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Abstract 
Semantic memory is a fundamental human ability which is central to communication. Although it is 

usually well preserved in healthy aging, memory problems in verbal communication due to slowed 

access and retrieval processes are a common complaint with increasing age. So far, the neural 

bases of this paradox remain poorly understood. The current neuroimaging study investigated age 

differences in the functional network architecture during semantic word retrieval in young and older 

adults. Using group spatial independent component analysis, we defined functional networks for 

verbal semantic fluency. Combining task-based functional connectivity, graph theory and cognitive 

measures of fluid and crystallized intelligence, our findings show age-accompanied large-scale 

network reorganization even when older adults have intact word retrieval abilities. In particular, 

functional networks of older adults were characterized by reduced decoupling between systems, 

reduced segregation and efficiency, and a larger number of hub regions relative to young adults. 

Exploring the predictive utility of these age-related changes in network topology revealed high, 

albeit less efficient, performance for older adults whose brain graphs showed stronger 

dedifferentiation and reduced distinctiveness. Our results extend theoretical accounts on 

neurocognitive aging by revealing the compensational potential of the commonly reported pattern of 

network dedifferentiation when older adults can rely on their prior knowledge for successful task 

processing. However, we also demonstrate the limitations of such compensatory reorganization 

processes and demonstrate that a youth-like network architecture in terms of balanced integration 

and segregation is associated with more economical processing.  

 

Keywords: aging, functional connectivity, semantic memory, graph theory, language production 

 

Significance Statement 
Cognitive aging is associated with widespread neural reorganization processes in the human brain. 

However, the behavioral impact of such reorganization is not well understood. Here, we used task-

based fMRI to demonstrate a large-scale reorganization of brain networks in older adults even when 

their semantic abilities are intact. In particular, functional networks of older adults were 

characterized by increased coupling between different systems, reduced segregation and efficiency, 

and a larger number of hub regions relative to young adults. Associating these changes with 

behavior revealed high, albeit less efficient, performance for networks in older adults showing 

stronger dedifferentiation and reduced distinctiveness. Our results highlight the compensatory 

potential of network reconfiguration with age, but also reveal the limitations of such reorganization 

processes. 
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Introduction 
Semantic memory refers to the general knowledge of words, concepts, and ideas we accumulate 

across the lifespan. It is a fundamental human ability and central to communication. Unlike other 

cognitive domains, semantic memory is usually preserved through adulthood into very old age 

(Verhaegen et al., 2003), thus enabling communication abilities to remain largely intact in healthy 

aging. Nonetheless, memory problems in verbal communication, such as finding the right word and 

tip-of-the-tongue episodes, are a common complaint with increasing age (Burke and Shafto, 2004). 

This paradox has been explained in terms of less efficient access and retrieval processes during 

language production that rely on semantic and cognitive control functions like working memory, 

attention, and inhibitory control, and are well established to steadily decline with age (Hedden and 

Gabrieli, 2004). However, little is known about the neural mechanisms underlying those changes in 

access to semantic memory with age. 

The field of network science provides tools to model and explore organization principles of 

complex systems such as the human brain (Rubinov and Sporns, 2010). Studies in young adults 

have revealed a topological organization of the brain that combines local information processing 

with global information integration aimed at optimizing global cost efficiency (“small world” 

organization; Bassett et al., 2009; Bullmore and Sporns, 2012). Age-related changes to this modular 

organization have been described as general decline of network segregation in the form of 

decreased within- and enhanced between-network connectivity (Chan et al., 2014; Setton et al., 

2022). Moreover, increasing age has been associated with reduced small-world organization, 

modularity, and local and global efficiency of functional brain networks (Betzel et al., 2014; Geerligs 

et al., 2015; Chong et al., 2019). The impact of such reorganization on cognition remains debated. 

Most studies associated neural dedifferentiation with performance decline (Chan et al., 2014; Sala-

Llonch et al., 2014; Chong et al., 2019), whereas some have pointed towards a pattern of 

compensational response (Stumme et al., 2020). 

To date, most results stem from resting-state fMRI investigations or task-based studies in 

domains primarily affected by age, such as episodic and working memory. However, important 

insight can be gained by investigating domains which rely on semantic cognition like language and 

creativity. Here, older adults might benefit from increased connectivity between usually anti-

correlated networks such as executive and default networks since they can depend on prior 

knowledge to maintain high performance (Spreng et al., 2016; Adnan et al., 2019). In this context, 

semantic fluency tasks are especially valuable since they tap into semantic memory but also 

cognitive control and are often linked to preserved albeit slower performance with age (Gordon et 

al., 2018). Previous studies revealed age-related reduced functional connectivity within domain-

specific networks, however, without affecting behavioral performance (Marsolais et al., 2014; Ferré 

et al., 2020). Additionally, we recently showed that increased crosstalk between domain-general 

networks is essential for successful task processing, independent of age, when access to semantic 
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memory is required (Martin et al., 2022). Thus, domains that are usually well-preserved in aging 

inform the current understanding of age-accompanied changes in functional brain networks and 

their behavioral relevance. 

The present study contributes to this field by exploring age-related reorganization of 

functional networks during a semantic word retrieval task. Networks of task-based functional 

connectivity in groups of healthy young and older adults were derived via data-driven, multivariate 

methods. We were interested in age differences in the coupling of task-relevant networks and their 

behavioral relevance. Further, we applied graph-theoretical measures of brain system segregation, 

integration, and network hubs to investigate the network topology in young and older adults, and 

related these measures to participants’ in-scanner task performance and abilities of fluid and 

crystallized intelligence. Exploring task-based network topologies as a function of cognitive 

performance in a domain that is usually well preserved with age enabled us to gain key insights into 

age-related reorganization processes and to inform theoretical accounts regarding compensatory 

and detrimental effects of neurocognitive aging on behavior.  
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Materials and Methods 
Participants 
Participants consisted of 31 healthy older adults (n = 31, mean = 65.5, SD = 2.75, range = 60–69 

years) and 30 healthy young adults (n = 30, mean = 27.6, SD = 4.3, range = 21–34 years), which is 

the same sample as described previously (Martin et al., 2022). Data of three older participants as 

well as single runs of six participants had to be excluded due to strong motion during fMRI (>1 voxel 

size), leading to a final sample size of 28 participants in the older group. While both groups were 

matched for gender, participants in the young group had significantly more years of education 

(t(55.86) = 5.21, p < 0.001). Inclusion criteria were native German speaker, right-handedness, 

normal hearing, normal or corrected-to-normal vision, no history of neurological or psychiatric 

conditions, and no contraindication to magnetic resonance imaging. Older adults were additionally 

screened for cognitive impairments with the Mini-Mental State Examination (Folstein et al., 1975); 

all ≥26) points and for depression with the Beck Depression Inventory (Beck et al., 1996); all ≤14 

points). A battery of neuropsychological tests was administered probing semantic knowledge as well 

as verbal- and non-verbal executive functions (Table S1). Differences between age groups for 

neuropsychological measures were determined with two-sample t-tests. Consistent with previous 

research, older adults only performed better for the measure of semantic memory (spot-the-word 

test; t(54.39) = 3.14, p = 0.003), indicating a maintenance of semantic knowledge and an increase 

in vocabulary with age (Verhaegen et al., 2003), while young adults performed better on all other 

tests (all at p < 0.01), which is consistent with the assumption of a general age-related decline of 

executive functions (Hedden and Gabrieli, 2004). For all reported correlation analyses, 

neuropsychological measures were summarized via exploratory factor analysis. Results revealed an 

“executive functions” factor with high loadings on Trail Making Tests A (0.8) and B (0.71), Digit 

Symbol Substitution Test (0.73), and reading span test (0.45), and a “semantic memory” factor with 

spot-the-word test (0.5) and verbal fluency tests for hobbies (0.44) and surnames (0.98). Prior to the 

experiment, participants gave written informed consent. The study was approved by the local ethics 

committee of the University of Leipzig and conducted in accordance with the Declaration of Helsinki. 

 

Experimental design 
The experimental procedure is reported in detail in previous work (Martin et al., 2022) and briefly 

summarized here. Participants completed one experimental session which consisted of two runs of 

the fMRI experiment and neuropsychological tests, and lasted two hours in total. Experimental tasks 

consisted of a paced overt semantic fluency task and a control task of paced overt counting, which 

were implemented in a block design in the scanner (Figure 1). For the semantic fluency task, 

participants were asked to produce exemplars for 20 semantic categories, which were divided in 10 

easy (e.g., colors) and 10 difficult (e.g., insects) categories based on a separate pilot study in 
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healthy young and older adults (Martin et al., 2022). Task blocks were 43 s long and separated by 

rest blocks of 16 s. Each block started with a 2 s visual word cue indicating whether participants 

were expected to generate category exemplars or count forward (1 to 9) or backward (9 to 1). This 

was followed by nine consecutive trials of the same category or counting task, respectively. Trials 

within one block were separated by inter-stimulus intervals of 2-4 s. Participants were instructed to 

generate one exemplar for a category or one number per trial, which was indicated by a green cross 

on the screen, and to pause when the cross turned red. They were told not to repeat items and to 

say “next” if they could not think of an exemplar for the respective category. Each run contained 10 

semantic fluency blocks, divided in easy and difficult categories, and 10 counting blocks, consisting 

of forward and backward counting, thus resulting in a total duration of 19.4 min per run. The order of 

blocks was counter-balanced and pseudo-randomized across participants. Before the fMRI 

experiment, participants received instructions and practiced the task with a separate set of 

categories outside the scanner. Stimuli were presented using the software Presentation 

(Neurobehavioral Systems, Berkeley, USA; version 18.0). Answers were recorded via a FOMRI III 

microphone (Optoacoustics, Yehuda, Israel). After the experiment, response recordings were 

analyzed for verbal answers and onset times after being cleaned from scanner noise via Audacity 

software (version 2.3.2) and transcribed by three independent raters. 

 

Figure 1. Experimental design. (a) The fMRI experiment consisted of 43-s task blocks of overt 
paced semantic fluency and counting, which were presented in a pseudorandomized order and 
separated by 16-s rest periods. An example for each task is shown in (b) and (c). There were 10 
blocks per run for each task. At the beginning of a task block, a 2 s visual word cue indicated 
whether participants were expected to generate category exemplars or count forward (1 to 9) or 
backward (9 to 1). Participants were instructed to produce exactly one exemplar for a category or to 
say one number when the fixation cross turned green and to pause when the cross turned red. If 
they could not think of an exemplar, they were instructed to say “next”. Each task block contained 9 
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trials of the same semantic category/counting task which were separated by jittered inter-stimulus 
intervals. 

 
fMRI data acquisition and preprocessing 
fMRI data were collected on a 3 T Prisma scanner (Siemens, Erlangen, Germany) with a 32-

channel head coil. For the acquisition of functional images, a multiband dual gradient-echo echo-

planar imaging sequence was used for optimal blood oxygenation level-dependent (BOLD) 

sensitivity throughout the entire brain (Poser et al., 2006; Halai et al., 2014). The following scanning 

parameters were applied: TR = 2000 ms; TE = 12 ms, 33 ms; flip angle = 90°; voxel size = 2.5 x 2.5 

x 2.75 mm with an inter-slice gap of 0.25 mm; FOV = 204 mm; multiband acceleration factor = 2. To 

increase coverage of anterior temporal lobe (ATL) regions, slices were tilted by 10° of the AC-PC 

line. 616 images consisting of 60 axial slices in interleaved order covering the whole brain were 

continuously acquired per run. Additionally, field maps were obtained for later distortion correction 

(TR = 8000 ms; TE = 50 ms). This study analyzed the data from echo 2 (TE = 33 ms) since 

preprocessing was performed using the software fMRIPrep (Esteban et al., 2019), which currently 

does not support the combination of images acquired at different echo times. We chose to use 

results from preprocessing with fMRIPrep since this pipeline provides state-of-the-art data 

processing while allowing for full transparency and reproducibility of the applied methods and a 

comprehensive quality assessment of each processing step that facilitates the identification of 

potential outliers. We also double-checked results from preprocessing with fMRIPrep with a 

conventional SPM preprocessing pipeline of both echoes. The comparison of both pipelines did not 

reveal big differences in analysis results. A high-resolution, T1-weighted 3D volume was obtained 

from our in-house database (if it was not older than two years) or collected after the functional scans 

using an MPRAGE sequence (176 slices in sagittal orientation; TR = 2300 ms; TE = 2.98 ms; flip 

angle = 9°; voxel size = 1 x 1 x 1 mm; no slice gap; FOV = 256 mm). Preprocessing was performed 

using fMRIPprep 20.2.3 (Esteban et al., 2019) which is based on Nipype 1.6.1 (Gorgolewski et al., 

2011). In short, preprocessing steps included skull stripping, distortion correction, co-registration, 

slice timing correction, and calculation of several confounding time-series for each of the two BOLD 

runs per participant. Anatomical T1-weighted images were skull-stripped, segmented, and spatially 

normalized. For spatial normalization to standard space, the Montreal Neurological Institute (MNI) 

ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model 

(MNI152NLin6Asym) was entered as output space in fMRIPrep. For more details on the 

preprocessing pipeline, see the section corresponding to workflows in fMRIPrep’s documentation 

(https://fmriprep.org/en/20.2.3/workflows.html). After preprocessing, 29 volumes from the beginning 

of each run were discarded since they were collected for the combination of the short and long TE 

images. This yielded 587 normalized images per run which were included in further analyses.  
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Independent component analysis 
We applied group independent component analysis (ICA) to define spatially independent task-active 

networks in a data-driven manner. ICA has been shown to decompose fMRI time series into reliable 

functionally connected components with the advantage of simultaneously removing non-neural 

fluctuations through the identification of artefactual components (Griffanti et al., 2014). 

Preprocessed, normalized data were smoothed with a 5 mm3 FWHM Gaussian kernel and entered 

into a general linear model for each participant and session using Statistical Parametrical Mapping 

software (SPM12; Wellcome Trust Centre for Neuroimaging), implemented in MATLAB (version 

9.10/R2021a). GLMs included regressors for the task blocks (semantic fluency and counting) as 

well as nuisance regressors consisting of the six motion parameters and individual regressors for 

strong volume-to-volume movement as indicated by values of framewise displacement > 0.9 (Siegel 

et al., 2014). Additionally, an individual regressor of no interest was included in the design matrix if a 

participant had missed a whole task block during the experiment (n = 10). Before model estimation, 

a high-pass filter with a cut-off at 128 s was applied to the data. 

Preprocessed, normalized and smoothed data were analyzed using the Group ICA of fMRI 

Toolbox (GIFT v4.0c). Dimensions were reduced to 55 using minimum description length 

information criteria. Icasso was repeated 50 times to ensure reliability of the decomposition, and 

group-level ICs were back-reconstructed to the participant level using the group-information guided 

ICA (GICA3) algorithm (Calhoun et al., 2001). We calculated group ICA treating all participants as 

one group to ensure that the same components were identified in both groups. We discarded those 

components related to banding artifacts and noise after careful visual inspection of the spatial maps 

according to established criteria (Griffanti et al., 2014); see Figure S1 for an overview of all 55 ICs). 

From the resulting 13 non-noise components, low-level sensory components including auditory, 

sensorimotor, and visual networks were identified and removed since their roles were beyond the 

scope of our investigation. To characterize the spatial extent of the seven remaining components at 

the group level, we calculated one-sided t-tests for participants’ spatial maps. A gray matter mask 

that restricted statistical tests to voxels in the cerebrum was applied to all group-level analyses. 

Results were corrected for multiple comparisons using a peak level threshold at p < 0.05 with the 

family-wise error (FWE) method and a cluster-extent threshold of 10 voxels. 

 

Brain network construction 
Brain networks were constructed based on the seven selected component maps of the ICA. To 

determine network labeling of the thresholded maps, we used the Jaccard index (J), a measure of 

spatial similarity (Jaccard, 1912). By calculating the ratio of overlapping voxels in two binary spatial 
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network maps relative to all active voxels in either image, the Jaccard index can be used as a 

measure to assess the fit between a spatial component map (A) and a template image (B): 

𝐽 =
|A ∩ 𝐵|
|A ∪ 𝐵| 

The index ranges from 0 to 1, with a high Jaccard index denoting high similarity of two spatial maps. 

It has been used previously to assess similarity of brain activation maps with template network 

parcellations (Jackson et al., 2019; Gordon et al., 2020). We defined a minimum threshold of J = 

0.15 to consider a network template for a spatial component mask (Jackson et al., 2019). Next, if 

two components were best described by the same network template thereby indicating that the 

network might have split up in multiple components, we assessed the similarity of the combined 

component maps to the template. If the combined map reached a higher similarity index than each 

component individually, the combination was kept as a reflection of the respective network. 

 As template masks, we used the 17-networks functional connectivity-based parcellation 

scheme (Yeo et al., 2011) as well as the network masks of general semantic cognition and semantic 

control defined in a meta-analysis (Jackson, 2021). We included separate template masks for 

semantic cognition in our analysis to account for the semantic nature of our task. We also probed 

similarity of Jaccard indices with a 7-networks parcellation scheme (Yeo et al., 2011). While the 

results for the 7-networks parcellation generally agreed with the more fine-grained parcellation, the 

7-networks parcellation resulted in three components showing high spatial similarity with the default 

network template. However, differential roles have been reported for subsystems of the default 

network when access to semantic memory is required (Smallwood et al., 2021). Specifically, the 

dorsal medial subsystem of the default network (“Default B” in the 17-networks parcellation scheme) 

has been shown to broadly overlap with a left-lateralized temporal-frontal semantic network 

(Lambon Ralph et al., 2017; Smallwood et al., 2021). Since we were interested in the age-

dependent interplay of domain-specific and domain-general networks in semantic cognition, the 

remaining analyses were based on the 17-networks parcellation scheme. 

Based on the results of the Jaccard index, each thresholded component map was inclusively 

masked by the respective resampled template network. We were interested in the effect of age on 

the functional connectivity within and between selected networks. In a first step, to explore 

functional connectivity between networks, we extracted averaged time series across all voxels 

within one masked component, thus leading to seven time series per participant and run. Second, 

networks were further parcellated into distinct regions of interest (ROIs) based on peak maxima of 

activated clusters. ROIs were created for all peak maxima of a significant cluster (up to three ROIs 

per cluster) using the MarsBar toolbox (Brett et al., 2002). To this end, identified clusters were 

extracted from the thresholded and masked component maps, spheres of 5 mm surrounding each 

maximum coordinate were created, and, in a last step, both images were combined. In this way, we 

ensured that ROIs would only contain voxels that were included in the group-level statistics. 
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Parcellating the seven network components based on strongest correlation peaks led to 126 cortical 

ROIs per participant and run.  

Functional time series were extracted for the seven ROIs and 126 ROIs parcellation 

schemes from non-smoothed functional data. To account for motion artifacts and other signal 

confounds, the following denoising pipeline was applied during time series extraction: 24 

realignment parameters (six motion parameters, temporal derivatives, and quadratic terms), global 

signal, and top five aCompCor components for white matter and cerebral spinal fluid, respectively. 

Censoring included a framewise displacement threshold of 0.9 mm and 18 discrete cosine-basis 

regressors to account for signal drifts. All these regressors were combined in a design matrix and 

removed from the data in a single step (Hallquist et al., 2013; Lindquist et al., 2019). The denoising 

strategy was based on recent recommendations (Mascali et al., 2021) that compared the 

performance of different denoising pipelines for analysis of task-based functional connectivity. 

Consistent with previous research on resting-state functional connectivity (Ciric et al., 2017; Parkes 

et al., 2018), the authors reported that the inclusion of global signal in a denoising pipeline markedly 

reduced global motion artifacts and led to more comparable results across conditions in task-based 

functional connectivity data (Mascali et al., 2021). Further, time series were detrended and 

demeaned, and functional images were masked with a subject-specific, resampled gray matter 

mask before denoising. During signal extraction for the set of 126 ROIs, the number of voxels per 

ROI and participant were extracted. ROIs for which more than 15% of participants did not show any 

signal coverage were excluded. The resulting 121 ROIs were used for the remaining analyses. 

 

Functional connectivity matrices 
We applied correlational psychophysiological interaction analyses (cPPI; Fornito et al., 2012) to 

obtain connectivity terms that describe task-related interactions between our networks and regions 

of interest. In contrast to traditional PPI analyses, cPPI results in undirected, symmetrical 

connectivity matrices that are based on pairwise partial correlations between ROIs. We calculated 

cPPI for our contrast of interest semantic fluency > counting, separately for the 7-networks and 121-

ROIs parcellations. In brief, the deconvolved time series for each ROI was multiplied with the task 

time course from the first-level GLM design matrix and convolved with a canonical HRF to form a 

PPI term. Pairwise partial correlations were estimated between PPI terms of two regions while 

controlling for the observed BOLD signal in both regions, the original task regressor and average in-

scanner head motion (mean FD). Connectivity matrices were calculated for each run separately and 

then averaged, resulting in a 7 x 7 and 121 x 121 correlation matrix per participant. Subsequently, 

correlation coefficients were Fisher-transformed to z values. 
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Network measures 
Within- and between-network functional connectivity 

Within- and between-network functional connectivity were explored for the 7-networks and 121-

ROIs connectivity matrices in both age groups. Using the connectivity matrices with seven networks 

allowed us to investigate the coupling and decoupling between task-relevant networks while the 

more fine-grained parcellation provided additional insights into the coupling of regions within distinct 

networks. All subsequent network measures were based on the 121-ROIs connectivity matrices. 

 

Brain system segregation 

We calculated global segregation as previously implemented by Chan and colleagues (Chan et al., 

2014, 2021; Wig, 2017), using the unthresholded, weighted connectivity matrices. In line with 

previous work on functional connectivity in healthy aging (Chong et al., 2019; Chan et al., 2021), we 

excluded negative correlations from segregation and integration analyses by setting them to zero. 

Excluding negative correlations has been shown to improve the reliability of graph measures (Wang 

et al., 2011) and to help avoid interpretational difficulty, for example when it comes to concepts like 

shortest paths (Fornito et al., 2016). Building upon the network parcellation of our ICA analysis, 

each functional network was treated as a distinct system, and segregation was computed as the 

difference between mean within-system (𝑍*)	and mean between-system (𝑍-)	correlations divided 

by mean within-system correlation as shown in the following equation: 

Brain system segregation =	
𝑍* −	𝑍-
𝑍*

 

A higher ratio score denotes greater separation of functional systems.  

 We also calculated segregation values for each functional network individually such that 

within-system connectivity 𝑍* represents the mean of all edges (correlations) between pairwise 

nodes that belong to the same network and between-system connectivity 𝑍- reflects the mean of all 

edges between nodes of the respective network and all other nodes. 

 

Edge filtering 

Most graph theoretical measures require some form of filtering to obtain a sparse graph that is more 

likely to represent true functional connectivity than a maximally dense graph as produced by a 

correlation matrix (Fornito et al., 2016). While threshold-based filtering methods like proportional or 

absolute thresholding are commonly applied in network neuroscience, they are driven by an 

arbitrary choice of the respective threshold and suffer from low reliability (Luppi and Stamatakis, 

2021). To avoid these pitfalls and based on recent research on the reliability of graph construction in 

neuroscience (Jiang et al., 2021; Luppi and Stamatakis, 2021), we calculated the orthogonalized 

minimum spanning tree (OMST; Dimitriadis et al., 2017) on the weighted functional connectivity 
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matrices. Apart from its high reliability, the OMST has several advantages compared to commonly 

applied threshold-based methods of graph construction: It adheres to the intrinsic topological 

structure of the brain network by resulting in a fully connected, weighted graph and offers a data-

driven method of individualized network construction accounting for each individual’s optimal state 

of economic wiring in terms of cost and efficiency. In contrast to the original minimum spanning tree 

(MST), the OMST filters connectivity networks until the highest global cost efficiency (GCE) of a 

graph is reached while including both strong and weak connections and preserving the same mean 

degree across groups.  

The OMST was calculated in three steps as described by Dimitriadis et al. (2017): (a) the 

MST of a graph is defined; (b) the corresponding edges of the MST are removed from the original 

graph by setting edge weights to 0; (c) steps (a) and (b) are repeated until the GCE of the graph is 

optimized. GCE is defined as the global efficiency minus cost, where cost corresponds to the total 

weights of the selected edges of the OMST divided by the sum of the edges of the original fully 

weighted graph (Bassett et al., 2009). The final OMST is constructed by combining all the removed, 

non-overlapping MSTs. To show that the OMST indeed results in higher GCE than other filtering 

methods, we compared the GCE for OMST, MST, and a method of proportional thresholding where 

we used a common range of 5-20% strongest edge weights of a graph (Figure S3). To avoid 

differences in graph measures caused by the number of nodes in a graph, we excluded all nodes 

where at least one participant had no signal during construction of matrices. This resulted in a 

104x104 matrix per participant, which was used for construction of OMST and all subsequent 

measures. 

 

Brain system integration 

We calculated global efficiency as a measure of system-wide integration. It is defined as the 

average of the inverse shortest path length between all pairs of nodes in a graph and is thus a 

measure of efficient signal transmission (Latora and Marchiori, 2001; Rubinov and Sporns, 2010). 

Global efficiency =	
1

𝑁(𝑁 − 1)
2

1
𝐿4,64	76∈9

 

Global efficiency was based on the individual OMSTs using the reciprocal edge weights to obtain a 

distance matrix where high weights signify short paths between nodes.  

 

Global network hubs 

We identified hubs via the normalized participation coefficient (PC; Pedersen et al., 2020). The PC 

provides insight into the functional role of a node. Specifically, it evaluates whether a node mainly 

interacts with nodes from its community or multiple communities of a network (Guimerà and Nunes 

Amaral, 2005). In network neuroscience, PC has been applied to define nodes that are important for 

communication between communities (connector hubs) and nodes that are central to the 
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communication within communities (provincial hubs; Cohen and D’Esposito, 2016; Bertolero et al., 

2017, 2018). Recently, it has been shown that the conventional measure of PC is strongly 

influenced by the size and connectedness of its community leading to a reduced interpretational 

value of this graph measure (Pedersen et al., 2020). Thus, a normalized version of the PC has been 

introduced that accounts for these differences in real-world networks while preserving its meaning 

though the comparison with null models. It is calculated similarly to the original PC as one minus the 

ratio between the degree 𝑘 of node 𝑖 with nodes in its community 𝑚 and the degree of node	𝑖 with 

all other nodes in the network. However, a normalization factor is added by subtracting the median 

degree of this node in a series of random networks: 

Normalized PC = 1− =𝐵> 2 ?
𝑘4(𝑚) − 𝑘4(𝑚)@ABC

𝑘4
D
E

F∈G

 

We calculated 100 random networks for each node. Connector hubs were then defined as nodes 

with a PC value of at least 1SD above the mean in each age group.  

 

Statistical analyses 
Age-related changes for within- and between-network functional connectivity 

To assess differences between age groups for within- and between-network connectivity, we ran 

two-sample t-tests for each edge of the 7-network and 121-ROIs connectivity matrices within the 

Network-Based Statistics toolbox (NBS; Zalesky et al., 2010). NBS applies cluster-based 

thresholding to correct for multiple comparisons using permutation testing. In contrast to more 

conventional procedures for controlling the family-wise error rate, such as the false discovery rate, 

NBS considers connected components in networks (graphs), which makes it especially suited for 

network statistics. We set an initial cluster-forming threshold at p < 0.01 (two-sided test; t = 2.67) 

and an FWE-corrected significance threshold at p < 0.05 with 10,000 permutations. To control for 

the influence of motion on functional connectivity, the average in-scanner head motion per 

participant was included as a covariate. Average head motion was defined as the mean FD based 

on the calculation of the root mean square deviation of the relative transformation matrices 

(Jenkinson et al., 2002). 

 

Age-related changes for network measures of segregation and integration 

Linear mixed-effects models were set up to examine how the dependent variables brain system 

segregation, individual network segregation, global efficiency, and nodal participation coefficient 

were predicted by age group. We included in-scanner head motion (mean framewise displacement) 

as covariate and a random intercept for participants. Models were calculated as follows: 

Network measure = 𝛽> + 𝛽JAge+ 𝛽EMotion+ (1|Subject) + 	𝜀 
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Significance values were obtained by likelihood ratio tests of the full model with the effect in 

question against the model without the effect in question.  

 

Association between network measures and cognitive performance 

For those network measures that showed differences between young and older adults, we further 

examined their association with participants’ cognitive performance for the in-scanner task and the 

neuropsychological test battery. Analyses were performed using mixed-effects models with a 

logistic regression for accuracy data due to their binomial nature and a linear regression for log-

transformed response time data. We only analyzed response times for correct reactions for the 

semantic fluency task since our connectivity values were also based on our contrast of interest 

semantic fluency > counting. Models contained fixed effects for the respective mean-centered 

network measure (between-network functional connectivity, brain system segregation, individual 

network segregation, and global efficiency) and age group as well as their interaction term, and 

random intercepts for participants and semantic categories. Further, mean-centered values of mean 

FD and education were entered as covariates. Models were set up as shown in the following 

equation: 

Cognitive measure = 𝛽> + 𝛽JNetwork measure+ 𝛽EAge+ 𝛽LNetwork measure	 × Age+ 𝛽NMotion+

𝛽OEducation+ (1|Subject) + (1|Category) + 𝜀  

where cognitive measure denotes accuracy and response time, respectively. Significance values 

were obtained via likelihood ratio tests. We applied sum coding (ANOVA-style encoding) for all 

categorical predictors. Results were corrected for multiple comparisons using the Bonferroni-Holm 

method. 

 We performed correlation analyses with the neuropsychological tests that had been 

assessed outside of the scanner. Due to the collinearity of some neuropsychological tests, we ran 

an exploratory factor analysis on the standardized test scores using maximum likelihood estimation 

and varimax rotation. Based on the hypothesis test (𝜒2 = 14.04, p = 0.081), two factors with an 

eigenvalue > 1 were chosen. For subsequent correlations with network measures, participant factor 

scores extracted via regression methods were used. 

 All statistical models except for NBS were performed using R 4.1.0 via RStudio (R Core 

Team, 2021) and the package lme4 (Bates et al., 2015). Results were visualized using the ggplot2 

(Wickham, 2016) and ggeffects (Lüdecke, 2018) packages. If applicable, post-hoc comparisons 

were applied using the package emmeans (Lenth, 2020). The exploratory factor analysis was 

calculated with the stats package (R Core Team, 2021). OMSTs and all graph theory measures 

were calculated in Matlab using the Brain Connectivity toolbox (Rubinov and Sporns, 2010) and 

publicly available scripts for OMST and normalized PC. Chord diagrams were generated with the 
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circlize package (Gu et al., 2014), spring-embedded plots using the igraph package (Csardi and 

Nepusz, 2006), and force-directed plots using the ForceAtlas2 algorithm for R available on Github 

(https://github.com/analyxcompany/ForceAtlas2). 

 

Data and code availability 
All behavioral data and raw data of functional connectivity and graph-theoretical measures are 

available in a public repository at 

https://gitlab.gwdg.de/functionalconnectivityaging/mdn_lang_networkAnalysis. This repository also 

holds all self-written code for analyses and figures for this project. Raw neuroimaging data are 

protected under the General Data Protection Regulation (EU) and can only be made available from 

the authors upon reasonable request. 
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Results 
The main objective of this study was to investigate age-related changes in the functional network 

architecture engaged during the goal-directed access to semantic memory. For the in-scanner tasks 

of overt semantic fluency and counting, we fitted mixed-effects models accounting for individual 

variance of participants and semantic categories via random effects and the difference in years of 

education via covariate (Table S2). Likelihood-ratio tests showed that both age groups performed 

similarly (𝑥E= 2.18, p = 0.14) and generally better for counting than semantic fluency (𝑥E= 8.06, p = 

0.005; Figure 2a). For response time, results showed an interaction between task and age group 

(𝑥E= 79.73, p < 0.001) with older adults performing slower than young adults during the semantic 

fluency but not the counting task (Figure 2b). 

 

 

Figure 2. Behavioral results. Both groups performed better for counting than semantic fluency. 
While there was no effect of age for accuracy in either task (a), older adults performed slower than 
young adults during semantic fluency but not during counting (b). * p < 0.05. 

 
Goal-directed access to semantic memory involves default, semantic, and executive control 
networks 
Using the data-driven method of group spatial independent component analysis (ICA) on the whole 

data set, we defined functional cortical networks for the semantic task. We identified seven 

components of interest which were submitted to one-sample t-tests and thresholded controlling the 

family-wise error (FWE) rate at peak level with p < 0.05 and a cluster-extent threshold of 10 voxels. 

Figure 3 shows the thresholded maps with their original component number. To determine which 

cognitive network best described each component, we calculated the Jaccard similarity coefficient 

(J) between our thresholded, binarized components of interest and template masks of common 

resting-state (Yeo et al., 2011) and semantic cognition networks (Jackson, 2021). Results showed 

similarity above threshold (J = 0.15) for all component maps with distinct cognitive networks (Table 
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1). For IC06, we found overlap with the frontoparietal control network C (CONT-C) and default mode 

network A (DMN-A). Although spatial similarity was marginally higher for CONT-C than DMN-A 

(𝐽Control C − 𝐽Default A = 0.01), we refer to this component as part of the default system. Significant 

clusters included classic midline structures of the core default network (Smallwood et al., 2021) like 

posterior cingulate cortex, precuneus, and prefrontal cortex (Figure 3). An additional analysis of 

similarity coefficients between the component maps and the 7-networks parcellation (Yeo et al., 

2011) revealed a stronger similarity with the default network as a whole for this component (𝐽Control −

𝐽Default = -0.03; see Table S3 for results with the 7-networks parcellation). Furthermore, a second 

component (IC13) showed strong similarity with DMN-A. As described in Methods, we combined the 

component maps of IC06 and IC13 to assess whether this would lead to a numerical improvement 

of J. This was not the case with J = 0.21 for the combined components which was below the 

similarity coefficient of IC13 alone (J = 0.26). Thus, both components represented distinct parts of 

DMN-A and were hence included in subsequent analyses. For IC13, we further included default 

mode network C (DMN-C), which showed the second strongest overlap and was represented by 

significant clusters in bilateral parahippocampal gyri. Indeed, a combined template of DMN-A and 

DMN-C led to a numerical improvement in similarity compared to DMN-A alone (𝐽Default A + C −

𝐽Default A = 0.091). Thus, to gain a comprehensive representation of the default network, both 

subsystems were combined and are referred to as default mode network A+C (DMN-A+C). 

Results of Jaccard calculations further revealed the following networks for the other 

components: default mode network B (DMN-B; IC16) with peak activations in bilateral middle 

temporal gyri (MTG), inferior and superior frontal gyri (IFG, SFG), and left angular gyrus (AG); 

semantic network (SEM; IC18) with strong overlap with the semantic control network and peak 

activations in left IFG, SFG, paracingulate gyrus, posterior superior temporal gyrus (STG), and AG; 

frontoparietal control network B (CONT-B; IC09) with large clusters in bilateral SFG and middle 

frontal gyri (MFG), AG, and posterior MTG; ventral attention network B (VAN-B; IC45) with peak 

activation in prefrontal cortex including paracingulate gyrus, bilateral IFG and supramarginal gyri; 

and dorsal attention network A (DAN-A; IC52) with large clusters in bilateral AG, and 

temporooccipital cortex. Statistical tables with all significant clusters are reported in Table S5. 
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Figure 3. ICA-derived networks and their overlap with cognitive networks. T-scores from one-
sided t-tests (FWE-corrected p < 0.05 at peak level) are displayed for the seven selected 
component maps with their respective network label according to spatial similarity analysis. 
Overlaps between the thresholded component map and the spatially most similar cognitive network 
according to the Jaccard index are outlined on the surface of the brain. The areas of overlap were 
used for subsequent network analyses. 

 

Table 1. Jaccard indices for independent components and cognitive networks 

 
IC06 IC09 IC13 IC16 IC18 IC45 IC52 

Frontoparietal control A 0.054 0.133 0.032 0.013 0.151 0.083 0.109 

Frontoparietal control B 0.091 0.210 0.028 0.073 0.125 0.050 0.018 

Frontoparietal control C 0.168 0.020 0.066 0.010 0.010 0.028 0.044 

Default A 0.154 0.089 0.255 0.149 0.040 0.054 0.019 

Default B 0.039 0.069 0.031 0.263 0.082 0.098 0.010 

5.31

5.31 22.56

Default A (IC 06) Default A+C (IC 13) Default B (IC 16)

Control B (IC 09) Ventral attention B (IC 45)

Dorsal attention (IC 52)

5.31 21.83

5.31 20.95 5.31 32.2 5.31 23.11

Semantic (IC 18)

5.31 28.83 23.44

5 31 13 6 21 89

5.31 14.24 23.175.31 13.57 21.835.31 17.07 28.83

5.31 13.96 22.615.31 13.13 20.95 5.31 18.71 32.11
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Default C 0.014 0.010 0.122 0.008 0.026 0.001 0.020 

Dorsal attention A 0.051 0.041 0.062 0.015 0.054 0.003 0.180 

Dorsal attention B 0.008 0.038 0.006 0.006 0.071 0.053 0.123 

Limbic A 0.000 0.001 0.002 0.014 0.002 0.002 0.011 
Limbic B 0.001 0.007 0.015 0.004 0.009 0.005 0.002 

Ventral attention A 0.042 0.012 0.023 0.015 0.033 0.124 0.065 

Ventral attention B 0.014 0.074 0.001 0.031 0.059 0.195 0.039 

Somatomotor A 0.022 0.052 0.000 0.039 0.036 0.029 0.028 

Somatomotor B 0.000 0.016 0.038 0.009 0.033 0.011 0.015 

Temporal parietal 0.001 0.029 0.014 0.118 0.023 0.035 0.034 

Central visual 0.022 0.006 0.006 0.038 0.011 0.004 0.123 

Peripheral visual 0.025 0.009 0.074 0.020 0.038 0.034 0.037 

General semantic cognition 0.032 0.030 0.072 0.194 0.201 0.092 0.050 

Semantic control 0.012 0.036 0.012 0.067 0.153 0.091 0.027 

Note. The selected network labels for the respective independent components are shown in bold 
while all cognitive networks that showed a higher similarity coefficient than J = 0.15 are shown in 
italics. 

 

Stronger coupling of default and executive systems predicts intact but less efficient 
semantic retrieval in older adults 
Graphs of task-related connectivity were derived via cPPI for matrices with seven and 121 nodes, 

respectively. We tested for statistically significant coupling differences between age groups by 

means of network-based statistics using permutation testing while controlling for in-scanner head 

motion (Figure 4a). Overall, the network of older adults showed reduced decoupling compared to 

young adults. Significantly stronger positive coupling was found in the graphs of older adults for the 

networks SEM with VAN-B, CONT-B with VAN-B, and DAN-A with VAN-B. A similar picture of age-

related differences emerged for the more fine-grained graphs containing 121 nodes. Here, young 

adults generally showed stronger positive coupling within individual networks and between 

subsystems of the default network and stronger decoupling between different networks (Figure S2).  

 We probed the behavioral relevance of the network connection pairs that showed significant 

age differences by calculating mixed-effects models for accuracy and response time data (Figure 

4b; Table S5-6). For accuracy, we found significant interactions between age and between-network 

connectivity for VAN-B with DMN-A+C (𝑥E= 12.39, p = 0.002) and DAN-A (𝑥E= 14.18, p < 0.001). 

Predicting response time revealed significant interactions between age and between-network 

connectivity for VAN-B with DMN-A+C (𝑥E= 5.65, p = 0.035), SEM (𝑥E= 25.75, p < 0.001), and DAN-

A (𝑥E= 28.81, p < 0.001), and for DAN-A with DMN-B (𝑥E= 51.76, p < 0.001). For older adults, 
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increased coupling between default and attention networks predicted high but less efficient 

performance, while increased coupling of SEM and VAN-B and between both attention systems 

(DAN-A and VAN-B) was associated with faster responses. A different picture emerged in young 

adults, where stronger coupling between default and executive systems predicted faster but poorer 

performance while increased connectivity between DAN-A and VAN-B was associated with better 

and faster reactions. These results suggest that both age groups showed distinct connectivity 

profiles, with older adults generally profiting from increased coupling between different cognitive 

systems and the opposite pattern for young adults. 

 

 
Figure 4. Functional coupling between task-relevant networks in young and older adults and 
their behavioral relevance. (a) Chord diagrams display significant results of functional coupling 
between ICA-derived networks. Connectivity values are partial correlations. The color intensity and 
width of a connection indicate its correlational strength. Red indicates coupling and blue indicates 
decoupling between networks. Chord diagrams of each age group are based on cPPI-derived 
significance values while age differences were assessed using permutation testing in network-
based statistics (cluster-forming threshold p = 0.01, FWE-corrected significance threshold p = 0.05 
with 10,000 permutations). (b) Network connections that showed significant age differences were 
probed for their behavioral relevance. Plots show significant two-way interactions between age and 
the respective network pair for accuracy and response time data. Connectivity values were mean-
centered for interaction analyses. Results were corrected for multiple comparisons using the 
Bonferroni-Holm method at p = 0.05. VAN ventral attention network, DAN dorsal attention network. 
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Reduced segregation and higher integration of task-relevant networks is associated with 
better and more efficient performance in older adults 
Next, we investigated brain system segregation and integration to get a better understanding of 

age-related differences in whole-brain dynamics (Figure 5a). Segregation quantifies the presence of 

densely connected regions that form distinct subnetworks or communities in a global brain network 

(Figure 5b). Results of a linear mixed-effects model for global brain system segregation revealed a 

significant effect of age (𝑥E= 11.23, p < 0.001) with young adults exhibiting stronger segregation 

than older adults (Figure 5c; Table S7). Examining the predictive value of segregation for in-scanner 

performance and neuropsychological measures revealed significant interactions between age and 

segregation for accuracy (𝑥E= 9.54, p = 0.002), response time (𝑥E= 71.15, p < 0.001), and a 

significant correlation of segregation with executive functions in young adults (r = 0.45, p = 0.013). 

For all interactions, increasing levels of segregation predicted better and faster performance in 

young adults. In contrast, increasing brain-wide segregation had no effect on accuracy but predicted 

faster responses in older adults (Figure 5c; Table S8).  

 We used the measure of global efficiency to assess network integration. A linear mixed-

effects model indicated higher global efficiency for young adults (𝑥E= 21.86, p < 0.001; Figure 5d; 

Table S9). Efficiency values were then entered into regression models to assess their predictive 

value. Results showed a significant main effect of global efficiency for accuracy (𝑥E= 8.79, p = 

0.003) and a significant interaction with age for response time (𝑥E= 41.79, p < 0.001). While 

increasing system-wide efficiency was generally associated with better performance, it also 

predicted faster performance in older adults but slower responses in young adults (Figure 5d; Table 

S10).  
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Figure 5. Age-related differences in whole-brain segregation and integration and their 
behavioral relevance. (a) For each participant, a task-related brain network graph was constructed 
using 121 nodes. The nodes were based on significant global and local peak maxima of the seven 
networks derived from the ICA (see Table S1 for exact locations of nodes). (b) Spring-embedded 
graphs depicting age differences in the modular organization of the brain. Graphs are based on 
average connectivity in each age group. Stronger segregation is reflected by higher within- and 
lower between-network correlations. In comparison, young adults show stronger segregation than 
older adults for most networks. For visualization purposes, graphs are displayed at 5% graph 
density. (c) Brain-wide system segregation was higher for young adults and had distinct effects on 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.05.10.491274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491274
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

behavior for each age group with young adults profiting from increasing segregation. (d) A different 
picture emerged for global efficiency. Global efficiency was calculated for individual orthogonal 
minimum spanning trees, which were based on weighted correlation matrices. The graphs of young 
adults showed stronger global efficiency than older adults. While increasing global efficiency was 
associated with better performance in both age groups, it predicted slower performance in young 
and faster performance in older adults. Note that segregation and global efficiency values were 
mean-centered for analyses with behavior. 

 

Brain system segregation predicts age-related differences in behavior as a function of 
network type 
We next examined whether segregation differed between networks. Previous research showed that 

networks exhibit differences in their patterns of age-related changes in segregation (Chan et al., 

2014). While these studies focused on a broad distinction of sensorimotor and cognitive association 

networks, we investigated segregation and its behavioral relevance for each network individually to 

explore age-accompanied differences as a function of system type. Overall, results showed that all 

networks were less segregated in older than young adults (𝑥E= 47.06, p < 0.001; Figure 6a; Table 

S11). However, networks’ increasing segregation differed in their behavioral relevance (Table S12). 

For accuracy, we detected significant interactions between age and network segregation (Figure 6b) 

for DMN-B (𝑥E= 5.76, p = 0.016) and VAN-B (𝑥E= 18.22, p < 0.001). For response time (Figure 6c), 

results showed significant interactions with age and the networks DMN-A (𝑥E= 79.3, p < 0.001), 

CONT-B (𝑥E= 21.16, p < 0.001), and DAN-A (𝑥E= 68.62, p < 0.001). Overall, stronger segregation of 

different systems was associated with better and faster performance for young adults and poorer 

and slower reactions in older adults. Only increasing segregation of DMN-A predicted slower 

reactions in young adults which might point to a different role of this system in semantic cognition. 

We also explored the relationship of network segregation with neuropsychological measures (Figure 

6d). Results revealed a significant positive correlation of segregation in the VAN-B with executive 

measures in young adults (r = 0.4, p = 0.03) and a negative correlation of DMN-B with semantic 

memory in older adults (r = -0.38, p = 0.045).  

 In summary, exploring brain system integration and segregation in a semantic task revealed 

age-specific dynamics where young adults clearly profit from a stronger modular network 

organization whereas increasing integration improves efficiency only in the aging brain. 
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Figure 6. Segregation of individual networks is associated with distinct behavior of older and 
young adults as a function of system type. (a) Individual networks’ segregation values by age. 
All networks showed stronger segregation in young adults. (b) Generalized linear mixed-effects 
models for accuracy revealed significant interactions with age and network segregation for two 
systems while (c) linear mixed-effects models for response time showed significant interactions for 
three networks. For most networks, increasing segregation was associated with better and faster 
performance in young adults and worse and slower reactions in older adults. (d) Significant 
correlations between network segregation and neuropsychological measures. For young adults, we 
detected a positive correlation of increasing segregation of VAN-B with executive functions, 
whereas for older adults, a negative correlation of increasing segregation of DMN-B with semantic 
memory was found. Note that segregation and global efficiency values were mean-centered for 
analyses with behavior. VAN ventral attention network, DAN dorsal attention network.  
 

Stronger system-wide integration of brain networks in older adults is facilitated by additional 
connector hubs in frontal and temporal regions 

An important characteristic of large-scale brain organization is the presence of regions, or nodes, 

that play an important role in facilitating communication between communities of a network. These 

nodes, commonly referred to as connector hubs, are defined by a high number of connections 

(edges) diversely distributed across communities (Bertolero et al., 2017). Previous work has 

highlighted their crucial role for integrative processing in resting- and task-state networks (Cohen 

and D’Esposito, 2016). We explored the existence of connector hubs via the normalized 

participation coefficient (PC (Pedersen et al., 2020). Results revealed connector hubs in bilateral 
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frontal, parietal, and temporal regions in both age groups (Figure 7a; Table S13-14). Notably, there 

were multiple nodes from the subsystems of the default network and CONT-B identified as 

connector hubs in the bilateral regions of the inferior parietal lobe and AG. Furthermore, both age 

groups had connector hubs in the right MTG and MFG. In older adults, additional connector hubs 

were found in the left inferior temporal gyrus and the frontal pole. A linear model revealed nodes 

with stronger PC only in the graphs of older adults: in the frontal pole, which was also identified as a 

connector hub, STG, and bilateral fusiform gyri (Figure 7b; Table S15).  

 

Figure 7. Topology of network hubs in young and older adults. (a) The normalized participation 
coefficient (PC) was calculated for individual orthogonal minimum spanning trees (OMST). Graphs 
display the PC of each node for the average OMST in each age group (top). For visualization 
purposes, the strongest 5% of connections are shown. Stronger PC values are reflected by color 
and node size. The higher the PC, the more a node is connected with nodes from other 
communities. The node with the highest PC value in each age group is extracted and displayed with 
its neighboring nodes colored by community (middle). Note that these connector hubs are 
connected to many different communities. Connector hubs were defined in each age group via PC 
values at least 1SD above the mean. In both groups, connector hubs were detected in frontal, 
parietal, and temporal regions (bottom). (b) A linear model with age as predictor revealed nodes 
with stronger PC only in older adults. The top and middle graphs were plotted using the ForceAtlas2 
algorithm. The force-directed layout causes nodes of the same community to cluster together and 
diversely connected hubs (connector hubs) to appear in the center of the graph. 
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Discussion 
The neural bases of cognitive aging remain poorly understood. It is especially debated how age-

related neural reorganization impacts cognition. A better understanding of the neural resources that 

help to maintain cognitive functions and counteract decline would be mandatory to design efficient 

treatment and training protocols. In the present study, we approached this unresolved issue by 

investigating the functional connectome of young and older adults in semantic cognition, a key 

domain of human cognition largely preserved in healthy aging. Our results demonstrate a 

reconfigured network architecture with age even when word retrieval abilities remain intact. Overall, 

networks showed increased integration of task-negative and task-positive networks with age which 

manifested as increased coupling between functional connectivity networks, reduced segregation of 

global brain systems, and a larger number of connector hubs in brain graphs of older adults. 

Associating these network profiles with behavior revealed intact, albeit less efficient, performance 

for more integrated systems in older adults. These findings shed new light on the frequently 

reported pattern of declining brain system segregation with age and its impact on cognition (Chan et 

al., 2014; Geerligs et al., 2014). Our results indicate a compensatory role of increased brain system 

integration but also reveals its limitations in terms of economical processing. 

Using task-based fMRI data and group spatial ICA, we characterized seven higher-order 

large-scale functional networks relevant to semantic word retrieval. These included default, 

semantic, frontoparietal control, and attention networks. Notably, our analysis detected two 

networks associated with semantic processing: a network component that showed strong activity in 

frontal regions that have been attributed to semantic control processes (Jackson, 2021) and another 

component overlapping with the subnetwork DMN-B (Yeo et al., 2011), which has been proposed to 

facilitate access to semantic knowledge (Smallwood et al., 2021). Thus, these two semantic sub-

networks appear to represent complementary aspects of semantic cognition. Moreover, in line with 

our previous work (Martin et al., 2022), we detected default and cognitive control systems, lending 

support to the notion that networks that have been characterized as anti-correlated during resting-

state become functionally integrated for successful task processing when controlled access to 

semantic memory is required (Krieger-Redwood et al., 2016). Indeed, exploring task-based 

functional connectivity showed strong positive coupling between distinct cognitive networks in both 

age groups. Two subnetworks of the default network, DMN-A and DMN-B, were strongly coupled 

with the frontoparietal control network. This finding agrees with accumulating evidence that the 

default network integrates with control and executive resources during goal-directed task processing 

(Krieger-Redwood et al., 2016), especially when complex behavior is supported by knowledge 

(Wang et al., 2021), and thus enables flexible cognition (Smallwood et al., 2021). 

Examining age-related differences in network coupling revealed additional integration of 

distinct networks with age. Older adults showed stronger positive coupling of SEM, CONT-B, and 

DAN-A with VAN-B relative to young adults, suggesting an increased cognitive demand during 
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semantic processing. In contrast, networks of young adults displayed stronger decoupling of default 

with attention networks. Previous work indicates that young adults can benefit from a more 

integrated brain organization in situations of high task demand to facilitate information flow across 

components (Vatansever et al., 2015; Cohen and D’Esposito, 2016; Zhang et al., 2020). Our results 

transfer this observation to the aging brain and demonstrate increased crosstalk between networks 

with age. Importantly, when we associated the differences in network coupling with behavior, we 

found that enhanced coupling of different cognitive systems like default and attention networks was 

associated with consistently high but less efficient performance in older adults. Consistent with 

results from different cognitive domains (Gallen et al., 2016; Adnan et al., 2019; Crowell et al., 2020; 

Deng et al., 2021), we demonstrate that enhanced network integration with age is linked to high 

accuracy but at the cost of efficiency. While such reorganization helps older adults to maintain 

cognitive flexibility, it might not be the most efficient form of wiring. 

We applied graph theory to further explore age-accompanied changes in the network 

architecture. Our results revealed global decreases in segregation and efficiency with age. The 

reduction of segregation in older adults is in line with previous work from resting-state (Chan et al., 

2014; Sala-Llonch et al., 2014; Geerligs et al., 2015) and task-based studies (Geerligs et al., 2014; 

Gallen et al., 2016; Crowell et al., 2020), as well as longitudinal investigations (Betzel et al., 2014; 

Cao et al., 2014; Chong et al., 2019), and suggests that aging is associated with a reduced ability 

for specialized processing within highly connected clusters (Rubinov and Sporns, 2010). This was 

confirmed by our results on segregation of each individual network where young adults generally 

showed stronger segregation. 

In terms of global efficiency, most studies reported lower global efficiency in older adults 

(Sala-Llonch et al., 2014; Chong et al., 2019; Gonzalez-Burgos et al., 2021), although others have 

also reported no changes or even increases with age (Cao et al., 2014; Chan et al., 2014; Song et 

al., 2014; Geerligs et al., 2015). These discrepancies might stem from methodological 

considerations such as the number of nodes in a brain graph since global efficiency is based on the 

length of its edges (Zalesky et al., 2010) or different thresholding methods of connectivity matrices 

like the commonly applied proportional thresholding, which has been shown to introduce spurious 

correlations and inflate group-related differences in graph metrics (van den Heuvel et al., 2017). To 

avoid these pitfalls, our calculation of global efficiency was based on the recently developed OMST 

(Dimitriadis et al., 2017), a data-driven approach of individualized graph construction with high 

reliability (Jiang et al., 2021; Luppi and Stamatakis, 2021). 

Reduced global efficiency implies higher wiring cost and a less efficient information flow 

among distributed networks of the global brain system (Bullmore and Sporns, 2012). This is 

especially relevant for the processing of complex cognitive functions like semantic word retrieval 

which require the integration of distinct networks, as revealed by our functional connectivity 

analyses. At the neurobiological level, these changes have been associated with reduced functional 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.05.10.491274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491274
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

connectivity of long-range connections in older adults (Sala-Llonch et al., 2014). Thus, even though 

functional networks become more integrated with age, potentially due to stronger activation of more 

but less specialized nodes, the efficient information transfer between networks is impaired leading 

to slower processing in aging. This observation may represent an overall decline of cognitive 

attention systems in the aging brain, reflected in slower responses with similar task accuracy, which 

was already evident at the behavioral level in our data. 

Additional evidence for this interpretation stems from the larger number of connector hubs in 

older adults. In the young brain, an increase of connector hubs has been linked to enhanced task 

demands to facilitate integration across different networks and enable better task performance 

(Bertolero et al., 2018; Zhang et al., 2020). Resting-state studies in healthy aging also reported 

more connector hubs, indicating a reduced distinctiveness of network-specific nodes (Geerligs et 

al., 2015; Chan et al., 2017; Chong et al., 2019). Our work confirms these findings during task 

processing and allows an interpretation in light of the semantic nature of our task. Nodes with a 

higher participation coefficient in older adults were located in frontal and temporal regions and 

associated with CONT-B, DAN-A, and SEM networks. This result underlines the enhanced cognitive 

demand during semantic word retrieval with age and provides a mechanistic explanation for the 

frequently reported pattern of over-activation of prefrontal control regions during demanding task 

processing in older adults (Davis et al., 2008). A reduced selectivity in activation of network nodes 

and hence an over-recruitment of less specialized brain regions leads to a decline in efficient neural 

processing between brain regions, and this process might form the basis of neural dedifferentiation 

in aging (Chan et al., 2017; Chong et al., 2019). Its effect on cognition, aberrant or compensatory, 

depends on the neurocognitive requirements of a task. 

Exploring the topology of task-relevant neural networks as a function of cognitive 

performance allowed us to directly link observed age-related differences with behavior. Results 

showed that young adults strongly capitalized on a more segregated system during task processing 

in the form of faster and better performance. In contrast, increasing whole-brain segregation 

predicted faster but not better performance in older adults, whereas increasing global efficiency 

predicted better performance across groups but faster responses only in older adults. These 

findings have important implications for current theories on the behavioral impact of network 

reorganization in aging. While a less selective and more integrated network organization might not 

be the most efficient system in terms of processing speed, it enables older adults to maintain high 

performance. However, stronger integration does not automatically imply a more efficient system as 

evident by a generally reduced global efficiency in brain graphs of older adults and a predicted 

faster response in a more efficient system. Our findings lend support to a compensatory mechanism 

of age-accompanied reconfiguration in network topologies. Importantly, they also reveal the 

limitations of such compensatory reorganization processes and demonstrate that a youth-like 
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network architecture in terms of balanced integration and segregation is associated with more 

economical processing.  
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