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ABSTRACT

Understanding the architectural principle that shapes the topology of the human
connectome at its multiple spatial scales is a major challenge for systems neuroscience.
This would provide key fundamental principles and a theory for browsing brain’s
networks, to ultimately generate hypothesis and approach to which extent key
structures might impact different brain pathologies. In this work, we propose the
hypothesis that the centrality of the different brain nodes in the human connectome is
a product of their embryogenic age, and accordingly, early-born nodes should display
higher hubness, and viceversa for late-born nodes. We tested our hypothesis by
identifying and segmenting eighteen macroregions with a well-known embryogenic age,
over which we calculated nodes’ centrality in the structural and functional networks at
different spatial resolutions. First, nodes’ structural centrality correlated with their
embryogenic age, fully confirming our working hypothesis. However, at the functional
level, distinct trends were found at different resolutions. Secondly, the difference in
embryonic age between nodes inversely correlated with the probability of existence and
the weights of the links. This indicated the presence of a temporal developmental
gradient that shapes connectivity and where nodes connect more to nodes with a similar
age. Finally, brain transcriptomic analysis revealed high association between embryonic
age, structural-functional centrality and the expression of genes related to nervous
system development, synapse regulation, and human neurological diseases. Overall,
these results support the hypothesis that the embryogenic age of brain regions shapes
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the topology of adult brain networks. Our results show two key principles, “preferential
age attachment” and “older gets richer” on the wiring of the human brain, thus shedding
new light on the relationship between brain development, transcriptomics, node
centrality, and neurological diseases.

INTRODUCTION

The most characteristic anatomical property of brain networks is their organization at
multiple spatial scales, which interconnect micro-scale cell-body neurons within local
micro-circuit domains, scaling up to macro-scale levels where long-range connections
allow centimetre-distant neurons and circuits to communicate2. The characteristic
branching properties of neurons, the major cellular brain components, is what makes
the structure of the brain unique as a network, when compared to other branch-
structured organs characteristic of invertebrate and vertebrate species®. A key challenge
for fundamental and clinical neuroscience is to decipher the rules of connectivity that
shape brain networks in order to understand how the brain works and how traumatic
or neurological injuries affect brain functionality®.

The general structure and functionality of the human brain and its embedded
connectivity are the result of its developmental history, which is at the same time the
product of evolution®. This way, the brain follows developmental instructions that
decisively impact on the diversification of neural connections and their functions. In
particular, the developing human brain closely resembles the developing brains of other
mammals and vertebrates®. In this context, the development and evolution of brain
circuits are strictly related, so the oldest evolutionary circuits are also those that were
embryogenically generated earlier’. Although previous studies have focused on the
development of brain networks at different stages of maturation also in relation to the
appearance of key network structures such as central nodes8, there are still no detailed
studies that fully relate the connectivity of the adult human brain with sequential
(evolutionarily preserved) neurogenesis of circuits.

The structural organization of brain networks shapes how the brain dynamically
operates by coordinated firing of neurons or neuronal ensembles across different
spatio-temporal scales, ultimately leading to brain functions?. Thus, the structural
organization of brain networks in the spatial domain has been mirrored into the concept
of functional networks in the temporal domain®°. Functional networks reflect the
statistical relationship between the activity of different brain regions or neurons, based
on the underlying assumption that when neurons or brain circuits are cooperatively
active at the same time, they can engage in similar functions®.

The complexity arising from both the anatomy and the dynamics of brain circuitry needs
a general mathematical framework capable of quantifying and describing the
interactions of structural and functional networks at multiple scales. In this context,
complex networks emerged in the last two decades as a powerful mathematical
framework for quantifying the very diverse properties of real-world networks from very
different domains ranging from biology to sociology and beyond?!!. Notably, different
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studies assessing real-world networks’ data have shown small-world, scale-free or
heavy-tailed distribution network organizations as stereotyped topologies in many
distinct domains'?'3 . When applied in the context of neuroscience, these key topologies
have been identified at the structural-functional level in microcircuits, meso- and macro-
scale networks®4.

Complex networks also provided models underlying the formation of the above-
described topologies®?. Specifically, when looking to network development and how the
different nodes make connections as a function of their actual connectivity degree, a
pioneering study® by Barabasi and Albert showed that the principle “the rich gets
richer” (a.k.a. “preferential attachment”) led to the development of the scale-free
networks, characterized by the presence of highly connected rare nodes or hubs. In this
work, inspired by the Barabasi model'®, we aim to combine the heavy-tailed signatures
widely observed in the brain networks’ organization together with the stereotyped
evolutionary-preserved sequential neurogenesis in the developing brain, to hypothesize
that brain networks’ topology could be shaped according to the rule that “older gets
richer”, i.e. evolutionary older circuits or early generated along embryogenesis, are the
ones highly central in the adult brain network organization!®. As a consequence, brain
circuits’ hubness quantified by metrics of complex networks’ centrality should correlate
with their embryogenic age. Our hypothesis is grounded and extrapolates at macro-scale
previous pioneering evidence showing that at the micro-circuit level GABAergic
neuronal hubs were functionally identified in the hippocampal circuits and also revealed
as early born GABAergic neurons both in developing and adult murine circuits’~%°,

To test our hypothesis, we reviewed previous literature to obtain the time sequence for
the earliest neurogenesis time of the different brain circuits and translated into the
human brain by segmenting those circuits from magnetic resonance imaging (MRI). We
first identified eighteen macro-circuits (MACs) according to their first (i.e. earliest)
neurogenic time (FirsT, estimated in embryonic days) during embryogenesis. Since
MACs’ volumes span across multiple scales, we studied the brain networks with two
different spatial resolutions: a low resolution parcellation corresponding to the eighteen
MACs, and a high resolution parcellation composed of approximately two and half
thousand regions of interest (ROI) of similar volumes.

Structural and functional brain networks were obtained using 7 Tesla MRI images
acquired within the Human Connectome Project?°. At high resolution level, we observed
that FirsT reversely shaped the nodes’ centrality in the structural and functional
networks, where highly central nodes displayed respectively early and late FirsT.
Distinctly, the structural and functional nodes’ centrality of the low-resolution MACs
similarly correlated with FirsT, with higher centrality displayed in the early born MACs.
In addition, we observed that FirsT-lags reversely correlated with wiring probability and
connection weight, so ROIs and MACs connected more and stronger with those at
similar age. Finally, brain transcriptomic analysis revealed also high association between
genes’ expression, FirsT and nodes’ centrality, in respect to physiological nervous system
development and synapse regulation, and to neuropathological conditions. Notably, a
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significant rate of genes involved in major neurological diseases such as epilepsy,
Parkinson’s, Alzheimers’ and autism displays extreme correlation values with nodes’
centrality (we especially mention high correlation for highly studied genes such as
SCN1A, SNCA and APOE). The results provide a new multi-scale evidence on how
neurogenesis time shapes structural and functional networks, brain nodes’ centrality
and their transcriptomics in patho-physiological conditions and underlie two main
neurogenesis preferential wiring principles: “the older gets richer” and “preferential age
attachment”.
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RESULTS

Segmentation of brain circuits according to neurogenesis time points: from brain
networks to transcriptomics

Human brain circuits were differentiated and segmented according to their First
neurogenic birth Time (FirsT), i.e. the post-conception day (or embryonic day) at which
the first neurons of the circuit are generated (fig 1 A) and following the criteria
established in methods. Our list organized human circuits according to FirsT, from older
to younger circuits (table 1). We identified 18 macrocircuits (MACs) for which a timing
sequence based on their FirsT could be provided. Other relevant circuits, for which
detailed developmental information is known, such as the neocortical layers and
thalamic nuclei, could not be segmented on MRI (see Supplementary Information).

We used resting-state fMRI and dMRI images acquired at 7 T within the Human
Connectome project from N=184 healthy subjects to reconstruct the structural-
functional brain networks (see fig. 1 B and Methods). Since the volume of the different
MACs spanned more than two orders of magnitude (see Supplementary Fig. 1B), MACs
were also parcellated (see Methods) to obtain spatially segregated ROIs with a volume
comparable to the smallest circuits (like Locus Coeruleus), i.e. about several dozen of
voxels each (see Supplementary Fig. 1A with overall ROl volume distribution). Each of
the 18 MACs had a correspondent FirsT while for all ROIs obtained within a given MAC
we assigned the same FirsT. The number of ROIs per MAC is reported in Table 1. A total
of 2566 ROIs were defined in the brain. In order to explore the existence of possible
patterns of correlation between FirsT and brain circuit connectivity at different spatial
resolutions, centrality and segregation metrics were calculated for each ROl and MAC
(fig. 1B). In addition, the transcriptomics of the different MACs were related to FirsT (Fig.
1C) to provide a complementary biological correlate of brain nodes related to
neurogenesis.

Centrality vs neurogenesis in the structural - functional brain networks

To quantify the centrality of each ROl and MAC in the brain networks, we calculated
from the adjacency matrices of the brain connectivity networks five different centrality
metrics, specifically the node strength (NS), the eigenvector centrality (EC), the
centrality of the subgraph (SC), average first-neighbour strength (AFNS), between-ness
centrality (BC), and one segregation metric such as the clustering coefficient (CC; see
Methods for the rationale for the choice of metric). These metrics were calculated on
high spatial resolution networks composed of 2566 ROIs (referred to as high-resolution
structural and functional connectivity networks, respectively SC'™® and FC"R) and low
spatial resolution networks composed of 18 MACs (referred to as low-resolution
structural and functional connectivity, respectively SC'® and FC®). The SC"® and FCHR
were calculated from the average of all subjects, respectively, from probabilistic
tractography and resting-state activity correlations (note that only positive functional
links were considered, see Methods). The SC'® and FC'® were calculated as the average
of the links connecting ROIs within the MAC pairs, in SC"™® and FC"R respectively. Note
that while the diagonal of the connectivity matrices (self-connections) was taken to be
zero in the high-resolution space, in the low-resolution space it was not zero, and
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represented the average of the links between the ROIs within a given MAC (internal MAC
connectivity).

To test our main hypothesis that the structural centrality of brain nodes is inversely
correlated with embryogenic day, such that the earlier, the higher the centrality, we
computed Spearman's partial correlation (SP-pCorr, see Table 2) between the nodes’
centrality (and segregation) and FirsT, eliminating the effect of the cofounder white
matter volume per ROl or MAC, which also shows a gradient between early and late
generated structures (Supplementary Fig. 2). Similarly, we repeated the same
calculation for the functional networks, in this case removing the cofounder of gray
matter volume per ROl or MAC (Supplementary Fig. 2). The results for the SCNs and
FCNs are summarized in table 2 and in fig. 2A for both spatial resolutions.

When looking at high-resolution networks, the centrality of SC'? and FC"'R nodes showed
significant inverse trends with FirsT, respectively negative and positive correlations with
absolute values greater than 0.26 for all centrality metrics (apart for the case of BC for
which a poor correlation was observed below 0.15). Note that the negative correlations
observed for SCH'R (physically constrained spatial domain) support the leading hypothesis
that early born brain regions (such as the locus coeruleus and brainstem) have higher
“hubness” or centrality (with strongest correlation value of -0.44 observed in the case
of EC). On the contrary, in the case of the FC'R (functional domain related to time and
dynamics) the positive correlations between centrality and FirsT observed highlight the
greater centrality of late brain circuits (such as neocortical ones). In relation to the
segregation of nodes, the clustering coefficient showed a significant positive correlation
with FirsT (SP-pCorr=0.33) only in the case of FC"R,

For low-resolution networks, we observed negative centrality correlations with respect
to FirsT in both SC'R and FC'®, with a clear inverse trend for the functional case relative
to the high-resolution case. In the case of structural networks, the correlations for all
centrality and segregation metrics had significant (p<0.015) values ranging between -
0.58 (for the BC) and -0.81 (for the EC). In the case of functional networks, significant
negative correlations were observed in 3 of 5 centrality metrics (specifically EC, SC and
AFNS) with values ranging from -0.51 to -0.83, while the correlation for the NS was -0.47
at the limit of significance (p=0.06). Node segregation measured with the clustering
coefficient showed a significant correlation with FirstT (SP-pCorr =-0.77) only in the case
of SC'R. The negative trend between the time of birth of the 18 different MACs and the
eigenvector centrality of the SC*® and FC® can be visualized on a brain surface
respectively in fig. 3A.

Next, we checked if the difference in neurogenesis time (AFirsT) could also be related to
the probability of existence and weight of the links (fig. 2B). In SC'® and FCHR
respectively, where a connection is present in 5% and 45% of the overall node pairs, link
probability decreased as a function of AFirsT with a Spearman correlation of -0.53
(p<0.01) and -0.49 (p=0.01), and similarly, link weight decreased with a correlation of -
0.81 (p<0.001) and -0.93 (p<0.001). In the SC'® and FC'®, only the link weight was
considered as these matrices are highly dense, which decreased as a function of AFirsT
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with a correlation of -0.50 (p<0.001) and -0.43 (p<0.001). The link weights shown in
supp. Fig. 3 and supp. Fig 4 for each MAC (where each plot is a given MAC and its FirsT
is highlighted as a vertical broken line), allows to visualize how brain circuits generated
at close neurogenic timepoints tend to connect more strongly.

The linear temporal visualization of the structural connectivity of three representative
MACs, respectively with earliest (Locus Coeruleus, 28 days), latest (occipital cortex, FirsT
54 days) and intermediate (hippocampus, FirsT 40 days) FirsT is reported in fig. 3 B1-3.
Such visualization shows that NS of the earliest MAC are much higher than later MACs
and, for the case of the Locus Coeruleus, it also shows that brain circuits generated at
close neurogenic timepoints are more strongly connected.

The transcriptomic of brain circuits according to FirsT. To find a potential list of genes
associated with brain circuits’ FirsT, brain networks’ centrality and brain transcriptomics,
data from the Allen Human Brain Atlas (AHBA) were used. Average Spearman
correlations between genetic expression of 20,737 protein coding genes with FirsT,
structural and functional connectivity centrality was computed (fig. 4A). First, gene
expression correlation with functional centrality increased linearly in respect to FirsT
(Pearson correlation 0.63, p<0.01) while an opposite trend was observed for the
structural centrality (Pearson correlation -0.74, p<0.01). A lower anti-correlation
(Pearson correlation -0.26, p<0.01) was observed for gene expression in functional and
structural centrality maps. Secondly, 787 genes were found with a correlation >1.64
standard deviation from the obtained distribution (r>0.44). Gene set enrichment
analysis of biological process showed that the genes were overrepresented for
development of central nervous system and axons, cell morphogenesis involved in
neuron differentiation and regulation of synaptic transmission, synaptic plasticity,
synapse organization, cation transmembrane transport and neuron projection
development (fig. 4B). Additionally, different cellular components were also
overrepresented for neuronal cell body, component of synaptic and postsynaptic
membrane, synaptic vesicle and glutamatergic synapse, dendrite, axon, voltage-gated
potassium channel complex, perikaryon and growth cone (fig. 4B). A restricted list of
genes with a correlation >1.96 standard deviation from the obtained distribution (r>0.
5237) was also analyzed. The obtained 96 genes were overrepresented for nervous
system development, synapses and anatomical structural morphogenesis Supplemetary
fig. 5). The term-term network analysis with biological processes and cellular
components show how different functional annotations are related. A highly connected
group of annotations related to brain and neuron projection development, central
nervous system differentiation and synapse organization was found. Also, another
group of annotations related to dendrites, axons, modulation of chemical synaptic
transmission and trans-synaptic signalling is clearly defined. This group of annotations is
highly connected with cation channel complex, regulation of ion transport and system
processes and adenylate cyclase-modulating G protein-coupled receptor signalling
pathway (fig. 4C).
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We finally tested the hypothesis that genetic contribution to neurological diseases is
related to brain networks’ centrality maps. Therefore, we studied the distribution of
correlation between gene expression and structural-functional networks’ centrality (we
refer to this as gex-centrality distribution), expecting genes that have been causally
related to neurological disorders to show higher absolute values of correlations (fig. 5).
In particular, we focused on Autism Spectrum Disorder (ASD), Parkinson’s disease (PD),
Alzheimer’s disease (AD) and epilepsy, and considered two main human gene datasets
(see Methods), GeneCards (www.genecards.org) and the Genome-Wide Association
Study Catalog (GWAS Catalog; https://www.ebi.ac.uk/gwas/): for each gene and
disease, these provide respectively a relevance score (based on the amount of reported
literature linking a gene to a disease; black dots in fig. 5 A) and statistical evidence of
their causal relation to risk of disease (via GWAS data; red dots in fig. 5A, and fig. 5B). As
shown in Figure 5B, genes associated to neurological diseases (via GWAS) were not
evenly spread across the gex-centrality distribution and showed a significant enrichment
at its percentile tails (see black arrows in fig. 5B), thus supporting our hypothesis. Of
note, typifying this observation were genes with a well-known role such as APOE, TREM?2
and SORL1 (Alzheimer’s disease), SCN1A and CPLX1 (epilepsy) and SNCA and MAPT
(Parkinson’s disease), KCTD1252 and PARD3B53 (Autism Spectrum Disorder) among
others.



http://www.genecards.org/
https://www.ebi.ac.uk/gwas/
https://doi.org/10.1101/2022.04.01.486541
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.01.486541; this version posted April 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

DISCUSSION

In this work, we use the earliest neurogenesis time (FirsT) reported for brain circuits to
study adult brain networks reconstructed from structural-functional (resting-state) MRI
with low (MAC level) and high (ROI level) spatial resolution. By correlating centrality
metrics of complex networks with FirsT, we observe a decreasing gradient of structural
hubness in MACs and ROIs from earlier to later genesis. This observation confirms our
main working hypothesis that "older nodes get richer" in hubness within brain networks.
In the functional domain, the centrality of the MACs follows the same trend, while, on
the contrary, the ROIs structurally developed later show a higher centrality. Note that
when going from a high spatial scale (ROI; 2566 nodes) to a low spatial scale (MAC; 18
nodes), internal connectivity within MACs is discarded, and this lack of connectivity may
be especially relevant when assessing the centrality measurements on larger circuits like
the neocortical ones.

Our results are in agreement with the logic behind the differences of early and late
developmental brains. Early generated neurons in the human brain mature into a
favourable environment for cell growth, migration and axonal pathfinding. Late
neurons, on the other hand, differentiate into a stiffer neuropil, full of extracellular
matrix, their growth and axonal pathfinding are therefore restricted by the logic of
developmental maturation. In addition, the growth of the brain itself plays a significant
role into the formation of long-range connectivity. Whereas the brain at four gestional
weeks (GW; when Locus Coeruleus neurons start their genesis), extends 3-5 mm, the
human fetal brain at eight GW (when many cortical neurons are generated) measures
27-31mm?. The formation of the general structural connectivity is impacted by the
timing of neurogenesis.

The “older gets richer” rule matches well previous literature on the connectomics of
birth-dated populations, both for neuronal populations that we were able to trace at
the MRI as well as for other smaller regions of the brain, not visible in MRI. Amongst the
first neurons appearing in the brain are those in the Locus Coerules??72> (LC) and motor
neurons of brainstem and midbrain, including the trigeminal mesencephalic nucleus?®.
These organize in small nuclei, and although most of them cannot be segmented by MRI
(in our case we only considered the LC and Raphe nuclei), our model predicts they all
are potentially highly relevant at connectivity level. Noradrenergic LC neurons establish
connections that span the whole brain?’, and both LC and trigeminal nuclei contribute
to pathologies such as Alzheimer when are degenerated?®-39,

Away from the brain stem, pioneering studies on GABAergic hub cells!’ on developing
murine hippocampus have been showing how indeed early born GABAergic neurons
represent operationally and morphologically hub cells'®3!, [ater also identified in other
structures®? and in the adult murine hippocampus!®. Within the neocortex, where
different neuronal populations are generated at sequential neurogenic stages33, but
where these birth-dated circuits cannot be tracked by MRI, hubs are related to
neurogenesis. A recent computational study of neocortical circuits reported that
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targeted-injuries on the layer-five hub-neurons was producing the greatest damage to
the structural functional integrity of neocortical circuits®*. Layer 5 neurons are amongst
the earliest generated in the neocortex. More widely, early neuronal types, in
hippocampus, cortex, brain stem and mesencephalon, might display a hub role due to
their early neurogenesis. As an example, stimulation of Purkinje cells in the cerebellum,
i.e. an early born GABAergic neuronal type in an early born circuit, has been shown to
inhibit spontaneous hippocampal seizures in a mouse model of temporal lobe
epilepsy®.

Regarding the topology of brain networks, we observe a decreasing gradient of the
probability and strength of connections, as a function of neurogenesis time differences,
both in structural and functional networks at a high and low level of spatial resolution.
Therefore, nodes generated close in time showed a higher probability and strength of
connections. This latter observation supports the hypothesis that brain networks follow
a "preferential age attachment rule" in which nodes are more likely to connect if their
neurogenesis age difference is smaller. From the biological point of view, this might
explain why neurons establish their major connections during a short temporal window
of plasticity, namely critical period3®37, before getting functional and mature. Therefore,
neurons of equivalent birthdate tend to share these permissive temporal windows,
which allows their mutual/reciprocal connection. The rules of "preferential age
attachment" and "older gets richer" extrapolate to the context of brain networks the
pioneering model of Barabasi-Albert on the construction of scale-free networks and the
genesis of network hubs.

Brain connectivity, as any other biological feature, is ruled and limited by natural
selection. Due to the intimate relationship between development and evolution, it is
likely that the rules that relate neurogenic time to connectivity patterns are conserved
amongst species. Indeed, previous studies on the development of brain networks in the
worm C. elegans proved the early appearance of neuronal hubs38. Moreover, neurons
linked by long-range connections tend to be generated at around the same neurogenic
time and early on®, reinforcing the concept of a plastic temporal window around
neuronal birthdate. Ultimately, all connections are evolutionary shaped to optimize
axonal-length and speed of connections3¥%°, Similarly to our results, other vertebrate
brains are likely governed by the same rules of development and connectivity. Indeed,
brain regions shown here to have the greatest hubness are deeply conserved in the
vertebrate brain®!, suggesting their crucial importance for all vertebrates. These regions
include the posterior regions of the brain, such as the brain stem and mesencephalon,
and the cerebellum, which are known to be relatively similar across the vertebrate
taxa*?. In part, the rule of the older gets richer suggests that ancient circuits -such as
those in brainstem, related to autonomic animal functions and directly involved in the
survival of the animal- are more influential in the network and more stable in evolution.
As a crucial example, it has been recently demonstrated the deeply conserved
neurogenic formation of the cerebellum in several species of vertebrates*?, and its
remarkable orchestrating hub role to impact epileptic brain dynamics®. On the other
side of the spectrum, circuits related to associative tasks -more related to cognition and
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human-specific behaviour- are not necessarily conserved, appear later in neurogenesis.
We showed that in high-resolution networks how their structural hubness (low) is
inversely related to their functional one (high).

In relation to brain transcriptomics, we have studied how spatial maps of gene
expression in adult brains correlate with FirstT and structural-functional centrality maps.
We have found that genes whose expression correlates positively with the centrality of
structural circuits tend to show higher expression in the first generated circuits. In
contrast, genes whose expression is anti-correlated with the centrality of structural
circuits show higher expression in circuits with late neurogenesis. Vice versa is observed
for functional networks. Thus, the transcriptomics of structural and functional networks
appears to be differentially driven by genes whose expression is developmentally
regulated. Previous studies have investigated the genetic basis of human brain network
structure and function with converging evidence that anatomical connectivity is more
strongly shaped by genetics compared to functional connectivity (see* for a review). In
our study, we add that the developmental sequence (specifically the first neurogenic
time) as an additional key variable to interpret genetics in relation to the connectome,
providing a key criterion to link embryogenesis to the topology of adult brain networks.
It also sheds light onto the longitudinal reconstruction of developing brain networks
which present key technical challenges®.

To test if genes with a known role in neurological diseases are tightly linked with network
centrality -so having a potential key impact on network hubs- we studied the correlation
between network centrality maps and the expression of genes associated to epilepsy,
autism, Parkinson disease and Alzheimer’s disease, which overall represent models of
neurodevelopmental and neurodegenerative models. We found top contribution for
two genes well-known to drive PD, such as SNCA*“®, encoding the parkinsonism-
associated Lewy body protein alpha synuclein, and MAPT*’, encoding the microtubule-
associated protein tau. Altogether, our results show that in nodes with higher structural
centrality SNCA and MAPT are expressed at lower levels in physiological conditions (see
Supplementary Table and Fig. 5A1). We also found top associations for the APOE, which
codes for apolipoprotein E and is directly related to AD, cerebral amyloid angiopathy,
PD and other neurological diseases*®, and TREM2, a receptor expressed in myeloid cells
2 and related to microglial biology, high risk of developing AD*® and prion diseases°. In
addition, the SORL1 gene, encoding the sortilin-related receptor and previously
associated with early and late-onset Alzheimer's disease®!, was also found in the upper
percentile with a high positive correlation with functional centrality. For the case of the
ASD, also a higher number of genes from the GWAS dataset were observed in the first
five percentile of functional centrality distribution (see supp. Table), out of them we
highlight KCTD12>? and PARD3B>3. For epilepsy, we highlight the presence of the SCN1A
gene, which codes for the Alpha 1 Subunit of the Sodium Voltage-Activated Channel,
occupying position 36 in correlation with the functional centrality of 20,787 genes
considered, and causally related to Dravet Syndrome, a rare genetic disease causing one
of the most devastating forms of childhood generalized epilepsy>*.


https://doi.org/10.1101/2022.04.01.486541
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.01.486541; this version posted April 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Based on data from four different neurological conditions, our results provide broader
and idiopathic support for the hypothesis that neurological disease may be linked to key
topological alterations of brain networks in relation to node hubness®. Thus, altered
transcriptomics of genes whose expression correlates highly with network centrality
could lead to profound neurological lesions and disease. In this context, stroke and other
brain circuitry damage to early-generated structures (such as those in the brainstem
region) are known to have life-threatening consequences compared with later-
generated cortical structural damage.
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METHODS

Neurogenesis timeline of brain circuits

We hypothesize that the strength of adult connectivity for a given region depends on its
developmental time. For the selection of the circuits under investigation, we needed to
reach a compromise between the conflicting resolution level of MRI and the
developmental structural units. Certainly, there are hundreds of brain structures and
circuits that can be segmented from MRI (cf. the list of areas that were identified in the
AAL classification®® and others®’), although many of these regions do not develop
independently (e.g. the many neocortical areas). In contrast, there are brain regions that
are developmentally relevant but cannot be precisely segmented by MRI (e.g. thalamic
nuclei). Therefore, we followed two criteria to select the list of brain circuits that were
ultimately studied: developmental independence and MRI segmentability.

Developmental independence: Based on how the brain is generated during embryonic
formation, we chose brain regions that developed from independent units of the early
differentiated brain, called fundamental morphogenic units (FMU®%). Early in
development, all vertebrate brains display several brain vesicles: telencephalon,
diencephalon, midbrain, and hindbrain. Each of these vesicles is segmented into several
neuromeres, which are developmentally independent rings of the neural tube that form
the major regions of the brain. Each neuromere comprises several FMUs along its dorsal-
ventral axis (figure 1A). Within a given FMU, neurogenesis forms most of the neurons of
its derivative. As an example, the m1 neuromere in the mesencephalon gives rise to
most of the neurons in the superior colliculus, so we consider the superior colliculus to
be a developmental unit. The available literature shows the specific date of birth of the
different populations of each development unit (see below).

MRI segmentability: The human brain evolved following an unprecedented expansion of
the neocortex, which develops from a single developmental unit®. But this expansion
has come at the expense of shrinking many brain regions, some so small that they cannot
be segmented at MRI resolution. For example, within the rombencephalon that
generates the brainstem and pons, there are up to 11 rhombomeres, each of which
hosting a number of FMUs but, none of them can be segmented with MRI. Thus, we
consistently identified segmentable brain structures from MRIs. As a consequence, no
circuit was assigned to two different dates of birth. Most brain structures were
generated during a neurogenic period, but only the first day after conception in which
neurons began to appear in a circuit was considered the first neurogenic time (FirsT).
Most of the brain structures were generated during a neurogenic period, but only the
earliest post-conception day at which neurons began to appear in a circuit was
considered the time of interest, which we call the first neurogenic time (FirsT).

MRI DATASET AND PROCESSING

Participants

Neuroimaging data was acquired by the Human Connectome Project, WU-Minn
Consortium  (Principal Investigators: David Van Essen and Kamil Ugurbil;
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1U54MH091657) funded by the 16 National Institutes of Health (NIH) Institutes and
Centers that support the NIH Blueprint for Neuroscience Research; and by the
McDonnell Center for Systems Neuroscience at Washington University. For this study,
we took N = 184 healthy subjects acquired at 7 Tesla (72 males; 112 females; 24
participants between 22-25 years; 84 between 26-30 years; 73 between 31-35; and 2 of
them with more than 36). High-resolution structural T1 images, functional magnetic
resonance images at rest (fMRI) and diffusion tensor images (DTI) were used. For more
information on the acquisition parameters, see Supplementary Methods and the Human
Connectome Project documentation (http://www.humanconnectome.org/).

Image preprocessing

Minimal pre-processed data was downloaded from Human Connectome®. T1 structural
images were aligned to anterior and posterior commissures, skull stripped, corrected for
gradient distortion and bias field, and the non-linear transformation to MNI152 standard
space was computed. Using a one-step resampling approach, resting state functional
data was corrected for gradient-non-linearity-induced distortion, movement within runs
with a rigid body transformation (six parameters linear transformation) and EPI
distortion. Both the transformation from reference image to structural T1 image and T1
to standard space were also used in the one-step resampling approach. A subject
specific functional data projected to MNI152 was obtained. Diffusion images were
normalized for bO intensity, EPI distortion, movement and eddy currents were
corrected, and gradient nonlinearities were corrected. BO image was coregistered to
subject anatomical T1 images. For more details on the minimal preprocessing of the
human connectome refer to the original paper®. To further reduce the noise in
functional data a general linear model was used for removing linear and quadratic
trends, the contribution of motion, cerebrospinal fluid and white matter signals.
Additionally, a band-pass filtering (0.01-0.08 Hz) and spatial smoothing with an isotropic
Gaussian kernel of 6-mm FWHM was applied.

Brain macrocircuits (MACs) at low resolution

Several regions from different brain MRI atlases were combined to generate 18 different
macrocircuits. The atlases included Automated Anatomical Labeling (AAL®®), Freesurfers
Desikan-killiany atlas®?, CIT168 subcortical atlas®? and locus coeruleus atlas®3. For locus
coeruleus and raphe nuclei were chosen as the functional ROIs englobating them. For
further details see Table 1.

Brain regions of interest (ROIs) at high resolution

A high resolution parcellation was generated after clustering the functional data to
study network properties with about 2,500 ROIs. In particular, and similar to®, the
clustering was performed based on temporal correlations between pairwise voxel time
series imposing a constrain to ensure spatially contiguous ROIs. This was performed in
two stages: 1. Clustering at the single subject level, and 2. A second clustering applied
to individual subject data. To avoid ROIs with voxels belonging to several circuits rather
than performing clustering on the whole brain this strategy was applied separately for
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each circuit. Small circuits were neglected, and those voxels inserted into the nearest
circuit. After parcellation, we took all ROls overlapping with some of the existing circuits,
resulting in 2,566 regions covering the whole brain.

STRUCTURAL AND FUNCTIONAL BRAIN NETWORKS

High-resolution

After image processing, the connectivity matrices were obtained at high-resolution,
representing two modalities structural and functional networks composed by 2566 ROls.
Individual subject functional connectivity matrices were obtained by averaging all the
time series of the voxels belonging to each generated ROI, and by calculating the
Pearson correlation value between the time series corresponding to each pair of ROlIs.
The average of the functional matrices across all subjects was then calculated, and all
links with negative weights were set to zero, thus ignoring negative correlations. This
final matrix defined the high-resolution functional connectivity matrix (FCHR).

FSL functions were used to quantify the individual subject structural connectivity
matrices. First FSL BEDPOSTX was used to model crossing fibers, and subsequently the
probabilistic tractography was performed with PROBTRACKX to generate a #ROI X #ROI
matrix per subject. Matrices were normalized between 0 and 1 dividing each element
by their maximum. The average across subjects’ matrices was finally obtained, and only
the top 5% of higher weights were considered to create the high-resolution structural
connectivity matrix (SCHR), in agreement with previous studies®. For both functional and
structural matrices, the principal diagonal elements were set to zero to avoid ROI self-
connectivity interactions.

Low-resolution

Given a pair of macro-circuits MAC; and MAC; (with i#j), and the two sets of ROIs
belonging to them Ri={ROljs, ..., ROlin} and R={ROl}s, ..., ROlim}, where N and M are their
respective number of ROls, the average of all functional links in FC"R connecting the two
sets was defining the low-resolution functional connectivity matrix (FC'®), accounting for
the functional link between MAC;and MAC;, i.e.:

FCLR Z Z FCHR
N MaER beR

Notice that for FC® the principal diagonal has non-zero elements, representing the
internal connectivity within a given MAC, i.e.,

> S e
B (N -1)
aER bER;

Similarly, we built the low-resolution structural connectivity matrix (SC*®?), where the
MACs’ volumes (V;and V;) where now used for normalization, i.e.:
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and for diagonal elements:

Aa€ER; bER;

For the calculation of MAC; volume V, we summed the volumes of the corresponding
ROIs (set Rj) expressed as number of voxels.

COMPLEX NETWORKS ANALYSIS

By construction, all networks analysed were symmetric and weighted, with non-
negative values. We used MATLAB (Mathworks) to run different metrics implemented
in the Brain Connectivity Toolbox (https://sites.qoogle.com/site/bctnet/measures/list).
In particular, we calculated Node Strength, Eigenvector Centrality, Subgraph Centrality,
Betweenness Centrality and Clustering Coefficient. We analysed four types of
connectivity matrices, a sparse one with high number of nodes (SC"'R, 2566 nodes and
5% connectivity), a dense one with high number of nodes (FCHR, 2566 nodes and 45%
connectivity), and nearly-fully connected matrix with a small number of nodes (SC* 18
nodes, >95% connectivity) and a fully connected matrix with a small number of nodes
(FC'R 18 nodes, 100% connectivity). In order to use the same metrics across all networks
considered, we discarded the node degree (being this not meaningful in fully connected
conditions), the flow coefficient (being this not applicable in fully connected conditions),
the local efficiency (diverging computational time in dense conditions and high number
of nodes) and Pagerank Centrality (being this a variant of the eigenvector centrality).
Moreover, we also implemented the Average of First-Neighbour Connectivity (AFNC).
Given an adjacency matrix A of size NxN, and the Nodes’ Strengths (NS, i=1, ..., N), AFNS;
for each node is calculated as:

N
AFNS; = ﬁz Ajj * NS;
JE

To remove the potential bias introduced by ROIS with higher white or grey matter
influence, for each individual partial volume estimates of white matter and grey matter
were estimated using FSL FAST tool®. For each functional ROI the average white and
grey matter partial volume estimates from the group average were computed. We used
Spearman partial correlation to calculate the correlation between structural (functional)
centrality and FirsT while regressing out white (grey) matter partial volume estimates
per ROI or per MACs (considering the average across the ROls within eachj MAC), in the
case of low- and high-resolution networks respectively.

The difference in neurogenesis time between two ROIs or MACs was defined as AFirsT.
In regard to the average connection probability and weight between nodes as function
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of difference in neurogenesis time AFirsT (see fig. 2), the matrix representing AFirsT for
pairs of ROIs (AFirsTHR) was first computed according to:

AFirsTAR = FirsT, — FirsT,

where (a,b) is pair of ROIs . Similarly, it was calculated the matrix for the low-resolution
networks’ case for pairs of MACs (AFirsT'R). Note that by construction AFirsT"R and
AFirsTR are antisymmetric. In the case of the high-resolution networks, the Spearman
correlation of connection probability and average link weight as function of AFirsT was
calculated only considering non-negative elements of AFirsTH? and the correspondents’
elements in the SCH® (FC"R; note that the same results would be obtained for the non-
positive case). Being F the set of elements in the matrix satisfying the condition
AFirsTHR=D (with 0<=D<=max(AFirsT)=26 days), the structural (functional) connection
probability for AFirsT=D was calculated as the fraction of existent links out of the set F
in the adjacency matrix SCHR (FCHR). Similarly, for the same AFirsT=D and set F, the
average link weight was calculated from the adjacency matrix SCR (FCHR) on the existent
links. In the low-resolution case, since SC'® and FC'® are not sparse matrix and have a
connectivity density above 95%, only the link weight was calculated as function of
AFirsT. Similarly to the high-resolution networks’ case, the Spearman correlation
between the links’” weights and AFirsT was calculated on the non-negative links of the
SC'R (FC'R) and the correspondent elements in (AFirsTR).

GENETIC FINGERPRINT OF BIRTHDATE CIRCUITS

To investigate genetic fingerprints of birthday circuits, we used the transcriptome
dataset from Allen Human Brain Atlas®”.%®, The AHBA provides whole-brain genome-
wide expression values for 20,737 protein-coding genes extracted from 3,702 brain
samples spatially distributed throughout the brain of six human post-mortem brains.
Using brain sample information, brain maps representing the spatial distribution of each
gene in the 18 circuits was generated based on recent recommendations® 70 i)
expression values from multiple probes were averaged; ii) each sample was mapped to
one of the 18 circuits atlas. Samples falling outside were mapped to the nearest circuit,
if this was closer than 3mm; iii) for each individual, median expression values across all
samples mapped to the same circuit were calculated; iv) a group expression map was
computed by calculating the mean of the expression values of the six individual donors.
This approach was repeated to generate another expression atlas containing 90 brain
regions based on the 68 cortical regions of the Desikan-Killiany atlas, 16 subcortical
regions from freesurfer, cerebellum, brain stem, locus coeruleus and dorsal raphe
nucleus. This 90 regions’ atlas was used to asses genetic associations of structural and
functional organization of the brain.

To search the underlying genetic fingerprints of both microcircuit EED and brain
functional and structural eigenvector centrality a combined score for each of the 20,737
protein-coding genes was computed.

_ TeEp,18(9) — Tscc00(9) + Treec,00(9)
3

r(9)
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The score r for a given gene g is the average Spearman correlation between the
expression of gene g with EED in 18 regions 1zgp 1g(g), with structural connectivity
centrality in 90 regions 7scc90(g) and with functional connectivity centrality in 90
regions 7rcc 90(g). The sign of the spearman correlation of structural connectivity was
inverted as it follow and inverse pattern compared to EED and functional connectivity.
Genes with a score >1.64 standard deviation from the obtained distribution were used
for further analyses (r>0.4389; 787 genes).

An overrepresentation analysis was computed to find common functional annotations
in the obtained gene list. Gene set enrichment was computed for biological processes
and cellular component annotations from Gene Ontology using PANTHER13.1
(http://www.pantherdb.org/) and Fisher’s exact test with FDR correction to perform the
statistical testing (p value < 0.05). Additionally, Metascape’ was used to construct an
annotation-to-annotation network. Terms with a p-value < 0.01, a minimum count of 3,
and an enrichment factor > 1.5 were grouped into clusters based on their membership
similarities. P-values were calculated based on the accumulative hypergeometric
distribution, and g-values using the Banjamini-Hochberg procedure to account for
multiple testings. Kappa scores were used as the similarity metric when performing
hierachical clustering on the enriched terms, and sub-trees with a similarity of > 0.3 were
considered being a cluster. The most statistically significant term within a cluster was
chosen to represent the cluster name. To capture the relationships between the terms
the survived enrichment terms were rendered as a network plot, where terms with a
similarity > 0.3 were connected by edges. The terms in clusters with a g < 0.005 were
chosen, with the constraint that there are no more than 15 terms per cluster and no
more than 250 terms in total. The network was visualized using Cytoscape’?, where each
node represents an enriched term and is colored first by its cluster ID.

In relation to genetics and neurological diseases, the full gene lists related to Epilepsy,
Autism, Parkinson’s and Alzheimer’'s disease have been downloaded from
www.genecards.org and https://www.ebi.ac.uk/gwas/ (GWAS). In the case of the
Genecards database, the relevance score has been included in our study. For a detailed
definition of  relevance  score in relation to a disease  see
https://www.genecards.org/Guide/Search.

The analysis of distribution of the genes from the GWAS Catalog has been performed in
interval of five percentiles. Enrichment for GWAS Catalog genes in the outermost
percentiles vs the rest of the distribution has been tested via binomial distribution.

In relation to fig. 5, the lists of genes from the Genecards and from the GWAS list with a
correlation >1.64 standard deviation (see vertical black broken lines in fig. 5 A) are
reported as supplementary tables, with information on structural and functional
correlation (value, rank and percentile), and relevance score (value, rank and
percentile).
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Legends

Figure 1. From circuits’ embryogenic age to brain networks and transcriptomics. (A)
Sagittal schemes of the early embryonic human brain; left scheme represents the
neuromeres and fundamental regions of development; right scheme displays the
location of the 18 MACs within the early embryonic human brain colour-coded according
to their FirsT. (B) Scheme of the neuroimage analysis pipeline. Brain networks were
reconstructed from healthy adult subjects scanned with MRI at 7T within the HCP
initiative. For each subject, the structural and functional networks were reconstructed
using respectively probabilistic tractography and resting-state activity. For every pair of
ROIs (total 2566 ROIs), the structural connectivity matrix represents the putative number
of fibers connecting them, while the functional connectivity matrix reports the
correlation in their activity as revealed by the BOLD time series. The average across
subjects were used as final representative brain networks (see Methods). From the 2566
ROIs” matrices, the 18 MACs’ networks were reconstructed and represents for each pair
of MACs the average links between the ROIs forming them (see Methods). To identify
patterns between networks’ topology and neurogenesis, the correlation between the
nodes’ metrics (centrality or segregation) and embryonic age was calculated. (C) Brain
transcriptome data from AHBA dataset (see methods) was used to search for protein
coding genes with a high similarity between its spatial brain expression and embryonic
age. Functional annotations of the obtained genes were further computed using
overrepresentation analysis to find significantly associated biological processes and
cellular components associated with embryonic age.

Figure 2. Scatter plots of nodes’ centrality/segregation, links’ probability/weight, vs.
FirsT, in the high and low resolution structural-functional networks. (A) Scatter plots
of the nodes’ centrality (each row corresponds to a different metric specified on the left)
and segregation (bottom row) as a function of the embryonic age. Red and blue colours
mark respectively the structural and functional cases. First and second columns from left
represent as violine plots the results for the 2566 ROIs case where the mean of each
group (i.e. ROIs within a MAC) is plotted in black, while the third and fourth columns
represents the 18 MACs’ case. (B) Scatter plots of the link weights (left y-axis) as function
of difference of first neurogenic birthdate. Colours and columns represent the same cases
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as in panel A. In the 2566 ROIs case, the violine plots show the link weight distributions
while the solid blue/red lines plot the average values. Black solid lines show the
exponential (linear) fit on the average values for the structural (functional) case. The link
probability is represented by the right y-axes and displayed as dots, and the broken black
line show the exponential (linear) fit for the structural (functional) case.

Figure 3. Visualization of brain connectivity and first neurogenic birthdate. (A) The
glass brain maps of the eighteen MACs represents in colour codes the FirsT (Al; see
colour-bar on the left) and the z-score (see colour-bar on the right) of the eigenvector
centrality for the SC'® (A2) and the FC'® (A3). (B) Linear temporal representation with
arches of the MACs structural connectivity for the earliest (B1) generated MAC (Locus
Coeruleus, FirsT 28), for a representative mid-term (B2) generated MAC (Hippocampus,
FirsT 40) and the latest (B3) generated MAC (Occipital Cortex, FirsT 54). The x-axis
represents the developmental time along the several FirsT, where the different MACs are
located according to their FirsT. Note that Basal Ganglia and Cerebellum are overlapped
since their first neurogenesis coincides at day 36. The thickness of top black arches is
proportional to the link weight between the MACs as extracted from the 18-nodes
adjacency matrix. Broken black lines mark the presence of connections but with very
small weight (i.e. below the lowest threshold for visualization of solid lines).

Figure 4. Transcriptomic of brain circuits according to embryogenic age. (A) Mean
spatial similarity between 20,737 protein-coding genes with 18 circuits time of birth,
structural connectivity centrality projected to 90 regions and functional connectivity
centrality projected to 90 regions was computed. (B) 787 genes from the positive tail
were used to compute overrepresentation analysis for biological processes and cellular
component annotations. (C) A network analysis of biological process and cellular
component terms was computed. Different colours represent different annotation
clusters and the edges the kappa score representing number of common genes in the
functional annotations. Scatterplots displaying the mean gene expression of the genes
related to brain development with time of birth and functional and structural
connectivity centrality are displayed.

Figure 5. Correlations between genes’ transcriptomic and hubness in relation to
autism, epilepsy, Parkinson’s and Alzheimer’s. For each gene the spatial expression in
the brain has been correlated to the spatial map of the eigenvector centrality (note that
given the subsampled brain transcriptomics, ninety brain regions were considered, see
Methods). A Probability distribution of correlations (blue histogram, left axis) between
transcriptomics (20787 genes) and structural (A1) - functional (A2) eigenvector
centrality. The relevance score of the genes listed for each disease (according to
GeneCars.org, see Methods) has been plotted with black dots (right axis). Red dots mark
the relevance scores for gene reported for each given disease in the GWAS dataset (see
Methods). Vertical broken lines highlight the +/-1.64 standard deviation range. Green
labels and arrows mark representative GWAS genes with top relevance scores beyond
the highlighted 1.64 standard deviation range. B For each disease, the count of related
genes listed by the GWAS in 5 percentiles intervals of the correlation distribution (blue
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histogram of panel A) is plotted (red line and dots). The threshold for p<0.01 is plotted
as a broken horizontal black line. Black arrows mark the extremities of the correlation
distributions with significant higher number of GWAS-genes, and related p-value. B1 and
B2 refers respectively to structural and functional eigenvector centrality. Note that
legends are gray-shaded.

Table 1 Developmental information of the human brain macro-circuits under research.
The table includes the list of 18 MACs, the developmental brain region from which each
MAC derives, the main anatomical structures each MAC comprises within the brain,
information about the earliest stage at which neurogenesis (FirsT) is observed or
predicted in the human brain and other mammalian species, and the number of ROIs
obtained in each MAC.

Table 2: correlation between nodes’ centrality/segregation, and FirsT for the SCNs and
FCNs. The partial Spearman correlation regressing out the white matter ratio per
ROI/MAC is reported with its associate p-value. Not significant (p>0.05) or low
correlations (| SP-pCorr|<0.15) are marked with an asterisk.
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Table 1
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development|
al brain area

Circuit

fMRI Comprised
structures

Earliest stage|
in human
(translated)

Earliest stage
in other
species

Source

Observations

ROls #|

Rhombencephal

Rat - Soon before

Altman and Bayer, 1980a,b,c;

Likely one of the earliest generated

pericalcarine cortex

Locus Coeruleus Locus Coeruleus 28 . N nucleus. Noradrenergic neuronsare 2
on E12; Mouse - E9 Steindler and Trosko, 1989 the earliest-born within the LC
Brainstem neurogenesis starts
much earlier than in the rest of the
Rlopbalicapha Medulla Oblongata Repstancliis bl 31 Rat - Soon after 12 Altman and Bayer, 1980a Rl However we CPUId (R 40
on oblongata segment its many different
compartments by fMRI and so it
appears fused in one single circuit.
Superior colliculus, inferior Bayer et al., 1995; Substantia nigra pars reticulatais
Mesencephalon Midbrain colliculus, tegmental 32 Mouse - E10.5 Achi " N the earliest mesencephalic nucleus| 23
" H chim et al., 2012 3
midbrain to start neurogenesis
Lateral hypothalamic nuclei (lateral
Seconary Hypothalamus, mammilary Rat - E12; Altman and Bayer, 1978a,b; hypothalamic nucleus, lateral
Hypothalamus o 34 Macaque - E33; Eerdenburg and Rakic, 1994; preoptic area and lateral
Prosencephalon bodies . .
Cat - E21 translatingtime.org mammilary bodies) start 18
hypothalamic neurogenesis at
. translatingtime.org (Workmanet | Unique segmentation and ROl
Telencephalon Olfactory Olfactory Cortices 34 Mouse E11 al., 2013) identification with Hypothalamus
Rhombencephal . ) Neuroger!esls in the Raphe nuclei
5 on Raphe Nuclei Raphe nuclei 35 Rat E12 starts in the Raphe Magnus 3
nucleus
. Accumbens starts neurogenesis at
Telencephalon Basal Ganglia Caudats JRulamer 36 LITER= =, Brand and Rakic, 1980 E38 in macaque; Striatum and 77
Accumbens, Septum Macague - E38 5
globus pallidus start soon after.
Earliest neurons are projection
Rhombencephal Cerebellum Cerebellar cortex, deep 3% Mouse E11; Miale and Sidman, 1961; Altman neruons of the deep cerebellar 275
on cerebellar nuclei Rat- E13 and Bayer, 1978c; Leto et al., 2006 nuclei, followed by Purkinje
neurons.
Telencephalon Entorhinal Entorhinal cortex 37 Rat - soon after E14| Bayer, 1980a Neurogengsls SIS ea"'ef fofottiey 11
parahippocampal cortices
Neurogenesis starts with
. . q . | GABAergic populations of central
Telencephalon Amygdala Palial amygdala, subpaliial 38 Mouse E11 T AR, e and medial nuclei, followed by the 8
amygdala Soma et al., 2009 .
glutamatergic neurons of the baso-
lateral complex
Earliest neurons occupy the
i superficial and deep layers of the
Telencephalon Hippocampus Amon horn, Dentate gyrus 40 Rat E14.5 Bayer, 1980a Ammon’s hom (CA1 to CA3), and 21
the hilus
Inferred from translatingtime.org
Telencephalon Posterior cingulum Posterior cingular cortex 42 Rat E14.5 translatingtime.org Earlier than the anterior cingulate 22
cortex
Includes subiculum and
Parahippocampal . parasubiculum. Unique
Telencephalon cortices Parahippocampal cortex 44 Rat E15 Bayer, 1980a lsegmentation and RO identification
with Insula 107
First insular neurons occupy the
Telencephalon Insula Insular cortex 44 Rat E15 Bayer, 1986 dep layers of the ventral agranular
insular cortex.
First Layer VI neurons in the
= 3 Caudal Anterior Cingulate, anterion cingulate SHIEEE
Telencephalon |Anterior Cingulate cortex| R 3 3 ’ 45 Macaque - E40 Granger et al., 1995 revelaed with [3H]-thymidine 37
ostral Anterior Cingulate A N
injection at E40 in the macaque
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Several thalamic nuclei (VB, VE,
o Thalamic nuclei: LP, VL, LGN, PO, MGN and LP) start
Diencephalon Thalamus VPL, LGN, MGN, Pulvinar, 46 Rat - E14 Altman and Bayer, 1979 neurogenesis at E14in 1he it 28
brain.
Caudal middle frontal, Neurogenesis in the cortex starts
lateral orbito frontal, medial synchronously throughout all
orbito frontal, paracentral, cortical areas. The earliest-
Telencephalon Frontal cortex pars opercula_ris, pars 48 generaleq conical populations are 719
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precentral, rostral middle marginal zone and the subplate
frontal, frontal pole and neurons of layer 6b. Most of these
superior frontal cortices neurons die early after birth, which
Inferior parietal, M ) is why we considered the early
A postcentral, precuneus, Macaque - E40; " Rakic, 2002; . generation of deep cortical layers
[Slencephalon Raretaliconiex superior parietal and 20 Ferret - E30; ReilolandiBonell ?011' as the onset of a functional cortical| °°%
5 5 Charvet, 2014; 3
supramarginal cortices Mouse - E11.5 ot s ey neurogenesis.
Banks of the Superior ransatingume.orq In this layers, there is a gradient of
Temporal Sulcus, fusiform, neurogenesis starting first at the
Telencephalon Temporal cortex inferior temporal, superior 52 rostral pole of the cortex, and 384
temporal, and transverse finishing last at the caudal regions.
temporal cortices In macaque, frontal cortex starts at
Cuneus, Lateraloccipital E45, and occipital congx starts at
Telencephalon Occipital cortex cortex, lingual cortex, 54 e Sinhuman welestimaielils 289

gradient as a 2-day difference

between cortical lobes.
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Table 2

ROIs - 2566 nodes

MACs — 18 nodes

METRICS hr-SCN hr-FCN Ir-SCN Ir-FCN
SP-pCorr p-val SP-pCorr p-val SP-pCorr p-val SP-pCorr p-val
Strength (NS) -0,25 0 0,23 0 -0,77 0,0003 -0,47 0,06*
Eigenvector (EC) -0,44 0 0,26 0 -0,81 0,00007 -0,51 0,035
Pagerank (PC) -0,17 0 0,20 0 -0,59 0,01 -0,46 0,06*
Subgraph (SC) -0,29 0 0,26 0 -0,74 0,0007 -0,54 0,02
Betweenness (BC) -0,077* 0,00008 0,12 310-09 -0,58 0,015 -0,057 0,83*
1st-neighbour (AFNS) -0,27 0 0,28 0 -0,7 0,002 -0,83 410-05
Clustering (CC) 0,002 0,9* 0,33 0 -0,77 0,0003 -0,37 0,14*
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Figure 4
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