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Summary

The broad application of single-cell RN A sequencing
has revealed transcriptional cell state heterogeneity
across diverse healthy and malignant somatic tis-
sues. Recent advances in lineage tracing technolo-
gies have further enabled the simultaneous capture
of cell transcriptional state along with cellular an-
cestry thus enabling the study of somatic evolution
at an unprecedented resolution; however, new ana-
lytical approaches are needed to fully harness these
data. Here we introduce PATH (the Phylogenetic
Analysis of Transcriptional Heritability), an ana-
lytical framework, which draws upon classic ap-
proaches in species evolution, to quantify heritabil-
ity and plasticity of somatic phenotypes, including
transcriptional states. The PATH framework fur-
ther allows for the inference of cell state transition
dynamics by linking a model of cellular evolution-
ary dynamics with our measure of heritability ver-
sus plasticity. We evaluate the robustness of this
approach by testing a range of biological and techni-
cal features in simulations of somatic evolution. We
then apply PATH to characterize single-cell phylo-
genies, reconstructed from either native or artificial
lineage markers, with matching transcriptional state
profiling. PATH recovered known developmental re-
lationships in mouse embryogenesis, and revealed
how anatomic proximity influences neural related-
ness in the developing zebrafish brain. In cancer,
PATH dissected the heritability of the epithelial-to-
mesenchymal transition in a mouse model of pan-
creatic cancer, and the heritability versus plastic-
ity of transcriptionally-defined cell states in human
glioblastoma.

Introduction

HE application of single-cell RNA sequencing (scR-
NAseq) across biology has revealed vast phenotypic
diversity within healthy [Hammond et al., 2019, Papalexi
and Satija, 2018, Plasschaert et al., 2018] and diseased [Nef-
tel et al., 2019, Wu et al., 2021] tissues. As genetic variation
is limited within the soma, much of the heritable diversity
of somatic phenotypes is attributed to non-genetic sources,
such as epigenetic modifications. Indeed, the stable propa-
gation of somatic phenotypes (e.g., cell type [Zeng, 2022])
through mitotic divisions, sometimes called epigenetic mem-
ory [Fennell et al., 2022, Halley-Stott and Gurdon, 2013,
Larsen et al., 2021, Shaffer et al., 2020], often relies on the
heritable transmission of epigenetic marks, such as DNA
methylation, histone modification, or the propagation of key
transcription factors [Adam and Fuchs, 2016, Whyte et al.,
2013]. Somatic cells, however, may also accumulate genetic
variation over time [Li et al.; 2020, Martincorena et al., 2015,
2018], for example enabling more proliferative phenotypes
which can lead to cancer [Hanahan, 2022, Vogelstein et al.,
2013]. In addition to cell-intrinsic sources of heritable phe-
notypic diversity, cell-extrinsic sources, such as the microen-
vironment [Gola and Fuchs, 2021, Hara et al., 2021] or mor-
phogen gradients [Houchmandzadeh et al., 2002], may con-
tribute to heritable cellular phenotypic diversity, as progeny
often share the same microenvironment as parent cells. Cru-
cially, not all cellular phenotypic variation is stable, and cells
can also plastically toggle between phenotypes in somatic
evolution. For instance, healthy skin cells can dedifferenti-
ate to repair injuries [Donati et al.,; 2017, Gola and Fuchs,
2021] and cancer cells have been shown to toggle between
proliferative and invasive phenotypes [Karras et al., 2022,
Oren et al., 2021], or to morph and evade treatment [Chan
et al., 2022].
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To approach these key aspects, it can be useful to con-
sider cellular phenotypic diversity from an evolutionary per-
spective. Somatic cells descend from a common ances-
tor, and following successive divisions, accumulate heritable
variation in the form of genetic, epigenetic or cell-extrinsic
changes. Throughout this process of somatic evolution, the
heritable variation within a population can be sculpted by
selection, which has important implications for organismal
health. Outcomes of somatic evolution, for instance,
clude the initiation, relapse and resistance of cancers [Fen-
nell et al., 2022, Jan et al., 2012, Shaffer et al., 2017]. How-
ever, it is not yet clear to What degree eplgenetlc [Mazor
et al., 2016] or genetic [Househam et al., 2022, Turajlic et al.,
2019] variation contributes to the evolution and persistence
of malignant phenotypes [Nam et al., 2021]. To confront
the challenge of studying somatic evolution, we require an
integrative model of somatic evolution that considers cel-
lular phenotypic diversity and ancestry [Nam et al., 2021],
informed by technologies that deliver phenotypically anno-
tated single-cell phylogenetic trees [Biddy et al., 2018]. By
tracing cellular ancestries, we can begin to elucidate the
shared developmental origins of cell states and map differ-
entiation trajectories [Chan et al., 2019, Raj et al., 2018].
Furthermore, this framework can enable us to dissect the
heritability versus plasticity of somatic cellular phenotypes,
to define how evolution shapes somatic cellular populations.

in-

Recently, an array of techniques for lineage tracing has been
advanced that can provide ancestry information at a single-
cell level [Baron and van Oudenaarden, 2019, Sankaran
et al., 2022]. In model organisms, cellular lineages or phylo-
genies can be reconstructed from artificial lineage markers
[Pei et al., 2020, Raj et al., 2018, Rodriguez-Fraticelli et al.,
2020 Span aard et al. )()18] that can be experimentally in-
Serted and edited. In contrast, retracing lineage histories
in human samples leverages native lineage markers, such as
patterns of genetic (copy number [Salehi et al., 2022, Wang
et al., 2( )21] or single nucleotide [Lodato et dl., 2015, Lud-
wig et al., 2019]) or epigenetic (stochastic methylation [Gaiti
et al., 2019]) variation. Both artificial and native lineage
tracing approaches can be combined with other single-cell
modalities, like scRNAseq, to deliver phylogenetic trees with
phenotypically annotated leaves (terminal nodes).

Such phenotypically annotated cellular lineages emerge as a
formidable tool to study critical questions in biology, such
as mapping the ontogenetic relations between cells in de-
velopment [Bandler et al., 2021], and clinically important
features of cancer evolution, such as the stability of differ-
entiation hierarchies [Chaligne et al.; 2021], and metastatic
dynamics [Quinn et al., 2021]. These experlmental advances
need to be complemented by a broadly applicable analytical
framework, grounded in evolutionary biology, that could be
applied to examine how cellular state (as for example pro-
filed by scRNAseq) depends on ancestry (delivered by lin-
eage tracing). Such a framework would enable us to distin-

guish between mitotically stable and ephemeral phenotypic
states, and to make inferences about unobserved evolution-
ary dynamics. Tools for the analysis of multimodal single-
cell lineages, such as Hotspot [Detomaso and Yosef, 2021]
and The Loraz [Minkina et al., 2022], and others [Chaligne
et al., 2021, Fang et al., 2022, Jones et al., 2022, Yang
et al.7 2022], are being developed to measure herltablhty.
Nonetheless, additional conceptual and analytic advances
are needed to fully harness these datasets for the study of
somatic evolution. These advances will allow us to account
for technical and biological variables affecting heritability
measurements, and enable the integration of heritability as-
sessments with phenotypic transition probability measure-
ments, within a comprehensive and easy-to-implement ana-
lytical framework.

To address this challenge, we introduce PATH (the
Phylogenetic Analysis of Transcriptional Heritability), an
analytical framework that draws upon classic approaches
in species evolution, to quantify heritability and plastic-
ity of somatic cellular phenotypes, such as transcriptional
cell states. PATH measures phylogenetic correlations, which
quantify the degree by which cellular phenotypes, broadly
defined (e.g., transcriptional program, cell state or location),
depend on ancestry, as provided by single-cell phylogenies,
and thus defines a measure of somatic heritability versus
plasticity. PATH builds upon auto-correlative [Cheverud
and Dow, 1985, Gittleman and Kot, 1990] methods clas-
sically used to measure phylogenetic signal [Blomberg and
Garland, 2002], the phylogenetic clustering of species phe-
notypes. Furthermore, PATH generalizes this approach to
measure phylogenetic correlations between phenotypes (and
from across modalities), providing a measure of how dis-
tinct phenotypes co-cluster on phylogenies, and thus defin-
ing a pairwise measure of phylogenetic signal. Addition-
ally, for categorical phenotypes, such as cell type, PATH
can transform phylogenetic correlations, our measurement
of heritability versus plasticity, into inferences of transition
rates between cell types or states. Importantly, this trans-
formation provides a concrete interpretation of what phylo-
genetic signal measures, as the pattern of phylogenetic signal
is directly linked with the process of cell type or state tog-
gling. Further, PATH represents a comprehensive, versatile
quantitative framework that can handle sparsely sampled
and lowly resolved phylogenies, reconstructed under a range
of biological and technical variables.

We first demonstrate PATH’s capabilities through simula-
tions reflecting plausible biological and technical parame-
ters of single-cell data, including cell sampling rate, phyloge-
netic reconstruction fidelity, cellular division and death rate,
and show that PATH reproducibly and accurately measures
heritability versus plasticity across different contexts. We
show how the detection of heritability depends on sampling
and phylogenetic reconstruction fidelity, and how these re-
sults can guide future lineage tracing experimental design
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and methods development. PATH can infer cell type tran-
sition dynamics with high accuracy, comparable to a classic
maximum likelihood approach from species evolution [Lewis,
2001, Louca and Pennell, 2019, Pagel, 1994], but with higher
computational efficiency, a critical feature considering the
massive potential scale of phenotypically annotated phylo-
genies in high throughput single-cell data. We then apply
PATH to published single-cell multi-omic datasets, which
use either native or artificial lineage tracing, to explore
two broad themes, development and cancer. Specifically,
we examine mouse embryogenesis [Chan et al., 2019] and
zebrafish neural development [Raj et al., 2018], a model
of pancreatic cancer [Simeonov et al., 2021] and human
glioblastoma [Chaligne et al., 2021]. PATH quantitatively
maps cell fate trajectories during development, character-
izes the variable plasticity of transcriptional states along the
epithelial-to-mesenchymal transition in cancer and quanti-
fies the heritability and stability of cell states of the cor-
rupted neurodevelopmental hierarchy in glioblastoma. We
make PATH available to the community as a comprehen-
sive package, including software, analyses, and tutorials at
https://github.com/landau-lab/PATH.

Results

Heritability, plasticity and cell state transi-
tion dynamics

Evolutionary biology offers a collection of metrics for char-
acterizing heritable patterns of phenotypic variation, which
can be adapted to interrogate single-cell ancestries. The
degree to which phenotypic and ancestral similarity align
is quantified by heritability statistics (h? and H?) [Gille-
spie, 2004], which are weighted measures of the phenotypic
correlation between relatives. These statistics have found
application in agriculture, as part of the breeder’s equa-
tion, enabling the prediction of a phenotypic response to an
artificial selection pressure [Gillespie, 2004]. Analogously,
through leveraging phylogenetic trees, the degree to which
related species phenotypically resemble each other, termed
phylogenetic signal [Blomberg and Garland, 2002], can be
quantified with various metrics (e.g., Pagel’s A [Househam
et al., 2022, Pagel, 1999], Blomberg’s K [Blomberg et al.,
2003], Moran’s I [Gittleman and Kot, 1990]), and is used to
make inferences about inheritance patterns and the evolu-
tionary lability of phenotypes. These metrics are sometimes
categorized as either statistic- or model-based [Miinkemiiller
et al., 2012], but nonetheless show strong agreement [Diniz-
Filho et al., 2012]. Signal statistics, such as Moran’s I, quan-
tify the phylogenetic dependency of a phenotype, whereas
model-based metrics, such as Pagel’s A, assess the diver-
gence between a phenotype’s phylogenetic distribution with
a distribution expected by a model of random genetic drift.
PATH builds upon these approaches to characterize the her-
itability or plasticity of cellular states in somatic evolution.

Specifically, PATH adapts Moran’s I (Methods: Phy-
logenetic correlations), a measure of phylogenetic auto-
correlation and phylogenetic signal (but originally con-
ceived as a spatial auto-correlation metric [Moran, 1950]),
to quantify the heritability or plasticity of single-cell pheno-
types. Like classic heritability statistics, phylogenetic auto-
correlation is a measure of phenotypic similarity, weighted
by relatedness. Phylogenetic auto-correlation quantifies the
phylogenetic dependency of a single-cell measurement or
phenotype (broadly defined), such as cellular state, tran-
scriptional profile, or spatial location. Fundamentally, phy-
logenetic auto-correlation measures how much phenotypic
resemblance close relatives have to one another compared to
randomly chosen cells. If cells resemble close relatives much
more than randomly chosen cells, the phenotype will appear
highly heritable and phylogenetically auto-correlated. Such
a pattern might be observed for a genetically encoded phe-
notype, as for example a phenotype affected by chromosomal
copy number change. Alternatively, if closely related cells
resemble each other to the same degree as any other cells,
regardless of ancestry, the phenotype will appear plastic,
not heritable and not auto-correlated. Such a pattern could
reflect temporally transient states such as cell-cycle phase.
Generally, phylogenetic auto-correlation captures the tem-
poral stability or transience of a cell state, whether state is
defined by intrinsic (e.g., mutation) or by extrinsic factors
(e.g., interactions with the microenvironment). For exam-
ple, if there is rapid toggling between states within a single
generation, these states likely will not be auto-correlated in
phylogenetic space, in contrast to more stable cell states that
persist without transitioning for time scales longer than one
cell division. Furthermore, we can assess statistical signif-
icance by computing phylogenetic correlation z scores, ei-
ther analytically [Czaplewski and Reich, 1993] or by using a
leaf-permutation test (Methods: Phylogenetic correla-
tions). By measuring phylogenetic auto-correlations, PATH
provides a powerful framework for quantifying the temporal
stability and thus heritability versus plasticity of somatic
cell states (or phenotypes) using multi-omic platforms that
jointly capture the lineage history and the cell state of single
cells.

In addition to quantifying the lineage dependency of single
cell states to define heritability versus plasticity, to under-
stand the evolutionary relationships between cell states we
measure phylogenetic cross-correlations (Methods: Phy-
logenetic correlations). Phylogenetic cross-correlation
quantifies the dependency of one cell state’s distribution on
the lineage patterning of another state. For example, again
consider the phylogenetic distribution of a phenotype that
depends on chromosomal copy number. If a chromosomal
duplication occurs, cells with the extra chromosome, and
affected phenotype, will be in close phylogenetic proximity
to each other, and farther from cells without the chromo-
somal duplication. As such, each of the phenotypes, one
affected and one unaffected by the duplication, will be auto-
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correlated, but because these phenotypes will be phyloge-
netically segregated from each other they will be negatively
cross-correlated. On the other hand, if distinct measure-
ments co-cluster phylogenetically, such as the transcription
levels of two genes located on a chromosomal copy vari-

Figure 1
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Figure 1: Phylogenetic correlations quantify the heritability versus plasticity of single-cell phenotypes

A) Diagram of highly heritable (categorical) cell state transition dynamics (Methods: Markov model of cell state transitions).
Markov transition probabilities between states were simulated as Poo = Pgg = 0.9, and Pag = P3q = 0.1 (meaning that cells had a

10% probability of switching states over each time point).

B) Phylogenetic tree containing 200 cells, simulated as a somatic evolutionary process (Methods: Simulating phylogenies),
from simulated transition dynamics depicted in A, with birth rate = 1 and death rate = 0.

Schiffman, JS & D’Avino, AR et al. (2022). bioRxiv.


https://doi.org/10.1101/2022.12.28.522128
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.28.522128; this version posted December 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

C) Phylogenetic auto-correlations (Methods: Phylogenetic correlations) for cell states depicted in B.

D) Phylogenetic cross-correlation (Methods: Phylogenetic correlations) heat map for cell states depicted in B. Diagonals are
equivalent to bars shown in C.

E) Diagram of highly plastic (categorical) cell state transition dynamics (Methods: Markov model of cell state transitions).
Markov transition probabilities between states were all the same (Pao = Pgg = Pag = Pgo = 0.5; meaning that cells had a 50%
probability of switching states at any time).

F) Phylogenetic tree containing 200 cells, simulated as a somatic evolutionary process (Methods: Simulating phylogenies),
from simulated transition dynamics depicted in E, with birth rate = 1 and death rate = 0.

G) Phylogenetic auto-correlations (Methods: Phylogenetic correlations) for cell states depicted in E.
H) Phylogenetic cross-correlation (Methods: Phylogenetic correlations) heat map for cell states depicted in F.

I) Diagram of a three-state system (Methods: Markov model of cell state transitions) in which states « and 8 transition
to each other at a rate higher than either transitions to state 4. Markov transition probabilities between the three states were
Pyoa = Pap = Pgg = 0.5, Poy = Pya =0, Pgo = 0.45, P,g = 0.1, Pg, = 0.05, and Py, = 0.9.

J) Phylogenetic tree containing 200 cells, simulated as a somatic evolutionary process (Methods: Simulating phylogenies),

from simulated transition dynamics depicted in I, with birth rate = 1 and death rate = 0.

K) Phylogenetic auto-correlations for cell states depicted in J.

L) Phylogenetic cross-correlation (Methods: Phylogenetic correlations) heat map for cell states depicted in J.

Error bars in C, G, and K represent the analytical phylogenetic auto-correlation standard deviations calculated with the method

from Czaplewski and Reich [1993].

To illustrate PATH, Figure 1 depicts phylogenies that are
the result of simulations of somatic evolution (Methods:
Simulating phylogenies), where cells can transition be-
tween states. When cell states are heritable, meaning that
state transitions occur infrequently (Fig. 1A), cells ap-
pear to phylogenetically group by state (e.g., Fig. 1B),
and thus states are positively auto-correlated and negatively
cross-correlated (Fig. 1C,D). In contrast, for highly plas-
tic dynamics where state transitions occur frequently (Fig.
1E), cells do not appear to phylogenetically group by state
(e.g., Fig. 1F), and states are lowly phylogenetically auto-
and cross-correlated (Fig. 1G,H). The phylogenetic cor-
relations between states can reflect evolutionary relation-
ships; phylogenetic correlations increase or decrease with
between-state transitions rates. For example, since tran-
sitions between state o and [ occur more frequently than
transitions to v (Fig. 1I), o and S co-cluster on the phy-
logeny (Fig. 1J) and are more phylogenetically correlated
with each other than with v (Fig. 1K,L). Note that despite
focusing on categorical cell states in Figure 1, phylogenetic
correlations can also be computed for quantitative pheno-
types (e.g., gene expression level).

We hypothesized that as cell state phylogenetic patterning
can be related to the rate of state transitions (as in Fig-
ure 1), the rates of these state transitions might be inferred
from such patterns. To test this, we simulated categori-
cal state transition dynamics on idealized phylogenies (i.e.,
completely sampled and balanced, where every node has the
same number of progeny; Methods: Simulating phylo-
genies, Fig. S1A). First, we confirmed a strong associ-

ation between simulated transition rates and phylogenetic
correlations (Fig. S1B, Spearman’s p = 0.89). Next, we
explicitly connected phylogenetic correlations with a math-
ematical model of state transition rates (Methods: Phy-
logenetic correlations and cell state transitions, Box
S1). For categorical cell states, phylogenetic correlations
characterize the frequencies at which states are found within
cell pairs that share recent ancestry, and these frequencies
can be anticipated given a model of state transitions. For
example, the states found within a pair of sister cells will
depend on the state of the sisters’ shared parent and the
rates at which transitions to other states can occur. For a
highly heritable cell state in which transitions to other states
occur infrequently, we will observe more sister cell pairs in
the same such state than what we would expect given the
state’s frequency. Using this mathematical relationship we
can transform phylogenetic correlations into transition rate
estimates with high accuracy (Methods: Inferring cell
state transitions from phylogenetic correlations, Fig.
S1C, Box S1).

Measuring heritability, plasticity, and cell
state transition dynamics in somatic evolu-
tion

The study of somatic evolution requires addressing an array
of complicating biological and technical features not repre-
sented by idealized phylogenies (e.g., Fig. S1A). For in-
stance, when cell division is not synchronized within a pop-
ulation [Brody et al., 2018], meaning that different cell gen-
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erations coexist, the resultant phylogenies will be more ad-
equately modeled in continuous-time. Additionally, not all
cells will leave the same number of progeny, resulting in less
balanced phylogenies. Moreover, in experimental contexts,
not all cells are successfully assayed, leading to incomplete
sampling. Other technical factors, such as sequencing depth
or barcode length, can limit the detection or accumulation of
heritable markers necessary to resolve close phylogenetic re-
lationships. As such, to test the robustness of PATH across
a wide range of biological and technical factors, we applied
PATH to phylogenies simulated with a more sophisticated
model of somatic evolution [Louca, 2020, Nee et al., 1994]
(Methods: Simulating phylogenies). In this model, cell
division and death occur, each with some probability, until
the population reaches a chosen size. Then only a fraction
of surviving cells is sampled and lineage relationships recov-
ered. Cell states are simulated along the sampled phyloge-
nies using a Markov model (Methods: Markov model
of cell state transitions). Cell division, death, sampling,
and state transition rates can be specified, thus providing a
more accurate representation of somatic evolution to assess
PATH’s applicability to complex somatic evolution datasets.

Consistent with our observations on idealized phylogenies
(Figure S1), in phylogenies produced by this sampled so-
matic evolutionary process, phylogenetic correlations remain
strongly related to cell state transitions. For instance, auto-
correlation, our measure of heritability, declines as state
transitions become more frequent. However, in addition to
declining with plasticity, phylogenetic auto-correlations also
decrease as sampling becomes sparser (Fig. 2A), under-
estimating heritability. Here, heritability is underestimated
because incomplete sampling leads to an overestimation of
lineage proximity in terms of node distance (Fig. 2B). In
other words, cells that may appear to be close relatives on
the tree (e.g., separated by one node) may in fact be more
distant relatives due to the loss of unsampled intermediates
(due to cell death, incomplete sampling or incomplete phy-
logenetic reconstruction). As such, when sampling is low,
as might be the case when only hundreds or thousands of
cells from a tumor are collected, even the closest related
sampled cells from such lineages will usually represent fairly
distant relationships, thus affecting heritability estimates.
In these cases, only highly heritable phenotypes, reliably
propagated over the number of cell divisions separating the
closest related sampled cells will be detectable. These data
reveal that under sufficiently sparse sampling, heritable phe-
notypes may appear plastic.

Next, we used PATH to infer state transition dynamics on
phylogenies simulated by the sampled somatic evolutionary
process. Since our inference approach transforms heritabil-
ity measurements — which are underestimated when sam-
pling is low — into transition rate estimates, transition in-
ference accuracy was highest when state heritabilities were
detectable (state auto-correlation z scores > 2, Fig. 2C,D,

insets depict inferences for simulations in which heritabil-
ity was not detectable [z score < 2] ). Notably, transi-
tion inference accuracy (Methods: Assessing cell state
transition inference accuracy) with PATH is comparable
to state-of-the-art Maximum Likelihood Estimation (MLE)
methods (as implemented in Louca and Doebeli [2018]) tra-
ditionally used in evolutionary biology to infer character
transitions (Fig. 2E, Fig. S2A,B), but with signifi-
cantly faster compute times when analyzing a large number
of states (Fig. 2F, Fig. S2C) and/or cells (Fig. 2G,
Fig. S2C). PATH’s relative speed derives from the fact
that PATH transforms a statistic (phylogenetic correlation)
into a transition probability, whereas MLE uses an optimiza-
tion algorithm to search for the most likely state transition
probabilities and often requires many more calculations.

Another important confounder in harnessing phylogenetic
trees to measure heritability is the fidelity of phylogenetic
reconstruction. Intuitively, this can be understood in the
context of artificial lineage tracing techniques that stochas-
tically scar or cut genetic barcodes (e.g., Molecular recorder
[Chan et al., 2019] and scGESTALT [Raj et al., 2018], where
a limited number of cut sites can result in phylogenetic re-
construction errors. To understand this, beyond simulating
phylogenies as a sampled somatic evolutionary process, we
also simulated the reconstruction of these phylogenies by
employing a model of CRISPR/Cas9 scarring (Methods:
Phylogenetic reconstruction). To do this, each cell in a
simulated evolving population contains a barcode, or a set
of mutable and heritable sites that can be modified (i.e.,
scarred) stochastically. In contrast to our previous approach
in which true phylogenies were recovered, here phylogenies
were reconstructed from the differences between barcodes re-
trieved from cells in the terminal population, much as they
would be for lineage tracing experiments. Comparing re-
constructed with true phylogenies, we observe that as the
number of mutable sites or barcode length increases, phy-
logenetic reconstruction accuracy improves (Fig. S2D).
Concordant with reconstruction accuracy, state transition
inferences using PATH also improve (Fig. 2H).

Since the accuracy of state transition inferences using PATH
is affected by reconstructed branch lengths, which scale phy-
logenetic distances by time, inference will be impeded when
branch lengths are inaccurate, and not possible when branch
lengths are absent (which is common for single-cell phyloge-
nies using artificial scarring methods). PATH can compen-
sate for this by imputing terminal branch lengths, indepen-
dent of phylogenies, if cell population sizes can be approxi-
mated (Methods: Inferring cell state transitions from
phylogenetic correlations, Imptung branch lengths).
PATH achieves this because under the model of sampled
somatic evolution, the degree by which sampling leads to
an overestimate of phylogenetic proximity can be calculated
(Fig. 2B, Fig. S2E,F) and accommodated. In other
words, under incomplete sampling, in which close phylo-
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genetic relationships are overestimated due to the loss of
unsampled intermediate cells, from the sampling rate (and
independent of the reconstructed phylogeny), we can esti-
mate how many intermediates are unsampled, and rescale
branch lengths accordingly. Replacing measured branch
lengths with model-imputed lengths significantly improves
the accuracy of state transition inferences using PATH, par-
ticularly for low fidelity phylogenetic reconstructions where
branch lengths are often less accurate (Fig. 2H). Thus, us-
ing PATH, state transitions can be accurately inferred for
low fidelity phylogenies and when branch lengths are absent
(in contrast to MLE), making PATH a powerful tool for
the analysis of phylogenies produced by molecular scarring
technologies.
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In conclusion, these simulated datasets demonstrate that
PATH, through the measurement of phylogenetic correla-
tions, provides a comprehensive framework to analyze cell
state heritability and plasticity in somatic cell populations,
and can transform these measurements into inferences of
state transition dynamics. PATH can accommodate a wide
range of biological and technical features associated with
somatic evolution. Thus, observable patterns of heritability
and plasticity are robustly linked to the (often unobservable)
processes that produce them, providing insights into cell lin-
eage histories and somatic evolutionary dynamics. Having
explored PATH’s capabilities on simulated datasets, we next
sought to apply PATH to published single-cell lineage trac-
ing datasets in two broad contexts, development and cancer.
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Figure 2: Measuring heritability, plasticity, and cell state transition dynamics in somatic evolution

A) Simulated cell state stability (Markov self-transition probability, Methods: Markov model of cell state transitions) for
state 1 versus measured phylogenetic auto-correlation under different sampling rates (Methods: Phylogenetic correlations).
Phylogenies contain 1,000 cells and Markov cell state transition dynamics were randomly generated for three-state systems. Phy-
logenies simulated as a sampled somatic evolutionary process (Methods: Simulating phylogenies) with birth rate 1 and death
rate 0. Lines colored by sampling rate depict LOESS regression lines with 95% confidence intervals (light gray).

B) Mean branch length (in units of time) distance between cell pairs only one-node apart on phylogenies versus cell sampling rate

for phylogeny simulations.

C) Simulated cell state stability (Markov self-transition probability) for state 1 versus PATH-inferred state stability for systems
with phylogenetic auto-correlation z scores > 2. Colors represent sampling rates. Inset shows systems with at least one phylogenetic
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auto-correlation z score < 2, and uses the same regression line.

D) Simulated versus PATH-inferred cell state transition probability from state 1 to state 2 for three-state systems with phylogenetic
auto-correlation z scores > 2. Colors represent sampling rates. Inset shows systems with at least one phylogenetic auto-correlation
z score < 2, and uses the same regression line.

E) Comparing the state transition dynamic inference accuracy of PATH (light purple) with Maximum Likelihood Estimation (MLE;
orange). Inference error is calculated as the Euclidean distance between inferred and simulated transition probability matrices
(equation shown on y-axis label), and the number of possible states in a simulated system is shown on the x-axis (Methods:
Assessing cell state transition inference accuracy). Panel depicts simulations for 1,000 cell phylogenies, sampled at a rate of
1072, excluding simulations in which either inference method failed (which were usually due to the complete absence of some cell
states).

F) Same as E but measuring compute time.

G) Comparing PATH and MLE compute times while varying phylogenetic tree size (number of cells; x-axis) fixing systems to four
cell states, and sampled at 1072, All inferences filtered to simulations surpassing the minimum phylogenetic auto-correlation z score
threshold of 2.

H) Comparing state transition inference of PATH using two different node depth estimation methods: (light purple) using measured
branch length distances, and (dark purple) using imputed branch lengths (Methods: Imputing branch lengths) from estimated
cell sampling rates. Simulations are for three-state systems simulated on 1,000 cell sampled somatic evolutionary phylogenies
(Methods: Simulating phylogenies). Phylogenies were reconstructed by using the UPGMA algorithm on the cell pairwise

Hamming distances between simulated lineage barcodes that were stochastically scarred at rate s = 0.01 (Methods: Phylogenetic

reconstruction).

PATH quantifies ancestry and divergence of
germ layers and cell types during mouse em-
bryogenesis

Embryogenesis and organogenesis require the organization
of the progeny of progenitor cells, which are restricted in
number, location and levels of potency, into complex tissues.
Single-cell lineage tracing methods provide sufficient resolu-
tion to map the cellular trajectories and interactions that
underlie this exquisitely regulated organization. We rea-
soned that the application of PATH to such datasets would
enable quantification of cell differentiation patterns through
calculation of (i) phylogenetic auto-correlations that can be
interpreted in this developmental context as cell state com-
mitment strength and (ii) phylogenetic cross-correlations to
determine relationships between tissue layers and cell types,
and to understand gene expression across development.

We first asked whether PATH is able to reconstruct known
cell fate relationships and dynamics in the well-characterized
context of murine gastrulation (Fig. 3A). To accomplish
this, we applied PATH to published mouse embryogene-
sis data [Chan et al., 2019], comprising single-cell phyloge-
nies with matching single-cell transcriptional data. The au-
thors leveraged a CRISPR/Cas9 lineage tracing construct to
study early murine development, isolating embryos at E8.5
and constructing phylogenies from the edited barcodes (Fig.
3B, Fig. S3A). We applied PATH to these data to measure

phylogenetic correlations for cellular phenotypes at multiple
levels of resolution, and gained insight into the commitment
and divergence patterns of cellular phenotypes from their
origin layers in the blastocyst through gastrulation, and ul-
timately to their differentiated tissue in the E8.5 embryo.

As expected, all blastocyst layers with sufficient representa-
tion had high auto-correlation in both replicates, indicating
that a cell from a particular blastocyst layer is more likely
to produce progeny that are also found in the same layer, re-
inforcing what is known about the rigidity of developmental
programs [Thowfeequ and Srinivas, 2022]. Germ layers de-
rived from outside of the epiblast had high auto-correlation
in all replicates that had sufficient cell recovery, while tissues
that shared a common origin in the epiblast had lower auto-
correlations (Fig. S3B). Thus, the non-epiblast-derived
layers show evidence of earlier fate commitment, while the
more plastic phenotype of the epiblast is consistent with
its later divergence [Thowfeequ and Srinivas, 2022]. PATH
also accurately reconstructed the patterns of shared ancestry
between blastocyst layers and germ layers (Fig. 3C). No-
tably, phylogenetic correlations recovered the dual contribu-
tion of both embryonic- and extraembryonic-derived tissues
to the endoderm [Kwon et al., 2008, Nowotschin et al., 2019,
Pijuan-Sala et al., 2019] (Fig. 3C). This highlights PATH’s
ability, by leveraging phylogenies, to identify phenotypically
similar but ancestrally distinct cells.
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Figure 3: PATH quantifies ancestry and divergence of germ layers and cell types during mouse embryogenesis
A) Schematic of mouse embryogenesis adapted from Thowfeequ and Srinivas [2022]. VE, visceral endoderm; ICM, inner cell mass;
e prefix, embryonic; ex prefix, extraembryonic.

B) Single-cell phylogeny from mouse embryo 6 from Chan et al. [2019], containing 700 randomly chosen of 1,722 cells for visual-
ization. Each leaf represents a single cell. Leaves are colored by blastocyst or germ layer of origin. e prefix, embryonic; ex prefix,
extraembryonic.

C) Germ layer phylogenetic correlations for embryo 2. Labels colored by cell type blastocyst origin: visceral endoderm, gold;
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epiblast, green.

D) Hierarchical clustering of tissue types by phylogenetic correlation using Ward’s method. Only tissues with more than 30 cells
were used. Tissues colored by germ and blastocyst layer of origin. Phylogenetic correlations can be found in Fig. S3C. ExE,
extraembryonic; EM, embryonic.

E) Phylogenetic correlation z score of gut endoderm cells annotated by their source tissue in the blastocyst and visceral endoderm
(early and late). Labels colored by cell type blastocyst origin: visceral endoderm, gold; epiblast, green.

F) Phylogenetic correlation z scores between genes and tissue assignment. Genes on the X-chromosome are denoted with a gray bar
(right) with select X-chromosome genes labeled (left). Cell state labels colored by cell type blastocyst origin: visceral endoderm,
gold; epiblast, green.

G) Enrichment of highly heritable genes at the whole chromosome level (with chromosome 13, 19 and X labeled). Log odds ratio
and p-value (p < 1073, Fisher’s exact test) of number of highly heritable genes (z score > 3) on each chromosome compared to
all other chromosomes Only expressed genes were considered for comparison (top 2,000 most variable genes across phylogeny, see

Methods: Mouse embryogenesis).

After implementing PATH at the level of the blastocyst and
germ layers, we sought to quantify the degree of shared ori-
gin of higher resolution, transcriptionally defined cell types
derived from each germ layer (Fig. 3D). Cell types that
share ancestry will likely be highly phylogenetically corre-
lated. Indeed, PATH analysis correctly identified impor-
tant developmental relationships between primitive blood
cells (early and late); and neural crest and future spinal
cord. Interestingly, PATH also identified the shared ori-
gins of the embryonic splanchnic lateral plate and extraem-
bryonic allantois cells in the nascent mesoderm [Thowfeequ
and Srinivas, 2022], highlighting PATH’s ability to identify
shared ancestry from progeny that have diverged into differ-
ent germ layers (Fig. S3C,D). Of note, we again observed
high cross-correlation between the endoderm and extraem-
bryonic endoderm-derived tissues in the gut endoderm (Fig.
3C), now at the level of cell type (Fig. 3E). This higher
resolution analysis revealed that extraembryonic-derived en-
doderm tissue cross-correlates almost exclusively with cells
from the late visceral endoderm (arising around E8.0 in the
extraembryonic endoderm), as opposed to the early visceral
endoderm (arising around E7.0 in the extraembryonic en-
doderm) [Grosswendt et al., 2020] or embryonic-derived gut
endoderm. Given that the intercalation of extraembryonic
endoderm into the gut endoderm occurs between E7.5 and
E8.5 [Nowotschin et al., 2019], this analysis nominates a spe-
cific cell population from the extraembryonic visceral endo-
derm contributing to the definitive endoderm.

Having examined the phylogenetic correlations of embry-
onic germ layers and cell types, we then took advantage
of the versatility of PATH to evaluate the heritability of
gene expression programs in these populations of endoderm
cells. We calculated phylogenetic correlations between each
population of endoderm cells (originating in the epiblast
or the primitive endoderm) and gene expression across the
tree. We found distinct gene expression profiles phylogenet-
ically correlated with each population of endodermal cells
(Fig. 3F). In concordance with prior work, we found that

10

Rhoxb and Trapla, two X-linked genes, had high phyloge-
netic correlation with endoderm cells with extraembryonic
origin [Nowotschin et al., 2019, Pijuan-Sala et al., 2019].
Interestingly, we found that genes on the X-chromosome
beyond Trapla and Rhox5 were significantly enriched in
this heritable expression program (Fig. 3F,G). This signal
is grounded in the differential imprinting patterns between
extraembryonic and embryonic cells: extraembryonic endo-
derm cells have paternally imprinted X-inactivation [Takagi
and Sasaki, 1975] imbuing them with a unique expression
pattern that has been shown to persist after intercalation
into the visceral endoderm [Loda et al., 2022]. These re-
sults demonstrate PATH’s ability to explore patterns and
timing of coordinated gene expression during development,
including epigenetically propagated signals.

PATH identifies cell fate-determining factors
across anatomical, defined tissue and gene

expression layers during neurogenesis in ze-
brafish

One notable aspect of PATH is its ability to quantify rela-
tionships between different types of phenotypic information,
providing the opportunity to leverage not only transcrip-
tional information from scRNAseq data, but also any avail-
able spatial, anatomical or temporal information. As such,
we can perform multi-modal analysis to characterize rela-
tionships between these phenotypic annotation layers, and
thus draw inferences about their interactions (for example,
we can use the phylogenetic cross-correlations of individual
genes with either cell or tissue type to nominate cell fate de-
termination factors). To explore this capability, we applied
PATH to prospectively lineage-traced developing zebrafish
brains [Raj et al., 2018]. The data in Raj et al. [2018] com-
prise cells annotated not only by single-cell transcriptional
profiling but also by the anatomic region from which they
were dissected. These multi-layer annotations enabled us to
investigate neuronal development dynamics within, between
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and across anatomically distinct brain regions.

We first used PATH to examine phylogenetic correlations of
different brain regions. Neuronal tissue had been collected
from two whole brains and anatomic regions were manually
separated during dissection, resulting in three main regions
(forebrain, midbrain, hindbrain; Fig. 4A,B). By projecting
anatomic region on the reconstructed phylogeny and apply-

ing PATH, we found that each defined anatomic location
had high phylogenetic auto-correlation, indicating that neu-
ronal cells within a brain region share recent ancestry (Fig
4C). As expected, the cells with ambiguous annotations (la-
beled “mix”) had much lower phylogenetic auto-correlations,
most likely due to heterogeneous sampling that diluted the

phylogenetic signal.
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Figure 4: PATH identifies cell fate-determining factors across anatomical, defined tissue and gene expression layers
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during neurogenesis in zebrafish

A) Single-cell phylogeny from zebrafish brain 3 (replicate 1) from Raj et al. [2018]. Each leaf represents a single cell (N = 750).
All cell type and anatomic section annotations are as defined in Raj et al. [2018], by scRNAseq and manual dissection, respectively.
Cells colored in orange are non-neurons, cells in green are neural progenitors. Neuronal cells (blue hues and gray) are colored by
the anatomic location from which they were dissected. Non-neural and neuron progenitor cells lack anatomical annotation. Cells
labeled “mix” were from dissections with ambiguous anatomical origin (see Methods: Zebrafish brain development).

B) Zebrafish brain schematic. Forebrain, midbrain and hindbrain have been labeled.

C) Cell type/anatomic-section phylogenetic auto-correlations. Mature neurons are labeled “n” and annotated by dissection site
(blues, gray); neuronal progenitors are labeled in green and non-neural cells are in orange.

D) PATH inferred transition probabilities between neuron progenitor cells (prog) and neurons from each anatomic brain region.
Branch lengths imputed by approximating the cell sampling rate to be 10 to infer transition probabilities. Values rounded to the
nearest hundredth.

E) Phylogenetic correlation z scores between anatomic site and transcriptionally assigned brain substructure across all neurons.
Substructures are colored by brain location from A.

F) Phylogenetic correlation z scores between (top 2,000 most variably) expressed genes and individual hypothalamus clusters
(defined by Raj et al. [2018] from select marker genes). The 35 most auto-correlated genes per cluster are shown. Phylogenetic tree
of hypothalamic neurons annotated by GABA /Glut signaling (Fig. S4C) (see Methods: Zebrafish brain development).

G) (Left) phylogeny of all forebrain neurons (N = 270), leaves annotated by brain substructure assignment and GABA and
glutamatergic signaling. (Right) phylogenetic auto-correlation of GABA and glutamatergic signaling across all forebrain neurons.

To characterize potential developmental trajectories be-
tween neurons and neuronal progenitors, we next used
PATH to infer transition dynamics between them, segre-
gating neurons by their anatomic region. Notably, we found
that the progenitor cell pool contributes at similar rates to
the forebrain, midbrain and hindbrain (Fig. 4D), consis-
tent with the findings of Raj et al. [2018] suggesting that
progenitor cells were multipotent at the time of barcoding.

As the versatility of PATH allows not only for comparisons
within the same category of data (e.g., brain region), but
also for integrated analysis across different layers of phe-
notypes, we next aimed to examine the phylogenetic cor-
relation of anatomical brain regions with higher-resolution
brain structure information derived from scRNAseq marker
data. PATH analysis showed that these brain structures
cross-correlate with their expected anatomical region (Fig.
4E), demonstrating the ability to correctly integrate tran-
scriptionally and anatomically derived single-cell annota-
tions across a phylogeny.

We next focused our analysis on the hypothalamus, a com-
plex brain structure that is essential for the maintenance of
homeostasis in an organism’s adaptive response to its envi-
ronment. This structure is composed of a variety of anatom-
ically and molecularly distinct neuron subtypes which re-
spond to and release distinct sets of neuropeptides and hor-
mones [Benevento et al., 2022]. Given this complexity, the
transcriptional and phylogenetic dynamics underlying the
functional organization of the hypothalamus were of interest
for us to explore within the PATH framework. Using gene
clusters defined by Raj et al. [2018] using scRNAseq, we
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first assessed the phylogenetic correlations of transcription-
ally distinct clusters (Fig. S4A) of hypothalamic neurons.
This analysis showed that tacl+, nrgna+, neurons were
highly cross-correlated with neurons from the preoptic area
(POA), indicating a shared cellular ancestry. The expression
of both of these genes was negatively cross-correlated with
fezf1+ neurons, indicating distinct histories (Fig. S4A).
To explore the molecular underpinnings of these differences
in developmental origins we cross-correlated gene expression
with hypothalamic neuron subtype (Fig. S4A) across the
phylogeny of forebrain neurons to determine which genes
were most strongly cross-correlated with these cell types
(Fig. 4F). Interestingly, we found that genes required
for glutamatergic signaling (slc17a6b) were highly cross-
correlated with fezflI+ neurons, while those genes required
for GABAergic signaling (gad1b, gad2, slc32al) were highly
cross-correlated with POA and tac1+, nrgna+, neurons, in-
dicating that use of GABAergic or glutamatergic signaling
is a heritable trait in cells of the differentiating hypothala-
mus (Fig. 4F). Indeed, we found that glutamatergic and
GABAergic signaling were heritable in the forebrain (Fig.
4G, Fig. S4B,C), consistent with lineage tracing stud-
ies that found high heritability of GABAergic signaling in
the murine forebrain [Bandler et al., 2021]. Thus, PATH is
able to connect gene expression profiles to cell state through
lineage information in an unbiased, quantitative manner,
and uncovers the contribution of biologically meaningful cell
populations underlying the observed patterns of heritability.
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Quantifying cell state transitions during
metastasis

Malignant populations harbor significant cell state diver-
sity and the characterization of their relative heritability
and plasticity is currently a major goal of the cancer field
[Bell et al., 2019, Fennell et al., 2022, Oren et al., 2021,
Shaffer et al., 2020]. Tumor single-cell phylogenies pro-
vide a unique opportunity to distinguish between cancer cell
state heritability versus plasticity. Cancer cell state diver-
sity has been associated with critical disease aspects such
as tumor growth [Neftel et al., 2019], treatment response
[Fennell et al., 2022], and metastatic spread [Karras et al.,
2022], emphasizing the need to define the heritability versus
plasticity of cancer cell states. Notably, in comparison to
primary tumors, in most contexts there is a lack of estab-
lished, recurrent genetic drivers of metastasis [Rogiers et al.,
2022]. Thus, other non-genetic factors likely play a major
role in metastasis. We therefore applied PATH to correlate
lineage dynamics with key non-genetic features, including lo-
cation and cell state, of metastatic tumors. We re-analyzed
data from a murine model of metastatic pancreatic cancer
with inducible CRISPR/Cas9 based lineage recording and
scRNAseq [Simeonov et al., 2021]. Metastatic tumors are
thought to arise by the dissemination of a single or a small
number of clones from the primary tumor [El-Kebir et al.,
2018, Gundem et al., 2015, Hu et al., 2019, Navin et al.,
2011, Turajlic et al., 2018]. By leveraging PATH’s ability
to integrate data of different modalities, we tested this as-
sumption by assessing the shared ancestry of metastatic tu-
mor cells harvested from distinct anatomical sites: primary
tumor (pancreas), lung metastatic tumor, liver metastatic
tumor, peritoneal metastatic tumor, tumors forming at the
site of the surgical lesion and circulating tumor cells (CTCs).
Cellular tissues of origin were highly phylogenetically auto-
correlated (Fig. 5A,B), consistent with the established
model in which a small number of founder cells seed metas-
tases, creating site-specific clonal bottlenecks. Importantly,
the quantification provided by PATH allowed for direct com-
parison of harvest site-specific lineages, revealing patterns of
clonal seeding in metastasis. For instance, surgical lesions
(which formed on the peritoneal surgical incision site) and
peritoneal metastases had negative phylogenetic correlation,
(Fig. S5A) suggesting that they had distinct origins de-
spite their physical proximity. As expected, CTCs, which
may have many distinct clonal origins, had lower phyloge-
netic auto-correlation than solid tissues (Fig. 5B).

The epithelial-to-mesenchymal transition (EMT) plays a
crucial role in metastasis [Dongre and Weinberg, 2019, Lam-
bert et al., 2017, Thiery, 2002, and thus Simeonov et al.
[2021] calculated an EMT score for each tumor cell, re-
flective of that cell’s position along a transcriptional con-
tinuum from highly epithelial to mesenchymal cells. Low
scores correspond to more epithelial characteristics and high
scores correspond to more mesenchymal characteristics. Of
note, there is an ongoing discussion in the field regarding
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whether EMT is best modeled as a series of functionally dis-
crete, transcriptionally and epigenetically distinct interme-
diate states or a continuum of transcriptional hybrid states
[McFaline-Figueroa et al., 2019, Pastushenko and Blanpain,
2019, van Dijk et al., 2018]. Because we can simultaneously
observe both cellular position within the EMT continuum
and on the phylogeny, this dataset offers a unique opportu-
nity to investigate this question (Fig. 5C).

First, phylogenetic auto-correlation revealed the high heri-
tability of cellular position on the EMT transcriptional con-
tinuum (Fig 5D). This finding can be contrasted with phy-
logenetic auto-correlation measurements of cellular position
within the cell cycle, which can serve as a negative control,
as position within the cell cycle is not usually expected to
depend on ancestry [Chaligne et al., 2021] (Fig 5C,D).

Next, we asked how heritability and plasticity varied across
the EMT continuum. Cells had been assigned EMT scores
ranging from 0, denoting a completely epithelial cell to > 30
denoting a completely mesenchymal cell [Simeonov et al.,
2021]. We partitioned cells along the continuum using units
of 1 (bin #1 includes cells with EMT scores from 0 to 1,
bin #2 includes cells from 1-2, etc.), merging bins at the
extremes (all cells with a score of 7 or less were assigned
to a single bin, as were cells that scored higher than 30)
because these bins had low cellular representation. We cal-
culated phylogenetic correlations for each individual bin, re-
vealing four distinct groups of cross-correlated states along
the EMT continuum defined by varying degrees of heritabil-
ity (Fig. 5E; Fig. S5B,C). Specifically, one group of phy-
logenetically correlated states corresponds to the epithelial
and early transition states (T1), indicating that cells in this
part of the EMT continuum tended to remain in the T1
state and were less likely to transition to other states. Like-
wise, mesenchymal (M) cells were also highly phylogenet-
ically auto-correlated, indicating temporal stability of the
mesenchymal state. However, cells in bins in the middle
part of the continuum (later transition states; T2, T3) ap-
peared less heritable, suggesting that these states were more
plastic (Fig. 5E, Fig. S5B). These results were robust to
different bin sizes (Fig. S5D), suggesting that these re-
sults are not an artifact of the binning procedure. Intrigu-
ingly, these results imply that despite tumor cells occupying
a continuum of EMT transcriptional states, the states at the
extremes of the continuum show a higher degree of heritabil-
ity, whereas intermediate cells states show a higher degree
of plasticity. As our analysis above showed a high degree
of phylogenetic similarity within the same metastatic loca-
tion, we further ruled out that EMT heritability is driven
by variability in the representation of EMT states across
metastatic sites (Fig. 5F). Furthermore, these results were
replicated within each metastatic location, and consistently
showed the T1 state to be the most heritable within each
tissue, and the T2/T3 states to be more plastic, suggesting
that patterns of cell state heritability were not driven by
tumor location.
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Figure 5: Quantifying cell state transitions during metastasis

A) Single-cell phylogeny from Mouse 1, Clone 1 from Simeonov et al. [2021], containing 700 randomly chosen of 7,968 cells for
visualization. Each leaf represents a single cell. Leaves are colored by their harvest site. CTCs denote circulating tumor cells. Mets,
metastases.

B) Phylogenetic auto-correlation of tumor cells annotated by harvest site. Bars colored by harvest site, as in A.
C) Single-cell phylogeny from A, with cells colored by EMT and cell cycle score (G2M score).
D) EMT and cell cycle phylogenetic auto-correlations across all tumor cells (N = 7,958).
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E) EMT bin phylogenetic auto-correlations (z scores) using all cells. Bins are colored by transition states derived from Fig. S5B.

F) Box and whisker plot of EMT bin phylogenetic correlations (z scores) across phylogenies that contain cells from only one harvest
site. Dots correspond to EMT bins. Bins are grouped and colored by transition state membership. Boxes represent the interquartile
range (IQR); the center line represents the median; minima and maxima shown represent 1.5-IQR.

G) PATH inferred transition probabilities between states (T1, T2, T3) using all cells (N = 7,968). Values rounded to the nearest
hundredth. Transition probability inferences use imputed branch lengths by approximating a sampling rate of 10 (see Methods:

Mouse model of pancreatic cancer).

Finally, to quantify cell state transitions from the initial ep-
ithelial state to the more plastic later states, we used PATH
to infer transition dynamics between early (T1), middle (T2)
and late (T3) EMT states. We observed that transitions
out of the early epithelial state (T1) into more plastic states
along the continuum (T2) occurred with some frequency,
but transitions in the reverse direction going from a later
plastic state back to an early epithelial state were rare. In
contrast, we found marked plasticity between later interme-
diate states (T2 and T3) (Fig. 5G). These results sug-
gest that EMT represents neither a smooth continuum of
hybrid states nor an equally discretized cell state trajec-
tory, but instead comprises punctuated states with different
transition probabilities. These analyses indicate an integra-
tion of the two proposed models of EMT: cells undergo-
ing EMT are transcriptionally continuous (as reported by
[McFaline-Figueroa et al., 2019, Pastushenko and Blanpain,
2019, Simeonov et al., 2021, van Dijk et al., 2018]), but their
lineage dynamics reveal functionally and heritably distinct
states in EMT (as reported from functional transplantation
assays in mice by Pastushenko et al. [2018]). These find-
ings highlight the power of combining single-cell multi-omics
data with phylogenetic information to draw conclusions that
would not be possible through analyzing either data type
alone.

Elucidating heritable transcriptional mod-
ules and cell state transition dynamics in hu-
man glioblastoma

While artificial lineage tracing is a powerful approach in
model organisms, it cannot be applied to reconstruct phy-
logenetic relationships in human data. Recent advances in
multi-modal single-cell sequencing enable joint lineage re-
construction and cell phenotyping in primary human sam-
ples [Sankaran et al., 2022]. To examine this exciting fron-
tier, we applied PATH to phenotypically annotated ret-
rospective phylogenies reconstructed from human single-
cell data leveraging stochastic DNA methylation changes
as native lineage barcodes (Methods: Human patient
glioblastoma) [Chaligne et al., 2021, Gaiti et al., 2019].

Having observed the high heritability of harvest site loca-
tion across multiple tumors in metastasis (Fig. 5A,B),
we set out to test whether a cell’s spatial location within
a single tumor was stable. We applied PATH to MGH105,
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an IDH-wildtype (WT) glioblastoma (GBM) patient spec-
imen in which cells were sampled from four distinct tu-
mor locations (Fig. 6A) [Chaligne et al., 2021, Neftel
et al., 2019]. We found that each of the locations (inset,
Fig. 6A) were highly phylogenetically auto-correlated (leaf-
permutation test, Fig. 6B), indicating that spatially prox-
imal tumor cells were also more proximal in terms of an-
cestry, consistent with our expectations for a solid tumor
malignancy.

GBM harbors significant cell state diversity, which can be
classified according to the expression four major gene mod-
ules, defined as neural progenitor-like (NPC-like), oligoden-
drocyte progenitor-like (OPC-like), astrocyte-like (AC-like),
and mesenchymal-like (MES-like) [Neftel et al., 2019]. By
measuring transcriptional signatures for these modules in
each cell, GBM cells can be classified into four distinct
transcriptionally-defined cell states. These cell states can
be further grouped by function; for instance, we define the
stem-like cells as cells that highly express one of the pro-
genitor (NPC- or OPC-like) gene modules. The stem-like
and AC-like states each resemble a known neurodevelop-
mental program, and thus can be collectively considered as
neurodevelopmental-like. In contrast, the MES-like state
does not reflect a developmental brain expression program
and its emergence has been associated with both genetic and
non-genetic factors, including interaction with immune cells
and hypoxia [Hara et al., 2021].

The cell state heterogeneity in GBM has been a challenge
for successful implementation of targeted therapies [Nichol-
son and Fine, 2021], so understanding the mechanisms and
dynamics of cell state plasticity could provide insight into
more effective treatment regimens. To examine the potential
heritability or plasticity of these cell states, we re-analyzed
MGH115, a human patient-derived GBM sample with an-
notated phylogeny with (i) continuous gene transcriptional
module scores (generated from module-specific gene expres-
sion using matched scRNAseq) and (ii) categorical cellu-
lar state annotation based on the per cell maximum tran-
scriptional module score (Fig. 6C). The stem-like (NPC-
/OPC-like) and MES-like transcriptional modules displayed
high phylogenetic auto-correlations, suggesting that in this
specimen, the expression of these genes is in part heritable.
The AC-like module, however, was not significantly phyloge-
netically auto-correlated, suggesting that the transcriptional
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state was more plastic in this patient sample (Fig. 6D).

As the MES-like state does not recapitulate any neurodevel-
opmental expression program and has been reported to be
influenced by non-genetic factors [Hara et al., 2021, Neftel
et al., 2019], it is distinct from the other GBM cell states. In-
terestingly, recent work has demonstrated that the MES-like
state is driven by interactions between the tumor cells and
immune cells, and has suggested that the targeted induc-
tion of the MES-like cell state together with immunotherapy
may represent a novel opportunity for therapeutic interven-
tion [Hara et al., 2021]. The neurodevelopmental-like tran-
scriptional modules (NPC-/OPC-/AC-like) were more phy-
logenetically correlated with each other than any individual
module was with the MES-like module (Fig. 6E). However,
among the neurodevelopmental transcriptional modules, the
AC-like module was the most phylogenetically correlated
with the MES-like module, suggesting that transit between
neurodevelopmental-like (NPC-/OPC-/AC-like) and MES-
like states is driven by the AC-like state. To explore these
relationships between GBM states further, we next used the
phylogenetic correlations of GBM cell states, as determined
by the per cell maximum transcriptional module scores, to
infer cell state transition probabilities. This analysis re-
vealed that stem-like cells primarily differentiated into AC-
like cells, which could either dedifferentiate back into a stem-
like state [Chaligne et al., 2021] or progress to the MES-
like state (Fig. 6F). Notably, this inference suggests that,
in this patient, the MES-like state derives from transition-
ing AC-like cells. This observation is consistent with recent
findings that show that many MES-like cells have AC-like
properties [Chanoch-Myers et al., 2022] and that the recep-
tors (e.g., OSMR, EGFR, PDGFRB, and AXL) for ligands
that drive transition into the MES-like state are expressed
in AC-like cells but not stem-like cells [Hara et al., 2021].
PATH transition inferences from another human patient-
derived GBM sample MGH122, from Chaligne et al. [2021],
agreed with inferences from MGH115, revealing that of the
neurodevelopmental-like cell states, AC-like cells appear to
transition to the MES-like state at the highest rate (Fig.
S6A).

To experimentally corroborate these cell state transition in-
ferences obtained from primary human samples, we lever-
aged the artificial Molecular recorder approach [Chan et al.,
2019] to trace gliomasphere phylogenies, using MGG23
[Wakimoto et al., 2011], a human patient-derived glioma-
sphere model (Methods: Gliomasphere phylogenies,
Fig. 6G). Gliomaspheres are spheroid GBM cultures capa-
ble of recapitulating parental tumor cellular diversity [Laks
et al., 2016], and thus represent an appropriate setting to
measure cell state heritability versus plasticity. Two glioma-
sphere MGG23 replicates were grown in vitro for 4 weeks,
at which point phylogenies were reconstructed using recov-
ered barcodes, and cells were annotated according to their
scRNAseq profiles. Consistent with the human patient data
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(Fig. 6E), PATH measurements in the gliomasphere model
also showed higher phylogenetic correlations between the
neurodevelopmental-like modules, than between any of the
neurodevelopmental-like and MES-like modules (Fig. 6G).
Furthermore, among the neurodevelopmental-like modules,
the AC-like module was, as in patient sample MGH115, the
most correlated with the MES-like module. Thus, using
both native and artificial approaches for phylogenetic trac-
ing in primary human samples and an in vitro model, re-
spectively, we observed a strong phylogenetic relationship
between the AC- and MES-like transcriptional programs;
consistent with a model in which the MES-like cell state
primarily derives from the AC-like state.

Finally, after analyzing the heritability of predefined
glioblastoma gene transcriptional modules, using gene set
enrichment analysis (GSEA) [Subramanian et al., 2005] we
next profiled the heritability of the 3,000 most variably ex-
pressed genes in MGH115 (Table S1), ranked by their auto-
correlation z scores, to discover heritable modules in an un-
biased fashion. Consistent with Fig. 6D, this revealed an
overrepresentation of five (NPC1/OPC/AC/MES1/MES2)
GBM gene modules. This analysis further revealed that
targets of the Polycomb repressive complex 2 (PRC2) con-
stituents (i.e., targets of EED, SUZ12, EZH2), as well as
sets of genes with promoters characterized by high CpG
density and the repressive histone mark H3K27me3, in mul-
tiple stem cell contexts, were also enriched among herita-
bly expressed genes in glioblastoma (Fig. 6H, Table S2).
Similarly, brain tissue genes with bivalent promoters that
are dually marked by both H3K27me3 and the activating
mark H3K4me3, were also enriched among heritably ex-
pressed genes (Fig. 6H). This promoter methylation pat-
tern represents a poised functional state that generally re-
solves to repressed (H3K27me3-only) or active (H3K4me3-
only) states as cells differentiate. Promoter H3K27me3 lev-
els are maintained primarily by targeting of the chromatin
modifying PRC2, preventing differentiation by repressing
lineage-specific gene expression [Boyer et al., 2006]. Notably,
activity at PRC2-targeted sites is a key switch in the differ-
entiation and maintenance of glioma stem cells [Natsume
et al., 2013, Suva et al., 2009].

To understand the relationships between these highly her-
itable gene modules, we next analyzed the enrichment
of gene sets within distinct heritable gene modules de-
fined by cross-correlations, with Over-Representation Anal-
ysis (ORA) [Korotkevich et al., 2021]. Hierarchical clus-
tering of the phylogenetic correlations between the top
100 most auto-correlated genes revealed two heritable
gene modules in MGH115 (Fig. S6B, Table S3).
The first heritable module was enriched for gene sets
associated with the neurodevelopmental-like glioma cell
states (NPC1/OPC/AC), EED (a PRC2 subunit) target
genes, and genes with high CpG density promoters with
H3K27me3. This result is consistent with our previous
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observation that PRC2-target genes are preferentially hy-
pomethylated, accessible and activated in the stem-like cell
states [Chaligne et al., 2021, Gaiti et al., 2019]. The
second heritable module was enriched for genes associ-
ated with the MES-like state and gene signatures associ-
ated with hypoxia. These results suggest that in patient
MGH115, glioblastoma cells could occupy one of two heri-
table transcriptional states, either neurodevelopmental-like
or mesenchymal-like. Cells could transit between these two
states, primarily when occupying the more astrocyte-like
end of the neurodevelopmental-like spectrum. Further, the
neurodevelopmental-like module, in particular the stem-cell

like states, is likely heritably maintained by PRC2 activ-
ity. These findings further highlight PATH’s ability to ex-
tract epigenetically grounded and biologically relevant ex-
pression profiles from single cell transcriptional and phylo-
genetic data in an unbiased manner.

In summary, the application of PATH to primary human
glioblastoma samples identified the expected phylogenetic
similarity by spatial location, nominated AC-like cells as the
candidate precursor for MES-like cells, and highlighted the
role of PRC2 in stable propagation of stem-like cell states.
Thus, PATH can provide critical insight as to the biology
underlying transcriptional cell state diversity in cancer.
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Figure 6: Heritable transcriptional modules and cell state transition dynamics in human glioblastoma

A) Human GBM sample (MGH105) single-cell consensus phylogeny containing 80 cells (20 from each tumor location) with tumor
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sample location projected onto leaves. Inset is a schematic of the four MGH105 patient tumor sample locations.

B) Leaf-permutation test (10° permutations) of tumor sample location phylogenetic auto-correlation. Density plot depicts leaf-
permutation auto-correlations and red lines show measured (non-permuted) phylogenetic auto-correlations.

C) Human GBM patient sample (MGH115) single-cell phylogeny (replicate 6) containing 38 cells with GBM gene module scores
and categorical cell states projected onto leaves.

D) Replicate mean (across 9 MGH115 phylogeny replicates) phylogenetic auto-correlation z scores for GBM gene module scores for
patient sample MGH115.

E) Replicate mean phylogenetic correlation heat map for patient sample MGH115 GBM gene modules.

F) Sankey plot of replicate mean Markov transition probabilities inferred from categorical state phylogenetic correlations in patient
sample MGH115 phylogeny replicates. Probabilities shown are shown for P(r) (Methods: Inferring cell state transitions
from phylogenetic correlations).

G) Replicate mean phylogenetic correlation z score heat map for gliomasphere GBM gene modules, using one-node weighting.

H) Dot plot of enriched pathways from GSEA of chemical and gene perturbation curated gene sets (C2:CGP) and six GBM
gene modules (NPC1-/NPC2-/OPC-/AC-/MES1-/MES2-like) [Neftel et al., 2019] for patient sample MGH115, with genes ranked
by their phylogeny-replicate mean phylogenetic auto-correlation z scores (Methods: Phylogenetic correlations, Methods:
Human patient glioblastoma). Only select gene sets are depicted; other significantly enriched gene sets can be found in Table

S2. Dot sizes are proportional to GSEA normalized enrichment scores (NES).

GBM gene modules (NPC-/OPC-/AC-/MES-like) were shortened to (NPC/OPC/AC/MES).

Discussion

The cells that comprise a multicellular organism derive
from a single ancestral cell, thus remaining nearly geneti-
cally identical. Despite this genetic similarity, somatic cells
within a multicellular organism encompass vast functional
and phenotypic diversity. This phenotypic diversity can be
maintained across mitotic divisions through the heritable
transmission of both cell-intrinsic factors, such as epigenetic
marks [Bintu et al., 2016, Halley-Stott and Gurdon, 2013]
(e.g., DNA methylation and histone modifications) and cell-
extrinsic factors (e.g., microenvironment). Each somatic cel-
lular division, however, presents an opportunity to introduce
changes to these heritable factors, for example in the form of
heritable genetic or epigenetic changes. The phenotypic ef-
fect of these changes, however, is highly context dependent.
In the case of cancer, mutations in putative cancer driver
genes do not always lead to tumorigenesis and depend on
cellular identity. For example, the malignant competence of
BRAF mutations is dependent on the transcriptional back-
ground [Baggiolini et al., 2021], and some somatic mutations
that confer a proliferative advantage are masked when found
in progenitor cells [Nam et al., 2019]. As the presence of phe-
notypic variation provides a substrate for natural selection,
an understanding of how these phenotypes are differentially
encoded and inherited will help us dissect how cells in the
soma evolve throughout the lifespan. To achieve this, how-
ever, we need an integrative model of somatic evolution in-
formed by phenotypically annotated phylogenies. As such,
scRNAseq is not sufficient and must be coupled with tech-
nologies that can also deliver information on cell ancestry.

To address this gap, PATH delivers an analytic framework
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needed for analyzing novel multi-omic lineage tracing single-
cell datasets. PATH achieves this by building upon ap-
proaches from quantitative genetics and evolutionary bi-
ology used to measure heritability and phylogenetic signal
[Blomberg and Garland, 2002] and adapts these to a somatic
context. Specifically, PATH offers a bivariate generalization
of phylogenetic signal in the form of phylogenetic correla-
tion. Using phylogenetic correlations, PATH measures the
ancestral dependency of single-cell phenotypes to infer their
heritability versus plasticity. Additionally, for categorical
phenotypes, such as a cell state or identity, PATH can trans-
form phylogenetic correlations into state transition probabil-
ities and thus allows for the inference of unobserved cellular
dynamics. Importantly, this transformation also makes the
classic interpretation of phylogenetic signal more concrete,
as phenotypic transition dynamics are directly linked with
the measurement of phylogenetic signal.

In step with the rapid advancement of lineage tracing tech-
nologies, other frameworks, such as Hotspot [Detomaso and
Yosef, 2021] and The Loraz [Minkina et al., 2022], have been
developed to study the lineage dependency of phenotypes
in the single-cell context. Unlike other approaches, how-
ever, PATH can connect such measurements with a model
of evolutionary dynamics and infer (categorical) phenotypic
transition probabilities. Leveraging this connection, PATH
allowed us to study how technical (e.g., sampling and recon-
struction fidelity) and biological variables affect heritability
measurements. This can inform our interpretations, for ex-
ample, as PATH makes it clear that when sampling is suffi-
ciently sparse, heritable phenotypes will likely appear plas-
tic.
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Other methods have also been advanced to estimate state
transitions from phylogenies. For instance, if representing
phenotypic (e.g., cell type) transitions as a Markov model,
transition probabilities can be fit using Maximum Likelihood
Estimation (MLE) [Louca and Pennell, 2019] or inferred
with kin correlation analysis (KCA) [Hormoz et al., 2015,
2016]. PATH’s inference approach is more akin to KCA, as
it transforms correlations into transitions; however, PATH
can additionally be applied to subsampled phylogenies and
when branch length measurements are absent. MLE, on the
other hand, is commonly used in evolutionary biology to
infer phenotypic transitions from species phylogenies. This
approach takes the structure of the entire phylogeny into
account (as opposed to just phylogenetic correlations) and
searches for optimal transition rates. PATH’s accuracy is
comparable to MLE, but computationally faster, particu-
larly for larger trees with many phenotypes. This ability
to accurately handle large trees with speed renders PATH
suitable for analyzing single-cell phylogenies, which often
contain many states, and an ever growing number of cells.

Using PATH, we studied previously published developmen-
tal lineage tracing datasets in early stages of embryologi-
cal development [Chan et al., 2019] and brain organogen-
esis [Raj et al., 2018]. In murine development, we were
able to analyze phylogenetic correlations between the blasto-
cyst, the germ layers and specialized tissues, reconstructing
known developmental trajectories and importantly, captur-
ing the dual origin of the gut endoderm from both the epi-
blast and primitive endoderm [Kwon et al., 2008, Rothova
et al., 2022, Saykali et al., 2019], which would not be achiev-
able with scRNAseq alone. This highlights the ability of
PATH to distinguish between phenotypic and ancestral sim-
ilarity. We further showed that, consistent with a model of
epigenetic inheritance and our understanding of imprinting
throughout development [Loda et al., 2022], a unique X-
chromosome expression profile is inherited by gut cells with
extraembryonic origins. In zebrafish brain development, we
used PATH to show how anatomic proximity influences re-
latedness of neurons in the developing brain and further
highlighted PATH’s ability to coordinate transcriptional and
anatomic data to show a shared lineage between substruc-
tures in the fore, mid and hind brain. As multi-modal single-
cell technologies improve, PATH could be applied to coor-
dinate transcriptional data with other modalities, beyond
anatomic location, to interrogate fundamental questions in
development. We also observed a striking pattern of stable
lineage commitment for both excitatory (glutamatergic) and
inhibitory (GABAergic) neurons in the forebrain. As lineage
tracing techniques improve, using PATH we may eventually
be able to more finely map the transitions undergirding cell
state differentiation hierarchies in these functionally com-
plex organs and reveal the factors responsible for maintain-
ing and modifying lineage commitments.

Many scRNAseq analyses have revealed cell state diversity in
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cancer, but representing only a snapshot, have been unable
to determine how temporally stable or transient such cell
states are. Using PATH on lineage traced scRNAseq data,
we can bypass this constraint, to quantify cell state tem-
poral dynamics. To demonstrate this potential, we applied
PATH to two previously published single-cell cancer datasets
[Chaligne et al., 2021, Simeonov et al., 2021]. First, we ob-
served that spatial location was highly stable: metastatic
tissue location in a mouse model of pancreatic cancer, and
tumor region in a human glioblastoma. Second, we used
PATH to study transcriptional stability. It is not yet clear
whether cancer cell state diversity predominantly reflects
transient transcriptional fluctuations akin to entering and
exiting the cell cycle, or more stable transcriptional changes
analogous to cell fate commitment in development. In both
cancer datasets, we observed the heritability of transcrip-
tionally defined cell states in two of the largest drivers of
cancer cell state diversity — position along the EMT con-
tinuum in pancreatic cancer, and in the stem cell hierarchy
in glioblastoma. Interestingly, in both of these cancers, cell
states were not uniformly plastic/heritable. Future appli-
cation of PATH to other cancers could guide future treat-
ments, such as the strategic targeting of specific transcrip-
tional states, or the therapeutic modulation of state transi-
tion rates, in order to drive tumors to extinction.

In conclusion, somatic evolution represents an exciting fron-
tier in evolutionary biology, where asexually reproducing
somatic cells evolve over the multicellular organism’s life
span. Studying this frontier requires analytical advances in
step with technological advances that provide multi-modal
single-cell annotation with high resolution phylogenetic in-
formation. We envision that PATH can thus help trans-
form qualitative key concepts in multicellular somatic bi-
ology such as fate-commitment, heritability and plasticity
into precise measurements, with broad impact on our under-
standing of organismal health and disease. As future tech-
nology evolves to capture phylogenetic information with epi-
genetic and spatial information, we further envision that the
adaptability of the PATH framework will enable the linkage
of cell state heritability and the mode of inheritance propa-
gation (e.g., genetic, epigenetic, cell-extrinsic) to define the
fundamental principles of somatic evolution.

Limitations Mathematical models represent an idealized
situation, and in practice, can be robust to small violations
to their assumptions. As outlined in the results and methods
sections, several assumptions are made in PATH’s cell state
transition inference model (e.g., transitions are Markovian,
cell states are near their equilibrium proportions). These
assumptions should be (nearly) met if transition rates only
depend on a cell’s current and not prior states, and when
sampling is not biased. Other assumptions, such that cell
birth or death rates do not differ as a function of cell state,
could be violated and impact inferences. Specifically, if some
cell states have much higher proliferation rates than oth-
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ers, inferred transition rates could be biased. Such a sce-
nario represents an opportunity for future model develop-
ment. However, such a model would likely rely on accurate
branch length measurements and higher resolution single-
cell phylogenies than are typically available now. Transition
inference accuracy is also most reliable when heritability is
significantly detected, as demonstrated in Fig. 2C,D, and
inferences from phylogenies with insignificant phylogenetic
correlations should be interpreted cautiously.

Additionally, the robustness of PATH measurements is de-
pendent on the quality and resolution of the lineage data,
and analysis of sparsely sampled trees can lead to underes-
timation of heritability, as shown by our simulations. Re-
latedly, PATH is subject to the standard problems affect-
ing single-cell analyses, including data dropout, accuracy of
cell state assignment algorithms, completeness of gene set
modules and batch effects. These limitations may constrain
the analysis of currently available datasets; however, we an-
ticipate that with advances in lineage tracing and single-
cell multiomics technologies, PATH’s utility will expand as
single-cell lineage tree data continue to improve.

Most single-cell phylogenies do not include branch length
estimates, which can further confound inferences. PATH,
however, was designed to accommodate some of these lim-
itations, by imputing branch lengths, and by focusing on
closer (one-node apart) phylogenetic relationships.

As more multi-omic single-cell lineage tracing experiments
are conducted, and lineage tracing and other technologies
further mature, allowing for even higher resolutions of phy-
logenetic relationships and phenotypic states, more subtle
evolutionary dynamics could be teased apart with PATH.
If multiple layers of information, in addition to transcrip-
tional phenotype and ancestry, such as location or microen-
vironment, are gathered for each cell, measured phyloge-
netic correlations across these layers could help dissect the
encoding of heritable phenotypes. That is, phylogenetic cor-
relations between phenotypes and microenvironments could
help determine whether a heritable phenotype is encoded
intrinsically (e.g., via genetic or epigenetic mechanisms) or
extrinsically (e.g., via shared microenvironment stimuli).

Conclusion In summary, throughout a multicellular or-
ganism’s lifetime, its constituent somatic cells continuously
evolve, accumulating heritable phenotypic variation. When
positively selected, heritable phenotypic variation deleteri-
ous to the organism as a whole may also lead to disease
states or malignancy, which itself represents a “runaway”
evolutionary process. PATH formally connects the analysis
of cell state diversity and somatic evolution, and quantifies
critical aspects, replacing qualitative conceptions of “plas-
ticity” with quantitative measures of cell state transition
and heritability. The application of PATH thus powerfully
brings together approaches from evolutionary biology and
single-cell technology, to study complex dynamics governing
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somatic evolution — an exciting novel frontier in multicellu-
lar biology.
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PATH. Code used for data processing and analysis will be
made available upon publication.

Methods

Phylogenetic correlations

To quantify the distribution of a single-cell measurement,
such as transcriptional state, across a phylogeny, we use
Moran’s I [Moran, 1950], a classic measure of spatial
auto-correlation. We also import its bivariate generaliza-
tion, a measure of spatial cross-correlation [Chen, 2015,
Wartenberg, 1985] to quantify pairwise phylogenetic cross-
correlations [Chaligne et al., 2021]. For this study, we refer
to both phylogenetic auto- and cross-correlations as phylo-
genetic correlations.

To compute the phylogenetic auto-correlation of a single
variable (Moran’s I), we need a measurement of pairwise
distances between cells, provided by the phylogeny, and a
standardized observation per cell (with mean subtracted and
normalized by population standard deviation).

For example, the expression of a particular gene in N cells
could be represented by the N-dimensional vector x, where
each element represents an expression score per cell. This
vector is then standardized, producing the vector z, =
(z — py) Joz, where p, and o, are the mean and popula-
tion standard deviation of z, respectively.

Pairwise phylogenetic distances (e.g., node or branch length
distances), represented by the elements of the square N-
dimensional matrix L, are transformed into a phylogenetic
weight matrix W, with a chosen weighting function f,,,
such that W = f,,(L). This function first weights each off-
diagonal element of L, and then sets diagonal elements of L
to 0. An example of a weighting function is the inverse of
phylogenetic distance (i.e., for i # j, W;; = 1/L;;, otherwise
W;; = 0). Another example of a weighting function that we
use throughout this study is to select only a specific phy-
logenetic distance (e.g., for L;; = d and ¢ # j, W;; = Ly,
otherwise W;; = 0), where d is either a chosen branch or
node distance. These weights are then normalized such that
they sum to 1, resulting in a normalized weight matrix, V.
The phylogenetic auto-correlation of z is then defined as,

¢z = ZITWZZE,

where superscript T signifies the matrix transpose.

The phylogenetic cross-correlation between two different
single-cell measurements (bivariate Moran’s I), is calculated
similarly, where both z, and z, are standardized single-cell
measurements or observations corresponding to the vectors
z and v,
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S
Oyz = 22 Wzy.

All pairwise phylogenetic (auto- and cross-) correlations can
be computed simultaneously if single-cell measurements are
in matrix form. Single-cell measurements are represented by
the N x n dimensional matrix X, in which its N rows rep-
resent individual cells and its n columns represent distinct
measurements (such as the expression of n distinct genes).
When measuring phylogenetic correlations for a categorical
states, in which a cell can occupy only one of a set of pos-
sible states at any given time (e.g., cell type), each column
of X denotes a distinct cell state, and the state of each cell
is indicated by a 1 in the appropriate column, and Os in the
remaining columns. For example, if the ith cell is in the sec-
ond of two possible cell states, then X;; = 0, and X; 2 = 1.
For all measurement types, the columns of the single-cell
measurement matrix X are standardized, as above, to pro-
duce the N x n dimensional matrix Z, which is then used to
compute the square n-dimensional phylogenetic correlation
matrix,

d=27TW_Z.

Note that the diagonal elements of ® correspond to phy-
logenetic auto-correlations. Furthermore, phylogenetic
correlation z scores can be calculated by performing a
leaf-permutation test or analytically with moments from
Czaplewski and Reich [1993]. Phylogenetic correlations
and analytical z scores can be computed with the func-
tion xcor () in our R software package. Additionally, nor-
malized phylogenetic weight matrices can be computed us-
ing either one_node.tree.dist(), inv.tree.dist(), or
exp.tree.dist() from our PATH R package.

Note that phylogenetic correlations depend on the structure
of the matrix W, thus weighting functions should be chosen
carefully. For the purposes of this study, we predominantly
use a weighting function that only includes cells that are
each other’s nearest phylogenetic neighbor, specifically cells
that are separated by a node distance of one.

Simulating phylogenies

In this study we use two approaches to simulate single-cell
phylogenies. We simulate idealized phylogenies, which are
completely sampled, discrete-time, bifurcating, ultrametric,
and balanced phylogenies that contain N = 29 cells, where
g is the number of generations that have occurred since the
root. Additionally, each branch length, which corresponds
to one generation, has a length of one. To generate an ideal-
ized phylogeny we use the function pbtree(b = 1, d = 0,
n = N, type = "discrete") from the R software package
phytools [Revell, 2012].

We also simulate phylogenies using what we refer to as a
sampled somatic evolutionary process, which is a sampled
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and continuous-time birth—death process, using the func-
tion generate_tree_hbd_reverse() from the R software
package castor [Louca, 2020, Louca and Doebeli, 2018]. In
contrast to idealized phylogenies, these phylogenies can be
imbalanced, and contain any number of cells that represent
a fraction of the total somatic population. For these simula-
tions, parameters for cell division (or birth), and cell death,
the sampling rate, and the total number of sampled cells can
be specified. Here, phylogenetic branch lengths correspond
to time in continuous units, and not to generations, as in
idealized phylogenies.

Cell state transition dynamics are represented as a discrete-
or continuous-time Markov model (Methods: Markov
model of cell state transitions) on idealized, and sam-
pled somatic evolutionary phylogenies, respectively. Markov
cell state transitions are simulated on both types of phylo-
genies using the castor function, simulate_mk_model ().

Markov model of cell state transitions

We model cell state transition dynamics as a Markov
chain [Grimmett and Stirzaker, 2020], in both discrete- and
continuous-time.

For a discrete-time Markov chain comprising n possible cell
states, the transition probabilities (corresponding to one
unit of time) are stored in a square n-dimensional transi-
tion matriz, P. Individual elements of the transition matrix
are referred to by their subscript coordinates, such that P;;
refers to the transition probability located in row i and col-
umn j and represents the probability of switching from state
i to state j. The probability that a cell in state ¢ transitions
to state j after ¢ discrete time-steps is given by Pfj (note:
superscript ¢ reflects matrix, not element-wise, powers). As
elements represent probabilities, each row of P must sum to
1.

Discrete-time chains might be more intuitive when record-
ing times in non-overlapping generations, and continuous-
time might be more appropriate when generation times vary
and/or overlap. A continuous-time Markov chain has a tran-
sition rate matriz, . Each element, ();; records the in-
finitesimal transition rate between states indexed by their
row and column. The transition probability matrix can be
recovered by matrix exponentiating the rate matrix, that
is P = exp(@®), and the transition probability of switching
from state ¢ to state j after a (continuous) ¢t amount of time
is given by P(t) = exp(Qt). Lastly, each row of () must sum
to 0.

The stationary distribution of a Markov chain, if also a
limiting distribution, represents the expected frequencies of
each cell state at equilibrium, and is represented by the n-
dimensional vector w. For large ¢, the transition matrix
Pt if it has a limiting distribution, converge to the ma-
trix II, where each row of II is equivalent to the vector 7.
This means that after a sufficiently long amount of time,
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the probability of transitioning from any state to state j is
equal to state j’s equilibrium frequency, m;. For chains with
symmetric transitions, where transitions to and from a state
occur with equal probability (i.e., P;; = Pj;), the equilib-
rium frequency for each state is 1/n, where, recall n is the
number of possible cell states.

Finally, Markov chains are reversible if the products of the
transition probabilities between two states and their station-
ary frequencies of origin are the same, i.e. mPF;; = m;FPj;.
Note that the reversibility of a Markov chain does not im-
ply that transitions are symmetric, and that asymmetric
Markov chains can also be reversible.

We connect Markov cell state transition dynamics with phy-
logenetic correlations in Phylogenetic correlations and
cell state transitions, and use this connection to infer
cell state transition dynamics from phylogenetic correlations
in Inferring cell state transitions from phylogenetic
correlations.

Phylogenetic correlations and cell state tran-
sitions

Phylogenetic auto-correlations measure the phenotypic sim-
ilarity of closely versus randomly related cells (with re-
spect to ancestry). More generally, the phylogenetic cross-
correlation of two phenotypes, is a measure of the relation-
ship between those phenotypes in closely related, as com-
pared to, randomly chosen cells (Methods: Phylogenetic
correlations). When measuring categorical states on phy-
logenies, if we use a phylogenetic weighting function that
retains only specified phylogenetic distances and omits all
others, phylogenetic correlations measure the difference be-
tween state-pair frequencies in closely (as specified by the
retained distances) versus randomly related cell pairs. Here,
state-pair refers to the states represented in a pair of chosen
cells.

For example, on idealized phylogenies (Methods: Simu-
lating phylogenies), if we apply a phylogenetic weighting
function that preserves all branch lengths equal to two, and
sets all other phylogenetic distances to zero, the phylogenetic
correlation between two states will be a measure of the dif-
ference between the frequencies at which pairs of states are
found within sisters versus random cell pairs. On idealized
phylogenies, sister cells are separated by a branch length
of two, because the branches that connect each of them
to their parent, represent one generation, and thus have a
branch length of one. Similarly, if a weighting function that
retained only branch lengths equal to four is used, the resul-
tant phylogenetic correlations, for an idealized phylogeny,
would measure the difference between state-pair frequencies
in first-cousins versus random cell pairs. In general, if we use
a weighting function on an idealized phylogeny that only re-
tains phylogenetic branch lengths equal to 2¢, phylogenetic
correlations would measure the difference between the fre-
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quencies at which specific state-pairs are found within pairs
of cells that share a most recent common ancestor (MRCA)
t generations ago, versus randomly chosen cell pairs (with
replacement).

To illustrate, consider an idealized N-cell phylogeny and
n possible cell states, in which the pairwise phylogenetic
branch lengths between cells, represented by the square
N-dimensional matrix L, and each cell’s categorical state,
recorded in the N x n dimensional matrix X (as in Meth-
ods: Phylogenetic correlations), are known. First, a
weighting function that only retains phylogenetic branch
lengths equal to 2t is applied, such that W(t) = f,(L,t),
and the sum of the weights in W (¢) are normalized to equate
to 1, resulting in the normalized phylogenetic weight matrix
W(t). The frequency in which cells phylogenetically sepa-
rated by a branch length distance of 2t are in states 7 and
j is given by the ijth element of the square n-dimensional
frequency matrix,

F(t)=XTW () X.

Note, that on a phylogeny, because the order of the cells
within a pair is arbitrary, for i # j, the frequency of observ-
ing either the state-pair ¢j or state-pair ji, is given by the
sum of the frequencies F(t);; + F(t);;- Additionally note
that in the specific context of idealized phylogenies, state-
pair frequencies as in F'(t) are equivalent to kin correlations
[Hormoz et al., 2016].

These state-pair frequencies can be transformed into phylo-
genetic correlations, ®(¢), by first subtracting the random
(with replacement) state-pair frequencies, and then normal-
izing by the cell state population covariances, where © and
o are the respective n-dimensional state frequency and pop-
ulation standard deviation vectors (and division is element-
wise),

(t) = (XTW (@) X — pp") Joo™.

If cell state does not depend on ancestry, then we would not
expect state-pair frequencies to substantially differ in closely
and randomly related cells, resulting in low (near zero) phy-
logenetic correlations. However, if cell states can be inher-
ited, but also sometimes stochastically transition, we would
expect phylogenetic correlations to be generally non-zero.
This is due to the fact that, if heritable, the states for cells
that share a MRCA t generations ago will each depend on
the state of the same ancestral cell. As such, state-pair
frequencies and therefore phylogenetic correlations as mea-
sured above, will depend on how heritable each cell state is,
and how often each state transition to another state occurs.
In other words, the difference between state-pair frequencies
in closely related versus random cells, might be attributable
to underlying cell state transition and inheritance dynamics.
To make this more concrete, below we link a Markov model
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of cell state transition dynamics with cell state phylogenetic
correlations.

For cell state transition dynamics that can be represented
as a Markov chain (Methods: Markov model of cell
state transitions), we can predict state-pair frequencies
for a given pairwise phylogenetic distance, from the transi-
tion probabilities P (a square n-dimensional matrix, where
n is the number of cell states) and the limiting distribution
7 (an n-dimensional vector). For an intuitive example, con-
sider the situation where a pair of sister cells (that share
a parent) are in the same specific state. One way sister
cells can end up in the same state is by both inheriting the
same parental state, and subsequently not transitioning to
another cell state. Alternatively, if the sister cells did not in-
herit their current state, they could have each independently
transitioned from the parent’s state to the same new state.
The probability of observing sister cells in the same specific
state is then determined by summing the probabilities for
each different scenario that could lead to such an outcome.
The probability of each scenario is computed by taking the
probability that the unobserved ancestral cell (here the par-
ent) was in a particular state, given by w, and multiplying
by the relevant transition probabilities, provided by P. For
the situation in which there are only two possible cell states,
the probability of observing the state-pair ij (where one cell
is in state ¢ and its sister is in state j) is,

m1P1i P1j + o Po; Paj.

More generally, for n possible cell states, the probability of
observing each state-pair (where one cell is in state ¢ and
the other is in state j, and ¢ and j can range from 1 through
n), in two cells that share a MRCA t generations ago, where
D = diag(n) and superscript T is the matrix transpose, is

j

(PtTDPt)

If the cell state transitions are reversible, then PTD =
(DP)T = DP, and the probability of observing each state-
pair in cells separated by a phylogenetic distance of 2t can
be simplified to be,

(D P 2t)ij .
These equations show that, for Markov transition dynamics
at equilibrium, the probabilities of observing each possible
state-pair are determined by the probability that the shared
ancestor was in a particular state, multiplied by the proba-
bility that such a state transitioned to the two descendant
cell states observed t generations later, and then summed
for each possible ancestral state. For reversible chains, this
is also equivalent to the probability of starting in one of the
descendant states, followed by a transition to the other de-
scendant state after the 2t time-steps that separates them.
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Using these equations, we can compute expected phyloge-
netic correlations for cell state transitions. This is achieved
by subtracting the probability of observing randomly cho-
sen cells (with replacement) from the state-pair probabilities
and normalizing by the cell state covariances,

(PtTDPt - DH) /5.
For reversible transitions, this simplifies to,

D (P* —1I) /x.

An illustration for these calculations for two cell states is de-
picted in Box S1. Notice that as ¢ increases, P?* — II, and
all phylogenetic correlations thus approach 0. This means
that as cell pairs become more distantly related, their state-
pair frequencies should approach those as if the two cells
comprising the pair were drawn at random from the pop-
ulation. Also note that the closer transition probabilities
are to cell state equilibrium frequencies, the less heritable
cell states will appear. Furthermore, in this context, a high
cell state phylogenetic auto-correlation would imply that the
probability of transitioning to any other state is relatively
low, and thus that the cell state is highly heritable.

In the context of species evolution, the auto-correlative
method of measuring phylogenetic signal was not based on
an evolutionary model, in contrast to signal metrics like
Pagel’s A\, and thus considered more difficult to interpret
biologically [Miinkemiiller et al., 2012]. Here, not only do
we define a bivariate measure phylogenetic signal using phy-
logenetic correlations, but we illuminate a connection be-
tween the measurement of phylogenetic auto- and cross-
correlations with a model of evolutionary dynamics. This
relationship with (categorical) phenotypic transitions thus
clarifies the interpretation of what phylogenetic correlations
measure. Finally, although we only make the connection
explicit for categorical phenotypic states, phenotypic “co-
variance structures” (which will affect phylogenetic correla-
tions) can be linked with a variety of evolutionary processes,
including models for the evolution of continuous phenotypic
states [Hansen and Martins, 1996].

The relationship between phylogenetic correlations and re-
versible cell state transition dynamics, can be used to infer
unknown transition probabilities from phylogenetic correla-
tions, as demonstrated in Inferring cell state transitions
from phylogenetic correlations.

Inferring cell state transitions from phyloge-
netic correlations

Idealized phylogenies

For reversible Markov chains with a limiting distribution
(Methods: Markov model of cell state transitions)
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operating on idealized phylogenies (Methods: Simulating
phylogenies, and Phylogenetic correlations and cell
state transitions), transition probabilities can be inferred
by converting phylogenetic correlations back into state-pair
frequencies (not centered or normalized) and then dividing
each row i by ﬁm the corresponding cell state frequencies

at a branch length distance of 2¢ (where D is an estimate of
D),

P? = DR (1).

To arrive at the transition probabilities for a specific length
of time, appropriate matrix powers or roots can be taken.
For instance,

P = X/D-1F(t).

In this setting, using idealized phylogenies, this formula-
tion is equivalent to inferring transition probabilities using
kin correlation analysis (KCA) [Hormoz et al., 2016], and
conceptually similar to an approach for approximating nu-
cleotide substitution rates [Yang and Kumar, 1996].

Finally, note that in this context, if the Markov chain does
not have a limiting distribution, for instance, if it is periodic,
we might not be able to infer the correct transition proba-
bilities. For example, in the situation where there are two
possible cell states, and the transition probabilities to and
from each state are Pjo = P>; = 1, and the self-transition
probabilities are Pj; = Pys = 0, then the states of every ob-
served cell (in the terminal generation) will be the same, but
different from the states in the cells from the previous gen-
eration. For this case, we would correctly infer that the self-
transition probability of the state observed in the terminal
generation is 1 after 2t time-steps, however, our estimates
for an odd number of time-steps would be incorrect.

Phylogenies from a sampled somatic evolutionary
process

Phylogenies resulting from a sampled somatic evolution-
ary process (Methods: Simulating phylogenies) con-
tain only a sampling of the somatic population under study
and continuous and non-uniform branch lengths. These fac-
tors must be taken into account in order to successfully
infer transition probabilities. To accomplish this, we take
the state-pair frequency matrix (used to compute phyloge-
netic correlations) at a node-depth of d, F(d), by applying
a weighting function that omits all phylogenetic distances
that do not correspond to a node-depth equal to d, and the
mean of the corresponding branch length distances 7. For
each node-depth, we can approximate the transition matrix
as,

P(r) = D7'F(d).
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This is an estimate of the transition probability matrix for
a time proportional to the mean branch length distance be-
tween cells d nodes apart. For a completely sampled ideal-
ized phylogeny, 7 = 2.

More generally, we estimate P(t) (for time ¢), to be

where Q(7) = log P(7), and f,() normalizes rows so that
each sums to 1.

For circumstances in which branch lengths are unknown or
inaccurate, for a node-depth of one, 7 can be imputed if
the cell sampling can be approximated and a model of so-
matic evolution is assumed. This can be accomplished by us-
ing branch lengths from simulated phylogenies from our so-
matic evolutionary process (Methods: Simulating phy-
logenies), or approximated analytically (Methods: Im-
puting branch lengths). Cell state transition dynamics
can be inferred with the function PATH. inference () in our
R software package.

All inferred transition rates for the analyzed datasets were
determined in this manner, using either P(7) (as in Figs.
6F, S6A) or P(t =1) (as in Figs. 4D, 5G).

Phylogenetic reconstruction

To simulate evolution, phylogenetic reconstruction, analy-
sis and inference, we first simulate trees as a sampled so-
matic evolutionary process, a continuous birth—death pro-
cess, (Methods: Simulating phylogenies) under various
parameter schemes, in which the sampled tree size, and the
birth, death, and sampling rates can vary. Once phyloge-
nies are simulated, two distinct Markov processes are run:
(1) a process simulating cell state transition dynamics, and
(2) a process simulating the mutation/scarring of heritable
cellular barcodes. The first Markov model is as described in
the section Markov model of cell state transitions, and
the second Markov model simulates barcode scarring and is
a simple two-state, continuous-time, and symmetric model,
with one rate parameter s, that runs independently for each
mutable site contained within a cell’s heritable barcode.
The elements of the 2-dimensional square barcode scarring
transition rate matrix are given by Q11 = Q22 = —s, and

Q12 = Q21 = 5.

Once both cell state transition dynamics and barcode muta-
tions are simulated, a phylogeny is reconstructed — ignoring
the true simulated phylogeny — with the unweighted pair
group method with arithmetic mean (UPGMA) algorithm
on pairwise-barcode Hamming distances. Branch lengths
(evolutionary distances) are estimated from the number of
barcode differences, using —0.5 log(1 — 2(h/l))/s, where h
is the Hamming distance, [ is barcode length, and s is the
barcode cut rate.
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Reconstructed phylogeny error is scored by computing the
normalized Robinson-Foulds distance [Robinson and Foulds,
1981] and Mean Path Length distances [Steel and Penny,
1993] between the reconstructed and true trees. Phylo-
genetic correlations (using a node-depth of one weight-
ing function) computed for the true and reconstructed
tree are also compared by taking their mean differences.
Lastly, transition inference is performed using two ap-
proaches (Methods: Inferring cell state transitions
from phylogenetic correlations), by either using mea-
sured (determined by the Hamming distances) or imputed
(Methods: Imputing branch lengths; determined us-
ing estimated parameters of a sampled somatic evolutionary
process) branch lengths to derive P(1) from P(7). Accuracy
for both methods is assessed by measuring the Euclidean dis-
tances between the inferred and true/simulated transition
probabilities.

Imputing branch lengths

For phylogenies in which branch lengths are unknown or po-
tentially inaccurate, we can impute the phylogenetic branch
lengths used to infer transition rates (Methods: Infer-
ring cell state transitions from phylogenetic correla-
tions) by using the sampled somatic evolutionary process
model (Methods: Simulating phylogenies), using two
approaches. In both cases, branch lengths are imputed by
using either measurements or estimates to parameterize our
sampled somatic evolution model. For the first, more exact,
approach, we directly measure branch lengths that corre-
spond to a node depth of one in simulations that use the
estimated parameters. For the second, more approximate
approach, we use an analytical expression, given a somatic
evolutionary model parameterization, for computing the ex-
pected lengths of phylogenetic pendant edges, which are pro-
portional to the branch length distances that separate cells
phylogenetically one node apart. For a sampled somatic evo-
lutionary process, pendant edge lengths are expected to be
[Stadler and Steel, 2012],

o = los(v/) — 7 +¢
(y-9*

where ¢ is the product of the cell birth and sampling rates,
and v is the net growth rate, given by the cell birth mi-
nus cell death rates. Using this expression, we can impute
the approximate branch length distance between cells sep-
arated by one node, to be 2¢. For v = 1 (where ¢ is equal
to the sampling rate, Nsampte/N,,opuiation ), 8s sampling becomes
sparse, € & log(Nvoputation/Noampie) — 1, and branch length dis-
tances at a node-depth of 1 are expected to be proportional
the logarithm of the (inverse) sampling rate.

To test the robustness of our cell state transition inference
approach when using imputed branch lengths, we input a
sampling rate estimate by randomly selecting a rate within
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one order of magnitude above or below the true simulated
rate. That is, if the simulated sampling rate was 107°, we
randomly select a sampling rate estimate between 1075 and
10~7, for imputing branch lengths when inferring transition
rates using PATH.

Assessing cell state transition inference ac-
curacy

To assess the accuracy of our inferences using PATH, we
simulated phylogenies across a range of parameters, vary-
ing the cell sampling, birth and transition rates, as well as
the number of cells and possible cell states. To generate a
random n-dimensional transition rate matrix, for each cell
state, (n — 1) numbers are drawn from a uniform random
distribution, ranging between 0 and 0.1, and sequentially as-
signed to each off-diagonal matrix element per row. As rows
must sum to 0, the remaining (diagonal) element in each
row is set to the negative sum of these randomly drawn
values. After parameters are chosen and a transition rate
matrix is randomly generated, phylogenies are simulated
(Methods: Simulating phylogenies) and phylogenetic
correlations (Methods: Phylogenetic correlations) and
inferences (Methods: Inferring cell state transitions
from phylogenetic correlations) are computed.

We also compared cell state transition rate inference accu-
racy with MLE. To do this, we used the function fit_mk()
from the R castor package [Louca, 2020, Louca and Doebeli,
2018] to estimate the transition rate matrix @ from a sim-
ulated phylogeny (Methods: Simulating phylogenies).
To assess the accuracy of inferences using either PATH or
MLE, we compute the Euclidean distance between the in-
ferred transition probability matrix P, for ¢ = 1, and the
true transition probability matrix P. Inferences using both
PATH and MLE were performed on the same simulated phy-
logenies, and accuracies compared.

Mouse embryogenesis

Normalized RNA matrices and phylogenies were down-
loaded from Gene Expression Omnibus (GEO) series
GSE117542 and imported into R (v. 4.1.3). Cell type an-
notations were provided upon request by the correspond-
ing authors of the original publication [Chan et al., 2019].
Blastocyst layer annotations were inferred from germ layer
membership. Phylogenies were extended by connecting node
identifiers with single-cell barcodes using a dictionary pro-
vided in pickle files. We analyzed phylogenies for embryos 2
and 6 from [Chan et al., 2019]. Originally, these phylogenies
contained one cell per subclone; however, we added the re-
maining cells to the phylogeny as leaves descending from the
same node. Phylogenetic correlations (Methods: Phylo-
genetic correlations) were calculated using the one-node
depth weighting function. For categorical states (e.g., cell
type) phylogenetic correlations, weight matrices were first
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row-normalized before sum normalizing.

To calculate enrichment of heritable genes on each chromo-
some, the top 2,000 most variably expressed genes (calcu-
lated using Seurat [Hao et al., 2021]) were segregated by
chromosome. Each set of variable genes (on each chromo-
some) was further divided into genes that were “heritable”
(z score = 3) or “non-heritable” (z score < 3). For each
chromosome, a Fisher’s Exact test comparing the number of
“heritable” and “non-heritable” genes on that chromosome
to those on all other chromosomes combined was performed.

Zebrafish brain development

Normalized RNA matrices and cell annotation tables were
downloaded from GEO series GSE105010 and imported into
R (v. 4.1.3). Zebrafish [Raj et al., 2018] phylogenies were
obtained by parsing json files using code provided by the
authors. We used zebrafish 3 (“rep 1”) and 5 (“rep 2”)
phylogenies from [Raj et al., 2018]. Phylogenetic correla-
tions (Methods: Phylogenetic correlations) were cal-
culated using one-node weighting function, and for categor-
ical states, weight matrices were row-normalized before sum
normalizing.

Minor changes were made to the cell annotation provided in
the original study. In Fig 4A and Fig 4C, neuronal cells
originally annotated as “S1/S2” (forebrain/midbrain) and
“Mix” were both considered as “Mix”. All cell types that
were not neurons or neuronal progenitors were considered
non-neural.

To impute phylogenetic branch lengths (Methods: Im-
puting branch lengths) for PATH transition inferences
(Methods: Inferring cell state transitions from phy-
logenetic correlations), we estimated a cell sampling rate
of 104, which assumes that there were approximately 108
cells per brain [Marhounova et al.; 2019].

To classify forebrain neurons as either GABA+, Gluta-
matergic (Glut+), or “unassigned”, GABA and Glut marker
gene sets were scored across forebrain neuron cells in
the repl fish (N = 270) using the Scanpy [Woll et al.,
2018] score_genes () function. Cells with a positive score
(greater than 0) for either GABA or Glut marker gene set
were classified accordingly (no cells had a positive score for
both categories). Cells with scores of 0 in both gene sets
were considered “unassigned”.

Mouse model of pancreatic cancer

Phylogenies, RNA count matrices and phenotype tables
were downloaded from GEO series GSE173958 and imported
into R (v. 4.1.3). As the available RNA matrices for the
murine pancreatic cancer model [Simeonov et al., 2021] were
counts, we normalized them using Seurat (v. 4.2.0) [Hao
et al., 2021]. Also, given that each mouse had been injected
with different parental clones whose relationships cannot be
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established, we could only study the annotated lineages of
each clone independently. We analyzed the phylogeny from
“Mouse 1 Clone 1”7 from [Simeonov et al., 2021], which was
chosen because it contained the most cells of any clone an-
notated with an EMT score. All cell annotations were used
as published in the original paper. Phylogenetic correlations
(Methods: Phylogenetic correlations) were computed
with the one-node depth weighting function, and for cate-
gorical states, weight matrices were row-normalized prior to
sum normalizing.

EMT bins were created to discretize the EMT score across
the EMT continuum according to the following: cells were
partitioned along the continuum using units of 1 (bin #1
includes cells with EMT scores from 0 to 1, bin #2 includes
cells from 1-2; etc.), merging bins at the extremes (all cells
with a score of 7 or lower were assigned to a single bin, as
were cells that scored higher than 30) because these bins had
low cellular representation. To check for robustness, we re-
peated the binning procedure using other intervals (0.5,2,3)
as shown in Fig. S5D.

To impute phylogenetic branch lengths (Methods: Im-
puting branch lengths) for PATH transition inferences
(Methods: Inferring cell state transitions from phy-
logenetic correlations), we estimated a cell sampling rate
of 1076, which assumes that there were approximately 10°
cells per tumor [Del Monte, 2009].

Human patient glioblastoma

Glioblastoma (GBM) phylogenies and corresponding scR-
NAseq data (including gene module scores) were obtained
from Chaligne et al. [2021]. Patient sample MGH105 was
chosen because tumor location was annotated, and patient
samples MGH115 and MGH122 were chosen because each
exhibited significant gene module transcriptional heritabil-
ity in the original paper. The MGH105 phylogeny is a
maximum-likelihood (ML) consensus tree, containing 80
cells, 20 cells from each location (MGH105A, MGH105B,
MGH105C, and MGH105D). Analyses of patient sample
MGH115 used 9 ML phylogeny search replicates for the same
38 cells from the original paper. Analyses of MGH122 used
10 ML phylogeny search replicates and the same 45 cells
from the original paper. Phylogenetic correlations were com-
puted by using the inverse node-distance weighting function
(Methods: Phylogenetic correlations).

PATH inferred transition rates (Fig. 6F, Methods: In-
ferring cell state transitions from phylogenetic corre-
lations) were computed using categorical cell states (NPC-
/OPC-/AC-/MES-like), with states defined by the corre-
sponding per cell maximum module score, as in Chaligne
et al. [2021]. Note that, in the original paper, the NPC-like
and MES-like modules combine the NPC1-/NPC2-like and
MES1-/MES2-like modules, respectively. PATH inferred

transitions ]3(t = 1) correspond to a time scale proportional
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to the mean branch length distance separating cells one node
apart, 7.

Gene set enrichment analysis (GSEA) and Over-
Representation Analysis (ORA) were performed using the
functions fgsea() and fora() from the R software pack-
age fgsea [Korotkevich et al., 2021]. For both analyses, the
3,000 most variably transcribed genes (selected using the
SCTransform() function from the R software package Seu-
rat [Hao et al., 2021] on scRNAseq data) in patient sample
MGH115 were ranked by their phylogeny-replicate mean
phylogenetic auto-correlation z scores (Table S1).

In both analyses, we measured the enrichment of gene sets
from the chemical and genetic perturbation (C2:CGP) col-
lection from the molecular signatures database (MSigDB)
[Subramanian et al., 2005], as well as the GBM gene modules
(NPC1-/NPC2-/OPC-/AC-/MES1-/MES2-like) defined in
Neftel et al. [2019], and filtered out sets with fewer than 20
genes. For both analyses (GSEA and ORA), pathway en-
richment p-values were adjusted “padj” with the Benjamini-
Hochberg procedure (BH), to account for multiple compar-
isons. Enriched pathways (BH adjusted p < 0.05) using
GSEA that are presented in Fig. 6H were chosen manually
(due to putative relevance) from a list of enriched pathways
(Table S2).

ORA was performed on two gene clusters (“Cluster 1”
and “Cluster 2” in Fig. S6B), which were determined
by hierarchical clustering, using Ward’s method, of the
replicate-mean cross-correlations between the top 100 most
significantly auto-correlated genes (across the phylogeny-
replicates, see Table S1) in patient sample MGH115. All
3,000 of the most variable genes were used to define the “uni-
verse” or “background” genes to test for over-representation.
All enriched gene sets (BH adjusted p < 0.05) for Cluster
1, and a manually chosen subset for Cluster 2, are shown in
Fig. S6B. A complete list of ORA enriched gene sets found
in Clusters 1 and 2 from Fig. S6B can be found in Table
S3.

Gliomasphere phylogenies

Patient-derived human GBM cells (MGG23) [Wakimoto
et al., 2011] were grown in Neurobasal Medium (Thermo
Fisher Scientific) supplemented with 1/2 x N2 and 1 x
B27 (Thermo Fisher Scientific), 1% Penicillin/Streptomycin
(Thermo Fisher Scientific), 1.5 x Glutamax (Thermo Fisher
Scientific), 20 ng/mL of EGF and 20 ng/mL of FGF2
(Shenandoah Biotechnology). The Molecular Recorder cas-
sette PCT62 [Chan et al., 2019] was introduced into MGG23
cells using piggyBac-mediated transposition (Systems Bio-
sciences). Lineage tracing was initiated by infecting cells
with lentivirus expressing Cas9-EGFP, followed by FACS
sorting for EGFP-positive cells. Cells were subsequently
grown in vitro for 4 weeks and lineage traced with the Molec-
ular Recorder approach for two replicates. scRNAseq li-
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braries were generated using the Chromium Next GEM Sin- NAseq data for each replicate were processed independently
gle Cell GEM, Library & Gel Bead Kit v3.1, Chromium using the R package Seurat [Hao et al., 2021], by normal-
Single Cell Feature Barcode Library Kit, Chromium Next izing and scaling RNA count data after subsetting for cells
GEM Chip G, and 10x Chromium Controller (10x Ge- with < 25% mitochondrial DNA and > 200 RNA features.
nomics) according to manufacturer instructions. Single-cell GBM gene modules [Neftel et al., 2019] were assigned using
gene expression libraries were sequenced with paired-end, the Seurat AddModuleScore() function. Within each repli-
28 and 91-base reads on a NextSeq 2000 sequencer (Illu- cate, subclone phylogenies (3 for the first replicate and 6 for
mina). The Cas9-edited Molecular Recorder barcodes were the second replicate) were joined at their roots before com-
PCR amplified from single-cell cDNA libraries as previously puting phylogenetic correlations. Phylogenetic correlations
described [Chan et al., 2019] and sequenced with paired- were computed for GBM gene modules using the one-node
end, 28 and 272-base reads on a NextSeq 2000 sequencer only weighting function, and z scores were computed analyt-
(Illumina). Phylogenies were reconstructed using Cassiopeia ically per replicate. Replicate mean phylogenetic correlation
[Jones et al., 2020] using the VanillaGreedySolver () with z scores are shown in Fig. 6G.

default parameters for each subclone per replicate. ScR-
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Figure S1: Cell state transition dynamics predict phylogenetic correlations

A) Simulated idealized phylogeny containing 26 = 64 cells (Methods: Simulating phylogenies) in which cells can transition
between three possible cell states. Cell state transitions are represented as a discrete-time Markov chain (Methods: Markov
model of cell state transitions).

B) Simulated cell state transition dynamics (Methods: Simulating phylogenies) and measured phylogenetic auto-correlations
(Methods: Phylogenetic correlations) for the first cell state for 1,000 independent simulations on idealized phylogenies, con-
taining 64 cells as in A, in which state transition probabilities were randomly generated for each trial. Phylogenetic correlations
were computed using a weighting function that included only sister cells (one-node only, as described in Methods: Phylogenetic
correlations and cell state transitions). LOESS regression line (blue) with 95% confidence interval (light gray) is shown.
Spearman’s rank correlation coefficient = 0.89, p < 2.2e — 16.

C) (Left) Simulated versus PATH-inferred (Methods: Inferring cell state transitions from phylogenetic correlations), by
transforming the phylogenetic auto-correlations measured in B, cell state self-transition (i.e., stability) probabilities. Spearman’s
rank correlation coefficient 0.93, p < 2.2e-16. (Right) Simulated versus PATH-inferred (Methods: Inferring cell state transi-
tions from phylogenetic correlations) cell state transition probabilities from state 1 to 2, on idealized phylogenies (Methods:
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Simulating phylogenies). Spearman’s rank correlation coefficient 0.85, p < 2.2e-16. Dashed red lines both have slope 1 and pass
through the origin. Linear regression lines (blue) with 95% confidence intervals (light gray) are shown for both plots.

Box S1: Cell state transition dynamics and phylogenetic correlations

Markov cell state transitions

w < P  Phylogenetic correlations

We can connect cell state transition dynamics (P ! ) to phylogenetic cell state pair frequencies F(7), for a given
ancestral relationship ¢ (e.g., sister cells [i.e., r = 1] or first-cousins [i.e., t = 2]) with,

P YD P = F(r), where D = diag(u), is the diagonal matrix of cell state frequencies, and 7 signifies the matrix
transpose. This relation, for two cell states, is illustrated below.
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For reversible Markov dynamics, this mathematical relation simplifies to, DP* = F(f).
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State pair frequencies can be transformed into phylogenetic correlations &(r),
by standardizing: ®(t) = (F(t) - uu (oo™, with 6% = u - u>.
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Phylogenetic __ n n .

correlation —

*This matrix represents the sampling probabilities — with replacement — of observing illustrated cell state pairs.
Similarly, the covariance matrix represents population covariances.

Finally, for reversible dynamics, state transitions can be directly inferred from state pair
frequencies, P* = D'F(z).
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Figure S2

Inference accuracy Inference accuracy Run time
PATH vs. MLE, sampling = 10 PATH vs. MLE, sampling = 107 PATH vs. MLE
100 500 1000 1000 10( 1000
N . 1e+02
o 1.000 - o 1.000 -
& &
@ @
c - D +
o ) 19 0.100 - 1e+00 -
k) g | g
< < ) =
c S c
g i ° g .= 0.010- + +
2 _° 2 (] 4 1e-02-
s o © = ° °
(Y 0.001~-
3 4 5 3 4 5 3 4 5 3 4 5 3 45 3 4 5 3 4 5
n states n states n states
True vs. reconstructed distances
sampling = 107°
1000 | 1000 | 1000 |
@
< PCD | weL | RF |
S ~
= 25{ @ N
1723
3 . 8 g 03 * 107 z
2.0 = 5
£ s 08 £ g
] o < 10° °
£ 1.5 0.2 % z
» ' £ 3
= 10 s 5
3 : 0.6 £ 10° a
3 0.1 8 3
 os _!_ - g
? 10”
g 0.0 0.4 &
§ 50 100 500 50 100 500 50 100 500 0.25 0.50 0.75 1.0C 0 50 100 150 200 250
Barcode length y growth (birth - death) Mean branch length at one node
B3 MLE B3 PATH )
Branch length distance at one node
3 10 30 100 300

Figure S2: PATH inferences and simulations of somatic evolution

A) Transition inference error (Euclidean distance between inferred and true transition probabilities) using PATH or MLE for 3, 4,
or 5 cell states in a phylogeny composed of either 100 (left), 500 (middle), or 1,000 (right) cells, representing a sample of 107 of
the total population. Each parameter combination was simulated 1,000 times and inferences are shown for all simulations in which
neither PATH nor MLE inference failed.

B) Same as A but with a sampling rate of 107,
C) Run times corresponding to simulations depicted in A.

D) Phylogenetic correlation difference (PCD, left), Mean Path Length distance (MPL) [Steel and Penny, 1993] (center), and
Robinson-Foulds distance (RF) [Robinson and Foulds, 1981] (right) between simulated true and reconstructed phylogenies
(Methods: Phylogenetic reconstruction). Phylogenies were simulated 1,000 times for each barcode length (x-axis).

E) Expected pendant edge lengths for a sampled somatic evolutionary process, as a function of birth, death and sampling rates
(Methods: Imputing branch lengths).

F) Correspondence between simulated branch lengths at a node depth of one and expected pendant lengths, while varying sampled
somatic evolutionary process parameters.
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Figure S3
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Figure S3: PATH quantifies ancestry and divergence of germ layers and cell types during mouse embryogenesis

A) Single-cell phylogeny for mouse embryo 2 from Chan et al. [2022], 2019, containing 700 of 1,113 randomly chosen cells for
visualization. Each leaf represents a single cell. Leaves are colored by their assignment to a blastocyst or germ layer of origin based
on transcription profiles. e prefix, embryonic; ex prefix, extraembryonic. PrEndo, primitive endoderm.

B) Blastocyst and germ layer phylogenetic auto-correlations for embryo 6 (N = 1,722 cells).

C) Hierarchical clustering of tissue types in embryo 6 by phylogenetic correlation using Ward’s method. Only tissues with more
than 30 cells present in the sample were considered for analysis. Tissues colored by their germ layer and blastocyst layer of origin.
ExE, extraembryonic; EM, embryonic.

D) Ranked pairwise cell type phylogenetic correlations (z scores) for embryo 6. Pairs with z scores > 3 highlighted. Text colored
by germ layer as in B.
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Figure S4: PATH identifies cell fate-determining factors across anatomical, defined tissue and gene expression
layers during neurogenesis in zebrafish

A) Heat map of scaled expression of representative marker genes across hypothalamus clusters. Marker genes and clusters were
defined by Raj et al. [2018].
B) Hypothalamus cluster (from A) phylogenetic correlations.

C) Heat map of GABA markers (gad2, gadl1b, slc6alb, slc32al) and Glut (slc17a6b, adcyap1d) signaling in forebrain neurons of
zebrafish replicate 1 (see Methods for assignment of cells into GABA, Glutamatergic (Glut) and Unassigned categories).
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Figure S5: Quantifying the heritability versus plasticity of EMT transcriptional states

A) Tumor cell harvest site phylogenetic correlations.

B) EMT bin phylogenetic correlations (z scores). Colors represent putative states.

C) Single-cell phylogeny from mouse 1, clone 1 from Simeonov et al. [2021], containing 700 of 7,968 randomly chosen cells for
visualization. Each leaf represents a single cell. Cells are colored by PATH-defined states (T1, T2, T3, M).

D) EMT bin phylogenetic correlation (z score) heat maps using different bin sizes (0.5, 1, 2, 3).
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Figure S6: PATH inferred cell state transitions and gene set enrichment in human glioblastoma

A) PATH-inferred transition probabilities P(r) (Methods: Inferring cell state transitions from phylogenetic correlations)
from neurodevelopmental-like (NPC-/OPC-/AC-like) cell states to the MES-like cell state in human patient-derived GBM samples
MGH115 and MGH122 (Methods: Human patient glioblastoma). Points correspond to PATH inferences for each sample
phylogeny-replicate per sample. Significance determined by two-sided t-test (p < 9.7e-6 and p < 8.2e-9 for NPC-like vs AC-like in
MGH115 and MGH122 respectively; p < 9.7e-6 and p < 7.8e-9 for OPC-like vs AC-like in MGH115 and MGH122, respectively).
Colors correspond to cell state.

B) Heat map of the phylogeny-replicate mean phylogenetic correlations (Methods: Phylogenetic correlations) for the top 100
most heritable genes (determined by phylogeny-replicate mean gene phylogenetic auto-correlation z scores) in MGH115. Over-
representation analysis (ORA) performed on the genes in each of the two clusters, defined by hierarchical clustering using Ward’s
method, separately. Phylogenetic correlations were computed using an inverse-node-distance weighting (Methods: Human pa-
tient glioblastoma). Only select gene sets are depicted for Cluster 2; remaining significantly enriched gene sets are in Table
S3.

GBM gene modules (NPC-/OPC-/AC-/MES-like) were shortened to (NPC/OPC/AC/MES).
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