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ABSTRACT  

Mitochondrial toxicity is an important safety endpoint in drug discovery. Models based solely 

on chemical structure for predicting mitochondrial toxicity are currently limited in accuracy 

and applicability domain to the chemical space of the training compounds. In this work, we 

aimed to utilize both -omics and chemical data to push beyond the state-of-the-art. We 

combined Cell Painting and Gene Expression data with chemical structural information from 

Morgan fingerprints for 382 chemical perturbants tested in the Tox21 mitochondrial 

membrane depolarization assay. We observed that mitochondrial toxicants differ from non-

toxic compounds in morphological space and identified compound clusters having similar 

mechanisms of mitochondrial toxicity, thereby indicating that morphological space provides 

biological insights related to mechanisms of action of this endpoint. We further showed that 

models combining Cell Painting, Gene Expression features and Morgan fingerprints 

improved model performance on an external test set of 244 compounds by 60% (in terms of 

F1 score) and improved extrapolation to new chemical space. The performance of our 

combined models was comparable with dedicated in vitro assays for mitochondrial toxicity. 

Our results suggest that combining chemical descriptors with biological readouts enhances 

the detection of mitochondrial toxicants, with practical implications in drug discovery. 

 

Mitochondrial Toxicity; Cell Painting; Gene Expression; Cell Morphology; Machine 

Learning   
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INTRODUCTION 

Drug-induced mitochondrial toxicity1 is being increasingly recognized as a contributor to 

late-stage withdrawals2 causing cardiotoxicity3, drug-induced liver toxicity4 and diseases 

related to ageing such as Parkinson.5 Mitochondrial toxicity can be directly or indirectly 

caused by combinations of multiple mechanisms (some of the mechanism are shown in 

Figure 1 although this in no way is an exhaustive list) which makes predicting mitochondrial 

toxicity challenging.6 There are multiple factors affecting mitochondrial toxicity. A common 

direct cause of mitochondrial dysfunction is uncoupling of the electron transport chain from 

ATP synthesis or accumulation of calcium in mitochondria causing an increase in Reactive 

Oxygen Species (ROS) leading to oxidative stress and damaging mitochondrial DNA 

(mtDNA).7  Indirect effects of drugs on cells such as inhibition of fatty acid β�oxidation, 

uncoupling of oxidative phosphorylation, the opening of the membrane permeability 

transition pore, and disruption of mtDNA synthesis and translation have also been shown to 

cause mitochondrial toxicity.7 Retrograde signalling pathways often triggered by these 

mechanisms result in cross-talk between mitochondria and nucleus leading to changes in 

nuclear gene expression and may activate unfolded protein response.8 Besides ER stress, 

oxidative stress, proteotoxic stress, and apoptosis, there are also other types of signalling and 

outcomes in aspects of mitochondrial organelle biology such as mitophagy and 

mitochondrial-derived vesicles9 that may contribute to mitochondrial toxicity although the 

outcome may be cell death when there is executive cytotoxicity. Hence, we can see that 

mitochondrial toxicity can be difficult to predict with just chemical structure and there is a 

need to include more biological data which may be more predictive of this endpoint. 

The risk of mitochondrial toxicity in drug discovery can be indicated either via experimental 

methods (such as the Glu/Gal assay10) or using predictive methods trained on data from in 
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vitro assays. Dedicated assays often use HepG2 cells to detect mitochondrial toxicants11 and 

mostly fluorescent dyes (Mito-MPS12, DiOC613, rhodamine-12314, MitoTracker Orange15, 

TMRM14, TMRE14, JC-116). These assays capture proxy endpoints, for example, membrane 

depolarisation, which are quite heterogeneous and not in absolute concordance to the term 

“mitochondrial toxicity”. Another example, in the Glu/Gal assay, the ratio of IC50 values in 

different cultures is not always easy to translate to in vivo effects. Further, each fluorescent 

dye has its limitation17, for example, JC1 is sensitive to membrane depolarization but 

disadvantaged by its poor water solubility and low signal-to-background window. Imaging 

assays, such as the Apredica HepG2 mitochondrial membrane potential and mitochondrial 

mass assays18 measure the average cell intensities for mitochondria from high content 

imaging, where the average intensity of mitochondria was used to define mitochondrial 

membrane potential, and the total intensity is used to define mitochondrial mass.18 This 

makes defining and detecting mitochondrial toxicity a challenging task in itself. 

Previous approaches to computationally predict mitochondrial toxicity has to a large extent 

been based on predicting mitochondrial membrane depolarisation using chemical structure 

(Supplementary Figure S1,  Supplementary Table S1) and machine learning methods 

including Support Vector Machines19,  Random Forest models20,21, and naïve Bayes 

classifier22. Using molecular descriptors or structural fingerprints, the best models showed a 

balanced accuracy between 0.74 to 0.86 as reported by Zhao et. al.20 However, Zhao et al. 

showed that extrapolation to new structural space is difficult and accuracy inside the models’ 

applicability domain was higher when compared with out-of-domain compounds.20  

Since mitochondrial toxicity can be characterised by a multitude of mechanisms3, it has been 

challenging to assemble sufficient data that can sustain computational methods able to 

extrapolate to new chemical space. Together with the fact that in vitro assays for 

mitochondrial toxicity are demanding and with varying degrees of reliability, there is a clear 
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need for advancements in the field.23 In recent years, hypothesis-free data on cell lines have 

become available on a much larger scale, both publicly and in company repositories. In this 

work, we explore how data from Cell Morphology in addition to Gene Expression can 

improve the detection of mitochondrial toxicity. To the best of our knowledge, this is the first 

study that presents predictive models for mitochondrial toxicity in vitro assays based on 

integrated data derived from two types of hypothesis-free data and chemical structure. 

The LINCS L1000 gene expression technology developed by Broad Institute (described in 

Figure 2) captures changes in 978 landmark genes, and large scale data before and after 

treating different human cell lines with FDA-approved drugs and small molecules is now 

available on a sufficiently broad base to be useful for modelling.24 Gene Expression features 

have been used in predicting in vitro cell viability25, drug protein targets26, and organ level 

toxicity such as hepatotoxicity27, nephrotoxicity and cardiotoxicity28. The Gene Ontology 

initiative aims to unify gene and gene product attributes in a classification effort that will 

provide functional interpretation of gene expression data which, in our case, helps better 

generalise pathways of mitochondrial toxicity.29 The Cell Painting assay (described in Figure 

2) is a relatively recent technology developed by the Broad Institute and is used to capture 

cellular morphological changes in image data from genetic or chemical perturbations.30,31 

Microscopic images are processed to obtain over 1700 measures of cellular and organelle 

changes such as morphology, texture and intensity. Cell Painting features have been 

previously used in predicting in vitro toxicity such as cytotoxicity32, bioactivity endpoints33 

and mechanism of action34, cell health phenotypes35, drug-protein targets36, antiviral drug 

discovery37 as well as organ level toxicity such as drug-induced liver toxicity38. Further, it has 

been also shown that such cell morphology space provides a feature-specific subspace that is 

complementary information to biological information contained in the gene expression39, 

which has also been shown in predicting the mechanism of action of compounds.40 However, 
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the predictivity of high-dimensional biological features for safety- or efficacy-related 

endpoint needs to be established in each case, which for in vitro-to-in vivo extrapolation (for 

example from mitochondrial toxicity to liver injury caused by the former) is not a trivial 

exercise.41,42  

With the availability of high throughput hypothesis-free data from cell profiling technologies, 

we are presented with new opportunities to improve the detection of mitochondrial toxicity. 

In this work, we use Cell Painting and Gene Expression features to extrapolate the 

applicability domain of structure-based models to the new chemical space. While Gene 

Expression data is easier to directly interpret43, in this work we put particular emphasis on 

exploring and interpreting the biological significance and applicability of Cell Painting 

features that contain information about mitochondrial toxicity. 
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RESULTS 

Data for in vitro mitochondrial toxicity was collected from the Tox21 assay44 for 

mitochondrial membrane potential disruption summary assay (AID 720637).45 Image-based 

morphological features from the Cell Painting assay were collected from Bray et al.31 Gene 

Expression features were extracted from the LINCS L1000 dataset as pre-processed by the 

Ma’ayan Lab.43 A combined dataset was assembled to be used for model development 

(henceforth referred to as “training data”) that contained 404 distinct compounds (62 

mitotoxic, 320 nontoxic and 22 inconclusive) that contained both Cell Painting features and 

Gene Expression features. An external test set was assembled that comprised a total of 244 

distinct compounds (47 mitotoxic and 197 nontoxic) from Hemmerich et al21 who compiled 

various assays relevant to the toxicity of mitochondrial function, binding and inhibition and 

an additional 8 compounds from Mitotox Database46 (which was released towards the end of 

us conducting this study) which were not covered by the former.  No compound in this 

external test set of 244 compounds overlapped with the training data. Both datasets covered 

drugs over a wide range of ATC code distribution at the top level 327 drugs (training data) 

and 111 drugs (external test set) as shown in Supplementary Figure S2.  

Mitochondrial toxicants are similar in morphological space 

We analysed if mitochondrial toxicants were more similar to each other in morphological 

space than toxicants to non-toxicants, which could be a prerequisite for the use of this readout 

space for the detection of mitochondrial toxicity. This was done by comparing the median 

values of the 5 highest Tanimoto similarity coefficients and the absolute value of median of 

15 most positively and 15 most negatively Pearson correlation statistic values for Cell 

Painting features. As shown in Figure 3, we found that mitotoxic compounds are 

considerably different from non-toxic compounds in morphological space (median Pearson 
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correlation of 0.08 vs 0.01, t-test independent p value=3.3e-20). However, they remain 

distinguishable in structural space (median Tanimoto Similarity of Morgan fingerprints 0.22 

vs 0.19, t-test independent samples p value=6.3e-03). We conclude that morphological space 

can discriminate between mitochondrial toxicants and non-toxicants and that this readout 

space is more able to discriminate between both classes of compounds than chemical 

fingerprints on the dataset analysed here. 

Cell Painting features cluster mitochondrial toxicants to identify different mechanisms 

of mitochondrial toxicity 

We firstly analysed morphological readout space for the ability to differentiate different 

mechanisms of action (MOA) for mitochondrial toxicity. We performed feature selection on 

the initial 1,729 features (see Methods Section) which selected 110 Cell Painting features and 

visualised the morphological space using Principal Component Analysis (PCA). As shown in 

Figure 4, compound clusters emerged, which were related to mitochondrial toxicity (for 

further details see Supplementary Table S2). In particular, Cluster I (Figure 4) comprises 

several microtubule destabilisers such as fenbendazole, parbendazole, and mebendazole, that 

belong to the benzimidazole class47,48,49 together with structurally dissimilar compounds, 

namely rotenone and paclitaxel, both of which are known mitochondrial toxicants as well as 

microtubule destabilizers.50,51 Supplementary Figure S3, shows that cell painting phenotypes 

for six microtubule disruptor drugs (Cluster I: albendazole, colchicine, mebendazole, 

paclitaxel, parbendazole and podophyllotoxin) reveal alterations at the nuclear level, depicted 

by nuclear fragmentation as well as multinucleated cells, vacuolation of the endoplasmic 

reticulum, redistribution of the mitochondria and cytoskeleton destabilisation. We found 

ouabain and digoxin in Cluster II (Figure 4) have similar mechanisms for mitochondrial 

injury as inhibitors of the plasma membrane Na+ pump, which can lead to impaired 
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mitochondrial Ca2+ retention, increased ROS production and reduced mitochondrial 

membrane potential.52,53 Cluster III (Figure 4) consists of statins, namely lovastatin and 

simvastatin, which are known to inhibit the synthesis of mevalonate, a precursor of 

ubiquinone that is vital to the mitochondrial respiratory chain and causes oxidative stress.54 

Compounds in Cluster IV (Figure 4), namely mevastatin (a statin), raloxifene (a selective 

estrogen receptor modulator) and prazosin (an alpha-blocker), form again a cluster that is 

rather diverse with respect to chemical structures, and primary pharmacology/indication 

areas. However, those compounds are all known to induce apoptotic signalling cascades 

which trigger the release of cytochrome c into the cytosol.55,56,57 This causes depolarization in 

the mitochondrial membrane leading to mitochondrial injury. Although compounds in the 

individual clusters were often structurally dissimilar to each other, we did not find any other 

compound in the training dataset (542 compounds) with a very similar chemical structure 

(greater than 0.85 Tanimoto similarity) to the compounds in the individual mitochondrial 

toxicity clusters. This shows morphology space could cluster dissimilar structures with 

similar modes of action together and did not miss similar compounds with similar modes of 

action. Overall, our findings show that cell morphology readouts from the Cell Painting assay 

can cluster several modes of action of mitochondrial toxicants, such as the disruption of 

microtubules, increased ROS production and oxidative stress.  

Cell Painting features are correlated to Gene Expression features 

We used 62 known mitotoxic compounds to calculate Pearson’s correlation between the 

selected 110 Cell Painting features, and 10 Gene Expression features related to unfolded 

protein response, endoplasmic reticulum stress, T cell apoptotic process and side of the 

membrane which represent biological processes from prior knowledge is known to be related 

to mechanisms mitochondrial toxicity.58,59 We found specific Cell Painting features were 
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correlated with these Gene Expression features as shown in Figure 5 (further details on 

biological significance in Supplementary Table S3). We found that Gene Expression features 

corresponding to unfolded protein response and endoplasmic reticulum stress were most 

positively correlated to “Cytoplasm_AreaShape_FormFactors”. Form factors indicate how 

perfectly circular an object is which corresponds to the rounding up of cells due to apoptosis 

and could be indicative of cell death (caused by ER stress or the unfolded protein response 

which induces cell death, like many other stress responses60). Gene Expression features 

related to unfolded protein response were negatively correlated to 

“Cells_Texture_DifferenceVariance_RNA_10_0” which calculates the image variation in a 

normalized co-occurrence matrix and could correspond to various secondary processes 

following ER stress (including a reduction in transcription, but also reduced translation, 

caspase activation, apoptosis, etc.61). The Gene Expression feature “side of membrane”, 

which is a parent to the cytoplasmic side of mitochondrial outer membrane was found most 

positively correlated to “Nuclei_Granularity_1_RNA” and most negatively correlated to 

“Cytoplasm_Correlation_Costes_DNA_Mito”. An increase or decrease in granularity of 

cytoplasmic RNA, in the proximity of the nucleus, might indicate the formation of RNA 

inclusion bodies or RNA processing while the correlation between DNA and mitochondria 

object could correlate to DNA fragmentation and heterogeneity in mitochondrial content. 

Hence, we conclude that Cell Painting features contain information of biological significance 

related to pathways of mitochondrial membrane depolarisation.  

Cell Painting and Gene Expression enables training of accurate and interpretable 

models for detecting mitochondrial toxicity 

As the utility of chemical structure in detecting mitochondrial toxicity was previously 

explored by Hemmerich et. al.21, our work focussed on comparing individual Cell Painting 
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features and Gene Expression features with respect to their ability to detect mitochondrial 

toxicants. We used positive predictive values (PPV) and F1 scores from single decision tree 

classifiers trained on individual features (see Methods) to detect a signal for mitochondrial 

toxicants and provide a biological interpretation of these feature spaces. We found that Cell 

Painting features related to granularity, intensity, location, and radial distribution of 

mitochondrial objects over the three compartments (cells, cytoplasm and nuclei) had high 

predictivity for mitochondrial toxicity (median PPV grouped by compartment, channel, and 

feature group greater than 0.70; Supplementary Figure S4). We next more closely considered 

the feature value distribution for individual features with high PPV for mitotoxicity 

(Supplementary Figure S5) For example, “Cells_Intensity_MaxIntensityEdge_Mito” 

(PPV=0.83). Compounds toxic to mitochondria evenly affect the edge of the mitochondria 

object. Since this measurement is at the edge of the segmented object, it indicates a loss of 

membrane integrity. Another feature, “Cells Intensity MADIntensity Mito” (PPV=0.8) is a 

measurement of statistical dispersion which measures the standard deviation and median 

absolute deviation (MAD) of pixel intensity values while being robust to outliers. For 

MitoTracker Deep Red used in Cell Painting assay, this might indicate a variation of 

intensities among fragments of the mitochondrial membrane, resulting from loss of 

membrane integrity. “Cells Granularity 1 RNA” (PPV=0.56) reveals information present in 

pixel 1 in the RNA channel where certain mitotoxic compounds also have low feature values. 

An increase or decrease in granularity of cytoplasmic RNA might indicate the formation of 

RNA inclusion bodies or RNA processing. Further attempted biological interpretations for 

some features (knowing that this is not a trivial process) are shown in Figure 6 and 

Supplementary Table S4. 

Gene Expression features with high PPV could be classified as either causing 

mitochondrial membrane depolarisation or as an effect of mitochondrial toxicity (as shown in 
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Figure 7 and Supplementary Table S5). Features such as endoplasmic reticulum unfolded 

protein response (PPV 0.92) and activation of signalling protein activity involved in unfolded 

protein response (PPV 1.00) have previously been attributed to ER related effects such as 

protein folding, oxidative stress and ER stress.60 Such effects are linked to each other and 

toxins affecting the same can depolarise the mitochondrial membrane affect the movement of 

mitochondria on microtubules and eventually regulate apoptosis.62 Features such as the 

external side of plasma membrane (PPV 1.00), side of membrane (PPV 1.00), autophagic 

vacuole membrane (PPV 1.00), negative regulation of T cell activation (PPV 0.86) are related 

to processes of cell proliferation, cell cycle arrest as well as apoptosis that causes oxidative 

stress and cell death which can cause mitochondria to depolarise.63 The GO Cellular 

Component dendritic plasma membrane (PPV 0.88) and the Biological Process oocyte 

development (PPV 0.88) are greatly affected by mitochondrial dysfunction as neurons are 

mitochondria-dependent cells64 while oocyte development requires optimal energy 

production and is highly dependent on mitochondrial function for the same.65 Hence we 

conclude that a number of Cell Painting and Gene Expression features showing a high 

predictivity to mitochondrial membrane depolarization are also interpretable in the 

mechanistic roles either causing mitochondrial toxicity or being a consequence of the same.  

Fusion models accurately detect mitochondrial toxicity and expand the applicability 

domain 

We finally established predictive models for mitochondrial toxicity based on 3 models 

using Cell Painting features, Gene Expression features and Morgan fingerprints and another 2 

combinations thereof in early- and late-stage fusion. Early-stage fusion appended all three 

features into a single vector while late-stage fusion averaged the probabilities of the three 

individual models. We used a Random Forest model with repeated nested cross validation on 
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a training data of 382 compounds (out of which 62 have mitotoxic annotations)  and validated 

using an external dataset of 244 compounds (47 mitotoxic) where test compounds, although 

run across various assay conditions)  were structurally diverse and generally dissimilar to the 

training data (details shown in Supplementary Figure S6). Figure 8 shows median 

performance from nested-cross validations and external validations (for further results see 

Supplementary Table S6 and for an overview of results from each fold of nested-cross 

validation see Supplementary Figure S7).  

Fusion models combining Cell Painting features, Gene Expression features, and Morgan 

fingerprints exhibited higher F1 scores on the external dataset (early-stage fusion: 0.47, late-

stage fusion: 0.42) in detecting mitotoxicity than models using only Morgan fingerprints 

(0.25). The drop in the F1 score of models using only Morgan fingerprints from 0.42 in 

repeated nested cross-validation to 0.25 in the external test (Figure 8) shows that Morgan 

fingerprints lack extrapolation power to novel chemical space. Although the training dataset 

was different and larger in previous work by Hemmerich et. al21 focusing on purely chemical 

structure data (1412 compounds vs 382 compounds here), the results are hence not directly 

comparable; our early-stage fusion model based had slightly higher F1 scores (0.47vs. 0.41) 

which implied improved ability to detect mitochondrial toxicants in the external test set. As 

shown in Figure 9a, the success of fusion models is underlying by the fact that in 

morphological space, mitotoxic compounds in the external test set were more 

morphologically similar to mitotoxic compounds in the training set while no such correlation 

was present among the images of non-toxic compounds. Finally, late-stage fusion was more 

sensitive to the toxic class in the external test set compared to early-stage models (0.79 vs 

0.64) while the balanced accuracy remained the same (0.69). Given the importance of 

detecting mitotoxicants in practice, the higher sensitivity and F1 score of a model is likely 

advantageous in practical situations even at identical balanced accuracy.  
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We next analysed in more detail the predictions of mitochondrial toxicants in the external 

test set with our models as shown in Figure 9b (with further details shown in Supplementary 

Table S7). The model using Morgan fingerprints could correctly classify only 9 out of the 47 

mitochondrial toxicants in the external test set; these compounds were at a low structural 

distance to mitotoxic compounds in the training set (Supplementary Figures S6 and S8). The 

model using only Cell Painting features could extrapolate well into structurally diverse 

compounds and correctly predict 34 out of 47 mitotoxic compounds in the external test set 

but failed when the distance to morphological space was high for example, with compounds 

71145-03-4 (Figure 9b), while the same compound was correctly predicted by the model 

using only Morgan fingerprints (which was explicable due to lower structural distance to 

training data). The late-stage fusion model correctly predicted 37 out of 47 mitotoxic 

compounds, combining information from both spaces, out of which 5 mitochondrial toxicants 

were neither correctly predicted by the model using only Cell Painting features, nor by the 

model using only Morgan fingerprints. Among them were betulinic acid, ketoconazole and 

diflunisal (which inhibits oxidative phosphorylation66,67) and fluoxetine (which inhibits 

oxygen consumption and lowers mitochondrial ATP68) shown in Figure 9b. These examples 

demonstrate the synergistic effect of the late-stage fusion model, using information from both 

the cell morphological as well as the chemical fingerprint space.  

Late-stage fusion models accurately detect mitochondrial toxicity of Tox21 

compounds labelled as inconclusive 

Next, we compared predictions using the 5 models above for the 22 compounds from the 

data where inconclusive results were obtained in the Tox21 due to excessive cytotoxicity 

either in the mitochondrial depolarization assay or in the cell viability assay.69 Literature 

analysis revealed (further details in Supplementary Table S8) that 4 of the 22 compounds 
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(loratadine, progesterone, ticlopidine and tyrphostin A25) previously have been shown to not 

cause mitochondrial damage (in fact, progesterone70 and tyrphostin A2571 reduce oxidative 

stress and repair oxidative damage). Another 10 compounds showed some mitochondrial 

toxicity, such as ketoconazole (inhibitor of oxidative phosphorylation66), diflunisal 

(uncoupler of oxidative phosphorylation72), daidzein and fipronil (increase ROS causing 

mitochondrial depolarization73,74). The mitochondrial toxicity for the remaining 8 compounds 

could not be elucidated further from the literature. Mitochondrial toxicity, like any other 

compound effect, is concentration-dependent, and the literature evidence compiled as well as 

the Cell Painting assays whose data was used in this work might hence use different 

concentrations. Also, the cell line/biological system considered in the literature evidence, the 

Tox21 assays and the Cell Painting assay can also be very different. With respect to 

concentration, we explored to what extent the data used here would be predictive for the 

mitotoxicity endpoint considered, on a relative scale for the different input parameters used in 

our models; while for the cell line used it has been shown before that Cell Painting yields 

similar biological phenotypes for different cell lines without cytochemistry protocols 

requiring specific cell-type-specific optimization.75 The latter indicates the predictions from 

the Cell Painting assay may be applicable in detecting toxicity mitochondrial toxicity in 

another cell line or biological system.  

For the 14 compounds for which mitotoxicity annotations were found, Morgan fingerprints 

correctly predicted toxicity of only 1 out of 10 toxic compounds and correctly predicted the 

non-toxic nature of 3 out the 4 non-toxic compounds (Supplementary Table  S9). Thus, 

Morgan fingerprints showed only very low sensitivity on this dataset. The best performing 

model, late-stage fusion (averaging predictions from all three models using Cell Painting, 

Gene Expression features and Morgan fingerprints) however correctly predicted toxicity for 

all (10 out of 10) mitochondrial toxicants, and correctly predicted the non-toxic nature of 3 
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out the 4 non-toxic compounds (that is, the increased sensitivity does not come at a cost of a 

large false positive rate, given that the latter stayed constant between both models). Overall, 

the late-stage fusion model could hence extrapolate to the morphological space of these 

inconclusive compounds and detect mitochondrial toxicity even when Tox21 assays reported 

inconclusive outcomes due to cytotoxicity.  

Sensitivity of fusion models is on par with dedicated in vitro mitochondrial toxicity 

assays 

Finally, we compared the performance of our models to detect mitochondrial toxicity with 

dedicated in vitro assays. Hallinger et al. compared various high throughput screening assays 

and a respirometric screening assay to detect known mitochondrial toxicants (as shown in 

Supplementary Figure S1 and Supplementary Table S1).76 When comparing 60 reference 

chemicals to existing Tox21 assays, they found RSA to be most predictive (balanced 

accuracy 0.90), while the Tox21 mitochondrial membrane potential assay was also highly 

predictive (balanced accuracy 0.87). However, respirometric screens have lower throughput 

than Tox21 assays and are not suitable for screening a large number of compounds. Among 

other assays they compared were high content imaging assays, where the Apredica HepG2 

mitochondrial membrane potential and mitochondrial mass assays18 were found to be 

comparatively less predictive (balanced accuracy 0.78 and 0.65, respectively). Although the 

244 compounds in the external test set in our study are not the same as these 60 reference 

chemicals, from a numerical performance comparison we found that our fusion model 

achieved  sensitivity at par with imaging assays in the external test set (0.79 in our study vs 

0.37 in Apredica MitoMass vs 0.8 in RSA) in detecting mitotoxic compounds with 

comparable balanced accuracies (0.69 in our study vs 0.65 in Apredica MitoMass). The 

added advantage of using Cell Painting is that it is a comparatively inexpensive single screen 

that can also be used simultaneously for multiple endpoints for which it is found to be 
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predictive. Hence, we can conclude that the late-stage fusion model based on Cell Painting, 

Gene Expression and chemical structural data compares well with respect to its predictive 

power for mitotoxicity to many dedicated assays for this purpose (although precise numerical 

values cannot be compared due to the different data sets used). 

Limitations and Future Work 

 One limitation of the here presented study is the size of the dataset (overlap between the Cell 

Painting and Gene Expression features with mitochondrial toxicity assay annotations), 

making it cover a somewhat limited area of chemical space. To mitigate the risk of overfitting 

in an ensemble method such as Random Forests, first the Cell Painting and Gene Expression 

features were subjected to feature selection. We used hyperparameter optimisation and nested 

cross validation to evaluate the training data and selected the optimal number of trees as 

shown in previous work.77 Although an individual decision tree may be more prone to over-

fitting, in the case of an ensemble method such as Random Forests, we also avoid overfitting 

by bootstrapping samples (randomly choosing selected features at each split for trees).78 To 

further examine this, we used an external test set where we found the performance does drop 

in the external test set when using only chemical structure but not when using fusion models 

combining structure with cell morphology and gene expression. Our evaluation and 

discussions on extrapolation to new chemical space (as shown in Figure 9) are based on this 

external test set and hence are still valid. 

 Another limitation is the discrepancy between the cell lines, where Cell Painting was 

carried out on USO2 cells, and LINC L1000 used a variety of cell lines (MCF7, A549, 

HepG2, HT29, etc.); we use the Cell Painting to predict toxicity in the Tox21 assay which 

used HepG2 as testing cell lines thus giving rise to a toxicity discrepancy in assays using 

different tissues and perturbants at different concentrations. In our case, we leverage the fact 
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that cell morphological data provides versatile biological data that is generally able to 

extrapolate to different cell lines as shown in previous studies. For example, Cox et. al. used 

cell morphological data from 15 reporter cell lines to predict the mechanism of action (MOA) 

but did not see any individual reporter cell line outperform others (with the notable exception 

of GR agonists).79 They also observed that the genetic background of the reporter cell line did 

not affect the overall AUC-ROC values calculated for the different MOAs. Although gene 

expression data can be cell line specific, previous work by Lapins et al showed that the 

prediction of MOA was similarly effective with an average AUC of 0.83 across 3 different 

cell types.34 Therefore as outlined in the Methods Section Gene Expression features 

subsection, for gene expression features in this study we used the strongest signatures 

irrespective of the cell line. In this manner, although the cell line of feature spaces differs 

from the toxicity assay (and more so in the case of organ-level toxicity), we could leverage 

the biological information in the cell morphology and gene expression data to predict 

mitochondrial toxicity which is an in vitro toxicity endpoint.  

 Future studies would benefit from larger datasets, such as the announced future data 

depositions from the JUMP consortium80, and also more and better annotated compounds that 

show mitochondrial toxicity under different assays and dosages such as from the Mitotox 

database46. It may also be possible to apply different types of machine learning or deep 

learning models, such as deep neural networks, gradient boosting, or a variational 

autoencoder (which has been previously shown to reveal an interpretable latent space81) to 

improve the model’s predictions and generally improve the interpretability of models.   
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DISCUSSION 

Mitochondrial toxicity is a leading cause of late-stage drug withdrawals2 and numerous 

drugs such as amiodarone, doxorubicin, statins (e.g cerivastatin, simvastatin) and valproic 

acid have been shown to induce adverse effects via mitochondrial dysfunction. Mitochondrial 

toxicity can be caused by multiple mechanisms and prediction using only chemical structural 

fingerprints has been shown to be difficult, with respect to extrapolation to novel chemical 

space, where low model sensitivity has been regularly observed.  

To the best of our knowledge, in this work, we present the first study combining 

hypothesis-free high throughput Cell Painting and Gene Expression features with structural 

fingerprints to predict mitochondrial toxicity. In this work, we confirmed that Cell Painting 

readouts can discriminate mitotoxic and non-mitotoxic compounds and are able to cluster 

mitotoxic compounds with a shared mode of action (including compounds with inconclusive 

assay outcomes in Tox21 due to excessive cytotoxicity)  in morphological space. This 

indicates that Cell Painting features are able to detect similarities with respect to both mode 

of action and mitochondrial toxicity, also in situations of large differences in chemical space. 

Further, we showed that Cell Painting features correlate to Gene Expression features, which 

are related to mechanisms of mitochondrial toxicity. We trained late-stage fusion models, 

which are averaging the results from the Cell Painting, Gene Expression and Morgan 

fingerprint models.  We show that the late-stage fusion model has higher accuracy when 

predicting mitochondrial toxicity (F1 score 0.42) when extrapolating to the new chemical 

space of an external set (wherein compounds which were structurally dissimilar to the 

training set as shown in Supplementary Figure S6) compared to the model using only Morgan 

fingerprints (F1 score of 0.25). As shown in Figure 9, the utilization of cell morphology and 

gene expression data improved the detection of mitotoxic compounds (as shown in late-stage 
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fusion model with sensitivity 0.79 vs 0.19 when using only structural data). Hence, we can 

conclude that the detection of mitochondrial toxicity is improved when using all three feature 

spaces (structure, morphology, and gene expression) together. Also compared to dedicated 

mitochondrial high content imaging assays our late-stage fusion model showed favourable 

sensitivity. The Cell Painting feature space is less expensive than the L1000 assay or DRUG-

seq82 and thus enables larger high-throughput experiments.40 This cell morphology modality 

is thus being increasingly explored both in the public domain such as by the JUMP 

consortium80 and as well as by pharmaceutical companies such as by Jannsen83. Given that 

Cell Painting readouts can be used for multiple purposes, this supports their use also for the 

prediction of a mitochondrial toxicity endpoint. 

Using hypothesis-free data, such as Cell Painting and Gene Expression data,  in machine 

learning models can hence be used to detect toxicity (here mitochondrial toxicity), as well as 

to help understand modes of toxicity, also in situations where this is not possible based on 

chemical structure alone. From a predictive modelling perspective, by combining high 

predictivity of fingerprints in areas of structural space close to the training set with better 

generalizability of Cell Painting features at greater distances to the training set, such models 

can contribute to extending the applicability domain of the overall model. 
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METHODS 

In this work, we followed the workflow as displayed in Supplementary Figure S9 for 

dataset curation, feature selection and model architecture.  

Mitochondrial toxicity dataset preparation 

Data for in vitro mitochondrial toxicity, used as the endpoint in this study, was collected 

from the Tox21 assay44 for mitochondrial membrane potential disruption (MMP) summary 

assay (AID 720637).45  This summary assay combines results from a mitochondrial 

membrane potential (MMP) assay84 (AID 720635) and a cell viability counter screen85 (AID 

720634) into a binary assay hit call.  

For the Tox21 MMP assay, a water-soluble mitochondrial membrane potential sensor was 

used to evaluate chemically induced mitochondrial toxicity. In healthy cells, this dye 

accumulates in the mitochondria with red fluorescence. However, should the potential 

collapse, the dye is no longer able to accumulate in the mitochondria and remains in 

monomers giving a green fluorescence from the cytoplasm. The cytotoxicity was tested in the 

same assay well as the mitochondrial potential using a counter cell viability screen. The 

viability of the cells in the culture was determined by measuring the amount of ATP present. 

Thus, the summary assay not only considers triplicate runs of the ratio (red/green) readout in 

the MMP assay but also each fluorescence channel separately, as well as the cytotoxicity 

results.69 The compounds causing excessive cytotoxicity were labelled “inconclusive” which 

helps differentiate compounds that decreased MMP from those inducing high cytotoxicity. 

One cannot be certain if mitochondrial dysfunction may have caused the excessive cell death 

in these “inconclusive compounds”. Hence as a precautionary measure to not end with 

predicting cytotoxicity in this study, but only mitochondrial toxicity, we removed 

inconclusive compounds from the training dataset. Hence, in our models, inconclusive 
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compounds were removed and for the remaining compounds, mitochondrial toxicity labels 

were assigned as per assay hit calls from the Tox21 summary assay.  

Multiple endpoints, such as mitochondrial membrane depolarisation, can be related to 

mitochondrial toxicity as can be increased ROS or alteration of energy homeostatic, 

especially if the membrane potential is depolarised.  Hemmerich et al.21 compiled various 

mitochondrial membrane potential as well as additional assays relevant to mitochondrial 

toxicity (mitochondria, mitochondria potential and mitochondria complex) from various 

sources, including CHEMBL, PubChem and 246 drugs tested by Zhang et al.19 into a single 

dataset related to mitochondrial function, binding and inhibition consisting of 824 

mitochondrial toxicants and 4937  non-toxic compounds. To evaluate our models, we further 

used an external test set using compounds (that do not appear in the training data) from this 

dataset. We further included compounds from Mitotox Database46 compiling mitochondrial 

toxicity under different assays and dosages. We searched Mitotox for compounds associated 

to decreased transmembrane potential86 to obtain 652 unique mitotoxic compounds. 

Cell Painting features 

Image-based morphological features were extracted from the Cell Painting assay 

experiments in Bray et al.31 These experiments contained perturbations from 30000 

chemicals (around 10,000 small molecules, 2200 drugs and 18000 novel compounds from 

diversity-oriented synthesis) using DMSO neutral control, USO2 cells in 384-well plates in 5 

channels staining eight cellular organelles: nucleus, endoplasmic reticulum, F-actin 

cytoskeleton, Golgi apparatus, plasma membrane, mitochondria, cytoplasmic RNA and the 

nucleoli. We obtained consensus morphological features for each compound using the 

following procedure similar to Lapins et al.34 For each plate, the average feature value from 

the DMSO plates was subtracted from the perturbation’s average feature value. Next, we 
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calculated the median feature value for each compound and dose combination. For replicates, 

we used the median feature values for doses that were within one standard deviation of the 

mean dose. The concentration was also included as a feature. Features known to be noisy and 

generally unreliable as recommended by Way et al. were removed.87 Further, the changes in 

morphology may be particularly obvious due to excessive cytotoxicity there we must avoid 

perturbations which drastically reduced the cell count compared to the neutral control of 

DMSO. We removed such compounds (step 1, Supplementary Figure S9a) in Cell Painting 

images by removing compounds with a threshold of 1.5 times standard deviation below the 

mean of  “Cells Number Object Number" (the distribution is shown in Supplementary Figure 

S9b) which is below -15.09. Thus, consensus morphological profiles consisting of 1729 

numerical features were obtained. 

Gene Expression features 

The Gene Ontology initiative aims to unify gene and gene product attributes in a 

classification effort that will provide biological and functional interpretation of gene 

expression data.29 They also ensure that genes are consistently annotated across different 

available datasets. The Gene Expression features used in this work have been derived from 

transcriptomic data from LINCS L1000. LINCS L1000 gene expression technology profiles 

changes in 978 landmark genes on perturbations of compounds for a variety of human cell 

lines.24 In this work, Gene Ontology transformed Gene Expression features were extracted 

from the http://maayanlab.net/SEP-L1000/#download which contained 4438 annotated Gene 

Expression features corresponding to 19803 distinct compounds.43 The authors used quantile-

normalized gene expression profiles from the LINCS L1000 dataset for all replicates of each 

compound. For each compound, the strongest signatures were used irrespective of the cell 

line, concentration, or time point which minimizes the number of features required. Gene 
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expression signatures for each compound perturbation were computed using the 

Characteristic Direction (CD) method88 on 978 measured hallmark genes. Further, they 

computed enrichment p-values for each CD signature in the space of all genes against gene 

set libraries (including biological processes, cellular components, and molecular functions, as 

well as other gene set libraries accessible from the Enrichr tool89) using an extension of the 

CD technique called Principal Angle Enrichment Analysis (PAEA).90 We used these 

annotations for each GE-perturbation combination for further analysis. 

Dataset curation and collation 

We calculated the intersection between mitochondrial toxicity and Cell Painting and Gene 

Expression datasets described above using standard InChI calculated using RDKit.91 For 

conflicting replicates, we considered a compound toxic, if it was detected to be mitotoxic at 

least once (since in such situations evidence for mitochondrial toxicity, at least under some 

conditions, exists).  We obtained 830 distinct compounds (161 mitotoxic, 61 inconclusive and 

remaining non-toxic) from the mitochondrial toxicity dataset overlapped with Gene 

Expression features and a total of 513 distinct compounds (82 mitotoxic and 27 inconclusive) 

in overlap with Cell Painting features. Similarly, we found 404 distinct compounds (62 

mitotoxic and 22 inconclusive) in overlap with both Cell Painting features and Gene 

Expression features. For the external test set, after adding required annotations of Cell 

Painting features and Gene Expression features, removing compounds with low cell count, 

and ensuring no compounds from this were used in feature selection or training our models, a 

total of 236 distinct compounds (39 mitotoxic and remaining nontoxic) remained in the 

external test set. From the Mitotox database we obtained 652 unique compounds, out of 

which both Cell Painting and Gene Expression data were available for only 71 compounds. 

63 out of these 71 compounds were already used in this study (54 were used in the training 
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data and 9 in the external test set) We added the remaining 8 compounds to our external test 

dataset thus totalling 244 distinct compounds (47 mitotoxic and remaining nontoxic). To 

evaluate our models, we used this an external test set where compounds in this  external test 

set  do not appear in the training data. 

Structural fingerprints 

For modelling purposes, we used Morgan fingerprints which contain structural information 

about compounds and have been successfully used before for toxicity prediction.92 The 

MolVS standardizer, an open-source tool based on RDKit91, was used to standardize 

(including tautomer standardization) and canonicalize SMILES of the parent molecules.93 

This involved sanitization, normalisation, greatest fragment chooser, charge neutralisation, 

tautomer enumeration, and canonicalization as implemented in the MolVS tool and described 

in the MolVS standardizer. We calculated Morgan fingerprints of radius 2 and 2048 bits from 

standardized SMILES using RDKit.91  

Feature selection 

For each of the Cell Painting features and Gene Expression features, standardized values 

for compounds in the training set were separately subjected to three statistical tests, namely, 

the two-sample Kolmogorov Smirnov test (KS test)94, Mann–Whitney U test95 (MWU test) 

and Point-Biserial correlation96 (PBS correlation). While the Random Forest algorithm 

employed for modelling (see Model generation and evaluation below) is in principle able to 

select features, this is not always successful which made us compare different explicit feature 

selection methods in parallel with inputting all features into the models subsequently. This 

method in our experience led to less overfitting while still being interpretable and able to 

extrapolate to the external test set compared to other methods (Principal Component 

Analysis, Maximum Relevance — Minimum Redundancy or using all features, see 
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Supplementary Table S10 for modelling results when comparing different feature selection 

methods). 

After removing the inconclusive compounds (step 2, Supplementary Figure S9a), the 

feature selection (step 3, Supplementary Figure S9a) was performed on Cell Painting features 

and Gene Expression annotations for the remaining compounds. For cross-validation of 

models, the overlap of the top 40 negatively and 40 positively correlated features from the 

MWU test and PBS correlation and top 40 correlated features from the KS test were selected 

for further modelling. For evaluating the external test where more data was available for 

training, we selected the top 25 correlated features from each test (both positively and 

negatively for MWU and PBS) and obtained 110 Cell Painting features and 102 Gene 

Expression features. 

Comparing class separation and visualization of compounds in morphological space  

For a comparison of intra-class (Toxic vs Toxic) and inter-class (Toxic vs Nontoxic) in 

morphological space, we used 486 compounds (85 mitotoxic) for which Cell Painting 

annotations were available. We randomly resampled the majority class (non-toxic 

compounds) to match the number of samples of the minority class to ensure our comparisons 

are equivalent. Then we visualised mean Tanimoto similarity, median positive image 

correlation (considering only positive Pearson correlations) and absolute median image 

correlation (considering the absolute value of median both positive and negative Pearson 

correlations) for various values of k in k-nearest neighbours in four quartiles of the 

distribution for intra- and inter-class pairwise distributions (Supplementary Figure S10). We 

found better separation between intra- and inter-class pairwise when using the absolute value 

of the median values from the most 15 positively and 15 negatively pairwise Pearson 

correlations of Cell Painting features. For visualizing the same in structural space, we used 
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the median of 5 highest pairwise Tanimoto similarity of Morgan Fingerprints.97,98 The 

methodology was followed when comparing tests to train set distances as defined in 

subsection “Extrapolation to New Structural/Morphological Space”. 

For visualization of compounds in morphological space, we analysed the 110 selected Cell 

Painting features on 513 distinct compounds (85 mitotoxic and 27 inconclusive). We 

normalized 110 selected Cell Painting features and performed Principal Component Analysis 

using DataWarrior99 which compared to other nonlinear methods is more interpretable. 

Correlation between Cell Painting and Gene Expression features and their positive 

predictive values 

To determine the correlation between selected Cell Painting features and Gene Expression 

features for compounds exhibiting mitochondrial toxicity, we used Pearson correlation using 

the pandas Python package.100 Comparing the negative logarithmic p-value and the effect 

size, we determined which Cell Painting features were correlated to specific Gene Expression 

features related to unfolded protein response, endoplasmic reticulum stress, and T cell 

apoptotic process, side of membrane etc.  

Random Forests are not able to detect feature importance when several features are 

correlated as the Gini index tends to dilute over different features in different trees. To 

evaluate an individual feature’s importance, we used the positive predictive value (PPV) from 

single decision tree classifiers trained on individual Cell Painting features. These classifiers 

were trained on 486 compounds (85 mitotoxic) having max depth of one and two leaf nodes 

on our dataset for each feature. The tree hence determines an optimal threshold per feature to 

distinguish mitochondrial toxic compounds from non-toxic compounds. The mean PPV of 

Cell Painting features having PPV>0 was grouped by compartment (Cells, Cytoplasm, and 

Nuclei), channel (AGP, Nucleus, ER, Mito, Nucleolus/Cytoplasmic RNA), and feature group 
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(Correlation, Granularity, Intensity, Radial Distribution, Texture). The predictive value of 

individual Gene Expression features was computed in a similar manner using decision tree 

classifiers on 768 compounds (161 mitotoxic). 

Types of features’ combinations used 

Here we employed 5 types of models having different input features, combinations thereof 

as well as model ensembling. Initially, Cell Painting features, Gene Expression features and 

Morgan fingerprints were used separately as features for three separate models. As shown in 

Supplementary Figure S11, an early-stage model fused Cell Painting, Gene Expression and 

Morgan fingerprints by appending the features into a single vector while another a late-stage 

fusion model averaged the probabilities of the three models using only Cell Painting, Gene 

Expression and Morgan fingerprints respectively into a single probability value.  

Model generation and evaluation 

382 compounds (62 mitotoxic) from the mitochondrial toxicity data having both Cell 

Painting and Gene Expression annotations were used for modelling. Given the size of the 

training data, an artificial neural network model cannot capture the inherent data distribution 

effectively to perform well in an external test set (see Supplementary Table S10 for 

modelling results when comparing different Random Forests and artificial neural network 

model). Hence, in this study, Random Forest models were trained using scikit-learn.101 

As shown in Supplementary Figure S12, we used a grid search with balanced accuracy as 

the scoring function as implemented in scikit-learn, a Python based package, to optimise 

hyperparameters. Using a 4-fold stratified cross validation we determined the variation in 

performance when changing number of trees in the Random Forest. We used a 

GridSearchCV. The grid parameters varied the number of trees from 21 to 301 with a step 
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size of 5. We checked for change in balanced accuracy in out of fold results in the cross 

validation and training time. No considerable improvement was observed on increasing 

number of trees. Hence, we opted for the optimal baseline model with 100 trees which is 

within the optimal range of 64−128 number of trees given in previous research77 has also 

shown that increasing the number of trees does not necessarily improve performance.102 The 

nodes were let to expand until all leaves were pure or until all leaves contained less than a 

minimum of 2 samples that are required to split an internal node. A minimum of 1 sample 

was required to be at a leaf node and the number of features to consider when looking for the 

best split was set as the square root of total features. The consistent performance is most 

likely as Random Forests are usually robust against overfitting. As shown in Supplementary 

Figure S13, we used 4-fold nested cross-validation; inside the outer loop, a 4-fold stratified 

splitting divided the data into a training set (75%), on which feature selection was performed 

and the remaining into a test set (25%). Inside the inner loop, a Random Forest model with 

parameters as above was trained on the training set using 4-fold stratified cross-validation. 

For each model, to account for class imbalance, we tuned the threshold of probability to 

determine the cut-off for toxicity labels having maximum value for Youden's J statistic (J = 

True Positive Rate – False Positive Rate). The Youden index is frequently used to detect an 

optimal threshold to be used as a criterion for classifying subjects without biasing the model 

towards one class.  Thus, the predictions can be used to fully exploit the model giving equal 

weights to sensitivity and specificity without favouring one of them.  From combined results 

of the out-of-fold data from cross-validation, we chose the threshold of probability with the 

largest Youden's J statistic value. This threshold was then used for the test set (hence the test 

set was not used directly while selecting the optimal threshold). The entire process of nested 

cross-validating was repeated 50 times; we evaluated our models on the distribution and 

median of the performance metrics from all 200 test sets. The models overall trained with 
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reasonable training time and threshold balancing ensured that overfitting on an unbalanced 

dataset could be avoided. 

External model evaluation  

For the external test set, we trained 5 Random Forest models for each feature/combination 

on our dataset using 4-fold cross-validation and the optimal threshold was determined 

similarly from the combined out-of-fold data. The model was then retrained on the entire 

dataset and used to predict the external test set with the threshold previously determined. 

Evaluation metrics 

F1 scores of the minority class (mitotoxic compounds), precision of the minority class 

(mitotoxic compounds), sensitivity, specificity, Balanced Accuracy (BA), Area Under Curve-

Receiver Operating Characteristic (AUC-ROC), Area Under Curve-Precision Recall 

(AUCPR), and Mathew's correlation constant (MCC) were used to assess model performance 

as implemented in scikit-learn python package.101 Often in a toxicity prediction problem with 

unbalanced data, the number of nontoxic compounds far outweighs the number of mitotoxic 

compounds and improvement in the prediction of the mitotoxic compounds (minority class) 

is desired.103 Here particular metrics such as sensitivity and AUCPR are useful and less likely 

to exaggerate model performance. For comparing model predictions to true values in the 

external test set, F1 scores and precision of the minority class and the sensitivity of the model 

were used as they focus on the minority class (mitotoxic compounds) being detected by the 

model. 

Extrapolation to new structural/morphological space 
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To evaluate if our models can extrapolate to novel chemical space (either in structural space 

or in morphological space) we defined for each compound in the external test set two 

parameters: (1) Structural distance to the training set: 

���������� 	
�����
 � �
	
�� ��� , �� … , �� �                                                                 (i) 

where ��= pairwise Tanimoto distances in decreasing magnitude, where, 
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���� 	
�����
 � 1 � ���
���� �
�
���
��                                                             (ii) 

and (2) Morphological distance to the training set:  
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where, 
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��� �� , �� … ��� , �� , �� … �����                    (iv) 

and �� = positively and �� = negatively pairwise Pearson correlations in decreasing 

magnitude.  

The distances were defined the same as the subsection “Comparing class separation and 

visualization of compounds in morphological space”. The structural distance was defined as 

the median of the five lowest Tanimoto distances104 between Morgan fingerprints of the test 

compound and the compounds in the training dataset of the same activity annotation. The 

morphological distance was defined as the one minus the absolute value of the median of 15 

most positively and 15 most negatively pairwise Pearson correlations (using selected Cell 

Painting features) of the test compound and the compounds in the training dataset of the same 

activity annotation. In this manner, we could evaluate if true positives from test sets for each 

model lie in relatively distant structural or morphological space to their training space. 
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Statistics and Reproducibility  

A detailed description of each analysis' steps and statistics is contained in the methods 

section of the paper. Statistical methods were implemented using the pandas Python 

package.100 Machine learning models, hyperparameter optimisation and evaluation metrics 

were implemented using scikit-learn, a Python based package.101 The sample numbers n for 

each analysis are listed in the figure captions. We released the code and training and external 

test set data for the models publicly at https://git.io/JDGyc and in the Supplementary Data.  

DATA AVAILABILITY 

The training dataset (used for nested cross validation) and the external test set used in this 

study are released in Supplementary Table S11 and S12 and other data are publicly available 

at https://git.io/JDGyc. Any queries regarding data can be addressed to the corresponding 

author. 

CODE AVAILABILITY 

We released the python code for our models which are publicly available at 

https://git.io/JDGyc 
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FIGURES 
 

Figure 1 Title: Some of the major mechanisms of action of mitochondrial toxicants 
 
Figure 1. Toxicants act on multiple pathways to exhibit mitochondrial toxicity, including but not 
limited to, unfolded protein response, inhibition of mitochondrial respiratory chain or uncoupling 
of oxidative phosphorylation, oxidative stress from responses including generation of reactive 
oxygen species (ROS), microtubule disruption and ER stress from various responses including 
inhibition of Na+ pumps etc. 
 
Figure 2 Title: Overview of the workflow employed in this study 
 
Figure 2. L1000 technology for Gene Expression and Cell Painting Technology for cell 
morphology statistics. The LINCS L1000 gene expression technology profiles changes in 978 
landmark genes before and after chemical perturbations on different human cell lines. Raw 
unprocessed flow cytometry data from Luminex is converted to quantile-normalized gene 
expression profiles for all replicates of each compound. We use Gene Expression data from 
Wang et al43, who for each compound, computed the strongest gene expression signature using 
the Characteristic Direction (CD) method and computed enrichment p-values for each CD 
signature in the space of all genes against gene set libraries using Principal Angle Enrichment 
Analysis (PAEA). The Cell Painting assay, on the other hand, captures cellular morphological 
changes in the form of numerical statistics which are converted from microscopic image data of 
cells treated with chemical perturbations.  
 
Figure 3 Title: Mitotoxic compounds are considerably different from non-toxic compounds 
in morphological space 
 
Figure 3. Intra- and inter-class pairwise similarity for 486 compounds (85 mitotoxic)  
Median of five highest Tanimoto similarity coefficients of Morgan fingerprints and (B) Absolute 
value of the median of fifteen most positively and fifteen most negatively Pearson correlation 
effect sizes of selected 110 Cell Painting features for mitochondrial toxic and non-toxic 
compounds.  
Mitotoxic compounds considerably vary from non-toxic compounds in morphological space 
(median Pearson correlation of 0.140 vs 0.038, t-test independent p value=3.301e-20) while also 
varying in structural space (median Tanimoto Similarity of Morgan fingerprints 0.208 vs 0.183, 
t-test independent samples p value= 6.329e-03). 

 
Figure 4 Title: Compound having similar mechanisms of action cluster in morphological 
space 
 
Figure 4. Principal Component Analysis of 542 compounds in 110-dimensional Cell Painting 
feature space. Certain compounds clustered further away from the distribution of majority of 
compounds having similar mechanisms of actions such as of microtubule destabilizers, or 
compounds inducing apoptotic signalling cascades, compounds causing oxidative stress due to 
GSH depletion or those that are inhibitors of plasma membrane Na+ pump (all of which reduce 
mitochondrial membrane potential). Cluster I (microtubule destabilisers): rotenone, albendazole, 
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parbendazole, mebendazole, nocodazole, fenbendazole, colchine, paclitaxel and  
podophyllotoxin; Cluster II (inhibitors of plasma membrane Na+ pump): ouabain and digoxin; 
Cluster III (caspase activation and GSH depletion): devazepide, lovastatin, simvastatin; and 
Cluster II (trigger the release of cytochrome c into the cytosol): mevastatin, prazosin, and 
raloxifene. 
 
Figure 5 Title: Biological implication in mitochondrial toxicity of the Cell Painting features 
correlated to Gene Expression 
 
Figure 5. Computational significance and biological implication in mitochondrial toxicity of the 
Cell Painting features that are most positively or negatively correlated to Gene Expression 
descriptors particularly unfolded protein response and endoplasmic reticulum stress (RNA 
variance and cell area shape), T cell apoptotic processes (mitochondrial granularity and DNA 
fragmentation) and side of the membrane (RNA granularity and heterogeneity in mitochondria). 
Further details in Supplementary Table S3.  
 
Figure 6 Title: Biological implication of Cell Painting features in relation to mitochondrial 
toxicity 
 
Figure 6. Biological implication of mitochondrial toxicity translated from the computational 
image statistics of Cell Painting features. Features were mainly related to edge intensity of cells 
(possibly related to integrity of cell wall), radial distribution and intensity in mitochondria 
(related to mitochondrial death) and granularity features (related to cell death and amount of 
information contained in cellular images). Further details in Supplementary Table S4. AGP: 
Actin Golgi Plasma membrane, DNA: Deoxyribonucleic acid, ER: Endoplasmic Reticulum, 
Mito: Mitochondria, RNA: Ribonucleic acid      

Figure 7 Title: Biological implication of Gene Expression features in relation to 
mitochondrial toxicity 
 
Figure 7. Biological implication of mitochondrial toxicity translated from the Gene Expression 
features. Features causing mitochondrial toxicity mainly related to unfolded protein response 
(possibly related to ER stress) and plasma membrane (related to membrane depolarisation). 
Some effects of mitochondrial toxicity were also captured by Gene Expression features such as 
oogenesis and dendritic plasma membrane; both processes are heavily mitochondria dependent. 
Further details in Supplementary Table S5.  
 
Figure 8 Title: Performance of models used in this study from nested-cross validations and 
external validation. 
 
Figure 8. Evaluation metrics, namely from (i) sensitivity, (ii) specificity, (iii) balanced accuracy 
and (iv) F1 score for  five models from (a) Nested CV (median of repeated nested cross 
validations) from the training data (n=382 compounds) and (b) external test set (n=244 
compounds). Early-stage fusion and Late-stage fusion models combining all three feature sets of 
Cell Painting, Gene Expression and Morgan have higher F1 score for compounds exhibiting 
mitochondrial toxicity and extrapolate well into new structural space in external test set 
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compared to models using Morgan fingerprints where F1 Score performance falls by 60% (0.25 
to 0.40 in absolute terms). 
 
Figure 9 Title: Predictions of mitochondrial toxicants in the external test set in relation to 
structural and morphological distance to training set 
 
Figure 9. (a) Most mitotoxic compounds are similar in image space for training (n=382 
compounds) and external test set (n=244 compounds), however, non-toxic compounds in the 
external test set were dissimilar to non-toxic compounds in training set in the image space. 
Further, toxic compounds are often dissimilar in structural space, indicating the need for fusion 
models.  
(b) Structural and morphological distance for mitotoxic compounds in external test set (n=244 
compounds) to the training set (n=382 compounds) for models using (i) Cell Painting features, 
(ii)Morgan fingerprints and the (iii) Late-stage fusion models. Morgan fingerprints failed to 
correctly classify mitotoxic compounds (eg. betulinic acid) at high structural distances while 
models using Cell Painting features could extrapolate well into structurally diverse compounds. 
The late-stage fusion models correctly classified mitotoxic compounds (eg. 71145-03-4 or 
methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate, 
ketoconazole and fluoxetine) in both diverse morphological and structural space where 
individual models failed demonstrating the synergistic effect of the features spaces. 
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