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Abstract

The heterogeneous composition of cellular transcriptomes poses a major challenge for detecting
weakly expressed RNA classes, as they can be obscured by abundant RNAs. Although biochemical
protocols can enrich or deplete specified RNAs, they are time-consuming, expensive and can
compromise RNA integrity. Here we introduce RISER, a biochemical-free technology for the real-
time enrichment or depletion of RNA classes. RISER performs selective rejection of molecules
during direct RNA sequencing by identifying RNA classes directly from nanopore signals with deep
learning and communicating with the sequencing hardware in real time. By targeting the dominant
messenger and mitochondrial RNA classes for depletion, RISER reduced their respective read
counts by more than 85%, resulting in an increase in sequencing depth of up to 93% for long non-
coding RNAs. We also applied RISER for the depletion of globin mRNA in whole blood, achieving
a decrease in globin reads by more than 90% as well as a significant increase in non-globin reads.
Furthermore, using a GPU or a CPU, RISER is faster than GPU-accelerated basecalling and
mapping. RISER’s modular and retrainable software and intuitive command-line interface allow
easy adaptation to other RNA classes. RISER is available at https://github.com/comprna/riser.
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Introduction

Cellular transcriptomes encompass a diverse and unequally distributed range of RNA classes’.
Consequently, highly abundant RNAs are over-represented in sequencing studies, countering the
opportunity to characterize RNAs of low abundance. For example, long non-coding RNAs (IncRNAs)
typically exhibit a low and highly tissue-specific expression pattern?, which can be obscured by the
dominant messenger RNA (mRNA) or mistaken for background noise in RNA abundance
measurements®. Given the key roles of IncRNAs in multiple physiological processes, including
development, neuronal function and disease?®, it is critical to devise effective methods for their
detection.

Targeted biochemical approaches have been critical for identifying novel lowly expressed RNA
classes, notably IncRNAs?**. Although effective in enriching or depleting specific RNA molecules
prior to sequencing, biochemical targeting requires time-consuming and expensive specialized
experimental protocols, which have been shown to induce RNA degradation and compromise the
quality, length, and content of the resultant reads®°®. They are also restricted in their applicability
to a pre-determined set of transcripts. For instance, target cDNA capture using custom
hybridization probes can uncover novel isoforms* but requires prior knowledge of the target regions.
Similarly, mitochondrial RNAs (mtRNAs) have a distinct and well-characterized 3’ end that facilitates
their specific targeting for depletion®. However, no approach supports the enrichment or depletion
of any class of RNA without requiring the explicit definition of specific targets.

To enable the sensitive detection of lowly expressed RNAs without the limitations of biochemical
treatment, we have developed RISER, a biochemical-free technology for the real-time enrichment
or depletion of RNA classes. RISER seamlessly integrates with nanopore direct RNA sequencing
(DRS), building on Oxford Nanopore Technologies’ (ONT) read-until system, which allows software
to prematurely terminate the sequencing of individual molecules. RISER identifies RNA classes in
real-time during sequencing directly from just the first few seconds of raw nanopore signals using
a deep learning model representing the target RNA class, and communicates with the sequencing
hardware to physically eject unwanted RNAs from the pore, aiming to conserve sequencing
capacity for the RNAs of interest.

As DRS proceeds from the 3’ end of molecules, RISER exploits the common 3’ end properties of
RNAs from the same class, which are assumed to be implicitly encoded at the start of the raw
signal. For example, messenger RNAs (mRNAs) share common motif configurations in their 3’
untranslated regions (3’ UTRs)"®. Without needing to model these features explicitly, RISER
leverages the common signal patterns with a deep convolutional network to enable the detection
of RNA classes, enabling targeted sequencing beyond the simple enumeration of sequence targets.
Furthermore, RISER’s direct signal classification strategy is more efficient, less computationally
intensive and can operate on shorter input lengths than using basecalling and mapping to a
predefined list of sequence targets, and unlike real-time basecalling, RISER can be run with just a
CPU.

Through testing using controlled datasets and live runs we demonstrate that RISER can efficiently
deplete multiple highly abundant RNA classes, subsequently increasing the read depth of low
abundance RNAs. By enabling the biochemical-free depletion of globin mRNA, RISER improves the
efficiency of analysis of whole blood samples using long-read sequencing of native RNA. Extension
to many RNA classes and straightforward adaptation to technology updates are facilitated by
RISER’s modular software design. Through a simple command-line tool, RISER empowers RNA
researchers with a flexible and efficient strategy for biochemical-free targeted sequencing of native
RNA.
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Results
RISER identifies RNA classes from the 3’ end of DRS signals

For the design of RISER (Fig. 1a), we prioritized both accuracy and real-time efficiency. An efficient
approach is crucial since RNA molecules are typically shorter than DNA fragments sequenced in
nanopore applications®'®, while high accuracy is critical to ensure only molecules of interest are
accepted through the pore and none mistakenly rejected. We thus first considered the input signal
length that would be short enough to allow assessment of the majority of molecules yet contain
enough information for a correct decision. We found that signal lengths greater than 4 seconds (s),
corresponding to approximately the first 280 nucleotides (nt) of a transcript from the 3’ end, would
lead to at least 17% of molecules escaping through the pore before a decision could be made (Fig.
1b) (Methods). We thus considered that for RISER to impact as many molecules as possible, a
decision would need to be made within a maximum input length of 4s.

To select RISER’s model architecture, we initially considered the problem of separating mRNA and
non-mRNA from the 3’ end of DRS signals. Since DRS processes RNA molecules in the 3’ to 5’
direction, the initial portion of the nanopore signal always corresponds to the 3’ UTR for mRNAs,
or the 3’ end for non-coding RNAs. We hypothesized that differences in the molecular composition
of the 3’ end of mRNAs"®, which are implicitly encoded at the start of DRS signals, would make it
possible to discriminate between mRNA and non-mRNA without the need for basecalling or
mapping to a target reference.

We considered convolution-based architectures since they are ideally suited to capturing local
temporal dependencies in time series inputs and can identify the relevant components for
prediction irrespective of their location along an input signal'’. These are key features for DRS signall
analysis, given the variance in nanopore translocation speed and the local relationships between
signal values for consecutive nucleotides. Position invariance is particularly crucial for this
application since it is not known at which position in the 3’ end signal the relevant elements for
prediction will be. Further, the superior performance in terms of accuracy and efficiency of
convolutional over recurrent architectures has been demonstrated for the analogous application of
classifying species from nanopore DNA signals®’.

We trained and tuned three deep neural networks with convolutions that have shown strong
performance in time series modelling tasks'': a Residual Neural Network (ResNet)'?, a Temporal
Convolutional Network (TCN)™, and a “vanilla” convolutional network (CNN). To enable efficient
hyperparameter optimization in the development of the RISER architecture, we used a restricted
number of datasets and DRS runs (Supp. Table 1). Following hyperparameter optimization (Supp.
Tables 2-4), we tested the best-performing model for each candidate architecture on the binary
classification of mMRNA/non-mRNA. For testing we considered input signal lengths of 4s or less, in
accordance with the 4s maximum input length required for RISER’s use in real-time applications.

The ResNet and CNN outperformed the TCN at all input lengths with respect to accuracy (Fig. 1c),
area under the receiver operating characteristic curve (AUROC) (Supp. Fig. 1a) and ratio of true
(TPR) to false (FPR) positive rate (Fig. 1d), which better indicates the simultaneous maximization of
accepted on-target molecules and rejected off-target molecules compared to the individual TPR,
FPR and precision metrics (Supp. Figs. 1b-d). Importantly, the CNN was approximately twice as
fast as both the ResNet and TCN (Fig. 1e) and was therefore selected as RISER’s model (Fig. 1f).
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Figure 1: RISER identifies RNA classes from the 3’ end of DRS signals. a, RISER classifies RNA
molecules as they commence sequencing by directly assessing raw nanopore signals, then sends
an accept or reject decision to the sequencing hardware depending on the user-defined target RNA
class and whether the user wants to enrich or deplete the target class (shown: target depletion).
The accepted reads are sequenced to completion, while the rejected reads are truncated. b,
Percentage of reads in the training dataset (y-axis) with raw signals long enough to be input to
RISER, for each candidate input signal length expressed in seconds (x-axis). c-e, Model
performance on the test set for each candidate input signal length (x-axes), color-coded by the
three convolutional network architectures assessed: “vanilla” convolutional neural network (CNN)
(cyan), residual network (ResNet) (dark blue), temporal convolutional network (TCN) (pink). We show
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the accuracy (c), ratio of true positive rate (TPR) to false positive rate (FPR) (d) and mean prediction
time per batch of signals, expressed in milliseconds (e). f, Neural network architecture for the CNN
model selected to implement RISER.

RISER integrates with the direct RNA sequencing platform

To deploy RISER in real-time during sequencing experiments, an intuitive command-line tool is
provided for the user to select a target RNA class and a mode, enrich or deplete (Supp. Note 1).
Beneath the hood, RISER enacts targeted sequencing through ONT’s ReadUntil application
programming interface (API). This API allows third-party software to retrieve data from, and send
commands to, individual pores in the sequencing hardware in real-time'. RISER continuously
requests batches of in-progress sequencing signals from the API. For each signal received, RISER
starts testing molecules after only 2s of sequencing, after trimming the sequencing adapter and
variable length poly(A) tail from the start of the signal (Supp. Fig. 2) (Methods). If the predicted
probability exceeds a tuned confidence threshold of 0.9 (Supp. Fig. 3) (Methods), RISER sends a
reject command to the sequencing hardware or allows the molecule to complete sequencing and
stops requesting data for that molecule. If the probability is 0.9 or below, RISER tries to classify the
molecule again when it is next received from the API, after more of the molecule has transited (up
to a maximum length of 4s). If after 4s a confident prediction has not been made, sequencing will
continue unaffected, i.e., the RNA is let through the pore. By testing signals in this incremental
manner, RISER is tolerant to variance in the RNA translocation speed.

For an initial test of RISER’s integration with the sequencing platform, we utilized the “playback”
feature of ONT’s MinKNOW software, which allows signals recorded from a previous sequencing
run to be replayed as though they were being generated in real-time'*. We replayed a sequencing
run from a cancer cell line (REH) that had not been used for model development or evaluation. In
this simulated live-sequencing environment, when a reject command is issued the signal being
replayed is prematurely terminated; hence, read length provides an indirect measurement of
accuracy. As expected, the RNA class targeted for enrichment showed significantly longer read
lengths than their off-target counterparts (Supp. Fig. 4).

RISER is more efficient than sequence-based adaptive sampling

We compared the efficiency of RISER with sequence-based adaptive sampling (AS) such as that
provided by ONT’s MinKNOW software. Although both RISER and AS utilize the ReadUntil API for
streaming data from, and sending commands to, the sequencing device, they critically differ in the
signal processing approach used to identify molecules. RISER performs a binary classification of
the raw signal for a given RNA class, while AS basecalls and maps in-progress reads to a predefined
list of target sequences.

We first compared the speed of AS and RISER for identifying mRNA in a test set of 1000 fixed-
length signals. As in the MinKNOW AS implementation, the Dorado basecalling server'® was used
for basecalling and mapping to a reference listing all mMRNA sequences in the human transcriptome,
while RISER was tested using the mRNA model. Remarkably, when using GPU acceleration for
both strategies, RISER was on average 44x faster than AS (Fig. 2a, Supp. Table 5). When the same
comparison was performed in CPU mode, RISER was on average 371x faster than AS (Fig. 2b,
Supp. Table 5). Notably, RISER in CPU-mode was 16x faster than AS in GPU-mode, while AS was
prohibitively slow to be used in real-time with CPUs, with basecalling and mapping taking 5.8s on
average (Supp. Table 5).
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Figure 2: RISER is more efficient than sequence-based adaptive sampling. a-b, Time in
seconds (y-axis, log10-scale) taken to classify 1000 fixed-length DRS signals by sequence-based
adaptive sampling (AS) using basecalling and mapping to the protein-coding transcriptome
(fuchsia) and by classification with RISER’s mRNA model (blue) using a GPU (a) or CPU (b). c,
Percentage of mMRNA DRS signals classified as mRNA (y-axis) within a given time (x-axis) by AS
(fuchsia) and RISER (blue).

We next assessed the input signal length needed to identify targets using AS or RISER. This time,
the objective was to correctly identify as mRNA a test set of 1000 fixed-length signals extracted
from mRNA molecules. For a fair comparison, we considered 2s as the minimum input length from
which both technologies can make a prediction and incrementally increased the input length by 1s
until a prediction was made. Considering the signals that both technologies correctly identified as
mRNA, RISER was able to identify all signals as mRNA within 4s, while AS took up to 46s to identify
all of them (Fig. 2c¢). Thus, under comparable conditions, RISER is substantially faster, can be run
using only CPUs, and requires less amount of signal to identify the desired targets compared to
sequence-based adaptive sampling using basecalling and mapping, hence showing strong
potential for the efficient control of live sequencing runs.

RISER enables real-time depletion of abundant RNA classes

To test RISER in live sequencing runs, we considered the problem of depleting highly abundant
RNAs, which occupy the majority of the sequencing capacity and obscure the detection of less
abundant RNAs. Since mRNA is the most abundant class in standard poly(A)* DRS runs (Supp. Fig.
5), we first developed a model to target mRNA, intending to use it for depletion in live runs. To
maximize generalizability, to train this model we used a larger training dataset (Supp. Table 6) than
previously used for the selection of RISER’s architecture (Supp. Table 1). Testing on a dataset from
an independent cell line (HeLa) that was not used for training, hyperparameter tuning or architecture
selection, the mMRNA model achieved high accuracy (94%), precision (0.99) and TPR (0.94) with low
FPR (0.05) (Fig. 3a). We also considered the mRNA model’s performance on individual RNA
biotypes. Importantly, our model detected mRNA with high accuracy (94%) and was able to identify
99% of mtRNAs and 64% of IncRNAs as non-mRNAs (Fig. 3b).

To demonstrate the broad applicability and ease of training RISER for other targets, we next
developed a second model to identify mtRNAs, which are highly abundant in RNA sequencing of
cardiac and other muscle samples (30-80% of reads®) (Supp. Fig. 5). Evaluation of the mtRNA
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model on our independent HelLa dataset demonstrated high accuracy (99%), precision (93%) and
TPR (98%), while maintaining a low FPR (1%) (Fig. 3¢). Our mtRNA model was also able to correctly
classify as non-mtRNA all RNA biotypes with >98% accuracy (Fig. 3d). Furthermore, the
performance of the mRNA and mtRNA models was recapitulated on a separate independent cell
line experiment from a different lab'®, demonstrating consistent performance despite a different
sample source and sequencing location (Fig. 3e-h).
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Figure 3: Performance of RISER models for the depletion of mMRNA and mtRNA, in non-live
independent experiments, using poly(A)* RNA from Hela cells (a-d) and GM12878 cells (e-h). For
the mRNA (a,e) and mtRNA (c,g) models in each experiment, we show overall accuracy, precision,
true positive rate (TPR) and false positive rate (FPR). For the same mRNA (b,f) and mtRNA (d,h)
models, we show the accuracy for each biotype, color-coded by whether the biotype belongs to
the class targeted for RISER depletion (purple) or not (teal).

Given the strong performance of RISER’s mRNA and mtRNA models in non-live independent
experiments, we next explored their utility for real-time depletion in live sequencing runs. Live
sequencing of a standard DRS library from HEK293 cells was conducted using a MinlON Mk1B,
with the flow cell channels split into two groups to simultaneously test RISER depleting both mRNA
and mtRNA, and no RISER as a control, thus avoiding any possible flow cell biases. RISER was
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executed as described above, using both mRNA and mtRNA models to predict the RNA class
(Methods).

Consistent with our expectation that RISER prematurely truncates the reads in the RNA classes
targeted for rejection, we found that RISER significantly reduced the length of the reads from both
target classes relative to the control condition (Fig. 4a). We also detected a smaller but significant
difference in the read lengths in IncRNAs. However, we found that this level of variability is expected
for IncRNAs (Supp. Fig. 6). Moreover, demonstrating that the RISER decision is effectuated within
4s of sequencing, the read coverage per base in individual mMRNA and mtRNA transcripts markedly
dropped off within 280nt (~4s) upstream of the transcripts’ 3’ end when RISER was used for target
depletion (Fig. 4b, upper & middle panels). In contrast, the IncRNA coverage in the control and
deplete conditions remained similar (Fig. 4b, lower panel), as expected for RNAs not targeted for
depletion. In agreement with these observations, RISER also substantially reduced the transcript
fraction covered by the sequenced reads across all transcripts in the mRNA and mtRNA target
classes, whereas the covered transcript fraction for INcRNAs remained the same with or without
RISER (Fig. 4c).
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Figure 4: RISER enables real-time depletion of mMRNA and mtRNA. RISER performance during
live sequencing of poly(A)* RNA from HEK293 cells, using a MinlON Mk1B flow cell split into two
conditions: RISER targeting both mRNA and mtRNA for depletion (pink), and no RISER as a control
(blue). a, Distribution of read lengths (y-axis, log10-scale) for each RNA class, in each condition.
Ouitliers were not included. The read lengths of each RNA class were compared in the control and
deplete conditions using a Wilcoxon rank sum test (H1: control > deplete). The probability of
superiority (PS) is also shown above each comparison. PS is the probability that a randomly
sampled read from the control condition is longer than a randomly sampled read from the deplete
condition (i.e., PS close to 0.5 means the lengths are likely to be the same, whereas PS close to 1
means that the control lengths are highly likely to be larger) (mMRNA: p-value p<2.2E-308 and
PS=0.87, mtRNA: p<2.2E-308 and PS=0.89, IncRNA: p=2.3E-69 and PS=0.60). b, Percentage of
reads covering the first 1000 bases from the 3’ end of the transcript (y-axis) for an example mRNA
(upper panel), mtRNA (middle panel) and IncRNA (lower panel). The reference positions (x-axes) are


https://doi.org/10.1101/2022.11.29.518281
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.29.518281; this version posted March 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

ordered 3’ to 5. The vertical line indicates 280nt upstream of the 3’ end, which approximately
corresponds to the maximum RISER input length of 4s. ¢, Density distributions of the transcript
fraction (x-axis) covered by the sequenced reads. d-e, Distribution of the percent change in read
(d) and nucleotide (nt) (e) counts (y-axis), with respect to a control run, when RISER was used to
deplete mMRNA and mtRNA (orange) and for a separate control run (purple). For the set of transcripts
in each biotype, the percent change in nt or reads using RISER was compared to the (no-RISER)
control using a paired Wilcoxon signed rank test (H1 for mRNA and mtRNA: RISER vs control <
between controls, H1 for IncRNA: RISER vs control > between controls). For this comparison,
IncRNAs that did not overlap with coding exons from protein-coding transcripts were used.

We next quantified RISER’s impact on sequencing depth, finding that RISER reduced the read
counts for transcripts in the mRNA and mtRNA target classes by an average of 86% (n=873) and
85% (n=14), respectively (Fig. 4d). Remarkably, IncRNA transcripts had an increased read count of
23-93% (47% on average, n=8) (Fig. 4d). Considering sequenced nucleotides, RISER led to an 89%
and 90% reduction in average nt counts for mRNA and mtRNA transcripts, respectively, as well as
an increase in nt counts by 49% on average for IncRNA transcripts (Fig. 4e). By comparing with the
percent change in read or nt counts between control runs, we found that the effect of RISER was
statistically significant for all three biotypes (Fig. 4d,e). The significant impact of RISER on read and
nucleotide counts was recapitulated using a second control experiment (Supp. Fig. 7). Considering
RISER’s decision per molecule in each target RNA class, 88% of mRNA and 98% of mtRNAs were
correctly rejected (Supp. Fig. 8a). RISER erroneously accepted 5% of mRNAs and 1% of mtRNAs,
while the remainder were not detected with sufficient confidence.

We systematically analyzed the RISER model errors to identify any possible biases towards specific
transcripts. Of the 2902 unique mRNA transcripts identified in the RISER condition, only 6 were
sequenced to completion for at least 50% of their copies (Supp. Fig. 8b), while none of the 14
mtRNA transcripts were (Supp. Fig. 8c). Of the 52 unique IncRNA transcripts sequenced, RISER
erroneously rejected 5 of them for at least 50% of their copies (Supp. Fig. 8d). 4 of these 5 had
common sequences with protein-coding transcripts, making it not possible for RISER to distinguish
them from mRNA. This suggests that errors in the remaining 99.99% of mRNA transcripts, 90% of
IncRNA transcripts, or in any mtRNA transcript, may stem from sequencing noise. Furthermore, we
found that by depleting mRNA and mtRNA, RISER did not impact the relative abundance of
IncRNAs (Pearson R=0.75, p=8.4E-11) (Supp. Fig. 9a), consistent with the correlation between
IncRNA abundances in independent HEK293 sequencing experiments without RISER (Pearson
R=0.79, p=6.3E-7) (Supp. Fig. 9b). Moreover, while the final percentage of available pores varied
generally between different runs after 24 hours, these numbers were similar between RISER and
control experiments (Supp. Fig. 10a-c).

RISER enables biochemical-free depletion of globin mRNA in whole blood samples

To further demonstrate RISER’s broad utility, we next applied it for the depletion of mRNA
originating from globin genes, which makes up to 80-90% of the read counts in whole blood short-
read RNA sequencing experiments®'’, and around 60% in DRS experiments (Fig. 5a). Currently,
there is no method available for globin depletion that is compatible with DRS. We hypothesized that
conserved regulatory sequence motifs in the 3’ end of globin mRNAs, such as the pyrimidine-rich
elements that contribute to globin mMRNA stability necessary for ample hemoglobin production’®,
would be implicitly encoded in DRS signals and therefore exploitable by a RISER model. We thus
trained a RISER model for globin mRNA identification (Methods). Testing on a reserved dataset of
DRS reads from whole blood, this model achieved high accuracy (98%), precision (99%), TPR (98 %)
and low FPR (0.5%) (Fig. 5b). Critically, our globin model was able to correctly detect globin mRNA
with 98% accuracy and to correctly classify all other RNA biotypes as non-globin with >99%
accuracy (Fig. 5¢).
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Figure 5: RISER enables real-time depletion of globin mRNA. a, Proportion of reads originating
from globin genes (HBB, HBA1, HBA2) or other genes in a standard DRS run of a whole blood
sample. b, Performance of the RISER model for the detection of globin mRNA using DRS reads
from a non-live experiment of whole blood. We show the performance metrics of accuracy,
precision, true positive rate (TPR), and false positive rate (FPR). ¢, Accuracy of the globin mRNA
model per biotype, color-coded by whether the biotype belongs to the class targeted for RISER
depletion (purple) or not (teal). d, Distribution of read lengths (y-axis, log10-scale) for globin mRNAs
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and non-globin mRNAs, in each condition. Outliers were not included. The read lengths of each
RNA class were compared in the control and deplete conditions using a Wilcoxon rank sum test
(H1: control > deplete). The probability of superiority (PS) is also shown. PS is the probability that a
randomly sampled read from the control condition is longer than a randomly sampled read from the
deplete condition (PS close to 0.5 means the lengths are likely to be the same, whereas PS close
to 1 means that control lengths are highly likely to be larger) (globin mRNA: p<2.2E-308 and
PS=0.91, non-globin mRNA: p=0.99 and PS=0.48). e, Density distributions of the transcript fraction
(x-axis) covered by the sequenced reads for globin (upper panel) and for non-globin (lower panel)
mRNA. f-g, Distribution of the percent change in read (d) and nucleotide (nt) (e) counts (y-axis),
relative to a control run, when RISER was used to deplete globin mRNA (orange) and for a separate
control run (purple). For the set of transcripts per biotype the percent change in nt or reads using
RISER was compared to the (no-RISER) control using a paired Wilcoxon signed rank test (H1 for
globin mRNA: RISER vs control < between controls, H1 for non-globin mRNA: RISER vs control >
between controls).

Compelled by the model’s strong performance in controlled tests, we next tested the efficiency of
globin mRNA depletion using RISER during live MinlON sequencing of a standard DRS library from
whole blood. As expected, RISER significantly reduced the length of globin mRNA reads in the
deplete compared to the control condition, while the lengths of other mRNAs remained unaffected
by RISER (Fig. 5d). RISER also reduced the transcript fraction covered by the sequenced reads in
the globin mMRNA, whereas the covered transcript fraction for other mRNAs remained the same with
or without RISER (Fig. 5e). Importantly, RISER reduced the read count of each globin mRNA
transcript by 93% on average (n=4), leading to an increase in reads for non-globin mRNA transcripts
of 15% on average (n=100) (Fig. 5f). Considering sequenced nucleotides, RISER led to a 96%
average reduction of nt counts for globin mRNA transcripts and a 14% average increase for non-
globin mRNA (Fig. 5g). Compared to the change in read counts between two randomly selected
groups in an independent control experiment, the changes in nt and read counts achieved by RISER
were statistically significant (Figs. 5f,g). The statistical significance of RISER’s effect was
recapitulated considering a second independent control experiment (Supp. Fig. 11). While we
observed similar trends in the pores available between the RISER and control conditions across the
24h sequencing runs, the final number of available pores varied between each run (Supp. Fig. 10d-

f).

Considering RISER’s prediction per molecule, a correct decision was made for at least 98% of
molecules in each RNA class (Supp. Fig. 12a). Unpacking the few errors in each RNA class to
determine if the model was biased towards specific transcripts, we found that most of the molecular
copies of all the 8 globin mMRNA transcripts were correctly classified (Supp. Fig. 12b), while every
mtRNA was correctly classified as non-globin at least 95% of the time (Supp. Fig. 12c), suggesting
no bias within either of these classes. Only one mRNA transcript that was not in our “globin mRNA”
category (containing HBA1, HBA2 and HBB transcripts) was consistently classified as “globin”
(Supp. Fig. 12d). Intriguingly, this belonged to the hemoglobin subunit delta (HBD) gene, which was
not included in the model due to an insufficient number of reads available for training. Despite not
being seen during training, the model generalized to identify mRNA molecules from the HBD gene
as belonging to the globin class, indicating the model has learned to identify general features of
globin mRNAs. Only one IncRNA was sequenced and it was correctly identified as non-globin in 12
of the 13 molecular copies. Finally, we observed that the relative abundances of non-globin mRNAs
were conserved between the RISER and control conditions (Pearson R=0.9, p<2.2E-16) (Supp. Fig.
13a), consistent with the observed correlation between separate whole blood sequencing
experiments performed without RISER (Pearson R=0.92, p<2.2E-16) (Supp. Fig. 13b).
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Discussion

RISER leverages the read-until functionality of ONT sequencing platforms to focus the limited
operating time of the nanopores on a user-defined RNA class of interest, enabling biochemical-free
targeted sequencing of native RNAs. By combining targeted depletion or enrichment with DRS,
RISER enables downstream analysis in nanopore signal space, such as the study of RNA
modifications™. Targeted sequencing with any other sequencing technology is limited by the
inability to measure RNA in its native state, which precludes studies of the epitranscriptome and
risks the introduction of biases that typically result from reverse transcription.

A key feature in RISER is that it performs the reject decision by directly classifying the raw signal,
rather than using real-time basecalling and mapping as in ONT’s sequence-based adaptive
sampling. We have shown that RISER’s approach is substantially faster, even when run on a CPU,
and requires shorter input lengths to identify targets than GPU-accelerated AS. This confers RISER
with an advantage for targeted DRS, as a highly efficient targeting strategy is crucial given the
overall shorter lengths of RNA molecules compared to sequenced DNA fragments®'®. Although
strategies have been developed to optimize AS by accelerating the mapping step®® or making
decisions from the signal directly*"*, they have not been applied to DRS.

A second key feature in RISER is that it defines the target as a class represented by a deep neural
network model, rather than as a list of pre-defined specific sequences as in AS. Unlike RISER, the
latter approach precludes the opportunity to target novel transcripts, which could be of critical
relevance for organisms that lack a well-annotated reference or have an insufficiently characterized
transcriptome. Furthermore, since RISER does not require a specific input length to identify targets,
but rather assesses any signal between 2 and 4s long, it can be applied to other RNA classes of
various optimal input lengths without the need to change the signal processing approach.

We illustrated RISER’s usability during live runs by targeting the highly abundant mRNA and mtRNA
classes for depletion. While demonstrating the effective depletion of both targets, RISER also led
to a moderate increase in sequencing depth for many IncRNAs. Although this was encouraging, we
expect there is scope to improve these depth gains by increasing the INcRNA DRS datasets
available for model training. At present, accurate IncRNA identification from the 3’ end signal
remains challenging. As a more diverse, less abundant, and less well-defined class®, IncRNAs are
harder to detect compared to other RNA classes. They also frequently present cell type-specific
expression, which makes it harder for predictive models to generalize to new samples. It is thus
crucial to maximize the diversity and quantity of samples used for training. Despite these
challenges, our mtRNA and globin mRNA models were able to differentiate IncRNAs with
remarkably high accuracy.

Further demonstrating RISER’s broad applicability and potential for impact in clinical settings, we
applied it for the depletion of globin mMRNA from blood samples. mRNAs originating from globin
genes typically dominate whole blood sequencing runs, thereby consuming sequencing resources
and reducing the read coverage of the other transcripts of interest in clinical and other diagnostic
samples. Although accurate profiling of whole-blood transcriptomes is essential in medicinal and
biological discovery, no globin depletion method exists that is compatible with DRS. Furthermore,
bioinformatically discarding globin reads post-sequencing is insufficient to counteract the problem
of limited coverage of non-globin RNAs*. Biochemical approaches to remove or enzymatically
degrade globin mMRNAs®'” are known to induce a higher coverage towards the 3’ end of transcripts,
can result in frequent off-target depletion, and fragment the RNA®. These limitations make globin
depletion only viable for certain types of analyses based on short-read sequencing technologies.
Problematically, short-read methods require cDNA as input and are incapable of sequencing entire
transcripts, requiring error-prone computational transcript reconstruction with probabilistic


https://doi.org/10.1101/2022.11.29.518281
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.29.518281; this version posted March 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

approaches?®. Although alternative biochemical-based methods have been proposed that minimize
degradation to enable long-read sequencing®, they have limited efficiency, and are only compatible
with cDNA sequencing. RISER thus has the potential to contribute to the development of efficient
long-read direct RNA sequencing applications in blood samples.

There may be several avenues to explore the further optimization of RISER. Using larger datasets
for training, especially for the lowly expressed RNA classes, could improve RISER’s sensitivity to
rare RNAs. Other architectures designed for sequential modelling of signals, with comparable
efficiency to CNNs, may lead to improvements in RISER’s approach. While models such as RNNs
or transformers may yield accuracy gains, they are generally more computationally expensive than
lightweight CNNs'*%’, as we have used in RISER, which is key to targeted DRS. Other aspects of
the technology may not be easily addressed, as they depend on the ONT sequencing infrastructure.
For instance, the lag between the read-until API receiving a reject command from RISER and
requesting a voltage reversal in the hardware, as well as the efficiency of the voltage reversal itself
is beyond RISER’s control and may vary across sequencing platforms. Moreover, there is a risk of
RNA secondary structures forming on the trans side of the pore, which could impede the efficiency
of or completely inhibit reverse translocation by voltage reversal. In any case, with new iterations of
the sequencing technology providing higher throughput and less noisy signals, the potential to
amplify the applicability and impact of RISER is enhanced.

Finally, RISER has been developed using best practices in software development. RISER is freely
available to use through a simple and intuitive command-line tool (Supp. Notes 1-3, Supp. Table
7), with no requirements for additional files such as BAM or BED files. RISER’s modular design
(Supp. Figs. 14 & 15) facilitates easy adaptation of each software component, such as the
incorporation of new models or the extension to new iterations of the sequencing platforms. We
also provide the software code to retrain the neural network for new RNA classes, thus enabling
the application to other RNA classes, or the identification of RNA from different organisms. In
summary, RISER empowers researchers across multiple fields to perform efficient and cost-
effective, real-time targeted sequencing of native RNA molecules, catalyzing a new generation of
RNA enrichment targets and sequencing control.

Methods

RISER model development
DRS datasets used

For the development of the RISER model, MinlON DRS signals from human heart®®, GM24385 cells
(sequenced in this study) and HEK293 cells®*** were used (Supp. Table 1) and are hereafter
collectively referred to as the “model development datasets”.

GM24385 RNA extraction and sequencing

The lymphoblastoid cell line (LCL) GM24385 (Corielle Institute) was grown in RPMI1640 media
(Gibco) supplemented with 15% Hi-FCS and 2 mM L-Glutamine in 6-well plates (Coning) under 5%
CO.. Cells were harvested at a density of 10° cells/ml. Cell pellet collection was performed by
transferring GM24385 cell suspension into 15 ml conical centrifuge tubes (Falcon) and centrifuging
at 500xg for 10 minutes at room temperature.
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To isolate RNA from the cytoplasmic and nuclei fractions, 107 cells were lysed in 200 pl of the non-
denaturing lysis buffer containing 25 mM HEPES-KOH (pH 7.6 at 25°C), 50 mM KCl, 5.1 mM MgCl,,
2 mM DTT, 0.1 mM EDTA, 5% v/v glycerol, 2x Complete EDTA-free protease inhibitor and 0.5%
v/v Igepal CA-630B. Cells were resuspended in the lysis buffer through pipetting and RNasin Plus
(Promega) was immediately added to the final concentration of 1 U/ul. Cell lysis was completed by
passing the lysate 4x through a 20-gauge needle followed by passing it 4x through a 27-gauge
needle. The cell lysate was then centrifuged at 1,000x g for 5 minutes at 4°C. The supernatant was
transferred into a new 1.5ml tube and mixed with 350pl of the RA1 lysis buffer, followed by RNA
isolation using silica columns (Macherey Nagel) to obtain the cytoplasmic RNA fraction. The
process included on-column Dnase treatment with TURBO Dnase (Thermo Fisher Scientific). The
pelleted nuclei were resuspended in 1 ml of ice-cold sterile PBS and 50 pl counted using cell
counter (Beckman-Coulter). The nuclei suspension was spun again at 1,000x g for 5 minutes at
4°C, the supernatant aspirated and 6.6x10° nuclei were lysed in 700 pl of the RA1 RNA lysis buffer
and isolated using the silica columns as described above. RNA isolated from the cytoplasmic
fraction was eluted from the columns in 80ul, and from nuclei in 120pl of Rnase-free water, and
stored at -80°C.

For in vitro polyadenylation, ~9ug of the RNA in 94 pl of deionized water or 25mM HEPES-KOH (pH
7.6 at 25°C), 0.1 mM EDTA (HE) buffer were first denatured by incubating at 65°C for 3 minutes and
immediately chilling in ice. The solution was then supplemented with 12ul of 10x E. coli Poly(A)
Polymerase buffer (New England Biolabs), 8ul of 1mM ATP and mixed. To the resultant solution,
3ul of 40U/l Rnasin Plus (Promega) and 3ul of 5U/ul E. coli Poly(A) Polymerase (New England
Biolabs) were added and mixed, and the resultant mixture incubated at 37°C for 30 minutes. The
eluate from in vitro polyadenylated RNA was further purified following the protocol previously
described® for RNA cleanup with SPRI beads.

The DRS flow cell priming and library sequencing protocol were followed as previously described®'.
Two DRS runs for the nuclei RNA libraries and one DRS run for the cytoplasmic RNA library were
conducted on a MinlON Mk1B with R9.4.1 flow cells, for 44h, 29h and 72h, respectively, following
the procedure previously described®. Version 20.10.3 of the MinKNOW software was used.

Input signal length selection

The input signal length to use for the RISER model was determined by considering the trade-off
between needing to minimize input length for efficient enrichment or depletion, while also ensuring
the signal contained enough information for a correct prediction. This trade-off was assessed by
observing the lengths of the transcript signal portion (i.e. the part of the signal that RISER predicts
on, which is the signal remaining after the sequencing adapter and poly(A) tail have been removed)
for the signals in the model development datasets.

First, the sequencing adapter and poly(A) tail were removed from the raw nanopore signals using
BoostNano®. Next, the percentage of signals that had a transcript signal length at least as long as
the candidate input signal lengths of {1-6,9}s was calculated. The transcript signals that were
shorter than each candidate input signal length corresponded to molecules that would be too short
and therefore escape through the pore before a decision could be made. The longest signal length
that would still allow at least 90% of molecules to be assessed was selected as the maximum input
length to use for RISER, which was 4s.

Train and test data preparation

To curate the train and test sets for developing the RISER model, the reads in the model
development datasets were basecalled, mapped and filtered as described previously®. Briefly,
fast5 files were basecalled with Guppy (v4.0.14) using options —flowcell FLO-MIN106 —kit SQK-
RNA002 and mapped to the GENCODE reference transcriptome (release 34, assembly
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GRCh38.p13) with minimap2* (v2.17) using options -ax map-ont —secondary=no -t 15. To retain
only high-confidence mappings, alignments to the reverse strand, secondary or supplementary
mappings and unmapped reads were removed using samtools® with option -F 2324.

Using the GENCODE (release 34, assembly GRCh38.p13) transcript biotypes, reads were then split
by biotype into mMRNA and non-mRNA (all other biotypes) classes, with pseudogenes removed to
ensure there were no common sequences between the two classes. For the model training and
testing datasets, each class was further split by randomly dividing the reads into 80% training and
20% testing. 20% of the training data was reserved for hyperparameter tuning. To resolve class
imbalance, the majority class (MRNA) was undersampled to achieve a 50/50 class balance in each
of the train, test and tune sets so that the model was trained in an unbiased way.

The maximum RISER input length of 4s was used for model training and testing to maximize the
amount of information learned by the model. After removing the sequencing adapter and poly(A)
tail from the start of each raw nanopore signal with BoostNano®, the first 4 seconds (s) of the
remaining transcript signal was then extracted and normalized using median absolute deviation
with outlier smoothing. Signals with transcript signal lengths less than 4s were discarded. The final
training set contained 1,073,720 signals.

Candidate neural network architectures

Convolutional neural networks capture spatial structure in the input by using convolutions, which
are computed as the dot product between a filter (also known as a “kernel”, which is a matrix of
learnable weights) and a portion of the input the same size as the filter (a “local receptive field”).
The filter acts as a feature detector and by “sliding” the same filter across the input to produce a
feature map, feature detection becomes translation invariant, i.e., the same feature can be found
anywhere along the input length. The use of multiple filters (“channels”) in each layer allows different
features to be detected, while the use of multiple layers in the network allows hierarchies of features
to be learned®.

Three variants of convolutional architectures known to have strong performance in 1D sequence
modelling tasks were considered: the Residual Neural Network (ResNet)'?, the Temporal
Convolutional Network (TCN)™ and a “vanilla” convolutional network (CNN). For each architecture,
the hyperparameter configuration was systematically tuned. All models were trained using binary
cross-entropy loss and Adam optimization for up to 100 epochs (within a 48-hour time limit), after
which their accuracy was evaluated on the validation set (Supp. Tables 2-4). All models were built,
trained, and tested using PyTorch (v1.9.0)*® with a single NVIDIA Tesla V100 graphics processing
unit (GPU).

Residual network (ResNet) hyperparameter optimization

The ResNet architecture overcomes convergence issues when training deep networks' by using
shortcut-connections that directly propagate unmodified inputs to subsequent layers. The effect is
a reduced backpropagation distance to mitigate gradient update instability, enabling the training of
much deeper networks and the extraction of richer feature hierarchies than was previously
possible’.

33 variants of the following general ResNet architecture were trained and tested; the input vector
was fed into a feature extractor layer composed of a 1D convolution with kernel size k and stride of
3 followed by batch normalization, rectified linear unit (ReLU) activation (f (x) = max(0, x)) and max
pooling (which computes the maximum value in each local receptive field to downsample the
feature maps) with a kernel size and stride of 2. Following were / residual layers, with each layer i
(i=0,...,I-1) containing b = {b;} residual blocks using ¢ = {c;} channels. Residual blocks were either
“bottleneck” or “basic” types, implemented as described in He et al. (2016)™.
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To determine the optimal values of k, /, b, ¢ and block type the ResNet-34 and ResNet-50
architectures' were tested, along with variants of these with fewer channels per layer, to reduce
overfitting. The SquiggleNet architecture® was also tested in its original form, before each
hyperparameter was systematically varied to find the optimal configuration for this new application.
The basic block outperformed the bottleneck block and networks with a more gradual increase to
a larger number of channels converged to a better loss minimum. To test the boundaries of this
observation, b was reduced to 1 for every layer and the channels were configured such that ¢, =
20, ¢i= [ci.i*1.56/and | = 10, which was the maximum number of layers possible before the feature
vectors became smaller than the receptive field. As in SquiggleNet, the kernel size was set to k =
19. It was found that this configuration achieved the highest accuracy on the validation set, trained
using a batch size of 32 and initial learning rate of 0.001.

Temporal convolutional network (TCN) hyperparameter optimization

Designed specifically for sequence modelling, TCNs' operate on input sequences using dilated
causal convolutions; where causality is used to ensure predictions are based only on past
information, while dilation allows the receptive field (RF) size to increase exponentially with network
depth. When the network is sized appropriately, the last timestep in the final layer has the entire
input sequence as its RF. Thus, classification predictions can be made using the last value in each
channel. Residual connections are also employed to increase the depth and hence “memory” of
the network. Bai et al. (2018) showed the TCN is more efficient and has greater memory than
equivalent-capacity recurrent networks'®.

23 TCN models were tested following the architecture described by Bai et al (2018)™ to identify the
optimal hyperparameter configuration, under the constraint that the last layer’s RF covered the
entire input length. As such, the number of layers /, kernel size k and dilation base d were varied
such that:

l
RF = 1+222d(k—1) > 12048

=1

The number of channels per layer ¢ was also varied, with the observation that more channels
significantly increased training time and network size and so for practical reasons was set at or
below 256. Dropout was used to regularize the network and was another hyperparameter r that was
optimized. The best model had parameters | = 10, k = 11, d = 2, ¢ = 32, r = 0.05, trained using a
batch size of 32 and initial learning rate of 0.0001.

“Vanilla” convolutional neural network (CNN) hyperparameter optimization

26 “vanilla” CNNs were also tested, hypothesizing that a simpler architecture may be more efficient
yet still accurate. Each model was a variation of the following architecture: the input vector was fed
into / convolutional layers, each of which was composed of b blocks of a 1D convolution with a
stride of 1 and kernel size k followed by ReLU activation. Each layer ended with a max pooling layer
with a kernel size and stride of 2. The number of channels ¢; in layer i (i=0,...,/I-1) was also configured,
increasing with network depth to capture higher-level, more complex features. The extracted
features were then passed to a classifier f, which was either a simple 2-layer fully connected
network with RelLU activation, a global average pooling (GAP) layer or global average pooling
followed by a fully connected layer (GAP_FC). The model with highest accuracy on the validation
set had the parameters | = 12, b =1, k = 3, f = GAP_FC and ¢y = 20, ¢;= |ci-1*1.5] and was trained
using a batch size of 32 and initial learning rate of 0.0001.
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Evaluation of candidate models

The ResNet, TCN and CNN models with the highest accuracy on the validation set were then
evaluated on the reserved testing set, which comprised all test reads from the model development
datasets. The performance metrics used were accuracy (percentage of correct predictions), true
positive rate (TPR) (fraction of the positive class predicted correctly), false positive rate (FPR)
(fraction of the negative class predicted incorrectly), precision (fraction of correct positive
predictions) and area under the receiver operating characteristic (AUROC) (a value 18between 0
and 1 corresponding to the area under the curve formed by plotting the TPR and FPR values across
all classification thresholds). The ratio of true to false positive rate was also computed, as it better
indicates the simultaneous maximization of accepted on-target molecules and rejected off-target
molecules compared to the individual TPR, FPR and precision metrics. Additionally, the mean
prediction time per batch of test data (b = 32) was also calculated. Each model was evaluated for
each of the candidate input signal lengths of {1-4}s, except for the CNN which could not handle an
input signal length of 1s. Testing was conducted on a computer with 12 CPUs (Intel® Xeon®
Platinum 8268) and one CUDA-capable GPU (NVIDIA® Tesla® V100).

RISER software design

Software overview

The RISER code is comprised of independent software components responsible for data
preprocessing, ReadUntil APl access, model prediction and enrichment logic to facilitate ease of
maintaining, modifying, or extending the code for different applications (Supp. Figs. 12 & 13).

Integration with the ReadUntil API

The ONT ReadUntil API provides an interface to access each pore in the sequencing hardware,
allowing the user to request raw current data or reverse the pore voltage during sequencing to reject
a molecule. Data is streamed in chunks of 1s by default. For each signal received from the API,
RISER trims the first portion of the signal corresponding to the sequencing adapter and 3’ poly(A)
tail (described below). If the remaining signal is at least 2s long (the minimum length required for
the CNN) and up to 4s long (the maximum RISER input length identified above), it is then normalized
(as described above for training data preparation) and input to the CNN, which outputs a probability
between 0 and 1 indicating whether the signal corresponds to the target RNA class (0: low
probability, 1: high probability). If the user has requested depletion of the target class, then RISER
submits a reject (“unblock” in the ReadUntil API) request when the target class probability exceeds
a confidence threshold T=0.9 (optimization of T is described below) and allows the RNA to complete
sequencing when the target class probability is less than 1-T. Conversely, if the user has requested
enrichment of the target class, then RISER allows the RNA to complete sequencing when the target
class probability exceeds T and submits a reject request when the target class probability is less
than 1-T. If the prediction is insufficiently confident, RISER will attempt to classify the molecule
again once a longer signal has been received from the API.

To minimize the risk of pore damage, RISER only makes a reject request a maximum of one time
per molecule. If a reject request fails (e.g., due to secondary structure formation on the trans-side
of the pore that blocks ejection), it is preferable to allow the molecule to complete translocation in
the forward direction. This avoids repeated futile ejection attempts that may potentially damage the
pore. Finally, the ReadUntil API is encapsulated by a wrapper class in the RISER software so that
if ONT update or replace the API, the potentially affected code is isolated and easy to update.


https://doi.org/10.1101/2022.11.29.518281
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.29.518281; this version posted March 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Classification threshold optimization

To ensure RISER only makes high-confidence predictions, a classification threshold T is applied
when translating the probability output by the RISER model into a possible accept or reject decision
(described above). To optimize T, three candidate thresholds (0.6: low, 0.75: medium and 0.9: high)
were tested in a controlled setting. To simulate RISER’s assessment of signals that are streamed
in 1s increments from the ReadUntil API, each signal in the reserved testing set was processed into
2s, 3s and 4s lengths. The RISER model first predicted on the 2s input, then if the prediction did
not exceed the classification threshold, RISER next predicted on the 3s and then on the maximal
4s signal if needed. Test signals were preprocessed using BoostNano* to remove the sequencing
adapter and poly(A) tail prior to prediction. The proportion of signals with a correct prediction or no
prediction was then computed for each candidate threshold (Supp. Fig. 3) and the high
classification threshold was selected to implement in RISER since it resulted in the highest
proportion of correct predictions for all tested models, despite a negligible increase in the
proportion of molecules that were undecided.

Trimming the sequencing adapter and poly(A) tail

To trim the sequencing adapter and variable-length poly(A) tail from the start of individual signals
during live-runs, an efficient strategy was developed that could be deployed in real-time. This was
necessary as BoostNano* and Tailfindr*® are incompatible with time-critical applications and so
could not be integrated with the RISER software. Both require fast5 files of complete signals as
inputs, rather than in-progress sequencing signals. Further, both are prohibitively slow to be used
in real-time, with BoostNano utilizing an HMM, while Tailfindr uses a two-pass signal processing
approach to perform a high-resolution identification of poly(A) boundaries. Conversely, speed is
crucial for RISER, so imprecision in the trim position can be tolerated due to the convolutional
architecture of the RISER model. Since the convolution operation is translation-invariant, the
relevant components of the input signal will be recognized by the feature maps if they are present
anywhere along the signal, regardless of their absolute position.

The trimming strategy developed for RISER was based on the observation that homopolymer
stretches, and specifically poly(A) stretches, generate DRS signals of low variance®. As such, the
boundaries of poly(A) stretches are delineated by a preceding sequencing adapter signal of a higher
variance and lower mean current level, and a subsequent transcript signal with a higher variance
(Supp. Fig. 2a). These signal characteristics were exploited to identify the poly(A) tail boundaries
by testing consecutive signal windows of fixed width R (Supp. Fig. 2b). The poly(A) tail start criteria
tested was: (1) at least a 20% increase in mean amplitude compared to the previous two windows,
and (2) median absolute deviation (MAD) less than a threshold (T) (Supp. Fig. 2b). The poly(A) tail
end (trim position) criteria tested was: (1) the poly(A) tail start is found, and (2) MAD greater than 20
(Supp. Fig. 2b). MAD was chosen instead of variance to be robust to potential outliers in the poly(A)
tail current levels. Four candidate trim configurations were tested, and RISER’s performance was
compared with the exact trim length computed by BoostNano per signal (Supp. Fig. 2c). The
configuration selected to implement in RISER was R = 500 signal values, which corresponds to
~10nt for the R9.4.1 pore, and T = 20.

If the trim position is not identified by the above strategy within 6.2s, then a fixed trim length of 2.2s
is used. To select the fixed trim length, the distribution of the sequencing adapter and poly(A) tail
signal lengths in the model development dataset was computed (Supp. Fig. 2d). Since it is
important that the transcript signal is present in the input to the RISER model, and the presence of
some poly(A) signal is inconsequential due to the translation-invariance of RISER’s convolutional
architecture, the Q1 quartile (2.2s) was selected as the fixed trim length. 6.2s was selected as the
boundary for using a fixed cutoff approach since it represents the fixed trim length (2.2s) plus the
RISER input length (4s). Importantly, the model development dataset included reads from both
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natively and synthetically polyadenylated RNAs, so the selected trim length is useful regardless of
sample preparation method.

Command-line tool

A simple command-line tool was developed to run RISER (Supp. Note 1). This should be executed
on the same computer as MinKNOW, during a sequencing run. The user must specify the mode
(either “enrich” or “deplete”), the RNA class(es) to target (currently one or more of: mMRNA, mtRNA,
globin) as well as the duration to run RISER for, which will generally be less than or equal to the
MinKNOW run length. If RISER stops earlier, the MinKNOW run will continue without targeting any
RNA class. The RISER run can also be set to stop later. While this does not cause an error, RISER
will not receive any data during this additional time. After MinKNOW finishes the first pore scan,
RISER should be started. Advanced users also have the option of specifying their own model or
classification threshold.

While RISER is running, it will output real-time progress updates to the console window from which
it was run (Supp. Note 2). This includes a summary of the settings used, as well as a summary of
the sequencing decisions made for each batch of reads received. A more detailed version of this
information is written in a log file (Supp. Note 3). In addition, a .csv file will be generated that lists,
for each read, its sequencing channel, the probability that RISER predicted for the target class(es),
the classification threshold and the final accept or reject decision made (Supp. Table 7).

Testing RISER in a simulated live-sequencing environment

A bulk fast5 file from a sequencing run of poly(A)*-selected RNA from an REH cancer cell line was
used for testing using the MinKNOW playback tool that simulates a sequencing run. Using the
default MinKNOW (v21.11.9, core v4.5.4) run settings, the bulk file was replayed 3 times for 6 hours
per condition: (1) without RISER (as a control), (2) with RISER targeting the mRNA class for
enrichment, and (3) with RISER targeting the non-mRNA class for enrichment. Testing was
performed on a desktop computer running Ubuntu 18.04 with one NVIDIA® GeForce® GTX 1650
GPU and python v3.6.9.

The sequenced reads were basecalled, mapped and filtered using the GENCODE reference
transcriptome (release 34, assembly GRCh38.p13) as described above. For each of the RISER runs,
the distributions of read lengths for mapped mRNA and non-mRNA RNAs were compared using a
Wilcoxon rank sum test with continuity correction (Hq: on-target > off-target). Reads that mapped
to the GENCODE “protein-coding” biotype were considered “mRNA”, while reads that mapped to
the GENCODE biotypes “Mt_rRNA”, “Mt_tRNA”, “miRNA”, “misc_RNA”, “rRNA”, “scRNA”,
“snRNA”, “snoRNA”, “ribozyme”, “sRNA”, “scaRNA” and “IncRNA” were considered “non-mRNA”.

Comparison with sequence-based adaptive sampling

Target identification speed

To compare the speed of RISER and sequence-based adaptive sampling (AS), 1000 reads with
signals at least 6.2s long were randomly sampled from the mRNA model test set (below). For a fair
comparison, all signals were trimmed to a length of 6.2s (the maximum signal length that RISER
assesses for poly(A) trimming) so that both RISER and AS were operating on signals of equal length.
RISER was configured to identify mRNA, using a single GPU. For AS, each signal was basecalled
and mapped by the Dorado basecalling server'using a single GPU for basecalling with the “RNA
R9.4.1 fast” configuration. The target reference was curated by filtering the GENCODE reference
transcriptome (release 34, assembly GRCh38.p13) to retain all “protein_coding” transcripts. The
time taken for RISER and AS to classify each read as belonging or not to the target mRNA class
was measured. The same test was repeated but only using a single CPU.
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Input signal length needed for target identification

To assess the input signal length that RISER and AS each need to identify targets, 1000 reads that
were confidently assigned to mRNA transcripts were randomly sampled from the mRNA model test
set (below). AS was performed using the same target reference and basecalling configuration as
above. Both AS and RISER were run using a GPU. Starting from an input length of 2s, AS and
RISER each attempted to identify the target, with the input increased by 1s at a time until a
prediction was made. For AS, the stopping condition was the basecalled signal being mapped to
one of the mRNA sequences in the target reference, while for RISER the stopping condition was
predicting the mRNA class with a probability greater than 0.9. To remove any effects due to the
differences in RISER and AS’s internal polyA trimming methods, the test signals were pre-trimmed
using BoostNano®.

mRNA and mtRNA model development
DRS datasets used

For the development of the mRNA and mtRNA models, MinlON DRS signals from human heart as
well as GM12878, GM24385, HEK293, HeLa, KOPN8 and REH cell lines were used for training and
evaluating the mRNA and mtRNA models (Supp. Table 6). The total RNA of the GM24385 cell line
was in vitro polyadenylated (as described above — RISER model development) prior to sequencing
to include RNAs that are not natively polyadenylated in the training data.

HEK293, HeLa, GM12878, KOPNS8 and REH RNA extraction and sequencing

HEK293 and Hela cells (human cervical cancer) were purchased from the American Type Culture
Collection (ATCC) and confirmed via short tandem repeat (STR) profiling with CellBank Australia.
The cells were grown in DMEM medium (Gibco) supplemented with 10% fetal bovine serum (FBS)
and 1x antibiotic-antimycotic solution (Sigma). Cells were cultured following the protocol previously
described®. Namely, cell cultures were propagated in a 1:3 split, with replenishment of media every
4 days. Cell culture, cell pellet collection, cell lysis, polyadenylated RNA extraction and RNA cleanup
with SPRI beads were performed as previously described?®.

The immortalized human peripheral vein-derived B-cells GM12878 and B-cell acute lymphocytic
leukemia (B-ALL)-derived REH and KOPNS8 cell lines were obtained from the Coriell Institute and
cultured with 10% FBS-supplemented RPMI1640 media (Gibco) in T25 flasks (Corning) under 5%
CO; and 37°C. Cells were harvested by a 5 minute centrifugation at 300rcf at 4°C. The resultant cell
pellet was washed with ice-cold PBS and separated by another centrifugation at 300rcf for 5
minutes and aspirated. The protocols for subculturing, cell lysis and total RNA extraction were
performed as described for HEK293 and Hela cell lines.

The flow cell priming and library sequencing protocol were performed as previously described®.
Nanopore sequencing was performed using an ONT MinlON Mk1B with R9.4.1 flow cell for 24
hours. The default settings for the MinKNOW software (standalone GUI v5.7.10, core v5.7.2) were
used and the SQK-RNAO0O02 kit was selected.

Training data preparation

The Hela dataset was reserved as an independent test set, while the remaining datasets were used
for retraining. Fast5 files were basecalled, mapped and filtered using the GENCODE reference
transcriptome (release 34, assembly GRCh38.p13) as described above. To only retain reads with a
high confidence biotype label, reads were discarded if their primary mapping biotype did not match
the most frequent secondary mapping biotype.

For the mRNA model, the positive class comprised reads from the “protein_coding” biotype. The
negative class comprised reads from the biotypes “Mt_mRNA”, “Mt_rRNA”, “Mt_tRNA”, “IncRNA”,
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“miRNA”, “misc_RNA”, “rRNA”, “rRNA_pseudogene”, “ribozyme”, “scRNA”, “scaRNA”, “snRNA”
and  “snoRNA”. Pseudogenes and the Dbiotypes “artifact”, “non_stop_decay”,
“nonsense_mediated_decay”, “processed_transcript”, “retained_intron” and “TEC” were excluded
to ensure there were no common sequences between the two classes. The number of reads in the
positive and negative classes were balanced to avoid model bias. Furthermore, an equal number
of reads within the negative class for the biotypes “Mt_mRNA”, “Mt_rRNA”, “rRNA” and “IncRNA”
was used to avoid overfitting to the more abundant mtRNA and rRNA. Balancing the sub-groups
within the negative class in this manner is important to ensure strong performance for every sub-
group®“. To curate the set of reads for each biotype, one read from each gene was sampled at a
time to minimize the overrepresentation of genes that are highly abundant in the cell lines used.
Each class was split randomly into 80% training and 20% testing, while preserving the biotype
balance within the negative class. 10% of the reads in the training set were reserved for evaluating
model performance after each training epoch, again preserving the balance of biotypes. For mRNA
model training, 617,632 reads were used in each of the positive and negative classes.

For the mtRNA model, the positive class comprised the dominant mitochondrial RNA types in
poly(A)* DRS runs, “Mt_mRNA” and “Mt_rRNA” (Supp. Fig. 5). The negative class comprised reads
from all other biotypes, excluding “TEC” and “artifact”. The reads in the positive and negative
classes were balanced. The positive class comprised equal numbers of reads from Mt_mRNA and
Mt_rRNA. To ensure the more abundant Mt_mRNA genes did not dominate the positive class, the
number of reads for each Mt_mRNA gene was capped at 10% of the positive class. Similarly, reads
from the two Mt_rRNA genes were equally balanced. The negative class was curated using the
same approach as for the mRNA model, with the biotypes “mRNA”, “rRNA” and “IncRNA” equally
balanced and reads selected one at a time per gene. Preserving the biotype balance, each class
was split into 80% training and 20% testing sets, with 10% of the training reads reserved for model
performance evaluation during training. The training dataset consisted of 331,200 reads in each of
the positive and negative classes.

The start of the raw nanopore signals was trimmed using BoostNano® to remove the portions of
signal that correspond to the sequencing adapter and poly(A) tail, so that the models could be
trained on clean transcript signals. For each signal, the first n seconds (s) of the remaining transcript
segment of signal was then extracted and normalized using median absolute deviation with outlier
smoothing. Each signal was processed three times, using n={2,3,4}s so that the training data
contained the varying signal lengths streamed from the nanopore.

Target-specific model training

For each of the mRNA and mtBRNA models, the RISER CNN model was trained with re-initialized
weights, using binary cross-entropy loss and Adam optimization for 30 epochs. Data was fed to the
network in batches of size 32, with consecutive batches randomly alternating between input lengths
of 2s, 3s and 4s. Accuracy was evaluated on the validation set after each training epoch, with
optimum accuracies obtained after epoch 15 of 92.6% and 98.5%, respectively, for the mRNA and
mtRNA models. Training was conducted using PyTorch (v1.9.0)* with a single NVIDIA Tesla V100
graphics processing unit (GPU).

Testing the mRNA and mtRNA models on an independent cell line

The performance of the mRNA and mtRNA models was evaluated using the reserved Hela dataset
(Supp. Table 6), which was prepared using the same basecalling, mapping, filtering and biotype
labelling approach described above. The resulting test set comprised 607,740 signals. BoostNano*
was used to trim the sequencing adapter and poly(A) tail signals, to isolate the analysis to the model
performance only. Performance was measured using accuracy, precision, TPR and FPR. The
accuracy of the model for each biotype within the positive and negative classes was also calculated,
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considering the biotypes mMRNA, mtRNA and IncRNA separately and aggregating the remaining
biotypes under “other”.

Testing the mRNA and mtRNA models on RNA sequenced by an independent laboratory

To assess the performance of the mRNA and mtRNA models on signals acquired under different
experimental conditions, they were also evaluated on an independent dataset from GM12878 cells,
sequenced at The University of Birmingham as part of the Nanopore Whole Genome Sequencing
Consortium™ (Supp. Table 6). The test dataset was prepared as described above for the
independent HelLa dataset. The resulting test set comprised 506,302 signals. Performance was
evaluated using the same metrics as for the independent HelLa dataset above.

Testing RISER for the depletion of mMRNA and mtRNA during live MinlON sequencing

Sample preparation and MinlON seguencing

HelLa cells were used to evaluate mRNA and mtRNA depletion by RISER during live MinlON
sequencing. Cell purchase, cell culture, cell lysis, total RNA extraction and MinlON sequencing were
performed as described above for HelLa cells (NRNA and mtRNA model development — DRS
datasets used).

RISER usage

RISER was run at the same time as the MinKNOW sequencing run. In the RISER code, the flow cell
channels were split into two groups to remove the effect of inter-flow cell variability by
simultaneously testing two conditions: (1) RISER depleting both mRNA and mtRNA, and (2) no
RISER (control). To split the flow cell channels, the channel numbers divisible by 2 were used for
the RISER deplete condition (1) while the remaining channels were used for the control condition
(2). When targeting multiple RNA classes for depletion, RISER makes a reject decision if any target
class is confidently predicted (with a probability exceeding the classification threshold of 0.9), and
makes an accept decision if the signal is confidently predicted to not be any of the target classes.
RISER was started after the first pore scan finished and was run for the same duration as the
sequencing run; 24 hours. The live run was performed on a computer running Ubuntu 20.04 with
one NVIDIA GeForce GTX 1650 Ti GPU and python v3.8.10.

Globin model development

Whole blood collection

Blood samples were obtained from three human donors (2 male, 1 female) with approval from the
ethics committee from the Australian National University (ANU) under ethics protocol no.
ETH.1.16.01/ETH.01.15.015. Whole blood was collected at the Centre for Personalised
Immunology (ANU) in 8.5ml BD Vacutainer Acid Citrate Dextrose (ACD-A) Blood Collection Tubes.
Two of the collected samples (1 male, 1 female) were used to produce training data for the globin
model, while the remaining sample was used to evaluate the globin model in a live sequencing run.

Total RNA extraction from whole blood

For each of the three whole blood samples, total RNA was extracted using the PureLink RNA Mini
kit (Thermo Fisher Scientific). The manufacturer’s instructions were followed and 4ml sample of
blood per donor was used. On-column DNase treatment was additionally performed by adding 2
units of DNase | in its recommended buffer to the column-bound sample (New England BiolLabs)
and incubating at 37°C for 15 minutes. The resultant RNA eluate was additionally purified using
AMPure XP SPRI beads (Beckman Coulter Life Sciences) according to the manufacturer’s
recommendations. Briefly, the eluate RNA was supplemented with 1.2x volumes of the SPRI bead
suspension and the resultant mixture incubated at room temperature for 5 minutes with periodic
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mixing. The SPRI beads were brought down by a brief 2,000xg spin and separated from the solution
on a magnetic rack. The supernatant was removed, and the beads were resuspended in 1ml of
80% v/v ethanol, 20% v/v deionized water mixture and further washed by tube flipping. The bead
and solution separation procedure and the ethanol washing process were repeated one more time.
Any remaining liquid was brought down by a brief spin and removed using a pipette, and the beads
were allowed to air-dry while in the magnetic rack for 2 minutes prior to elution. The purified RNA
was then eluted in 20ml of deionized water and the RNA content was assessed using absorbance
readout via Nanodrop.

Live MinlON sequencing of the whole blood RNA

For each of the two whole blood samples used for training, 200-600ng of total RNA was used for
each 2x library preparation for each sample (all recommended volumes doubled-up). Libraries were
made using the direct RNA sequencing kit SQK-RNA002 (Oxford Nanopore Technologies) following
manufacturer’s recommendations. The final adaptor-ligated sample was eluted in 20ul (single
preparation volume). The flow cell priming and library sequencing protocol were performed as
described previously®'. Nanopore sequencing was performed using an ONT MinlION Mk1B equipped
with R9.4.1 flow cells; samples were run for 24 hours.

Training data preparation

For each of the two whole blood RNA sequencing runs, fast5 files were basecalled, mapped, filtered
and assigned biotype labels as described above for the mRNA and mtRNA models’ training data.
The positive class comprised reads belonging to the globin genes HBA1, HBA2 and HBB, which
dominate whole blood direct RNA sequencing runs. The negative class comprised reads from all
other biotypes. The number of reads in the positive and negative classes were balanced. The reads
in the positive class were equally balanced between HBA(1/2) and HBB, with the HBA portion itself
equally balanced between HBA1 and HBA2 to ensure strong model performance for each globin
gene. As in the mRNA and mtRNA models’ training datasets, the negative class was curated with
the biotypes “mRNA” (excluding HBA1, HBA2 and HBB genes), “Mt_mRNA”, “Mt_rRNA” and
“IncRNA” equally balanced and reads selected one at a time per gene. The negative class included
some reads from the mRNA and mtRNA models’ training datasets to ensure sufficient reads for
each non-globin biotype. Preserving the gene balance in the positive class and the biotype balance
in the negative class, each class was randomly split into 80% training and 20% testing sets, with
10% of the training reads reserved for evaluating model performance during training. 135,680 reads
were used in each of the positive and negative classes in the training set. In preparation for training,
the signals were processed as described above for the mRNA and mtRNA models.

Globin model training

To train the globin model, the RISER CNN was trained as described above for the mRNA and mtRNA
models. The best accuracy on the validation set was 98.6%, obtained after epoch 6 of training.

Testing the globin model on a reserved test set

The performance of the globin model was evaluated on the reserved test set, which comprised
84,831 signals. The test signals were prepared and performance measured as described above for
the mRNA and mtRNA models.

Testing RISER for the depletion of globin mRNA during live MinlON sequencing of
whole blood

MinlON sequencing

For testing globin depletion during live sequencing with RISER, the RNA extracted from the whole
blood sample reserved for live testing (above) was sequenced for 24 hours using the same flow cell
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priming, library preparation and nanopore sequencing configuration as for the mRNA and mtRNA
depletion test.
RISER usage

RISER was run at the same time as the MinKNOW sequencing run using a split flow cell to
simultaneously test (1) RISER depleting globin mRNA, and (2) no RISER (control). The same flow
cell splitting procedure and computer configuration was used as for the mRNA and mtRNA
depletion test.

Evaluation of RISER’s performance during live MinlON sequencing runs

Data preprocessing

For each of the two sequencing runs used for real-time testing of RISER, the sequenced reads were
basecalled, mapped and filtered using the GENCODE reference transcriptome (release 43,
assembly GRCh38.p13) as described above. Per-read transcript coverage was calculated as the
fraction of each transcript covered by each aligned read by parsing the alignment CIGAR string.
Alignment matches (“M”), sequence matches (“=”) and sequence mismatches (“X”) were summed
to compute the length of the aligned part of the transcript. Coverage was obtained by dividing this
alignment length by the transcript length. The remainder of analyses were performed using the
sequence lengths output by Guppy, the filtered alignments, the computed transcript coverage and

the decisions .csv file output by RISER.

Data analysis
1) Read length distributions

For each of the split flow cell conditions control (no RISER) and deplete (using RISER), the
distributions of the lengths of reads assessed by RISER were compared for each RNA class using
a Wilcoxon rank sum test (H1: control > deplete), excluding outliers.

2) Per-base transcript coverage

To plot the per-base transcript coverage for each of the example protein-coding, mtRNA and
IncRNA transcripts, the read depth for each split flow cell condition was computed at each
reference position using samtools (v1.10) depth (with default options). The percentage depth at
each reference position was calculated by dividing the read depth on that position by the total
number of reads in the relevant condition along the transcript.

3) Distribution of transcript fraction covered

The transcript fraction covered by each read was computed, for each of the RNA classes, in each
of the split flow cell conditions.

4) Percent change in read and nt counts

The percent change in read and nt counts in the RISER condition compared to the control condition
was calculated for each transcript in each biotype. Given the objective was to deplete abundant
RNA, it is critical for the most abundant RNAs within each class to be efficiently depleted. This
analysis was thus restricted to the transcripts taking up at least 95% of the sequencing reads in the
control condition. Given the sensitivity of percent change to low absolute read counts, transcripts
with less than 30 read counts in both the RISER and control conditions were also excluded. Further,
since RISER cannot distinguish IncRNAs that share sequences with mRNAs, this analysis
considered IncRNAs whose exons did not overlap with protein-coding exons from the reference
annotation.
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To determine whether the percent change caused by RISER was statistically significant, the same
calculation was performed comparing two experiments where RISER was not used. In this case,
the flow cell channels of an independent run were randomly split into two groups and the percent
change in read or nt counts between the two control groups was computed for each transcript. To
establish statistical significance, for each biotype the percent changes for the set of transcripts
common in both the RISER split flow cell and the control split flow cell were compared using a
paired Wilcoxon signed rank test (H1 for mMRNA and mtRNA: RISER split flow cell < control split
flow cell, H1 for IncRNA: RISER split flow cell > control split flow cell).

5) Available pores over time

During each MinlON run, MinKNOW conducted a pore scan every 1.5 hours to assess pore “health”.
The number of available pores found in each pore scan was extracted from the
“pore_scan_data_[run_id].csv” file output by MinKNOW by counting the number of “single_pore”
entries per scan for the channels in each condition. The number of available pores was then
computed as a percentage of pores available in the first pore scan.

6) Bias analysis

For each RNA class, the proportion of reads correctly accepted or rejected by RISER, the proportion
incorrectly accepted or rejected by RISER and the proportion for which RISER did not make a
decision (i.e., because the prediction was low confidence) were calculated. The proportions of each
of these outcomes were also calculated per transcript in each RNA class.

7) Relative abundance

To ascertain whether RISER impacted the relative abundance of transcripts in the RNA classes that
were not depleted (i.e., the “accepted RNA class”), relative read counts were computed in each
condition. For each transcript in the accepted RNA class, relative read count was computed as the
number of accepted (not rejected by RISER) reads for that transcript divided by the total number of
accepted reads for all transcripts. Transcripts with less than 10 reads in each of the conditions were
excluded. The Pearson correlation was computed between the relative read counts in the control
and RISER deplete conditions.

Data availability

Nanopore DRS signals for human heart were obtained from the European Nucleotide Archive (ENA)
under accession number PRJEB40410*'. Nanopore DRS signals for HEK293 cells were obtained
from the ENA under accession number ENA PRJEB40872%. Nanopore DRS signals for GM12878
cells were obtained from the Nanopore Whole Genome Sequencing Consortium
(https://github.com/nanopore-wgs-consortium/NA12878/)_.Johns Hopkins University (all runs) and
University of Birmingham (run 1). Nanopore DRS signals generated in this study (GM24385 training
data, HEK293-C training data, GM12878 training data, HelLa testing data and KOPN8 training data)
have been deposited at NCBI GEO under accession number TBD.

Software availability

RISER models and code are freely available from https://github.com/comprna/riser under the GNU
General Public License v3.0.
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