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ABSTRACT 

Understanding the architectural principle that shapes the topology of the human 

connectome at its multiple spatial scales is a major challenge for systems neuroscience. 

This would provide key fundamental principles and a theory for browsing brain’s 

networks, to ultimately generate hypothesis and approach to which extent key 

structures might impact different brain pathologies. In this work, we propose the 

hypothesis that the centrality of the different brain nodes in the human connectome is 

a product of their embryogenic age, and accordingly, early-born nodes should display 

higher hubness, and viceversa for late-born nodes. We tested our hypothesis by 

identifying and segmenting eighteen macroregions with a well-known embryogenic age, 

over which we calculated nodes’ centrality in the structural and functional networks at 

different spatial resolutions. First, nodes’ structural centrality correlated with their 

embryogenic age, fully confirming our working hypothesis. However, at the functional 

level, distinct trends were found at different resolutions. Secondly, the difference in 

embryonic age between nodes inversely correlated with the probability of existence and 

the weights of the links. This indicated the presence of a temporal developmental 

gradient that shapes connectivity and where nodes connect more to nodes with a similar 

age. Finally, brain transcriptomic analysis revealed high association between embryonic 

age, structural-functional centrality and the expression of genes related to nervous 

system development, synapse regulation, and human neurological diseases. Overall, 

these results support the hypothesis that the embryogenic age of brain regions shapes 
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the topology of adult brain networks. Our results show two key principles, “preferential 

age attachment” and “older gets richer” on the wiring of the human brain, thus shedding 

new light on the relationship between brain development, transcriptomics, node 

centrality, and neurological diseases. 

INTRODUCTION  

The most characteristic anatomical property of brain networks is their organization at 

multiple spatial scales, which interconnect micro-scale cell-body neurons within local 

micro-circuit domains, scaling up to macro-scale levels where long-range connections 

allow centimetre-distant neurons and circuits to communicate1,2. The characteristic 

branching properties of neurons, the major cellular brain components, is what makes 

the structure of the brain unique as a network, when compared to other branch-

structured organs characteristic of invertebrate and vertebrate species3. A key challenge 

for fundamental and clinical neuroscience is to decipher the rules of connectivity that 

shape brain networks in order to understand how the brain works and how traumatic 

or neurological injuries affect brain functionality4.  

The general structure and functionality of the human brain and its embedded 

connectivity are the result of its developmental history, which is at the same time the 

product of evolution5. This way, the brain follows developmental instructions that 

decisively impact on the diversification of neural connections and their functions. In 

particular, the developing human brain closely resembles the developing brains of other 

mammals and vertebrates6. In this context, the development and evolution of brain 

circuits are strictly related, so the oldest evolutionary circuits are also those that were 

embryogenically generated earlier7. Although previous studies have focused on the 

development of brain networks at different stages of maturation also in relation to the 

appearance of key network structures such as central nodes8, there are still no detailed 

studies that fully relate the connectivity of the adult human brain with sequential 

(evolutionarily preserved) neurogenesis of circuits. 

The structural organization of brain networks shapes how the brain dynamically 

operates by coordinated firing of neurons or neuronal ensembles across different 

spatio-temporal scales, ultimately leading to brain functions1,2. Thus, the structural 

organization of brain networks in the spatial domain has been mirrored into the concept 

of functional networks in the temporal domain9,10. Functional networks reflect the 

statistical relationship between the activity of different brain regions or neurons, based 

on the underlying assumption that when neurons or brain circuits are cooperatively 

active at the same time, they can engage in similar functions9.  

The complexity arising from both the anatomy and the dynamics of brain circuitry needs 

a general mathematical framework capable of quantifying and describing the 

interactions of structural and functional networks at multiple scales. In this context, 

complex networks emerged in the last two decades as a powerful mathematical 

framework for quantifying the very diverse properties of real-world networks from very 

different domains ranging from biology to sociology and beyond11. Notably, different 
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studies assessing real-world networks’ data have shown small-world, scale-free or 

heavy-tailed distribution network organizations as stereotyped topologies in many 

distinct domains12,13 . When applied in the context of neuroscience, these key topologies 

have been identified at the structural-functional level in microcircuits, meso- and macro-

scale networks14.  

Complex networks also provided models underlying the formation of the above-

described topologies12. Specifically, when looking to network development and how the 

different nodes make connections as a function of their actual connectivity degree, a 

pioneering study15 by Barabasi and Albert showed that the principle “the rich gets 

richer” (a.k.a. “preferential attachment”) led to the development of the scale-free 

networks, characterized by the presence of highly connected rare nodes or hubs. In this 

work, inspired by the Barabasi model15, we aim to combine the heavy-tailed signatures 

widely observed in the brain networks’ organization together with the stereotyped 

evolutionary-preserved sequential neurogenesis in the developing brain, to hypothesize 

that brain networks’ topology could be shaped according to the rule that “older gets 

richer”, i.e. evolutionary older circuits or early generated along embryogenesis, are the 

ones highly central in the adult brain network organization16. As a consequence, brain 

circuits’ hubness quantified by metrics of complex networks’ centrality should correlate 

with their embryogenic age. Our hypothesis is grounded and extrapolates at macro-scale 

previous pioneering evidence showing that at the micro-circuit level GABAergic 

neuronal hubs were functionally identified in the hippocampal circuits and also revealed 

as early born GABAergic neurons both in developing and adult murine circuits17–19. 

To test our hypothesis, we reviewed previous literature to obtain the time sequence for 

the earliest neurogenesis time of the different brain circuits and translated into the 

human brain by segmenting those circuits from magnetic resonance imaging (MRI). We 

first identified eighteen macro-circuits (MACs) according to their first (i.e. earliest) 

neurogenic time (FirsT, estimated in embryonic days) during embryogenesis. Since 

MACs’ volumes span across multiple scales, we studied the brain networks with two 

different spatial resolutions: a low resolution parcellation corresponding to the eighteen 

MACs, and a high resolution parcellation composed of approximately two and half 

thousand regions of interest (ROI) of similar volumes. 

Structural and functional brain networks were obtained using 7 Tesla MRI images 

acquired within the Human Connectome Project20. At high resolution level, we observed 

that FirsT reversely shaped the nodes’ centrality in the structural and functional 

networks, where highly central nodes displayed respectively early and late FirsT. 

Distinctly, the structural and functional nodes’ centrality of the low-resolution MACs 

similarly correlated with FirsT, with higher centrality displayed in the early born MACs. 

In addition, we observed that FirsT-lags reversely correlated with wiring probability and 

connection weight, so ROIs and MACs connected more and stronger with those at 

similar age. Finally, brain transcriptomic analysis revealed also high association between 

genes’ expression, FirsT and nodes’ centrality, in respect to physiological nervous system 

development and synapse regulation, and to neuropathological conditions. Notably, a 
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significant rate of genes involved in major neurological diseases such as epilepsy, 

Parkinson’s, Alzheimers’ and autism displays extreme correlation values with nodes’ 

centrality (we especially mention high correlation for highly studied genes such as 

SCN1A, SNCA and APOE). The results provide a new multi-scale evidence on how 

neurogenesis time shapes structural and functional networks, brain nodes’ centrality 

and their transcriptomics in patho-physiological conditions and underlie two main 

neurogenesis preferential wiring principles: “the older gets richer” and “preferential age 

attachment”.  
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RESULTS 

Segmentation of brain circuits according to neurogenesis time points: from brain 

networks to transcriptomics  

Human brain circuits were differentiated and segmented according to their First 
neurogenic birth Time (FirsT), i.e. the post-conception day (or embryonic day) at which 
the first neurons of the circuit are generated (fig 1 A) and following the criteria 
established in methods. Our list organized human circuits according to FirsT, from older 
to younger circuits (table 1). We identified 18 macrocircuits (MACs) for which a timing 
sequence based on their FirsT could be provided. Other relevant circuits, for which 
detailed developmental information is known, such as the neocortical layers and 
thalamic nuclei, could not be segmented on MRI (see Supplementary Information). 

We used resting-state fMRI and dMRI images acquired at 7 T within the Human 
Connectome project from N=184 healthy subjects to reconstruct the structural-
functional brain networks (see fig. 1 B and Methods). Since the volume of the different 
MACs spanned more than two orders of magnitude (see Supplementary Fig. 1B), MACs 
were also parcellated (see Methods) to obtain spatially segregated ROIs with a volume 
comparable to the smallest circuits (like Locus Coeruleus), i.e. about several dozen of 
voxels each (see Supplementary Fig. 1A with overall ROI volume distribution). Each of 
the 18 MACs had a correspondent FirsT while for all ROIs obtained within a given MAC 
we assigned the same FirsT. The number of ROIs per MAC is reported in Table 1. A total 
of 2566 ROIs were defined in the brain. In order to explore the existence of possible 
patterns of correlation between FirsT and brain circuit connectivity at different spatial 
resolutions, centrality and segregation metrics were calculated for each ROI and MAC 
(fig. 1B). In addition, the transcriptomics of the different MACs were related to FirsT (Fig. 
1C) to provide a complementary biological correlate of brain nodes related to 
neurogenesis.  

Centrality vs neurogenesis in the structural - functional brain networks 

To quantify the centrality of each ROI and MAC in the brain networks, we calculated 

from the adjacency matrices of the brain connectivity networks five different centrality 

metrics, specifically the node strength (NS), the eigenvector centrality (EC), the 

centrality of the subgraph (SC), average first-neighbour strength (AFNS), between-ness 

centrality (BC), and one segregation metric such as the clustering coefficient (CC; see 

Methods for the rationale for the choice of metric). These metrics were calculated on 

high spatial resolution networks composed of 2566 ROIs (referred to as high-resolution 

structural and functional connectivity networks, respectively SCHR and FCHR) and low 

spatial resolution networks composed of 18 MACs (referred to as low-resolution 

structural and functional connectivity, respectively SCLR and FCLR). The SCHR and FCHR 

were calculated from the average of all subjects, respectively, from probabilistic 

tractography and resting-state activity correlations (note that only positive functional 

links were considered, see Methods). The SCLR and FCLR were calculated as the average 

of the links connecting ROIs within the MAC pairs, in SCHR and FCHR respectively. Note 

that while the diagonal of the connectivity matrices (self-connections) was taken to be 

zero in the high-resolution space, in the low-resolution space it was not zero, and 
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represented the average of the links between the ROIs within a given MAC (internal MAC 

connectivity).  

To test our main hypothesis that the structural centrality of brain nodes is inversely 

correlated with embryogenic day, such that the earlier, the higher the centrality, we 

computed Spearman's partial correlation (SP-pCorr, see Table 2) between the nodes’ 

centrality (and segregation) and FirsT, eliminating the effect of the cofounder white 

matter volume per ROI or MAC, which also shows a gradient between early and late 

generated structures (Supplementary Fig. 2). Similarly, we repeated the same 

calculation for the functional networks, in this case removing the cofounder of gray 

matter volume per ROI or MAC (Supplementary Fig. 2). The results for the SCNs and 

FCNs are summarized in table 2 and in fig. 2A for both spatial resolutions.  

When looking at high-resolution networks, the centrality of SCHR and FCHR nodes showed 

significant inverse trends with FirsT, respectively negative and positive correlations with 

absolute values greater than 0.26 for all centrality metrics (apart for the case of BC for 

which a poor correlation was observed below 0.15). Note that the negative correlations 

observed for SCHR (physically constrained spatial domain) support the leading hypothesis 

that early born brain regions (such as the locus coeruleus and brainstem) have higher 

“hubness” or centrality (with strongest correlation value of -0.44 observed in the case 

of EC). On the contrary, in the case of the FCHR (functional domain related to time and 

dynamics) the positive correlations between centrality and FirsT observed highlight the 

greater centrality of late brain circuits (such as neocortical ones). In relation to the 

segregation of nodes, the clustering coefficient showed a significant positive correlation 

with FirsT (SP-pCorr=0.33) only in the case of FCHR. 

For low-resolution networks, we observed negative centrality correlations with respect 

to FirsT in both SCLR and FCLR, with a clear inverse trend for the functional case relative 

to the high-resolution case. In the case of structural networks, the correlations for all 

centrality and segregation metrics had significant (p<0.015) values ranging between -

0.58 (for the BC) and -0.81 (for the EC). In the case of functional networks, significant 

negative correlations were observed in 3 of 5 centrality metrics (specifically EC, SC and 

AFNS) with values ranging from -0.51 to -0.83, while the correlation for the NS was -0.47 

at the limit of significance (p=0.06). Node segregation measured with the clustering 

coefficient showed a significant correlation with FirstT (SP-pCorr = -0.77) only in the case 

of SCLR. The negative trend between the time of birth of the 18 different MACs and the 

eigenvector centrality of the SCLR and FCLR can be visualized on a brain surface 

respectively in fig. 3A.  

Next, we checked if the difference in neurogenesis time (FirsT) could also be related to 

the probability of existence and weight of the links (fig. 2B). In SCHR and FCHR 

respectively, where a connection is present in 5% and 45% of the overall node pairs, link 

probability decreased as a function of ΔFirsT with a Spearman correlation of -0.53 

(p<0.01) and -0.49 (p=0.01), and similarly, link weight decreased with a correlation of -

0.81 (p<0.001) and -0.93 (p<0.001). In the SCLR and FCLR, only the link weight was 

considered as these matrices are highly dense, which decreased as a function of ΔFirsT 
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with a correlation of -0.50 (p<0.001) and -0.43 (p<0.001). The link weights shown in 

supp. Fig. 3 and supp. Fig 4 for each MAC (where each plot is a given MAC and its FirsT 

is highlighted as a vertical broken line), allows to visualize how brain circuits generated 

at close neurogenic timepoints tend to connect more strongly.  

The linear temporal visualization of the structural connectivity of three representative 

MACs, respectively with earliest (Locus Coeruleus, 28 days), latest (occipital cortex, FirsT 

54 days) and intermediate (hippocampus, FirsT 40 days) FirsT is reported in fig. 3 B1-3. 

Such visualization shows that NS of the earliest MAC are much higher than later MACs 

and, for the case of the Locus Coeruleus, it also shows that brain circuits generated at 

close neurogenic timepoints are more strongly connected. 

The transcriptomic of brain circuits according to FirsT. To find a potential list of genes 

associated with brain circuits’ FirsT, brain networks’ centrality and brain transcriptomics, 

data from the Allen Human Brain Atlas (AHBA) were used. Average Spearman 

correlations between genetic expression of 20,737 protein coding genes with FirsT, 

structural and functional connectivity centrality was computed (fig. 4A). First, gene 

expression correlation with functional centrality increased linearly in respect to FirsT 

(Pearson correlation 0.63, p<0.01) while an opposite trend was observed for the 

structural centrality (Pearson correlation -0.74, p<0.01). A lower anti-correlation 

(Pearson correlation -0.26, p<0.01) was observed for gene expression in functional and 

structural centrality maps.  Secondly, 787 genes were found with a correlation >1.64 

standard deviation from the obtained distribution (r>0.44). Gene set enrichment 

analysis of biological process showed that the genes were overrepresented for 

development of central nervous system and axons, cell morphogenesis involved in 

neuron differentiation and regulation of synaptic transmission, synaptic plasticity, 

synapse organization, cation transmembrane transport and neuron projection 

development (fig. 4B). Additionally, different cellular components were also 

overrepresented for neuronal cell body, component of synaptic and postsynaptic 

membrane, synaptic vesicle and glutamatergic synapse, dendrite, axon, voltage-gated 

potassium channel complex, perikaryon and growth cone (fig. 4B). A restricted list of 

genes with a correlation >1.96 standard deviation from the obtained distribution (r>0. 

5237) was also analyzed. The obtained 96 genes were overrepresented for nervous 

system development, synapses and anatomical structural morphogenesis Supplemetary 

fig. 5). The term-term network analysis with biological processes and cellular 

components show how different functional annotations are related. A highly connected 

group of annotations related to brain and neuron projection development, central 

nervous system differentiation and synapse organization was found. Also, another 

group of annotations related to dendrites, axons, modulation of chemical synaptic 

transmission and trans-synaptic signalling is clearly defined. This group of annotations is 

highly connected with cation channel complex, regulation of ion transport and system 

processes and adenylate cyclase-modulating G protein-coupled receptor signalling 

pathway (fig. 4C). 
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We finally tested the hypothesis that genetic contribution to neurological diseases is 

related to brain networks’ centrality maps. Therefore, we studied the distribution of 

correlation between gene expression and structural-functional networks’ centrality (we 

refer to this as gex-centrality distribution), expecting genes that have been causally 

related to neurological disorders to show higher absolute values of correlations (fig. 5). 

In particular, we focused on Autism Spectrum Disorder (ASD), Parkinson’s disease (PD), 

Alzheimer’s disease (AD) and epilepsy, and considered two main human gene datasets 

(see Methods), GeneCards (www.genecards.org) and the Genome-Wide Association 

Study Catalog (GWAS Catalog; https://www.ebi.ac.uk/gwas/): for each gene and 

disease, these provide respectively a relevance score (based on the amount of reported 

literature linking a gene to a disease; black dots in fig. 5 A) and statistical evidence of 

their causal relation to risk of disease (via GWAS data; red dots in fig. 5A, and fig. 5B). As 

shown in Figure 5B, genes associated to neurological diseases (via GWAS) were not 

evenly spread across the gex-centrality distribution and showed a significant enrichment 

at its percentile tails (see black arrows in fig. 5B), thus supporting our hypothesis. Of 

note, typifying this observation were genes with a well-known role such as APOE, TREM2 

and SORL1 (Alzheimer’s disease), SCN1A and CPLX1 (epilepsy) and SNCA and MAPT 

(Parkinson’s disease),  KCTD1252 and PARD3B53 (Autism Spectrum Disorder) among 

others.  
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DISCUSSION  

In this work, we use the earliest neurogenesis time (FirsT) reported for brain circuits to 

study adult brain networks reconstructed from structural-functional (resting-state) MRI 

with low (MAC level) and high (ROI level) spatial resolution. By correlating centrality 

metrics of complex networks with FirsT, we observe a decreasing gradient of structural 

hubness in MACs and ROIs from earlier to later genesis. This observation confirms our 

main working hypothesis that "older nodes get richer" in hubness within brain networks. 

In the functional domain, the centrality of the MACs follows the same trend, while, on 

the contrary, the ROIs structurally developed later show a higher centrality. Note that 

when going from a high spatial scale (ROI; 2566 nodes) to a low spatial scale (MAC; 18 

nodes), internal connectivity within MACs is discarded, and this lack of connectivity may 

be especially relevant when assessing the centrality measurements on larger circuits like 

the neocortical ones.  

Our results are in agreement with the logic behind the differences of early and late 

developmental brains. Early generated neurons in the human brain mature into a 

favourable environment for cell growth, migration and axonal pathfinding. Late 

neurons, on the other hand, differentiate into a stiffer neuropil, full of extracellular 

matrix, their growth and axonal pathfinding are therefore restricted by the logic of 

developmental maturation. In addition, the growth of the brain itself plays a significant 

role into the formation of long-range connectivity. Whereas the brain at four gestional 

weeks (GW; when Locus Coeruleus neurons start their genesis), extends 3-5 mm, the 

human fetal brain at eight GW (when many cortical neurons are generated) measures 

27-31mm21. The formation of the general structural connectivity is impacted by the 

timing of neurogenesis. 

The “older gets richer” rule matches well previous literature on the connectomics of 

birth-dated populations, both for neuronal populations that we were able to trace at 

the MRI as well as for other smaller regions of the brain, not visible in MRI. Amongst the 

first neurons appearing in the brain are those in the Locus Coerules22–25 (LC) and motor 

neurons of brainstem and midbrain, including the trigeminal mesencephalic nucleus26. 

These organize in small nuclei, and although most of them cannot be segmented by MRI 

(in our case we only considered the LC and Raphe nuclei), our model predicts they all 

are potentially highly relevant at connectivity level. Noradrenergic LC neurons establish 

connections that span the whole brain27, and both LC and trigeminal nuclei contribute 

to pathologies such as Alzheimer when are degenerated28–30. 

Away from the brain stem, pioneering studies on GABAergic hub cells17 on developing 

murine hippocampus have been showing how indeed early born GABAergic neurons 

represent operationally and morphologically hub cells18,31, later also identified in other 

structures32 and in the adult murine hippocampus19. Within the neocortex, where 

different neuronal populations are generated at sequential neurogenic stages33, but 

where these birth-dated circuits cannot be tracked by MRI, hubs are related to 

neurogenesis. A recent computational study of neocortical circuits reported that 
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targeted-injuries on the layer-five hub-neurons was producing the greatest damage to 

the structural functional integrity of neocortical circuits34. Layer 5 neurons are amongst 

the earliest generated in the neocortex. More widely, early neuronal types, in 

hippocampus, cortex, brain stem and mesencephalon, might display a hub role due to 

their early neurogenesis. As an example, stimulation of Purkinje cells in the cerebellum, 

i.e. an early born GABAergic neuronal type in an early born circuit, has been shown to 

inhibit spontaneous hippocampal seizures in a mouse model of temporal lobe 

epilepsy35. 

Regarding the topology of brain networks, we observe a decreasing gradient of the 

probability and strength of connections, as a function of neurogenesis time differences, 

both in structural and functional networks at a high and low level of spatial resolution. 

Therefore, nodes generated close in time showed a higher probability and strength of 

connections. This latter observation supports the hypothesis that brain networks follow 

a "preferential age attachment rule" in which nodes are more likely to connect if their 

neurogenesis age difference is smaller. From the biological point of view, this might 

explain why neurons establish their major connections during a short temporal window 

of plasticity, namely critical period36,37, before getting functional and mature. Therefore, 

neurons of equivalent birthdate tend to share these permissive temporal windows, 

which allows their mutual/reciprocal connection. The rules of "preferential age 

attachment" and "older gets richer" extrapolate to the context of brain networks the 

pioneering model of Barabasi-Albert on the construction of scale-free networks and the 

genesis of network hubs. 

Brain connectivity, as any other biological feature, is ruled and limited by natural 

selection. Due to the intimate relationship between development and evolution, it is 

likely that the rules that relate neurogenic time to connectivity patterns are conserved 

amongst species. Indeed, previous studies on the development of brain networks in the 

worm C. elegans proved the early appearance of neuronal hubs38. Moreover, neurons 

linked by long-range connections tend to be generated at around the same neurogenic 

time and early on38, reinforcing the concept of a plastic temporal window around 

neuronal birthdate. Ultimately, all connections are evolutionary shaped to optimize 

axonal-length and speed of connections39,40. Similarly to our results, other vertebrate 

brains are likely governed by the same rules of development and connectivity. Indeed, 

brain regions shown here to have the greatest hubness are deeply conserved in the 

vertebrate brain41, suggesting their crucial importance for all vertebrates. These regions 

include the posterior regions of the brain, such as the brain stem and mesencephalon, 

and the cerebellum, which are known to be relatively similar across the vertebrate 

taxa42. In part, the rule of the older gets richer suggests that ancient circuits -such as 

those in brainstem, related to autonomic animal functions and directly involved in the 

survival of the animal- are more influential in the network and more stable in evolution. 

As a crucial example, it has been recently demonstrated the deeply conserved 

neurogenic formation of the cerebellum in several species of vertebrates43, and its 

remarkable orchestrating hub role to impact epileptic brain dynamics35. On the other 

side of the spectrum, circuits related to associative tasks -more related to cognition and 
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human-specific behaviour- are not necessarily conserved, appear later in neurogenesis. 

We showed that in high-resolution networks how their structural hubness (low) is 

inversely related to their functional one (high). 

In relation to brain transcriptomics, we have studied how spatial maps of gene 

expression in adult brains correlate with FirstT and structural-functional centrality maps. 

We have found that genes whose expression correlates positively with the centrality of 

structural circuits tend to show higher expression in the first generated circuits. In 

contrast, genes whose expression is anti-correlated with the centrality of structural 

circuits show higher expression in circuits with late neurogenesis. Vice versa is observed 

for functional networks. Thus, the transcriptomics of structural and functional networks 

appears to be differentially driven by genes whose expression is developmentally 

regulated. Previous studies have investigated the genetic basis of human brain network 

structure and function with converging evidence that anatomical connectivity is more 

strongly shaped by genetics compared to functional connectivity (see44 for a review). In 

our study, we add that the developmental sequence (specifically the first neurogenic 

time) as an additional key variable to interpret genetics in relation to the connectome, 

providing a key criterion to link embryogenesis to the topology of adult brain networks. 

It also sheds light onto the longitudinal reconstruction of developing brain networks 

which present key technical challenges8.   

To test if genes with a known role in neurological diseases are tightly linked with network 

centrality -so having a potential key impact on network hubs- we studied the correlation 

between network centrality maps and the expression of genes associated to epilepsy, 

autism, Parkinson disease and Alzheimer’s disease, which overall represent models of 

neurodevelopmental and neurodegenerative models. We found top contribution for 

two genes well-known to drive PD, such as SNCA45,46, encoding the parkinsonism-

associated Lewy body protein alpha synuclein, and MAPT47, encoding the microtubule-

associated protein tau. Altogether, our results show that in nodes with higher structural 

centrality SNCA and MAPT are expressed at lower levels in physiological conditions (see 

Supplementary Table and Fig. 5A1). We also found top associations for the APOE, which 

codes for apolipoprotein E and is directly related to AD, cerebral amyloid angiopathy, 

PD and other neurological diseases48, and TREM2, a receptor expressed in myeloid cells 

2 and related to microglial biology, high risk of developing AD49 and prion diseases50. In 

addition, the SORL1 gene, encoding the sortilin-related receptor and previously 

associated with early and late-onset Alzheimer's disease51, was also found in the upper 

percentile with a high positive correlation with functional centrality. For the case of the 

ASD, also a higher number of genes from the GWAS dataset were observed in the first 

five percentile of functional centrality distribution (see supp. Table), out of them we 

highlight KCTD1252 and PARD3B53.  For epilepsy, we highlight the presence of the SCN1A 

gene, which codes for the Alpha 1 Subunit of the Sodium Voltage-Activated Channel, 

occupying position 36 in correlation with the functional centrality of 20,787 genes 

considered, and causally related to Dravet Syndrome, a rare genetic disease causing one 

of the most devastating forms of childhood generalized epilepsy54.  
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Based on data from four different neurological conditions, our results provide broader 

and idiopathic support for the hypothesis that neurological disease may be linked to key 

topological alterations of brain networks in relation to node hubness55. Thus, altered 

transcriptomics of genes whose expression correlates highly with network centrality 

could lead to profound neurological lesions and disease. In this context, stroke and other 

brain circuitry damage to early-generated structures (such as those in the brainstem 

region) are known to have life-threatening consequences compared with later-

generated cortical structural damage. 
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METHODS 

Neurogenesis timeline of brain circuits 

We hypothesize that the strength of adult connectivity for a given region depends on its 
developmental time. For the selection of the circuits under investigation, we needed to 
reach a compromise between the conflicting resolution level of MRI and the 
developmental structural units. Certainly, there are hundreds of brain structures and 
circuits that can be segmented from MRI (cf. the list of areas that were identified in the 
AAL classification56 and others57), although many of these regions do not develop 
independently (e.g. the many neocortical areas). In contrast, there are brain regions that 
are developmentally relevant but cannot be precisely segmented by MRI (e.g. thalamic 
nuclei). Therefore, we followed two criteria to select the list of brain circuits that were 
ultimately studied: developmental independence and MRI segmentability. 

Developmental independence: Based on how the brain is generated during embryonic 
formation, we chose brain regions that developed from independent units of the early 
differentiated brain, called fundamental morphogenic units (FMU58). Early in 
development, all vertebrate brains display several brain vesicles: telencephalon, 
diencephalon, midbrain, and hindbrain. Each of these vesicles is segmented into several 
neuromeres, which are developmentally independent rings of the neural tube that form 
the major regions of the brain. Each neuromere comprises several FMUs along its dorsal-
ventral axis (figure 1A). Within a given FMU, neurogenesis forms most of the neurons of 
its derivative. As an example, the m1 neuromere in the mesencephalon gives rise to 
most of the neurons in the superior colliculus, so we consider the superior colliculus to 
be a developmental unit. The available literature shows the specific date of birth of the 
different populations of each development unit (see below). 

MRI segmentability: The human brain evolved following an unprecedented expansion of 
the neocortex, which develops from a single developmental unit59. But this expansion 
has come at the expense of shrinking many brain regions, some so small that they cannot 
be segmented at MRI resolution. For example, within the rombencephalon that 
generates the brainstem and pons, there are up to 11 rhombomeres, each of which 
hosting a number of FMUs but, none of them can be segmented with MRI. Thus, we 
consistently identified segmentable brain structures from MRIs. As a consequence, no 
circuit was assigned to two different dates of birth. Most brain structures were 
generated during a neurogenic period, but only the first day after conception in which 
neurons began to appear in a circuit was considered the first neurogenic time (FirsT). 
Most of the brain structures were generated during a neurogenic period, but only the 
earliest post-conception day at which neurons began to appear in a circuit was 
considered the time of interest, which we call the first neurogenic time (FirsT).  

 

MRI DATASET AND PROCESSING 

Participants  

Neuroimaging data was acquired by the Human Connectome Project, WU-Minn 

Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 
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1U54MH091657) funded by the 16 National Institutes of Health (NIH) Institutes and 

Centers that support the NIH Blueprint for Neuroscience Research; and by the 

McDonnell Center for Systems Neuroscience at Washington University. For this study, 

we took N = 184 healthy subjects acquired at 7 Tesla (72 males; 112 females; 24 

participants between 22-25 years; 84 between 26-30 years; 73 between 31-35; and 2 of 

them with more than 36). High-resolution structural T1 images, functional magnetic 

resonance images at rest (fMRI) and diffusion tensor images (DTI) were used. For more 

information on the acquisition parameters, see Supplementary Methods and the Human 

Connectome Project documentation (http://www.humanconnectome.org/). 

Image preprocessing 

Minimal pre-processed data was downloaded from Human Connectome60. T1 structural 

images were aligned to anterior and posterior commissures, skull stripped, corrected for 

gradient distortion and bias field, and the non-linear transformation to MNI152 standard 

space was computed. Using a one-step resampling approach, resting state functional 

data was corrected for gradient-non-linearity-induced distortion, movement within runs 

with a rigid body transformation (six parameters linear transformation) and EPI 

distortion. Both the transformation from reference image to structural T1 image and T1 

to standard space were also used in the one-step resampling approach. A subject 

specific functional data projected to MNI152 was obtained. Diffusion images were 

normalized for b0 intensity, EPI distortion, movement and eddy currents were 

corrected, and gradient nonlinearities were corrected. B0 image was coregistered to 

subject anatomical T1 images. For more details on the minimal preprocessing of the 

human connectome refer to the original paper60. To further reduce the noise in 

functional data a general linear model was used for removing linear and quadratic 

trends, the contribution of motion, cerebrospinal fluid and white matter signals. 

Additionally, a band-pass filtering (0.01–0.08 Hz) and spatial smoothing with an isotropic 

Gaussian kernel of 6-mm FWHM was applied.  

Brain macrocircuits (MACs) at low resolution 

Several regions from different brain MRI atlases were combined to generate 18 different 

macrocircuits. The atlases included Automated Anatomical Labeling (AAL56), Freesurfers 

Desikan-killiany atlas61, CIT168 subcortical atlas62 and locus coeruleus atlas63. For locus 

coeruleus and raphe nuclei were chosen as the functional ROIs englobating them. For 

further details see Table 1. 

Brain regions of interest (ROIs) at high resolution 

 A high resolution parcellation was generated after clustering the functional data to 

study network properties with about 2,500 ROIs. In particular, and similar to64, the 

clustering was performed based on temporal correlations between pairwise voxel time 

series imposing a constrain to ensure spatially contiguous ROIs. This was performed in 

two stages: 1. Clustering at the single subject level, and 2. A second clustering applied 

to individual subject data. To avoid ROIs with voxels belonging to several circuits rather 

than performing clustering on the whole brain this strategy was applied separately for 
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each circuit. Small circuits were neglected, and those voxels inserted into the nearest 

circuit. After parcellation, we took all ROIs overlapping with some of the existing circuits, 

resulting in 2,566 regions covering the whole brain. 

 

STRUCTURAL AND FUNCTIONAL BRAIN NETWORKS  

High-resolution 

After image processing, the connectivity matrices were obtained at high-resolution, 

representing two modalities structural and functional networks composed by 2566 ROIs. 

Individual subject functional connectivity matrices were obtained by averaging all the 

time series of the voxels belonging to each generated ROI, and by calculating the 

Pearson correlation value between the time series corresponding to each pair of ROIs.  

The average of the functional matrices across all subjects was then calculated, and all 

links with negative weights were set to zero, thus ignoring negative correlations.  This 

final matrix defined the high-resolution functional connectivity matrix (FCHR).  

FSL functions were used to quantify the individual subject structural connectivity 

matrices. First FSL BEDPOSTX was used to model crossing fibers, and subsequently the 

probabilistic tractography was performed with PROBTRACKX to generate a #ROI × #ROI 

matrix per subject. Matrices were normalized between 0 and 1 dividing each element 

by their maximum. The average across subjects’ matrices was finally obtained, and only 

the top 5% of higher weights were considered to create the high-resolution structural 

connectivity matrix (SCHR), in agreement with previous studies65. For both functional and 

structural matrices, the principal diagonal elements were set to zero to avoid ROI self-

connectivity interactions.   

Low-resolution 

Given a pair of macro-circuits MACi and MACj (with i≠j), and the two sets of ROIs 

belonging to them Ri={ROIi1, … , ROIiN} and Rj={ROIj1, … , ROIiM}, where N and M are their 

respective number of ROIs, the average of all functional links in FCHR connecting the two 

sets was defining the low-resolution functional connectivity matrix (FCLR), accounting for 

the functional link between MACi and MACj, i.e.:  

𝐹𝐶𝑖𝑗
𝐿𝑅 =

1

𝑁 ∗ 𝑀
∑ ∑ 𝐹𝐶𝑎𝑏

𝐻𝑅

𝑏∈𝑅𝑗𝑎∈𝑅𝑖

 

Notice that for FCLR the principal diagonal has non-zero elements, representing the 

internal connectivity within a given MAC, i.e., 

𝐹𝐶𝑖𝑖
𝐿𝑅 =

1

𝑁 ∗ (𝑁 − 1)
∑ ∑ 𝐹𝐶𝑎𝑏

𝐻𝑅

𝑏∈𝑅𝑖𝑎∈𝑅𝑖

 

Similarly, we built the low-resolution structural connectivity matrix (SCLR), where the 

MACs’ volumes (Vi and Vj) where now used for normalization, i.e.:  
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𝑆𝐶𝑖𝑗
𝐿𝑅 =

1

𝑉𝑖  ×  𝑉𝑗
∑ ∑ 𝑆𝐶𝑎𝑏

𝐻𝑅

𝑏∈𝑅𝑗𝑎∈𝑅𝑖

 

and for diagonal elements: 

𝑆𝐶𝑖𝑗
𝐿𝑅 =

1

𝑉𝑖
2 ∑ ∑ 𝑆𝐶𝑎𝑏

𝐻𝑅

𝑏∈𝑅𝑖𝑎∈𝑅𝑖

 

For the calculation of MACi volume V, we summed the volumes of the corresponding 

ROIs (set Ri) expressed as number of voxels.  

COMPLEX NETWORKS ANALYSIS 

By construction, all networks analysed were symmetric and weighted, with non-

negative values. We used MATLAB (Mathworks) to run different metrics implemented 

in the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/measures/list). 

In particular, we calculated Node Strength, Eigenvector Centrality, Subgraph Centrality, 

Betweenness Centrality and Clustering Coefficient. We analysed four types of 

connectivity matrices, a sparse one with high number of nodes (SCHR, 2566 nodes and 

5% connectivity), a dense one with high number of nodes (FCHR, 2566 nodes and 45% 

connectivity), and nearly-fully connected matrix with a small number of nodes (SCR 18 

nodes, >95% connectivity) and a fully connected matrix with a small number of nodes 

(FCLR 18 nodes, 100% connectivity). In order to use the same metrics across all networks 

considered, we discarded the node degree (being this not meaningful in fully connected 

conditions), the flow coefficient (being this not applicable in fully connected conditions), 

the local efficiency (diverging computational time in dense conditions and high number 

of nodes) and Pagerank Centrality (being this a variant of the eigenvector centrality). 

Moreover, we also implemented the Average of First-Neighbour Connectivity (AFNC). 

Given an adjacency matrix A of size NxN, and the Nodes’ Strengths (NSi, i=1, … , N), AFNSi  

for each node is calculated as: 

𝐴𝐹𝑁𝑆𝑖 =
1

𝑁 − 1
∑ 𝐴𝑖𝑗 ∗ 𝑁𝑆𝑗

𝑁

𝑗≠𝑖

 

To remove the potential bias introduced by ROIS with higher white or grey matter 

influence, for each individual partial volume estimates of white matter and grey matter 

were estimated using FSL FAST tool66. For each functional ROI the average white and 

grey matter partial volume estimates from the group average were computed. We used 

Spearman partial correlation to calculate the correlation between structural (functional) 

centrality and FirsT while regressing out white (grey) matter partial volume estimates 

per ROI or per MACs (considering the average across the ROIs within eachj MAC), in the 

case of low- and high-resolution networks respectively. 

The difference in neurogenesis time between two ROIs or MACs was defined as FirsT. 

In regard to the average connection probability and weight between nodes as function 
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of difference in neurogenesis time FirsT (see fig. 2), the matrix representing FirsT for 

pairs of ROIs (FirsTHR) was first computed according to: 

∆𝐹𝑖𝑟𝑠𝑇𝑎𝑏
𝐻𝑅 = 𝐹𝑖𝑟𝑠𝑇𝑎 − 𝐹𝑖𝑟𝑠𝑇𝑏 

where (a,b) is pair of ROIs . Similarly, it was calculated the matrix for the low-resolution 

networks’ case for pairs of MACs (FirsTLR). Note that by construction FirsTHR and 

FirsTLR are antisymmetric. In the case of the high-resolution networks, the Spearman 

correlation of connection probability and average link weight as function of FirsT was 

calculated only considering non-negative elements of FirsTHR and the correspondents’ 

elements in the SCHR (FCHR; note that the same results would be obtained for the non-

positive case). Being F the set of elements in the matrix satisfying the condition 

FirsTHR=D (with 0<=D<=max(FirsT)=26 days), the structural (functional) connection 

probability for FirsT=D was calculated as the fraction of existent links out of the set F 

in the adjacency matrix SCHR (FCHR). Similarly, for the same FirsT=D and set F, the 

average link weight was calculated from the adjacency matrix SCHR (FCHR) on the existent 

links. In the low-resolution case, since SCLR and FCLR are not sparse matrix and have a 

connectivity density above 95%, only the link weight was calculated as function of 

FirsT. Similarly to the high-resolution networks’ case, the Spearman correlation 

between the links’ weights and FirsT was calculated on the non-negative links of the 

SCLR (FCLR) and the correspondent elements in (FirsTLR). 

GENETIC FINGERPRINT OF BIRTHDATE CIRCUITS 

To investigate genetic fingerprints of birthday circuits, we used the transcriptome 

dataset from Allen Human Brain Atlas67,68. The AHBA provides whole-brain genome-

wide expression values for 20,737 protein-coding genes extracted from 3,702 brain 

samples spatially distributed throughout the brain of six human post-mortem brains. 

Using brain sample information, brain maps representing the spatial distribution of each 

gene in the 18 circuits was generated based on recent recommendations69,70: i) 

expression values from multiple probes were averaged; ii) each sample was mapped to 

one of the 18 circuits atlas. Samples falling outside were mapped to the nearest circuit, 

if this was closer than 3mm; iii) for each individual, median expression values across all 

samples mapped to the same circuit were calculated; iv) a group expression map was 

computed by calculating the mean of the expression values of the six individual donors. 

This approach was repeated to generate another expression atlas containing 90 brain 

regions based on the 68 cortical regions of the Desikan-Killiany atlas, 16 subcortical 

regions from freesurfer, cerebellum, brain stem, locus coeruleus and dorsal raphe 

nucleus. This 90 regions’ atlas was used to asses genetic associations of structural and 

functional organization of the brain. 

To search the underlying genetic fingerprints of both microcircuit EED and brain 

functional and structural eigenvector centrality a combined score for each of the 20,737 

protein-coding genes was computed.  

𝑟(𝑔) =
𝑟𝐸𝐸𝐷,18(𝑔) − 𝑟𝑆𝐶𝐶,90(𝑔) + 𝑟𝐹𝐶𝐸𝐶,90(𝑔)

3
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The score 𝑟 for a given gene 𝑔 is the average Spearman correlation between the 

expression of gene 𝑔 with EED in 18 regions 𝑟𝐸𝐸𝐷,18(𝑔), with structural connectivity 

centrality in 90 regions 𝑟𝑆𝐶𝐶,90(𝑔) and with functional connectivity centrality in 90 

regions 𝑟𝐹𝐶𝐶,90(𝑔). The sign of the spearman correlation of structural connectivity was 

inverted as it follow and inverse pattern compared to  EED and functional connectivity. 

Genes with a score >1.64 standard deviation from the obtained distribution were used 

for further analyses (r>0.4389; 787 genes).  

An overrepresentation analysis was computed to find common functional annotations 

in the obtained gene list. Gene set enrichment was computed for biological processes 

and cellular component annotations from Gene Ontology using PANTHER13.1 

(http://www.pantherdb.org/) and Fisher’s exact test with FDR correction to perform the 

statistical testing (p value < 0.05). Additionally, Metascape71 was used to construct an 

annotation-to-annotation network. Terms with a p-value < 0.01, a minimum count of 3, 

and an enrichment factor > 1.5 were grouped into clusters based on their membership 

similarities. P-values were calculated based on the accumulative hypergeometric 

distribution, and q-values using the Banjamini-Hochberg procedure to account for 

multiple testings. Kappa scores were used as the similarity metric when performing 

hierachical clustering on the enriched terms, and sub-trees with a similarity of > 0.3 were 

considered being a cluster. The most statistically significant term within a cluster was 

chosen to represent the cluster name. To capture the relationships between the terms 

the survived enrichment terms were rendered as a network plot, where terms with a 

similarity > 0.3 were connected by edges. The terms in clusters with a q < 0.005 were 

chosen, with the constraint that there are no more than 15 terms per cluster and no 

more than 250 terms in total. The network was visualized using Cytoscape72, where each 

node represents an enriched term and is colored first by its cluster ID. 

In relation to genetics and neurological diseases, the full gene lists related to Epilepsy, 

Autism, Parkinson’s and Alzheimer’s disease have been downloaded from 

www.genecards.org and https://www.ebi.ac.uk/gwas/ (GWAS). In the case of the 

Genecards database, the relevance score has been included in our study. For a detailed 

definition of relevance score in relation to a disease see 

https://www.genecards.org/Guide/Search.  

The analysis of distribution of the genes from the GWAS Catalog has been performed in 

interval of five percentiles. Enrichment for GWAS Catalog genes in the outermost 

percentiles vs the rest of the distribution has been tested via binomial distribution.  

In relation to fig. 5, the lists of genes from the Genecards and from the GWAS list with a 

correlation >1.64 standard deviation (see vertical black broken lines in fig. 5 A) are 

reported as supplementary tables, with information on structural and functional 

correlation (value, rank and percentile), and relevance score (value, rank and 

percentile).  
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 Legends 

Figure 1. From circuits’ embryogenic age to brain networks and transcriptomics. (A) 

Sagittal schemes of the early embryonic human brain; left scheme represents the 

neuromeres and fundamental regions of development; right scheme displays the 

location of the 18 MACs within the early embryonic human brain colour-coded according 

to their FirsT. (B) Scheme of the neuroimage analysis pipeline. Brain networks were 

reconstructed from healthy adult subjects scanned with MRI at 7T within the HCP 

initiative. For each subject, the structural and functional networks were reconstructed 

using respectively probabilistic tractography and resting-state activity. For every pair of 

ROIs (total 2566 ROIs), the structural connectivity matrix represents the putative number 

of fibers connecting them, while the functional connectivity matrix reports the 

correlation in their activity as revealed by the BOLD time series. The average across 

subjects were used as final representative brain networks (see Methods). From the 2566 

ROIs’ matrices, the 18 MACs’ networks were reconstructed and represents for each pair 

of MACs the average links between the ROIs forming them (see Methods). To identify 

patterns between networks’ topology and neurogenesis, the correlation between the 

nodes’ metrics (centrality or segregation) and embryonic age was calculated. (C) Brain 

transcriptome data from AHBA dataset (see methods) was used to search for protein 

coding genes with a high similarity between its spatial brain expression and embryonic 

age. Functional annotations of the obtained genes were further computed using 

overrepresentation analysis to find significantly associated biological processes and 

cellular components associated with embryonic age. 

Figure 2. Scatter plots of nodes’ centrality/segregation, links’ probability/weight, vs.  

FirsT, in the high and low resolution structural-functional networks. (A)  Scatter plots 

of the nodes’ centrality (each row corresponds to a different metric specified on the left) 

and segregation (bottom row) as a function of the embryonic age. Red and blue colours 

mark respectively the structural and functional cases. First and second columns from left 

represent as violine plots the results for the 2566 ROIs case where the mean of each 

group (i.e. ROIs within a MAC) is plotted in black, while the third and fourth columns 

represents the 18 MACs’ case. (B) Scatter plots of the link weights (left y-axis) as function 

of difference of first neurogenic birthdate. Colours and columns represent the same cases 
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as in panel A. In the 2566 ROIs case, the violine plots show the link weight distributions 

while the solid blue/red lines plot the average values. Black solid lines show the 

exponential (linear) fit on the average values for the structural (functional) case. The link 

probability is represented by the right y-axes and displayed as dots, and the broken black 

line show the exponential (linear) fit for the structural (functional) case. 

Figure 3. Visualization of brain connectivity and first neurogenic birthdate. (A) The 

glass brain maps of the eighteen MACs represents in colour codes the FirsT (A1; see 

colour-bar on the left) and the z-score (see colour-bar on the right) of the eigenvector 

centrality for the SCLR (A2) and the FCLR (A3). (B) Linear temporal representation with 

arches of the MACs structural connectivity for the earliest (B1) generated MAC (Locus 

Coeruleus, FirsT 28), for a representative mid-term (B2) generated MAC (Hippocampus, 

FirsT 40) and the latest (B3) generated MAC (Occipital Cortex, FirsT 54). The x-axis 

represents the developmental time along the several FirsT, where the different MACs are 

located according to their FirsT. Note that Basal Ganglia and Cerebellum are overlapped 

since their first neurogenesis coincides at day 36. The thickness of top black arches is 

proportional to the link weight between the MACs as extracted from the 18-nodes 

adjacency matrix. Broken black lines mark the presence of connections but with very 

small weight (i.e. below the lowest threshold for visualization of solid lines). 

Figure 4. Transcriptomic of brain circuits according to embryogenic age. (A) Mean 

spatial similarity between 20,737 protein-coding genes with 18 circuits time of birth, 

structural connectivity centrality projected to 90 regions and functional connectivity 

centrality projected to 90 regions was computed. (B) 787 genes from the positive tail 

were used to compute overrepresentation analysis for biological processes and cellular 

component annotations. (C) A network analysis of biological process and cellular 

component terms was computed. Different colours represent different annotation 

clusters and the edges the kappa score representing number of common genes in the 

functional annotations. Scatterplots displaying the mean gene expression of the genes 

related to brain development with time of birth and functional and structural 

connectivity centrality are displayed. 

Figure 5. Correlations between genes’ transcriptomic and hubness in relation to 

autism, epilepsy, Parkinson’s and Alzheimer’s. For each gene the spatial expression in 

the brain has been correlated to the spatial map of the eigenvector centrality (note that 

given the subsampled brain transcriptomics, ninety brain regions were considered, see 

Methods). A Probability distribution of correlations (blue histogram, left axis) between 

transcriptomics (20787 genes) and structural (A1) - functional (A2) eigenvector 

centrality. The relevance score of the genes listed for each disease (according to 

GeneCars.org, see Methods) has been plotted with black dots (right axis). Red dots mark 

the relevance scores for gene reported for each given disease in the GWAS dataset (see 

Methods). Vertical broken lines highlight the +/-1.64 standard deviation range. Green 

labels and arrows mark representative GWAS genes with top relevance scores beyond 

the highlighted 1.64 standard deviation range. B For each disease, the count of related 

genes listed by the GWAS in 5 percentiles intervals of the correlation distribution (blue 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.01.486541doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486541
http://creativecommons.org/licenses/by-nc-nd/4.0/


histogram of panel A) is plotted (red line and dots). The threshold for p<0.01 is plotted 

as a broken horizontal black line. Black arrows mark the extremities of the correlation 

distributions with significant higher number of GWAS-genes, and related p-value. B1 and 

B2 refers respectively to structural and functional eigenvector centrality. Note that 

legends are gray-shaded.  

Table 1 Developmental information of the human brain macro-circuits under research. 

The table includes the list of 18 MACs, the developmental brain region from which each 

MAC derives, the main anatomical structures each MAC comprises within the brain, 

information about the earliest stage at which neurogenesis (FirsT) is observed or 

predicted in the human brain and other mammalian species, and the number of ROIs 

obtained in each MAC. 

Table 2:  correlation between nodes’ centrality/segregation, and FirsT for the SCNs and 

FCNs. The partial Spearman correlation regressing out the white matter ratio per 

ROI/MAC is reported with its associate p-value. Not significant (p>0.05) or low 

correlations (│SP-pCorr│<0.15) are marked with an asterisk. 
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on
Locus Coeruleus Locus Coeruleus 28

Rat - Soon before  

E12; Mouse - E9

Altman and Bayer, 1980a,b,c; 

Steindler and Trosko, 1989

Likely one of the earliest generated 

nucleus. Noradrenergic neuronsare 

the earliest-born within the LC

2

2
Rhombencephal

on
Medulla Oblongata

Pons and Medulla 

oblongata
31 Rat - Soon after 12 Altman and Bayer, 1980a

Brainstem neurogenesis starts 

much earlier than in the rest of the 

brain. However we could not 

segment its many different 

compartments by fMRI and so it 

appears fused in one single circuit.

40

3 Mesencephalon Midbrain

Superior colliculus, inferior 

colliculus, tegmental 

midbrain

32 Mouse - E10.5
Bayer et al., 1995;

Achim et al., 2012

Substantia nigra pars reticulata is 

the earliest mesencephalic nucleus 

to start neurogenesis

23

4

Seconary 

Prosencephalon
Hypothalamus

Hypothalamus, mammilary 

bodies
34

Rat - E12;

Macaque - E33;

Cat - E21

Altman and Bayer, 1978a,b; 

Eerdenburg and Rakic, 1994;  

translatingtime.org 

Lateral hypothalamic nuclei (lateral 

hypothalamic nucleus, lateral 

preoptic area and lateral 

mammilary bodies) start 

hypothalamic neurogenesis at 
18

Telencephalon Olfactory Olfactory Cortices 34 Mouse E11
translatingtime.org (Workman et 

al., 2013)

Unique segmentation and ROI 

identification with Hypothalamus

5
Rhombencephal

on
Raphe Nuclei Raphe nuclei 35 Rat E12

Neurogenesis in the Raphe nuclei 

starts in the Raphe Magnus 

nucleus

3

6 Telencephalon Basal Ganglia
Caudate, Putamen,  

Accumbens, Septum
36

Mouse - E11;

Macaque - E38
Brand and Rakic, 1980

Accumbens starts neurogenesis at 

E38 in macaque; Striatum and 

globus pallidus start soon after.

77

7
Rhombencephal

on
Cerebellum

Cerebellar cortex, deep 

cerebellar nuclei
36

Mouse E11;

Rat - E13 

Miale and Sidman, 1961; Altman 

and Bayer, 1978c; Leto et al., 2006

Earliest neurons are projection 

neruons of the deep cerebellar 

nuclei, followed by Purkinje 

neurons.

275

8 Telencephalon Entorhinal Entorhinal cortex 37 Rat - soon after E14 Bayer, 1980a
Neurogenesis starts earlier to other 

parahippocampal cortices
11

9 Telencephalon Amygdala
Pallial amygdala, subpallial 

amygdala
38 Mouse E11

McConnell and Angevine, 1983; 

Soma et al., 2009 

Neurogenesis starts with 

GABAergic populations of central 

and medial nuclei, followed by the 

glutamatergic neurons of the baso-

lateral complex

8

10 Telencephalon Hippocampus Amon horn, Dentate gyrus 40 Rat E14.5 Bayer, 1980a

Earliest neurons occupy the 

superficial and deep layers of the 

Ammon´s horn (CA1 to CA3), and 

the hilus

21

11 Telencephalon Posterior cingulum Posterior cingular cortex 42 Rat E14.5 translatingtime.org 

Inferred from translatingtime.org 

Earlier than the anterior cingulate 

cortex

22

12

Telencephalon
Parahippocampal 

cortices
Parahippocampal cortex 44 Rat E15 Bayer, 1980a

Includes subiculum and 

parasubiculum. Unique 

segmentation and ROI identification 

with Insula 107

Telencephalon Insula Insular cortex 44 Rat E15 Bayer, 1986

First insular neurons occupy the 

dep layers of the ventral agranular 

insular cortex.

13 Telencephalon Anterior Cingulate cortex
Caudal Anterior Cingulate, 

Rostral Anterior Cingulate
45 Macaque - E40 Granger et al., 1995

First Layer VI neurons in the 

anterior cingulate cortex were 

revelaed with [3H]-thymidine 

injection at E40 in the macaque 

brain

37

14 Diencephalon Thalamus
Thalamic nuclei: LP, VL, 

VPL, LGN, MGN, Pulvinar, 
46 Rat - E14 Altman and Bayer, 1979

Several thalamic nuclei (VB, VE, 

LGN, PO, MGN and LP) start 

neurogenesis at  E14 in the rat 

brain.

28

15 Telencephalon Frontal cortex

Caudal middle frontal, 

lateral orbito frontal, medial 

orbito frontal, paracentral, 

pars opercularis, pars 

orbitalis, pars triangularis, 

precentral, rostral middle 

frontal, frontal pole and 

superior frontal cortices

48

Macaque - E40; 

Ferret - E30; 

Mouse - E11.5

Rakic, 2002;

Reillo and Borrell, 2011;

Charvet, 2014;

translatingtime.org 

Neurogenesis in the cortex starts 

synchronously throughout all 

cortical areas. The earliest-

generated cortical populations are 

the Cajal-Retzius cells of the 

marginal zone and the subplate 

neurons of layer 6b. Most of these 

neurons die early after birth, which 

is why we considered the early 

generation of deep cortical layers 

as the onset of a functional cortical 

neurogenesis.

In this layers, there is a gradient of 

neurogenesis starting first at the 

rostral pole of the cortex, and 

finishing last at the caudal regions. 

In macaque, frontal cortex starts at 

E45, and occipital cortex starts at 

E54. In human, we estimate ths 

gradient as a 2-day difference 

between cortical lobes. 

719

16 Telencephalon Parietal cortex

Inferior parietal, 

postcentral, precuneus, 

superior parietal and 

supramarginal cortices

50 502

17 Telencephalon Temporal cortex

Banks of the Superior 

Temporal Sulcus, fusiform, 

inferior temporal, superior 

temporal, and transverse 

temporal cortices

52 384

18 Telencephalon Occipital cortex

Cuneus, Lateraloccipital 

cortex, lingual cortex, 

pericalcarine cortex

54 289

Table 1
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METRICS

ROIs - 2566 nodes MACs – 18 nodes

hr-SCN hr-FCN lr-SCN lr-FCN

SP-pCorr p-val SP-pCorr p-val SP-pCorr p-val SP-pCorr p-val

Strength (NS) -0,25 0 0,23 0 -0,77 0,0003 -0,47 0,06*

Eigenvector (EC) -0,44 0 0,26 0 -0,81 0,00007 -0,51 0,035

Pagerank (PC) -0,17 0 0,20 0 -0,59 0,01 -0,46 0,06*

Subgraph (SC) -0,29 0 0,26 0 -0,74 0,0007 -0,54 0,02

Betweenness (BC) -0,077* 0,00008 0,12 3 10-09 -0,58 0,015 -0,057 0,83*

1st-neighbour (AFNS) -0,27 0 0,28 0 -0,7 0,002 -0,83 4 10-05

Clustering (CC) 0,002 0,9* 0,33 0 -0,77 0,0003 -0,37 0,14*

Table 2
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Figure 3
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Figure 4
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Figure 5
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