

1 Male Guinea baboon tracking of female whereabouts

2 Dominique Treschnak^a, Dietmar Zinner^{a, b, c} Julia Fischer^{a, b, c}

3

4 ^aCognitive Ethology Laboratory, German Primate Center, Göttingen, Germany

5 ^b Department of Primate Cognition, Georg-August-University of Göttingen, Göttingen,
6 Germany

7 ^c Leibniz ScienceCampus Primate Cognition, Göttingen, Germany

8

9 Orcid: Treschnak: <https://orcid.org/0000-0002-8249-191X>

10 Zinner: <http://orcid.org/0000-0003-3967-8014>

11 Fischer: <http://orcid.org/0000-0002-5807-0074>

12

13

14 **Abstract**

15 In group-living species, evolution puts a premium on the ability of individuals to track the state,
16 whereabouts, and interactions of others. The value of social information might vary with the
17 degree of competition within and between groups, however. We investigated male monitoring
18 of female location in wild Guinea baboons (*Papio papio*). Guinea baboons live in socially
19 tolerant multi-level societies with one-male-units comprising 1-6 females and young at the
20 core. Using field playback experiments, we tested whether males (N=22 males, N=62 trials)
21 keep track of the whereabouts of associated females by playing back unit females' calls from
22 locations that were either consistent or inconsistent with the actual position of the female.
23 Contrary to predictions, males responded equally strongly in both conditions. In a preparatory
24 experiment, males (N=14) responded more strongly to playbacks of unit vs. non-unit females.
25 While males seem to recognize their females by voice, they were not able or not motivated to
26 track their females' movements. These results reinforce the view that the value of social
27 information may vary substantially with the distribution of power in a society. While highly
28 competitive regimes necessitate high attention to deviations from expected patterns,
29 egalitarian societies allow for a certain degree of obliviousness.

30

31 **Introduction**

32 Knowledge about conspecifics and their relationships guides social decision-making in many
33 group-living animals. The use of such social knowledge is documented for a large number of
34 species, ranging from simple and more complex forms of individual recognition [1] to the
35 assessment and monitoring of stable or transient social attributes of group members, like
36 kinship, rank, or bond strengths. Such knowledge extends not only to an individual's direct
37 associations but also to third-party relationships [2]. When navigating the social environment,
38 knowledge about previous interactions with group members, the capabilities of potential
39 partners or competitors, and the nature and quality of relationships between others, aids in

40 predicting the outcomes of future interactions and allows to act strategically. For example,
41 spotted hyenas (*Crocuta crocuta*) joining into dyadic fights mainly support the dominant
42 individual and are subsequently also more likely to attack relatives of the subordinate [3].
43 Pinyon jays (*Gymnorhinus cyanocephalus*) assess their relative rank difference to strangers
44 by observing them in encounters with known individuals [4]. Tonkean macaques (*Macaca*
45 *tonkeana*) respond more strongly to conflicts between strongly bonded individuals ('friends')
46 compared to non-friends [5].

47 Besides kin and allies, mating partners are of particular value to an individual. Males
48 compete not only for access to females [6,7]; they are also under selection to monitor the state
49 and behaviour of females. Males may increase their reproductive success by assessing suited
50 mating partners [8] or mating opportunities [9,10]. In many species, females become the centre
51 of male attention when they approach the fertile phase of their reproductive cycle. In contrast,
52 in species where males and females form long-lasting bonds as in monogamous [11] or
53 polygynandrous species (e.g., plains zebras (*Equus burchelli*) [12], hamadryas baboons
54 (*Papio hamadryas*) [13]), males are permanently incentivised to monitor and control associated
55 females' whereabouts and interactions with other group members.

56 We tested male knowledge of female whereabouts in wild Guinea baboons (*Papio*
57 *papio*). The species lives in multi-level societies. At the core are one-male units consisting of
58 one primary male, one to six associated females, and their offspring. Bachelor males may be
59 associated with several such units [14]. Several units form a party, which in turn aggregate into
60 gangs [15]. Females associate with one primary male and show mate fidelity [16], but in
61 contrast to hamadryas baboons, they also enjoy spatial freedom, i.e., they may spend
62 considerable time away from their male [16].

63 We hypothesized that males keep track of the movement patterns of associated
64 females. To test this hypothesis, we conducted a playback experiment [17], in which we
65 presented female grunts from a location that was either consistent or inconsistent with the
66 actual position of the female. We made use of the violation-of-expectation paradigm and

67 presented the animals with a physically impossible scenario, similar to Townsend et al. (2012).
68 We tested a male immediately after the female had left him and assumed that he would have
69 noticed the direction in which she disappeared. We predicted that males would show 'signs of
70 surprise', meaning a stronger response, when they were confronted with information that the
71 female was in an unexpected - indeed physically impossible – location compared to their
72 response when the female's vocalisation came from the direction into which she had recently
73 disappeared. In a preparatory experiment, we tested the prerequisite that males can recognise
74 their associated females by voice. We tested if males respond more strongly to the
75 vocalizations of females from their unit compared to the vocalizations from females of another
76 unit, but the same party. We predicted that males would show stronger responses when
77 presented with vocalisation from unit-females.

78

79 **Methods**

80 The experiments took place between January 2019 and August 2021 at the Centre de
81 Recherche de Primatologie Simenti in the Niokolo-Koba National Park in Senegal, a field
82 station maintained by the German Primate Center (see Fischer et al., 2017 for details). The
83 study population comprised ~ 200 individually identified Guinea baboons that belonged to three
84 parties, with a varying number of reproductive units (between 15 and 25 per year across three
85 parties) suitable for the experiments. For the experimental stimuli, we recorded 'grunt'
86 vocalisations of sub-adult and adult females during their non-receptive phase (electronic
87 supplementary material, appendix S1, S2). Grunts are the most frequently occurring
88 vocalisation in Guinea baboons and are mainly produced in affiliative contexts [20].

89 In Experiment 1 (individual recognition), we presented males with calls from a female
90 from their unit (*unit-female* condition) and a female from another unit (*non-unit-female*
91 condition). Trials were separated by at least five days and conducted only when females were
92 non-receptive. Once the female whose call was to be played back was not visible to the
93 subject, a loudspeaker was positioned at a 90° angle to the left or right of the male depending


94 on the actual position of the female, and the stimulus presented. Male responses were video
95 recorded for three minutes after the onset of the stimulus. We conducted 28 playback trials
96 testing 14 primary males.

97 In Experiment 2 (spatial monitoring), we tested males in a within-subject design and
98 presented grunts from a unit-female on two occasions separated by at least seven days. As
99 above, trials were conducted only when females were non-receptive. In the *consistent*
100 condition, the speaker was hidden in a location matching the actual direction of the departed
101 female, whereas in the *inconsistent* condition in the opposite direction, presenting an
102 impossible scenario (figure 1). A male was tested after he had been near a unit-female, she
103 had then walked away and was no longer in sight (median time out-of-sight: 70s, range 8 s –
104 273 s). A loudspeaker was then hidden in vegetation, at a 90° angle to the left or right of the
105 male and a distance of approximately 10 m. Male responses were video recorded for 10 min.
106 after the onset of the stimulus. We conducted 62 playback trials with 22 primary males. Nine
107 of these males were tested twice with the call of a different female (average time between first
108 and second run: 43 weeks (min: 3, max: 100)) (electronic supplementary material, appendix
109 S3).

110 Video recordings were coded using Solomon coder beta (András Péter,
111 solomoncoder.com) on a frame-by-frame basis (25 frames/s). We examined male responses
112 by coding changes in their head orientation; i.e., changes between the neutral position: male
113 faces camera, and subsequent looks exceeding an angle of 45° towards the direction of the
114 speaker or away from it. We measured the duration of the first look and the latency to respond.
115 Trials where the latency exceeded the cut-off were coded as “no response”. As the first look in
116 the inconsistent condition could be truncated because the male may turn his attention to look
117 into the direction where the female was last seen, we additionally measured the total time
118 vigilant (all looks toward the speaker or actual position of the female) within 30 s after stimulus
119 onset in the social monitoring experiment, (electronic supplementary material, appendix S4
120 (observer reliability); appendix S5, figure S1, S2 (classification of responses)).

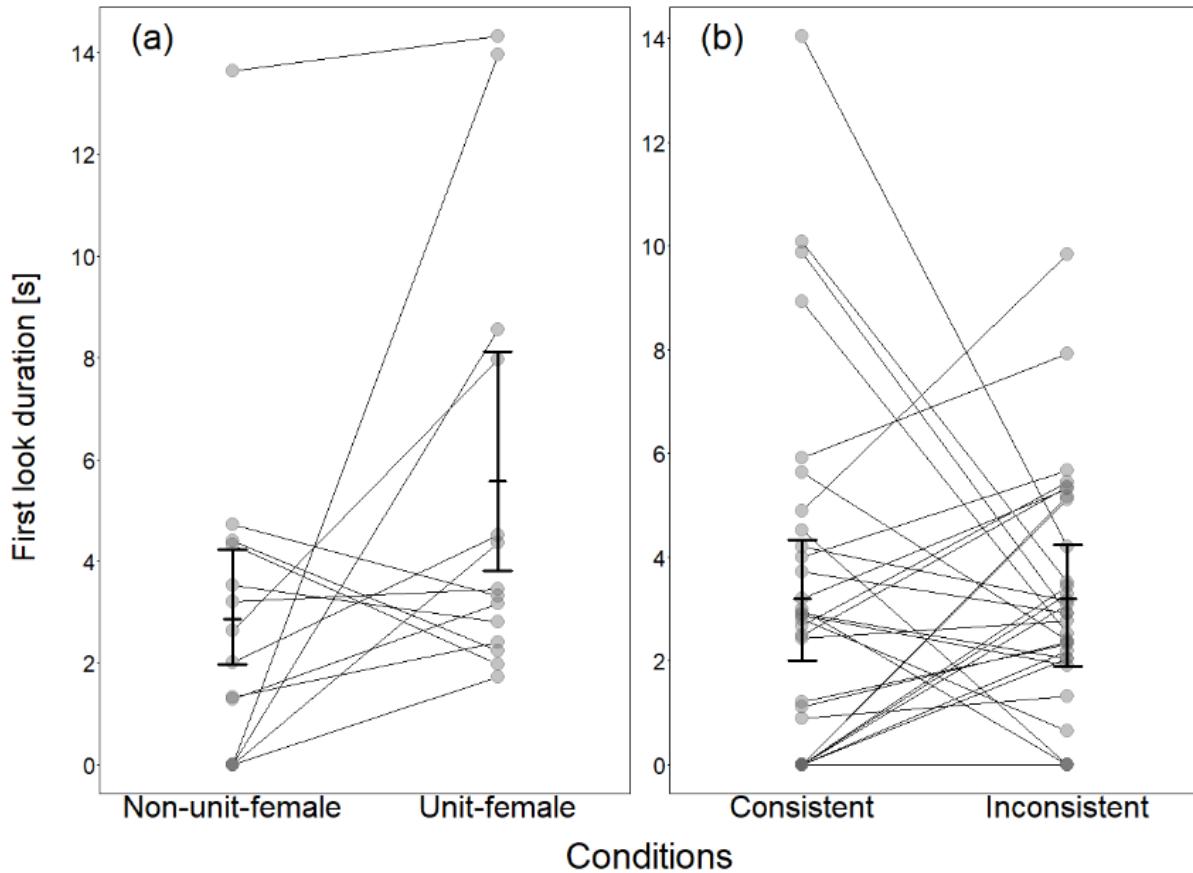
Analyses were carried out in R (version 4.1.1; R Core Team, 2021). GLMMs, LMMs, and Cox proportional hazard model were fitted using the R package *lme4*, *survival* and *coxme* (electronic supplementary material, appendix S6, S7). We used a Linear Mixed model [22] for first look duration (experiment 1) and vigilance time, a Generalized Linear Mixed Model with gamma error structure and log link function [22] for the duration of the first look (experiment 2), and a survival analysis [23] for latencies. In addition to the main predictor 'experimental condition', we included unit size as a fixed effect to control for the influence of the number of unit-females and male identity as random intercept. As in experiment 1, the same call could be used in the unit-female and non-unit-female conditions for different males, and some calls (stimuli) stemmed from the same female, we included female ID and stimulus ID as additional random intercept effects. To investigate the effect of the main predictor we compared the full model to a null model lacking experimental condition using a likelihood ratio test (Dobson & Barnett, 2008). Confidence intervals of estimates and fitted values were determined using a parametric (LMM & GLMM) and non-parametric (survival analysis) bootstrap (N=1000 bootstraps).

136

137

138 **Figure 1.** Set-up experiment 2 (spatial monitoring). In the consistent condition, a speaker is
139 positioned close to the actual position of the female, in the inconsistent condition, the speaker
140 is placed in the opposite direction.

141


142 **Results**

143 In experiment 1 (individual recognition), males responded to the playback of calls in 24 out of
144 28 trials. The average duration of the first response was $3.18 \text{ s} \pm 2.53 \text{ s}$ (median \pm IQR). Males
145 looked longer when presented with calls from unit-females ($3.38 \text{ s} \pm 4.60 \text{ s}$) compared to non-
146 unit females ($2.32 \text{ s} \pm 3.80 \text{ s}$) (full-null model comparison: $\chi^2_1=8110$, $p=0.004$, table S1a). The
147 average latency of responses was $0.96 \text{ s} \pm 0.86 \text{ s}$ for the unit-female and $1.26 \text{ s} \pm 3.21 \text{ s}$ for

148 non-unit-females (median \pm IQR). Unit size had no obvious effect on response duration or
149 latency (Duration: $p=0.48$; Latency: $p=0.37$, table S1a, S2).

150 In experiment 2 (spatial monitoring), males responded to the playback in 49 out of 62
151 trials (consistent condition: N=22, inconsistent: N=27). There was no obvious difference in the
152 duration of first look in the consistent ($2.80 \text{ s} \pm 4.36 \text{ s}$, median \pm IQR) compared to the
153 inconsistent ($2.92 \text{ s} \pm 2.62 \text{ s}$) condition (full-null model comparison: $\chi^2_1=0.0002$, $p=0.99$, table
154 S3) (figure 2b). There were no obvious differences in response latencies between the two
155 conditions (consistent: $0.72 \text{ s} \pm 0.48 \text{ s}$; inconsistent: 0.80 ± 0.64 (median \pm IQR); full-null
156 model comparison: $\chi^2_1=1.10$, $p=0.29$, table S4). There were also no obvious differences in the
157 overall time vigilant (consistent: $7.84 \text{ s} \pm 7.19 \text{ s}$ (median \pm IQR); inconsistent: $8.08 \text{ s} \pm 6.39 \text{ s}$;
158 full-null model comparison: $\chi^2_1=0.04$, $p=0.84$, table S5). We found no evidence that unit size
159 influenced any of the response variables (Duration: $p=0.38$; Latency: $p=0.63$, Vigilance:
160 $p=0.15$, table S3, S4, S5).

161

162

163 **Figure 2.** First look duration for males in the a) individual recognition experiment and b) spatial
164 monitoring experiment. Connected points represent data from the same individual (a: N=14; b:
165 N=22). Thick black lines depict bootstrapped mean and 95% confidence intervals for males
166 with average unit size.

167

168 **Discussion**

169 Male Guinea baboons showed no signs of surprise when calls from associated females were
170 played back from an impossible location. Instead, they responded equally strongly to
171 playbacks of calls from an impossible or a possible location. Further, males responded more
172 strongly to the playback of vocalizations from unit-females compared to non-unit-females.
173 While males seemed to be able to recognise their unit's females by voice, they lacked either
174 the ability or the motivation to track their females' positions.

175 These findings were not in line with our initial prediction that primary males monitor the
176 whereabouts of their females. Guinea baboons form one-male units similar to hamadryas
177 baboons or mountain gorillas (*Gorilla b. beringei*). In both of these species, sexual coercion
178 [25] is used by leader males to control female movement and interactions and to prevent
179 transfers to other males [26,27]. In Guinea baboons, we did not observe such overt aggression
180 towards females, except for some occasional chasing of females. Indeed, female Guinea
181 baboons can roam relatively unimpeded and interact socially with other group members,
182 including other adult males [16].

183 The lack of differentiated response fits with the relatively laid-back stance of Guinea
184 baboon males. Males form strong bonds with other males [14,15,28]. They also show low
185 levels of overt aggression, preventing us from discerning a clear dominance hierarchy [14]. At
186 the same time, female Guinea baboons have considerable leverage in mate choice and
187 intersexual bond maintenance [16]. Male strategies mainly seem to consist of investing their
188 social time into female grooming and support. Interestingly, males appear to face a trade-off
189 in the allocation of social time, as male investment into socio-positive interactions with other
190 male declines with increasing unit size [28]. Social investment into females thus might be
191 important for intersexual bond maintenance and potentially female mate choice in the first
192 place.

193 Since we tested males when the female whose calls were played was not receptive,
194 we do not know whether males would be more attentive if the female would be able to conceive.
195 We conducted the trials only while females were non-receptive because, during females'
196 oestrus, primary males and females are less likely to separate [29], leaving very few
197 opportunities for conducting the experimental trials. Thus, we cannot exclude the possibility
198 that males would respond differentially in conditions where they should be more motivated to
199 track their female's whereabouts.

200 Our study adds to the accumulating evidence that the need to monitor the social
201 environment varies between species with the degree of competition among individuals. For

202 instance, the highly competitive chacma baboons (*Papio ursinus*), which live in female
203 philopatric groups show strong responses to the playback of vocalisation from unfamiliar males
204 [30,31], while Guinea baboons showed greater attention to vocalisations from familiar males
205 compared to neighbours or strangers [20]. In geladas (*Theropithecus gelada*), which live in a
206 multi-level society in aggregations of up to several hundred individuals, vocal recognition
207 seems to be limited to individuals with a high degree of social overlap [32]. Additionally, when
208 presenting individuals with information about changes in association patterns, chacma
209 baboons responded strongly to simulated separations of consortships [10], while Guinea
210 baboons paid more attention to information consistent with current male-female association
211 patterns [33]. Similarly, Geladas did not differentiate between consistent or inconsistent
212 information about male-female relationships at all [34].

213 While the link between group-living and sophisticated social knowledge is well
214 documented [2], it is still unclear whether life in a socially complex environment per se [35] or
215 rather the degree of competition within and between groups selects for advanced socio-
216 cognitive skills ("Machiavellian intelligence") [36]. Bergman (2010, p. 2050) argued that
217 "missing social knowledge" might be a consequence of the absence of a competitive
218 environment that offers no benefits for the ability to assess and use of specific social
219 information of conspecifics. Our results as well as results of previous from the same population
220 [20,33] suggest that a reduced competitive environment affects the value of social information,
221 and as a consequence, the motivation or ability of an individual to attend to them. At the same
222 time, both Guinea baboons and geladas live in highly structured multi-level groups, suggesting
223 that a complex social organisation does not per se select for a high motivation to monitor the
224 social environment. We contend that a skewed distribution of power influences the value of
225 social information and therefore the motivation to attend to events in the social environment.

226

227 **Acknowledgements**

228 We thank the Direction des Parcs Nationaux and Ministère de l'Environnement et de la
229 Protection de la Nature du Sénégal for permission to work in the Niokolo-Koba National Park.
230 We are grateful to all research assistants for their help and thank Roger Mundry for valuable
231 statistical advice and Robert Seyfarth for helpful comments on the manuscript.

232

233 **Funding**

234 This project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
235 Foundation) project number 254142454.

236

237 **References**

- 238 1. Wiley RH. 2013 Specificity and multiplicity in the recognition of individuals: implications
239 for the evolution of social behaviour. *Biol. Rev.* **88**, 179–195.
240 (doi:<https://doi.org/10.1111/j.1469-185X.2012.00246.x>)
- 241 2. Seyfarth RM, Cheney DL. 2015 Social cognition. *Anim. Behav.* **103**, 191–202.
242 (doi:[10.1016/j.anbehav.2015.01.030](https://doi.org/10.1016/j.anbehav.2015.01.030))
- 243 3. Engh AL, Siebert ER, Greenberg DA, Holekamp KE. 2005 Patterns of alliance formation
244 and postconflict aggression indicate spotted hyaenas recognize third-party relationships.
245 *Anim. Behav.* **69**, 209–217. (doi:<https://doi.org/10.1016/j.anbehav.2004.04.013>)
- 246 4. Paz-y-Miño C G, Bond AB, Kamil AC, Balda RP. 2004 Pinyon jays use transitive
247 inference to predict social dominance. *Nature* **430**, 778–781. (doi:[10.1038/nature02723](https://doi.org/10.1038/nature02723))
- 248 5. Whitehouse J, Meunier H. 2020 An understanding of third-party friendships in a tolerant
249 macaque. *Sci. Rep.* **10**, 9777. (doi:[10.1038/s41598-020-66407-w](https://doi.org/10.1038/s41598-020-66407-w))
- 250 6. Clutton-Brock TH, Parker GA. 1992 Potential Reproductive Rates and the Operation of
251 Sexual Selection. *Q. Rev. Biol.* **67**, 437–456. (doi:[10.1086/417793](https://doi.org/10.1086/417793))
- 252 7. Clutton-Brock TH, Vincent ACJ. 1991 Sexual selection and the potential reproductive
253 rates of males and females. *Nature* **351**, 58–60. (doi:[10.1038/351058a0](https://doi.org/10.1038/351058a0))
- 254 8. Davies AD, Lewis Z, Dougherty LR. 2020 A meta-analysis of factors influencing the
255 strength of mate-choice copying in animals. *Behav. Ecol.* **31**, 1279–1290.
256 (doi:[10.1093/beheco/araa064](https://doi.org/10.1093/beheco/araa064))
- 257 9. Balsby TJ, Dabelsteen T. 2005 Simulated courtship interactions elicit neighbour
258 intrusions in the whitethroat, *Sylvia communis*. *Anim. Behav.* **69**, 161–168.
259 (doi:<https://doi.org/10.1016/j.anbehav.2004.01.021>)

260 10. Crockford C, Wittig RM, Seyfarth RM, Cheney DL. 2007 Baboons eavesdrop to deduce
261 mating opportunities. *Anim. Behav.* **73**, 885–890.
262 (doi:<https://doi.org/10.1016/j.anbehav.2006.10.016>)

263 11. Birkhead TR, Møller AP. 1995 Extra-pair copulation and extra-pair paternity in birds.
264 *Anim. Behav.* **49**, 843–848.

265 12. Rubenstein DI, Hack M. 2004 Natural and sexual selection and the evolution of multi-
266 level societies: insights from zebras with comparisons to primates. In *Sexual Selection in*
267 *Primates* (eds PM Kappeler, CP van Schaik), pp. 266–279. Cambridge University Press.
268 (doi:[10.1017/CBO9780511542459.017](https://doi.org/10.1017/CBO9780511542459.017))

269 13. Swedell L, Plummer T. 2012 A papionin multilevel society as a model for hominin social
270 evolution. *Int. J. Primatol.* **33**, 1165–1193. (doi:<https://doi.org/10.1007/s10764-012-9600-9>)

272 14. Dal Peso F, Trede F, Zinner D, Fischer J. 2021 Kin bias and male pair-bond status
273 shape male-male relationships in a multilevel primate society. *Behav. Ecol. Sociobiol.* **75**,
274 1–14. (doi:<https://doi.org/10.1007/s00265-020-02960-8>)

275 15. Patzelt A, Kopp GH, Ndao I, Kalbitzer U, Zinner D, Fischer J. 2014 Male tolerance and
276 male–male bonds in a multilevel primate society. *Proc. Natl. Acad. Sci.* **111**, 14740–
277 14745. (doi:<https://doi.org/10.1073/pnas.1405811111>)

278 16. Goffe AS, Zinner D, Fischer J. 2016 Sex and friendship in a multilevel society:
279 behavioural patterns and associations between female and male Guinea baboons.
280 *Behav. Ecol. Sociobiol.* **70**, 323–336. (doi:<https://doi.org/10.1007/s00265-015-2050-6>)

281 17. Fischer J, Noser R, Hammerschmidt K. 2013 Bioacoustic Field Research: A Primer to
282 Acoustic Analyses and Playback Experiments With Primates: Bioacoustic Field Methods.
283 *Am. J. Primatol.* **75**, 643–663. (doi:[10.1002/ajp.22153](https://doi.org/10.1002/ajp.22153))

284 18. Townsend SW, Allen C, Manser MB. 2012 A simple test of vocal individual recognition in
285 wild meerkats. *Biol. Lett.* **8**, 179–182. (doi:<https://doi.org/10.1098/rsbl.2011.0844>)

286 19. Fischer J et al. 2017 Charting the neglected West: The social system of Guinea baboons.
287 *Am. J. Phys. Anthropol.* **162**, 15–31. (doi:[10.1002/ajpa.23144](https://doi.org/10.1002/ajpa.23144))

288 20. Maciej P, Patzelt A, Ndao I, Hammerschmidt K, Fischer J. 2013 Social monitoring in a
289 multilevel society: a playback study with male Guinea baboons. *Behav. Ecol. Sociobiol.*
290 **67**, 61–68. (doi:<https://doi.org/10.1007/s00265-012-1425-1>)

291 21. R Core Team. 2021 *R: A Language and Environment for Statistical Computing*. Vienna,
292 Austria: R Foundation for Statistical Computing. See URL <https://www.R-project.org/>.

293 22. Baayen RH, Davidson DJ, Bates DM. 2008 Mixed-effects modeling with crossed random
294 effects for subjects and items. *J. Mem. Lang.* **59**, 390–412.
295 (doi:<https://doi.org/10.1016/j.jml.2007.12.005>)

296 23. Jahn-Eimermacher A, Lasarzik I, Raber J. 2011 Statistical analysis of latency outcomes
297 in behavioral experiments. *Behav. Brain Res.* **221**, 271–275.
298 (doi:<https://doi.org/10.1016/j.bbr.2011.03.007>)

299 24. Dobson AJ, Barnett AG. 2008 *An introduction to generalized linear models*. Chapman
300 and Hall/CRC.

301 25. Smuts BB, Smuts RW. 1993 Male aggression and sexual coercion of females in
302 nonhuman primates and other mammals: evidence and theoretical implications. In
303 *Advances in the Study of Behavior*, pp. 1–63.

304 26. Schreier AL, Swedell L. 2009 The fourth level of social structure in a multi-level society:
305 ecological and social functions of clans in hamadryas baboons. *Am. J. Primatol.* **71**, 948–
306 955. (doi:10.1002/ajp.20736)

307 27. Sicotte P. 1993 Inter-group encounters and female transfer in mountain gorillas:
308 Influence of group composition on male behavior. *Am. J. Primatol.* **30**, 21–36.
309 (doi:10.1002/ajp.1350300103)

310 28. Dal Pesco F, Trede F, Zinner D, Fischer J. 2022 Male–male social bonding, coalitionary
311 support and reproductive success in wild Guinea baboons. *Proc. R. Soc. B* **289**,
312 20220347. (doi:<https://doi.org/10.1098/rspb.2022.0347>)

313 29. Goffe AS. 2016 Social relationships of female Guinea baboons (*Papio papio*) in Senegal.
314 Dissertation, Göttingen, Georg-August Universität, 2016.

315 30. Kitchen DM, Cheney DL, Seyfarth RM. 2005 Male chacma baboons (*Papio hamadryas*
316 *ursinus*) discriminate loud call contests between rivals of different relative ranks. *Anim.*
317 *Cogn.* **8**, 1–6. (doi:<https://doi.org/10.1007/s10071-004-0222-2>)

318 31. Kitchen DM, Cheney DL, Engh AL, Fischer J, Moscovice LR, Seyfarth RM. 2013 Male
319 baboon responses to experimental manipulations of loud “wahoo calls”: testing an honest
320 signal of fighting ability. *Behav. Ecol. Sociobiol.* **67**, 1825–1835.
321 (doi:<https://doi.org/10.1007/s00265-013-1592-8>)

322 32. Bergman TJ. 2010 Experimental evidence for limited vocal recognition in a wild primate:
323 implications for the social complexity hypothesis. *Proc. R. Soc. B Biol. Sci.* **277**, 3045–
324 3053. (doi:10.1098/rspb.2010.0580)

325 33. Faraut L, Fischer J. 2019 How life in a tolerant society affects the attention to social
326 information in baboons. *Anim. Behav.* **152**, 11–17.
327 (doi:<https://doi.org/10.1016/j.anbehav.2019.04.004>)

328 34. le Roux A, Bergman TJ. 2012 Indirect rival assessment in a social primate,
329 *Theropithecus gelada*. *Anim. Behav.* **83**, 249–255.
330 (doi:<https://doi.org/10.1016/j.anbehav.2011.10.034>)

331 35. Holekamp KE. 2007 Questioning the social intelligence hypothesis. *Trends Cogn. Sci.*
332 **11**, 65–69. (doi:10.1016/j.tics.2006.11.003)

333 36. Whiten A, Byrne RW. 1988 The Machiavellian intelligence hypotheses. Clarendon
334 Press/Oxford University Press.

335