript with feedback and editorial
883 support from all authors.

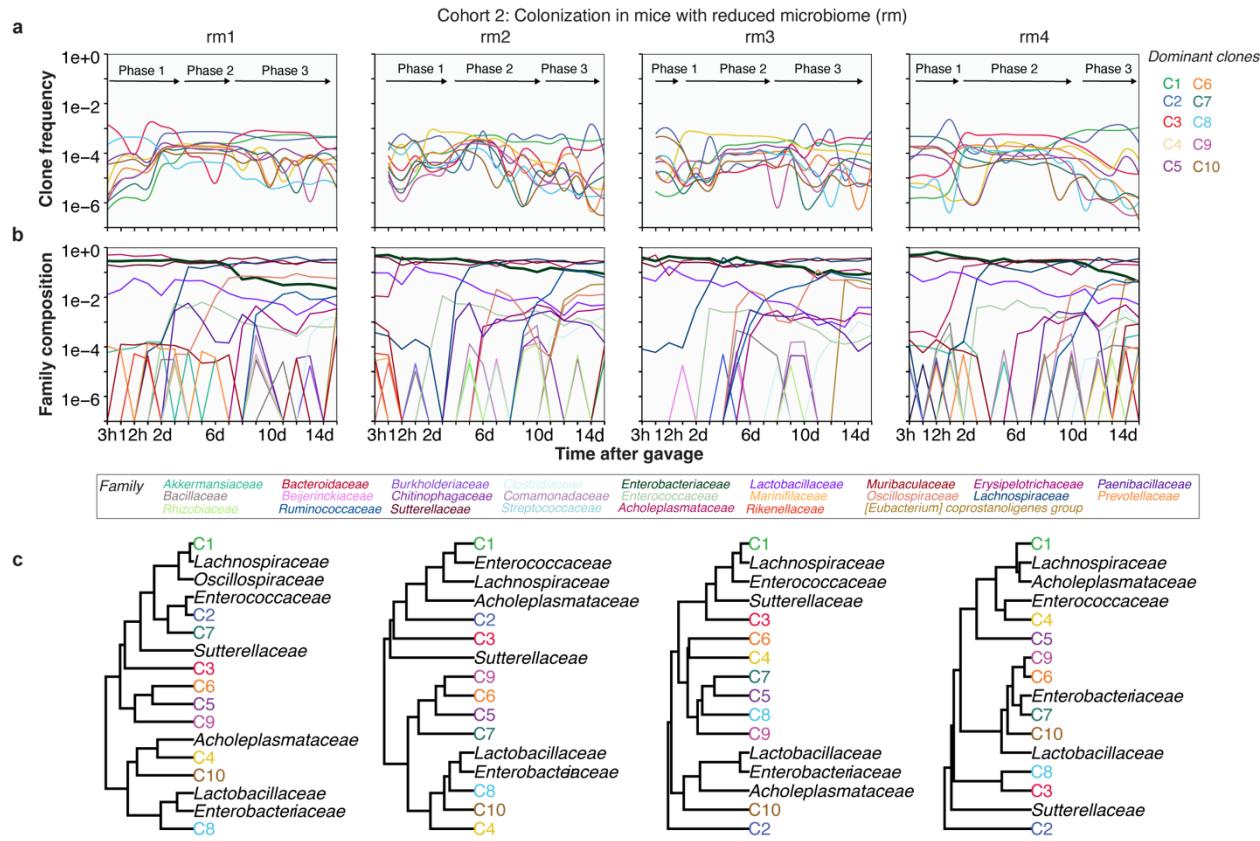
884
885
886
887
888
889
890
891
892
893
894

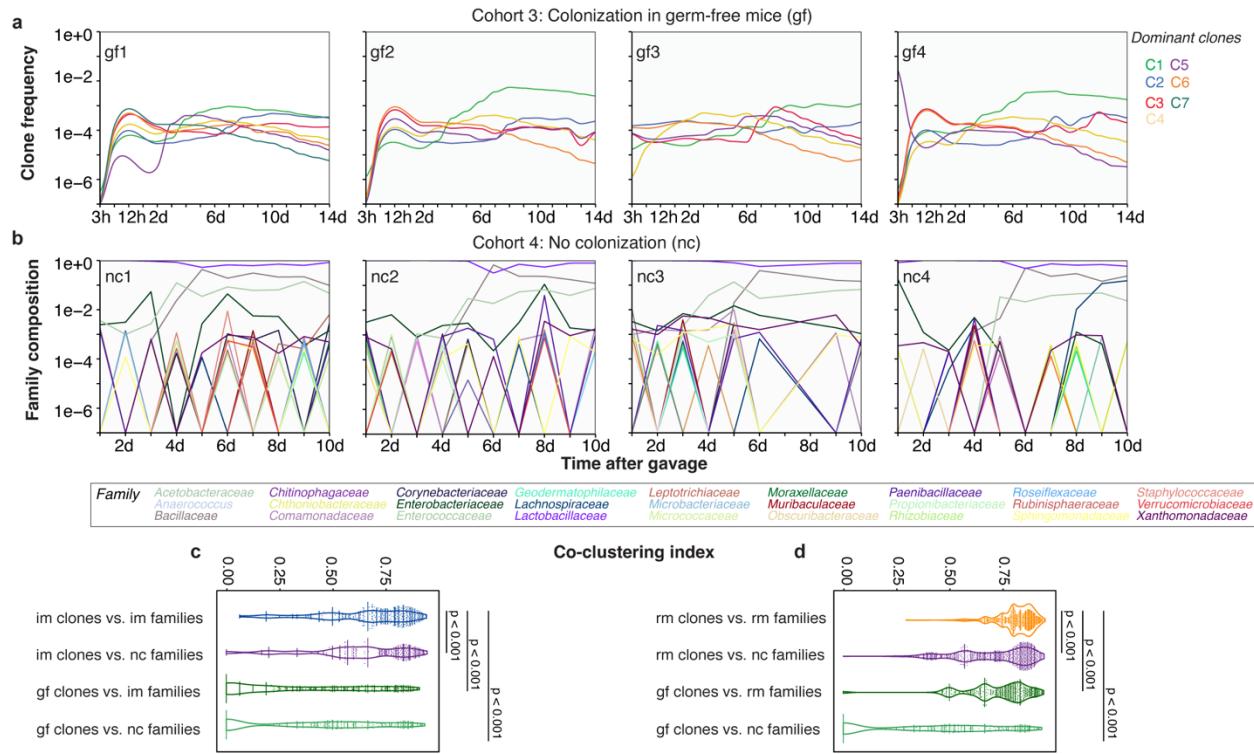


895
896

897 **Figure 1. Intra-species population dynamics during gut colonization.** **a**, Population of $\sim 10^8$ *E. coli* cells with $\sim 5 \times 10^5$ unique chromosomal barcodes is introduced into mice with innate microbiota (cohort 1) and mice with reduced microbiota by antibiotic pre-treatment (cohort 2). Community-level and intra-species dynamics were then tracked in fecal samples over a 2-week period. As controls, samples were also collected in mice with only the colonizing *E. coli* (germ-free, cohort 3) and in mice with only the resident bacteria (cohort 4). **b**, *E. coli* bacterial load measured as colony-forming units (CFU) per gram of sampled feces for the colonized mice cohorts with innate microbiota (im), reduced microbiota (rm), and germ-free (gf). **c-e**, Frequency of the chromosomal barcodes during colonization. The most frequent 1000 barcodes are colored uniquely, whereas the rest are shown in gray. Identical barcodes are colored similarly across mouse replicates and cohorts. **f**, Effective diversity index of *E. coli* chromosomal barcodes, ${}^qD = (\sum_{i=1}^R p_i^q)^{1/(1-q)}$ where p_i is the frequency of barcode i , R is the total barcode count, and q is the order of the diversity. Effective diversity reports the count of unique barcodes ($q = 0$), frequency-weighted diversity ($q = 1$), or inverse frequency of the dominant barcode ($q = \infty$). **g**, Effective diversity for the microbiota based on the frequency of bacterial families from 16S rRNA profiling.

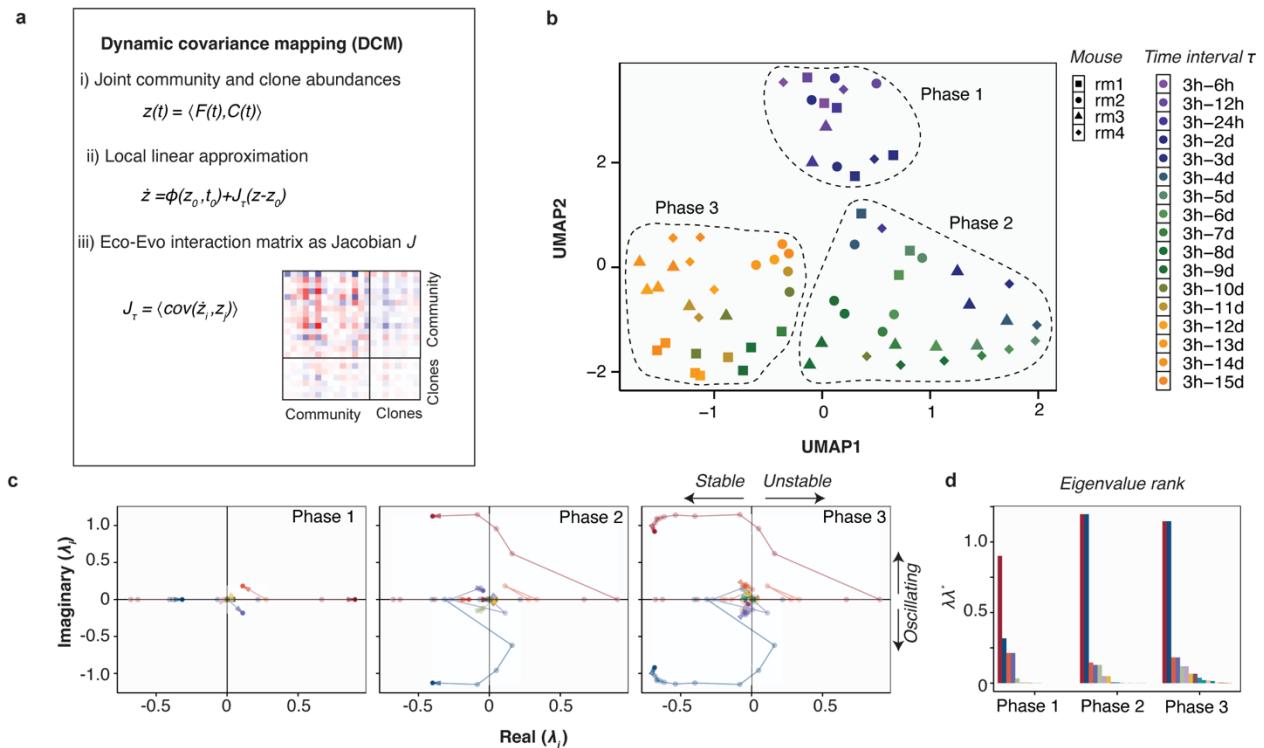
913





928
929
930 **Figure 3. *E. coli* clone and bacterial community interactions are strongest when coming from**
931 **the same cohort. a, Dominant and persistent clones of *E. coli* in pre-germ-free mice showing**
932 **simpler lineage dynamics compared to cohorts 1 and 2. b, Community dynamics mice with**
933 **reduced microbiota, but non-gavaged with *E. coli*, showing the recovery of bacterial community**
934 **from the treatment of antibiotic cocktail. c-d, Co-clustering of clones and families depends on**
935 **environmental conditions. Co-clustering is measured by a mixing coefficient that compares the**
936 **distances in the hierarchical tree among families with distances between families and clones**
937 **(Extended Data Fig. 5).**

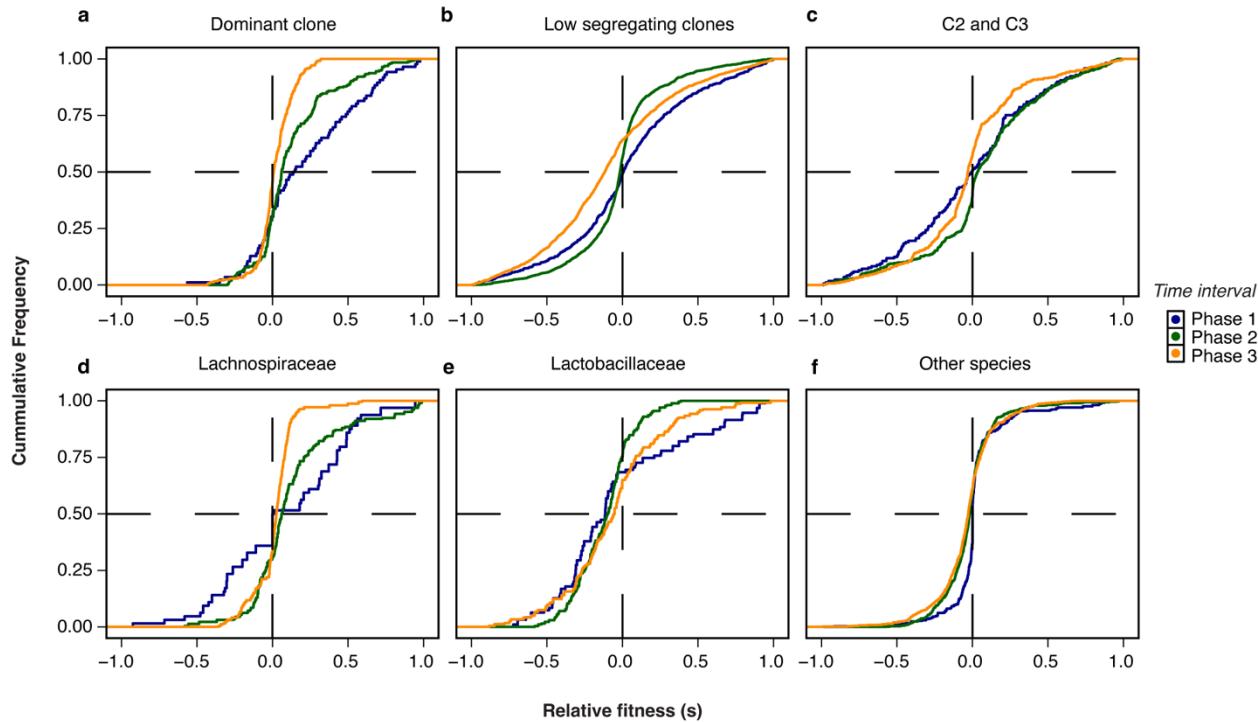
938



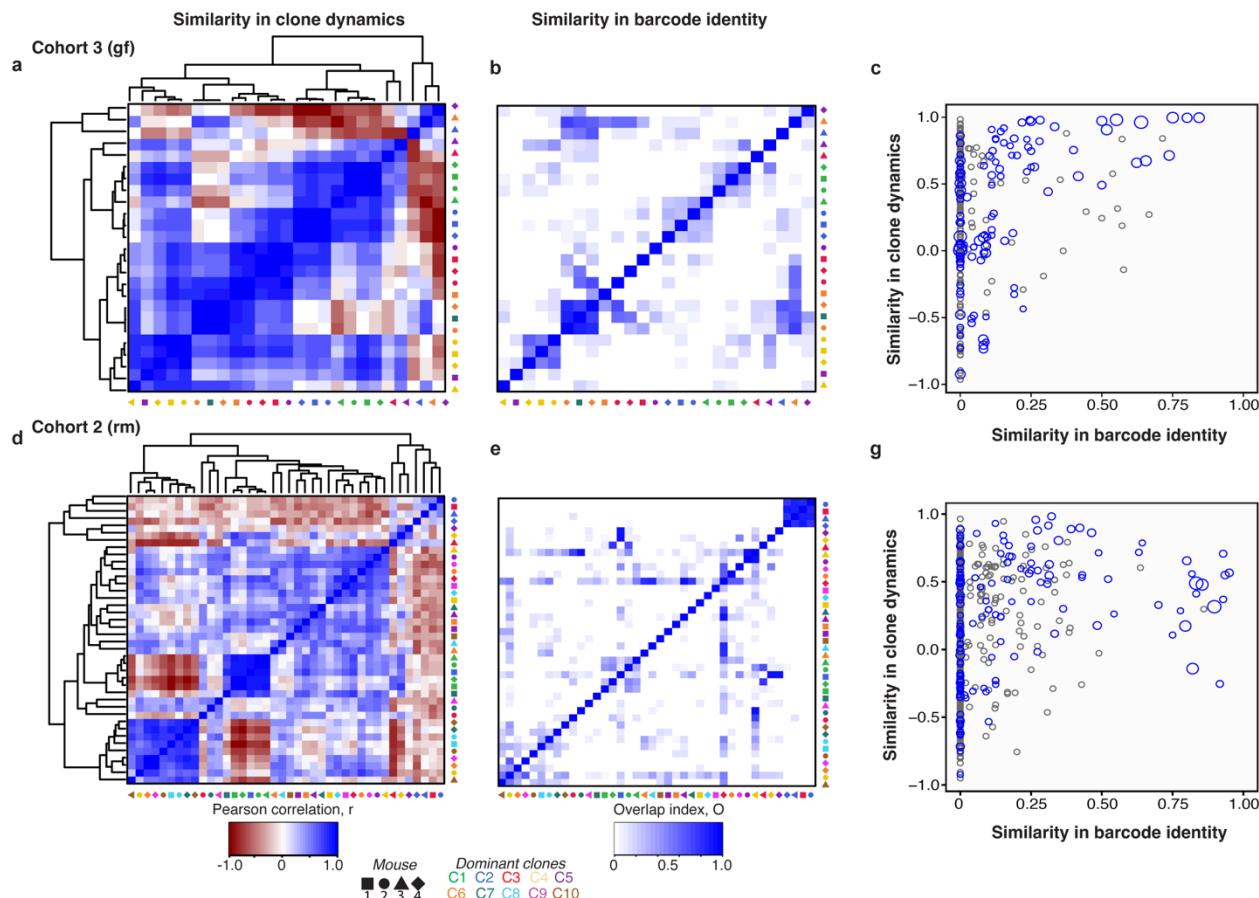
939
940

Figure 4. Distinct phases of colonization quantified by the Dynamic Covariance Mapping.
a, Dynamic covariance mapping (DCM). i) The time series $z(t)$ is a concatenated vector of the family and *E. coli* clone frequencies. ii) The evolution of $z(t)$ is governed by a system of ODEs that can be linearly approximated by the Jacobian matrix J_τ , which is the co-variance between the time-series i and the time-derivative of the time-series j . The Jacobian is calculated over a time interval τ . t_0 is the start of the experiment. iii) The expanded interaction matrix includes inter-family, intra-clone, and family-clone interactions. **b**, 2D UMAP projection of the eigenvalues of the time-dependent covariance matrix J_τ . The eigenvalues cluster into three distinct time domains that reflect the phases of colonization shown in Fig. 2a. **c**, Stability analysis over the three phases in Fig. 2a mouse rm1. Phase I is transient instability corresponding to the entry of *E. coli* and the collapse of resident bacteria. Phase II is the return to a stable regime and the re-emergence of the community species. Phase III is quasi-dynamic equilibrium with both oscillations in the clonal and community dynamics (see Supplementary Movie1a-d). **d**, Time-varying eigenvalues of the mouse rm1 were ranked and colored according to their magnitude. Ranking revealed that the first four eigenvalues dominate the whole dynamics.

955
956



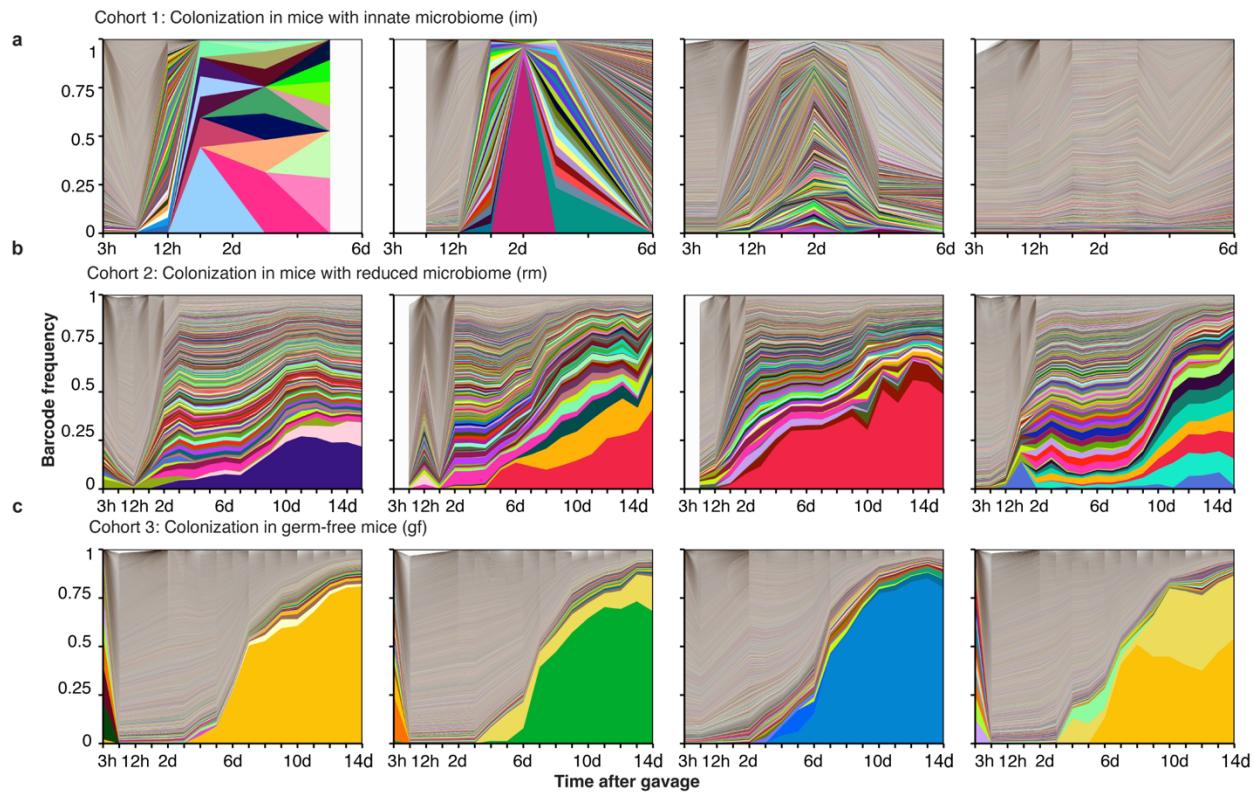
957
958
959 **Figure 5. Relative fitness of the dominant clones and bacterial families.** **a-f**, The relative fitness
960 is estimated from the slope of the clone and family frequency. The cumulative distribution is
961 defined over the 3 phases in Fig. 4. Vertical dashed lines indicate neutral ($s=0$). Horizontal dashed
962 lines indicate 50%. The dominant clone C1 is primarily driven by adaptive changes in phase 1 and
963 then reverts to equal fractions of deleterious and beneficial mutations in phase 3, which is
964 consistent with dynamic equilibrium. Fitness at the community level shows that the dominant
965 interactor of C1, *Lachnospiraceae*, is also experiencing strong adaptive changes in phase 1 and
966 equal fractions of beneficial and deleterious fitness effects in phase 3.
967



968
969

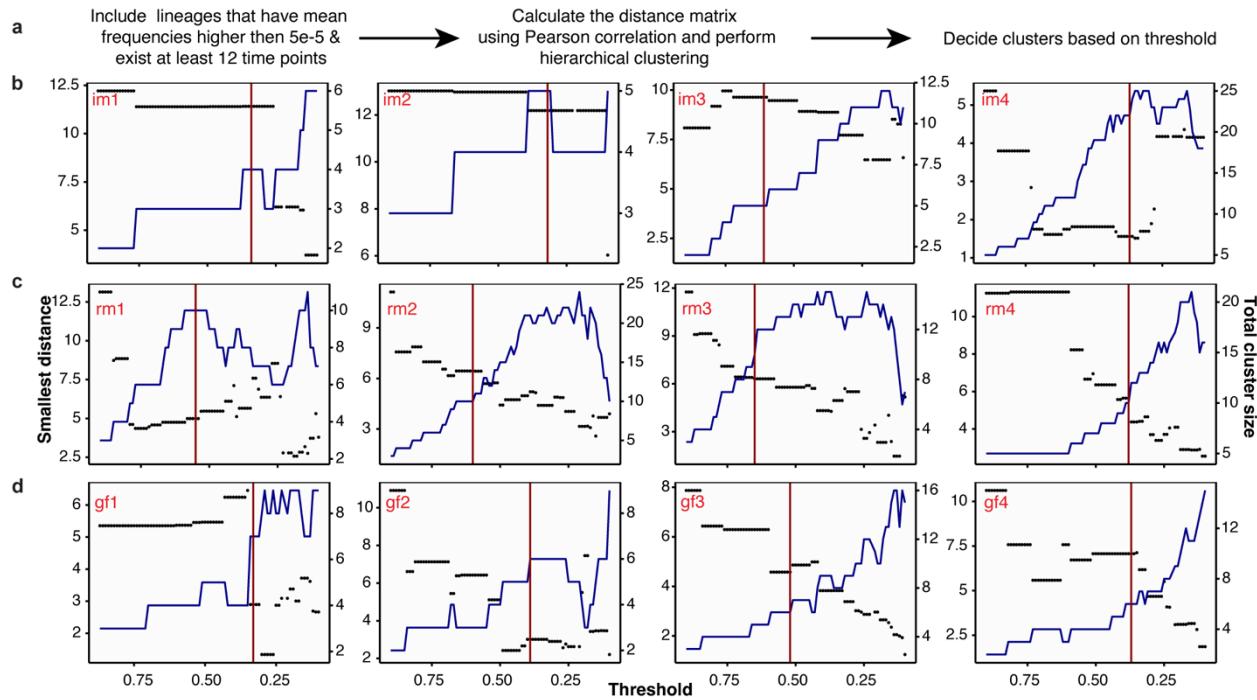
970 **Figure 6. The similarity of clonal dynamics across mice is partly driven by identical barcodes.**
 971 **a**, Similarity between the time series of dominant clones across all 4 gf mice quantified by Pearson
 972 correlation. Matrix elements are clustered based on hierarchy (dendograms indicated). Colors
 973 indicate the clone's identity, while the shape indicates the mouse of origin. **b**, The similarity in
 974 barcode identity between the different clones is quantified by the overlap coefficient, $OC(A, B) =$
 975 $|A \cap B| / \min(|A|, |B|)$, where A and B are the sets of unique raw DNA barcodes that belong to
 976 two dominant clones. Identities of matrix elements are similar to panel **a**. **c**, Scatter plot of the
 977 similarity in dynamics between two clones by Pearson correlation vs. similarity in their barcode
 978 identity by overlap coefficient. Overlap coefficients satisfying p -value <0.05 from bootstrapping
 979 are shown in blue; otherwise, they are shown in grey (Methods). The size of the circle is
 980 proportional to the significance of the overlap coefficient. **d-g**, Similarity in dynamics and barcode
 981 identity for the colonization in mice with the resident microbiome.

982



983
984
985 **Extended Data Fig. 1. Barcode dynamics in im, rm, and gf cohorts. a-c,** Barcode dynamics
986 for cohort 1, cohort 2, and cohort 3 in linear scale. Each column corresponds to replicate mouse 1
987 to 4, respectively. The color corresponds to Fig. 1c-e.
988

989
990



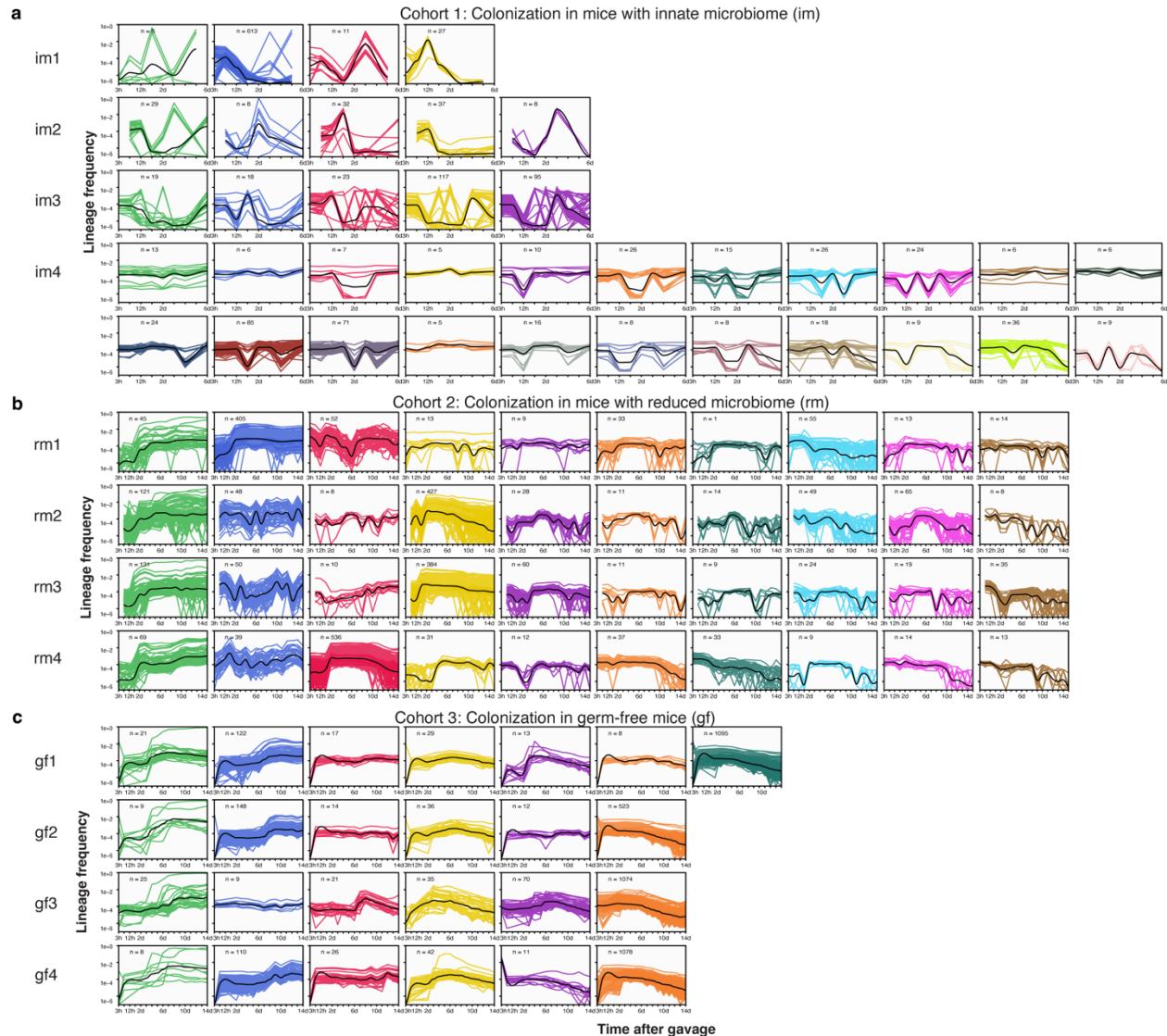
991

992

993 **Extended Data Fig. 2. Determining the number of dominant clonal lineages.** **a**, The pipeline
994 for estimation of putative clones from the frequency time series of the chromosomal barcodes.
995 **b-d**, A specific value for the threshold distance (Pearson correlation) in the hierarchical clustering
996 defines a total number of clusters (blue curve) as well as a distance between the most similar clones
997 (“Smallest distance”, black dots). When the threshold is large, there are many clusters, but some
998 are similar to each other. Conversely, when the threshold is small, there are too few clusters, where
999 even barcodes that do not have similar time series are grouped together (Methods). In practice, the
1000 cut-off is chosen to be the cross-over between the smallest distance between cluster centroids (our
1001 loess average) and the number of clusters. The chosen cut-off is indicated by the red curve. The
1002 resulting clusters are shown in Extended Data Fig. 3.

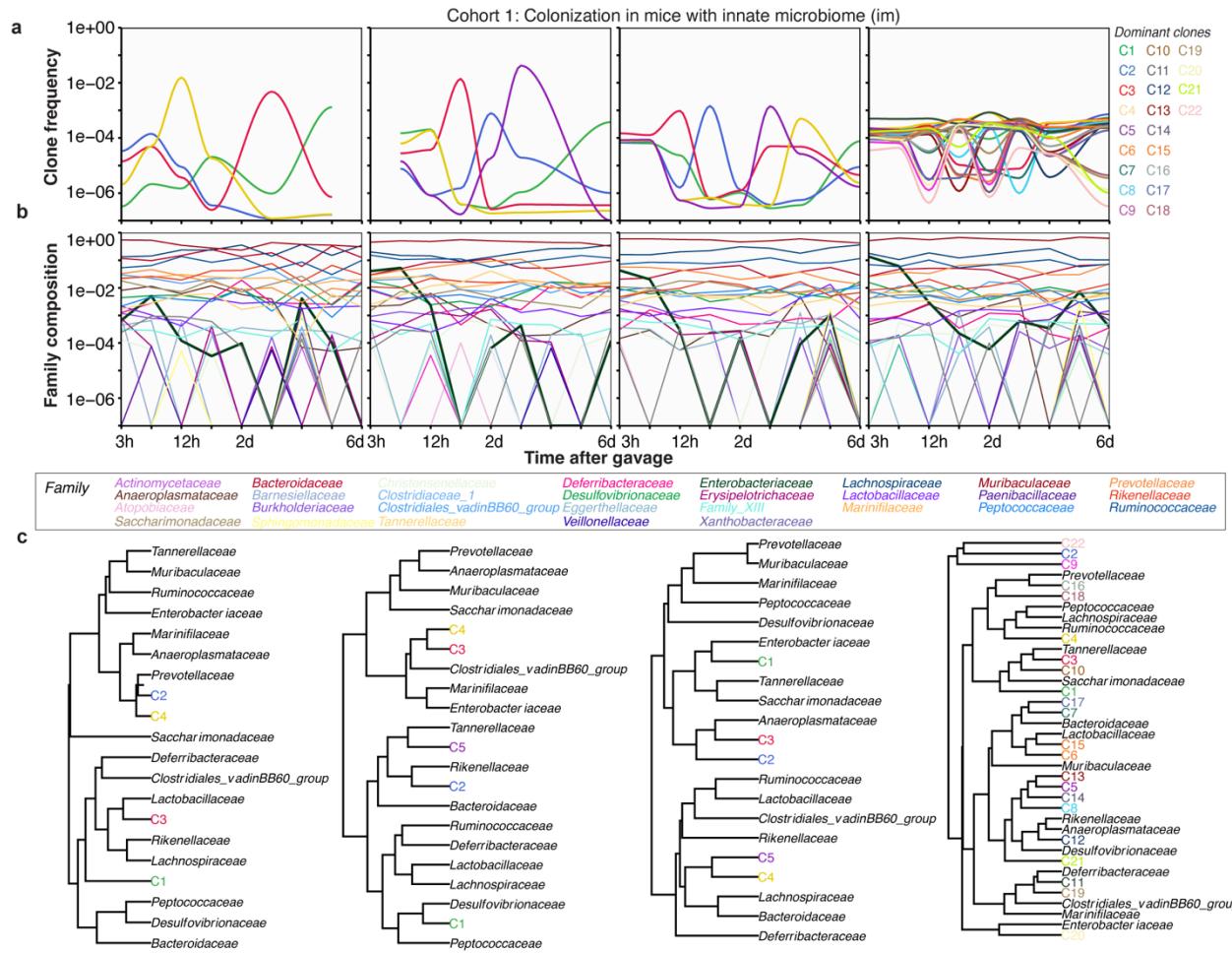
1003

1004



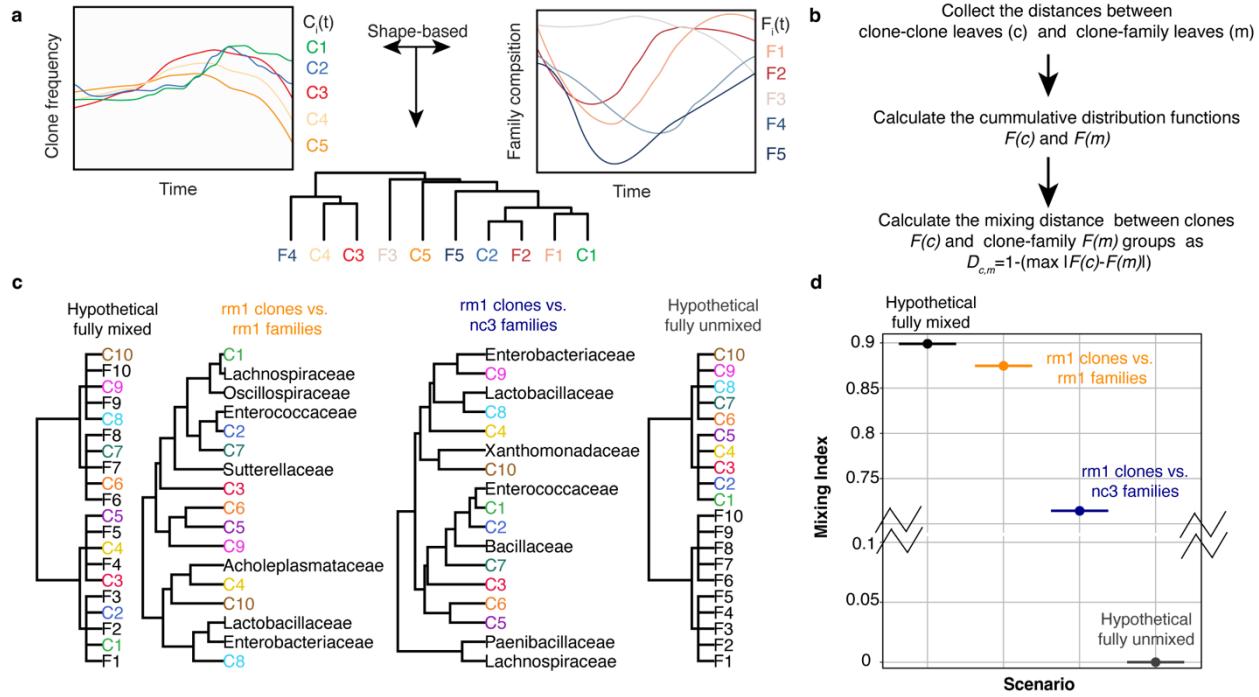
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

Extended Data Fig. 3. Dominant *E. coli* clonal lineage clusters. **a**, Dominant barcode clusters in mice with innate microbiota (im). Colored lines correspond to unique chromosomal barcodes in the cluster. Black lines correspond to the LOESS average. The number of unique raw barcodes that belong to the cluster is indicated. The clonal lineage clusters (or simply “clones”) are ordered, starting from the left, based on their average barcode frequency on the last day. **b**, Dominant clusters for the mice with reduced microbiota (rm). The colors correspond to Figure 2a. **c**, Dominant clusters for the germ-free mice (gf). The colors correspond to Figure 3a.



1016
1017

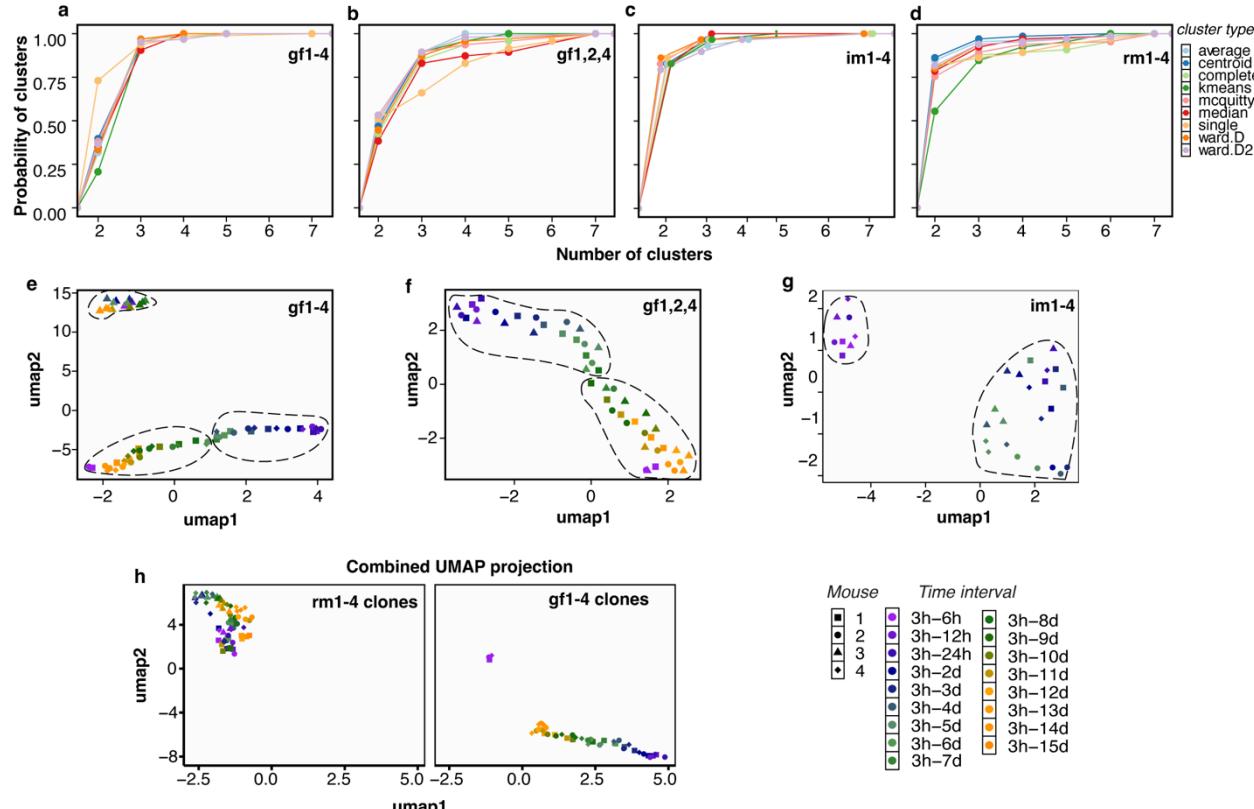
1018 **Extended Data Fig. 4. Clone-specific community interactions in the gut for the im cohort.**
1019 **a**, Dominant and persistent *E. coli* clones invading an innate microbiome show less reproducible
1020 clonal dynamics compared to gf and rm cohorts. Particularly, mice im1-3 have less than 6 clones,
1021 but im4 has 21 distinct clones. **b**, Community dynamics are similar for im1-3 where the
1022 *Enterobacteriaceae* (thick line), to which *E. coli* belongs, drops below the resolution limit of the
1023 16S rRNA profiling but persists in im4. Interestingly, this distinction in dynamics between mice
1024 im1-3 and mouse im4 is not perceptible from the CFU (Fig. 1b).
1025
1026
1027



1028
1029

1030 **Extended Data Fig. 5. Schema for shaped-based co-clustering between *E. coli* clone and**
1031 **community dynamics. a**, Schema for co-clustering of the clonal lineage and family composition
1032 time series using a shape-based distance metric. **b**, Schema for calculating the mixing index from
1033 a given hierarchical clustering tree. We collect clone-clone *cophenetic* distances (*c*) and clone-
1034 species *cophenetic* distances (*m*). Then the distance between the empirical cumulative
1035 distributions of *c* and *m*, denoted as $F(c)$ and $F(m)$ respectively, is quantified as $D_{c,m} = 1 -$
1036 $(\max |F(c) - F(m)|)$. Higher values of the mixing index imply that clones and families are
1037 more likely to be adjacent leaves in the co-clustering tree than clones amongst themselves. **c-d**,
1038 Illustrative examples (panel c) of different extents of co-clustering between clones and families
1039 and their corresponding mixing indices (panel d).

1040
1041
1042



1043

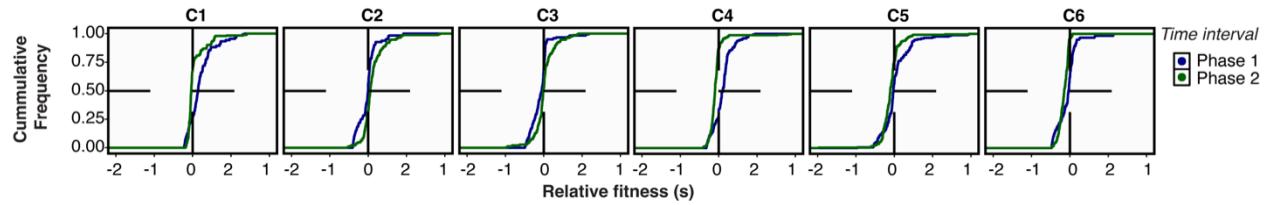
1044

1045 **Extended Data Fig. 6. Robustness of UMAP clustering and DCM analysis.** **a**, We generated
1046 all possible UMAPs for the eigenvalues of the gf cohort using every possible value of the n-
1047 neighbor criteria (Methods and ref. ⁵⁹). Then, we applied nine different clustering algorithms to
1048 determine the groupings of eigenvalues on these UMAPs. These groups indicate the phases of
1049 invasion defined in the text. Shown is the probability of the number of groups (clusters). Robustly,
1050 there are 2 or 3 groups or phases on the UMAP. **b**, Similar to panel a, panel b shows that the
1051 presence of 3 clusters in the four gf mice is driven by gf3. **c-d**, Similar to panel a for the invasion
1052 in mice with innate (**c**) and reduced microbiota (**d**), respectively. **e**, The chosen UMAP for the gf
1053 cohort (panel **a**). **f**, The gf cohort, where gf3 is excluded, shows distinctly 2 phases (see also
1054 Supplementary Movie 2a-d). **g**, The phases defined on the UMAP of the im cohort. **h**, We
1055 combined all eigenvalues from the rm clone dynamics and gf cohort and projected them onto a
1056 single UMAP. The rm clones are shown on the left panel, while the gf clones are shown on the
1057 right. Projection of rm and gf cohorts' clonal lineages on the same UMAP shows that rm1-4 clones
1058 grouped amongst themselves together with gf3. At 3h, gf3 already exhibits high barcode diversity,
1059 indicating that most of the barcode has transited the gut (Fig. 1f, 3a third panel, and Extended Data
1060 Fig. 1c third panel), in contrast to the other mice in the gf cohort.

1061

1062

1063



1064
1065
1066 **Extended Data Fig. 7. Estimated fitness of the gf cohort.** The cumulative distribution is
1067 partitioned into the two phases defined in Extended Data Fig. 6f. The dominant clone C1 exhibit
1068 primarily adaptive dynamics during phase 1 of the colonization.
1069