

1 **The genomic landscape of contemporary western Remote Oceanians**

2

3 Lara R. Arauna^{1,*}, Jacob Bergstedt^{1,2,3,13}, Jeremy Choin^{1,4,13}, Javier Mendoza-Revilla^{1,5,13},
4 Christine Harmant¹, Maguelonne Roux^{1,6}, Alex Mas-Sandoval⁷, Laure Lémée⁸, Heidi
5 Colleran⁹, Alexandre François¹⁰, Frédérique Valentin¹¹, Olivier Cassar¹², Antoine Gessain¹²,
6 Lluis Quintana-Murci^{1,4,14,*}, Etienne Patin^{1,14,15,*}

7

8 ¹Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit,
9 Paris 75015, France

10 ²Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden

11 ³Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 171
12 77, Sweden

13 ⁴Chair Human Genomics and Evolution, Collège de France, Paris 75005, France

14 ⁵Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad
15 Peruana Cayetano Heredia, Lima, Perú

16 ⁶Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris 75015,
17 France

18 ⁷Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United Kingdom

19 ⁸Biomics Platform, Institut Pasteur, Paris 75015, France

20 ⁹BirthRites Independent Max Planck Research Group, Department of Human Behavior,
21 Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103,
22 Germany

23 ¹⁰Langues, Textes, Traitements Informatiques, Cognition (LaTTiCe), UMR 8094, CNRS,
24 Paris 75015, France

25 ¹¹MSH Mondes, UMR 8068, CNRS, Nanterre 92023, France

26 ¹²Oncogenic Virus Epidemiology and Pathophysiology Unit, Institut Pasteur, UMR 3569,
27 CNRS, Paris 75015, France

28 ¹³These authors contributed equally

29 ¹⁴Senior authors

30 ¹⁵Lead contact

31

32 *Correspondence: lrubioar@pasteur.fr (L.R.A.); quintana@pasteur.fr (L.Q.-M.);
33 epatin@pasteur.fr (E.P.)

34

35 **SUMMARY**

36 The Vanuatu archipelago served as a gateway to Remote Oceania during one of the most
37 extensive human migrations to uninhabited lands, ~3,000 years ago. Ancient DNA studies
38 suggest an initial settlement by East Asian-related peoples that was quickly followed by the
39 arrival of Papuan-related populations, leading to a major population turnover. Yet, there is
40 uncertainty over the population processes and the sociocultural factors that have shaped the
41 genomic diversity of ni-Vanuatu, who present nowadays among the world's highest linguistic
42 and cultural diversity. Here, we report new genome-wide data for 1,433 contemporary ni-
43 Vanuatu from 29 different islands, including 287 couples. We find that ni-Vanuatu derive
44 their East Asian- and Papuan-related ancestry from the same source populations and descend
45 from relatively synchronous, sex-biased admixture events that occurred ~1,700-2,300 years
46 ago, indicating a peopling history common to all the archipelago. However, East Asian-
47 related ancestry proportions differ markedly across islands, suggesting that the Papuan-related
48 population turnover was geographically uneven. Furthermore, we detect Polynesian ancestry
49 arriving ~600-1,000 years ago to South Vanuatu in both Polynesian- and non-Polynesian-
50 speaking populations. Lastly, we provide evidence for a tendency of spouses to carry similar
51 genetic ancestry, when accounting for relatedness avoidance. The signal is not driven by
52 strong genetic effects of specific loci or trait-associated variants, suggesting that it results
53 instead from social assortative mating. Altogether, our findings provide insight into both the
54 genetic history of ni-Vanuatu populations and how sociocultural processes have shaped the
55 diversity of their genomes.

56

57 **Keywords:** Pacific, populations, migrations, admixture, genetics, cultural practices

58

59 **INTRODUCTION**

60 Vanuatu, an archipelago located in western Remote Oceania, is a key region for
61 understanding the peopling history of the Pacific. The cultural, anthropological and genetic
62 diversity of Vanuatu reflects three distinct phases of population movements. The first, which
63 started in present-day Taiwan ~5,000 ya, was associated with the spread of Austronesian
64 languages to Near and Remote Oceania [1-3]. The so-called Austronesian expansion led to the
65 emergence of the well-characterized Lapita cultural complex, which emerged in the Bismarck
66 Archipelago and reached Vanuatu ~3,000 ya [4-6]. Morphometric and ancient DNA (aDNA)
67 studies indicate that the Lapita people in Vanuatu carried East Asian-related ancestry,
68 supporting a connection with the Austronesian expansion [7, 8]. The second migration
69 occurred after the Lapita period, ~2,500 ya, and involved the arrival of Papuan-related
70 peoples who shared ancestry with contemporary Bismarck Archipelago islanders. aDNA
71 studies have shown that these migrations triggered a dramatic shift in genetic ancestry, from
72 the East Asian-related ancestry observed in first Remote Oceanians to the Papuan-related
73 ancestry that has remained predominant since then [9, 10]. Finally, it has been postulated that
74 “Polynesian outliers” from Vanuatu (i.e., Polynesian speakers living outside the Polynesia
75 triangle) are the descendants of migrations from Polynesia into western Remote Oceania [11,
76 12], a model that has received recent genetic support [13].

77 Although aDNA studies have revealed that ni-Vanuatu are descended from at least three
78 ancestral populations [9, 10, 13], whether the settlement process was uniform across the
79 multiple islands of the archipelago remains an open question. aDNA data indicate that
80 individuals dated to ~2,500 ya from Central and South Vanuatu carried largely different
81 proportions of East Asian-related ancestry [9, 10, 13], in line with either a unique population
82 turnover that was geographically heterogeneous, or separate admixture events between
83 different populations across islands. Furthermore, Vanuatu is the country with the world’s
84 largest number of languages per capita [14], which supports the view that languages have
85 rapidly diversified since the initial settlement and/or that the arrival of new groups to the
86 archipelago further increased linguistic diversity. Nevertheless, these questions have been
87 difficult to resolve because, to date, available ancient and modern DNA data from the region
88 have remained sparse [9, 10].

89 Here, we generated genome-wide genotype data for 1,433 contemporary ni-Vanuatu and
90 assessed their fine-scale genetic structure, in order to address central questions about the
91 settlement of western Remote Oceania: do all contemporary ni-Vanuatu derive their ancestry
92 from three populations only? Was the contribution of these three ancestral populations

93 different across the archipelago? Was the Post-Lapita shift to Papuan-related ancestry
94 heterogeneous across islands? In addition, the recent settlement of Vanuatu allows for the
95 study of how socio-cultural practices have shaped genetic diversity in humans over the past
96 ~3,000 years, in the form of sex-biased admixture, relatedness avoidance and non-random
97 mating [15-17]. We thus used the comprehensive set of population genomics data presented
98 here, which includes 287 male-female couples, to answer important questions relating to the
99 genetic history of a population that descends from diverse ancestral populations: Was
100 admixture sex-biased? Was admixture accompanied by language shifts? Has socio-cultural
101 structure influenced mating? Can residence rules and urbanization affect human genetic
102 structure?

103

104 **RESULTS**

105 **The Genetic Variation of Ni-Vanuatu is Spatially Structured.** To shed light on the genetic
106 make-up of ni-Vanuatu, we collected >4,000 blood samples from contemporary individuals
107 between 2003 and 2005, and genotyped a selection of 1,433 of these sampled individuals at
108 2,358,955 single nucleotide polymorphisms (SNPs). After merging with 179 high-coverage
109 whole genome sequencing data [18] and excluding 173 low-quality, duplicated or related
110 samples, a total of 1,439 ni-Vanuatu samples was included in subsequent analyses, including
111 those from 522 males and 917 females living in 29 islands and 179 different villages (Fig. 1A
112 and Table S1).

113 Principal Component (PCA) and ADMIXTURE analyses indicate that contemporary ni-
114 Vanuatu fall on a genetic gradient between East Asian-related and Papuan-related populations
115 (Fig. 1B and Fig. S1), supporting the view that their ancestry derives from these two
116 population groups. When projecting ancient samples from Vanuatu, we found that Lapita
117 individuals show higher affinity with present-day East Asian-related populations, whereas
118 Post-Lapita individuals are closer to Papuan-related populations, in line with a Papuan-related
119 population turnover occurring after the Lapita period [8-10, 13]. Furthermore, contemporary
120 ni-Vanuatu show high genetic similarities with individuals from the Bismarck Archipelago, in
121 line with the hypothesis that their Papuan-related ancestors originated from these islands [8-
122 10, 13, 18]. However, the extensive geographic coverage of the dataset presented here
123 enabled us to reveal substantial genetic substructure among ni-Vanuatu islanders. PCA
124 showed that genetic variation in ancient and contemporary individuals from Vanuatu is
125 explained by two contiguous but distinct groups that broadly reflect geography (Fig. 1C and
126 Fig. S2). When considering the number of ancestral components that is most supported by
127 ADMIXTURE ($K_{ADM} = 9$), populations from different islands also show different ancestral
128 components (Fig. S1). These results reveal that contemporary ni-Vanuatu show substantial
129 genetic differentiation (Fig. S3), which could result either from different admixture histories
130 during the settlement period and/or from the existence of barriers to gene flow that formed
131 after the settlement of the archipelago.

132 To gain further insights into the genetic history of ni-Vanuatu, we next assessed the fine-
133 scale genetic structure of the 1,439 sampled individuals, using ChromoPainter and
134 fineSTRUCTURE [19-21]. Haplotype-based clustering revealed a first separation between ni-
135 Vanuatu living north and south of the strait separating Epi and Tongoa islands ($K_{FS} = 2$; Fig.
136 S4). At $K_{FS} = 4$, populations separate into clusters, here referred to as the *Banks and Torres*
137 *Islands* cluster and the *North East, North West and Central-South Vanuatu* clusters (Fig. 2A

138 and Fig. S4 and Table S2), that are in general agreement with the classification of Oceanic
139 languages spoken in the archipelago [22-24]. Of note, individuals from the north and south of
140 Pentecost island cluster with individuals from different neighboring islands, indicating that
141 the sea does not necessarily act as a barrier to gene flow in the region, in line with linguistic
142 and ethnographic data that reveal cultural networks between islands [22, 23, 25]. Likewise, in
143 the Ambae island, northwest and south inhabitants cluster separately (Fig. 2A), suggesting
144 that the periodic volcanic activity of the Ambae caldera has affected gene flow in the region.
145 At $K_{FS} = 20$, i.e., the highest K_{FS} value for which statistical robustness remains maximal
146 (Methods) [20], we found that genetic clusters are often island-specific (Fig. 2A, Figs. S4-S7
147 and Table S1). These observations suggest that clusters inferred by fineSTRUCTURE are
148 reliable, as they reflect expected geographic and linguistic barriers to gene flow.

149

150 **The Post-Lapita Shift to Papuan-related Ancestry was Geographically Uneven.** We
151 detected important differences among fineSTRUCTURE clusters in the proportions of East
152 Asian-related ancestry, that is, ancestry related to contemporary populations from either
153 Taiwan and the Philippines or Polynesia (range of SOURCEFIND estimates: 0.15 to 0.55;
154 Fig. 2C, Figs. S8-S11 and Table S3). East Asian-related ancestry was found to be lowest for
155 the *North Vanuatu* clusters (e.g., Malekula, Ambrym, Epi; median = 0.230, SD = 0.056) and
156 highest in the *Central-South Vanuatu* cluster (i.e., Mele and Imere in Efate island, Makatea,
157 Tongamea and Vaitini in Emae island, and Tongoa and Ifira islands; median = 0.323, SD =
158 0.077), where “Polynesian outlier” communities live today [11, 12]. Nevertheless, East Asian-
159 related ancestry is also high in islands where Polynesian ancestry is low, such as Ambae
160 (median = 0.405, SD = 0.042; Fig. 2D), suggesting that differences in East Asian-related
161 ancestry are not due solely to differences in Polynesian ancestry (Figs. S10 and S11 and Table
162 S3).

163 To assess whether differences in East Asian-related ancestry originate from a
164 geographically uneven ancestry turnover or separate admixture events between distinct
165 populations, we dated admixture in each genetic cluster separately. Besides more recent
166 events relating to Polynesian migrations (see next section), all estimates overlap the same
167 time period that ranges from 1,700 to 2,300 ya (Fig. 2B, Fig. S12 and Table S4), suggesting
168 that all ni-Vanuatu share the same admixture history. To test this hypothesis more formally,
169 we evaluated if the Papuan-related ancestry carried by present-day ni-Vanuatu derives from a
170 single source. PCA and f_4 -statistics of the form $f_4(X, \text{New Guinean highlanders; Solomon or Bismarck Archipelago islanders, East Asians})$ indicate that all ni-Vanuatu show similar

172 genetic relatedness with populations from the Bismarck Archipelago, New Guinea or the
173 Solomon islands (Figs. S13 and S14), in agreement with aDNA data [13]. Furthermore, the
174 haplotype-based SOURCEFIND method detected that the same cluster of Bismarck
175 Archipelago islanders is the source that contributed the most to all ni-Vanuatu (Fig. S15 and
176 Table S5). Of note, SOURCEFIND also detected a small contribution from New Guinean
177 highlanders and Santa Cruz islanders in all ni-Vanuatu clusters, which negatively correlates
178 with Polynesian ancestry ($r = -0.378$, P -value $< 2.22 \times 10^{-16}$), probably because Polynesian
179 source populations capture some Papuan-related ancestry. Collectively, these findings
180 indicate that ni-Vanuatu are descended from relatively synchronous admixture events between
181 the same sources of Papuan- and East Asian-related ancestry; yet, their proportions differ
182 markedly across islands, suggesting that the dramatic Papuan-related ancestry shift that
183 started ~2,500 ya was geographically uneven.

184

185 **Polynesian Migrations Did Not Necessarily Trigger Language Shifts.** Admixture
186 proportions and date estimates indicate that ni-Vanuatu ancestry partly derives from a third
187 and more recent migration originating from Polynesia (Fig. 2B-D and Tables S3 and S4). We
188 dated admixture events between 600 and 1,000 ya for genetic clusters predominant in Mele
189 and Imere (Efate island), Makatea, Tongamea and Vaitini (Emae island), as well as in Ifira and
190 Futuna islands (Fig. 2B, Fig. S12 and Table S4), where Polynesian languages are spoken
191 today [12, 26]. These clusters show higher Polynesian ancestry and, therefore, higher East
192 Asian-related ancestry proportions, relative to *Banks and Torres Islands* and *North Vanuatu*
193 clusters (SOURCEFIND estimates; Fig. 2C-D, Figs. S8-S11 and Table S3). Ni-Vanuatu
194 Polynesian speakers show a higher ratio of Polynesian-to-East Asian ancestry, when
195 compared to non-Polynesian speakers (ratio = 0.647 vs. 0.479; Wilcoxon test P -value $<$
196 2.22×10^{-16} ; Fig. 2D and Fig. S10). Furthermore, f_4 -statistics of the form $f_4(X, \text{East Asians};$
197 *Tongans, New Guinean highlanders*) suggest that ni-Vanuatu from Efate, Ifira and Emae
198 share more alleles with Polynesians than other ni-Vanuatu do (Fig. S16).

199 Interestingly, our analyses also revealed that Polynesian ancestry is not restricted to
200 Vanuatu islands where Polynesian languages are spoken. Non-Polynesian-speaking
201 populations assigned to the *Central-South Vanuatu* (e.g., Tongoa, Tongariki and Tanna) and
202 the *Banks and Torres islands* clusters also show a higher Polynesian-to-East Asian ancestry
203 ratio, relative to *North East* and *North West* clusters (ratio = 0.557 and 0.510, vs. 0.461;
204 Wilcoxon test P -value $< 2.22 \times 10^{-16}$; Fig. 2D, Figs. S10 and S11 and Table S3). Furthermore,
205 estimated admixture dates are similar among groups from the *Central-South Vanuatu* cluster

206 that speak or not Polynesian languages (Fig. 2B, Fig. S12 and Table S4). These results
207 support the view that Polynesian migrations, as well as subsequent contacts between Vanuatu
208 islands [12, 27] or with “Polynesian outliers” from the Solomon islands [28], also introduced
209 Polynesian ancestry among non-Polynesian-speaking groups.

210 Conversely, we found no evidence of admixture with Polynesians in individuals assigned
211 to *North Vanuatu* clusters, including Epi islanders, despite the geographic proximity between
212 Epi and Tongoa (Fig. 2D, Figs. S10 and S11 and Table S3). Of note, ADMIXTURE, PCA
213 and fineSTRUCTURE analyses separate ni-Vanuatu into northern and southern populations,
214 the frontier between the two being located between Epi and Tongoa (Figs. 1C and 2A and Fig.
215 S1). The strait that separates the two islands today is the location of the Kuwae caldera [29,
216 30], whose volcanic activity may have been a barrier to gene flow and/or may have triggered
217 large-scale population movements that disrupted the isolation by distance patterns. Together,
218 these results reveal that, since 1,000 ya onward, Polynesians migrated to Vanuatu where they
219 admixed with local populations, and that such interactions did not necessarily result in a shift
220 to Polynesian languages.

221

222 **A Limited Genetic Impact of European Colonization.** Our genetic data indicate that
223 admixture between ni-Vanuatu and Europeans has been rare or has left few descendants in
224 Vanuatu. In total, only 28 individuals out of 1,439 (1.95%) show a genetic contribution from
225 Europeans higher than 1%, according to SOURCEFIND analyses (range: 0.03% to 35.3%;
226 Fig. S8 and Table S3). The two fineSTRUCTURE clusters with the highest European
227 ancestry (median = 0.093 and 0.107, vs. 0.002 for other clusters) show an admixture event in
228 the last 120 years (mean = 78 ya, 95%CI: [74–81] and mean = 111 ya, 95%CI: [104–118])
229 (Fig. 2B and Table S4). Similarly, the three other clusters that include individuals carrying
230 more than 1% of European ancestry show a pulse of admixture occurring in the last 200 years.
231 These results are consistent with historical records; early, fleeting European contacts with ni-
232 Vanuatu began in 1606, with subsequent documented exploratory voyages in 1768, 1774 and
233 1809; yet, it was only from around 1829 onwards that contacts became more common, when
234 Christian missionaries and European colonists settled in the archipelago and the first
235 intermarriages were reported [31, 32].

236

237 **Genetic Admixture in Vanuatu was Sex-Biased.** Genetic studies have suggested that
238 Papuan-related migrations from the Bismarck Archipelago into Remote Oceania were male-
239 biased, because contemporary Polynesians and ancient individuals from present-day Vanuatu

240 show lower Papuan-related ancestry on the X chromosome, relative to autosomes [8, 13]. To
241 confirm that admixture between the ancestors of present-day ni-Vanuatu was sex-biased, we
242 estimated Papuan- and East Asian-related ancestry in ni-Vanuatu on each chromosome
243 separately, using local ancestry inference [33]. We found that Papuan-related ancestry is
244 indeed significantly lower on the X chromosome, relative to autosomes ($\alpha_X = 75.2\% \text{ vs. } \alpha_{\text{auto}} = 79.8\%$, Wilcoxon test P -value $< 1.36 \times 10^{-5}$; Fig. 3A), in agreement with aDNA results [13].
245 These values were similar between Polynesian and non-Polynesian speakers (Fig. S17A,
246 Wilcoxon test P -value = 0.13), which indicates that it is not explained by recent migrations
247 from Polynesia. We replicated the results using high-coverage genome sequences from a
248 subset of 179 ni-Vanuatu [18], implying that our results are not biased due to SNP
249 ascertainment (Fig. S17B). Assuming that admixture proportions have reached equilibrium
250 values [34], we estimated that the genetic contribution of Papuan-related males to ni-Vanuatu
251 was 27% higher than that of Papuan-related females ($\alpha_m = 93.5\% \text{ vs. } \alpha_f = 66.1\%$).
252 Accordingly, Y chromosomes of ni-Vanuatu are dominated by haplogroups found at high
253 frequency in Near Oceanians (e.g., M1a3b2, S1), whereas mitochondrial DNAs (mtDNA)
254 show a high proportion of haplogroups typically found in East Asia (e.g., B4a1a1, E1a2a4)
255 (Fig. 3B and Table S1). Collectively, these results support the notion that ni-Vanuatu ancestry
256 predominantly results from admixture between Papuan-related males and East Asian-related
257 females.
258

259
260 **Recent Migrations are Influenced by Residence Rules and Urbanization.** The genetic
261 structure of contemporary ni-Vanuatu is also expected to reflect socio-cultural practices (e.g.,
262 social networks, exchange and marriage rules) that have culturally evolved since the
263 settlement of the archipelago. We leveraged the high-resolution genetic data to infer recent
264 migrations between Vanuatu islands – indicated by individuals who inhabit an island but
265 belong to a genetic cluster that is prevalent in another island – and determine if these
266 migrations have involved mainly females or males, in line with virilocal or uxorilocal
267 postmarital residence rules, respectively. We found that 5.70% of the sampled individuals (54
268 individuals) migrated at a large geographical scale ($K_{FS} = 4$), while 11.81% (112 individuals)
269 migrated at a local scale ($K_{FS} = 20$; Table S6), suggesting more genetic connections between
270 closer islands. We estimated that local mobility among females is higher than among males
271 ($K_{FS} = 20$; odds ratio = 2.20, Fisher's exact test P -value = 9.16×10^{-4} ; Fig. 3C), as expected
272 under virilocal residence and/or female exogamy [35]. The same trend was observed at a
273 larger geographical scale, when considering migrations between four broader regions ($K_{FS} =$

274 4; odds ratio = 1.86, *P*-value = 0.075) and when restricting the analyses to the reported birth
275 place of male-female couples included in the dataset (Fig. S18) (odds ratio = 1.96, *P*-value =
276 6.89×10^{-3}). Notably, comparisons of the places of birth and residence of sampled individuals
277 did not support female-biased migrations (odds ratio = 0.807, *P*-value = 0.18; Fig. S19 and
278 Table S6), possibly reflecting a bias in the self-reported birth places. This might occur if
279 women are inclined to report their husband's or children's place rather than their father or
280 mother's place [36] or under other, more complex patterns.

281 We also explored the direction of the inferred migrations, and found that both female and
282 male migrations mainly occurred from the northernmost and southernmost islands towards the
283 center of the archipelago (Fig. 3C), where Port Vila – the largest city – has developed [37].
284 Migrations are also common among North Vanuatu islands, consistent with a long-term
285 network of cultural and material exchanges in the region [25, 28]. Thus, our genomic data
286 reflect the migration patterns that characterize the recent history of ni-Vanuatu, including
287 residence rules and urbanization.

288

289 **No Evidence for Endogamous Practices among Ni-Vanuatu Spouses.** Human kinship
290 systems vary tremendously, regulating marriage, exchange, endogamy or exogamy according
291 to relational concepts [38]. Given the small census size of ni-Vanuatu populations, it is
292 interesting to consider whether and how sociocultural features like marriage and exchange
293 rules influence local levels of genetic relatedness. We found that genetic relatedness was
294 higher within islands than between islands (Wilcoxon test *P*-value $< 2.22 \times 10^{-16}$; Figs. S20-
295 S22 and Table S7), consistent with an isolation by distance model (Mantel test *P*-value =
296 0.001; 1,000 permutations). Accordingly, out of the 287 male-female couples included in the
297 dataset, 78.4% were born on the same island (Fig. S23). Genetic relatedness is also higher
298 among inhabitants of the same village, relative to individuals living on the same island
299 (Wilcoxon test *P*-value $< 2.22 \times 10^{-16}$) (Fig. S20 and Table S7), suggesting that the local
300 community is often the source of marriage partners. However, despite the generally high
301 levels of genetic relatedness observed between ni-Vanuatu, we did not observe an excess of
302 genetic relatedness among couples (Figs. 4A, S23 and S24). Specifically, spouses tend to
303 show slightly lower kinship coefficients than random pairs of individuals from the same
304 village, when excluding first-degree related individuals from all possible pairs (logistic
305 regression model *P*-value = 0.057; resampling *P*-value = 0.079) (Figs. S24 and S25) and
306 when adjusting on differences in ancestry (*P*-value < 0.05 ; Figs. 4A). Assuming that our total
307 sample is not biased towards related individuals, these results suggest that endogamy is not a

308 common practice among contemporary ni-Vanuatu and more generally illustrate that
309 populations can show high levels of genetic relatedness in the absence of endogamous
310 marriage practices.

311

312 **Ni-Vanuatu Spouses Tend to Share Similar Genetic Ancestry.** Research on admixed
313 populations from other parts of the world has shown that, in addition to low genetic
314 relatedness, partners tend to show similar genetic ancestry [16], because mating often occurs
315 within socio-cultural groups, which can correlate, in turn, with genetic ancestry. To verify
316 whether this phenomenon is observed in Vanuatu, we implemented a logistic regression
317 model that jointly estimates the effects of geography, genetic relatedness and genetic ancestry
318 on the probability to be partners (Methods). These analyses confirmed that spouses tend to
319 originate from the same island, while showing lower kinship coefficients than non-spouses
320 (Fig. 4A). Importantly, we found that spouses show lower differences in genetic ancestry than
321 non-spouses, when considering Papuan-related ($\beta = -4.233$, P -value = 0.018), East Asian-
322 related ($\beta = -4.221$ P -value = 0.018) or Polynesian ($\beta = -5.197$, P -value = 0.024) ancestry.
323 These results suggest that ni-Vanuatu tend to mate with a partner who carries similar genetic
324 ancestry.

325 Two hypotheses have been proposed to explain these observations. First, social assortative
326 mating may underlie the observed signal, as genetic ancestry can correlate with socio-cultural
327 structure. Second, spouses may choose their partner because they share biological traits, such
328 as physical appearance [39, 40]. To test these hypotheses, we searched for genomic loci that
329 could play a role in partner choice, by including, in the logistic regression model, a term that
330 measures dissimilarity between individuals at each SNP (Methods). No SNP showed
331 statistical evidence for a significantly lower or higher genotype similarity between spouses,
332 when accounting for multiple testing (Fig. S26). To test for assortative mating according to
333 polygenic traits, we then evaluated if genotype similarity between spouses is significantly
334 higher or lower at SNPs associated with candidate traits relating to physical appearance, when
335 compared to non-associated SNPs. When we did not account for genetic structure and
336 ancestry-associated assortative mating (i.e., effect sizes are estimated from a model where
337 these confounders are not included, see Methods), we found evidence for assortative mating
338 according to body mass index (BMI, Fig. 4B). However, when accounting for such possible
339 confounders, we found no statistical evidence that genotypes at trait-associated variants are
340 more similar or dissimilar between spouses than expected. Collectively, our results do not
341 support a marked tendency for partner choice according to genetic or phenotypic features, and

342 suggest instead the occurrence of assortative mating driven by social structure as the cause for
343 ancestry-based assortments among ni-Vanuatu.

344

345 **DISCUSSION**

346 By leveraging an extensive genomic dataset of 1,439 contemporary individuals, we show here
347 that ni-Vanuatu initially descend from admixture between the same ancestral populations: an
348 East Asian-related population, which shares genetic affinities with groups living today in
349 Taiwan and the Philippines, and a Papuan-related population, which shares genetic affinities
350 with groups living today in the Bismarck Archipelago. We also estimate that admixture
351 occurred after the Lapita period, ~1,700-2,300 years ago, and was relatively synchronous
352 across islands, in agreement with a peopling history common to all the archipelago. Thus, our
353 results suggest that the high cultural diversity of ni-Vanuatu results from a rapid cultural
354 diversification that developed *in situ*, as suggested by linguistic, archaeological and
355 archaeogenetic studies [13, 14, 28]. Nevertheless, our analyses cannot definitely rule out that,
356 after the Lapita period, Vanuatu islands were settled by different, already admixed groups
357 carrying varying levels of East Asian-related and Papuan-related ancestry, as recently
358 suggested [18]. Furthermore, we caution that admixture date estimates from modern DNA
359 data are uncertain and can be biased downward when admixture was gradual [41], which was
360 likely the case in Vanuatu [10]. Additional aDNA time transects from multiple islands will be
361 required to provide a definitive picture of the admixture history of ni-Vanuatu.

362 Our analyses reveal substantial differences in East Asian-related ancestry proportions
363 between islands. We show that these differences do not result solely from Polynesian
364 migrations, as our haplotype-based analyses could differentiate ancestry attributed to the
365 Austronesian expansion from that introduced by Polynesians. A compelling example is
366 Ambae, where East Asian-related ancestry is 1.8-times higher than in surrounding islands but
367 where Polynesian ancestry is low. Assuming a simple admixture model, these findings imply
368 that the major population turnover following the arrival of Papuan-related peoples was
369 geographically uneven, possibly because, at the time of admixture, the two ancestral
370 populations of ni-Vanuatu were of different sizes across islands, some of which being
371 preferentially settled by East Asian-related groups and others by Papuan-related groups.
372 Lastly, we confirm that admixture was sex-biased [8, 13]; either Papuan-related migrants
373 were predominantly males or both males and females migrated, but admixture was more
374 common between Papuan-related males and East Asian-related females.

375 A recent archaeogenetic study has reported that ancient ni-Vanuatu from the Chief Roi
376 Mata's Domain in Efate show genetic similarities with Polynesians [13], supporting the
377 occurrence of migrations from Polynesia, which were previously postulated by linguistic
378 studies [11, 12]. We confirm that "Polynesian outlier" communities in Vanuatu are descended

379 from admixture events between Polynesians and local populations. We dated these admixture
380 events to 600-1,000 ya, in line with archaeological records [11]. Furthermore, we extend
381 previous findings by mapping the genetic impact of Polynesian migrations to some Vanuatu
382 islands where Polynesian languages are not spoken today (e.g., Makura, Tongoa, Tongariki
383 and Tanna) [12]. These results indicate that genetic interactions between ni-Vanuatu and
384 Polynesian incomers did not systematically trigger shifts to Polynesian languages.
385 Intriguingly, Polynesian ancestry is not detected north of the Kuwae caldera, a large
386 submarine volcano that separates Tongoa and Epi islands. Geological data have shown that
387 the Kuwae volcano erupted in ca. 1452, producing among the largest volumes of magma and
388 aerosol ever recorded [29, 30], and oral traditions and linguistic evidence suggest that, after
389 this eruption, Tongoa and Epi were repopulated by distant populations [42, 43]. Our genetic
390 results support this view; present-day Tongoa and Emae islanders, as well as Epi and
391 southwest Malekula islanders, show close genetic affinities (Fig. S4), at odds with the gradual
392 genetic differences expected under isolation by distance. Nowadays, ni-Vanuatu living north
393 and south of Kuwae form two genetic groups with distinct socio-cultural practices (e.g.,
394 grade-taking and chiefly title political systems) [44], indicating that the area has remained a
395 genetic and cultural frontier.

396 By building upon the well-defined genetic history of Vanuatu, we also explored how
397 genetic diversity has been shaped by cultural practices. While levels of genetic relatedness are
398 high among ni-Vanuatu, we do not find evidence for generalized endogamy, which challenges
399 the frequent association geneticists make between the two processes [17, 45-47]. Nonetheless,
400 even if ni-Vanuatu spouses are generally less related than non-spouses, we show that their
401 genetic ancestries are more similar than expected, indicating that mating in Vanuatu is not
402 random. Importantly, ancestry similarity between partners is not stronger at trait-associated
403 SNPs, suggesting that ancestry-associated assortments are due to social structure, which may,
404 in turn, be correlated with levels of East Asian-related and/or Polynesian ancestry. Other
405 studies have suggested non-random mating according to ancestry in regions of the world
406 where socio-cultural structure is highly correlated with ancestry [16, 48]. Our findings extend
407 the occurrence of such socio-cultural assortments to Oceanians, raising questions of how
408 common this phenomenon is in human societies and whether non-random mating should
409 systematically be accounted for in human genetic studies. Collectively, our study emphasizes
410 the need to include diverse populations in genetic studies, not only to address key
411 anthropological and evolutionary questions that are important for specific geographic regions,
412 but also to identify factors shaping the genetic diversity of human populations as a whole.

413 **METHODS**

414 **RESOURCE AVAILABILITY**

415 **Lead Contact**

416 Further information and requests for resources and reagents should be directed to and will be
417 fulfilled by the Lead Contact, Etienne Patin (epatin@pasteur.fr).

418

419 **Materials Availability**

420 This study did not generate new unique reagents.

421

422 **Data and Code Availability**

423 The SNP array data generated in this study has been deposited to the European Genome-
424 Phenome Archive (EGA) under accession number EGAS00001005910.

425

426 **EXPERIMENTAL MODEL AND PARTICIPANT DETAILS**

427 The sampling survey was conducted in the Republic of Vanuatu between April 2003 and
428 August 2005. The purpose of the study was the estimation of the seroprevalence of HTLV-1
429 viral infection and the assessment of human genetic diversity in ni-Vanuatu. The recruitment
430 of participants was carried out after the agreement of the Ministry of Health of Vanuatu, the
431 head of each Directorate from the sampled province, and the chief of the sampled village. The
432 data collectors, Olivier Cassar, Helene Walter, Woreka Mera and Antoine Gessain, were
433 accompanied by the village chief and/or the head of the local dispensary. The nature and the
434 scope of the study were explained in detail by Olivier Cassar in English, and by Helene
435 Walter in Bislama (i.e., an English-based pidgin-creole [14] that is the main *lingua franca* of
436 Vanuatu), during information meetings organized in each village. Participants could ask any
437 questions after the information meeting. After several hours of reflection, each volunteer
438 participant of at least 18 years of age was asked to sign a written informed consent form,
439 including consent for research on human genetic diversity. Sex, age and birth place, as well as
440 the date and place of blood collection, were collected through a structured questionnaire.
441 Couples were identified through interviews in English or Bislama, and were preferentially
442 sampled. Blood samples were collected either at the local dispensary, a gymnasium or a hut
443 provided by the village chiefs.

444 The study received approval from the Institutional Review Board of Institut Pasteur
445 (n°2016-02/IRB/5) and the Ministry of Health of the Republic of Vanuatu. It was conducted
446 in full respect of the legal and ethical requirements and guidelines for good clinical practice,

447 in accordance with national and international rules. Namely, research was conducted in
448 accordance with: (i) ethical principles set forth in the Declaration of Helsinki (Version:
449 Fortaleza October 2013), (ii) European directives 2001/20/CE and 2005/28/CE, (iii) principles
450 promulgated in the UNESCO International Declaration on Human Genetic Data, (iv)
451 principles promulgated in the Universal Declaration on the Human Genome and Human
452 Rights, (v) the principle of respect for human dignity and the principles of non-exploitation,
453 non-discrimination and non-instrumentalisation, (vi) the principle of individual autonomy,
454 (vii) the principle of justice, namely with regard to the improvement and protection of health
455 and (viii) the principle of proportionality. The rights and welfare of the participants have been
456 respected, and the hazards did not outweigh the benefits of the study. Feedback to local
457 communities and partners in Vanuatu is planned for 2023, under the guidance of H.C. The
458 results of this study will be presented to key stakeholders, including the Ministry of Health
459 and the Vanuatu Cultural Center (Port Vila). Written and recorded resources will be provided
460 in Bislama and distributed to interested individuals and communities.

461

462 **METHOD DETAILS**

463 **SNP genotyping and quality filters**

464 Five millilitres of blood were obtained by venepuncture from each volunteer participant and
465 transferred to the Institut Pasteur of New Caledonia, where plasma and buffy coats were
466 isolated, frozen, and stored at -80°C . Samples were then transferred to the Institut Pasteur in
467 Paris (France). Out of the 4,428 collected samples, 1,433 samples were selected for genetic
468 analyses. These samples were selected in order to (i) cover the largest number of islands and
469 villages, (ii) cover locations where “Polynesian outliers” exist nowadays and (iii) include as
470 many couples as possible. After sample selection, a total of 179 different villages were
471 covered, located on 29 islands (Table S1). DNA was purified from frozen buffy coats at the
472 Institut Pasteur of Paris (France), using QIAamp DNA Blood Mini Kit protocol, and eluted in
473 AE buffer. DNA concentration was quantified with the Invitrogen Qubit 3 Fluorometer using
474 the Qubit dsDNA broad-range assay. Prior to SNP array genotyping, DNA integrity was
475 checked on agarose gels.

476 The 1,433 selected samples were genotyped on the Illumina Infinium Omni 2.5-8 array
477 (San Diego, California). Genotype calling was performed using the Illumina GenomeStudio
478 software. We excluded 2,491 SNPs with missing annotations, 9,661 duplicated SNPs, 1,772
479 SNPs with a GenTrain score < 0.4 , SNPs with a missingness > 0.05 and SNPs that deviate
480 from Hardy-Weinberg equilibrium (i.e., P -value < 0.01 in more than one Vanuatu island).

481 Only autosomal SNPs were kept for the analyses, unless otherwise stated. After filters, a total
482 of 2,269,868 SNPs were kept. When the analyses required minor allele frequency (MAF)
483 filters, a $MAF > 0.01$ threshold was applied. When a linkage disequilibrium pruning was
484 required, we pruned the data using a window size of 50 Kb, a step size of 5 SNPs and a r^2
485 threshold of 0.5. After all these filtering steps were applied, the remaining number of SNPs
486 was 294,806. All filters were applied using PLINK v.1.9b [49].

487

488 **Sample quality filters**

489 The highest genotype missingness per sample was 0.018. We removed 21 samples with
490 outlier values for heterozygosity (mean ± 3 SD), suggestive of DNA contamination, leaving
491 1,412 samples. Cryptic relatedness between samples was detected using KING v.2.1 [50]. We
492 excluded 456 samples with a kinship coefficient > 0.08 with another sample, whenever
493 analyses required unrelated samples. For 12 samples, the reported sex did not match the
494 genetic sex inferred by the Y- and X-chromosome call rates. These include one couple, for
495 which the reported sex is the opposite to the genetic sex. We thus exchanged the sex of the
496 two samples, as it is most likely an error on the sample annotation. We did not include the 10
497 remaining samples, when performing analyses relating to mating practices and sex-specific
498 migrations. After quality filters, a total of 287 couples was present in the dataset.

499

500 **Demographic information**

501 Demographic data include the island of birth and the village of residence. Birth place was
502 missing for 73 samples and the residence for 49 samples. From this information, we retrieved,
503 for each sample, the geographical coordinates of the birth place (around the center of the
504 island) and of the place of residence (around the village of residence), using MapAction
505 reference maps (www.mapaction.org). We considered as the locations of “Polynesian
506 outliers” all the villages within Futuna, the villages of Mele and Imere in Efate, Ifira island
507 and the villages of Makatea, Tongamea and Vaitini in Emae [12]. Among the 287 couples,
508 207 reported the same island of birth, while 57 reported a different island. This information
509 was missing for 23 couples.

510

511 **Merging with reference datasets**

512 We merged the new SNP array data with whole genome sequences of different populations
513 across the Pacific [18] and worldwide populations from the SGDP project [51]. We also
514 merged the dataset with SNP array data from Oceanian populations [41], to perform some

515 population genetics analyses. Datasets were merged using PLINK v.1.9b [49]. Transversions
516 were excluded, to avoid allele strand inconsistencies.

517

518 **Haplotype phasing**

519 We phased the dataset using SHAPEIT v.2 [52, 53] using 500 conditioning states, 10 burn-in
520 steps, 50 Markov chain Monte Carlo (MCMC) main steps, a window length of 1 cM and an
521 effective population size of 15,000. We used 1000 Genomes data [54] as a reference panel
522 and therefore removed all array SNPs that did not align with this data, prior to haplotype
523 phasing.

524

525 **Genetic structure: PCA and ADMIXTURE**

526 We performed Principal Component Analyses (PCA) with the ‘SmartPCA’ algorithm
527 implemented in EIGENSOFT v. 6.1.4 [55]. aDNA samples were projected on PCs by using
528 the “lsqproject” and “shrinkmode” options. We inferred population structure with
529 ADMIXTURE v. 1.3.0 [56], using 10 different seeds and assuming that K_{ADM} varies from 2 to
530 17, and visualized ADMIXTURE results using pong v1.4.7 [57]. We estimated pair-wise F_{ST}
531 values using the StAMPP R package [58], and assessed their significance with 100 bootstraps.
532 We computed f_4 -statistics with ADMIXTOOLS v.6.0 and estimated standard errors by block
533 jackknife.

534

535 **Genetic structure: ChromoPainter and fineSTRUCTURE**

536 We ran ChromoPainter [19] to infer haplotype sharing among individuals. This algorithm is
537 based on a Hidden Markov Model in which each sample is treated as a “recipient”, i.e., a
538 mosaic of haplotypes from a set of “donor” samples. We performed different analyses with
539 ChromoPainter. In Analysis 1, we inferred the genetic structure of ni-Vanuatu running
540 ChromoPainter only for the unrelated ni-Vanuatu samples. We set each sample both as a
541 recipient and as a donor for all the samples (-a mode). We first estimated the global mutation
542 probability and the switch rate with 10 expectation-maximization (EM) iterations, by using
543 the ‘-in -iM’ options and by averaging estimates obtained for chromosomes 1, 7, 13 and 19.
544 The estimated values were 1.542×10^{-4} and 81.415, respectively. Then, we ran ChromoPainter
545 in the same mode for all chromosomes but fixing the parameters to estimated values. In
546 Analysis 2, we repeated the same process independently for the reference populations. In this
547 case, we ran ChromoPainter only for the samples outside Vanuatu [18, 51] and repeated the

548 two-step process described above. In this case, the global mutation probability was estimated
549 to 4.53×10^{-4} and the switch rate was 255.42.

550 We then produced a coancestry matrix by summing the coancestry matrices for all
551 chromosomes and estimated the C parameter with ChromoCombine. The C factor was
552 estimated at 0.452 for the Vanuatu dataset (Analysis 1), and 0.498 for the reference
553 population dataset (Analysis 2). We applied the model-based Bayesian clustering method
554 fineSTRUCTURE v.2.0.7 [19] on ChromoPainter coancestry matrices. We ran 1 million
555 burn-in iterations (-y option) and 1 million MCMC iterations (-x option) and sampled values
556 every 10,000 iterations. We then inferred the fineSTRUCTURE tree (-m T option). We
557 repeated this process 5 times, with different random seeds.

558 Following a previous study [20], we estimated for each individual the robustness of the
559 clustering assignation, by comparing the final state (i.e., the state with the highest posterior
560 probability) with the 100 MCMC samples. For each individual i , we estimated $x_i^{(m)}$, the
561 number of individuals clustering with i for each of the $m = 1, \dots, 100$ MCMC samples. We
562 also estimated $y_{ik}^{(m)}$, the number of individuals that cluster with i in the final state and in each
563 of the MCMC samples, for each inferred cluster k . Finally, we computed
564 $P_i = \sum_m [y_{ik}^{(m)} / x_i^{(m)}]$. Therefore, we ended up with a matrix of this sum P_i , for all individuals
565 and for each genetic cluster, that shows the robustness in the assignation of each individual to
566 its corresponding cluster in the final state. We repeated this process for $k = 2, \dots, K$, K being
567 the maximum number of clusters identified by fineSTRUCTURE. We also repeated the
568 process for the 5 random seeds and compared the performance of each seed. Fig. S6 shows
569 the number of ni-Vanuatu individuals with $P_i < 0.9$ for each seed s and for each $k = 2, \dots, K$.
570 These estimations allowed to test the robustness in the cluster assignation of each individual,
571 to compare the performance across seeds and to determine the robustness at each k value.

572 To compare robustness among seeds, we followed a similar approach. We estimated $x_i^{(s)}$,
573 where $s = 1, \dots, 5$, which corresponds to the number of individuals clustering with individual i
574 for each seed. We then estimated $y_{ik}^{(s)}$ and $\sum_s [y_{ik}^{(s)} / x_i^{(s)}]$, which shows the concordance in the
575 assignation of each individual to a cluster across the different seeds. To summarize this
576 information, we analyzed all the individual sums, for each seed and each cluster k (Fig. S7A
577 and C), as well as the number of individuals who were not assigned to the same cluster,
578 between one seed and all the other seeds (Fig. S7B and D).

579 Based on these analyses, we chose the seed that showed the highest consensus among
580 seeds (Fig. S7) and in which the largest number of samples are robustly assigned (Fig. S6)

581 (seed number 289 for Analysis 1 and 161 for Analysis 2). Then, we defined the maximum k
582 value based on the number of individuals who are robustly assigned to a cluster for each k
583 value and we focused our analyses on this value. Finally, once we chose a seed and a k value,
584 we removed samples that showed some uncertainty in the cluster assignation ($P_i \leq 0.9$).
585 Following this process, we observed that the robustness decreases from $K_{FS} = 20$ and we
586 removed 3 samples from Analysis 1 (Vanuatu). For the reference dataset (Analysis 2), all
587 samples showed a $P_i > 0.9$ across all k values, therefore we used genetic clusters from the k
588 value that best suited the hypotheses to test ($K_{FS} = 25$) (Table S5).

589 For the subsequent analyses, we redefined populations based on fineSTRUCTURE results
590 and therefore on the genetic data itself. This approach is rather trivial when applied to
591 continental populations, like the reference populations presented here, because
592 fineSTRUCTURE clusters coincide broadly with the geographical or cultural categories
593 assigned to the populations. Yet, this strategy has proven useful when complex admixture
594 shapes the genetic structure [59, 60], or when the studied populations are sampled from a
595 small geographic region [20], in which case, defining populations based on geography or
596 culture may lead to a biased view of the genetic structure of the populations.

597

598 **Ancestry estimation**

599 We estimated admixture proportions for each ni-Vanuatu individual using SOURCEFIND
600 [61]. We first ran ChromoPainter using the “donors” mode: we considered each ni-Vanuatu
601 individual as a recipient only and defined donor populations by using the genetic clusters
602 defined above (Analysis 2). We ran SOURCEFIND by considering all surrogates (“all
603 surrogates” analysis; Fig. S15 and Table S5) or by limiting as much as possible the number of
604 surrogates (“limited surrogates” analysis). In the latter case, we considered as surrogates
605 West_Eurasia1, West_Eurasia2, West_Eurasia3, EastAsia1, EastAsia2, EastAsia3, Atayal,
606 Paiwan, Southeast_Asia, Cebuano, RenBell, Tikopia, PNG1, PNG2 and PNG_SGDP. Then,
607 we summed the estimated ancestry proportions for these surrogates and grouped them as
608 follows: Taiwanese.Philippines (Atayal, Paiwan, Cebuano), EastAsian_mainland (EastAsia1,
609 EastAsia2, EastAsia3, Southeast_Asia), Polynesian (RenBell, Tikopia), Papuan-related
610 (PNG1, PNG2 and PNG_SGDP) and European (West_Eurasia1, West_Eurasia2,
611 West_Eurasia3). The East Asian-related ancestry was estimated as the sum of
612 Taiwanese.Philippines group and Polynesian group (the EastAsian_mainland was negligible,
613 with a maximum proportion = 0.007). To facilitate visualization, we excluded an individual
614 born in Futuna and living in Malekula, who shows a Polynesian ancestry of 0.745 in figures

615 showing ancestry proportions (Fig. 2, Fig. S8-11). The next individual carrying the highest
616 Polynesian ancestry shows 0.383. For both the “all surrogates” and “limited surrogates”
617 analyses, we ran 200,000 MCMC iterations with a burn-in of 50,000 iterations, sampling
618 every 5,000 iterations and not allowing for self-copy. We estimated the final ancestry of each
619 ni-Vanuatu sample as the mean of the 30 sampled MCMC runs.

620

621 **Admixture date estimation**

622 We estimated admixture dates using GLOBETROTTER [62]. For this analysis, we ran
623 ChromoPainter using the “donors” mode, by considering the ni-Vanuatu genetic clusters
624 defined in (Analysis 1) as recipients and all the reference populations (Analysis 2) as both
625 recipients and donors. Surrogates were the same as those considered for the “limited
626 surrogates” SOURCEFIND analysis. For each of the 20 recipient ni-Vanuatu clusters, we
627 performed 100 bootstraps, which are implemented as resamplings of chromosomes among the
628 available samples. We set the “Null.ind” option to 1. We assumed a generation time of 28
629 years, to estimate dates from the number of generations. We also dated admixture in each ni-
630 Vanuatu sample following the same approach.

631

632 **Sex-biased admixture**

633 We studied sex-biased admixture by comparing ancestry proportions estimated for the
634 autosomes and the X chromosome. We estimated ancestry proportions using RFMix v.1.5.4
635 [33], considering as ancestral populations New Guinean highlanders (approximating Papuan-
636 related ancestry) and Taiwanese Indigenous peoples and the Cebuano from the Philippines
637 (approximating East Asian-related ancestry). We ran the “TrioPhased” algorithm, allowing
638 for phase correction and 3 EM iterations. The window size was set at 0.03 cM [18] and the
639 admixture date was set at 50 generations. The same parameters were used for the X
640 chromosome and the autosomes. We combined the X chromosome haploid data of males from
641 the same island to obtain diploid individuals. We filtered out SNPs with an RFMix posterior
642 probability < 0.9, those within centromeres and within 2 Mb from the telomeres. We then
643 estimated East Asian-related and Papuan-related ancestry in the autosomes and the X
644 chromosome, separately. We estimated α_f and α_m , that is, the proportion of female and male
645 ancestors of ni-Vanuatu who carried Papuan-related ancestry, respectively, by assuming that
646 admixture proportions have reached equilibrium values [34]. In such a case, $\alpha_f = 3\alpha_X -$

647 $2\alpha_{auto}$ and $\alpha_m = 4\alpha_{auto} - 3\alpha_X$, where α_{auto} and α_X are the average Papuan-related
648 ancestry proportions estimated on the autosomes and the X chromosome, respectively.

649 To avoid potential biases due to SNP ascertainment, we also studied sex-biased admixture
650 by comparing the autosomes and the sex chromosomes of 179 ni-Vanuatu sequenced at 30×
651 coverage [18]. Because genotypes on the X chromosome were not called in the previous
652 study, we mapped *fastq* files on the X chromosome of the human reference genome (version
653 hs37d5) and performed genotype calling for X-linked variants, as previously described [18],
654 setting the ploidy parameter to 1 for males and 2 for females. We kept only biallelic SNPs and
655 filtered *vcf* files following GATK best practices [63]: QualByDepth < 2; FisherStrand value >
656 60; StrandOddsRatio > 3; RMSMappingQuality < 40; MappingQualityRankSumTest < -12.5;
657 and ReadPosRankSum < -8. We also removed genotypes with a DP < 10 for females and < 3
658 for males, and those with a GQ < 30. We removed PAR1, PAR2 and XTR regions according
659 to the annotations provided by the UCSC browser, and amplicon regions as reported in [64].
660 We filtered out SNPs that were not in Hardy-Weinberg equilibrium in females (*P*-value <
661 0.0001), those with a missingness > 0.05 and those with a MAF < 0.01. We estimated mtDNA
662 haplogroups with MToolBox [65] from the *bam* and *fastq* files, and Y chromosome
663 haplogroups were estimated with Yleaf [66].

664

665 **Inferring migrations within Vanuatu**

666 We used the genetic structure inferred by fineSTRUCTURE to study migration patterns
667 among Vanuatu islands. First, we assigned each genetic cluster to one or more islands, each
668 time more than 25% of the sampled individuals inhabiting the island were assigned to that
669 cluster. We then identified “outlier” individuals who inhabit an island but are assigned to a
670 genetic cluster that is prevalent in another island. These individuals, either themselves or their
671 close ancestors, likely migrated from the island/s where their genetic cluster is predominant to
672 their current place of residence. We removed from these analyses Vanuatu_8 and Vanuatu_9
673 clusters ($K_{FS} = 20$) because those clusters are driven by recent European gene flow, as well as
674 Vanuatu_15 because no island could be assigned to this cluster when using the 25% rule. To
675 study sex-specific migrations, we calculated the proportion of female (male) migrants by
676 dividing the number of “outlier” females (males) by the number of females (males) in each
677 cluster. We did not include clusters where the number of males or females was < 2.

678

679 **Tests for exogamy**

680 We tested if spouses show lower genetic relatedness than non-spouses by testing if the
681 average kinship coefficient between 287 observed couples is higher or lower than expected by
682 chance, using either permutations or a logistic regression model. Kinship coefficients were
683 computed between all possible pairs of individuals using KING v.2.1 (Table S7). When using
684 permutations, we accounted for isolation by distance by sampling random pairs of males and
685 females among individuals born in the same island (Fig. S24A) or living in the same village
686 (Fig. S24B). Because marriages between first-degree related individuals are very unlikely
687 (they are indeed not observed in the data), we excluded from this analysis individuals who are
688 first-degree relatives, but also tested how the inclusion of these individuals affect the results
689 (Fig. S24C). We performed 10,000 permutations for each island. In each permutation, we
690 sampled equally many random pairs as there were observed pairs in the island. We calculated
691 *P*-values by comparing the average kinship coefficient among the observed couples to the null
692 distribution. The null distribution was made of 10,000 average kinship coefficients between
693 randomly sampled pairs of individuals from the same island or village.

694 Based on the sample scheme described above, we designed a logistic regression model
695 that could be generalized to multiple explanatory variables, such as ancestry. Let the variable
696 i index all possible pairs of males and females in the dataset, except pairs of individuals who
697 are first-degree relatives, and define the dependent binary variable Y_i with $Y_i = 1$ if i indexes
698 an observed pair of spouses and $Y_i = 0$ otherwise. Define the probability that a pair is an
699 observed couple $p_i(x) = P(Y_i = 1)$, and introduce ϕ_i as the kinship coefficient between
700 individuals in the i :th pair. We estimated the effect of kinship on mate choice by the
701 parameter β^ϕ in the logistic regression model

$$\log \left[\frac{p_i(x)}{1 - p_i(x)} \right] = \mu + \phi_i \beta^\phi + I(village_i) \beta^v + I(island_i) \beta^l, \quad Eq. 1$$

703 where $I(village_i) = 1$ if individuals of pair i are from the same village and $I(village_i) = 0$
704 otherwise, and $I(island_i) = 1$ if individuals of pair i are from the same island and
705 $I(island_i) = 0$ otherwise. As a sensitivity analysis, we also considered a model in which
706 pairs of first-degree related individuals were included (Fig. S25).

707

708 **Tests for ancestry-based assortative mating**

709 We extended the logistic regression model shown in *Eq. 1* to test for ancestry-based
710 assortative mating, by testing if the genetic ancestry of spouses is more similar than that of

711 non-spouses, accounting for population structure and relatedness avoidance. Let q_{i1}^{EA} and q_{i2}^{EA}
712 be the proportion of East Asian-related ancestry for the individuals 1 and 2 of pair i and
713 introduce the variable $q_i^{\text{EA}} = |q_{i1}^{\text{EA}} - q_{i2}^{\text{EA}}|$. We estimated the effect of having similar
714 proportions of East Asian-related ancestry between two individuals on the probability that a
715 pair is an observed couple $p_i(x)$ by the parameter β^q in the logistic regression model,

716

$$\log \left[\frac{p_i(x)}{1 - p_i(x)} \right] = \mu + q_i^{\text{EA}} \beta^q + \phi_i \beta^\phi + I(village_i) \beta^\nu + I(island_i) \beta^l, \quad \text{Eq. 2}$$

717 where we use the same notations as in *Eq. 1*. A negative (positive) effect size β^q is interpreted
718 as evidence for assortative (disassortative) mating according to ancestry. Effect sizes for other
719 ancestries were calculated similarly. The same model was also tested in ni-Vanuatu
720 originating or not from islands where Polynesian languages are spoken. Note that in standard
721 regression analyses, such as those used in GWAS, population stratification is usually
722 corrected by principal components of the genetic relatedness matrix; here we have taken a
723 more general approach by decomposing the genetic structure in two variables: the kinship and
724 the ancestry, and have studied how both variables affect mate choice independently.

725

726 **Tests for SNP-based assortative mating**

727 We extended the logistic regression model shown in *Eq. 1* to test for SNP-based assortative
728 mating, by testing if the genotypes at a given SNP are more similar between spouses than
729 non-spouses, accounting for population structure, ancestry-based associated mating and
730 relatedness avoidance. Define, for each SNP s and each pair i of individuals, the allele
731 sharing distance (ASD) $d_{i,s}$ as $d_{i,s} = 0$ if both alleles are identical between individuals,
732 $d_{i,s} = 1$ if only one allele is identical and $d_{i,s} = 2$ if none of the alleles are identical. We
733 estimated the association between SNP s and mate choice by the parameter β_s^{ASD} in the model

734

$$\log \left[\frac{p_i(x)}{1 - p_i(x)} \right] = \mu + d_{i,s} \beta_s^{\text{ASD}} + q_i^{\text{EA}} \beta^q + \phi_i \beta^\phi + I(village_i) \beta^\nu + I(island_i) \beta^l, \quad \text{Eq. 3}$$

735

736 where we use the same notations as in *Eq. 2*. A negative (positive) effect size β_s^{ASD} indicates
737 higher (lower) similarity at SNP s between the members of the observed couples than
738 between non-couples, in line with SNP-based assortative (disassortative) mating.

739

740 **Tests for trait-based assortative mating**

741 We tested for trait-based assortative mating by testing if genotypes of spouses are more
742 similar or dissimilar at trait-associated SNPs, relative to non-associated SNPs. We obtained
743 GWAS summary statistics for 8 candidate traits from the UK Biobank database
744 (<http://www.nealelab.is/uk-biobank>). Candidate traits include traits relating to morphology
745 and physical appearance. Let $y_s = \beta_s^{ASD}$, where β_s^{ASD} is the effect size of SNP s on mate
746 choice estimated by *Eq. 1*. We estimated if trait-associated SNPs are more similar or
747 dissimilar between spouses by the parameter β^{trait} in the model

748

$$y_s = \mu + I(\text{associated}_s) \beta^{trait} + MAF_s \beta^{MAF} + GERP_s \beta^{GERP} + rec_s \beta^{rec}, \quad Eq. 4$$

749

750 where $I(\text{associated}_s) = 1$ if SNP s is significantly associated with the candidate trait in
751 GWAS (with GWAS P -value $< 5 \times 10^{-8}$) and $I(\text{associated}_s) = 0$ otherwise, MAF_s is the
752 minor allele frequency of SNP s in ni-Vanuatu, $GERP_s$ is the Genomic Evolutionary Rate
753 Profiling (GERP) score of SNP s and rec_s is the interpolated recombination rate between
754 SNP s and SNP $s - 1$, estimated in cM/Mb from the 1000 Genomes Phase 3 combined
755 recombination map. We considered that there is trait-based assortative (disassortative) mating
756 if β^{trait} is significantly negative (positive). We adjusted P -values with the Bonferroni
757 correction for multiple testing, to account for the number of traits tested.

758

759 **ACKNOWLEDGMENTS**

760 We thank all volunteers in Vanuatu who kindly provided samples and participated in this
761 research. We thank the Ministry of Health of the Republic of Vanuatu (especially Myriam
762 Abel, Rose Bahor, Yvannah Taga, Maturine Tary and the former Minister Jérôme Ludvaune),
763 the Vanuatu Family Health Association (especially Blandine Boulekone and Marie Nickllum
764 Wala), the WHO Office in Port Vila (especially Corinne Capuano) and the Institut Pasteur of
765 New Caledonia at Nouméa (especially Paul M. V. Martin and Eliane Chungue), for their
766 continuous support and interest in this work. We are particularly thankful to Helene Walter,
767 Woreka Mera, Françoise Charavay and Sonia Treptow for their assistance in collecting
768 samples. We thank S. Créno and the HPC Core Facility of Institut Pasteur (Paris) for the
769 management of computational resources. L.R.A. was funded by a Pasteur-Roux-Cantarini
770 fellowship from the Institut Pasteur. The laboratory of Human Evolutionary Genetics is
771 supported by the Institut Pasteur, the Collège de France, the CNRS, the Fondation Allianz-
772 Institut de France, the French Government's Investissement d'Avenir programme,
773 Laboratoires d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (ANR-10-
774 LABX-62-IBEID) and 'Milieu Intérieur' (ANR-10-LABX-69-01), the Fondation de France
775 (n°00106080), and the Fondation pour la Recherche Médicale (Equipe FRM
776 DEQ20180339214) and the French National Research Agency (ANR-19-CE35-0005).

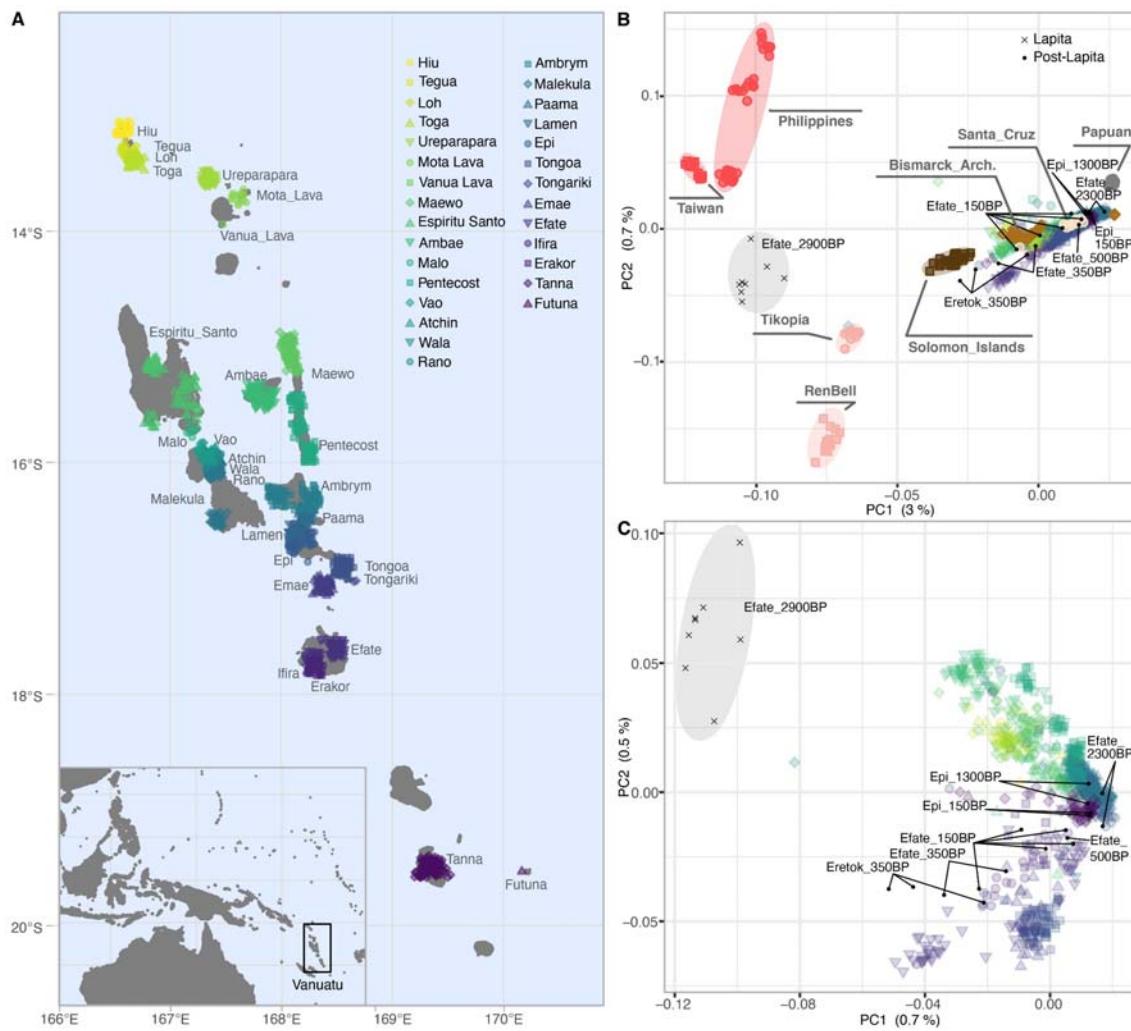
777

778 **AUTHOR CONTRIBUTIONS**

779 Conceptualization: L.R.A., E.P.; L.Q.-M.; Methodology: L.R.A., J.B., A.M.S., E.P.;
780 Software: L.R.A., M.R.; Formal Analysis: L.R.A.; Data Generation: C.H., L.L.; Resources:
781 O.C., A.G.; Writing – Original Draft: L.R.A., L.Q.M., E.P.; Writing – Review & Editing:
782 L.R.A., J.B., J.C., J.M.R., M.R., A.M.S., H.C., A.F., F.V., L.Q.-M., E.P.; Visualization:
783 L.R.A.; Supervision: L.Q.-M., E.P.; Funding Acquisition: L.Q.M.

784

785 **DECLARATION OF INTERESTS**


786 The authors declare no competing interests.

787

788

789 **FIGURE LEGENDS**

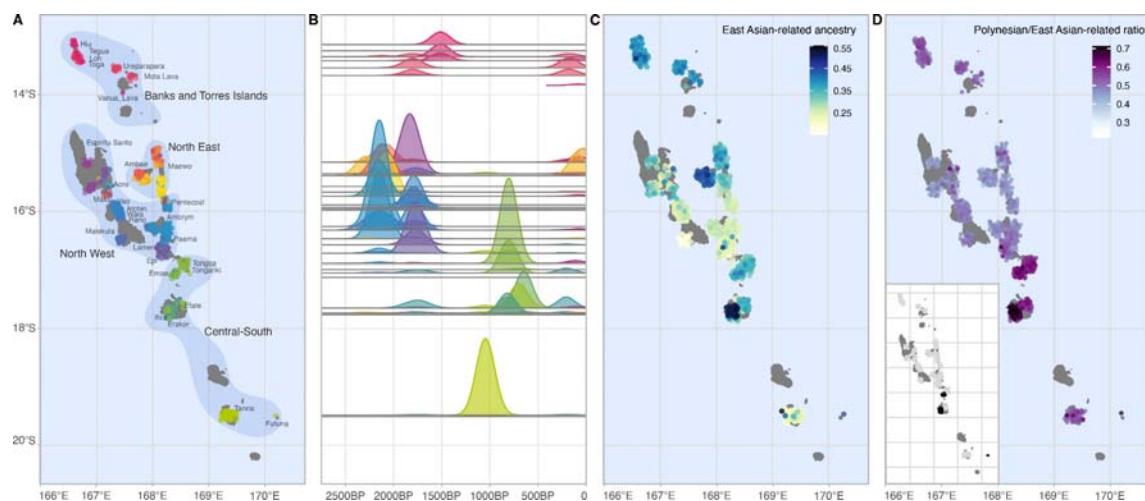
790

791

792

793 **Figure 1. Sampling locations and genetic structure in Vanuatu.**

794 (A) Map showing the sampling location of the 1,439 contemporary ni-Vanuatu individuals.


795 The inset at the bottom left shows the location of Vanuatu in the Asia-Pacific region. Noise
796 was added to sampling locations to facilitate visualization.

797 (B,C) Principal Component Analysis (PCA) of genotypes of ni-Vanuatu at 301,774 SNPs, in
798 the context of (B) the broad Asia-Pacific region and (C) the Vanuatu archipelago only.

799 (A-C) Each point indicates an individual, colored according to the latitude of their island of
800 residence. (B,C) Black crosses and points indicate projected ancient samples from Vanuatu
801 dated to the Lapita and Post-Lapita periods, respectively.

802

803

804

805

806 **Figure 2. Fine-scale genetic structure and admixture in Vanuatu.**

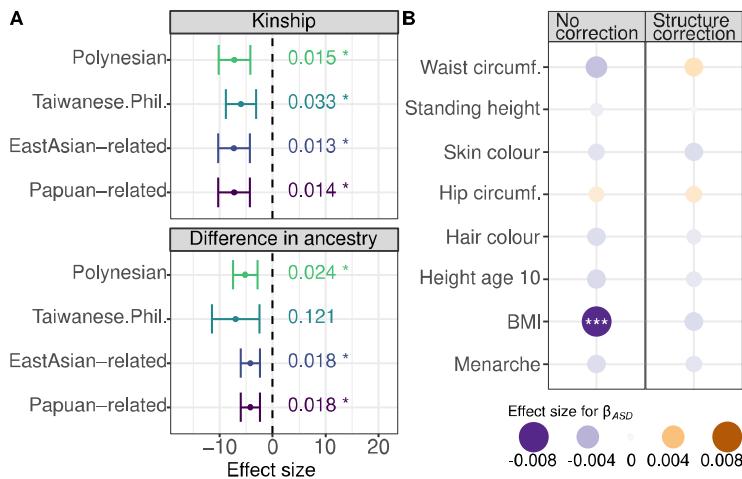
807 (A) Map showing the clustering of 979 ni-Vanuatu into 20 genetic clusters, according to
808 fineSTRUCTURE ($K_{FS} = 20$). Each point indicates an individual, located according to their
809 village of residence. Colors indicate genetic clusters, so that the closer the colors, the closer
810 the clusters. Noise was added to sampling locations to facilitate visualization.
811 (B) Admixture date estimates for each genetic cluster, based on 100 bootstrap replicates.
812 Colors are the same as those used in (A). The x-axis shows the admixture date in years before
813 present, assuming a generation time of 28 years. The y-axis indicates the latitude of the
814 islands assigned to each genetic cluster. The heights of the density curves are proportional to
815 the sample size of each cluster.
816 (C) Proportion of East Asian-related ancestry estimated by SOURCEFIND.
817 (D) Ratio of the Polynesian and East Asian-related ancestry proportions, estimated by
818 SOURCEFIND. The inset at the bottom left shows the location of Polynesian-speaking
819 individuals, indicated by black points.
820 (C-D) Each point indicates an individual, colored according to their ancestry proportions.
821

822

823

824

825 **Figure 3. Sex-biased admixture and migration patterns in Vanuatu.**


826 (A) Papuan-related ancestry proportions in ni-Vanuatu, estimated for the 22 autosomes and
827 the X chromosome separately by RFMix.

828 (B) Frequencies of Y chromosome and mtDNA haplogroups, colored according to their
829 assumed origins (i.e., shades of blue or red indicate Papuan- or East Asian-related origins,
830 respectively). Haplogroups were inferred from high-coverage genome sequencing data
831 obtained for a subset of 179 ni-Vanuatu [18].

832 (C) Recent migrations among Vanuatu islands, inferred based on fineSTRUCTURE clusters.
833 The arrows connect the location of the genetic cluster to which individuals were assigned to
834 their actual place of residence. The colors indicate the predominant genetic cluster in the
835 island of origin. The width is proportional to the number of inferred migrant individuals,
836 relative to the number of females or males in the genetic cluster.

837

838

839

840

841 **Figure 4. Ancestry- and trait-based assortative mating in Vanuatu.**

842 (A) Effects of kinship and ancestry differences on partner choice. Effect sizes were estimated
843 with a logistic regression model, while accounting for population structure (island of birth and
844 village of residence). The effect size and *P*-value were estimated using different ancestries as
845 predictors, independently.

846 (B) Increased (purple) or decreased (orange) genetic similarity among spouses (as measured
847 by β_s^{ASD}) at trait-associated SNPs, relative to non-associated SNPs. Results on the left are
848 based on a logistic model that includes only the genotype dissimilarity among spouses at each
849 SNP, whereas results on the right are based on the logistic model that also controls for
850 possible confounders (i.e. geography, kinship and ancestry differences).

851

852 **SUPPLEMENTAL FIGURE LEGENDS**

853 **Figure S1. Genetic structure of ni-Vanuatu and a selection of worldwide populations.**

854 (A) ADMIXTURE analyses of the SNP array data for 1,439 ni-Vanuatu, together with whole
855 genome sequences of other populations from the Pacific region [18]. (B) ADMIXTURE
856 cross-validation errors for different K_{ADM} values and 10 iterations with different seeds,
857 indicated by colors.

858

859 **Figure S2. Principal Component Analyses of the SNP array dataset for ni-Vanuatu.**

860 Each point is an individual, colored according to the geographical latitude coordinates of their
861 island of residence, as in Fig. 1A. Percentages indicate the proportion of variance explained.
862 PC1 and PC2 are shown in Fig. 1. Black crosses and points indicate projected ancient samples
863 from Vanuatu dated to the Lapita and Post-Lapita periods, respectively.

864

865 **Figure S3. F_{ST} matrix between ni-Vanuatu and other worldwide populations.** F_{ST} values
866 and their significance were obtained with the StAMPP R package [58]. The lower triangle of
867 the matrix indicates F_{ST} values, whereas the upper triangle indicates P -values. All values were
868 significant (P -value < 0.01 , using 100 bootstraps).

869

870 **Figure S4. Map showing the clustering of ni-Vanuatu into $K_{FS} = 2$ to 18 genetic clusters,**
871 **according to fineSTRUCTURE.** Each point indicates an individual, located according to
872 their village of residence. Colors indicate clusters, so that the closer the colors, the closer the
873 clusters. Noise was added to sampling locations to facilitate visualization.

874

875 **Figure S5. Sample sizes of each genetic cluster, according to fineSTRUCTURE at $K_{FS} =$**
876 **20.** Filled bars indicate the number of individuals who live in a village where Polynesian
877 languages are spoken.

878

879 **Figure S6. Robustness of fineSTRUCTURE analyses.** (A) Number of individuals below a
880 0.9 threshold of confidence in the assignation to a specific cluster (y-axis), as a function of a
881 number of clusters K_{FS} that varies between 1 and 125 (x-axis). Colors indicate the 5 different
882 seeds used for the MCMC algorithm. (B) Zoom-in of the plot in (A), for K_{FS} between 1 and
883 50. As expected, the robustness on the assignation of each individual to a genetic cluster
884 decreases with increasing K_{FS} values (i.e., more samples are below the 0.9 threshold). (C)
885 Robustness as measured by the average of $\sum_m (Y_i / X_i)$ (Methods), as a function of a number of

886 clusters K that varies between 1 and 125 (x-axis). (D) Zoom-in of the plot in (C), for K_{FS}
887 between 1 and 50. The shaded areas indicate the standard deviation of $\Sigma_m(Y_i / X_i)$ for each K_{FS}
888 value.

889

890 **Figure S7. Robustness of fineSTRUCTURE analyses across seeds, for the chosen K_{FS} values.** (A,C) Heatmaps showing the average of $\Sigma_s(Y_i / X_i)$ across clusters for (A) the ni-
891 Vanuatu (Analysis 1) ($K_{FS} = 20$) and (C) the reference populations (Analysis 2) ($K_{FS} = 25$).
892 Each row corresponds to one seed (the number of which is circled in black), and each column
893 corresponds to a genetic cluster. Colors indicate the mean $\Sigma_s(Y_i / X_i)$ for each cluster and seed.
894 (B,D) Heatmaps showing the mismatch between each seed and the four other seeds for (B) the
895 ni-Vanuatu (Analysis 1) ($K_{FS} = 20$) and (D) the reference populations (Analysis 2) ($K_{FS} = 25$).
896 Each row corresponds to the seed used as reference to estimate $\Sigma_s(Y_i / X_i)$. Each column
897 corresponds to a genetic cluster. Colors indicate the proportion of individuals who are
898 assigned to a different cluster in the other seeds.

900

901 **Figure S8. Ancestry proportions in ni-Vanuatu, estimated by SOURCEFIND.** Each point
902 indicates an individual, colored according to their ancestry proportions. The East Asian-
903 related ancestry is the sum of the Taiwan.Philippines and Polynesian ancestry. Noise was
904 added to sampling locations to facilitate visualization.

905

906 **Figure S9. Correlations between East Asian-related and Polynesian ancestry inferred by**
907 **SOURCEFIND.** (A) Each individual is colored according to their island of residence. (B)
908 The black points indicate the individuals living in villages where Polynesian languages are
909 spoken, the rest of the samples are colored in gray. The blue line indicates the regression line
910 considering all the individuals from Vanuatu. The gray area indicates the 95% confidence
911 level.

912

913 **Figure S10. Distributions of ancestry proportions in ni-Vanuatu, estimated by**
914 **SOURCEFIND, for each island and ancestry.** The line, box, whiskers and points,
915 respectively, indicate the median, interquartile range (IQR), 1.5*IQR and outliers. Colors
916 indicate the geographical latitude coordinates of each island, as in Fig. 1A.

917

918 **Figure S11. Distributions of ancestry proportions of ni-Vanuatu among genetic clusters,**
919 **according to fineSTRUCTURE at $K_{FS} = 4$.** The line, box and whiskers, respectively,

920 indicate the median, interquartile range (IQR) and 1.5*IQR. We tested significant differences
921 in ancestry between each cluster using a Wilcoxon test with Bonferroni correction. * $P < 0.05$,
922 ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$, ns: $P > 0.05$.

923

924 **Figure S12. Map showing admixture dates estimated per individual with**
925 **GLOBETROTTER.**

926

927 **Figure S13. Allele sharing of ni-Vanuatu with Near Oceanians, according to f_4 -statistics.**

928 The x-axis indicates $f_4(X, \text{New Guinean Highlanders}; \text{EastAsian, Australian})$, which measures
929 allele sharing of ni-Vanuatu and Near Oceanians (X) with East Asians. The y-axis indicates
930 $f_4(X, \text{New Guinean Highlanders}; \text{Near Oceanian, EastAsian})$, which measures allele sharing
931 of ni-Vanuatu and Near Oceanians (X) to each Near Oceanian population tested (Nakanai,
932 Nasioi, Baining), relative to their allele sharing with New Guinean Highlanders. The regression
933 line is estimated considering only modern individuals from Vanuatu. The bars
934 show two standard errors. Deviations upper from the regression line indicate a higher affinity
935 with the Near Oceanian population tested.

936

937 **Figure S14. Principal Component Analysis (PCA) of ni-Vanuatu, together with other**
938 **populations from Near Oceania.** The modern and ancient samples from Vanuatu were
939 projected into a PCA of a previous SNP array data set [41].

940

941 **Figure S15. Ancestry proportions in ni-Vanuatu, estimated by SOURCEFIND,**
942 **considering all the reference populations as possible surrogates (Table S4).** The bar plot
943 indicates the mean value across individuals, for each ancestry in each island of residence.

944

945 **Figure S16. Allele sharing of ni-Vanuatu with Polynesians, according to f_4 -statistics.** The
946 x-axis indicates $f_4(X, \text{New Guinean Highlanders}; \text{EastAsia, Australian})$, which measures allele
947 sharing of ni-Vanuatu and Near Oceanians (X) with East Asians. The y-axis indicates $f_4(X,$
948 $\text{EastAsian}; \text{Polynesian, Tolai})$, which measures allele sharing of ni-Vanuatu and Near
949 Oceanians (X) with Polynesians (Rennell and Bellona [RenBel], Tikopia, Tonga), relative to
950 their East Asian ancestry. The regression line is estimated considering only modern
951 individuals from Vanuatu. The bars show two standard errors. Deviations upper from the
952 regression line indicate a higher affinity with the Polynesian population tested.

953

954 **Figure S17. Sex-biased admixture in Vanuatu.** (A) X-to-autosome ratio of Papuan-related
955 ancestry proportions in ni-Vanuatu who speak non-Polynesian or Polynesian languages,
956 estimated using the SNP array data (Wilcoxon test P -value $< 1.36 \times 10^{-5}$, after Bonferroni
957 correction). (B) Papuan-related ancestry proportions in ni-Vanuatu, estimated for the 22
958 autosomes and the X chromosome separately, using the high-coverage genome sequencing
959 data obtained for a subset of 179 ni-Vanuatu [18].

960

961 **Figure S18. Self-reported migrations among ni-Vanuatu spouses.** (A) Map of self-
962 reported migrations for females (blue) and males (green), separately. The arrows connect the
963 place of birth of individuals to their place of residence. (B) Barplot showing the number of
964 females (blue) and males (green) among ni-Vanuatu spouses who reported to migrate during
965 their lifetime.

966

967 **Figure S19. Proportions of female and male ni-Vanuatu migrants, based on genetic
968 clusters or self-reported information.**

969

970 **Figure S20. Comparison of kinship levels among ni-Vanuatu living in the same village,
971 the same island or the entire archipelago.** Significance of the differences was tested by a
972 Wilcoxon test.

973

974 **Figure S21. Genetic relatedness and islands of residence of related ni-Vanuatu.** Each line
975 connects two individuals who are related up to third degree. Islands are order from north to
976 south (clockwise).

977

978 **Figure S22. Degrees of genetic relatedness of ni-Vanuatu from the different Vanuatu
979 islands.** Bar plots indicate the proportion of pairs of related individuals according to the
980 inferred degree of genetic relatedness, in each island. The black points and indicate the mean
981 kinship per island. Significance was tested by a Fisher's exact test. $*P < 0.05$, $**P < 0.01$,
982 $***P < 0.001$.

983

984 **Figure S23. Genetic relatedness and islands of residence of ni-Vanuatu spouses.** Each
985 line connects the two spouses, and the color indicates the degree of genetic relatedness.
986 Islands are order from north to south (clockwise).

987

988 **Figure S24. Kinship among spouses and random pairs of individuals.** Kinship coefficients
989 among spouses and random pairs of individuals from the same (A) island (excluding first-
990 degree related pairs), (B) village (excluding first-degree related pairs) and (C) village
991 (including first-degree related pairs). The orange vertical line indicates the average kinship
992 coefficient among spouses. The blue density curve indicates the null distribution of kinship
993 coefficients estimated from the sampling of random pairs of individuals. Each data point of
994 the null distribution is estimated as the mean kinship coefficient in randomly sampled pairs of
995 individuals. Of note, negative kinship coefficients are expected when the two compared
996 individuals are from different populations.

997

998 **Figure S25. Effects of geographical location and kinship on mate choice..** (A) Effect sizes
999 estimated when not including the village of residence as a predictor. (B) Effect sizes
1000 estimated when including the village of residence as a predictor and excluding first-degree
1001 related pairs from the analysis. (C) Effect sizes estimated when including the village of
1002 residence as a predictor and including first-degree related pairs from the analysis. (A-C)
1003 Effect sizes of the logistic regression modelling the probability of mating as a function of
1004 three predictors: the island of birth, the village of residence and kinship coefficients.

1005

1006 **Figure S26. Q-Q plots of observed and expected P-values of a regression model testing**
1007 **for SNP-based assortative mating.** (A) *P*-values are from a model that does not control for
1008 population structure. (B) *P*-values are from a model that controls for population structure
1009 (island of birth, kinship and ancestry). The shaded area indicates the 95% confidence interval.

1010

1011 **REFERENCES**

- 1012 1. Bellwood, P. (2004). *First Farmers: The Origins of Agricultural Societies*, (Wiley-
1013 Blackwell).
- 1014 2. Gray, R.D., Drummond, A.J., and Greenhill, S.J. (2009). Language phylogenies reveal
1015 expansion pulses and pauses in Pacific settlement. *Science* 323, 479-483.
- 1016 3. Hung, H.-C., and Carson, M.T. (2015). Foragers, fishers and farmers: origins of the
1017 Taiwanese Neolithic. *Antiquity* 88, 1115-1131.
- 1018 4. Bedford, S., and Spriggs, M. (2014). *The archaeology of Vanuatu: 3000 years of history*
1019 across islands of ash and coral, (Oxford University Press).
- 1020 5. Petchey, F., Spriggs, M., Bedford, S., and Valentin, F. (2015). The chronology of
1021 occupation at Teouma, Vanuatu: Use of a modified chronometric hygiene protocol and
1022 Bayesian modeling to evaluate midden remains. *Journal of Archaeological Science: Reports* 4, 95-105.
- 1023 6. Petchey, F., Spriggs, M., Bedford, S., Valentin, F., and Buckley, H. (2014). Radiocarbon
1025 dating of burials from the Teouma Lapita cemetery, Efate, Vanuatu. *J Archaeol Sci*, 227-
1026 242.
- 1027 7. Valentin, F., Detroit, F., Spriggs, M.J., and Bedford, S. (2016). Early Lapita skeletons
1028 from Vanuatu show Polynesian craniofacial shape: Implications for Remote Oceanic
1029 settlement and Lapita origins. *Proc Natl Acad Sci U S A* 113, 292-297.
- 1030 8. Skoglund, P., Posth, C., Sirak, K., Spriggs, M., Valentin, F., Bedford, S., Clark, G.R.,
1031 Reepmeyer, C., Petchey, F., Fernandes, D., et al. (2016). Genomic insights into the
1032 peopling of the Southwest Pacific. *Nature* 538, 510-513.
- 1033 9. Lipson, M., Skoglund, P., Spriggs, M., Valentin, F., Bedford, S., Shing, R., Buckley, H.,
1034 Phillip, I., Ward, G.K., Mallick, S., et al. (2018). Population Turnover in Remote Oceania
1035 Shortly after Initial Settlement. *Current biology* 28, 1157-1165 e1157.
- 1036 10. Posth, C., Nagele, K., Colleran, H., Valentin, F., Bedford, S., Kami, K.W., Shing, R.,
1037 Buckley, H., Kinaston, R., Walworth, M., et al. (2018). Language continuity despite
1038 population replacement in Remote Oceania. *Nat Ecol Evol* 2, 731-740.
- 1039 11. Flexner, J.L., Bedford, S., and Valentin, F. (2019). Who was Polynesian? Who was
1040 Melanesian? Hybridity and ethnogenesis in the South Vanuatu Outliers. *Journal of Social*
1041 *Archaeology* 19, 403-426.
- 1042 12. Hermann, A., and Walworth, M. (2020). Approche interdisciplinaire des échanges
1043 interculturels et de l'intégration des communautés polynésiennes dans le centre du
1044 Vanuatu. *Journal de la société des océanistes* 151, 239-262.

1045 13. Lipson, M., Spriggs, M., Valentin, F., Bedford, S., Shing, R., Zinger, W., Buckley, H.,
1046 Petchey, F., Matanik, R., Cheronet, O., et al. (2020). Three Phases of Ancient Migration
1047 Shaped the Ancestry of Human Populations in Vanuatu. *Curr Biol* *30*, 4846-4856 e4846.

1048 14. François, A., Lacrampe, S., Franjeh, M., and Schnell, S. (2015). The Languages of
1049 Vanuatu: Unity and Diversity, Volume 5, (Canberra: Asia-Pacific Linguistics).

1050 15. Heyer, E., Chaix, R., Pavard, S., and Austerlitz, F. (2012). Sex-specific demographic
1051 behaviours that shape human genomic variation. *Mol Ecol* *21*, 597-612.

1052 16. Zou, J.Y., Park, D.S., Burchard, E.G., Torgerson, D.G., Pino-Yanes, M., Song, Y.S.,
1053 Sankararaman, S., Halperin, E., and Zaitlen, N. (2015). Genetic and socioeconomic study
1054 of mate choice in Latinos reveals novel assortment patterns. *Proc Natl Acad Sci U S A*
1055 *112*, 13621-13626.

1056 17. Ceballos, F.C., Joshi, P.K., Clark, D.W., Ramsay, M., and Wilson, J.F. (2018). Runs of
1057 homozygosity: windows into population history and trait architecture. *Nat Rev Genet* *19*,
1058 220-234.

1059 18. Choin, J., Mendoza-Revilla, J., Arauna, L.R., Cuadros-Espinoza, S., Cassar, O., Larena,
1060 M., Ko, A.M., Harmant, C., Laurent, R., Verdu, P., et al. (2021). Genomic insights into
1061 population history and biological adaptation in Oceania. *Nature* *592*, 583-589.

1062 19. Lawson, D.J., Hellenthal, G., Myers, S., and Falush, D. (2012). Inference of population
1063 structure using dense haplotype data. *PLoS Genet* *8*, e1002453.

1064 20. Leslie, S., Winney, B., Hellenthal, G., Davison, D., Boumertit, A., Day, T., Hutnik, K.,
1065 Roysvik, E.C., Cunliffe, B., Lawson, D.J., et al. (2015). The fine-scale genetic structure of
1066 the British population. *Nature* *519*, 309-314.

1067 21. van Dorp, L., Balding, D., Myers, S., Pagani, L., Tyler-Smith, C., Bekele, E., Tarekegn,
1068 A., Thomas, M.G., Bradman, N., and Hellenthal, G. (2015). Evidence for a Common
1069 Origin of Blacksmiths and Cultivators in the Ethiopian Ari within the Last 4500 Years:
1070 Lessons for Clustering-Based Inference. *PLoS Genet* *11*, e1005397.

1071 22. Tryon, D.T. (1976). New Hebrides Languages: An Internal Classification, (Canberra:
1072 Australian National University).

1073 23. François, A. (2011). Where *R they all? The Geography and History of *R-loss in
1074 Southern Oceanic Languages. *Oceanic Linguistics* *50*, 140-197.

1075 24. Lynch, J.D., Ross, M.T., and Crowley, T. (2011). The Oceanic Languages, (Routledge).

1076 25. Huffman, K. (1996). Trading, cultural exchange and copyright: Important aspects of
1077 Vanuatu art. In Arts of Vanuatu, J. Bonnemaison, K. Huffman, C. Kaufmann and D.
1078 Tryon, eds. (Bathurst: Crawford House Press), pp. 182-194.

1079 26. Walworth, M., Dewar, A., Ennever, T., Takau, L., and I., R. (2021). Multilingualism in
1080 Vanuatu: Four case studies. *International Journal of Bilingualism* 25, 1120-1141.

1081 27. Lynch, J.D., and Fakamuria, K. (1994). Borrowed Moieties, Borrowed Names:
1082 Sociolinguistic Contact between Tanna and Futuna-Aniwa, Vanuatu. *Pacific Studies* 17,
1083 79-91.

1084 28. Bedford, S., and Spriggs, M. (2008). Northern Vanuatu as a Pacific Crossroads: The
1085 Archaeology of Discovery, Interaction, and the Emergence of the "Ethnographic Present".
1086 *Asian Perspectives* 47, 95-120.

1087 29. Monzier, M., Robin, C., and Eissen, J.-P. (1994). Kuwae (\approx 1425 A.D.): the forgotten
1088 caldera. *Journal of Volcanology and Geothermal Research* 59, 207-218.

1089 30. Gao, C., Robock, A., Self, S., Witter, J., Steffenson, J., Clausen, H., Siggaard-Andersen,
1090 M., Johnsen, S., Mayewski, P., and Ammann, C. (2006). The 1452 or 1453 A.D. Kuwae
1091 eruption signal derived from multiple ice core records : Greatest volcanic sulfate event of
1092 the past 700 years. *Journal of Geophysical Research* 111, 1-11.

1093 31. Flexner, J., Spriggs, M., Bedford, S., and Abong, M. (2016). Beginning Historical
1094 Archaeology in Vanuatu: Recent Projects on the Archaeology of Spanish, French, and
1095 Anglophone Colonialism. In *Archaeologies of Early Modern Spanish Colonialism*.
1096 (Springer International Publishing), pp. 205-227.

1097 32. Jolly, M. (2009). The Sediment of Voyages: Re-membering Quirós, Bougainville and
1098 Cook in Vanuatu. In *Oceanic Encounters: Exchange, Desire, Violence*. (ANU Press), pp.
1099 57-112.

1100 33. Maples, B.K., Gravel, S., Kenny, E.E., and Bustamante, C.D. (2013). RFMix: a
1101 discriminative modeling approach for rapid and robust local-ancestry inference. *Am J*
1102 *Hum Genet* 93, 278-288.

1103 34. Goldberg, A., and Rosenberg, N.A. (2015). Beyond 2/3 and 1/3: The Complex Signatures
1104 of Sex-Biased Admixture on the X Chromosome. *Genetics* 201, 263-279.

1105 35. Vienne, B. (1984). Gens de Motlav. *Idéologie et pratique sociale en Mélanésie*.
1106 *Publication de la Société des Océanistes* 42, 232-240.

1107 36. Bolton, L. (1999). Women, Place and Practice in Vanuatu: a View from Ambae. *Oceania*
1108 70, 43-55.

1109 37. Petrou, K., and Connell, J. (2017). Rural-urban migrants, translocal communities and the
1110 myth of return migration in Vanuatu: the case of Paama. *Journal de la société des*
1111 *Océanistes* 144-145, 51-62.

1112 38. Godelier, M. (2004). *Métamorphoses de la parenté*, (Paris: Fayard).

1113 39. Parra, F.C., Amado, R.C., Lambertucci, J.R., Rocha, J., Antunes, C.M., and Pena, S.D.
1114 (2003). Color and genomic ancestry in Brazilians. *Proc Natl Acad Sci U S A* *100*, 177-
1115 182.

1116 40. Alvarez, L., and Jaffe, K. (2004). Narcissism guides mate selection: Humans mate
1117 assortatively, as revealed by facial resemblance, following an algorithm of "self seeking
1118 like". *Evolutionary Psychology* *2*, 177-194.

1119 41. Pugach, I., Duggan, A.T., Merriwether, D.A., Friedlaender, F.R., Friedlaender, J.S., and
1120 Stoneking, M. (2018). The gateway from Near into Remote Oceania: new insights from
1121 genome-wide data. *Mol Biol Evol* *35*, 871-886.

1122 42. Clark, R. (1996). Linguistic Consequences of the Kuwae Eruption. In *Oceanic Culture*
1123 *History: Essays in Honour of Roger Green*, J. Davidson, G. Irwin, F. Leach, A. Pawley
1124 and D. Brown, eds. (New Zealand Journal of Archaeology Special Publication), pp. 275-
1125 285.

1126 43. Ballard, C. (2021). Transmission's end? Cataclysm and chronology in Indigenous oral
1127 tradition. In *The Routledge Companion to Global Indigenous History*, A. McGrath and L.
1128 Russell, eds. (Taylor & Francis Group), pp. 571-602.

1129 44. Bonnemaison, J. (1996). Le tissu de nexus. In *Arts of Vanuatu*, J. Bonnemaison, K.
1130 Huffman, C. Kaufmann and D. Tryon, eds. (Bathurst: Crawford House Press), pp. 176-
1131 177.

1132 45. Kirin, M., McQuillan, R., Franklin, C.S., Campbell, H., McKeigue, P.M., and Wilson, J.F.
1133 (2010). Genomic runs of homozygosity record population history and consanguinity.
1134 *PLoS One* *5*, e13996.

1135 46. McQuillan, R., Leutenegger, A.L., Abdel-Rahman, R., Franklin, C.S., Pericic, M., Barac-
1136 Lauc, L., Smolej-Narancic, N., Janicijevic, B., Polasek, O., Tenesa, A., et al. (2008). Runs
1137 of homozygosity in European populations. *Am J Hum Genet* *83*, 359-372.

1138 47. Bianco, E., Laval, G., Font-Porterias, N., Garcia-Fernandez, C., Dobon, B., Sabido-Vera,
1139 R., Sukarova Stefanovska, E., Kucinskas, V., Makukh, H., Pamjav, H., et al. (2020).
1140 Recent Common Origin, Reduced Population Size, and Marked Admixture Have Shaped
1141 European Roma Genomes. *Mol Biol Evol* *37*, 3175-3187.

1142 48. Ruiz-Linares, A., Adhikari, K., Acuna-Alonso, V., Quinto-Sanchez, M., Jaramillo, C.,
1143 Arias, W., Fuentes, M., Pizarro, M., Everardo, P., de Avila, F., et al. (2014). Admixture in
1144 Latin America: geographic structure, phenotypic diversity and self-perception of ancestry
1145 based on 7,342 individuals. *PLoS Genet* *10*, e1004572.

1146 49. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015).
1147 Second-generation PLINK: rising to the challenge of larger and richer datasets.
1148 *Gigascience* 4, 7.

1149 50. Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M., and Chen, W.M.
1150 (2010). Robust relationship inference in genome-wide association studies. *Bioinformatics*
1151 26, 2867-2873.

1152 51. Mallick, S., Li, H., Lipson, M., Mathieson, I., Gymrek, M., Racimo, F., Zhao, M.,
1153 Chennagiri, N., Nordenfelt, S., Tandon, A., et al. (2016). The Simons Genome Diversity
1154 Project: 300 genomes from 142 diverse populations. *Nature* 538, 201-206.

1155 52. Delaneau, O., Marchini, J., and Zagury, J.F. (2011). A linear complexity phasing method
1156 for thousands of genomes. *Nat Methods* 9, 179-181.

1157 53. Delaneau, O., Zagury, J.F., and Marchini, J. (2013). Improved whole-chromosome
1158 phasing for disease and population genetic studies. *Nat Methods* 10, 5-6.

1159 54. Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O.,
1160 Marchini, J.L., McCarthy, S., McVean, G.A., and Abecasis, G.R. (2015). A global
1161 reference for human genetic variation. *Nature* 526, 68-74.

1162 55. Patterson, N., Price, A.L., and Reich, D. (2006). Population structure and eigenanalysis.
1163 *PLoS Genet* 2, e190.

1164 56. Alexander, D.H., Novembre, J., and Lange, K. (2009). Fast model-based estimation of
1165 ancestry in unrelated individuals. *Genome Res* 19, 1655-1664.

1166 57. Behr, A.A., Liu, K.Z., Liu-Fang, G., Nakka, P., and Ramachandran, S. (2016). pong: fast
1167 analysis and visualization of latent clusters in population genetic data. *Bioinformatics* 32,
1168 2817-2823.

1169 58. Pembleton, L.W., Cogan, N.O., and Forster, J.W. (2013). StAMPP: an R package for
1170 calculation of genetic differentiation and structure of mixed-ploidy level populations. *Mol*
1171 *Ecol Resour* 13, 946-952.

1172 59. Arauna, L.R., Mendoza-Revilla, J., Mas-Sandoval, A., Izaabel, H., Bekada, A.,
1173 Benhamamouch, S., Fadhloui-Zid, K., Zalloua, P., Hellenthal, G., and Comas, D. (2017).
1174 Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North
1175 Africa. *Mol Biol Evol* 34, 318-329.

1176 60. Mas-Sandoval, A., Arauna, L.R., Gouveia, M.H., Barreto, M.L., Horta, B.L., Lima-Costa,
1177 M.F., Pereira, A.C., Salzano, F.M., Hunemeier, T., Tarazona-Santos, E., et al. (2019).
1178 Reconstructed Lost Native American Populations from Eastern Brazil Are Shaped by
1179 Differential Je/Tupi Ancestry. *Genome Biol Evol* 11, 2593-2604.

1180 61. Chacon-Duque, J.C., Adhikari, K., Fuentes-Guajardo, M., Mendoza-Revilla, J., Acuna-
1181 Alonzo, V., Barquera, R., Quinto-Sanchez, M., Gomez-Valdes, J., Everardo Martinez, P.,
1182 Villamil-Ramirez, H., et al. (2018). Latin Americans show wide-spread Converso ancestry
1183 and imprint of local Native ancestry on physical appearance. *Nat Commun* 9, 5388.

1184 62. Hellenthal, G., Busby, G.B., Band, G., Wilson, J.F., Capelli, C., Falush, D., and Myers, S.
1185 (2014). A genetic atlas of human admixture history. *Science* 343, 747-751.

1186 63. Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-
1187 Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., et al. (2013). From FastQ
1188 data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline.
1189 *Curr Protoc Bioinformatics* 43, 11 10 11-11 10 33.

1190 64. Lucotte, E.A., Skov, L., Jensen, J.M., Macia, M.C., Munch, K., and Schierup, M.H.
1191 (2018). Dynamic Copy Number Evolution of X- and Y-Linked Ampliconic Genes in
1192 Human Populations. *Genetics* 209, 907-920.

1193 65. Calabrese, C., Simone, D., Diroma, M.A., Santorsola, M., Gutta, C., Gasparre, G., Picardi,
1194 E., Pesole, G., and Attimonelli, M. (2014). MToolBox: a highly automated pipeline for
1195 heteroplasmy annotation and prioritization analysis of human mitochondrial variants in
1196 high-throughput sequencing. *Bioinformatics* 30, 3115-3117.

1197 66. Ralf, A., Montiel Gonzalez, D., Zhong, K., and Kayser, M. (2018). Yleaf: Software for
1198 Human Y-Chromosomal Haplogroup Inference from Next-Generation Sequencing Data.
1199 *Mol Biol Evol* 35, 1291-1294.

1200