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Abstract

Most epigenetic epidemiology to date has utilized microarrays to identify positions in the genome
where variation in DNA methylation is associated with environmental exposures or disease. However,
these profile less than 3% of DNA methylation sites in the human genome, potentially missing
affected loci and preventing the discovery of disrupted biological pathways. Third generation
sequencing technologies, including Nanopore sequencing, have the potential to revolutionise the
generation of epigenetic data, not only by providing genuine genome-wide coverage but profiling
epigenetic modifications direct from native DNA. Here we assess the viability of using Nanopore
sequencing for epidemiology by performing a comparison with DNA methylation quantified using the
most comprehensive microarray available, the Illumina EPIC array. We implemented a CRISPR-
Cas9 targeted sequencing approach in concert with Nanopore sequencing to profile DNA methylation
in three genomic regions to attempt to rediscover genomic positions that existing technologies have
shown are differentially methylated in tobacco smokers. Using Nanopore sequencing reads, DNA
methylation was quantified at 1,779 CpGs across three regions, providing a finer resolution of DNA
methylation patterns compared to the EPIC array. The correlation of estimated levels of DNA
methylation between platforms was high. Furthermore, we identified 12 CpGs where hypomethylation
was significantly associated with smoking status, including 10 within the AHRR gene. In summary,
Nanopore sequencing is a valid option for identifying genomic loci where large differences in DNAm
are associated with a phenotype and has the potential to advance our understanding of the role

differential methylation plays in the aetiology of complex disease.


https://doi.org/10.1101/2022.03.01.482537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482537; this version posted May 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

I ntroduction

There is increasing interest in the role of epigenetic variation in health and disease, with the primary
focus of epigenetic epidemiology being on variable DNA methylation (DNAm)(1). The development
of standardized assays (e.g. the lllumina Infinium Methylation EPIC BeadChip (“EPIC array”)) have
enabled epigenome-wide association studies (EWAS) to identify specific positions in the genome
where methylomic variation is associated with environmental exposures or disease. The most
common approach for profiling methylomic variation involves the sodium bisulfite treatment of DNA,
to differentiate methylated cytosines, which are protected and remain as a cytosine, from
unmethylated cytosines, which are converted to uracils. The methylation status at individual genomic
positions is then determined by either sequencing the bisulfite-converted DNA or hybridising to a
microarray. DNAm level is estimated at individual genomic positions as the proportion of methylated
cytosines, which represents the proportion of cells in the sample that are methylated at that position.
One of the limitations with using a microarray is that the specific sites profiled is predefined, and in
the case of a commercial product such as the EPIC array, predominantly non-customisable. Despite
the EPIC array being the most extensive array available, it only captures ~3% of CpGs across the
human genome (2) and while it assays >97% of RefSeq genes there is a huge range in the number of
sites overlapping each gene, with a median of 18 sites per gene. It is highly probable, therefore, that
many of the specific sites at which aberrant DNAm underpins the development of a given disease are
either not included or weakly indexed by proximal sites in existing analyses. Alternatively, a
sequencing based approach will provide a more comprehensive view of the methylome, and is
applicable for the study of any organism, with whole genome bisulfite sequencing currently regarded
as the gold standard experimental approach (3). A consequence of the bisulfite conversion step is the
requirement for bespoke alignment tools as cytosines in the reference genome could generate either a
cytosine in sequencing data, representing an methylated site, or a thymine, representing an
unmethylated site; this means that a relatively large number of reads have to be discarded at this
processing stage due to the inability to assign them unambiguously to the reference genome(4). With
any sequencing technology, the accuracy of the quantification of DNAm is dependent on the number

of reads overlapping a given genomic position. Given the often stochastic nature of sequencing
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coverage and the fact that it is effectively count data, having sufficient depth at any one site in all or
even the majority of your samples is often unlikely making it unfeasible with the current technologies

to perform EWAS in large population cohorts.

Sequencing technologies continue to evolve, with novel long-read approaches being able to
interrogate epigenetic modifications, including DNAm, in parallel to determining the underlying DNA
sequence. This bypasses the need to perform a bisulfite treatment on the DNA. For example, Oxford
Nanopore Technologies (ONT) sequencing platforms use known electrical signal profiles to call
nucleotide bases from DNA fragments, which can be further refined to distinguish methylated
cytosine from unmethylated cytosine(5). While the application of these technologies to large
populations is primarily limited by their cost, it has yet to be established whether the quantification of
DNAm is sufficiently accurate to detect differentially methylated sites in an epidemiological study,

and how the estimation compares to the standard microarray technology.

In order to increase the likelihood of obtaining sufficient coverage in the same regions of the genome,
a targeted approach coupled with sequencing can be used. There are a number of existing approaches
for targeting specific regions in bisulfite-based sequencing, but Nanopore sequencing can detect
DNAm directly from sequence data that has not been bisulfite-converted. Nanopore Cas9-targeted
sequencing (NCATS) is one such method which uses Cas9/guide RNA (gRNA) ribonucleoprotein
complexes (RNP) to selectively cut DNA around the targeted region and enrich these regions prior to
sequencing (6). While this has been shown to be effective at increasing the depth of sequencing in
these regions, it is still unclear whether this will confer sufficient sensitivity when quantifying the
level of DNAm such that differences between groups can be detected. This is vital for assessing
whether this could be a plausible approach for epigenetic epidemiology studies of complex traits,

which are typically associated with small differences in DNAm between groups.

One of the phenotypes with the most dramatic influence on DNAm profiles is tobacco smoking,

where the signature is not only detectable in the blood of current and former smokers (7-9), but
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additionally in the blood of new-borns and children who were exposed in utero (10-12). In the largest
meta-analysis comparing 2,433 current and 6,956 never smokers, 2,623 DNAm sites, annotated to
1,405 genes were identified with significantly different levels of DNAm, many of which were
associated with large effects (> 5%) (13). Harnessing DNAm levels at multiple sites into an aggregate

score has been shown to be highly predictive of current smoking status (7, 14).

The aim of this study was to assess the viability of using targeted ONT sequencing for epigenetic
epidemiology by attempting to rediscover known differentially methylated positions (DMPs) that
existing technologies have shown to be robustly associated with tobacco smoking. We selected three
genomic regions containing highly significant smoking-associated DMPs (AHRR, GFI1 and an
intergenic region on chromosome 2) and implemented the nCATS methodology, a CRISPR-Cas9
targeted sequencing approach. We report the first comparison of DNAm called from ONT long read
data with DNAm profiled using the EPIC array on the same samples and the first assessment of the
sensitivity of DNAm quantification with ONT to detect tobacco smoking associated differentially

methylated positions by comparing estimated levels of DNAmM between a smoker and non-smoker.

Results

We targeted three genomic regions where previous studies have identified multiple differentially
methylated sites associated with tobacco smoking; two are centred on specific genes (AHRR and
GFI1) and one was intergenic on chromosome 2g37.1 (Table 1). To enrich for reads in these regions
we designed a panel of 18 gRNAs (Supplementary Table 1) targeting the start and ends, with
additional gRNAs tiled across the larger AHRR region (~140kb) optimising the spatial distribution
(mean distance between guides = 15.6kb) against the predicted performance based on sequence
content. After sequencing two MinlON r9.4.1 flowcells on a Nanopore Mk1b sequencer, 215,829
reads were generated. These were aligned to the human genome (hg38) using minimap2 and filtered
resulting in 185,540 (86%) high quality primary alignments (Supplementary Table 2). Of these, 645
reads (0.35%) were located within our three targeted regions, meaning that all regions had elevated

coverage (range of means across regions 7.72 - 21.5) compared to the mean read depth genome-wide
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(1.18, SD =0.99), as desired. On closer inspection, acute increases in read depth were observed at the
location of all gRNAs, with accumulative effects observed where multiple gRNAs are located within
the range of the typical read sizes (Figure 1, Supplementary Figures1-2). While it was evident that
all gRNAs had successfully targeted the desired genomic locations, the performance in terms of
number of reads at each position was variable, in line with random mixing of the gRNAs within the
pools (see M ethods). The proportion of on-target reads was in line with previous studies(6) and off-
target reads were randomly distributed across the genome (Supplementary Figure 3). The read
lengths within the two smaller regions were determined by the size of the region and the location of
the gRNA, for example, within the chromosome 2 region, 40.4% of the reads spanned at least 90% of
the targeted region (Supplementary Figure4). In contrast, while the larger AHRR region was
associated with longer reads, (mean = 10,067bp; Supplementary Figure 5) with 160 (38%) of reads
longer than 10kb, the proportion of the targeted region captured by a single read was smaller on

average (mean = 0.07).

To quantify the level of DNAm across the targeted regions, Nanopolish(5), which uses a Hidden
Markov model and the electrical signal data to determine the methylation status at CpG sites was run.
Filtering to sites with a minimum read depth of at least 10, DNAm was quantified at 1,779 CpGs
clustered into 1,130 regions. This represents a much finer resolution of data than is obtained using the
most comprehensive microarray available. For example in the AHRR region, we captured 1,429 CpGs
compared to 159 DNAm sites included on the EPIC array, representing ~9 fold increase of data
points. Furthermore, the median spacing between CpGs in this region is reduced to 35bp in the ONT
data compared to 405bp on the EPIC array. First, we were interested in assessing the level of
accuracy in the quantification of DNAmM from ONT sequencing, by comparing the level of DNAm at
sites profiled using the EPIC array. A total of 98 CpGs within the three targeted regions across the
two samples were quantified with both platforms. Estimated DNAm levels correlated strongly (r =
0.94; Figure 2), although the absolute difference between the two technologies was moderate (RMSE
=0.138). Of note, it appears that the ONT-derived levels of DNAm are less similar between platforms

at the extremes; rather than reflecting inaccuracies in the ONT approach we hypothesize that this
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reflects the fact that in these parts of the distribution the EPIC array is known to be less sensitive(15)
with variation here being attributable to lack the of precision in the array derived estimates. Second,
we were interested in whether we could detect differences in DNAm between the smoker and non-
smoker using DNAm level derived from Nanopore sequencing at sites within the targeted regions. We
applied Fisher’s test to compare the proportion of methylated reads between the two samples at 514
sites profiled at sufficient read depth (> 10) in both samples (Supplementary Table 3). Twelve CpGs
had a Bonferonni adjusted significant p-value, 10 in the AHRR region and 2 in the chromosome 2
intergenic region. All 12 CpGs were hypomethylated in the smoker, with a mean difference of -0.53.
The power to detect effects in the sequencing based DNAm analyses depends not only on the
magnitude of effect but also the read depth at that position(3). We wanted to determine, whether we
had potentially missed associations due to limited sequencing coverage. Comparing the level of
significance against total read depth across both samples, we observed that the lowest combined read
depth of a significant site was 44, more than double our read depth filter of at least 10 in both
samples, indicating that at some sites we were not sufficiently powered (Supplementary Figure 6).
Next, we compared our results with an EWAS of tobacco smoking based on participants from the UK
Household Longitudinal Study (UKHLS) who had whole blood DNAm profiled using the EPIC array,
to confirm whether we could validate and refine previously reported associations (Supplementary
Table4). There were 39 CpGs tested with both platforms and only one site was significant in both
analyses, (Figure 3A). However, in general, for sites significant in the EPIC EWAS, the nanopore
sequencing data demonstrated the same direction of effect as that reported in the EPIC array EWAS
even if it was not significant (Figure 3B). To establish whether the lack of overlap of significant
associations was due to insufficient read depth in the nanopore sequencing data, we compared the
EPIC array p-values with read depth and indeed, of the significant sites from the EPIC EWAS, the
one that was also significant in our nanopore analysis had the highest read depth (Figure 3C).
Therefore, we conclude that our inability to rediscover all previously reported smoking sites is due to

limited power despite enrichment in our targeted regions.
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Eleven of the smoking associated significantly CpGs we detected with Nanopore sequencing are not
present on the EPIC array and therefore represent novel associations. Looking at the genomic position
of these, all ten of the significant sites located within AHRR are intronic, with nine annotated to the
same intron (Supplementary Figure 7). Furthermore, we observed that 6 of these CpGs clustered
within 400bp (Figure 4) and overlap with cg05575921, typically the site on the EPIC array with the
most replicated association due to its large magnitude of effect (7, 9, 11, 13, 16, 17). For further
functional annotation, we downloaded the predicted regulatory functions from ChromHMM(18) for
blood, and found that these six CpGs were located in a bivalent enhancer region, while the other CpGs
in the AHRR region were located in repressed regions. The two significant CpGs located on
chromosome 2 are ~1kb apart within the same CpG island and lie within a broader region of

associated sites identified with the EPIC array (Supplementary Figure 8).

An additional benefit of profiling DNA methylation with long read sequencing is the ability to
determine whether correlated methylation status between neighbouring sites occurs non-randomly.
We calculated an adapted version of the linkage disequilibrium statistic D’ between pairs of sites
profiled in the same read to quantify whether the co-occurrence of methylation status was greater than
expected by chance, given the proportion of methylation at those sites. While there were pairs of
CpGs that had the same methylation status within a read, this is not as extensive or prevalent as is
typically observed across genetic variants. First, there was no evidence of decay in these relationships
as the distance between sites increased (Supplementary Figure 9). Second, the sites did not
segregate cleanly into “blocks” of highly correlated methylation calls (Supplementary Figure 10).
Instead, it was seemingly random pairs of sites that were highly co-ordinated. Considering just the
subset of 12 sites with significant differences associated with smoking status, we did not see any
evidence for the methylation status of these to co-occur with the same read in a non-random manner

(Supplementary Figure 11).

Discussion
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In this study, we performed the first quantitative assessment of Nanopore sequencing for epigenetic
epidemiology by deriving DNAm profiles from native DNA and comparing with profiles generated
with the current standard microarray technology (EPIC array). Our analyses focused on three genomic
regions, selected from previous EWAS of tobacco smoking(7, 9, 13, 16), which we targeted using
CRISPR gRNAs, to test whether the sensitivity of DNAm quantification from Nanopore data is
sufficient to rediscover these associations. The correlation between technologies was very high and
the estimated level of DNAm accurate enough to detect significant differences between a heavy
smoker and non-smoker at genomic loci reported in previous analyses with much larger sample sizes.
One of the key advantages of using sequencing to profile DNAm is the greater spatial resolution of
signals across the genome. For example, in our data, we had ~9 fold more sites across the AHRR gene
compared to the content of the EPIC array, enabling us to discover additional novel loci in this region
associated with smoking that have not previously been analysed. This has the potential to advance our
understanding of the role of aberrant differential methylation in the aetiology of complex diseases by
providing complete coverage of the region rather than being limited to a predefined subset of sites that
may or may not capture the complete extent of methylomic variation in that region. A specific utility
of long read sequencing over both microarrays and short read sequencing is the ability to characterise
whether methylation status is coordinated across CpGs from the same genomic region by quantifying
the proportion of reads with concordant methylation calls was greater than expected by chance. We
found that high correlations between neighbouring sites were the exception, meaning that existing
studies likely do not capture much information about unmeasured sites and that it is unlikely that the
imputation of DNA methylation levels will be as effective as it is for studies of genetic variation.
Altogether, this reiterates the need to empirically profile DNA methylation using technologies that are
genuinely genome-wide. Improving the spatial resolution of DNAm quantification will clarify the
genomic region over which differential methylation occurs, permitting better functional annotation

and enabling biological inferences.

While our data show great promise for the role of Nanopore sequencing in studies of DNAm, it also

highlighted some issues that will affect how it should be used. DNAm is quantified as a proportion
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and when using sequencing reads it is calculated as the fraction of methylated reads to total number of
reads at that position. The accuracy of the quantification is therefore, dependent on the sequencing
depth at that position (i.e. the denominator in the calculation). However, as in a typical sequencing
experiment the majority of DNAm sites are captured by a handful of reads, while the total number of
CpGs covered can be many orders of magnitude higher than a study based on microarrays, only a
minority are profiled adequately for any downstream statistical analysis. To improve the likelihood of
detecting differences, we used a targeted approach based on CRISPR/Cas9 methodology(6) to enrich
for CpGs in three specific genomic regions of varying size. This limited our ability to detect novel
DMPs to those located with the regions that are already implicated. After filtering DNAm sites for
minimum coverage of 10 reads, only sites within our targeted regions where retained. Despite the high
proportion of off-target reads, the mean read depth across the genome was insufficient for accurate

quantification, highlighting the necessity of an enrichment step.

The methodology we present is applicable to any genomic region, and we have shown that it is
feasible to consider multiple targets in a single experiment. It is hard to predict from our data whether
the magnitude of coverage enrichment we report would be replicated if we had included more targeted
regions, or whether we would have seen higher levels of enrichment if we had considered fewer
regions. For regions that are smaller than the typical read length only gRNAs at the start and end are
needed, whereas for target regions larger than the typical read length (e.g. the AHRR region)
additional gRNAs tiled across the region are required. The way the gRNAs combine is random If
there are lots of gRNAs too close together multiple small fragments may be produced. If they are too
far apart, and the reads do not span the full extent of the gap between then, then an important part of
the region may not be adequately covered. Across the AHRR region, where the gRNAs were located
close together, we saw greater levels of enrichment in terms of number of reads. All the gRNAs we
included produced fragments but the performance was variable, with the enrichment around GFI1 less
successful in part because one of the gRNAs was incorrectly orientated. Therefore, we would
recommend doubling up on gRNAs to protect against the variable efficiency and to ensure adequate

coverage at particularly important regions. To maximise the probability of the “correct” gRNAs
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pairing up on the same fragment we ran the targeted regions in different pools, with multiple pools for
the AHRR region consisting of different gRNAs. It should be noted that one technical limitation of
this method for profiling DNA methylation is that it requires ten times the DNA input per pool of
gRNAs, compared to microarrays, and therefore increasing the number of regions and therefore pools

will have an effect on the quantity of DNA required for sequencing.

As well as targeting specific regions of the genome where we knew differences existed, we
additionally chose a phenotype associated with large effects, such that differences should be
detectable even if the sensitivity is low. While this strategy was effective, it is unclear from our
analysis how viable Nanopore sequencing will be for detecting smaller differences between groups.
Even within our targeted regions, there were a number of previously reported sites where we did not
detect statistically significant differences, which we hypothesise is due to insufficient read depth
despite target enrichment. Despite the experiment successfully enriching the data for coverage with
our three targeted regions, it should be noted that the vast majority of reads were located outside of
these and randomly distributed across the genome, meaning they were excluded from the analysis due
to low coverage. Improving the efficiency of the enrichment will be the key to establishing this

approach for studying a broad range of complex diseases and phenotypes.

Another important factor for study design is sample size. EWAS based on microarrays require large
sample sizes to robustly detect differences after adjusting for the penalty of testing sites across the
genome(15, 19), with the exact size of the sample dependent on the magnitude of the effect associated
with the phenotype under investigation(20). When quantifying DNAm through sequencing based
approaches, statistical power additionally related to sequencing depth, which can be increased by
either profiling more samples, or sequencing the samples you have more deeply. Both approaches
have financial and practical implications. For Nanopore sequencing, currently there is no
methodology to enable multiple samples to be profiled on a single flowcell, limiting the total sample
size. In this study we only profiled two individuals, one heavy smoker and one non-smoker, while the

guantity of sequencing data made up for the lack of samples, this may have affected which differences
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we were able to detect if there is any inter-individual variation in terms of which sites are affected or
the magnitude of the difference. In order to capture the sites, which we did not rediscover, either

additional samples or more flowcells would likely be required.

As well as the experimental methodology, the data analysis pipeline requires careful thought. Calling
DNAm from Nanopore sequencing data is a computational challenge to classify methylated and
unmethylated cytosines based on the electrical signal emitted as the DNA passes through the pore
with a number of algorithms developed for this purpose. In this study we implemented just one of
these algorithms, Nanopolish(4), which was found to be consistently one of the most accurate and
concordant with the other best performing methods, across a range of genomic contexts, as well as the
least computationally intensive(21). One limitation of this algorithm is that it only considers CpGs
and ignores DNAm at cytosines in other genomic contexts. This is of little consequence for our
comparison with the EPIC array, as it also predominantly focuses on CpG sites, but means that there
is another layer of resolution in the DNAm profiles we have not considered. As methods for calling
additional DNA modifications are validated, an additional advantage will be the ability to call
multiple epigenetic marks from a single sequencing run(22). This would be especially beneficial for

studies of the brain where DNA hydroxymethylation is abundant(23).

In summary, our data indicates that Nanopore sequencing is a valid option for identifying multiple
CpGs across the genome that are associated with large differences in DNAmM between groups. It has
the potential to fine map associations detected with existing microarray platforms by validating
previous associations and identifying novel loci and in this way advance our understanding of the role

differential methylation plays in the aetiology of complex disease.

Materialsand M ethods
Samples
Matched (age/sex) samples, including one heavy smoker and one non-smoker, were obtained from the

Exeter 10,000 and Peninsula Research Bank (EXTEND/PRB), an ethically approved biobank
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providing access to anonymised DNA/RNA/Urine/Plasma/Serum. Samples are stored at —80°C.
(https://exetercrfnihr.org/about/exeter-10000-prb/). The EXTEND/PRB is housed and managed within

the NIHR Exeter Clinical Research Facility (Exeter CRF).

Design of CRISPR/Cas9 gRNAs

Three genomic regions that contained robust smoking-associated differentially methylated sites were
selected as the target regions (Table 1). For each region, we designed two gRNAs for the start and
two gRNAs for the end of the region. For the AHRR region which is 140kb and longer than the
average read generated by Nanopore sequencing, six additional guides were designed, tiled across the
region. We used the Alt-R® CRISPR-Cas9 system from Integrated DNA Technologies (IDT). The
gRNACRISPR were designed using software available through the IDT website, selecting those with
the optimal predicted efficiency and specificity scores. In total 18 gRNAs were included, the details of
which are in Supplementary Table 1. The gRNA were ordered as CRISPR RNA (crRNA), to allow

the formation of RNP with IDT tracRNA and Cas9 protein.

Cas9 cleavage and library prep

The CRISPR Cas9-mediated target enrichment was carried out in line with the ONT protocol (Cas-
mediated PCR-free enrichment, ENR_9084 v109 revM_04Dec2018). In accordance with the tiling
approach described by ONT, the crRNAs were diluted to 100pM in TE pH 7.5 (IDT). crRNA were
split across five pools at equimolar concentrations, with two pools for the larger AHRR region, one
pool each for the two small regions, and a final pool with all 18, as detailed in Supplementary Table

1

1ul of each crRNA pool (100uM) was combined with 1pl of tracrRNA (100uM) and 8ul IDT duplex
buffer. This solution was incubated at 95°C for 5 minutes in a Veriti™ 96-well thermal cycler
(Applied Biosystems™) which then ramped down slowly to 25°C. To form functional CRISPR

ribonucleoproteins (RNPs), 3l of this annealed crRNA/tracrRNA was incubated with 0.3u1 62uM
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HiFi Cas-9 (IDT), 3ul 10X NEB CutSmart® Buffer (New England BioLabs) and 23.7ul nuclease free

water for 30 minutes at room temperature.

Prior to Cas9 cleavage, human genomic DNA (gDNA) was dephosphorylated using Calf Intestinal
Phosphatase. Briefly, 25ug of gDNA (5ug per crRNA pool) was diluted in 15.6p1 10X CutSmart®
Buffer (New England BioLabs) and 15.6 ul Calf Intestinal Phosphatase (5U/ul) (New England
BioLabs) and was incubated for 10 minutes at 37°C, 2 minutes at 80°C and then held at 20°C in a

Veriti™ 96-well thermal cycler (Applied Biosystems™) until cleavage.

For cleavage 101 of each CRISPR RNP pool was combined with 5ug dephosphorylated gDNA, 1l
10mM dATP (New England BioLabs) and 1l NEB Taq Polymerase (New England BioLabs) in order
to achieve targeted gDNA cleavage and dA tailing of cleaved products. The reaction was incubated at
37°C for 30 minutes, 72°C for 5 minutes and then held at 4°C in a Veriti™ 96-well thermal cycler
(Applied Biosystems™). Adaptors from the LSK-109 sequencing kit (Nanopore) were then ligated
onto 42ul of pooled CRISPR cleaved DNA using NEBNext Quick T4 Ligase (New England BiolLabs)
and incubated at room temperature for 20 minutes. 1 volume of TE was then added and 0.3X AMPure
XP bead purification (Beckman), using 2 x 250ul SFB buffer washes in place of Ethanol. The library
was eluted in 13ul of EB buffer (Nanopore) and loaded on a Nanopore Mk1b sequencer with MinlON

r9.4.1 flowcell and run for 24h.

DNA methylation EPIC array

DNAm data for the two samples included in this study was generated as part of a larger project
profiling > 1,200 individuals from the EXTEND cohort. The EZ-96 DNA Methylation-Gold kit
(Zymo Research; Cat No# D5007) was used for treating 500 ng of DNA from each sample with
sodium bisulfite. DNA methylation data were generated using the Illumina Infinium
HumanMethylationEPIC BeadChip (“EPIC array”) array. Raw data was processed using the
wateRmelon package (24) and put through a stringent quality control pipeline that included the

following steps: (1) checking methylated and unmethylated signal intensities and excluding poorly
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performing samples; (2) assessing the chemistry of the experiment by calculating a bisulphite
conversion statistic for each sample, excluding samples with a conversion rate <80%; (3) identifying
the fully methylated control sample was in the correct location; (4) multidimensional scaling of sites
on the X and Y chromosomes separately to confirm reported sex; (5) using the 59 SNPs on the
Illumina EPIC array to check for sample duplications; (6) use of the pfilter() function in wateRmelon
to exclude samples with >1 % of probes with a detection P value 7>10.05 and probes with >1 % of
samples with detection P value 1 >710.05; (7) normalisation of the DNA methylation data was
performed using the dasen() function in wateRmelon(24); (8) samples that were dramatically altered
as a result of normalization were excluded on the basis of the difference between the normalized and

raw data; and (9) removal of cross-hybridising and SNP probes (2, 25).

Satistical analysis

Base calling was performed using GUPPY (Version 4.0.11, high accuracy model) to generate FASTQ
sequencing reads from the electrical data. Reads were aligned to the human reference genome (hg38)
using Minimap2(26). Aligned reads were then filtered to primary alignments and reads of high quality
using samtools. Nanopolish(5) was then used to call DNAm from individual reads which were then
aggregated into estimatess of the level of DNAm by counting the proportion of methylated reads to
the total number of reads at position using the script provided in Nanopolish. To compare the level of
DNAm at individual sites between the smoker and non-smoker a Fisher’s test was used to compare
the proportion of methylated reads between the two samples. Significant sites were identified after
adjusting the p-values for the total number of sites tested (514) using the Bonferroni method.
Genomic region plots were generated using the Gviz package(27). To profile whether concordant
methylation status at neighbouring sites occurs non-randomly, we adapted the linkage disequilibrium
statistic D’ to quantify whether the co-occurrence of methylation at pairs of sites within a read was
greater than expected by chance, given the proportion of methylation at those sites. For pairs of sites
that were profiled in same read, in at least 10 reads across both samples, D was calculated as the
proportion of reads where the methylation status (either methylated or unmethylated) was consistent

at both sites minus the probability of the status being consistent given the proportion of methylation at
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each site (see equation below). D was then standardized to D’, by dividing it by its theoretical

maximum.

D1, =pum +oyy — (102 + (1 —p)(1 = py))

Pum + Puu, ifD<0
(1 - pum — Puv)s if D>0

Drnas = {

D" = abs(D)/Dmax
Where py, iS the proportion of reads where both sites are methylated, py; is the proportion of reads
where both sites are unmethylated, p,, p,are the proportion of reads that are methylated at sites 1 and

2 respectively. Heatmaps of ‘linkage’ statistics between pairs of DNAmMm sites were generated using the

LDheatmap package(28).

All analysis was performed with the R statistical language version 3.6.3. All analysis scripts are

available at https://github.com/ejh243/ONTMethCalling.

EPIC array based EWAS of tobacco smoking

The British Household Panel Survey (BHPS) began in 1991, and in 2010 was incorporated into the
larger UK Household Longitudinal Study(29) (UKHLS; also known as Understanding Society) which
is a longitudinal panel survey of 40,000 UK households from England, Scotland, Wales and Northern
Ireland. DNAm was profiled in DNA extracted from whole blood for 1,170 individuals who were
eligible for and consented to both blood sampling and genetic analysis, had been present at all annual
interviews between 1999 and 2011, and whose time between blood sample collection and processing
did not exceed 3 days. Eligibility requirements for genetic analyses meant that the epigenetic sample
was restricted to participants of white ethnicity. 500ng of DNA from each sample was treated with
sodium bisulfite, using the EZ-96 DNA methylation-Gold kit (Zymo Research, CA, USA). DNAm
was quantified using the lllumina Infinium HumanMethylationEPIC BeadChip (Il1lumina Inc, CA,
USA) run on an Illumina iScan System (lllumina, CA, USA) using the manufacturers’ standard

protocol. Samples were randomly assigned to chips and plates to minimise batch effects. Quality
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control, pre-processing and data normalisation were carried out using the bigmelon package(30)

following a standard pipeline(31).

Smoking status was derived from interview data and the response to the question “Do you smoke
cigarettes now?” to classify as either a current or non-smoker. In total 1,113 participants were
included in the EWAS of current smoking status. To identify sites where DNAmM was significantly
different between smokers and non-smokers, a linear model was fitted using the limma R package(32)
for all sites on the EPIC array controlling for age, sex, six cell type proportions (CD8T, CDAT, NK,

Bcell, Mono, Gran) (33, 34) and plate as a potential source of technical variation.

Acknowledgements

This work has funded by a Brain and Behaviour Foundation Young Investigator Award to EH [26288]
and utilised equipment funded by the UK Medical Research Council (MRC) Clinical Research
Infrastructure Initiative (award number MR/M008924/1). EH, LS and JM are supported by MRC
grant K013807 to JM. The authors would like to acknowledge the use of the University of Exeter
High-Performance Computing (HPC) facility. The NIHR Exeter Clinical Research Facility is a
partnership between the University of Exeter Medical School College of Medicine and Health, and
Royal Devon and Exeter NHS Foundation Trust. This project is supported by the National Institute
for Health Research (NIHR) Exeter Clinical Research Facility.[] The views expressed are those of the

author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.


https://doi.org/10.1101/2022.03.01.482537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482537; this version posted May 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

1 Murphy, T.M. and Mill, J. (2014) Epigenetics in health and disease: heralding the EWAS era.
Lancet, 383, 1952-1954.

2 Pidsley, R., Zotenko, E., Peters, T.J., Lawrence, M.G., Risbridger, G.P., Molloy, P., Van Djik, S.,

Muhlhausler, B., Stirzaker, C. and Clark, S.J. (2016) Critical evaluation of the Illumina MethylationEPIC
BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol, 17, 208.

3 Seiler Vellame, D., Castanho, ., Dahir, A., Mill, J. and Hannon, E. (2021) Characterizing the
properties of bisulfite sequencing data: maximizing power and sensitivity to identify between-group
differences in DNA methylation. BMC Genomics, 22, 446.

4 Beck, D., Ben Maamar, M. and Skinner, M.K. (2021) Genome-wide CpG density and DNA
methylation analysis method (MeDIP, RRBS, and WGBS) comparisons. Epigenetics, 1-13.

5 Simpson, J.T., Workman, R.E., Zuzarte, P.C., David, M., Dursi, L.J. and Timp, W. (2017)
Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods, 14, 407-410.

6 Gilpatrick, T., Lee, I., Graham, J.E., Raimondeau, E., Bowen, R., Heron, A., Downs, B.,
Sukumar, S., Sedlazeck, F.J. and Timp, W. (2020) Targeted nanopore sequencing with Cas9-guided
adapter ligation. Nat Biotechnol, 38, 433-438.

7 Elliott, H.R., Tillin, T., McArdle, W.L., Ho, K., Duggirala, A., Frayling, T.M., Davey Smith, G.,
Hughes, A.D., Chaturvedi, N. and Relton, C.L. (2014) Differences in smoking associated DNA
methylation patterns in South Asians and Europeans. Clin Epigenetics, 6, 4.

8 Sun, Y.V., Smith, AK., Conneely, K.N., Chang, Q., Li, W., Lazarus, A., Smith, J.A., Almli, L.M.,
Binder, E.B., Klengel, T. et al. (2013) Epigenomic association analysis identifies smoking-related DNA
methylation sites in African Americans. Hum Genet, 132, 1027-1037.

9 Tsaprouni, L.G., Yang, T.P., Bell, J., Dick, K.J., Kanoni, S., Nisbet, J., Vifiuela, A., Grundberg, E.,
Nelson, C.P., Meduri, E. et al. (2014) Cigarette smoking reduces DNA methylation levels at multiple
genomic loci but the effect is partially reversible upon cessation. Epigenetics, 9, 1382-1396.

10 Hannon, E., Schendel, D., Ladd-Acosta, C., Grove, J., Hansen, C.S., Hougaard, D.M.,
Bresnahan, M., Mors, O., Hollegaard, M.V., Bekvad-Hansen, M. et al. (2019) Variable DNA
methylation in neonates mediates the association between prenatal smoking and birth weight.
Philos Trans R Soc Lond B Biol Sci, 374, 20180120.

11 Joubert, B.R., Felix, J.F., Yousefi, P., Bakulski, K.M., Just, A.C., Breton, C., Reese, S.E.,
Markunas, C.A., Richmond, R.C., Xu, C.J. et al. (2016) DNA Methylation in Newborns and Maternal
Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet, 98, 680-696.

12 Ladd-Acosta, C., Shu, C., Lee, B.K., Gidaya, N., Singer, A., Schieve, L.A., Schendel, D.E., Jones,
N., Daniels, J.L., Windham, G.C. et al. (2016) Presence of an epigenetic signature of prenatal cigarette
smoke exposure in childhood. Environ Res, 144, 139-148.

13 Joehanes, R., Just, A.C., Marioni, R.E., Pilling, L.C., Reynolds, L.M., Mandaviya, P.R., Guan, W.,
Xu, T., Elks, C.E., Aslibekyan, S. et al. (2016) Epigenetic Signatures of Cigarette Smoking. Circ
Cardiovasc Genet, 9, 436-447.

14 Sugden, K., Hannon, E.J., Arseneault, L., Belsky, D.W., Broadbent, J.M., Corcoran, D.L.,
Hancox, R.J., Houts, R.M., Moffitt, T.E., Poulton, R. et al. (2019) Establishing a generalized
polyepigenetic biomarker for tobacco smoking. Trans! Psychiatry, 9, 92.

15 Mansell, G., Gorrie-Stone, T.J.,, Bao, Y., Kumari, M., Schalkwyk, L.S., Mill, J. and Hannon, E.
(2019) Guidance for DNA methylation studies: statistical insights from the lllumina EPIC array. BMC
Genomics, 20, 366.

16 Shenker, N.S., Polidoro, S., van Veldhoven, K., Sacerdote, C., Ricceri, F., Birrell, M.A., Belvisi,
M.G., Brown, R., Vineis, P. and Flanagan, J.M. (2013) Epigenome-wide association study in the
European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic
loci associated with smoking. Hum Mol Genet, 22, 843-851.

17 Zeilinger, S., Kihnel, B., Klopp, N., Baurecht, H., Kleinschmidt, A., Gieger, C., Weidinger, S.,
Lattka, E., Adamski, J., Peters, A. et al. (2013) Tobacco smoking leads to extensive genome-wide
changes in DNA methylation. PLoS One, 8, €63812.


https://doi.org/10.1101/2022.03.01.482537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482537; this version posted May 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

18 Ernst, J. and Kellis, M. (2017) Chromatin-state discovery and genome annotation with
ChromHMM. Nat Protoc, 12, 2478-2492.

19 Saffari, A., Silver, M.J., Zavattari, P., Moi, L., Columbano, A., Meaburn, E.L. and Dudbridge, F.
(2018) Estimation of a significance threshold for epigenome-wide association studies. Genet
Epidemiol, 42, 20-33.

20 Tsai, P.C. and Bell, J.T. (2015) Power and sample size estimation for epigenome-wide
association scans to detect differential DNA methylation. Int J Epidemiol.

21 Liu, Y., Rosikiewicz, W., Pan, Z., lillette, N., Wang, P., Taghbalout, A., Foox, J., Mason, C.,
Carroll, M., Cheng, A. et al. (2021) DNA methylation calling tools for Oxford Nanopore sequencing: a
survey and human epigenome-wide evaluation. bioRxiv, 2021.2005.2005.442849.

22 Amarasinghe, S.L., Su, S., Dong, X., Zappia, L., Ritchie, M.E. and Gouil, Q. (2020)
Opportunities and challenges in long-read sequencing data analysis. Genome Biol, 21, 30.

23 Lunnon, K., Hannon, E., Smith, R.G., Dempster, E., Wong, C., Burrage, J., Troakes, C., Al-
Sarraj, S., Kepa, A., Schalkwyk, L. et al. (2016) Variation in 5-hydroxymethylcytosine across human
cortex and cerebellum. Genome Biol, 17, 27.

24 Pidsley, R., Y Wong, C.C., Volta, M., Lunnon, K., Mill, J. and Schalkwyk, L.C. (2013) A data-
driven approach to preprocessing lllumina 450K methylation array data. BMIC Genomics, 14, 293.
25 McCartney, D.L., Walker, R.M., Morris, S.W., M., M.A,, J,, P.D. and L., E.K. (2016)
Identification of polymorphic and off-target probe binding sites on the Illumina Infinium
MethylationEPIC BeadChip. Genomics Data, 9, 22-24.

26 Li, H. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34,
3094-3100.

27 Hahne, F. and Ivanek, R. (2016) Visualizing Genomic Data Using Gviz and Bioconductor.
Methods Mol Biol, 1418, 335-351.

28 Shin, J.-H., Blay, S., McNeney, B. and Graham, J. (2006) LDheatmap: An R Function for
Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms. J
Stat Soft, 16.

29 Knies, G. (2015), Colchester, University of Essex.

30 Gorrie-Stone, T.J.,, Smart, M.C., Saffari, A., Malki, K., Hannon, E., Burrage, J., Mill, J., Kumari,
M. and Schalkwyk, L.C. (2019) Bigmelon: tools for analysing large DNA methylation datasets.
Bioinformatics, 35, 981-986.

31 Hannon, E., Gorrie-Stone, T.J., Smart, M.C., Burrage, J., Hughes, A., Bao, Y., Kumari, M.,
Schalkwyk, L.C. and Mill, J. (2018) Leveraging DNA-Methylation Quantitative-Trait Loci to
Characterize the Relationship between Methylomic Variation, Gene Expression, and Complex Traits.
Am J Hum Genet, 103, 654-665.

32 Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W. and Smyth, G.K. (2015) limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Res, 43, e47.

33 Houseman, E.A., Accomando, W.P., Koestler, D.C., Christensen, B.C., Marsit, C.J., Nelson,
H.H., Wiencke, J.K. and Kelsey, K.T. (2012) DNA methylation arrays as surrogate measures of cell
mixture distribution. BMC Bioinformatics, 13, 86.

34 Koestler, D.C., Christensen, B., Karagas, M.R., Marsit, C.J., Langevin, S.M., Kelsey, K.T.,
Wiencke, J.K. and Houseman, E.A. (2013) Blood-based profiles of DNA methylation predict the
underlying distribution of cell types: a validation analysis. Epigenetics, 8, 816-826.


https://doi.org/10.1101/2022.03.01.482537
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482537; this version posted May 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Legendsto Figures

Figure 1. Distribution of nanopor e sequencereads acr oss AHRR region. Depicted is the targeted
genomic region on chromosome 5 containing AHRR and the location of the gRNAs and sequencing
reads. Shown from top to bottom is the gene locations (exons and introns) for different transcripts,
CpG islands locations (green boxes), target position of the gRNAs where the grey arrow indicates the
orientation, a histogram of the total number of Nanopore reads overlapping each position, and the
location of the individual reads at the bottom. Note that due to the high number of reads in the region,

only a subset are included to give a representative view of read mappings.

Figure 2. Scatterplot of DNAm quantified using ONT sequencing and Illumina EPIC arrays.
Plotted is the level of DNAmM estimated from Nanopore reads using Nanopolish (x-axis) and Illumina
EPIC arrays (y-axis) for all sites within the three targeted regions which were profiled using both
platforms combined across both samples. The colour of the point differentiates the two samples (i.e.

smoker and non-smoker).

Figure 3. Comparison of nanopore sequencing and | llumina EPIC array to identify differential
methylation sites associated with smoking. Across the 34 CpGs tested with both Nanopore
sequencing and EPIC array for associations with current smoking status, A) scatterplot of —log10 p-
values from EWAS comparing smoker(s) and non-smoker(s) using Nanopore sequencing (x-axis) and
EPIC array (y-axis). B) Scatterplot of the (mean) difference in DNAm between smoker(s) and non-
smoker(s) estimated using Nanopore sequencing (x-axis) or EPIC array (y-axis). C) Scatterplot of
total read depth in Nanopore sequencing (x-axis) and —log10 p-values from EWAS comparing
smokers and non-smokers using EPIC array (y-axis). In all panels the colour of the point indicates

with which technology a significant difference was detected.

Figure 4. Genomic distribution of AHRR CpGswith significantly different propor tions of
DNAm associated with smoking. Depicted is part of the targeted genomic region on chromosome 5

containing AHRR where a cluster of significant CpGs were identified. Shown from top to bottom is
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the gene locations (exons and introns) for different transcripts, CpG islands locations (green boxes),
chromHMM predicted chromatin annotations from the 15 state model for blood (E062) where the
colour of the box indicates the type of regulatory region as conferred in the legend at the bottom of the
panel, a (orange) Manhattan plot of the —log10 P-values from the Fisher’s test of the Nanopore
sequencing estimated DNAm proportions comparing a smoker and non-smoker, a (orange) line graph
of the estimated difference in DNAm proportion between the smoker and non-smoker from the
Nanopore data, a (blue) Manhattan plot of the —log10 P-values from the EPIC array EWAS of current
smoking status and a (blue) line graph of the estimated mean difference in DNAm proportion between

smokers and non-smokers estimated with the EPIC array.

Tables

Table 1. Summary of the threetargeted regions.

Gene Chr | Range(hg38) | Size(kp) | Number | Number | % of Mean M ean N
of of reads | reads | coverage | read | reads>
guides length 10kb
AHRR 5 300325 - 140.5 10 421 0.23% 19.1 10067 160
440842
- 2 233280458 - 8.3 4 89 0.05% 21.5 4987 3
233288795
GFI1 1 92939875 - 17.6 4 135 0.07% 7.72 3380 14
92957522
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Abbreviations

crRNA - CRISPR-Cas9 CRISPR RNAs
DNAmM — DNA methylation

DMP - differentially methylated region
gDNA — genomic DNA

IDT - Integrated DNA Technologies
ONT - Oxford Nanopore Technologies

RNPs — ribonucleoproteins
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