
Pisces: A cross-modal contrastive learning approach to synergistic
drug combination prediction

Jiacheng Lin∗1, Hanwen Xu∗2, Addie Woicik2, Jianzhu Ma3, and Sheng Wang†2

1Department of Automation, Tsinghua University, Beijing, China
2Paul G. Allen School of Computer Science and Engineering, University of Washington, WA

3Institute for Artificial Intelligence, Peking University, Beijing, China.

Abstract

Drug combination therapy is a promising solution to many complicated diseases. Since
experimental measurements cannot be scaled to millions of candidate combinations, many
computational approaches have been developed to identify synergistic drug combinations.
While most of the existing approaches either use SMILES-based features or molecular-graph-
based features to represent drugs, we found that neither of these two feature modalities
can comprehensively characterize a pair of drugs, necessitating the integration of these two
types of features. Here, we propose Pisces, a cross-modal contrastive learning approach for
synergistic drug combination prediction. The key idea of our approach is to model the
combination of SMILES and molecular graphs as four views of a pair of drugs, and then
apply contrastive learning to embed these four views closely to obtain high-quality drug pair
embeddings. We evaluated Pisces on a recently released GDSC-Combo dataset, including
102,893 drug combinations and 125 cell lines. Pisces outperformed five existing drug combination
prediction approaches under three settings, including vanilla cross validation, stratified cross
validation for drug combinations, and stratified cross validation for cell lines. Our case
study and ablation studies further confirmed the effectiveness of our novel contrastive learning
framework and the importance of integrating the SMILES-based features and the molecular-
graph-based features. Pisces has obtained the state-of-the-art results on drug synergy prediction
and can be potentially used to model other pairs of drugs applications, such as drug-drug
interaction. Availability: Implementation of Pisces and comparison approaches can be accessed
at https://github.com/linjc16/Pisces.

1 Introduction
Drug combination therapy is a promising solution to many complex diseases, such as breast cancer
[1–3], colorectal cancer [4, 5], Alzheimer’s disease [6], and diabetes [7, 8]. However, previous studies
have also pointed out the rareness of synergistic drug combinations [9–11]. Since experimentally
testing millions of candidate combinations is not scalable, there is a pressing need to develop
computational approaches to identify synergistic drug combinations [12–16].

We focus on cancer drug synergistic prediction and follow existing approaches [17] to form the
synergistic drug combination prediction problem as a triplet classification problem. Each triplet
consists of two drugs and a cancer cell line and will be classified into synergistic or not. Each
cell line is represented using its genomics features, such as gene expression and somatic mutation.
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A key technical challenge is to derive an effective representation for a pair of drugs. Simplified
molecular-input line-entry system (SMILES) sequences [18] and molecular graphs [19–21] are the
two major modalities for representing a drug. Both of them have strengths and limitations: SMILES
sequences are easier to embed by leveraging the recent progress in natural language processing,
but are ambiguous on drugs with complex structures; molecular graphs precisely characterize the
molecular information, but large graphs (i.e., large diameter) are often hard to embed [22]. This
dilemma is even more severe when we want to embed a pair of drugs since one might be better
represented using SMILES sequences and the other might be better represented using molecular
graphs. As we showed in the experiments, a simple concatenation of these two kinds of features
yields undesirable results.

To address this problem, we propose Pisces, a cross-modal contrastive learning approach for
drug synergy prediction. Our intuition is that the SMILES sequence modality and the molecular
graph modality complement each other, and thus should be integrated. To realize this intuition,
we have developed a cross-modal contrastive learning framework. Contrastive learning has recently
obtained great success in computer vision where an image is embedded closely to its augmentation
(e.g., the rotated review) [23–30]. However, contrastive learning has never been applied to pairs
of drugs since it is unclear what should be a proper augmentation. We propose to create four
augmented views for each drug pair based on the combination of the SMILES sequence and the
molecular graph modality. We hypothesize that these four combinations can offer a comprehensive
view of a drug pair, thus enhancing the drug synergistic prediction.

We evaluated our method on a recently published large-scale cancer drug synergy dataset GDSC-
Combo [9], which covers 102,893 drug combinations spanning over 63 drugs and 125 cell lines
[2]. We first observed a substantial discrepancy between the prediction performance by using two
different modalities. By contrasting these two modalities, Pisces substantially outperformed five
existing drug combination prediction approaches under vanilla cross validation setting, stratified
cross validation for drug combinations setting, and stratified cross validation for cell lines setting.
Finally, we found that two drugs from the top performed drug pairs favored different modalities,
again confirming the effectiveness of integrating SMILES and molecular graph modalities. Despite
the large amount of triplet combinations that have been measured in GDSC-Combo [9], it still only
covers 20.7% of all possible triplet combinations. Pisces offers an in silico solution to massively
generalize these in vitro measurements. In addition to drug synergy prediction, Pisces can be
broadly applied to other applications that require the modeling of drug pairs, such as drug-drug
interaction prediction, as well as further integrating other drug modalities.

2 Methods
2.1 Problem setting
We model the synergistic drug combination prediction problem as a classification task. Given the
drug set D and the cell line set C, each drug combination in the dataset is denoted as a triplet
(dA, dB, c)i, where dA ∈ D and dB ∈ D represent possible pairs of two different drugs, and c ∈ C
denotes the cell line. The prediction of drug synergy is modeled as:

ŷi = fθ((dA, dB, c)i), (1)

where fθ : D×D×C → [0, 1] is a learned mapping function with θ as the learnable parameters. The
output ŷi ∈ [0, 1] is the probability of the synergistic drug combination prediction. For each drug
combination, the binary synergy label yi with a value of 1 indicates synergy, otherwise no synergy.
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Figure 1: Flowchart of Pisces. Pisces considers both the SMILES sequence and the molecular
graph of each drug. It first uses Transformer to embed SMILES sequences and graph neural
networks to embed molecular graphs. Pisces embeds each cell line by aggregating neighbors of
over-expressed genes in the protein-protein interaction network. It then concatenates the SMILES
embedding and the graph embedding between two drugs, which creates four different views for each
drug combination. These four different views are treated as augmentations in contrastive learning.

We aim to find the best fθ to enable the predictions on test set {ŷi}test to approximate the labels
{yi}test. Moreover, following the previous works [12, 14–16], we view the prediction probability
greater than 0.5 as synergy, otherwise no synergy.

Furthermore, for drug representations, we define the SMILES features and molecular graph
features of drugs as s and g. Each SMILES string can be represented as s = (s1, . . . , sl) where s
denotes the tokens and l denotes the string length. Molecular graph features can be represented
as g = (V, E), where V = (g1, . . . , gn) are the n atoms in the molecular graph and E are the bonds
between atoms. The cell line features are provided as a fixed-size vector c ∈ RM for M genes, with
each dimension representing transcripts per million (TPM) for one gene. Since Pisces uses both
kinds of features, the input would be (sA,gA, sB,gB, c)i.
2.2 Overview of Pisces
We propose a cross-modal contrastive learning approach Pisces, as shown in (Figure 1). Pisces
makes full use of the complementary information in the structural and SMILES-based inputs. A
graph neural network [31] and Transformer [32] model are applied to encode each drug’s graph-
based features and SMILES-based features respectively. Pisces also encodes cell line features
by assembling over-expressed genes and their associated neighbors with a Multi-layer Perceptron
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(MLP) [33]. We then concatenate the drug feature vectors and cell feature vectors to produce the
drug combination representations. We introduce a contrastive learning loss term to integrate the
feature representations. Finally, Pisces uses a binary classifier to predict the drug synergy label.
2.3 Embedding drugs using SMILES-based features
Transformer has obtained great success in processing string data, such as natural languages [34, 35],
combinatorial optimization [36–38], protein sequences [39, 40] and molecular features [22, 41]. We
first encode the SMILES string using a Transformer [32] model. Specifically, we used the encoder
architecture with multi-head self-attention modules. Each encoding layer includes one self-attention
module and a feed forward network (FFN). Skip-connections are added to each module to build up
the residual blocks [42]. The special token [CLS] is added to the beginning of each SMILES string
s. We use the contextualized embedding corresponding to [CLS] from the output as the SMILES
representation and denote the SMILES embeddings of drug A and drug B as zAs and zBs .
2.4 Embedding drugs using molecular graph-based features
The molecular graph-based feature is encoded with a DeeperGCN encoder [31], which is stacked
by identical layers. It takes a set of node vectors and an adjacency matrix as input and propagates
information between nodes based on the graph structure [43]. In each layer, the output from the
previous layer is fed and processed sequentially by a layer normalization module [44], a nonlinear
ReLU module [45], and a residual graph convolutional block where each node will aggregate both its
neighbor edge and neighbor nodes with an aggregation module. Moreover, the aggregation module
comprises the concatenation of maximize, minimize and average pooling. We denoted the output
node vectors as (g̃1, . . . , g̃n). Then we calculated molecular graph-based embeddings using mean
pooling and max pooling.

zAg = Concat(MeanPool((g̃A1 , . . . , g̃
A
n )),MaxPool((g̃A1 , . . . , g̃

A
n ))) (2)

zBg = Concat(MeanPool((g̃B1 , . . . , g̃
B
n )),MaxPool((g̃B1 , . . . , g̃

B
n ))) (3)

Finally, for drug A and drug B, we produce the SMILES-based representations zAs and zBs and the
molecular graph-based representations zAg and zBg .
2.5 Embedding cell line features using gene expression level and PPI topological

relationships
Based on the TPM, we set a threshold T and determine an over-expressed gene set G̃ = {g =
1, . . . ,MH : cg ≥ T}. Then, we find the k nearest neighbors for each gene g ∈ G̃ in the protein-
protein interaction (PPI) [46] network, defined as Nk(g), and finally compute a candidate set
Ĝ =

⋃
g∈G̃{g} ∪ Nk(g). We then produce the embeddings of cell line features as

zc = MLP(Concat(MeanPool({cg|g ∈ Ĝ}),MaxPool({cg|g ∈ Ĝ})), (4)

where cg is a learnable embedding for each protein.
2.6 Improved synergistic prediction using contrastive learning
Contrastive learning has been broadly used in both supervised and unsupervised learning [23, 25, 47].
The key idea behind contrastive learning is to push positive sample pairs to be close within the
embedding space while pushing negative pairs far away from each other. In this formulation,
positive pairs are instances defined to be similar in some important way, while negative pairs keep
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the space from collapsing to a single point. By defining positive pairs as two triplets from the
same drug combinations while negative pairs as triplets from different drug combinations, we can
apply contrastive learning to integrate different features of the drug combination learning task. In
particular, we randomly select one type of feature embedding (SMILES or molucule graphs) for
each drug, i.e.,

zi(u, v) = (zAu , zBv , c)i u, v ∈ {s, g} (5)

where subscript s and g represent modalities of SMILES and molecule graphs. We use zi(u, v) and
zi(u′, v′) to denote two different random choice of the i-th drug combination in one training batch.
We choose infoNCE [48] as the contrastive learning loss in our study, defined as

L(infoNCE) = −
nbatch∑
i=1

log(
exp((zi(u, v))T · zi(u′, v′))∑nbatch

j=1 exp((zi(u, v))T · zj(u′, v′))
), (6)

where nbatch denotes the number of samples in one training batch. Finally, Pisces uses one linear
layer and MLP layer Pψ to generate the output ŷ, trained with binary cross entropy loss for this
classification task as

ŷi = σ(Pψ([Linear(zAs , zAg ),Linear(zBs , zBg ), c])) (7)

L(CE) = −
nbatch∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)). (8)

where σ represents the Sigmoid [49] activation function. To better enhance the consistency between
different types of features, we introduce an additional auxiliary loss. First, we define the auxiliary
score as the following:

ỹi = σ(Mean[Pψ(zi(s, s)),Pψ(zi(g, g))]), (9)

where σ denotes the Sigmoid activation function. Therefore the auxiliary loss is defined to minimize
between the auxiliary scores and classification outputs:

L(Aux) =

nbatch∑
i=1

(ỹi − ŷi)
2, (10)

Finally, we combine infoNCE loss in (6), classification loss in (8) and auxiliary loss in (10) as our
final cross-modal contrastive learning loss with λ1, λ2 as hyperparameters:

L = L(CE) + λ1L(infoNCE) + λ2L(Aux). (11)

3 Experimental settings
Dataset. We obtained a recently released drug combination dataset from Genomics of Drug
Sensitivity in Cancer (GDSC-combo) [9]. Since there are two replicates for each drug pair cell line
triplet, We first obtained the samples formulated by (Drug A, Drug B, cell line, synergy or not)
tuples by following the rule: for each triple (Drug A, Drug B, cell line) in the original dataset, we
view it as synergy if there exists one, otherwise no synergy. We excluded the samples that have a
combination of three or more drugs. Finally, we obtained 102,893 samples, including 63 drugs and
125 cell lines. We observed that this is a highly imbalanced dataset where only 5,362 samples are
synergistic. We evaluated three settings, including the vanilla cross validation (CV) setting, the
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stratified cross validation for drug combinations setting and the stratified cross validation for cell
lines setting. Specifically, in the stratified CV for drug combinations setting, drug combinations in
the test set have never been seen in the training set. Likewise, in the stratified CV for cell lines
setting, cell lines in the test set have never been seen in the training set. Moreover, PRODeepSyn,
GraphSynergy and Pisces share the PPI network which is obtained from the STRING database
[50] as in [14].

Comparison approaches. We compare Pisces to five existing drug synergistic prediction
approaches. PRODeepSyn [14] takes molecular fingerprints and descriptors for drugs as the
inputs. The molecular fingerprint is a 256-dimensional binary vector for each drug, representing
the existence of a set of predefined substructures [51]. Then drug descriptor is a 200-dimensional
real vector used in [52], representing molecules’ physical or chemical properties of interest, such as
lipophilicity or molecular refractivity. Both the fingerprints and the descriptors are obtained from
RDKit [53]. Cell lines are embedded using Graph Convolutional Networks [54] by integrating the
protein-protein interaction (PPI) network with the gene expression vector. Finally, PRODeepSyn
then used an MLP to predict drug synergy. AuDNNsynergy [12] utilizes the same features as
those in PRODeepSyn. Different from PRODeepSyn, it trains three autoencoders to predict drug
synergy. DeepSynergy [13] takes molecular fingerprints, descriptors and drug-target interactions
for drugs and Transcripts Per Million (TPM) for cell lines as the inputs. All these features are
then fed into an MLP to predict drug synergy. GraphSynergy [15] utilizes Graph Convolutional
Networks to extract drug and cell line features from the PPI network. These features are then fed
into an MLP to predict drug synergy. DeepDDS [16] takes molecule graph for each drug and TPM
for cell lines as the inputs. It then uses an MLP to predict drug synergy. Notably, these comparison
approaches often relies on very different features that might not be available in any dataset. The
original implementations of these methods often use hard-coded or pre-processed features that
cannot be generalized to GDSC-combo. The details of pro-processing are also not comprehensively
revealed and make it hard to reproduce their results. Therefore, we have re-implemented many
of them and use the same feature pre-processing to increase the usability for fair comparison. We
have made our implementations of all five comparison approaches available for future studies.

Model architecture. We utilized DeeperGCN and Transformer to embed drugs. Specifically,
DeeperGCN is stacked by 6 layers of the graph convolutional blocks, where the dimension of the
hidden size was set to 384. The hidden size, the FFN size, and the number of Transformer encoder
layers was set to 512, 1024 and 6. The number of the attention heads in Transformer was set to
4. The dropout rates of DeeperGCN and Transformer were both 0.1. When determining over-
expressed genes, the threshold T was set to 400. For the comparison approaches, we followed the
original papers for the model architectures and the training details.

Training details. We trained our models using the Adam [55] optimizer with β1 = 0.9, β2 =
0.98, ϵ = 10−6, a weight decay of 0.01 and a batch of 128 for 100,000 training steps. We used a
linear decay scheduler with 4,000 warm-up steps. We ran a grid search within [1e− 5, 5e− 5, 8e−
5, 1e− 4, 5e− 4] for the learning rate. λ1, λ2 were both set as 0.01.

Metrics. Since our dataset is highly imbalanced, we consider the following four metrics for
evaluation: balanced accuracy (BACC) which is the average of sensitivity (true positive rate)
and specificity (true negative rate), area under the precision-recall curve (AUPRC), F1 score and
Cohen’s Kappa statistic. All metrics are higher the better.
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Figure 2: Comparison between SMILES-based features and molecular-graph-based
features. a-d, Scatter plots comparing the performance of using SMILES-based feature and
molecular graph-based feature in terms of BACC (a), AUPRC (b), F1 (c), KAPPA (d). Each
point is a drug. Shaded areas represent 95 % confidence intervals of a linear regression line. FVE
stands for fraction of inter-species variance explained. p-values are obtained using F-test.

4 Results
4.1 SMILES-based and molecular-graph-based features are complementary for

drug synergy prediction
Pisces is developed based on the hypothesis that SMILES-based features and molecular-graph-
based features complement each other, thus an integration of them might enhance the drug synergy
prediction. Therefore, we first sought to validate this hypothesis by examining the performance of
using either SMILES-based or molecular-graph-based features. Despite the consistent performance
between these two types of features in (Figure 2), we also observed that they showed substantial
performance discrepancy on many drug combinations. For example, drug Sapitinib and drug
Entinostat obtained a KAPPA score of 0.7897 when using SMILES-based features, while the
KAPPA score drops to 0.3691 when using molecular-graph-based features. The number of drug
combinations that can be better predicted by the SMILES-based features and the molecular-based
features is comparable, necessitating the importance of considering both features.
4.2 Pisces achieves substantial improvement on drug synergy prediction
After validating our hypothesis that molecular graphs and SMILES provide complementary information,
we next sought to compare Pisces to other drug synergy prediction approaches under three cross
validation settings. On vanilla cross validation, we found that Pisces substantially outperformed
all comparison approaches on all four metrics (Figure 3). For example, Pisces obtained a 0.4474
KAPPA score, which is 21.05% higher than the best comparison approach. Since Pisces is the only
approach considering both types of drug features, the prominent performance of Pisces confirms
the effectiveness of contrasting molecular-graph-based features and SMILES-based features.

The promising performance of Pisces on vanilla CV motivates us to further evaluate it in two
more challenging settings. We first examined the stratified CV for drug combinations setting
where all test drug pairs have never been seen in the training set (Figure 3). We found that
the performances of all approaches dropped, confirming that this is a more challenging setting
compared to vanilla CV. Nevertheless, our method still outperformed all comparison approaches
and the improvement is even larger on this challenging setting than that on the vanilla CV setting.
We attribute this improvement to Pisces’ consideration of both types of features, which offers us a
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Figure 3: Comparison on drug synergy prediction. a-d, Bar plots comparing Pisces to five
existing approaches under vanilla cross validation, stratified cross validation for drug combinations
and stratified cross validation for cell lines, in terms of BACC (a), AUPRC (b), F1 (c), KAPPA
(d). GraphSynergy cannot be applied to the stratified cross validation for cell lines setting. Since
DeepSynergy predicts all drug combinations as no synergy in stratified cross validation for drug
combinations and cell lines setting, the F1 and KAPPA values are zero there.

more robust drug combination representation that can be generalized to unseen drug combinations.
Finally, we evaluated the second challenging setting of stratified CV for cell lines, where all

test cell lines have never been seen in the training set (Figure 3). This setting is much closer
to real-world clinical applications since it can perform predictions for a new patient who has not
been treated by any drug combinations. We again found that the performance of all methods
dropped substantially. Nevertheless, Pisces still achieved the overall best performance, suggesting
its applicability in real-world applications. Collectively, the prominent performance of Pisces on
three different settings demonstrates the importance of integrating molecular-graph-based and
SMILES-based features and the effectiveness of our cross-modal contrastive learning framework.
4.3 Pisces obtains larger improvement on drug combinations that favor different

modalities
After observing the promising performance of Pisces, we then sought to understand what kind of
drug combinations can obtain larger improvement using Pisces. We first visualized the embedding
space of all test triplets by Pisces and two best-performed comparison approaches DeepDDS and
GraphSynergy (Figure 4). We found that Pisces obtained a more visible pattern contrasting
synergistic and non-synergistic triplets, further validating the promising performance of our method.
We also observed a clear pattern on cell line OCUB-M, where our method achieved a large improvement
compared to other approaches, suggesting the effectiveness of contrasting two types of modalities.

Next, we studied whether Pisces can obtain large improvement on a drug pair where two drugs
favored different modalities. For each single drug, we determine the modality it favors using the
same analysis as in (Figure 2). If both drugs in a combination favor the same modality (i.e.,
SMILES or molecular graph), we denote it as same in (Figure 5a). We found that drug pairs that
favor different modalities have substantially larger improvement by Pisces than those favor the same
modality, supporting our hypothesis that these drug pairs are relatively more challenging to model
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Figure 5: Performance analysis of Pisces. a, Box plot comparing the improvement of AUPRC
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drug combinations and other drug combinations. The improvement is calculated using the relative
improvement between Pisces and the best comparison approach in terms of AUPRC. d, Molecular
graphs of Vinorelbine and Linsitinib, on which Pisces obtained large improvements.

and our cross-modal contrastive learning approach can effectively embed them by integrating two
modalities.

Finally, we investigated if molecular-graph properties are also related to the improvement of
Pisces. We found that the 50 most-improved combinations by Pisces have significantly larger
graph diameter (p-value < 0.0023) and number of rings in the graph (p-value < 0.0091) (Figure
5b,c). For instance, the drug pair Linsitinib and Vinorelbine, which obtained a 211.87% AUPRC
improvements against the best comparison approach, have 31 graph diameter and 15 rings in
total(Figure 5d). Large and complicated graphs are often difficult to embed using graph-based
approaches. Pisces mitigated this issue by additionally considering SMILES-based features, thus
resulting in a better performance on these combinations.
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4.4 Ablation studies
Finally, we performed ablation studies to examine the importance of each component in Pisces
(Figure 6). We first examined the importance of cross-modal contrastive learning by comparing
Pisces to a baseline approach that used a simple concatenation to integrate molecular-graph-based
and SMILES-based features (Molecular graph and SMILES (w/o cl)). We found that our method
outperformed this approach on 11 out of 12 comparisons, indicating the effectiveness of contrastive
learning. Next, we investigated the importance of using both types of features by comparing Pisces
to a model that only uses molecular-graph-based features and a model that only uses SMILES-based
features. Cross-modal contrastive learning cannot be applied to these two models. We found that
Pisces substantially outperformed both methods, again confirming the importance of using both
types of features. Interestingly, we found that the simple concatenation-based approach is only
slightly better than these two models that only use one type of the features, further confirming the
effectiveness of our cross-modal contrastive learning framework.

5 Conclusion and future work
We have developed a synergistic drug combination prediction approach Pisces. Based on the
intuition that different drug combinations might favor different types of features, Pisces exploits
cross-modal contrastive learning to integrate SMILES-based features and molecular-graph-based
features. We have evaluated our method on a recently-published large-scale dataset GDSC-Combo
[9] and observed that Pisces substantially outperformed five existing approaches. In addition to
drug synergy prediction, our framework of contrasting different modalities can also be applied to
other drug combination tasks, such as drug-drug side effect prediction. In the future, we would
like to further improve Pisces by incorporating more drug molecule modalities, such as drug three-
dimensional structure, drug textual descriptions, and pharmacodynamics features.
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