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ABSTRACT

Mitochondrial toxicity is an important safety endpoint in drug discovery. Models based solely
on chemical structure for predicting mitochondrial toxicity are currently limited in accuracy
and applicability domain to the chemical space of the training compounds. In this work, we
aimed to utilize both -omics and chemical data to push beyond the state-of-the-art. We
combined Cell Painting and Gene Expression data with chemical structural information from
Morgan fingerprints for 382 chemical perturbants tested in the Tox21 mitochondrial
membrane depolarization assay. We observed that mitochondrial toxicants differ from non-
toxic compounds in morphological space and identified compound clusters having similar
mechanisms of mitochondrial toxicity, thereby indicating that morphological space provides
biological insights related to mechanisms of action of this endpoint. We further showed that
models combining Cell Painting, Gene Expression features and Morgan fingerprints
improved model performance on an external test set of 244 compounds by 60% (in terms of
F1 score) and improved extrapolation to new chemical space. The performance of our
combined models was comparable with dedicated in vitro assays for mitochondrial toxicity.
Our results suggest that combining chemical descriptors with biological readouts enhances

the detection of mitochondrial toxicants, with practical implications in drug discovery.

Mitochondrial Toxicity; Cell Painting; Gene Expression; Cell Morphology; Machine
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INTRODUCTION

Drug-induced mitochondrial toxicity® is being increasingly recognized as a contributor to
late-stage withdrawals® causing cardiotoxicity®, drug-induced liver toxicity* and diseases
related to ageing such as Parkinson.> Mitochondrial toxicity can be directly or indirectly
caused by combinations of multiple mechanisms (some of the mechanism are shown in
Figure 1 although this in no way is an exhaustive list) which makes predicting mitochondrial
toxicity challenging.® There are multiple factors affecting mitochondrial toxicity. A common
direct cause of mitochondrial dysfunction is uncoupling of the electron transport chain from
ATP synthesis or accumulation of calcium in mitochondria causing an increase in Reactive
Oxygen Species (ROS) leading to oxidative stress and damaging mitochondrial DNA
(mtDNA).” Indirect effects of drugs on cells such as inhibition of fatty acid pJoxidation,
uncoupling of oxidative phosphorylation, the opening of the membrane permeability
transition pore, and disruption of mtDNA synthesis and translation have also been shown to
cause mitochondrial toxicity.” Retrograde signalling pathways often triggered by these
mechanisms result in cross-talk between mitochondria and nucleus leading to changes in
nuclear gene expression and may activate unfolded protein response.® Besides ER stress,
oxidative stress, proteotoxic stress, and apoptosis, there are also other types of signalling and
outcomes in aspects of mitochondrial organelle biology such as mitophagy and
mitochondrial-derived vesicles® that may contribute to mitochondrial toxicity although the
outcome may be cell death when there is executive cytotoxicity. Hence, we can see that
mitochondrial toxicity can be difficult to predict with just chemical structure and there is a

need to include more biological data which may be more predictive of this endpoint.

The risk of mitochondrial toxicity in drug discovery can be indicated either via experimental

methods (such as the Glu/Gal assay™) or using predictive methods trained on data from in
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vitro assays. Dedicated assays often use HepG2 cells to detect mitochondrial toxicants** and
mostly fluorescent dyes (Mito-MPS™, DiOC6", rhodamine-123", MitoTracker Orange®,
TMRMY, TMRE™, JC-1"%). These assays capture proxy endpoints, for example, membrane
depolarisation, which are quite heterogeneous and not in absolute concordance to the term
“mitochondrial toxicity”. Another example, in the Glu/Gal assay, the ratio of 1Cso values in
different cultures is not always easy to translate to in vivo effects. Further, each fluorescent
dye has its limitation'’, for example, JC1 is sensitive to membrane depolarization but
disadvantaged by its poor water solubility and low signal-to-background window. Imaging
assays, such as the Apredica HepG2 mitochondrial membrane potential and mitochondrial
mass assays'® measure the average cell intensities for mitochondria from high content
imaging, where the average intensity of mitochondria was used to define mitochondrial
membrane potential, and the total intensity is used to define mitochondrial mass.*® This

makes defining and detecting mitochondrial toxicity a challenging task in itself.

Previous approaches to computationally predict mitochondrial toxicity has to a large extent
been based on predicting mitochondrial membrane depolarisation using chemical structure
(Supplementary Figure S1, Supplementary Table S1) and machine learning methods

including Support Vector Machines®, Random Forest models®®#

, and naive Bayes
classifier?. Using molecular descriptors or structural fingerprints, the best models showed a
balanced accuracy between 0.74 to 0.86 as reported by Zhao et. al.® However, Zhao et al.

showed that extrapolation to new structural space is difficult and accuracy inside the models’

applicability domain was higher when compared with out-of-domain compounds.?

Since mitochondrial toxicity can be characterised by a multitude of mechanisms®, it has been
challenging to assemble sufficient data that can sustain computational methods able to
extrapolate to new chemical space. Together with the fact that in vitro assays for

mitochondrial toxicity are demanding and with varying degrees of reliability, there is a clear
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need for advancements in the field.* In recent years, hypothesis-free data on cell lines have
become available on a much larger scale, both publicly and in company repositories. In this
work, we explore how data from Cell Morphology in addition to Gene Expression can
improve the detection of mitochondrial toxicity. To the best of our knowledge, this is the first
study that presents predictive models for mitochondrial toxicity in vitro assays based on

integrated data derived from two types of hypothesis-free data and chemical structure.

The LINCS L1000 gene expression technology developed by Broad Institute (described in
Figure 2) captures changes in 978 landmark genes, and large scale data before and after
treating different human cell lines with FDA-approved drugs and small molecules is now
available on a sufficiently broad base to be useful for modelling.** Gene Expression features
have been used in predicting in vitro cell viability?®, drug protein targets®®, and organ level
toxicity such as hepatotoxicity?’, nephrotoxicity and cardiotoxicity?®. The Gene Ontology
initiative aims to unify gene and gene product attributes in a classification effort that will
provide functional interpretation of gene expression data which, in our case, helps better
generalise pathways of mitochondrial toxicity.”® The Cell Painting assay (described in Figure
2) is a relatively recent technology developed by the Broad Institute and is used to capture
cellular morphological changes in image data from genetic or chemical perturbations.®!
Microscopic images are processed to obtain over 1700 measures of cellular and organelle
changes such as morphology, texture and intensity. Cell Painting features have been
previously used in predicting in vitro toxicity such as cytotoxicity®?, bioactivity endpoints®
and mechanism of action®, cell health phenotypes®®, drug-protein targets®®, antiviral drug
discovery®” as well as organ level toxicity such as drug-induced liver toxicity®. Further, it has
been also shown that such cell morphology space provides a feature-specific subspace that is
complementary information to biological information contained in the gene expression®,

which has also been shown in predicting the mechanism of action of compounds.“® However,


https://doi.org/10.1101/2022.01.07.475326
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.07.475326; this version posted June 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

the predictivity of high-dimensional biological features for safety- or efficacy-related
endpoint needs to be established in each case, which for in vitro-to-in vivo extrapolation (for
example from mitochondrial toxicity to liver injury caused by the former) is not a trivial

exercise.**?

With the availability of high throughput hypothesis-free data from cell profiling technologies,
we are presented with new opportunities to improve the detection of mitochondrial toxicity.
In this work, we use Cell Painting and Gene Expression features to extrapolate the
applicability domain of structure-based models to the new chemical space. While Gene
Expression data is easier to directly interpret*, in this work we put particular emphasis on
exploring and interpreting the biological significance and applicability of Cell Painting

features that contain information about mitochondrial toxicity.
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RESULTS

Data for in vitro mitochondrial toxicity was collected from the Tox21 assay** for
mitochondrial membrane potential disruption summary assay (AID 720637).* Image-based

1.3* Gene

morphological features from the Cell Painting assay were collected from Bray et al
Expression features were extracted from the LINCS L1000 dataset as pre-processed by the
Ma’ayan Lab.®* A combined dataset was assembled to be used for model development
(henceforth referred to as “training data”) that contained 404 distinct compounds (62
mitotoxic, 320 nontoxic and 22 inconclusive) that contained both Cell Painting features and
Gene Expression features. An external test set was assembled that comprised a total of 244
distinct compounds (47 mitotoxic and 197 nontoxic) from Hemmerich et al** who compiled
various assays relevant to the toxicity of mitochondrial function, binding and inhibition and
an additional 8 compounds from Mitotox Database® (which was released towards the end of
us conducting this study) which were not covered by the former. No compound in this
external test set of 244 compounds overlapped with the training data. Both datasets covered

drugs over a wide range of ATC code distribution at the top level 327 drugs (training data)

and 111 drugs (external test set) as shown in Supplementary Figure S2.
Mitochondrial toxicantsare similar in morphological space

We analysed if mitochondrial toxicants were more similar to each other in morphological
space than toxicants to non-toxicants, which could be a prerequisite for the use of this readout
space for the detection of mitochondrial toxicity. This was done by comparing the median
values of the 5 highest Tanimoto similarity coefficients and the absolute value of median of
15 most positively and 15 most negatively Pearson correlation statistic values for Cell
Painting features. As shown in Figure 3, we found that mitotoxic compounds are

considerably different from non-toxic compounds in morphological space (median Pearson
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correlation of 0.08 vs 0.01, t-test independent p value=3.3e-20). However, they remain
distinguishable in structural space (median Tanimoto Similarity of Morgan fingerprints 0.22
vs 0.19, t-test independent samples p value=6.3e-03). We conclude that morphological space
can discriminate between mitochondrial toxicants and non-toxicants and that this readout
space is more able to discriminate between both classes of compounds than chemical

fingerprints on the dataset analysed here.

Cell Painting features cluster mitochondrial toxicants to identify different mechanisms

of mitochondrial toxicity

We firstly analysed morphological readout space for the ability to differentiate different
mechanisms of action (MOA) for mitochondrial toxicity. We performed feature selection on
the initial 1,729 features (see Methods Section) which selected 110 Cell Painting features and
visualised the morphological space using Principal Component Analysis (PCA). As shown in
Figure 4, compound clusters emerged, which were related to mitochondrial toxicity (for
further details see Supplementary Table S2). In particular, Cluster | (Figure 4) comprises
several microtubule destabilisers such as fenbendazole, parbendazole, and mebendazole, that

belong to the benzimidazole class*’*4“°

together with structurally dissimilar compounds,
namely rotenone and paclitaxel, both of which are known mitochondrial toxicants as well as
microtubule destabilizers.>®** Supplementary Figure S3, shows that cell painting phenotypes
for six microtubule disruptor drugs (Cluster 1. albendazole, colchicine, mebendazole,
paclitaxel, parbendazole and podophyllotoxin) reveal alterations at the nuclear level, depicted
by nuclear fragmentation as well as multinucleated cells, vacuolation of the endoplasmic
reticulum, redistribution of the mitochondria and cytoskeleton destabilisation. We found

ouabain and digoxin in Cluster Il (Figure 4) have similar mechanisms for mitochondrial

injury as inhibitors of the plasma membrane Na® pump, which can lead to impaired
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mitochondrial Ca®* retention, increased ROS production and reduced mitochondrial
membrane potential >*** Cluster 11l (Figure 4) consists of statins, namely lovastatin and
simvastatin, which are known to inhibit the synthesis of mevalonate, a precursor of
ubiquinone that is vital to the mitochondrial respiratory chain and causes oxidative stress.>
Compounds in Cluster 1V (Figure 4), namely mevastatin (a statin), raloxifene (a selective
estrogen receptor modulator) and prazosin (an alpha-blocker), form again a cluster that is
rather diverse with respect to chemical structures, and primary pharmacology/indication
areas. However, those compounds are all known to induce apoptotic signalling cascades
which trigger the release of cytochrome c into the cytosol.>>***" This causes depolarization in
the mitochondrial membrane leading to mitochondrial injury. Although compounds in the
individual clusters were often structurally dissimilar to each other, we did not find any other
compound in the training dataset (542 compounds) with a very similar chemical structure
(greater than 0.85 Tanimoto similarity) to the compounds in the individual mitochondrial
toxicity clusters. This shows morphology space could cluster dissimilar structures with
similar modes of action together and did not miss similar compounds with similar modes of
action. Overall, our findings show that cell morphology readouts from the Cell Painting assay
can cluster several modes of action of mitochondrial toxicants, such as the disruption of

microtubules, increased ROS production and oxidative stress.
Cell Painting features are correlated to Gene Expression features

We used 62 known mitotoxic compounds to calculate Pearson’s correlation between the
selected 110 Cell Painting features, and 10 Gene Expression features related to unfolded
protein response, endoplasmic reticulum stress, T cell apoptotic process and side of the
membrane which represent biological processes from prior knowledge is known to be related

to mechanisms mitochondrial toxicity.”®>*® We found specific Cell Painting features were

10
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correlated with these Gene Expression features as shown in Figure 5 (further details on
biological significance in Supplementary Table S3). We found that Gene Expression features
corresponding to unfolded protein response and endoplasmic reticulum stress were most
positively correlated to “Cytoplasm_AreaShape_FormFactors”. Form factors indicate how
perfectly circular an object is which corresponds to the rounding up of cells due to apoptosis
and could be indicative of cell death (caused by ER stress or the unfolded protein response
which induces cell death, like many other stress responses®®). Gene Expression features
related to unfolded protein  response  were negatively  correlated to
“Cells_Texture_DifferenceVariance_RNA_10_0” which calculates the image variation in a
normalized co-occurrence matrix and could correspond to various secondary processes
following ER stress (including a reduction in transcription, but also reduced translation,
caspase activation, apoptosis, etc.®’). The Gene Expression feature “side of membrane”,
which is a parent to the cytoplasmic side of mitochondrial outer membrane was found most
positively correlated to “Nuclei_Granularity 1 RNA” and most negatively correlated to
“Cytoplasm_Correlation_Costes_ DNA_Mito”. An increase or decrease in granularity of
cytoplasmic RNA, in the proximity of the nucleus, might indicate the formation of RNA
inclusion bodies or RNA processing while the correlation between DNA and mitochondria
object could correlate to DNA fragmentation and heterogeneity in mitochondrial content.
Hence, we conclude that Cell Painting features contain information of biological significance

related to pathways of mitochondrial membrane depolarisation.

Cell Painting and Gene Expression enables training of accurate and interpretable

modelsfor detecting mitochondrial toxicity

As the utility of chemical structure in detecting mitochondrial toxicity was previously

explored by Hemmerich et. al.?*, our work focussed on comparing individual Cell Painting

11
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features and Gene Expression features with respect to their ability to detect mitochondrial
toxicants. We used positive predictive values (PPV) and F1 scores from single decision tree
classifiers trained on individual features (see Methods) to detect a signal for mitochondrial
toxicants and provide a biological interpretation of these feature spaces. We found that Cell
Painting features related to granularity, intensity, location, and radial distribution of
mitochondrial objects over the three compartments (cells, cytoplasm and nuclei) had high
predictivity for mitochondrial toxicity (median PPV grouped by compartment, channel, and
feature group greater than 0.70; Supplementary Figure S4). We next more closely considered
the feature value distribution for individual features with high PPV for mitotoxicity
(Supplementary Figure S5) For example, “Cells_Intensity MaxIntensityEdge Mito”
(PPV=0.83). Compounds toxic to mitochondria evenly affect the edge of the mitochondria
object. Since this measurement is at the edge of the segmented object, it indicates a loss of
membrane integrity. Another feature, “Cells Intensity MADIntensity Mito” (PPV=0.8) is a
measurement of statistical dispersion which measures the standard deviation and median
absolute deviation (MAD) of pixel intensity values while being robust to outliers. For
MitoTracker Deep Red used in Cell Painting assay, this might indicate a variation of
intensities among fragments of the mitochondrial membrane, resulting from loss of
membrane integrity. “Cells Granularity 1 RNA” (PPV=0.56) reveals information present in
pixel 1 in the RNA channel where certain mitotoxic compounds also have low feature values.
An increase or decrease in granularity of cytoplasmic RNA might indicate the formation of
RNA inclusion bodies or RNA processing. Further attempted biological interpretations for
some features (knowing that this is not a trivial process) are shown in Figure 6 and

Supplementary Table S4.

Gene Expression features with high PPV could be classified as either causing

mitochondrial membrane depolarisation or as an effect of mitochondrial toxicity (as shown in

12
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Figure 7 and Supplementary Table S5). Features such as endoplasmic reticulum unfolded
protein response (PPV 0.92) and activation of signalling protein activity involved in unfolded
protein response (PPV 1.00) have previously been attributed to ER related effects such as
protein folding, oxidative stress and ER stress.®® Such effects are linked to each other and
toxins affecting the same can depolarise the mitochondrial membrane affect the movement of
mitochondria on microtubules and eventually regulate apoptosis.®* Features such as the
external side of plasma membrane (PPV 1.00), side of membrane (PPV 1.00), autophagic
vacuole membrane (PPV 1.00), negative regulation of T cell activation (PPV 0.86) are related
to processes of cell proliferation, cell cycle arrest as well as apoptosis that causes oxidative
stress and cell death which can cause mitochondria to depolarise.®* The GO Cellular
Component dendritic plasma membrane (PPV 0.88) and the Biological Process oocyte
development (PPV 0.88) are greatly affected by mitochondrial dysfunction as neurons are
mitochondria-dependent cells® while oocyte development requires optimal energy
production and is highly dependent on mitochondrial function for the same.® Hence we
conclude that a number of Cell Painting and Gene Expression features showing a high
predictivity to mitochondrial membrane depolarization are also interpretable in the

mechanistic roles either causing mitochondrial toxicity or being a consequence of the same.

Fusion modes accurately detect mitochondrial toxicity and expand the applicability

domain

We finally established predictive models for mitochondrial toxicity based on 3 models
using Cell Painting features, Gene Expression features and Morgan fingerprints and another 2
combinations thereof in early- and late-stage fusion. Early-stage fusion appended all three
features into a single vector while late-stage fusion averaged the probabilities of the three

individual models. We used a Random Forest model with repeated nested cross validation on

13
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a training data of 382 compounds (out of which 62 have mitotoxic annotations) and validated
using an external dataset of 244 compounds (47 mitotoxic) where test compounds, although
run across various assay conditions) were structurally diverse and generally dissimilar to the
training data (details shown in Supplementary Figure S6). Figure 8 shows median
performance from nested-cross validations and external validations (for further results see
Supplementary Table S6 and for an overview of results from each fold of nested-cross

validation see Supplementary Figure S7).

Fusion models combining Cell Painting features, Gene Expression features, and Morgan
fingerprints exhibited higher F1 scores on the external dataset (early-stage fusion: 0.47, late-
stage fusion: 0.42) in detecting mitotoxicity than models using only Morgan fingerprints
(0.25). The drop in the F1 score of models using only Morgan fingerprints from 0.42 in
repeated nested cross-validation to 0.25 in the external test (Figure 8) shows that Morgan
fingerprints lack extrapolation power to novel chemical space. Although the training dataset

was different and larger in previous work by Hemmerich et. al**

focusing on purely chemical
structure data (1412 compounds vs 382 compounds here), the results are hence not directly
comparable; our early-stage fusion model based had slightly higher F1 scores (0.47vs. 0.41)
which implied improved ability to detect mitochondrial toxicants in the external test set. As
shown in Figure 9a, the success of fusion models is underlying by the fact that in
morphological space, mitotoxic compounds in the external test set were more
morphologically similar to mitotoxic compounds in the training set while no such correlation
was present among the images of non-toxic compounds. Finally, late-stage fusion was more
sensitive to the toxic class in the external test set compared to early-stage models (0.79 vs
0.64) while the balanced accuracy remained the same (0.69). Given the importance of

detecting mitotoxicants in practice, the higher sensitivity and F1 score of a model is likely

advantageous in practical situations even at identical balanced accuracy.

14
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We next analysed in more detail the predictions of mitochondrial toxicants in the external
test set with our models as shown in Figure 9b (with further details shown in Supplementary
Table S7). The model using Morgan fingerprints could correctly classify only 9 out of the 47
mitochondrial toxicants in the external test set; these compounds were at a low structural
distance to mitotoxic compounds in the training set (Supplementary Figures S6 and S8). The
model using only Cell Painting features could extrapolate well into structurally diverse
compounds and correctly predict 34 out of 47 mitotoxic compounds in the external test set
but failed when the distance to morphological space was high for example, with compounds
71145-03-4 (Figure 9b), while the same compound was correctly predicted by the model
using only Morgan fingerprints (which was explicable due to lower structural distance to
training data). The late-stage fusion model correctly predicted 37 out of 47 mitotoxic
compounds, combining information from both spaces, out of which 5 mitochondrial toxicants
were neither correctly predicted by the model using only Cell Painting features, nor by the
model using only Morgan fingerprints. Among them were betulinic acid, ketoconazole and

diflunisal (which inhibits oxidative phosphorylation®®®’

) and fluoxetine (which inhibits
oxygen consumption and lowers mitochondrial ATP®®) shown in Figure 9b. These examples
demonstrate the synergistic effect of the late-stage fusion model, using information from both

the cell morphological as well as the chemical fingerprint space.

L ate-stage fusion models accur ately detect mitochondrial toxicity of Tox21

compounds labelled as inconclusive

Next, we compared predictions using the 5 models above for the 22 compounds from the
data where inconclusive results were obtained in the Tox21 due to excessive cytotoxicity
either in the mitochondrial depolarization assay or in the cell viability assay.®® Literature

analysis revealed (further details in Supplementary Table S8) that 4 of the 22 compounds
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(loratadine, progesterone, ticlopidine and tyrphostin A25) previously have been shown to not
cause mitochondrial damage (in fact, progesterone™ and tyrphostin A25™ reduce oxidative
stress and repair oxidative damage). Another 10 compounds showed some mitochondrial
toxicity, such as ketoconazole (inhibitor of oxidative phosphorylation®), diflunisal
(uncoupler of oxidative phosphorylation), daidzein and fipronil (increase ROS causing

mitochondrial depolarization™ "

). The mitochondrial toxicity for the remaining 8 compounds
could not be elucidated further from the literature. Mitochondrial toxicity, like any other
compound effect, is concentration-dependent, and the literature evidence compiled as well as
the Cell Painting assays whose data was used in this work might hence use different
concentrations. Also, the cell line/biological system considered in the literature evidence, the
Tox21 assays and the Cell Painting assay can also be very different. With respect to
concentration, we explored to what extent the data used here would be predictive for the
mitotoxicity endpoint considered, on a relative scale for the different input parameters used in
our models; while for the cell line used it has been shown before that Cell Painting yields
similar biological phenotypes for different cell lines without cytochemistry protocols
requiring specific cell-type-specific optimization.” The latter indicates the predictions from

the Cell Painting assay may be applicable in detecting toxicity mitochondrial toxicity in

another cell line or biological system.

For the 14 compounds for which mitotoxicity annotations were found, Morgan fingerprints
correctly predicted toxicity of only 1 out of 10 toxic compounds and correctly predicted the
non-toxic nature of 3 out the 4 non-toxic compounds (Supplementary Table S9). Thus,
Morgan fingerprints showed only very low sensitivity on this dataset. The best performing
model, late-stage fusion (averaging predictions from all three models using Cell Painting,
Gene Expression features and Morgan fingerprints) however correctly predicted toxicity for

all (10 out of 10) mitochondrial toxicants, and correctly predicted the non-toxic nature of 3
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out the 4 non-toxic compounds (that is, the increased sensitivity does not come at a cost of a
large false positive rate, given that the latter stayed constant between both models). Overall,
the late-stage fusion model could hence extrapolate to the morphological space of these
inconclusive compounds and detect mitochondrial toxicity even when Tox21 assays reported

inconclusive outcomes due to cytotoxicity.

Sensitivity of fuson models is on par with dedicated in vitro mitochondrial toxicity
assays

Finally, we compared the performance of our models to detect mitochondrial toxicity with
dedicated in vitro assays. Hallinger et al. compared various high throughput screening assays
and a respirometric screening assay to detect known mitochondrial toxicants (as shown in
Supplementary Figure S1 and Supplementary Table S1).” When comparing 60 reference
chemicals to existing Tox21 assays, they found RSA to be most predictive (balanced
accuracy 0.90), while the Tox21 mitochondrial membrane potential assay was also highly
predictive (balanced accuracy 0.87). However, respirometric screens have lower throughput
than Tox21 assays and are not suitable for screening a large number of compounds. Among
other assays they compared were high content imaging assays, where the Apredica HepG2
mitochondrial membrane potential and mitochondrial mass assays™® were found to be
comparatively less predictive (balanced accuracy 0.78 and 0.65, respectively). Although the
244 compounds in the external test set in our study are not the same as these 60 reference
chemicals, from a numerical performance comparison we found that our fusion model
achieved sensitivity at par with imaging assays in the external test set (0.79 in our study vs
0.37 in Apredica MitoMass vs 0.8 in RSA) in detecting mitotoxic compounds with
comparable balanced accuracies (0.69 in our study vs 0.65 in Apredica MitoMass). The
added advantage of using Cell Painting is that it is a comparatively inexpensive single screen

that can also be used simultaneously for multiple endpoints for which it is found to be
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predictive. Hence, we can conclude that the late-stage fusion model based on Cell Painting,
Gene Expression and chemical structural data compares well with respect to its predictive
power for mitotoxicity to many dedicated assays for this purpose (although precise numerical

values cannot be compared due to the different data sets used).
Limitationsand Future Work

One limitation of the here presented study is the size of the dataset (overlap between the Cell
Painting and Gene Expression features with mitochondrial toxicity assay annotations),
making it cover a somewhat limited area of chemical space. To mitigate the risk of overfitting
in an ensemble method such as Random Forests, first the Cell Painting and Gene Expression
features were subjected to feature selection. We used hyperparameter optimisation and nested
cross validation to evaluate the training data and selected the optimal number of trees as
shown in previous work.” Although an individual decision tree may be more prone to over-
fitting, in the case of an ensemble method such as Random Forests, we also avoid overfitting
by bootstrapping samples (randomly choosing selected features at each split for trees).”® To
further examine this, we used an external test set where we found the performance does drop
in the external test set when using only chemical structure but not when using fusion models
combining structure with cell morphology and gene expression. Our evaluation and
discussions on extrapolation to new chemical space (as shown in Figure 9) are based on this

external test set and hence are still valid.

Another limitation is the discrepancy between the cell lines, where Cell Painting was
carried out on USO2 cells, and LINC L1000 used a variety of cell lines (MCF7, A549,
HepG2, HT29, etc.); we use the Cell Painting to predict toxicity in the Tox21 assay which
used HepG2 as testing cell lines thus giving rise to a toxicity discrepancy in assays using

different tissues and perturbants at different concentrations. In our case, we leverage the fact
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that cell morphological data provides versatile biological data that is generally able to
extrapolate to different cell lines as shown in previous studies. For example, Cox et. al. used
cell morphological data from 15 reporter cell lines to predict the mechanism of action (MOA)
but did not see any individual reporter cell line outperform others (with the notable exception
of GR agonists).” They also observed that the genetic background of the reporter cell line did
not affect the overall AUC-ROC values calculated for the different MOAs. Although gene
expression data can be cell line specific, previous work by Lapins et al showed that the
prediction of MOA was similarly effective with an average AUC of 0.83 across 3 different
cell types.®* Therefore as outlined in the Methods Section Gene Expression features
subsection, for gene expression features in this study we used the strongest signatures
irrespective of the cell line. In this manner, although the cell line of feature spaces differs
from the toxicity assay (and more so in the case of organ-level toxicity), we could leverage
the biological information in the cell morphology and gene expression data to predict

mitochondrial toxicity which is an in vitro toxicity endpoint.

Future studies would benefit from larger datasets, such as the announced future data
depositions from the JUMP consortium™®, and also more and better annotated compounds that
show mitochondrial toxicity under different assays and dosages such as from the Mitotox
database™®. It may also be possible to apply different types of machine learning or deep
learning models, such as deep neural networks, gradient boosting, or a variational
autoencoder (which has been previously shown to reveal an interpretable latent space®) to

improve the model’s predictions and generally improve the interpretability of models.
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DISCUSSION

Mitochondrial toxicity is a leading cause of late-stage drug withdrawals? and numerous
drugs such as amiodarone, doxorubicin, statins (e.g cerivastatin, simvastatin) and valproic
acid have been shown to induce adverse effects via mitochondrial dysfunction. Mitochondrial
toxicity can be caused by multiple mechanisms and prediction using only chemical structural
fingerprints has been shown to be difficult, with respect to extrapolation to novel chemical

space, where low model sensitivity has been regularly observed.

To the best of our knowledge, in this work, we present the first study combining
hypothesis-free high throughput Cell Painting and Gene Expression features with structural
fingerprints to predict mitochondrial toxicity. In this work, we confirmed that Cell Painting
readouts can discriminate mitotoxic and non-mitotoxic compounds and are able to cluster
mitotoxic compounds with a shared mode of action (including compounds with inconclusive
assay outcomes in Tox21 due to excessive cytotoxicity) in morphological space. This
indicates that Cell Painting features are able to detect similarities with respect to both mode
of action and mitochondrial toxicity, also in situations of large differences in chemical space.
Further, we showed that Cell Painting features correlate to Gene Expression features, which
are related to mechanisms of mitochondrial toxicity. We trained late-stage fusion models,
which are averaging the results from the Cell Painting, Gene Expression and Morgan
fingerprint models. We show that the late-stage fusion model has higher accuracy when
predicting mitochondrial toxicity (F1 score 0.42) when extrapolating to the new chemical
space of an external set (wherein compounds which were structurally dissimilar to the
training set as shown in Supplementary Figure S6) compared to the model using only Morgan
fingerprints (F1 score of 0.25). As shown in Figure 9, the utilization of cell morphology and

gene expression data improved the detection of mitotoxic compounds (as shown in late-stage
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fusion model with sensitivity 0.79 vs 0.19 when using only structural data). Hence, we can
conclude that the detection of mitochondrial toxicity is improved when using all three feature
spaces (structure, morphology, and gene expression) together. Also compared to dedicated
mitochondrial high content imaging assays our late-stage fusion model showed favourable
sensitivity. The Cell Painting feature space is less expensive than the L1000 assay or DRUG-
seq™ and thus enables larger high-throughput experiments.*® This cell morphology modality
is thus being increasingly explored both in the public domain such as by the JUMP
consortium® and as well as by pharmaceutical companies such as by Jannsen®. Given that
Cell Painting readouts can be used for multiple purposes, this supports their use also for the

prediction of a mitochondrial toxicity endpoint.

Using hypothesis-free data, such as Cell Painting and Gene Expression data, in machine
learning models can hence be used to detect toxicity (here mitochondrial toxicity), as well as
to help understand modes of toxicity, also in situations where this is not possible based on
chemical structure alone. From a predictive modelling perspective, by combining high
predictivity of fingerprints in areas of structural space close to the training set with better
generalizability of Cell Painting features at greater distances to the training set, such models

can contribute to extending the applicability domain of the overall model.
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METHODS

In this work, we followed the workflow as displayed in Supplementary Figure S9 for

dataset curation, feature selection and model architecture.
Mitochondrial toxicity dataset preparation

Data for in vitro mitochondrial toxicity, used as the endpoint in this study, was collected
from the Tox21 assay™ for mitochondrial membrane potential disruption (MMP) summary
assay (AID 720637). This summary assay combines results from a mitochondrial
membrane potential (MMP) assay® (AID 720635) and a cell viability counter screen® (AID

720634) into a binary assay hit call.

For the Tox21 MMP assay, a water-soluble mitochondrial membrane potential sensor was
used to evaluate chemically induced mitochondrial toxicity. In healthy cells, this dye
accumulates in the mitochondria with red fluorescence. However, should the potential
collapse, the dye is no longer able to accumulate in the mitochondria and remains in
monomers giving a green fluorescence from the cytoplasm. The cytotoxicity was tested in the
same assay well as the mitochondrial potential using a counter cell viability screen. The
viability of the cells in the culture was determined by measuring the amount of ATP present.
Thus, the summary assay not only considers triplicate runs of the ratio (red/green) readout in
the MMP assay but also each fluorescence channel separately, as well as the cytotoxicity
results.®® The compounds causing excessive cytotoxicity were labelled “inconclusive” which
helps differentiate compounds that decreased MMP from those inducing high cytotoxicity.
One cannot be certain if mitochondrial dysfunction may have caused the excessive cell death
in these “inconclusive compounds”. Hence as a precautionary measure to not end with
predicting cytotoxicity in this study, but only mitochondrial toxicity, we removed

inconclusive compounds from the training dataset. Hence, in our models, inconclusive
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compounds were removed and for the remaining compounds, mitochondrial toxicity labels

were assigned as per assay hit calls from the Tox21 summary assay.

Multiple endpoints, such as mitochondrial membrane depolarisation, can be related to
mitochondrial toxicity as can be increased ROS or alteration of energy homeostatic,

especially if the membrane potential is depolarised. Hemmerich et al.*

compiled various
mitochondrial membrane potential as well as additional assays relevant to mitochondrial
toxicity (mitochondria, mitochondria potential and mitochondria complex) from various
sources, including CHEMBL, PubChem and 246 drugs tested by Zhang et al.*® into a single
dataset related to mitochondrial function, binding and inhibition consisting of 824
mitochondrial toxicants and 4937 non-toxic compounds. To evaluate our models, we further
used an external test set using compounds (that do not appear in the training data) from this
dataset. We further included compounds from Mitotox Database*® compiling mitochondrial

toxicity under different assays and dosages. We searched Mitotox for compounds associated

to decreased transmembrane potential®® to obtain 652 unique mitotoxic compounds.
Cell Painting features

Image-based morphological features were extracted from the Cell Painting assay
experiments in Bray et al.*® These experiments contained perturbations from 30000
chemicals (around 10,000 small molecules, 2200 drugs and 18000 novel compounds from
diversity-oriented synthesis) using DMSO neutral control, USO2 cells in 384-well plates in 5
channels staining eight cellular organelles: nucleus, endoplasmic reticulum, F-actin
cytoskeleton, Golgi apparatus, plasma membrane, mitochondria, cytoplasmic RNA and the
nucleoli. We obtained consensus morphological features for each compound using the

|.34

following procedure similar to Lapins et al.” For each plate, the average feature value from

the DMSO plates was subtracted from the perturbation’s average feature value. Next, we
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calculated the median feature value for each compound and dose combination. For replicates,
we used the median feature values for doses that were within one standard deviation of the
mean dose. The concentration was also included as a feature. Features known to be noisy and
generally unreliable as recommended by Way et al. were removed.®’ Further, the changes in
morphology may be particularly obvious due to excessive cytotoxicity there we must avoid
perturbations which drastically reduced the cell count compared to the neutral control of
DMSO. We removed such compounds (step 1, Supplementary Figure S9a) in Cell Painting
images by removing compounds with a threshold of 1.5 times standard deviation below the
mean of “Cells Number Object Number" (the distribution is shown in Supplementary Figure
S9b) which is below -15.09. Thus, consensus morphological profiles consisting of 1729

numerical features were obtained.
Gene Expression features

The Gene Ontology initiative aims to unify gene and gene product attributes in a
classification effort that will provide biological and functional interpretation of gene
expression data.” They also ensure that genes are consistently annotated across different
available datasets. The Gene Expression features used in this work have been derived from
transcriptomic data from LINCS L1000. LINCS L1000 gene expression technology profiles
changes in 978 landmark genes on perturbations of compounds for a variety of human cell
lines.?* In this work, Gene Ontology transformed Gene Expression features were extracted
from the http://maayanlab.net/SEP-L1000/#download which contained 4438 annotated Gene
Expression features corresponding to 19803 distinct compounds.*® The authors used quantile-
normalized gene expression profiles from the LINCS L1000 dataset for all replicates of each
compound. For each compound, the strongest signatures were used irrespective of the cell

line, concentration, or time point which minimizes the number of features required. Gene
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expression signatures for each compound perturbation were computed using the
Characteristic Direction (CD) method®® on 978 measured hallmark genes. Further, they
computed enrichment p-values for each CD signature in the space of all genes against gene
set libraries (including biological processes, cellular components, and molecular functions, as
well as other gene set libraries accessible from the Enrichr tool®) using an extension of the
CD technique called Principal Angle Enrichment Analysis (PAEA).*® We used these

annotations for each GE-perturbation combination for further analysis.
Dataset curation and collation

We calculated the intersection between mitochondrial toxicity and Cell Painting and Gene
Expression datasets described above using standard InChl calculated using RDKit.** For
conflicting replicates, we considered a compound toxic, if it was detected to be mitotoxic at
least once (since in such situations evidence for mitochondrial toxicity, at least under some
conditions, exists). We obtained 830 distinct compounds (161 mitotoxic, 61 inconclusive and
remaining non-toxic) from the mitochondrial toxicity dataset overlapped with Gene
Expression features and a total of 513 distinct compounds (82 mitotoxic and 27 inconclusive)
in overlap with Cell Painting features. Similarly, we found 404 distinct compounds (62
mitotoxic and 22 inconclusive) in overlap with both Cell Painting features and Gene
Expression features. For the external test set, after adding required annotations of Cell
Painting features and Gene Expression features, removing compounds with low cell count,
and ensuring no compounds from this were used in feature selection or training our models, a
total of 236 distinct compounds (39 mitotoxic and remaining nontoxic) remained in the
external test set. From the Mitotox database we obtained 652 unique compounds, out of
which both Cell Painting and Gene Expression data were available for only 71 compounds.

63 out of these 71 compounds were already used in this study (54 were used in the training
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data and 9 in the external test set) We added the remaining 8 compounds to our external test
dataset thus totalling 244 distinct compounds (47 mitotoxic and remaining nontoxic). To
evaluate our models, we used this an external test set where compounds in this external test

set do not appear in the training data.
Structural finger prints

For modelling purposes, we used Morgan fingerprints which contain structural information
about compounds and have been successfully used before for toxicity prediction.* The
MolVS standardizer, an open-source tool based on RDKit", was used to standardize
(including tautomer standardization) and canonicalize SMILES of the parent molecules.”
This involved sanitization, normalisation, greatest fragment chooser, charge neutralisation,
tautomer enumeration, and canonicalization as implemented in the MolVS tool and described
in the MolVS standardizer. We calculated Morgan fingerprints of radius 2 and 2048 bits from

standardized SMILES using RDKit.”*
Feature selection

For each of the Cell Painting features and Gene Expression features, standardized values
for compounds in the training set were separately subjected to three statistical tests, namely,
the two-sample Kolmogorov Smirnov test (KS test)™, Mann-Whitney U test® (MWU test)
and Point-Biserial correlation® (PBS correlation). While the Random Forest algorithm
employed for modelling (see Model generation and evaluation below) is in principle able to
select features, this is not always successful which made us compare different explicit feature
selection methods in parallel with inputting all features into the models subsequently. This
method in our experience led to less overfitting while still being interpretable and able to
extrapolate to the external test set compared to other methods (Principal Component

Analysis, Maximum Relevance — Minimum Redundancy or using all features, see
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Supplementary Table S10 for modelling results when comparing different feature selection

methods).

After removing the inconclusive compounds (step 2, Supplementary Figure S9a), the
feature selection (step 3, Supplementary Figure S9a) was performed on Cell Painting features
and Gene Expression annotations for the remaining compounds. For cross-validation of
models, the overlap of the top 40 negatively and 40 positively correlated features from the
MWU test and PBS correlation and top 40 correlated features from the KS test were selected
for further modelling. For evaluating the external test where more data was available for
training, we selected the top 25 correlated features from each test (both positively and
negatively for MWU and PBS) and obtained 110 Cell Painting features and 102 Gene

Expression features.

Comparing class separation and visualization of compoundsin morphological space

For a comparison of intra-class (Toxic vs Toxic) and inter-class (Toxic vs Nontoxic) in
morphological space, we used 486 compounds (85 mitotoxic) for which Cell Painting
annotations were available. We randomly resampled the majority class (non-toxic
compounds) to match the number of samples of the minority class to ensure our comparisons
are equivalent. Then we visualised mean Tanimoto similarity, median positive image
correlation (considering only positive Pearson correlations) and absolute median image
correlation (considering the absolute value of median both positive and negative Pearson
correlations) for various values of k in k-nearest neighbours in four quartiles of the
distribution for intra- and inter-class pairwise distributions (Supplementary Figure S10). We
found better separation between intra- and inter-class pairwise when using the absolute value
of the median values from the most 15 positively and 15 negatively pairwise Pearson

correlations of Cell Painting features. For visualizing the same in structural space, we used
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the median of 5 highest pairwise Tanimoto similarity of Morgan Fingerprints.”® The
methodology was followed when comparing tests to train set distances as defined in

subsection “ Extrapolation to New Structural/Morphological Space” .

For visualization of compounds in morphological space, we analysed the 110 selected Cell
Painting features on 513 distinct compounds (85 mitotoxic and 27 inconclusive). We
normalized 110 selected Cell Painting features and performed Principal Component Analysis

using DataWarrior®® which compared to other nonlinear methods is more interpretable.

Correlation between Cell Painting and Gene Expression featur es and their positive

predictive values

To determine the correlation between selected Cell Painting features and Gene Expression
features for compounds exhibiting mitochondrial toxicity, we used Pearson correlation using
the pandas Python package.'® Comparing the negative logarithmic p-value and the effect
size, we determined which Cell Painting features were correlated to specific Gene Expression
features related to unfolded protein response, endoplasmic reticulum stress, and T cell

apoptotic process, side of membrane etc.

Random Forests are not able to detect feature importance when several features are
correlated as the Gini index tends to dilute over different features in different trees. To
evaluate an individual feature’s importance, we used the positive predictive value (PPV) from
single decision tree classifiers trained on individual Cell Painting features. These classifiers
were trained on 486 compounds (85 mitotoxic) having max depth of one and two leaf nodes
on our dataset for each feature. The tree hence determines an optimal threshold per feature to
distinguish mitochondrial toxic compounds from non-toxic compounds. The mean PPV of
Cell Painting features having PPV>0 was grouped by compartment (Cells, Cytoplasm, and

Nuclei), channel (AGP, Nucleus, ER, Mito, Nucleolus/Cytoplasmic RNA), and feature group
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(Correlation, Granularity, Intensity, Radial Distribution, Texture). The predictive value of
individual Gene Expression features was computed in a similar manner using decision tree

classifiers on 768 compounds (161 mitotoxic).
Types of features' combinations used

Here we employed 5 types of models having different input features, combinations thereof
as well as model ensembling. Initially, Cell Painting features, Gene Expression features and
Morgan fingerprints were used separately as features for three separate models. As shown in
Supplementary Figure S11, an early-stage model fused Cell Painting, Gene Expression and
Morgan fingerprints by appending the features into a single vector while another a late-stage
fusion model averaged the probabilities of the three models using only Cell Painting, Gene

Expression and Morgan fingerprints respectively into a single probability value.
M odel generation and evaluation

382 compounds (62 mitotoxic) from the mitochondrial toxicity data having both Cell
Painting and Gene Expression annotations were used for modelling. Given the size of the
training data, an artificial neural network model cannot capture the inherent data distribution
effectively to perform well in an external test set (see Supplementary Table S10 for
modelling results when comparing different Random Forests and artificial neural network

model). Hence, in this study, Random Forest models were trained using scikit-learn.'%*

As shown in Supplementary Figure S12, we used a grid search with balanced accuracy as
the scoring function as implemented in scikit-learn, a Python based package, to optimise
hyperparameters. Using a 4-fold stratified cross validation we determined the variation in
performance when changing number of trees in the Random Forest. We used a

GridSearchCV. The grid parameters varied the number of trees from 21 to 301 with a step
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size of 5. We checked for change in balanced accuracy in out of fold results in the cross
validation and training time. No considerable improvement was observed on increasing
number of trees. Hence, we opted for the optimal baseline model with 100 trees which is
within the optimal range of 64-128 number of trees given in previous research’’ has also
shown that increasing the number of trees does not necessarily improve performance.’® The
nodes were let to expand until all leaves were pure or until all leaves contained less than a
minimum of 2 samples that are required to split an internal node. A minimum of 1 sample
was required to be at a leaf node and the number of features to consider when looking for the
best split was set as the square root of total features. The consistent performance is most
likely as Random Forests are usually robust against overfitting. As shown in Supplementary
Figure S13, we used 4-fold nested cross-validation; inside the outer loop, a 4-fold stratified
splitting divided the data into a training set (75%), on which feature selection was performed
and the remaining into a test set (25%). Inside the inner loop, a Random Forest model with
parameters as above was trained on the training set using 4-fold stratified cross-validation.
For each model, to account for class imbalance, we tuned the threshold of probability to
determine the cut-off for toxicity labels having maximum value for Youden's J statistic (J =
True Positive Rate — False Positive Rate). The Youden index is frequently used to detect an
optimal threshold to be used as a criterion for classifying subjects without biasing the model
towards one class. Thus, the predictions can be used to fully exploit the model giving equal
weights to sensitivity and specificity without favouring one of them. From combined results
of the out-of-fold data from cross-validation, we chose the threshold of probability with the
largest Youden's J statistic value. This threshold was then used for the test set (hence the test
set was not used directly while selecting the optimal threshold). The entire process of nested
cross-validating was repeated 50 times; we evaluated our models on the distribution and

median of the performance metrics from all 200 test sets. The models overall trained with
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reasonable training time and threshold balancing ensured that overfitting on an unbalanced

dataset could be avoided.
External model evaluation

For the external test set, we trained 5 Random Forest models for each feature/combination
on our dataset using 4-fold cross-validation and the optimal threshold was determined
similarly from the combined out-of-fold data. The model was then retrained on the entire

dataset and used to predict the external test set with the threshold previously determined.
Evaluation metrics

F1 scores of the minority class (mitotoxic compounds), precision of the minority class
(mitotoxic compounds), sensitivity, specificity, Balanced Accuracy (BA), Area Under Curve-
Receiver Operating Characteristic (AUC-ROC), Area Under Curve-Precision Recall
(AUCPR), and Mathew's correlation constant (MCC) were used to assess model performance
as implemented in scikit-learn python package.'®" Often in a toxicity prediction problem with
unbalanced data, the number of nontoxic compounds far outweighs the number of mitotoxic
compounds and improvement in the prediction of the mitotoxic compounds (minority class)
is desired.'®® Here particular metrics such as sensitivity and AUCPR are useful and less likely
to exaggerate model performance. For comparing model predictions to true values in the
external test set, F1 scores and precision of the minority class and the sensitivity of the model
were used as they focus on the minority class (mitotoxic compounds) being detected by the

model.

Extrapolation to new structural/morphological space
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To evaluate if our models can extrapolate to novel chemical space (either in structural space
or in morphological space) we defined for each compound in the external test set two

parameters: (1) Structural distance to the training set:

Structural distance = median (x; ,X5 ..., Xs ) ()

where x;, = pairwise Tanimoto distances in decreasing magnitude, where,

Tanimoto distance = 1 — Tanimoto similarity (i)

and (2) Morphological distance to the training set:

Morphological distance = 1 — Morphological similarity (iii)
where,
Morphological similarity = abs (median(a,,a; ...a;s,b;,b, ...bys)) (iv)

and a, = positively and b, = negatively pairwise Pearson correlations in decreasing

magnitude.

The distances were defined the same as the subsection “ Comparing class separation and
visualization of compounds in morphological space’. The structural distance was defined as
the median of the five lowest Tanimoto distances'® between Morgan fingerprints of the test
compound and the compounds in the training dataset of the same activity annotation. The
morphological distance was defined as the one minus the absolute value of the median of 15
most positively and 15 most negatively pairwise Pearson correlations (using selected Cell
Painting features) of the test compound and the compounds in the training dataset of the same
activity annotation. In this manner, we could evaluate if true positives from test sets for each

model lie in relatively distant structural or morphological space to their training space.
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Statisticsand Reproducibility

A detailed description of each analysis' steps and statistics is contained in the methods
section of the paper. Statistical methods were implemented using the pandas Python

100

package.” Machine learning models, hyperparameter optimisation and evaluation metrics
were implemented using scikit-learn, a Python based package.'®* The sample numbers n for
each analysis are listed in the figure captions. We released the code and training and external

test set data for the models publicly at https.//git.io/JDGyc and in the Supplementary Data.

DATA AVAILABILITY

The training dataset (used for nested cross validation) and the external test set used in this
study are released in Supplementary Table S11 and S12 and other data are publicly available

at https:.//qgit.io/JDGyc. Any queries regarding data can be addressed to the corresponding

author.

CODE AVAILABILITY

We released the python code for our models which are publicly available at

https://qgit.i0/JDGyc
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FIGURES
Figure 1 Title: Some of the major mechanisms of action of mitochondrial toxicants

Figure 1. Toxicants act on multiple pathways to exhibit mitochondrial toxicity, including but not
limited to, unfolded protein response, inhibition of mitochondrial respiratory chain or uncoupling
of oxidative phosphorylation, oxidative stress from responses including generation of reactive
oxygen species (ROS), microtubule disruption and ER stress from various responses including
inhibition of Na* pumps etc.

Figure 2 Title: Overview of the workflow employed in this study

Figure 2. L1000 technology for Gene Expression and Cell Painting Technology for cell
morphology statistics. The LINCS L1000 gene expression technology profiles changes in 978
landmark genes before and after chemical perturbations on different human cell lines. Raw
unprocessed flow cytometry data from Luminex is converted to quantile-normalized gene
expression Jorofiles for all replicates of each compound. We use Gene Expression data from
Wang et al*®, who for each compound, computed the strongest gene expression signature using
the Characteristic Direction (CD) method and computed enrichment p-values for each CD
signature in the space of all genes against gene set libraries using Principal Angle Enrichment
Analysis (PAEA). The Cell Painting assay, on the other hand, captures cellular morphological
changes in the form of numerical statistics which are converted from microscopic image data of
cells treated with chemical perturbations.

Figure 3 Title: Mitotoxic compounds ar e consider ably different from non-toxic compounds
in mor phological space

Figure 3. Intra- and inter-class pairwise similarity for 486 compounds (85 mitotoxic)

Median of five highest Tanimoto similarity coefficients of Morgan fingerprints and (B) Absolute
value of the median of fifteen most positively and fifteen most negatively Pearson correlation
effect sizes of selected 110 Cell Painting features for mitochondrial toxic and non-toxic
compounds.

Mitotoxic compounds considerably vary from non-toxic compounds in morphological space
(median Pearson correlation of 0.140 vs 0.038, t-test independent p value=3.301e-20) while also
varying in structural space (median Tanimoto Similarity of Morgan fingerprints 0.208 vs 0.183,
t-test independent samples p value= 6.329e-03).

Figure4 Title Compound having similar mechanisms of action cluster in morphological
space

Figure 4. Principal Component Analysis of 542 compounds in 110-dimensional Cell Painting
feature space. Certain compounds clustered further away from the distribution of majority of
compounds having similar mechanisms of actions such as of microtubule destabilizers, or
compounds inducing apoptotic signalling cascades, compounds causing oxidative stress due to
GSH depletion or those that are inhibitors of plasma membrane Na* pump (all of which reduce
mitochondrial membrane potential). Cluster | (microtubule destabilisers): rotenone, albendazole,
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parbendazole, mebendazole, nocodazole, fenbendazole, colchine, paclitaxel and
podophyllotoxin; Cluster 11 (inhibitors of plasma membrane Na* pump): ouabain and digoxin;
Cluster 111 (caspase activation and GSH depletion): devazepide, lovastatin, simvastatin; and
Cluster 1 (trigger the release of cytochrome c into the cytosol): mevastatin, prazosin, and
raloxifene.

Figure 5 Title: Biological implication in mitochondrial toxicity of the Cell Painting features
correlated to Gene Expression

Figure 5. Computational significance and biological implication in mitochondrial toxicity of the
Cell Painting features that are most positively or negatively correlated to Gene Expression
descriptors particularly unfolded protein response and endoplasmic reticulum stress (RNA
variance and cell area shape), T cell apoptotic processes (mitochondrial granularity and DNA
fragmentation) and side of the membrane (RNA granularity and heterogeneity in mitochondria).
Further details in Supplementary Table S3.

Figure 6 Title: Biological implication of Cell Painting featuresin relation to mitochondrial
toxicity

Figure 6. Biological implication of mitochondrial toxicity translated from the computational
image statistics of Cell Painting features. Features were mainly related to edge intensity of cells
(possibly related to integrity of cell wall), radial distribution and intensity in mitochondria
(related to mitochondrial death) and granularity features (related to cell death and amount of
information contained in cellular images). Further details in Supplementary Table S4. AGP:
Actin Golgi Plasma membrane, DNA: Deoxyribonucleic acid, ER: Endoplasmic Reticulum,
Mito: Mitochondria, RNA: Ribonucleic acid

Figure 7 Title: Biological implication of Gene Expression featuresin relation to
mitochondrial toxicity

Figure 7. Biological implication of mitochondrial toxicity translated from the Gene Expression
features. Features causing mitochondrial toxicity mainly related to unfolded protein response
(possibly related to ER stress) and plasma membrane (related to membrane depolarisation).
Some effects of mitochondrial toxicity were also captured by Gene Expression features such as
oogenesis and dendritic plasma membrane; both processes are heavily mitochondria dependent.
Further details in Supplementary Table S5.

Figure 8 Title: Performance of models used in this study from nested-cross validations and
external validation.

Figure 8. Evaluation metrics, namely from (i) sensitivity, (ii) specificity, (iii) balanced accuracy
and (iv) F1 score for five models from (a) Nested CV (median of repeated nested cross
validations) from the training data (n=382 compounds) and (b) external test set (n=244
compounds). Early-stage fusion and Late-stage fusion models combining all three feature sets of
Cell Painting, Gene Expression and Morgan have higher F1 score for compounds exhibiting
mitochondrial toxicity and extrapolate well into new structural space in external test set
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compared to models using Morgan fingerprints where F1 Score performance falls by 60% (0.25
to 0.40 in absolute terms).

Figure9 Title: Predictions of mitochondrial toxicantsin the external test set in relation to
structural and morphological distance to training set

Figure 9. (a) Most mitotoxic compounds are similar in image space for training (n=382
compounds) and external test set (=244 compounds), however, non-toxic compounds in the
external test set were dissimilar to non-toxic compounds in training set in the image space.
Further, toxic compounds are often dissimilar in structural space, indicating the need for fusion
models.

(b) Structural and morphological distance for mitotoxic compounds in external test set (n=244
compounds) to the training set (n=382 compounds) for models using (i) Cell Painting features,
(if)Morgan fingerprints and the (iii) Late-stage fusion models. Morgan fingerprints failed to
correctly classify mitotoxic compounds (eg. betulinic acid) at high structural distances while
models using Cell Painting features could extrapolate well into structurally diverse compounds.
The late-stage fusion models correctly classified mitotoxic compounds (eg. 71145-03-4 or
methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate,
ketoconazole and fluoxetine) in both diverse morphological and structural space where
individual models failed demonstrating the synergistic effect of the features spaces.
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