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Abstract 

A rich repertoire of oscillatory signals is detected from human brains with electro- and 

magnetoencephalography (EEG/MEG). However, the principles underwriting coherent oscillations 

and their link with neural activity remain under debate. Here, we revisit the mechanistic hypothesis 

that transient brain rhythms are a signature of metastable synchronization, occurring at reduced 

collective frequencies due to delays between brain areas. We consider a system of damped 

oscillators in the presence of background noise – approximating the short-lived gamma-frequency 

oscillations generated within neuronal circuits – coupled according to the diffusion weighted 

tractography between brain areas. Varying the global coupling strength and conduction speed, we 

identify a critical regime where spatially and spectrally resolved metastable oscillatory modes 

(MOMs) emerge at sub-gamma frequencies, approximating the MEG power spectra from 89 healthy 

individuals at rest. Further, we demonstrate that the frequency, duration, and scale of MOMs – as 

well as the frequency-specific envelope functional connectivity – can be controlled by global 

parameters, while the connectome structure remains unchanged. Grounded in the physics of delay-

coupled oscillators, these numerical analyses demonstrate how interactions between locally 

generated fast oscillations in the connectome spacetime structure can lead to the emergence of 

collective brain rhythms organized in space and time. 

Introduction 

The human brain is one of the most complex networks in nature, exhibiting a rich repertoire of 

activity patterns organized not only in space and time but also in the frequency domain. Indeed, 

rhythmicity is a central property of brain function – and perhaps of all biotic self-organisation: from 

fast gamma activity in neurons to the life-cycle itself1-4. Within the broad range of oscillations 

emerging at frequencies between 0.05 Hz and 500 Hz, the oscillations detected extracranially with 

electro- and magnetoencephalography (EEG/MEG) in resting humans typically peak between 0.5 and 

30 Hz, being categorized as delta (~0.5-4 Hz), theta (~4-8 Hz), alpha (~8-13 Hz) and beta (~13-30 Hz)
5
. 

Notably, these oscillations lock in phase over long distances, generating metastable spatial 

topographies lasting up to a few hundred milliseconds6-8. 

Falling significantly below the range of frequencies generated in local neuronal networks by 

feedback inhibition (>35Hz, in the gamma frequency range), it is generally agreed that sub-gamma 

oscillatory activity does not have a purely local origin and is associated with synchronization 

between distant neural assemblies
9-14

. Notably, there is a relation between the distance over which 

synchronization is observed and the frequency of the synchronized oscillations15-17. Specific brain 
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circuitries, including among others the thalamocortical loop, have been proposed to play a role in 

the generation of rhythmic activity
18-20

, which appears disrupted in neurological/neuropsychiatric 

disorders 1,21. Still, the fundamental mechanisms driving the spontaneous emergence of short-lived 

spatially and spectrally resolved oscillatory patterns remain unclear9,22-24.  

Given the spatial distance and the finite propagation speed, interactions between brain 

areas are intrinsically time-delayed, which can manifest in network activity in the frequency domain. 

Indeed, delay-coupled limit-cycle oscillators have been demonstrated to synchronize at frequencies 

slower than the natural frequency of the oscillators, leading to a form of collective frequency 

emerging from synchronization mechanisms25,26. Briefly, when N phase oscillators – with natural 

frequency ω – are coupled together with a time delay τ, they synchronize at a delay- and interaction-

dependent collective frequency Ω  given by Ω =ω /(1+K*N*τ), where K is the global coupling 

strength
25

. However, this phenomenon has so far only been demonstrated for networks of limit-

cycle oscillators25, and it is unclear how it generalizes to systems where oscillations are not self-

sustained, but instead emerge only transiently. 

Computational models have proved helpful for demonstrating how the brain’s complex 

network structure of long axonal projections connecting brain areas – the so-called structural 

connectome27 - can shape brain activity in space and time28-36. Particularly, simulations of oscillatory 

units interacting in the connectome reveal a critical regime where different subsets of units 

temporarily synchronize and desynchronize, leading to transiently correlated activity across spatially 

segregated units30,37-39. This reinforces the hypothesis that long-range functional connectivity 

between brain areas is driven by synchronization mechanisms24,40-44. Importantly, when considering 

realistic time delays in the Kuramoto model of coupled phase oscillators, periods of increased 

synchrony are accompanied by increased power at slower frequencies, generating spatially-

organized band-limited power fluctuations similar to the ones captured with MEG38. While these 

numerical results revealed the critical role of time delays to generate collective oscillations at 

reduced frequencies, it remains to be verified whether this phenomenon holds in the more realistic 

setting, wherein local oscillations have fluctuating amplitude – which is neglected in the Kuramoto 

model –, as observed empirically in electrophysiological recordings of neural activity45,46. 

Furthermore, understanding the parameters that control the duration, size and occupancy of 

collective oscillations is crucial to inform the prediction of therapeutic strategies aimed at 

modulating dysfunctional oscillatory brain activity. 

To address these fundamental questions, we build a phenomenological brain network model 

with realistic connectivity and time delays, where each node is described by a Stuart-Landau 
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oscillator operating in the subcritical regime, i.e., responding to a stimulus with an oscillation with 

decaying amplitude 
34,35,47

. As the amplitude dynamics introduces an additional degree of 

complexity, it needs to be verified if the analytic predictions made for coupled limit-cycle 

oscillators48 (valid for phase oscillators or supercritical Stuart-Landau oscillators) still hold49. Selecting 

40Hz as a typical frequency of gamma oscillations, we set all units with identical natural frequency to 

exclude additional effects of frequency dispersion50,51, and perturb all units with uncorrelated white 

noise, considering that units resonate at their natural frequency in the presence of background noisy 

activity
52

. Assuming the generalizability of collective synchronization frequencies to delay-coupled 

damped oscillators, we hypothesize to identify a critical range of global model parameters (global 

coupling and conduction speed) where metastable synchronization generates the transient 

emergence of sub-gamma collective oscillations, approximating features of human MEG recordings. 

Results  

Dynamical regimes of the brain network model  

The reduced brain network model comprises N=90 dynamical units representing anatomically 

defined brain areas coupled according to a normative structural connectome of the human brain 

(see Methods – Structural Connectome) with reciprocal (i.e., bidirectional/symmetric) coupling CNxN 

and distance DNxN matrices (Figure 1a). Each unit is described by a Stuart-Landau oscillator operating 

in the subcritical (underdamped) regime, such that when perturbed it decays to a fixed-point 

equilibrium with a damped oscillation at a natural frequency ω  (Figure 1b), in contrast with the 

supercritical regime, where the oscillations are in a limit cycle (Figure 1c, see Methods and 

Supplementary Note 1). 

 

 

Figure 1 – a – The phenomenological brain network model consists in N=90 nodes representing brain regions with links 

representing diffusion tracts between them. b – A Stuart-Landau oscillator in the subcritical regime responding to 
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perturbation (vertical arrow) with an oscillation with decaying amplitude.  c – In the supercritical regime, the Stuart-Landau 

oscillator enters a limit-cycle (with constant amplitude), approximating a phase oscillator. 

  

To verify that novel frequencies emerge purely from delayed interactions, the natural 

frequency of all units is set at ω = 40Hz (representing the resonant frequency of isolated neural 

masses driven by feedback inhibition) and each unit is perturbed with uncorrelated white noise. The 

model – represented mathematically by a system of stochastic delay coupled differential equations – 

is solved numerically for two parameter ranges: the global coupling strength, K, which scales all 

pairwise connections, and the mean conduction delay, �τ�, which scales the time delays between 

units in proportion to the diffusion tract lengths (Figure 2, see Methods for details). 

The synchrony degree of the system, evaluated using the Kuramoto Order Parameter (KOP), 

is modulated by the global coupling strength K: for weak coupling, the synchrony is low, and all units 

exhibit oscillations close to the natural frequency ω (Figure 2a). In the critical range between 

incoherence and full synchrony, periods of weakly stable synchronization drive slow fluctuations in 

the KOP (Figure 2b). For sufficiently strong coupling, all units tend to synchronize at a global 

collective frequency Ω, which, in the presence of time-delays, is distinct from the natural frequency 

ω (Figure 2c).  

Observing the levels of synchrony and metastability across the range of parameters explored 

(Figure 2d-e), we find that the critical value of K above which the system can synchronize increases 

logarithmically with the mean delay, in line with analytic predictions for coupled oscillators with 

heterogeneous delays
53

 (see Supplementary Note 2 and Supplementary Figure 5). When 

synchronization occurs in the presence of delays, we observe a sharp decrease in the global peak 

frequency (Figure 2f), closely approximating the analytic prediction given by Ω =ω /(1+K*N*�τ�) 

(Figure 2g, see also Supplementary Note 2 and Supplementary Figure 6).  

These findings serve to verify that the phenomenon of synchronization at reduced collective 

frequencies is not restricted to coupled phase oscillators and generalizes to units in the subcritical 

regime, where damped oscillations emerge in response to perturbation (Supplementary Figure 7). 

Further, it demonstrates that the peak frequency of synchronization can be predicted analytically 

from global variables such as the mean natural frequency ω, the number of units N, the coupling 

strength K, and the mean delay �τ�. The robustness of this prediction to distributed natural 

frequencies is reported in Supplementary Figure 8. 
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Figure 2 – Collective oscillations emerge at reduced frequencies from time-delayed synchronization. The system of N=90 

coupled oscillators, �, was simulated for 50 seconds in the presence of white noise, varying only two global parameters: the 

Global Coupling K (increasing exponentially to better capture the effect of delays) and the conduction speed, which scales 

the Mean Conduction Delay. a,b,c – To illustrate the effect of the coupling strength in the frequency of synchronization, the 

collective signal given by ∑ ��
�
��� . with N=90 is reported for three levels of global coupling, keeping the same mean 

conduction delay of 5 milliseconds. The corresponding power spectra are reported on the right of each plot, and the 

Kuramoto Order Parameter (KOP) is reported below. For weak coupling (a) the simulated signal exhibits oscillations peaking 

close to the node’s natural frequency. For intermediate coupling (b), weakly stable synchronization generates transient 

oscillations at reduced frequencies. For strong coupling (c), global synchronization becomes more stable, and all units are 

entrained in a collective oscillation at a reduced frequency. For intermediate coupling, fluctuations in the order parameter 

are indicative of metastability. d-g – For each simulation across the parameters explored, we report: (d) the mean of the 

KOP (referred to as Synchrony); (e) the standard deviation of the KOP (referred to as Metastability
54

); (f) the peak frequency 

of the simulated collective signal; (g) the synchronization frequency predicted analytically, showing agreement with 

simulation results for sufficient synchrony. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2022. ; https://doi.org/10.1101/2022.01.06.475196doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475196
http://creativecommons.org/licenses/by-nd/4.0/


 7

Simulations reveal spectral features of human brain activity  

One characteristic feature of MEG (and EEG) signals from healthy humans at rest is the 

transient emergence of oscillations in the alpha frequency range (~8-13Hz), resulting in a peak in the 

power spectrum whose prominence varies strongly across people (see Figure 3a for the normalized 

power spectrum of MEG signals from 89 healthy young adults resting with eyes open from the 

Human connectome Project open-source database; details in Methods section, individual power 

spectra reported in Supplementary Figure 9). 

 

Figure 3 – Approximation of human magnetoencephalography (MEG) power spectra (PS) in a critical range of 

parameters. a - MEG power spectra from 89 healthy young adults resting with eyes open from the open-source database of 

the Human connectome Project. The average power spectrum across individuals is reported in blue. b – For each pair of 

parameters, the power spectra of the simulated signals (averaged across units and normalized between 0 and 80Hz) is 

reported. c – Squared Euclidean distance between the MEG power spectrum averaged across all sensors and subjects and 

the power spectrum of the simulated signals. Asterisks indicate the sets of parameters that optimally approximate the MEG 

power spectra of each of the 89 individuals (size scaled according to the number of subjects in each point).  

We find that the brain network model approximates the average MEG power spectrum of 

awake resting subjects within the critical region of high metastability where synchronization occurs 

at reduced collective frequencies (comparing Figure 3c with Figure 2e-f). In detail, for each pair of 

model parameters we calculate the squared Euclidean distance between the power spectrum of the 

simulated signals (Figure 3b) and the MEG power spectrum averaged across all sensors and all 

subjects (Figure 3a), revealing the greatest disparity when no delays are considered or if the global 

coupling is too weak (see Methods for details). 
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 Given the observed (and well-established) variability between MEG power spectra across 

individuals (Figure 3a), we investigate the extent to which this variability can be associated with 

changes in global model parameters, while keeping the structural connectivity unchanged. To do so, 

we identify the pair of model parameters that approximates the individual MEG power spectra of 

each of the 89 participants, falling in 29 pairs of parameters (white asterisks in Figure 3c, see also 

Supplementary Figure 10). Notably, this reveals a confined region in parameter space for a range of 

average delays �τ� of 2 to 11 milliseconds, with slight changes in the coupling strength and 

conduction speed maximizing the fit to individual MEG power spectra, while the structural 

connectivity remains unchanged. These results do not exclude the role of individual variability in 

structural connectivity across subjects but reveal additional parameters that modulate a network’s 

frequency spectrum. This serves to demonstrate that the same connectome structure can support 

distinct activity patterns depending on global model parameters, with longer/shorter time delays 

and stronger/weaker coupling inducing shifts in the peak frequency and modulating the distribution 

of power across the spectrum (Figure 3b).  

 

Metastable Oscillatory Modes emerge from weakly stable cluster synchronization 

In the range of parameters where the model optimally approximates the power spectrum of 

MEG signals, fluctuations in the magnitude of the order parameter are driven by metastable cluster 

synchronization. In other words, when the coupling is strong, but not sufficiently strong to stabilize 

full synchronization, some subsets of units that are more strongly connected together (i.e., 

clusters/communities) can engage in partially-synchronized modes that remain stable for a short 

period in time. Given the presence of time delays, these clusters do not synchronize at the natural 

frequency of the individual units (ω =40Hz), but instead synchronize at slower cluster-specific 

collective frequencies, leading to the emergence of metastable oscillatory modes (MOMs) at sub-

gamma frequencies. 

To detect the occurrence of MOMs and characterize them in space and time, we band-pass 

filter the simulated signals in 4 frequency bands (delta 0.5-4Hz, theta 4-8Hz, alpha 8-13Hz and beta 

13-30Hz). In Figure 4, a coloured shade is added when the amplitude in each frequency band 

exceeds 5 standard deviations of the amplitude in that same frequency range detected in 

simulations without delays (see Supplementary Note 3, Supplementary Figure 11). 
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Figure 4. Sub-gamma oscillations emerge from weakly stable cluster synchronization.  a – An example of the simulated 

signals in all 90 units plotted over 25 seconds, each representing a brain area from a brain parcellation template, filtered 

below 30 Hz to highlight the sub-gamma oscillatory activity typically detected with magnetoencephalography (MEG). 

Shades indicate the time points of increased power in the delta (yellow), theta (red), alpha (blue) and beta (green) 

frequency bands. For each frequency band, the threshold was defined as 5 standard deviations (STD) of the amplitude – in 

the same frequency bands – when no delays were considered. For the simulations, the resonant frequency, ω0, of all units 

was set to 40Hz, the conduction speed was tuned such that the average delay between units, ���,  was 3 milliseconds (ms) 

and the global coupling strength was set to K=10.  b –The mean amplitude envelope (blue) of the filtered signals shown in 

(a) correlates with a Pearson’s correlation coefficient r=0.7595 with the phase synchronization evaluated by the Kuramoto 

Order Parameter (orange, right y-axis).  

 

As shown in Figure 4, we find that MOMs are structured both in space and in time. 

Specifically, the units synchronizing together exhibit the simultaneous emergence of an oscillation at 

the same collective frequency, leading to the vertical alignment of shaded areas, particularly visible 

for the alpha frequency range in Figure 4a. Notably, for different sets of parameters, the 

configuration of Figure 4a changes strongly. Indeed, while for very weak coupling, almost no supra-

threshold oscillations are detected (Supplementary Figure 12), for stronger coupling globally 

synchronized supra-threshold oscillations emerge transiently in the delta band (Figure 5a). For 

longer delays, oscillations are detected with a less definitive temporal alignment between brain 

areas (Supplementary Figure 13).  
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Figure 5 - Global delta waves emerge for strong coupling.  a – The simulated signals in all 90 units plotted over 25 seconds, 

each representing a brain area from a brain parcellation template, filtered below 30 Hz to focus on the sub-gamma 

oscillatory activity typically detected with magnetoencephalography (MEG). Shades highlight the time points of increased 

power in the delta (yellow), theta (red), alpha (blue) and beta (green) frequency bands. For each frequency band, the 

threshold was defined as 5 standard deviations (STD) from the amplitude in the same frequency bands when no delays were 

considered. These simulations were performed setting the resonant frequency of all units ω0 = 40Hz, the average delay 

between units, ��� = 3 milliseconds (ms) and the global coupling strength was increased to K=50 with respect to the 

simulations shown in Figure 4.   b –The mean amplitude envelope (blue) of the filtered signals shown in panel A correlates 

with r=0.8247 with the phase synchronization evaluated by the Kuramoto Order parameter (orange, right y-axis).  

Furthermore, the power at sub-gamma frequencies is found to correlate strongly with the 

instantaneous phase synchronization evaluated by the KOP over time (r=0.7595 and r=0.8247 for 

Figure 4b and Figure 5b correspondingly). This demonstrates that the emergence of oscillations at 

sub-gamma frequencies in the simulations is modulated by fluctuations in the synchrony degree.  

We further define quantitative metrics to characterize the MOMs emerging at different 

frequency bands for different sets of model parameters in terms of their duration (i.e., consecutive 

time that the power remains above threshold), their size (i.e., the number of units simultaneous 

displaying power above threshold) and occupancy (i.e., the proportion of time that the power is 

detected above threshold).  
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As can be seen in Figure 6, in the range of parameters where optimal fits to MEG data are 

obtained (Optimal Range), the alpha MOMs last longer, recruit more units and occur more often. 

Importantly, we demonstrate that global parameters, such as the coupling strength and the 

conduction speed, modulate the spatiotemporospectral properties of the whole system in a non-

trivial way, while the dynamics at the local level and the underlying structural network remain 

unchanged. 

 

 

Figure 6. Characterization of metastable oscillatory modes (MOMs) emerging from the system. For different Global 

Coupling strength (K) and Conduction Delays ���, MOMs are characterized in terms of duration (i.e., consecutive time that 

the power remains above threshold), size (i.e., the number of units simultaneous displaying power above threshold) and 

occupancy (i.e., the proportion of time that the power is detected above threshold over the entire simulation), for each 

frequency band. This demonstrates that the same network structure, i.e., the connectome, can exhibit different oscillatory 

modes organized in space and in time, depending on global parameters of the system. In the critical range of parameters 

(Optimal Range), oscillations in the alpha frequency band emerge more frequently and involve more units. Globally 

synchronized delta oscillations – as typically observed in states of reduced consciousness – are associated to an increase in 

the global coupling strength (Strong Coupling). Error bars represent 1 standard deviation. See also Supplementary Movie 1. 

 

The implicit sensitivity to global model parameters is illustrated in Figure 7, where the 

emergence of supra-threshold oscillations in different frequency bands is represented in the brain at 

a single time point for five distinct sets of parameters. The evolution over time is shown in 

Supplementary Movie 1. 
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Figure 7 - Metastable Oscillatory Modes (MOMs) emerge transiently from interactions in the Connectome spacetime 

structure only for sufficient coupling and conduction times. Each brain area is represented as a sphere located at its centre 

of gravity. A colour code is used to highlight the brain areas with power exceeding 5 standard deviations from the baseline 

power at a given time point. This image is a still frame from Supplementary Movie 1. While the structural connectome is the 

same for all simulations, MOMs only emerge at reduced frequencies in the presence of Conduction Delays ��� and for 

sufficient Coupling strength (K). 

Frequency-specific functional connectivity 

 To link with studies of functional connectivity in MEG, we further investigate how the model 

parameters modulate the correlation between the amplitude envelopes across frequency bands. To 

do so, we band-pass filter the signals in each frequency band, extract the amplitude of the Hilbert 

transform and report the envelope correlation matrices in Figure 8 for each frequency band and for 

four representative sets of model parameters. For weak coupling, the envelope correlations are 

close to zero (Pearson’s correlation coefficient cc<0.1 for all pairs of brain areas), indicating that the 

coupling is insufficient to drive functional connections between brain areas. For global parameters in 

the optimal range (here K=10 and �τ�=3ms), different brain areas exhibit correlated envelopes, with 

stronger correlations (up to cc=0.78) being detected in the alpha frequency range. In contrast, for 

strong coupling the functional connectivity in the alpha band is reduced (maximum pairwise 

correlation of cc=0.25), while the envelopes of delta and theta oscillations are strongly correlated 

across the brain (up to cc=0.89). Keeping the optimal range of global coupling, K=10, but increasing 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2022. ; https://doi.org/10.1101/2022.01.06.475196doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475196
http://creativecommons.org/licenses/by-nd/4.0/


 13

the delays to an average of �τ�=20ms, envelope functional connectivity is detected mostly in the 

delta frequency range. This illustrates how, given the same underlying spacetime network structure 

(i.e., the matrices of coupling weights C and distances D), changes in global parameters strongly 

affect the envelope functional connectivity patterns at different frequency bands. 

 

Figure 8. Influence of global model parameters in frequency-specific envelope functional connectivity patterns. For 4 

simulations obtained with different Global Coupling strength (K) and Conduction Delays ���, we report the frequency-

specific functional connectivity (FC) estimated as the correlation matrices of the envelopes of signals band-pass filtered in 

the delta (�), theta (�), alpha (	) and beta (
) frequency bands. The colormap limits of the matrices are scaled by the 

maximum absolute correlation and centred at zero. Next to each matrix, each of the N=90 brain areas is represented as a 

sphere placed in its centre of gravity and coloured according to the maximum envelope FC to any other brain area (same 

colorbar applied to all spheres, scaled between -1 and 1). 

 To illustrate the level of functional connectivity across the brain, next to each correlation 

matrix in Figure 8, we represent each area as a sphere placed at its centre of gravity and coloured 

according to the strongest correlation with any other brain area. This shows that, for the optimal 

range of parameters, the areas exhibiting the strongest functional connectivity in the alpha band are 

distributed mostly in posterior and dorsal cortical areas, aligning with empirical observations of 

stronger functional connectivity in the alpha band in the visual and somatomotor systems. However, 

it is important to consider that the specific spatial configuration of functional connections is 

inherently dependent on the resolution and topology of the structural connectome, which is known 

to depend on the parcellation scheme and on the brain parts (i.e., cortical, subcortical) considered. 

In Supplementary Methods 1, we perform the same analysis on data simulated using a structural 
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connectome including 200 cortical-only brain areas55. These results show that, while the 

phenomenology of MOMs is robust to changes in the parcellation scheme, the spatial specificity 

across frequency bands is sensitive to the parcellation scheme considered (Supplementary Figures 

16 and 17). Most importantly, this analysis illustrates how frequency-specific functional connectivity 

patterns depend sensitively on global variables modulating the distributed dynamics, while the 

structural connectivity remains unchanged. 

Discussion 

 This work addresses the physical mechanisms underlying brain rhythms detected 

empirically, employing a reductionist perspective to ground the inner complexity of 

encephalographic signals to universal theoretical principles
56,57

. Approaching the problem from a 

macroscopic perspective, we focus on the emergent properties of interacting dynamical units, where 

the collective ensemble engages in functionally relevant activity patterns that cannot be inferred 

from the isolated units alone
58-61

.  

Specifically, we first demonstrate the generalizability of a synchronization mechanism 

described for networks of delay-coupled limit-cycle oscillators to networks of delay-coupled damped 

oscillators (i.e., in the subcritical range of a Hopf bifurcation). This is important for the neuroscience 

field, since empirical electrophysiological recordings show that local field oscillations in the gamma 

frequency band are not limit-cycle oscillations (as considered in previous models using the Kuramoto 

of coupled oscillators
20

), but instead emerge only transiently. Therefore, the substantial reduction of 

brain areas to phase oscillators in Cabral et al. (2014) has raised concerns on the generalizability of 

the proposed mechanism to more realistic settings, given the demonstrated importance of 

considering the amplitude dynamics on the connectivity between phases 48,49,62,63. 

Subsequently, we extend on previous brain network modelling works by demonstrating that 

the synchronization frequency can be approximated analytically from global model parameters, 

namely the number of units, the mean coupling strength, the average time delay between units, and 

the mean natural frequency of the units. Regarding the latter, we show that, in the presence of 

delays, the system is less sensitive to the spread of frequencies across units, in line with theoretical 

predictions25 (Supplementary Figure 8).  

 These insights are crucial to explain the macroscopic spatiotemporally organized oscillatory 

signals detected with EEG/MEG at sub-gamma frequencies, without explicitly introducing these 

oscillations in the model
64

. Here, we consider that only gamma-frequency oscillations can be 

generated at the local neuronal level, with power at other frequencies resulting purely from 
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synchronization with time delays. Furthermore, we demonstrate the impact of global model 

parameters in the modulation of frequency-specific collective oscillations emerging across space and 

time. The detailed characterization of metastable oscillatory modes in terms of number of units 

synchronizing together, duration and occupancy provides a new framework to analyse collective 

brain oscillations complementary to frequency-specific envelope functional connectivity analysis. 

Our hypothesis is endorsed using a phenomenological brain network model, reduced to its 

key essential ingredients to allow efficient numerical approximations to analytic predictions, but at 

the same time sufficiently complex to allow a fair approximation of MEG spectral features. The 

deliberate reductionist perspective inherent in this brain network model is intended to link with 

theoretical works on delay-coupled oscillatory systems25,53,65,66. Towards this end, we consider 

identical units with same natural frequency, same damping coefficient and same noise level, coupled 

in the structural connectome. Therefore, we focus solely on the effects of global variables, namely 

the global coupling K and the mean conduction delay �τ� in the emerging synchronization 

phenomena. To establish the construct validity of our numerical simulations, we show that the peak 

synchronization frequency can be approximated by the analytic prediction derived for synthetic 

networks of coupled Kuramoto oscillators with time delays 25. Further, in line with theoretical 

predictions53,67, we find that the complex spacetime topology of the structural connectome widely 

expands the critical border between incoherence and global synchrony where fluctuations in the 

order parameter are indicative of metastability25. Despite its simplicity, this model provides a robust 

framework to test a theoretically grounded mechanistic scenario for the spontaneous formation of 

frequency-specific long-range coherence in complex networks.  

While the investigation of mechanistic principles and control parameters benefits from 

reduced complexity, adding heterogeneity is certainly needed to improve the fitting to real brain 

activity from individuals in different conditions. Building up on these fundamental aspects, additional 

degrees of complexity can be added to the model, namely by considering more fine-grained 

connectome structures, considering non-homogeneous intrinsic frequencies and damping 

properties, or even replacing the noisy input by dynamic concentration patterns to mimic local 

neuromodulatory effects. Further, given the potential generalizability of this synchronization 

mechanism, we expect our analysis may provide valuable insight to interpret some of the complex 

self-organizing phenomena emerging in more realistic biophysical models of neural networks68,69 for 

which a precise analytic prediction cannot be solved. 

 Our findings reinforce the idea that conduction delays – often neglected in network models 

of whole brain activity due to the added complexity – play a crucial role in shaping the frequency 
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spectrum of coupled oscillatory systems. Although the frequency of the oscillations considered 

herein is relatively fast with respect to the ultra-slow fluctuations (<0.1 Hz) detected with functional 

Magnetic Resonance Imaging (fMRI), it is important to highlight that metastable synchronization 

drives power fluctuations on ultra-slow timescales, and therefore, even relatively short time delays 

can significantly modulate spontaneous activity at ultra-slow time-scales. We note that for the 

numerical integration of stochastic delay differential equations to be stable and align with analytic 

predictions, the time step for numerical integration needs to be sufficiently small and a running 

history needs to be saved for the length of the maximum delay between units, which significantly 

increases the computation times when compared to simulations where delays are neglected (here 

the numerical results were found to stabilize for dt ≤ 10-4 seconds, see Supplementary Figures 18-

20). 

 The discovery of multistability in systems of delay-coupled oscillators, initially described in 

1999 by Young and Strogatz
65

 and extended to heterogeneous delays in 2009 by Lee, Ott and 

Antonsen53, was crucial to develop the theoretical hypothesis behind this work, opening grounds to 

speculate that this phenomenon may be related to the maintenance of the right balance between 

integration and segregation in living brains
70,71

. Beyond the range where the model best 

approximates healthy awake brain activity, we find that higher coupling enhances global order, 

where the whole brain displays slow coherent oscillations in the delta-range (0.5-2Hz), which nicely 

approximate the most powerful brain rhythms detected during unconscious states such as slow-

wave sleep, coma or anaesthesia. On the other hand, operating at weaker coupling hinders the 

formation of MOMs at sub-gamma frequencies, altering the spectral profile similarly to what is 

observed in M/EEG recordings of patients with neuropsychiatric disorders associated to 

disconnection, such as schizophrenia, where the power in alpha appears to be significantly 

reduced72-75. Such abnormal interactions within cortico-subcortical oscillatory networks may emerge 

from specific local deregulation or neural circuit disruption76. However, how a local change may alter 

the communication between brain-areas and brain network dynamics remains an open question. 

Overall, these results are aligned with recent works proposing that spontaneous transitions between 

multiple space-time patterns on complex networks provide a solid theoretical framework for the 

interpretation of the non-stationary but recurrent macroscopic patterns emerging spontaneously in 

brain activity, and ultimately supporting brain function
77,78

. From a technical perspective, it may be 

surprising that this kind of itinerant dynamics emerges under symmetrical coupling between nodes; 

in the sense that asymmetric coupling is normally required for breaking detailed balance – and 

engendering stochastic chaos of the sort described above. However, the dynamics of each node are 
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generated with asymmetric Jacobians, suggesting that symmetry breaking of intrinsic connectivity is 

a sufficient condition for the nonequilibrium dynamics that characterise real brains.  

While metastability appears to be crucial for brain function, the specific role of MOMs to 

support cognitive functions remains unclear
4,24,71,79,80

. One possibility is that the areas engaged in a 

MOM are directly involved in long-range functional integration, but another is that these areas are 

inhibited by entering in a collective low-energy mode13,41. Shedding some light on this open 

question, we find that synchronization with delays induces not only a shift to slower frequencies but 

also a decrease in amplitude, in line with theoretical studies reporting amplitude death in systems 

with distributed delays81 (see the vertical axes in Figure 2a-c, top panels). From a 'metabolic' 

perspective, this shows that MOMs can be approached as 'low energy modes' with respect to high 

power gamma oscillations, providing a physical explanation for the emergence of the so-called 'idle 

rhythms'82. Although the functional implications of this mechanism are beyond the scope of this 

work, we expect it will provide fertile grounds for the formulation of novel falsifiable predictions to 

be further tested.  Moreover, these findings give room to further investigations of how local 

perturbations can affect the spatiotemporospectral dynamics on the macroscopic scale, to gain 

insight on the mechanisms of action of perturbative strategies such as transcranial magnetic 

stimulation or deep brain stimulation. 

Methods  

Ethics statement 

All human data used in this study is from the public repository of the Human Connectome Project 

(HCP)
83

 (https://www.humanconnectome.org), which is distributed in compliance with international 

ethical guidelines. 

Structural connectome 

The NxN matrices of structural connectivity, C, and distances, D, used for the network model were 

derived from a probabilistic tractography-based normative connectome provided as part of the 

leadDBS toolbox (https://www.lead-dbs.org/)
84

. This normative connectome was generated from 

diffusion-weighted and T2-weighted Magnetic Resonance Imaging (MRI) from 32 healthy 

participants (mean age 31.5 years old ± 8.6, 14 females) from the HCP. The diffusion-weighted MRI 

data was recorded for 89 minutes on a specially-designed MRI scanner with more powerful gradients 

then conventional scanners. The dataset and the acquisition protocol details are available in the 

Image & Data Archive under the HCP project (https://ida.loni.usc.edu/). DSI Studio (http://dsi-
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studio.labsolver.org) was used to implement a generalised q-sampling imaging algorithm to the 

diffusion data. A white-matter mask, derived from the segmentation of the T2-weighted anatomical 

images, was used to co-register the images to the b0 image of the diffusion data using the SPM12 

toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Within the white-matter mask, 

200,000 most probable fibres were sampled for each participant. Then, fibres were transformed to 

the standard Montreal Neurological Institute (MNI) space applying a nonlinear deformation field 

derived from the T2-weighted images via a diffeomorphic registration algorithm85. The individual 

tractograms were then aggregated into a joint dataset in MNI standard space resulting in a 

normative tractogram representative of a healthy young adult population and made available in the 

leadDBS toolbox84.  

The NxN matrices were computed from the normative tractogram using the Automated Anatomical 

Labelling (AAL) parcellation scheme86 with N=90 cortical and subcortical areas, by calculating the 

number of tracts, C(n,p), and mean tract length, D(n,p), between the voxels belonging to each pair of 

brain areas n and p. Further details on the structural matrices in the AAL and other parcellation 

schemes are reported in Supplementary Methods 1 and Supplementary Figure 14.  

MEG power spectra from healthy participants  

The power spectra from human resting-state MEG signals were also downloaded from the Human 

connectome Project (HCP) database as a FieldTrip structure in a MATLAB file. The MEG power 

spectra are provided for 89 healthy participants at rest (mean age 28.7 years old, range 22–35, 41 

female) distinct from the 32 participants from which the structural connectomes were derived, but 

with similar age range and gender ratio. Resting-state MEG signals were recorded on a Magnes 3600 

MEG (4D NeuroImaging) with 248 magnetometers for 6 minutes and the “powavg” pipeline was 

used to obtain the power spectrum of the resting state MEG data in each MEG sensor. Briefly, the 

signals were segmented, Hanning-tapered, Fourier-transformed and the power spectrum was 

averaged over all segments. Notch filters were applied to remove the power line noise (cut-off 

frequencies 59-61 Hz and 119-121 Hz). Additional details are explained in the HCP reference manual 

(https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Re

ference_Manual.pdf). The MEG power spectra were averaged across the 248 sensors to obtain a 

power spectrum representative of each subject. 

Brain Network Model  

The Stuart-Landau (SL) equation (first term in Equation 1) is the canonical form to describe the 

behaviour of a system near an Andronov-Hopf bifurcation, i.e. exhibiting the birth of an oscillation 
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from a fixed point42,87. In other words, it is used to describe systems that have a static fixed point 

(like a resting spring), but respond to perturbation with an oscillation, which may damped or self-

sustained depending on the operating point of the system with respect to the bifurcation (see 

Supplementary Note 1 and Supplementary Figures 1-4). This model allows to describe complex-

systems behaviour among several applications, bridging the gap between the simplicity of the 

Kuramoto model and the extensiveness of the phase-amplitude frameworks88,89. It describes how 

the oscillator behaves both when it is weakly attracted to a limit cycle (displaying only damped 

oscillations in response to perturbation) and, on the other hand, when it is purely restricted to a 

limit cycle (oscillations remain self-sustained).   

Our analysis is based on a system of N=90  SL oscillators coupled in the connectome, considering 

both the connectivity strength, ���, and the conduction delays, ���, between each pair of brain 

areas � and �. The conduction delays are defined in proportion to the fiber lengths between brain 

areas, assuming an homogenous conduction speed v, such that ��� 	 
��/�, where 
�� is the 

length of the fibres detected between brain areas � and �. To simulate how the activity in node � is 

affected by the behaviour of all other nodes � 
� � � � � � ��, we describe the interaction 

between nodes in the form:  

 
���
�� � ���� � �	
 |���|� �
��������� 
 ���� 
������ � ��� � ����

�

���

, �� � �, (1) 

where the complex variable  ��
�� describes the state of the ���  oscillator at time t. The first term in 

equation (1) describes the intrinsic dynamics of each unit, the second term describes the input 

received from coupled units and the last terms represent uncorrelated white noise (see 

Supplementary Note 2 for detailed analysis of the model).  

With this approach, we consider that the first term of Eq. 1 represents the natural excitability of 

neuronal assemblies, where � 	 2� � ��  is the angular frequency, with �� as the fundamental 

frequency in Hertz. For our proof of concept, we set all nodes with identical natural frequency 

�� 	 2� � 40��, representing the undifferentiated ability of a neural mass to engage in gamma-

frequency oscillations.  

The parameter � determines the position of the each unit with respect to the limit cycle. For � � 0,  

a stable limit cycle appears via a superciritical Hopf bifurcation, while when � < 0 there is only a 

stable fixed point at the origin �� 	 0, so the bifurcation point is at � = 0. Importantly, if � is 

sufficiently close to the bifurcation, the system is still weakly attracted to the limit cycle and damped 

oscillations emerge in response to external input, with a decay time scaled by �. In this work, we 
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pick a value of � 	  5 for all nodes, such that a single input drives a damped oscillation decaying 

after ~1s, approximating the slowest decay time-constants of inhibitory receptors (Supplementary 

Figure 4) (τdecay(GABAB) " 500-1000ms). In Supplementary Note 2 and Supplementary Figure 7 we 

show that our results are qualitatively similar for a broad range of � values, both positive and 

negative, thus demonstrating the generalizability of synchronization at collective frequencies to 

coupled oscillatory systems with fluctuating amplitude, be they damped or self-sustained. We note 

that this mechanism only fails when the units have an overdamped response (exponential decay 

without oscillation), which, in this case, only occurred for  � 	  500. Thus it is of great interest in 

future research to investigate whether the local bifurcation parameters can be tuned based on 

sensitive observables to fit the MEG data of different individuals in different conditions. 

The second term represents the total input received from other brain areas, scaled by parameter #, 

which sets the strength of all network interactions with respect to the intrinsic node dynamics. 

Because we wish to focus on the nonlinear phenomena introduced by time delays, we model the 

node-to-node interactions using a particular linear diffusive coupling, as the simplest approximation 

of the general coupling function, considering delayed interactions. Here, the signal of node � at time 

� is calculated with respect to the activity of all other nodes � at time �  ��� (where ��� is the time 

delay between n and p), scaled by the relative coupling strength given by ���.  

The third term of Equation 1 represents the added uncorrelated noise to each unit (with real and 

imaginary components $� and $�). In this analysis, the system is perturbed with uncorrelated white 

noise, where $� and $� are independently drawn from a Gaussian distribution with mean zero and 

standard deviation  % 	 0.001 (integrated as %*√)�).  

In this framework, our whole-brain network model is purely bottom-up (i.e., not inferred 

from the MEG data we aim at explaining). For a qualitative comparison with the literature in delay-

coupled oscillatory systems 25,53,65, we explore the network dynamics as a function of the coupling 

strength # and the mean delay ��� 	 �
�/�, where �
� is the mean length of all fibres detected 

between each pair of brain areas. For each set of parameters, the model is solved numerically for 50 

seconds with an integration step dt = 10
-4

 seconds. 

Kuramoto Order Parameter  

To evaluate the global synchrony of the simulated network activity over time, we use the Kuramoto 

order parameter: 

 *
��+	
��� 	 1
� , +	
����

�

���

 
(2) 
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where -�
�� is the phase of each node, given by the argument of ��. The temporal evolution of the 

Order Parameter *
�� provides an instantaneous measure of the degree of synchrony of the 

ensemble. Since we add noise in the simulations, we first band-pass filter the signals �� around the 

peak frequency of the ensemble. A steady order parameter indicates a stable solution (be it 

asynchronous, �*
���~0 or synchronous �*
���~1), whereas fluctuations in the order parameter are 

indicative of Metastability, driven by constant transitions between different weakly stable 

solutions68. For the analysis in parameter space, we take the mean �*
��� as a measure of the global 

synchronization while the standard deviation ./

*
��� indicates how much *
�� fluctuates in 

time
54

.  

Analytic Prediction of Collective Frequency of Synchronization 

Previous theoretical studies have shown analytically that coupled oscillatory networks with 

homogeneous delays can find stable solutions at multiple collective frequencies Ω. Let us consider 

the Kuramoto transition in a population of phase oscillators defined by Equation 3: 

-1
�
�� 	 ��+ # ∑ ��� sin6-�7�  ���8  -�
��9�

��� , 
(3) 

and the fully synchronized, uniformly rotating one-cluster state -� 	 : 	 -� 	 Ωt.  

Substituting this expression into Equation 3 we obtain 25,26,65,81,90: 

 < 	 ��  #� sin
<�� (4) 

where ω0 corresponds to the nodes’ intrinsic frequency and � is the homogeneous time delay 

between nodes. As K is increased and full synchrony is approached, the system finds an equilibrium 

point at the lowest stable solution for Equation 4, which is given by: 

 <�	� 	 ��/
1 = #��� (5) 

Note that, for collective oscillations to emerge, the global coupling K needs to be sufficiently strong 

such that the synchronized solutions are at least weakly stable.  To approximate the analytic 

prediction from equation (5), the coupling matrix was normalized by its mean, such that <C>=1. 

 

Model Performance  

We perform a parameter space exploration by tuning the two free parameters #  and ��� . We 

choose to increase # exponentially as a power of 10 from 10-1 to 101.7 in steps of 100.1, to ensure a 

range that covers from weak to strong coupling. ��� is explored in the range from 0 ms to 30 ms in 

steps of 1 ms.  
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We measure the fitting between the empirical sensor MEG PS for each of the 89 subjects and the 

simulated PS for each pair of parameters as the squared Euclidean distance, resulting in one fitting 

value for each subject. This can be regarded as a maximum likelihood procedure under the 

assumption of Gaussian observation noise. 

Metastable Oscillatory Modes 

To detect MOMs and characterize them in space and time, we band-pass filter the simulated signals 

in each frequency band and obtain the corresponding amplitude envelopes using the Hilbert 

transform for each band. Subsequently, we consider that a node (or brain area) engages in a MOM if 

the amplitude increases 5 standard deviations above the amplitude in that frequency range. We 

define the baseline threshold considering the simulations with the optimal K but with zero delays. 

Since some areas are more coupled together than others, even with “zero delays” these areas may 

exhibit more power across frequencies that is purely due to noisy interactions. Therefore, we define 

a different threshold for each node and each band. 

Envelope Functional Connectivity Patterns  

Following standard procedures to estimate frequency-specific functional connectivity in empirical 

source-projected MEG data44, we first bandpass filter the simulated signals in each frequency band 

of interest, compute the analytic signal using the Hilbert transform and then calculate the 

correlation matrices between the amplitude (i.e. the absolute value) of the analytic signal. This is 

done in one optimal point (K=10, ��� =3ms), for weak coupling (K=0.1, ��� 	3ms), strong coupling 

(K=50, ���=3ms), no delays (K=10, ��� =0ms) and long delays (K=10, ���=20ms). The same analysis 

performed using N=200 units is shown in Supplementary Methods 1 and Supplementary Figure 17.  

Data availability  

Human neuroimaging data used in this study were provided by the Human Connectome Project 

(HCP)
83

 (https://www.humanconnectome.org), WU-Minn Consortium (Principal Investigators: David 

Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that 

support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems 

Neuroscience at Washington University. 

The normative connectomes were computed from Human Connectome Project data and included as 

part of the leadDBS toolbox84 ( https://www.lead-dbs.org/). 

The matrices computed from the normative connectomes used for simulations, together with the 

MEG power spectra from 89 individuals, are publicly available in .mat format at: 

https://github.com/fcast7/Hopf_Delay_Toolbox . 

Simulated data is available from the corresponding author on reasonable request. 
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Supplementary Notes, Supplementary Methods and Supplementary Video 1 are available with this 

manuscript. 

Code availability 

All simulations were performed in MATLAB2021b. The codes used in this study are publicly available 

at: https://github.com/fcast7/Hopf_Delay_Toolbox . 
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a - Simulated signals in 90 coupled units filtered below 30 Hz (𝜔! = 40 Hz, K = 10, 𝜏 = 3ms) 4-8 Hz 8-13 Hz 13-30 Hz
Amplitude 5*STD > baseline 

0.5-4 Hz

b - Power < 30Hz vs Phase synchrony (r = 0.7595)
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a - Simulated signals in 90 coupled units filtered below 30 Hz (𝜔! = 40 Hz, K=50, 𝜏 =3ms) 
4-8 Hz 8-13 Hz 13-30 Hz

Amplitude 5*STD > baseline 
0.5-4 Hz
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b - Power < 30Hz vs Phase synchrony (r = 0.8247)
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Long Delays 𝜏 =20ms K=10No Delays 𝜏 =0ms K=10

Weak Coupling 𝜏 =3ms K=0.1

Strong Coupling 𝜏 =3ms K=50

Optimal Range 𝜏 =3ms K=10
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Long delays <𝜏>=10ms K=10No delays <𝜏>=0ms K=10

Weak Coupling <𝜏>=3ms K=0.1
Conduction Delays
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