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35 Abstract

36  Human brain organisation involves the coordinated expression of thousands of genes. For example,
37  the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to
38  association regions. Here, optimised processing of the Allen Human Brain Atlas revealed two new
39  components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for
40 neuronal, metabolic and immune processes, specific cell-types and cytoarchitecture, and genetic
41  variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas, and
42  BrainSpan), we found that C1-C3 represent generalisable transcriptional programmes that are
43  coordinated within cells, and differentially phased during foetal and postnatal development. Autism
44  spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively,
45  across neuroimaging, differential expression, and genome-wide association studies. Evidence
46  converged especially in support of C3 as a normative transcriptional programme for adolescent brain
47  development, which can lead to atypical supra-granular cortical connectivity in people at high genetic
48  risk for schizophrenia.

49
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51 Main Text

52 Introduction

53  How does the complex anatomical and functional organisation of the human brain develop from the
54  expression of over twenty thousand genes '? And how does this process go awry in
55 neurodevelopmental disorders? In the last 10 years, whole-brain, whole-genome transcriptional
56  atlases, such as the Allen Human Brain Atlas (AHBA) ?, have suggested that healthy brain organisation
57 may depend on “transcriptional programmes” representing the coordinated expression of large
58  numbers of genes over development *”.

59

60 In 2012, Hawrylycz et al. showed that principal components of the AHBA dataset capture distinct
61  features of cortical anatomy °. In 2018, Burt et a/. argued that the first principal component of cortical
62  gene expression (C1) reflects an anterior-to-posterior “neuronal hierarchy”, defined in macaque tract-
63  tracing data by feedforward and feedback axonal connections between cortical areas *° and indexed
64  in humans by the ratio of T1- and T2-weighted MRI signals, a putative marker of cortical myelination ®.
65  These discoveries echoed prior findings from studies of embryonic development of chick, mouse and
66  human brains where spatially patterned transcriptional gradients have been shown to organise
67 neurodevelopmental processes such as areal differentiation, axonal projection, and cortical lamination
68  *'' Single-cell RNA sequencing data has also revealed an anterior-to-posterior gradient in the gene
69  expression of inhibitory interneurons, which is conserved across multiple species including humans **.
70 It is therefore likely that the principal component of gene expression in the adult human cortex
71  represents a transcriptional programme key to its normative development.

72

73  However, it is not clear that Cl is the only component of spatially patterned and
74  neurodevelopmentally coordinated gene expression in the human brain. Hawrylycz et al. suggested
75  that principal component analysis (PCA) of a restricted set of 1,000 genes in one of the six brains of
76  the AHBA dataset revealed multiple biologically-relevant components * (Supplementary Fig. S1). Later,
77  Goyal et al. used nonlinear dimension reduction across whole-genome spatial expression, again from
78  only one of the six AHBA brains, to show that aerobic glycolysis was associated with a second
79  transcriptional component *. To our knowledge, more recent studies using all available AHBA data
80  have reliably found only C1 3%, This first component has been linked to a general “sensorimotor-
81  association axis” of brain organisation '° derived from several macro-scale brain phenotypes, including
82  among others the principal gradient of functional connectivity *’, maps of brain metabolism and blood

18

83 flow , and the map of human cortical expansion compared to other primates ‘*. Although it is
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84  parsimonious to assume that such diverse brain phenotypes could all be determined by a single
85  transcriptional programme, it seems more realistic to expect that multiple transcriptional programmes
86  are important for human brain development, as is generally the case for brain development in other
87  species ”.

88

89  Here we present two higher-order components of human cortical gene expression, C2 and C3, that
90 likely represent additional transcriptional programmes distinct from the C1 component already
91 reliably described 2. These higher-order components only emerged when optimised data-filtering and
92  dimension-reduction methods were applied to the AHBA dataset. We found that C2 and C3 are each
93  specifically enriched for biologically-relevant gene sets, and spatially co-located with distinct clusters
94  of neuroimaging phenotypes or macro-scale brain maps. Leveraging independent RNA sequencing
95  datasets on single-cell and developmental gene expression, we further demonstrated that all three
96 components are generalisable to other datasets, representative of coordinated transcription within
97 cells of the same class, and dynamically differentiated over the course of foetal, childhood and
98 adolescent brain development. Finally, by triangulating evidence across case-control neuroimaging,
99  differential gene expression, and genome-wide association studies (GWAS), we demonstrated that
100  components C1 and C2 are specifically associated with autism spectrum disorder (ASD), and C3 with

101  schizophrenia. While prior studies have used the AHBA to derive gene sets correlated with disorder-

20-25 26-28

102  related MRI phenotypes , this disorder-first, “imaging transcriptomics” approach is
103  susceptible to identifying genes whose co-location with MRI phenotypes reflects secondary
104  associations or consequences of a disorder, such as behavioural changes (e.g. smoking, alcohol use),
29-31

105 physical health disorders (e.g. obesity, diabetes), or pharmacological treatment . What is of most
106  interest for neurodevelopmental disorders is to understand the pathogenic provenance of a clinically
107  diagnosable disorder — to ask “what developed differently?” rather than merely “what is different?”.
108  Our approach sought to distinctively address the question of what “develops differently” based on an
109  understanding of “normal development”, by linking genetic risks and atypical phenotypes to a
110  generalisable transcriptional architecture of healthy brain development.

111

112
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114 Results

115 Three components pattern cortical gene expression

116  We first applied PCA to the entire AHBA dataset of 6 adult brains >. Microarray measurements of
117 relative messenger RNA levels were processed to represent mean expression of ~16,000 genes at
118  each of the 180 regions of the left hemispheric cortex defined by the HCP-MMP parcellation ***
119 (Methods). We initially found that higher-order components (C2, C3) estimated by PCA of the
120 resulting {180 x 16,000} data matrix were not robust to sampling variation of the six donor brains,
121 with low generalisability, g, compared to C1: gc1 = 0.78, gc> = 0.09, gcz = 0.14 (Methods). However, two
122 data processing improvements were found to enhance the generalisability of higher order
123 components. First, we optimised the trade-off involved in excluding noisy data — by filtering spatially
124  inconsistent genes (with low differential stability **) and under-sampled brain regions — while seeking
125  to maximise the anatomic and genomic scope of the data matrix (Extended Data Fig. 1). Second, we
126  used the non-linear dimension reduction technique of diffusion map embedding (DME), instead of
127  linear PCA, to identify coordinated gene expression patterns from the matrix. DME is robust to noise
128 and more biologically plausible than PCA in this context because of its less strict orthogonality
129  constraints (Methods). We found that while PCA and DME both identified the same components from
130 the filtered gene expression matrix (Extended Data Fig. 1d), using DME was necessary to achieve high
131  generalisability g while also retaining sufficient genes for downstream enrichment analyses.

132

133 We applied DME to the (137 x 7,937} filtered AHBA data matrix comprising the expression of the 50%
134  most stable genes measured in the 137 cortical areas with data available from at least three brains.
135  The generalisability of the first three components was substantially increased, i.e., gc1 = 0.97, go =
136  0.72, gcs = 0.65, while the generalisability of even higher-order components remained low, e.g., gu =
137  0.28 (Fig 1a). We found that the cortical maps of C2 and C3 derived from DME on filtered data were
138  more spatially smooth than the corresponding PCA-derived maps on unfiltered data (Fig. 1b),
139  consistent with higher generalisability indicating less contamination by spatially random noise. C1-C3
140  were also robust to variations in parameters for processing the AHBA, including choice of parcellation
141  template (Extended Data Fig. 2). Finally, the transcriptional patterns represented by C1-C3 in the
142  AHBA dataset were reproducible in an independent PsychENCODE dataset comprising bulk RNA-seq
143  measurements of gene expression at 11 cortical regions from N=54 healthy controls ** (regional
144 correlation re;=0.85, re; = 0.75, res = 0.73; see Extended Data Fig. 3 and Supplementary Table S5).

145

146
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Figure 1: Three generalisable components of human cortical gene expression were enriched for biological
processes, cytoarchitecture, and cognitive capacity. a, To identify robust components of cortical gene
expression, we split the six-brain AHBA dataset into two disjoint triplets of three brains, applied PCA to each
triplet, and correlated the resulting matched components (C1, C2, C3...) (Methods). For each component, the
median absolute correlation over all 10 permutations of triplet pairs was a proxy for its generalisability, g. Using
PCA and previously published best practices for processing the AHBA dataset *>* generalisability decreased
markedly beyond the first component: gc; = 0.78, gc; = 0.09, gcs = 0.14 (Fig. 1a). Using diffusion map embedding

(DME) with the top 50% most stable genes, and the 137 regions with data available from at least three brains,
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156 the generalisability of the first three components substantially increased: g, =0.97, gc»=0.72, gc3= 0.65 (Fig 1a).
157 b, Cortical maps of brain regional scores of components C1-C3 estimated by DME on the filtered AHBA dataset
158 displayed smooth spatial gradients (right; Moran’s 1 > 0.48, 0.58, and 0.21 for C1-C3 respectively), unlike those of
159 PCA on the unfiltered data (left; Moran’s 1 0.50, 0.09 and 0.07). ¢, Gene Ontology Biological Process enrichments
160  for C1-C3 showed that the number of significant enrichments was greater for higher-order components,
161 illustrating that they were more biologically specific. C2-positive genes were enriched for metabolism while C2-
162 negative genes were enriched for regulatory processes; C3-positive genes were enriched for synaptic plasticity
163 and learning while C3-negative genes were enriched for immune processes. d, C1-C3 were distinctively enriched
164  for marker genes of six cortical layers and white matter (WM) *. e, C1-C3 were also distinctively enriched for
165 marker genes of cell types and synapses “ f, All three components were significantly enriched for genes mapped

9

166 to common variants associated with educational attainment in prior GWAS data ¥ g, C2 and C3 (but not C1)

167 were significantly enriched for genes mapped to common variation in intelligence and cognition across four

40-43

168 independent GWAS studies . For d-g, significance was computed by two-sided permutation tests (Methods)

169 and FDR-corrected across all tests in each panel; *, **, *** respectively indicate FDR-corrected two-sided p-
170 values: 0.05, 0.01, 0.001.

171

172 The first three DME components, C1-C3, explained 38%, 10%, and 6.5%, respectively, of the total
173  variance of the filtered AHBA dataset (Methods). The proportion of variance explained was related to
174  the number of genes that were strongly weighted (absolute correlation | r| =2 0.5) on each component:
175 4,867 genes (61%) were strongly weighted on C1, 967 genes (12%) on C2, and 437 genes (5.5%) on C3
176  (Supplementary Fig. $2). The three components also had distinct axial alignments in anatomical space,
177  and the co-expression network of cortical regions displayed clear anatomical structure even when the
178  highest-variance C1 component was regressed out (Extended Data Fig. 4). These findings demonstrate
179  that these three expression patterns shared across hundreds to thousands of genes are likely to be
180  biologically relevant.

181

182  To interpret the DME-derived components in more detail, we first used enrichment analyses of the
183  weights of the 7,973 genes on each component (Methods). Many more Gene Ontology (GO) Biological
184  Process terms were significantly enriched (with false discovery rate [FDR] = 5%) for C2 (59 GO terms)
185 and C3 (111 GO terms) than for C1 (15 GO terms) (Fig. 1c).

186

187  Although C1 was enriched for relatively few, functionally general biological processes, it precisely
188  matched the first principal component previously reported (r = 0.96) %. The same interneuron marker
189  genes (SST, PVALB, VIP, CCK) and glutamatergic neuronal genes (GRIN and GABRA) were strongly

190  weighted with opposite signs (positive or negative) on C1 (Supplementary Fig. S3).
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191  For genes positively-weighted on C2, 23 of 36 enrichments were for metabolic processes, and for
192  negatively-weighted genes, 19 of 23 enrichments were for epigenetic processes (Fig. 1c,
193  Supplementary Table 2). Whereas, for genes positively-weighted on C3, 19 of 27 enrichments were
194  related to synaptic plasticity or learning, and for negatively-weighted genes, 33 of 84 enrichments
195  involved the immune system. We further analysed enrichment for genes identified as markers of

* (Fig. 1e) and cell types ** (Fig. 1f), and in each case observed distinct

196  specific cortical layers
197  enrichment profiles for C1-C3. For example, genes positively-weighted on C3 were enriched for
198  marker genes of neurons, synapses, and cortical layers 2 and 3 (L2, L3), whereas genes negatively-
199  weighted on C3 were enriched for glial (especially oligodendroglial) marker genes.

200

201  We also explored the biological relevance of the three components by enrichment tests for genes
202  associated with variation in adult cognitive capacity. We found that all three components C1-C3 were
203  enriched for genes significantly associated with educational attainment (Fig. 1f) *. Across four
204  independent GWAS studies of intelligence and cognition “>™**, genes strongly weighted on C1 were not
205  significantly enriched, but genes negatively-weighted on C2 were enriched for genetic variants

206  associated with intelligence in three of the four studies, and genes positively-weighted on C3 were

207  enriched for genes identified by all four prior GWAS studies of intelligence (Fig. 1g).

208 Neuroimaging maps align to three transcriptional components

209  Prior work has linked gene transcription to a multimodal “sensorimotor-association axis” (S-A axis) *°
210  of brain organisation, defined as the composite of 10 brain maps, comprising the first principal
211 component of gene expression (C1) and 9 other MRI or PET neuroimaging maps that were selected to
212 differentiate sensorimotor and association cortices. We first aimed to build on this work by analysing
213  the correlation matrix of the same set of 9 brain maps together with the three transcriptional
214 components derived from DME of the filtered AHBA dataset. Data-driven cluster analysis of this {12 x
215 12} correlation matrix identified three clusters, each including one of the orthogonal transcriptional
216  components (Fig. 2a, Methods). C1 was clustered together with 2 MRI maps: the Tiw/T2w
217  myelination marker ** and cortical thickness *°; C2 was clustered with 5 maps: aerobic glycolysis ¥,
218  cerebral blood flow *, cortical expansion in humans relative to non-human primates **, inter-areal
219  allometric scaling * and external pyramidal cell density *% and C3 was clustered with 2 maps: the
220  principal gradient of fMRI connectivity ” and first principal component of cognitive terms meta-
221  analysed by Neurosynth *'. While some maps were specifically aligned to one component, e.g. aerobic
222 glycolysis re; = 0.66 (pspin = 0.004, FDR < 5%), others were moderately correlated with multiple

223 transcriptional components, e.g., for cerebral blood flow: r¢; = 0.25, re; = 0.28 and res = 0.33. This
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224  clustering analysis suggests that it is overly parsimonious to align all 9 neuroimaging phenotypes with

225  just one transcriptional component (C1) as part of a singular sensorimotor-association cortical axis.
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227  Figure 2: Neuroimaging and macro-scale maps of brain structure, function, and development were
228  distinctively co-located with three components of cortical gene expression. a, Correlation matrix of intrinsic
229 transcriptional components C1-C3 together with the nine neuroimaging- and physiologically-derived maps that
230 Sydnor et al. combined with C1 to define a ‘sensorimotor-association axis’ of brain organisation 0 Many of the
231 maps were not highly correlated to each other (median [r{=0.31), and data-driven clustering of the matrix
232 revealed three distinct clusters around each of the mutually orthogonal transcriptional components C1-C3,
233 demonstrating that all three components are relevant for understanding macroscale brain organisation. b,
234 Distributions of regional scores of C1-C3 in histologically-defined regions of laminar cytoarchitecture *°. C1
235 distinguished idiotypic (p = 0.005) and paralimbic regions (p = 0.002), while C3 distinguished idiotypic (p = 0.002)
236 and heteromodal regions (p = 0.01). * indicates FDR-adjusted two-sided p-value < 0.05, where p-value was
237 computed by permutation test as the percentile of the mean z-score relative to null spin permutations, with
238 adjustment for multiple comparisons across all 12 tests. ¢, Degree of fMRI functional connectivity 7 was
239 significantly aligned to C1 (r = 0.78, p., < 0.001). Blue/yellow highlighted points correspond to
240 idiotypic/paralimbic cytoarchitectural regions as in b. d, MEG-derived theta power > was significantly aligned to
241 C2 (r=0.78, psyin = 0.002). e, Regional change in myelination over adolescence *557 was significantly aligned to C3
242 (r=0.43, p.y,n = 0.009). Blue/red highlighted points correspond to idiotypic/heteromodal cytoarchitectural regions
243 as in b. For panels c-d, *, **, *** respectively indicate FDR-corrected two-sided spin-permutation p-values: 0.05,
244 0.01, 0.001, with corrections for multiple comparisons of all maps in panels c-d being compared with all of C1-C3.
245

246 We also found that the three transcriptional components were associated with a wider range of
247  cellular, functional and developmental phenotypes than the 9 neuroimaging maps above, and that
248  these associations were again distinct for the three components. For example, at cellular scale,
249  histologically-defined regions of laminar cytoarchitectural differentiation > were co-located with C1
250 and C3, but not C2 (ANOVA, p < 0.001; Fig. 2b). In functional MRI and magnetoencephalography
251  (MEG) data, we found that weighted nodal degree of cortical regions in an fMRI network >*** was
252 strongly correlated with C1 (r¢; = 0.78, pspin < 0.001, FDR = 5%, Fig. 2c) but not C2 or C3 (re, =-0.01, res
253 = 0.00); across all canonical frequency intervals of MEG data *°, an FDR-significant association was
254  observed between theta band (4-7 Hz) oscillations and C2 (r., = 0.78, p,,n=0.002, FDR = 5%, Fig. 2d)
255  but not C1 or C3 (rc; = -0.18, rcs = -0.02); see Extended Data Fig. 5 for other MEG results. And in

256  support of the hypothetical prediction that adult brain transcriptional programmes are

257  neurodevelopmentally relevant, we found that a prior map of adolescent cortical myelination, as
258  measured by change in magnetisation transfer between 14-24 years (AMT) >**’
259  located with C3 (rcz = 0.43, p.oin = 0.009, Fig. 2e) but not C1 or C2 (r; =0.17, re5 = 0.15).

260

, was significantly co-
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261 C1-C3 are distinctly developing intra-cellular programmes

262  We next used two additional RNA-seq datasets to investigate the consistency of AHBA-derived
263  components with gene co-expression in single cells, e.g., neurons or glia, and to explore the
264  developmental phasing of gene transcription programmes represented by C1-C3.

265

266  First, for single-cell RNA-seq data comprising 50,000 nuclei sampled from five cortical regions of three
267  donor brains ®, the total weighted expression of the C1-C3 gene weights in each sample was
268  computed separately for genes positively and negatively weighted in each component (Methods). We
269  reasoned that if the components derived from bulk tissue microarray measurements in the AHBA
270  dataset were merely reflective of regional differences in cellular composition, e.g. neuron-glia ratio,
271  then genes weighted positively and negatively on each component should not have anti-correlated
272  expression across cells of the same class. However, we observed that genes weighted positively and
273  negatively on the same component had strongly anti-correlated expression at the single-cell level (Fig.
274  3a), whereas genes that were positively and negatively weighted on different components were not
275  anti-correlated (Supplementary Fig. S5). The anti-correlation of genes positively and negatively
276  weighted on C1 or C2 was stronger within each class of cells than across multiple cell classes; and even
277  stronger when the single-cell data were stratified by sub-classes of cells in specific cortical layers, e.g.,
278 L2 VIP-expressing interneurons (Fig. 3a inset). In contrast, for C3 the anti-correlation of positively and
279  negatively weighted genes was stronger across cell classes than within each class, although there was
280  still evidence for significantly coupled expression across cells of the same class or subclass.

281
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282
283 Figure 3: Transcriptional components represent intracellular coordination of gene expression programmes

284 with distinct developmental trajectories. a, For each of ~50,000 single-cell RNAseq samples, the weighted
285 average expression of the negatively-weighted genes of each AHBA component C1-C3 is plotted against that of
286 the positively-weighted genes (Methods). Samples are coloured by cell-type, demonstrating that genes positively
287 and negatively weighted on C1-C3 have correlated expression within each major class of brain cells: N-Ex,
288 excitatory neurons; N-In, inhibitory neurons; Astro, astrocytes; Endo, endothelial cells; Micro, microglia; Oligo,
289 oligodendrocytes; and OPC, oligodendrocyte precursor cells. Inset, a subset of samples from Layer 2 VIP
290 interneurons, illustrating that C1-C3 weighted genes were transcriptionally coupled even within a fine-grained,
291 homogeneous group of cells. b, Cortical maps representing the regional scores of components C1-C3 for each of
292 11 regions with transcriptional data available in the BrainSpan cohort of adult brains (left) and C1-C3 component

293 scores for the matching subset of regions in the AHBA (right). ¢, Scatter plots of matched regional C1-C3 scores
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294  from b, demonstrating that the three transcriptional components defined in the AHBA had consistent spatial
295 expression in BrainSpan. d, Correlations between AHBA C1-C3 scores and BrainSpan C1-C3 scores (as in c) for
296 each of 3 age-defined subsets of the BrainSpan dataset. C1 and C2 component scores were strongly correlated
297 between datasets for all age subsets, whereas C3 component scores were strongly correlated between datasets
298 only for the 18-40y subset of BrainSpan. This indicates that C1 and C2 components were expressed in nearly adult
299 form from the earliest measured phases of brain development, whereas C3 was not expressed in adult form until
300 after adolescence. e, Developmental trajectories of brain gene expression as a function of age (-0.5 to 40 years;
301 x-axis, log scale) were estimated for each gene (Methods) and then averaged within each decile of gene weights
302 for each of C1-C3; fitted lines are colour-coded by decile. Genes weighted positively on C3 were most strongly
303 expressed during adolescence, whereas genes weighted strongly on C1 or C2 were most expressed in the first 5
304 years of life. Dots above the x-axis represent the post-mortem ages of the donor brains used to compute the
305 curves. RPKM: reads per kilobase million.

306

307 Second, to explore the developmental trajectories of the transcriptional components, we used
308 BrainSpan, an independent dataset where gene expression was measured by RNA-seq of bulk tissue
309  samples from between 4 and 14 cortical regions for each of 35 donor brains ranging in age from -0.5
310  vyears (mid-gestation) to 40 postnatal years ®. We first asked if the gene weights for each of the
311  components derived from the AHBA dataset would exhibit similar spatial patterns in the BrainSpan
312  dataset. We projected the C1-C3 gene weights from the AHBA onto the subset of adult brains (18-40
313  years, N = 8) in BrainSpan (Fig. 3b, Methods) and found that the resulting cortical maps of component
314  scores in the BrainSpan data were highly correlated with the corresponding cortical maps derived
315 from the AHBA dataset (rc; = 0.96, rc; = 0.88, rcs = 0.84; Fig. 1d). This indicated that the three
316  components defined in the AHBA were generalisable to the adult brains in the BrainSpan dataset (for
317  afull replication of C1-C3 in independent data see Extended Data Fig. 3). We then similarly compared
318  the cortical component maps derived from the AHBA dataset to the corresponding maps calculated
319  for subsets of the BrainSpan cohort from two earlier developmental stages (prebirth, N = 20, and
320  birth-13 years, N = 14). We observed that for C1 and C2, AHBA component scores were almost as
321  highly correlated with BrainSpan component scores in foetal (prebirth) and childhood (birth-13 years)
322  brains as in the adult (18-40 years) brains (birth-13 years, rc1 = 0.87, re;= 0.91; prebirth, rc; =0.74, rez =
323  0.66; Fig. 3d). However, C3 scores in the AHBA dataset were not so strongly correlated with C3 scores
324  in the foetal and childhood subsets of the BrainSpan dataset (prebirth, rcz = 0.29; birth-13 years, res =
325  0.47). These results suggested that C3 may only emerge developmentally during adolescence, whereas
326  the C1and C2 have nearly-adult expression from the first years of life.

327

328  We tested this hypothesis by further analysis of the BrainSpan dataset, modelling the non-linear

329  developmental trajectories of each gene over the age range -0.5 to 40 years (Methods) and then
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330  averaging trajectories over all genes in each decile of the distributions of gene weights on each of the
331  three components. We found that genes in the top few deciles of C3 gene weights became more
332  strongly expressed during and after adolescence, whereas genes in the top few (C2) or bottom few
333  (C1) deciles of gene weights on the other two components were most strongly expressed in the first 5
334  years of life and then declined or plateaued during adolescence and early adult life (Fig. 3e). These
335  results confirmed that components C1-C3 have distinct neurodevelopmental trajectories, with genes
336  positively weighted on C3 becoming strongly expressed after the first postnatal decade.

337

338 Autism and schizophrenia have specific links to C1/C2 and C3

339  Finally, we explored the clinical relevance of C1-C3 by analysis of prior neuroimaging, differential gene
340  expression, and GWAS associations for autism spectrum disorder (ASD), major depressive disorder
341 (MDD), and schizophrenia.

342

343  First, we leveraged the BrainChart neuroimaging dataset of >125,000 MRI scans *°, in which atypical
344  deviation of regional cortical volumes in psychiatric cases was quantified by centile scores relative to
345  the median growth trajectories of normative brain development over the life-cycle (Fig. 4a). Using the
346  Desikan-Killiany parcellation of 34 cortical regions necessitated by alignment with this dataset
347  (Methods), we found that cortical shrinkage in ASD was significantly associated with both C1 and C2
348 (ra = 0.49, poin = 0.0002, FDR < 5%; rc; = -0.28, psoin = 0.0006, FDR < 5%), while shrinkage in
349  schizophrenia was specifically associated with C3 (rcs = 0.43, pspin = 0.008, FDR < 5%) (Fig. 4b).

350

351  Second, we compiled consensus lists of differentially expressed genes (DEGs) from RNA-seq
352  measurements of dorsolateral prefrontal cortex tissue in independent studies of ASD *****°, MDD *°,

65,67-70

353  and schizophrenia (Methods). We found that genes differentially expressed in ASD were
354  specifically enriched in both C1 and C2 (but not C3); whereas genes differentially expressed in
355  schizophrenia were enriched in C3 (but not C1 or C2); and genes differentially enriched in MDD were
356  enriched only in C1 (Fig. 4b). Corroborating the enrichments of ASD DEGs, case-control differences in
357  expression at 11 cortical regions for ASD cases compared to healthy controls showed the positively
358  weighted genes on C1 and C2 were significantly less strongly expressed in ASD cases than in controls
359  (Extended Data Fig. 3).

360
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361
362 Figure 4: Genetics, transcriptomics, and neuroimaging of autism and schizophrenia were consistently and

363  specifically linked to normative transcriptional programmes. a, First row: cortical volume shrinkage in autism
364 spectrum disorder (ASD), major depressive disorder (MDD), and schizophrenia (SCZ) cases. Red indicates greater
365 shrinkage, computed as z-scores of centiles from normative modelling of >125,000 MRI scans. Second row: AHBA
366 components projected into the same Desikan-Killiany parcellation. b, Spatial correlations between volume

367 changes and AHBA components, C1-C3. Significance tested by spatially autocorrelated spin permutations, and
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368 corrected for multiple comparisons: *, **, *** respectively indicate FDR-adjusted two-sided p-values: 0.05, 0.01,
369 0.001. ¢, Enrichments in C1-C3 for consensus lists of differentially expressed genes (DEGs) in postmortem brain
370 tissue of donors with ASD, MDD, and SCZ compared to healthy controls (Methods). Significance assessed as
371 percentile of mean weight of DEGs in each component relative to randomly permuted gene weights, and
372 corrected for multiple comparisons: *, **, *** respectively indicate FDR-adjusted two-sided p-values: 0.05, 0.01,
373 0.001. d, Enrichment in C1-C3 for GWAS risk genes for ASD®, MDD®, and SCZ%, tested for significance as in c,
374 demonstrating alignment with both spatial associations to volume changes and enrichments for DEGs. e, Venn
375 diagrams showing the lack of overlap of DEGs and GWAS risk genes reported by the primary studies summarised
376 in panels c and d. f, DEGs and GWAS risk genes for each disorder were filtered for only C3-positive genes, then
377 tested for enrichment with marker genes for each cortical layer # Significance was tested by one-sided Fisher’s
378 exact test and corrected for multiple comparisons across all 42 tests. C3-positive DEGs and GWAS genes for SCZ
379 (but not ASD or MDD) were both enriched for L2 and L3 marker genes, despite the DEGs and GWAS gene sets
380 having nearly no overlap for each disorder (see Extended Data Fig. 6 for more detail). g, Convergent with L2/L3
381 enrichment in the C3-positive schizophrenia-associated DEGs and GWAS genes, a cortical map of supragranular-
382 specific cortical thinning in schizophrenia * was significantly and specifically co-located with C3 (r = 0.55, two-

383 sided spin-permutation p-value = 0.002); each point is a region, color represents C3 score.

384

385  Third, using data from the most recent GWAS studies of ASD ®, MDD , and schizophrenia %, we
386  found that genetic variants significantly associated with ASD were enriched in both C1 and C2 (but not
387  (3); whereas genes associated with schizophrenia were enriched in C3 (but not C1 or C2) (Fig. 4d).
388  Genes associated with MDD were not significantly enriched in any transcriptional component. These
389  associations were replicated when using alternative methods (MAGMA "* and H-MAGMA ") to test
390 the association between GWAS-derived p-values for the association of each gene with ASD, MDD or
391 schizophrenia and the C1-C3 gene weights without requiring an explicit prioritisation of GWAS-
392  associated genes (Supplementary Fig. $6). This pattern of results for autism and schizophrenia GWAS
393  associations evidently mirrored the pattern of prior results from analysis of case-control neuroimaging
394  (Fig. 4b) and differential gene expression studies (Fig. 4c), with ASD consistently linked to components
395 Cland C2, and schizophrenia consistently linked to C3.

396

397  Notably, this consistency of association between disorders and specific transcriptional components
398 was observed despite minimal overlap between the DEGs and GWAS risk genes identified as
399  significant by the primary studies of each disorder > (Fig. 4e). However, motivated by the association
400 of C3 with regions of greatest laminar differentiation (Fig. 2b), we found that the subsets of the
401  schizophrenia-associated DEG and GWAS gene sets that were positively-weighted on C3 were both
402  significantly enriched for marker genes of layers L2 and L3 (Fig. 4g; Extended Data Fig. 6). These

403  shared laminar associations between the non-overlapping DEG and GWAS gene sets were only present
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404  when subsetting to C3-positive genes, and were specific to schizophrenia (i.e. C3-positive subsets of
405  ASD and MDD genes did not show the same L2/L3 enrichments). Convergent with C3 revealing an
406  L2/L3 association in schizophrenia-associated genes from DEG and GWAS, we found that the cortical
407  map of C3 was significantly co-located with an MRI-derived map of specifically supragranular, L2/L3
408  predominant thinning in schizophrenia ®* (rcs = 0.55, pepin = 0.002, FDR < 1%, Fig. 4g).

409

410

411

412

413 Discussion

414  Our results offer a new perspective on how the brain’s macroscale organisation develops from the
415  microscale transcription of the human genome. Through optimized processing of the AHBA and
416  replication in PsychENCODE, we have shown that the transcriptional architecture of the human cortex
417  comprises at least three generalisable components of coordinated gene expression. The two higher-
418  order components (C2 and C3) had not previously been robustly demonstrated, although the initial
419  AHBA paper identified similar components to C1 and C2 by applying PCA to one of the six AHBA brains
420  and filtering for only 1000 genes > (Supplementary Fig. S1). Here we derive C2 and C3 from all six
421  AHBA brains and show they each represent the coordinated expression of hundreds of genes
422  (Supplementary Fig. S2). Broadly, the C2 genes were enriched for “metabolic” and “epigenetic”
423  processes, while the C3 genes were enriched for “synaptic” and “immune” processes (Fig. 1c). Both
424  higher-order components were significantly enriched for genes associated with intelligence and
425  educational attainment (Fig. 1f-g), indicating their relevance to the brain’s ultimate purpose of
426  generating adaptive behaviour. The brain maps corresponding to each of the components were also
427  distinctively co-located with multiple neuroimaging or other macroscale brain phenotypes (Fig. 2).
428  These co-locations were often convergent with the gene enrichment results, triangulating evidence
429  for C2 as a metabolically specialised component and for C3 as a component specialised for synaptic
430 and immune processes underpinning adolescent plasticity; see Table 1. Together, these convergent
431  results expand on the proposal of a single “sensorimotor-association axis” *’* by demonstrating that
432  macro-scale brain organisation emerges from multiple biologically-relevant transcriptional
433  components.

434

435

436

437
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438
C1: Neuronal C2: Cognitive C3: Adolescent
hierarchy metabolism plasticity
Normative | Biological Most genes are Metabolism Synaptic plasticity
processes aligned, especially Epigenetics Learning/memory
(Fig. 1c) PVALB, SST Immunity
Architectonics | L4 14, 15,16 12,13, 14, 15, 16
(Fig. 1d) L1,12,16 L2 L1, WM
Cell types Oligodendrocytes Synapses, Synapses, Neurons
(Fig. 1e) Astrocytes Endothelial cells Oligodendrocytes,
Microglia
GWAS Educational Intelligence/cognition | Intelligence/cognition
(Fig. 1f-g) attainment Educational Educational
attainment attainment
Imaging fMRI degree MEG theta power Adolescent change in
(Fig. 2) Tilw/T2w Aerobic glycolysis myelination
Cortical thickness
Development | Prenatal, greatest Prenatal, greatest Adolescence, greatest
(Fig. 3b-c) expression at birth expression in first expression in
decade adulthood
Atypical Imaging ASD volume shrinkage | ASD volume shrinkage | SCZ volume shrinkage
(Fig. 4a-b, g) and L2, L3-specific
thinning
RNA-seq of ASD DEGs ASD DEGs SCZ DEGs, with
brain tissue L2, L3 enrichment
(Fig. 4c¢,f)
GWAS ASD risk genes ASD risk genes SCZ risk genes, with
(Fig. 4d,f) L2, L3 enrichment
439 Table 1: Summary of convergent results on the biological and clinical relevance of three human brain
440 transcriptional programmes. Each of three components of normative human brain gene expression (C1, C2, C3;
441 table columns) was biologically validated by testing for enrichment of gene weights on each component, and for
442 co-location of regional component scores with neuroimaging or other macro-scale brain phenotypes, in healthy
443 brain samples (normative) and in studies of neurodevelopmental disorders (atypical). Each row summarises
444 results for a distinct gene enrichment analysis (italicised) or spatial co-location analysis (plain font). Based on
445 prior knowledge that theta oscillations are linked to intelligence and cognition ” as well as to glucose
446 metabolism ", the spatial alignments between C2 and maps of MEG theta power (Fig. 2d) and aerobic glycolysis
447 (Fig. 2a) were convergent with the enrichment of C2 for genes linked to cognitive capacity (Fig. 1f-g) and
448 metabolism (Fig. 1c). Similarly, prior knowledge implicates microglia and oligodendrocytes in the immune-
449 mediated synaptic pruning and myelination that over adolescence gives rise to adult cognitive capacity 7778 such


https://doi.org/10.1101/2022.10.05.510582
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.05.510582; this version posted February 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

450 that the spatial alignment between C3 and the map of adolescent myelination (Fig. 2d) was convergent with the
451 enrichments of C3 for genes related to immunity, synaptic development, and learning (Fig. 1c); oligodendrocytes,
452 microglia, and synapses (Fig. 1e); and cognitive capacity (Fig. 1f-g), among which one GWAS study explicitly
453 linked intelligence to myelination **.

454

455  The discovery of these biologically-relevant, higher-order transcriptional components in the AHBA
456  dataset raised further questions: i) do the components reflect coordinated gene expression within
457  cells, or only variation in cell composition; ii) when do the components emerge during brain
458  development; and (iii) how do they intersect with neurodevelopmental disorders? We addressed
459  these questions using additional RNA-seq datasets (Supplementary Table S5). First, we found that
460 genes positively or negatively weighted on the components derived from the AHBA bulk tissue
461  samples had consistently coupled co-expression across RNA-seq measurements in single cells, e.g.
462  individual neurons and glia (Fig. 3a). This indicated that C1-C3 represent transcriptional programmes
463  coordinated at the intracellular level, not merely regional variation in the proportion of different cell
464  types. Second, we found that C1-C3 have differentially phased developmental trajectories of
465  expression, e.g. that the positive pole of C3 becomes strongly expressed only during adolescence,
466  convergent with its spatial co-location with a map of adolescent cortical myelination (Fig. 3b-c).
467  Finally, we established that these transcriptional programmes are not only critical for healthy brain
468  development but, as might be expected, are also implicated in the pathogenesis of
469  neurodevelopmental disorders (Fig. 4).

470

471  The pattern of results for disorders was strikingly convergent across multiple data modalities: C1 and
472  C2 were both enriched for genes implicated by both GWAS and DEG data on ASD, whereas C3 was
473  specifically enriched for genes implicated by both GWAS and DEG data on schizophrenia (Table 1). We
474  observed a similar pattern of significant co-location between C1-C3 maps and MRI phenotypes:
475  developmentally normalised scores on reduced cortical volume in ASD were correlated with maps of
476  C1and C2, and for schizophrenia with the map of C3 (Fig. 4a-b). In contrast, there was no evidence for
477  enrichment of C1-C3 by genes associated with risk of Alzheimer’s disease ° (Supplementary Fig. $6).
478  An intuitive generalisation of these results is that the developmental processes which give rise to
479  these three components of gene expression in the healthy adult brain are pathogenically more
480  relevant for neurodevelopmental disorders than for neurodegenerative disease.

481

482  Overall, our results were strongly supportive of the motivating hypothesis that the transcriptional
483  architecture of the human cortex represents developmental programmes crucial both to the brain’s

484  healthy organisation and to the emergence of neurodevelopmental disorders. For example, when


https://doi.org/10.1101/2022.10.05.510582
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.05.510582; this version posted February 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

485  interpreting C3 as a transcriptional programme mediating adolescent plasticity (Table 1), our finding
486  that C3 represents coupled transcription of synapse- and immune-related genes within cells (Fig. 3a) is
487  consistent with prior work indicating that the neuronal expression of immune-related, typically glial
488  genes can play a mechanistic role in synaptic pruning *° and, vice-versa, that neuronal genes
489  associated with synapse and circuit development can also be expressed in glial cells ®. While atypical

82-84

490  synaptic pruning has long been hypothesised to be a mechanistic cause of schizophrenia , prior

491  results on the biology of schizophrenia have shown limited consistency, both between the primary

492  data modalities of GWAS, post-mortem expression, and neuroimaging *°

, and even between DEG
493  studies . Here, we demonstrate that the C3 transcriptional programme offers a unifying link between
494  these disparate prior results. When parsed by the C3 positive genes, the otherwise non-overlapping
495  GWAS and DEG gene-sets for schizophrenia display a shared enrichment for supra-granular marker
496  genes (Fig. 4e-f), and, convergently, C3 was spatially associated with supra-granular-specific thinning
497  in schizophrenia (Fig. 4g). Supra-granular layers have dense cortico-cortical connections and are

87-89

498  expanded in humans relative to other species , mature latest in development *°, have been linked

499  tointelligence **, and have previously been linked to schizophrenia **°*

. This triangulation of evidence
500 strongly suggests that the third component of the brain’s gene expression architecture represents the
501  transcriptional programme coordinating the normative, neuro-immune processes of synaptic pruning
502  and myelination in adolescence *°, such that atypical expression of C3 genes due to schizophrenia
503  genetic risk variants can result in atypical development of supra-granular cortical connectivity leading
504  to the clinical emergence of schizophrenia.

505

506  Clearly there are limits to what can be learnt from RNA measurements of bulk tissue samples from six
507  healthy adult brains. Here, we explicitly identified the limits of the AHBA dataset by optimizing data
508 processing against an unbiased measure of generalisability, g, which yielded three components. The
509  architecture of human brain gene expression likely involves more than three components; however,
510  our analysis suggests that their discovery will rely on additional high-granularity transcriptional data.
511 In particular, gene expression varies with sex, age, genetics, and environment * 50 we expect that
512 future data will reveal additional components that are more individually variable and demographically
513  diverse than the three we have characterised here. Meanwhile, the code and data that supplement
514  our results can help future research to leverage our work with the unique AHBA resource.

515

516

517

518
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521 Extended Data Fig. 1: Optimised processing of the AHBA identified three generalisable components. a, In the

522 HCP-MMP parcellation, 43/180 regions are matched to samples representing less than 3 of the 6 AHBA donors. b,
523 Distribution of differential stability of genes measured in the AHBA dataset processed in the HCP-MMP
524 parcellation. ¢, Generalisability of first five components of the AHBA dataset computed with either principal
525 components analysis (PCA) or diffusion map embedding (DME). Color represents generalisability g, defined as the
526 median absolute correlation between matched components computed across all 10 disjoint triplet pairs
527 (Methods), x-axis represents variation in the proportion of genes filtered out by differential stability prior to
528 PCA/DME; y-axis represents variation in which regions are filtered out prior to PCA/DME. Tick mark indicates
529 parameter combinations that exceed generalisability g > 0.6. Green highlights for C3 indicate the best parameter
530 option with PCA and DME respectively, showing that switching to DME achieves similar generalisability while
531 retaining more genes. d, Scatter plots of regional scores for AHBA components computed using the best

532 PCA/DMIE options, demonstrating that PCA and DME derive spatially equivalent components.


https://doi.org/10.1101/2022.10.05.510582
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.05.510582; this version posted February 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

22
Cortical gene expression architecture.., Dear et al., revised submission to Nature Neuroscience, Feb 2024
533
a HCP-MMP Schaefer-400 Destrieux Desikan-Killiany
- Y L ’ﬁ-_ - -
/ 2 i T &
g L@ T agd
{ 3 ‘\ I{:‘.‘,\‘\ ™ +30
A
T2 S G 7D <
e (I
- - LY
L i A 4
vy A ‘,‘ -..yg:)a :
c3
a r
= m!
=
)
g
N,
c1 0.04
c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
HCP-MMP Schaefer-400 Destrieux Desikan-Killiany
b
DME, 50% genes, DME, 50% genes,
3+ donor regions 3+ donor regions
Cl C2 €3 C4 C5 Cl C2 €3 C4 C5
wpiov BB brob I maseqg BB
robe-to-gene selection
wp2o% [ I N Default: differential stability mean [l I I 1N W
top 30% . . . . . max_intensity . . - . .
top 40% Sample-to-region 4
2P . . . . . matching tolerance EEEEE
Differential stability pso [ I I W Default: 2 co HEENEN
gene filter top 60% Sample-to-region aggregation :
e . . . . . Default: mean median [l I N N I
wp7o [N
s lHHEN
wpsov [ I I o z=core N HE
Sample normalization
top 90% . . . HBE Default: scaled robust sigmoid center [ IHIEEBE
all genes ...-. none -----
all regions ..... rs-----
Donors/region filter 2+ donors . . . . . Gene normalization zscore I HHEN
g . . . . . Default: scaled robust sigmoid center N
Right hemi samples rove [ I
= ) none
Default: mirror . . . . . pearson I HHE B
DME kernel parameter ;
0.8 . . . . . Default: normalized cosine cosine [l I I I I
Gene intensity filter os [IHEENE gaussian [ 1 1 I
Default: 0.5
o A HENR DME alpha parameter os HEAEHENR
oo HHEEHEN Default: 1 co HEEEN
Correlation D R |
00 0.2 04 06 08B 10
534
535 Extended Data Fig. 2: Transcriptional components were robust to parcellation and processing. Transcriptional
536 components were computed in four different parcellation templates (Methods). For each parcellation, the gene
537 weights for the first three components were correlated with the weights obtained from the HCP-MMP
538 parcellation used throughout. Gene weights were highly consistent, although in the less-granular (34-
539 regions/hemisphere) Desikan-Killiany parcellation, C2 and C3 were less well aligned to the other parcellations. b,
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540 A wide range of parameters for processing the AHBA data were varied, and the resulting component region
541 scores were correlated with the components obtained from the optimised parameters. For nearly all variations in
542 parameters, highly consistent components were obtained, demonstrating the robustness of C1-C3.

543
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545 Extended Data Figure 3: AHBA transcriptional components were reproducible in independent PsychENCODE

546 control data, with differential spatial expression in autism. a, Gene weights from dimension reduction applied
547 to group-averaged bulk RNA-seq measurements from 11 cortical regions in N = 54 healthy control brains from
548 the PsychENCODE dataset % were correlated with gene weights from the components of the AHBA (derived by
549 DM in the 180-region HCP-MMP parcellation), showing that the genetic profiles of AHBA C1, C2, and C3 were
550 reproduced by PsychENCODE C1, C2, and C4, respectively (highlighted in green). b, Regional scores of
551 PsychENCODE C1, C2 and C4 were also correlated with region scores of AHBA C1, C2 and C3, showing that the
552 matching genetic profiles correspond to matching spatial expression patterns. ¢, Variance explained by the first

553 five components of each dataset, showing that AHBA C3 and PsychENCODE C4 account for similar proportions of
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554 variance (6.5% and 7.1%, respectively). d, 1st row: Cortical maps of AHBA C1-C3 in the same 11 regions sampled
555 in the PsychENCODE data. 2nd row: Cortical maps of PsychENCODE C1, C2, and C4 demonstrating their spatial
556 similarity to AHBA C1-C3. 3rd row: Gene weights from the PsychENCODE healthy control data were projected
557 onto transcriptional data of cases with autism spectrum disorder (ASD; N = 58) from the same dataset,
558 demonstrating lower regional expression at the positive (red) pole of each component in the ASD cases compared
559 to healthy controls. e, Distributions of regional scores for C1, C2 and C4, computed on group-average healthy
560 controls as in a-d and projected to individual donor brains in the PsychENCODE dataset, demonstrating
561 significant case-control differential expression for regions at the positive poles of C1-C3. T-tests of case-control
562 differences were corrected for multiple comparisons across all 33 tests; boxplots represent the median, first, and
563 third quartiles with whiskers showing 1.5 * inter-quartile range; *, **, *** indicate FDR-corrected two-sided p-
564 value < 0.05, 0.01, 0.001 respectively. Region names refer to the sampled Brodmann Areas (BA) % Visual = BA17,
565 Temporal Pole = BA38, Somatosensory = BA3-1-2-5, Motor = BA4-6, Anterior Cingulate = BA24, Prefrontal = BAS,
566 Broca's Area = BA44-45, Fusiform Gyrus = BA20-37, Auditory = BA41-42-22, Lateral Parietal = BA39-40, Dorsal
567  Parietal = BA7.

568
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570 Extended Data Figure 4: Higher-order components of cortical gene expression reflect anatomically relevant co-
571

572

expression structure. a, C1-C3 were orthogonally aligned in anatomical space, as computed by the Pearson’s
correlations of the regional scores with the XYZ coordinates of the region centroids: C1 and C2 were both aligned
573 with the anterior-to-posterior (y) and ventral-to-dorsal (z) plane, but with opposite signs along the anterior-to-
574 posterior axis, while only C3 was aligned to the medial-lateral (x) axis. The middle panel represents these

575 alignments as vectors in 3D space. The right-hand upper table shows the correlations of C1-C3 with each
576

577

anatomical axis, and the lower table shows the angle in degrees between the vectors, showing that C1-C3 are
orthogonal. b, Co-expression matrices computed by Pearson’s correlations of gene expression between brain
578 regions, computed with and without regressing out the first component C1, and annotated by the major cortical
579 lobes as defined in the HCP-MIMP parcellation * This further demonstrates that the gene co-expression structure
580 captured by C2 and C3 (i.e., the residual variation beyond C1) is anatomically relevant.

581
582
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584 Extended Data Figure 5: Transcriptional components were distinctively associated with the regional power of

585 canonical brain oscillation frequencies. Several MEG power bands > were highly correlated (|r|>0.6) with C1
586 (delta, alpha, high-gamma) and C2 (beta, theta), although only the theta association to C2 survived FDR
587 correction of the spin-test p-values (r=0.78, FDR.,»=0.05). No MEG band was aligned with C3.

588
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589
590 Extended Data Figure 6: C3 reveals shared biology across inconsistent postmortem brain RNA-seq studies of

591 differentially expressed genes (DEGs) in schizophrenia. a, Euler diagram demonstrating the relative lack of
592 overlap of genes linked to schizophrenia in four independent RNA-seq postmortem brain studies, as well as the
593 latest GWAS study. b, Histogram of the schizophrenia GWAS and consensus DEG genes by C3 decile. The skew of
594 the histograms towards higher C3 deciles reflects the significant enrichment of both non-overlapping gene sets,

595 as in Fig. 4c-d. ¢, Histograms of the schizophrenia GWAS and DEG genes from each separate study by C3 decile,


https://doi.org/10.1101/2022.10.05.510582
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.05.510582; this version posted February 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

596
597
598
599
600
601
602
603
604
605

606

available under aCC-BY 4.0 International license.

coloured by cortical layer where the gene was identified as a marker gene ® 12 genes are distinctly clustered
towards the C3+ pole, while L1 and WM genes are clustered towards C3-. d, For schizophrenia and ASD,
enrichments of the GWAS/DEG genes from each separate study for marker genes of cortical layers, showing that
no consistent significant enrichments are found across the entire gene sets for studies of either disorder. e,
Enrichments as in d, except for only genes positively weighted in C3 (corresponding to the right-hand five deciles
of each histogram in panel c). For schizophrenia, significant enrichments for L2 and L3 are observed for three of
the four DEG studies, as well as the GWAS study. No such enrichments were observed for ASD, demonstrating
that C3 reveals convergent biology across otherwise inconsistent results specifically for schizophrenia.
Significance was tested by one-sided Fisher’s exact test and corrected for multiple comparisons across all tests in

each panel. *, **, *** indicate FDR-corrected one-sided p-value < 0.05, 0.01, 0.001 respectively.
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842 Methods

843 AHBA data and donor-level parcellation images

844  Probe-level gene expression data with associated spatial coordinates were obtained from the Allen

845  Institute website (https://human.brain-map.org), which collected the data after obtaining informed

846  consent from the deceased’s next-of-kin. HCP-MMP1.0 parcellation images matched to the individual
847 native MRI space of each donor brain (N=6) were obtained from Arnatkevilitté et al

848  (https://figshare.com/articles/dataset/AHBAdata/6852911) *. The use of native donor parcellation

849  images (rather than a standard parcellation image with sample coordinates mapped to MNI space)

850  was chosen as it optimised the triplet generalisability metric (see following).

851  AHBA processing parameters

852  To correctly match AHBA samples to regions in native donor space parcellation images using published
853  processing pipelines, we recommend the use of either (i) abagen version 0.1.3 or greater (for Python)
854 3 or (ii) the version of the AHBAprocessing pipeline updated in June 2021 or later (for Matlab) *.

855

856  Here we processed the AHBA with the abagen package, with one modification: we filtered the AHBA
857  samples for only those annotated as cortical samples prior to subsequent processing steps. This was
858  done such that subcortical and brainstem samples did not influence the intensity filter and probe
859  aggregation steps. This modification was chosen as it optimised the triplet generalisability metric (see
860  following). The code used to apply the modification is available in the code/processing_helpers.py file
861  at https://github.com/richardajdear/AHBA gradients.

862

863  Other than this modification, abagen was run using the following parameters, which follow published

864  recommendations ** unless otherwise specified:

865 Hemisphere: The right hemisphere samples that are present for two of the six donors were
866 reflected along the midline and processed together with the left hemisphere samples of those
867 donor datasets to increase sample coverage.

868 Intensity-based filter: Probes were filtered to retain only those exceeding background noise
869 (as defined by the binary flag provided with the data by the Allen Institute) in at least 50% of
870 the samples *.

871 Probe aggregation: Probes were aggregated to genes by differential stability, meaning that for

872 each gene, the probe with the highest mean correlation across donor pairs was used.
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873 Distance threshold: Samples were matched to regions with a tolerance threshold of 2mm,
874 using the voxel-mass algorithm in the abagen package.

875 Sample normalisation: Prior to aggregating over donors, samples were normalised across all
876 genes, using the scaled robust sigmoid method (a sigmoid transformation that is robust to
877 outliers **).

878 Gene normalisation: Prior to aggregating over donors, genes were normalised across all
879 samples, again using the scaled robust sigmoid.

880

881  To ensure robustness, the primary analysis of computing components of the AHBA was repeated in a
882  series of sensitivity analyses varying all of the processing parameters above, e.g. not mirroring right
883  hemisphere samples to the left hemisphere, different or no intensity filter for genes, different
884  methods for aggregating and normalising probes. Sensitivity analyses also included running the
885  pipeline with alternative parcellation templates: HCP-MMP1.0 *, Schaefer-400 °°, Desterieux °’, and
886  Desikan-Killiany *. (Extended Data Fig. 2).

887 Gene filtering by differential stability

888  Genes were filtered for those that showed more similar spatial patterns of expression across the six
889  donors using the metric of differential stability (DS) as previously described by Hawrylycz et al. *. For
890 each gene, DS was calculated as the average correlation of that gene’s regional expression vector
891  between each donor pair (15 pairs with all six brains, or 3 pairs in the triplets analysis, see below).
892  Genes were ranked by DS and then only the top 50% percent of genes were retained. The 50%
893  threshold was chosen on the basis of a grid-search (in combination with the region filter to optimise
894  for generalisability) where the threshold for DS was varied between 10% and 100% (Extended Data
895  Fig.1).

896 Filtering regions by donors represented

897  Regions were filtered for those that included samples from at least three of the six AHBA donor brains,
898  which in the HCP-MMP1.0 parcellation retained 137/180 regions. Note that in the triplets analysis (see
899  below), this means only brain regions with samples from all three donors in the triplet were retained.
900 The choice to filter for representation of three of the six donors was chosen on the basis of a grid-
901 search in combination with the differential stability gene filter to optimise for generalisability

902  (Extended Data Fig. 1).
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903 Triplets analysis: disjoint triplet correlation as a proxy for generalisability

904  To test for generalizability we separated the six AHBA brains into pairs of disjoint triplets (for example
905  donor brains 1,2,3 in one triplet and 4,5,6 in another). We applied our full analysis pipeline (including
906 all processing steps e.g. probe aggregation, normalisation, and filters) independently to each of the
907  twenty possible combinations of triplets, and correlated the regional scores for each DME or PCA
908 component between each of the ten disjoint pairs (Pearson’s r). When filtering for consistently-
909 sampled regions, the retained regions were different for each triplet of donor brains, so correlations
910  were performed on only the intersection of regions retained in both triplets of each pair.

911

912  As the order of principal components can vary across different triplets, we employed a matching
913  algorithm in which the full correlation matrix was computed between the top 5 principal components
914  of both triplets (e.g. C1 from triplet A was correlated with each of C1-C5 of triplet B). The highest
915  absolute correlation value in the matrix was then identified as representing two matched components
916  and removed from the matrix, with the process repeated until all components were matched. The
917  components were then ranked by the mean variance explained in each matched pair.

918

919 The median absolute correlation across all ten disjoint triplet pairs represented the generalisability, g,
920 of the AHBA components processed using the given set of parameters. Processing parameters, in
921  particular the filters for regions and donors, were optimised so as to maximise g while retaining as

922  many genes and regions as possible; see Extended Data Fig. 1.

923 Dimension reduction methods

924  Dimension reduction was performed using both principal component analysis (PCA) and diffusion map
925 embedding (DME), the latter having been described for use in spatial gradient analysis of brain
926  imaging data by Margulies et al. *’. For DME, the normalised cosine function was used as the kernel
927  for the affinity matrix. No sparsity was added, and the alpha parameter was set at 1. These
928  parameters were chosen as they optimised the inter-triplet correlation metric for generalisability.
929  Both PCA and DME methods were implemented using the BrainSpace package *°. See Supplementary
930  Methods for further explanation on DME and its benefits over PCA and other alternatives (e.g. ICA).
931

932 Component gene weights

933  For each component, gene weights were computed as the Pearson correlation of each gene's

934  individual spatial expression vector with the regional scores of the component. For PCA these
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935  correlations are equivalent to the PCA loadings (eigenvectors) multiplied by the square root of the

936  variance explained by the component (eigenvalues).

937 Variance explained

938  For PCA, variance explained is given directly by the squared eigenvalues of the singular value
939  decomposition. For DME, eigenvalues do not represent variance explained as the gene expression
940 matrix is first converted to an affinity matrix using a kernel (here the normalized cosine). Therefore,
941  variance explained was calculated as the difference in the total variance of the region-by-gene
942 expression matrix before and after regressing the matrix on each component’s region scores.

943

944  That s, defining the residual regional expression vector of gene g after regressing out i components as

945 ey, the total variance V; of the residualised region-by-gene expression matrix is

vV, = Z Var(eg_i)
g

946  and for each component C;, variance explained VE; is given by

947 VE,=V,_, —V,.

948 Gene Ontology enrichment analysis for biological processes

949  Biological process enrichments of the gene weights for each component were computed using the

103

950  ‘proteins with values/ranks’ function of online software STRING , which tests whether the mean

951  weight of each annotated gene list is significantly higher or lower than random permutations of the

952  same gene weights (the “aggregate fold change” method *°***

), and includes a Benjamini-Hochberg
953  adjustment of the False Discovery Rate (FDR).

954

955  The aggregate fold change method was chosen as it does not require thresholding the gene weights of
956  the components to define ‘target’ vs ‘background’ gene lists (as in e.g. Fisher’s exact test). That is,
957  rather than setting a threshold for which genes are ‘in’ or ‘out’ of each component, we took the
958  weighted gene list where all genes can have some contribution to each component, and for each
959  component tested whether each Gene Ontology gene list was in aggregate more positively- or

960 negatively-weighted than chance.
%61
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962 Layer and cell-type enrichment analyses

963  The gene lists for cortical layer marker genes were obtained from published analyses of laminar
964  enrichment in spatial transcriptomic data from human postmortem tissue in the dorsolateral
965  prefrontal cortex *® (columns Q-W of Table S4B in Maynard et al. *).

966

22

967  Cell-type gene lists were obtained from Seidlitz et al. °°, who compiled lists of significantly

44,105-108

968 differentially expressed genes from five independent single-cell RNA-seq studies . The gene list

969  for synaptic marker genes was the unfiltered gene list from SynaptomeDB '*.

970

971  All enrichments for layers and cell-types were computed by the same aggregate fold change method
972 ™ as in the STRING software '@, whereby the mean gene weight of each gene list was computed for
973  both the true set of gene weights of each component, and for 5,000 random permutations of the
974  weights. The Z-scores and permutation test P-values for significance testing of enrichment were

975  corrected for multiple comparisons with the Benjamini-Hochberg FDR.

976 GWAS enrichment analyses for educational attainment and intelligence

977  Genes associated with cognitive capacity by GWAS were obtained from:

978 Lee et al. 2018, Supplementary Table 7 * (educational attainment).
979 Davies et al. 2018, Supplementary Table 6 *°

980 Savage et al. 2018, Supplementary Table 15 **

981 Hill et al. 2019, Supplementary Table 5 “*

982 Hatoum et al. 2023, Supplementary Table 16 **

983

984  Enrichment tests were performed by the aggregate fold change method '*, as above.

985 Neuroimaging and other macro-scale brain maps (Fig. 2)

986  Neuroimaging and other macro-scale maps were obtained as follows:

987 The 9 neuroimaging and macro-scale maps in the clustering analysis (Fig. 2a) were obtained
988 from the Neuromaps package *'°, and are also available in Sydnor et al. *°.

989 The regions of cytoarchitectural differentiation (Fig. 2b) were obtained from Paquola et al.
990 2019 " and averaged into the HCP-MMP parcellation using the Neuromaps package ™.

991 The map of fMRI degree (Fig. 2c) was obtained from Paquola et al. 2020 *, and was originally

992 computed from the HCP S900 release ***.
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993 The maps of MEG power bands (Fig. 2d, Extended Data Fig. 5) were obtained from the
994 Neuromaps package .

995 The map of adolescent change in cortical myelination was obtained from Vésa et al. 2020 *’.
996

997  All maps were aggregated into HCP-MMP parcellation, and are provided in Supplementary Table 3.

998

999  Spatial associations between maps and the transcriptional components were computed by Pearson
1000 correlations and tested for significance using spin permutation tests (5,000 spins) by the Cornblath
1001  method ™, leveraging tools from Neuromaps **°, and tested for significance with FDR correction for
1002  multiple testing.
1003
1004  For the regions of cytoarchitectural differentiation, the mean component scores in each architectonic
1005 class were tested for differences between class mean scores using analysis of variance (ANOVA)
1006  against spin-permuted null models, followed by correction for FDR. The associations between
1007  individual cytoarchitectural regions and each component were computed by the Z-score of the mean
1008 component score in each region normalised by a spin permutation distribution of the regional mean

1009 component score with significance testing corrected for FDR.

1010 Single-cell co-variation analysis (Fig. 3a)

1011  Single-cell RNA-seq data were obtained from the Allen Cell Types Database (https://portal.brain-

1012  map.org/atlases-and-data/rnaseq) 2.

1013

1014  Single-cell gene expression was filtered for the 7,873 genes in the optimally filtered AHBA dataset. To
1015  perform the analysis in Fig. 3a, the positive and negative gene weights were separated for each of C1-
1016 (3, and the dot product taken with the gene expression matrix of single-cell samples. This produced a
1017  vector of six numbers, representing the weighted total expression of C1+, C1-, C2+, C2-, C3+, C3- genes
1018  respectively, for each of the 50,000 single-cell samples.

1019

1020  That is, given the gene expression vector s; of each single-cell sample j, we computed the total
1021  weighted positive and negative expression S+,-,CL- and s7; ¢; from the C1-C3 gene weights as:

1022 stici=s-ute and ST =5 uTg

1023 where u*;; = max{uc;, 0} and u™¢; = min{ug;, 0}.
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BrainSpan developmental gene expression processing (Fig. 3b-d)

BrainSpan data were obtained directly from the Allen Institute website ° (http://brainspan.org) and

processed as follows:
1. The 11 cortical regions in the BrainSpan data were manually matched to the HCP-MMP1.0
parcellation regions according to the descriptions in the BrainSpan documentation. This

mapping is provided online at https://github.com/richardajdear/AHBA gradients.

Exon-level expression data were filtered for only the matched BrainSpan regions.
Donor brains from which fewer than 4 regions were sampled were dropped.

Within each donor, expression of each gene was Z-normalised over regions.

v oA W

Donors were aggregated into three age ranges (pre-birth, birth-13 years, and 18-40 years) and

expression was averaged for each gene.

AHBA-BrainSpan developmental consistency analysis (Fig. 3b-d)

Consistency between the AHBA components and BrainSpan was evaluated as follows:

1. Processed BrainSpan data were filtered for only the 7,973 genes retained in the filtered AHBA
dataset (top 50% by differential stability; see above).

2. The dot product of the gene weights for C1-C3 were taken against the BrainSpan data,
resulting in ‘BrainSpan scores’ for each of C1-C3, for each of the 11 BrainSpan regions, at each
age range (pre-birth, birth-13 years, and 18-40 years).

3. In each of the 11 BrainSpan regions, ‘AHBA scores’ were computed as the mean of the
matching HCP-MMP region scores from the original C1-C3 maps derived from the AHBA.

4. The ‘BrainSpan scores’ and ‘AHBA scores’ were correlated over the 11 BrainSpan regions

(Pearson’s r), for each of C1-C3 and for each age bucket of the BrainSpan data.

As further clarification: given gene weights u; for AHBA component C; and the vector of expression
over genes b; for each BrainSpan sample j (with a given age and region), the ‘BrainSpan score’ is

Yji =Dbj -y
and the consistency was tested as the correlation across the matched regions of the AHBA scores x

and the mean of the BrainSpan scores y of BrainSpan donors in each age range.

BrainSpan developmental trajectory modelling (Fig. 3e)

The developmental trajectories of each decile of C1-C3 were computed as follows:

1. The ages in the BrainSpan data were converted to post-conception days on a log10 scale.
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1055 2. For each gene, a Generalised Additive Model was fitted using the GLMGam function in the
1056 statsmodels python package with alpha=1, and 12 3rd-degree basis splines as a smoothing
1057 function (df=12, degree=3 in the BSplines function). Sex and brain region were included as
1058 covariates.

1059 3. Developmental curves were plotted from the fitted models for each gene, sex, and region,
1060 then averaged by decile of gene weight for each of C1-C3.

1061 Disorder spatial associations (Fig. 4a-b)

1062  Maps of the regional centile score differences in cortical volume for ASD, MDD, and schizophrenia
1063  were obtained from the BrainCharts project by Bethlehem, Seidlitz, White et al. >, in which normative
1064  models were computed for multiple brain phenotypes across the human lifespan from a harmonised
1065 dataset of >125,000 total MRI scans (Ncontrois = 38,839, Nasp = 381, Nypp = 3,861, Nscz = 315). As these
1066  data were in the Desikan-Killiany parcellation, the AHBA components in the HCP-MMP parcellation
1067  were mapped to a vertex-level surface map (FreeSurfer’s 41k fsaverage atlas) then re-averaged into
1068 the Desikan-Killiany parcellation. Pearson correlations with cortical maps of C1-C3 scores were
1069  computed, significance was assessed by spin permutation tests, and corrected for FDR across all nine
1070  tests (three disorders by three components).

1071

1072  These disorder maps are provided in Supplementary Table 4.

1073  Disorder DEG associations (Fig. 4c)

1074  Differentially expressed genes (DEGs; FDR < 5%) from RNA-seq of postmortem brain tissue were
1075  obtained from the following case-control studies for each of ASD, MDD, and schizophrenia:

1076 ASD:

1077 Gandal et al. 2022, Supplementary Table $3 *, WholeCortex_ASD_FDR < 0.05

1078 Gandal et al. 2018, Supplementary Table S1 *°, ASD.fdr < 0.05

1079 Parikshak et al. 2016, Supplementary Table S2 ®*, FDR-adjusted P value, ASD vs CTL <
1080 0.05

1081 MDD

1082 Jaffe et al. 2022, Supplementary Table S2 %, Cortex_adjPVal_MDD < 0.05

1083 Schizophrenia

1084 Fromer et al. 2016, Supplementary Table $16 *, FDR estimate < 0.05

1085 Gandal et al. 2018, Supplementary Table $1 ®°, SCZ.fdr < 0.05

1086 Jaffe et al. 2018, Supplementary Table S9 ™°, fdr_gsva < 0.05
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1087 Collado-Torres et al. 2019, Supplementary Table S11 *, adj.P.Val < 0.05 & region ==
1088 ‘DLPFC’
1089

1090 A consensus list of DEGs was compiled for each disorder (except MDD where only one study was
1091 included) by including only those genes identified in at least 2 studies.

1092

1093  Enrichments for these gene sets in each disorder were computed by the aggregate fold change
1094  method ™, i.e. computing the percentile of the mean weight of the DEGs in C1-C3 relative to the
1095 5,000 random permutations of the gene labels.

1096 Disorder-associated genes from GWAS (Fig. 4d)

1097  Genes significantly associated with ASD, MDD, and schizophrenia by GWAS were obtained from:

1098 ASD: Matoba et al. 2020, Supplementary Table $7 ®°

1099 MDD: Howard et al. 2019, Supplementary Table S9 *

1100 Schizophrenia: Trubetskoy et al. 2022, Extended GWAS %

1101 https://figshare.com/articles/dataset/scz2022/19426775?file=35775617
1102

1103  Associations with GWAS were calculated using three methods (Supplementary Figure $6):

1104 Enrichment of the prioritised genes identified in each of the specific studies, using the
1105 aggregate fold change method ' as described above.

1106 MAGMA ', a regression technique which tests for association between each of the
1107 components C1-C3 and the P-values for each gene’s association with ASD, MDD or SCZ (from
1108 corresponding primary GWAS studies) without requiring a threshold to be applied to the
1109 GWAS-derived P-values to define a prioritised subset of genes for enrichment analysis.
1110 MAGMA additionally accounts for gene length and gene-gene correlations. The COVAR
1111 function of MAGMA was used to test for association of the GWAS P-values with the C1-C3
1112 gene weights as a continuous variable. For standard MAGMA, a SNP-to-gene mapping window
1113 of +35kb/-10kb was used.

1114 H-MAGMA "%, an extension of MAGMA where SNP-to-gene mapping is performed using Hi-C
1115 chromatin measurements from postmortem brain tissue so as to capture trans-regulatory
1116 effects. We used the Hi-C mapping from adult brain DLPFC available online from the original

1117 H-MAGMA authors.
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1118 Laminar enrichments shared across DEG and GWAS gene sets (Fig. 4f)

1119  Enrichments for the marker genes of each cortical layer ** were computed for the disorder-associated
1120  gene lists from DEGs and GWAS using Fisher’s exact test. These enrichments were computed both

1121  with and without filtering for only genes with positive C3 weights.

1122  Schizophrenia supragranular-specific cortical thinning (Fig. 4g)

1123  The MRI-derived map of supragranular cortical thinning in schizophrenia was obtained from Wagstyl
1124 et al. ® (N=90 subjects, 46 cases), and parcellated using the HCP-MMP1.0 parcellation. Pearson’s
1125  correlations were computed with C1-C3 and significance assessed by spin permutation tests, corrected
1126  for FDR.

1127

1128

1129 Data availability

1130  Regional scores and gene weights for the transcriptional components C1-C3 are provided in
1131  Supplementary Table 1.
1132

1133  Gene expression datasets used are all publicly available:

1134 e The Allen Human Brain Atlas is available at http://human.brain-map.org, and individual donor
1135 HCP-MMP parcellation images at https://figshare.com/articles/dataset/AHBAdata/6852911.
1136 e The BrainSpan Atlas is available at https://www.brainspan.org/.

1137 e The Allen Human Cell Atlas is available at https://portal.brain-map.org/atlases-and-
1138 data/rnaseq.

1139 e The PsychENCODE dataset is available at https://github.com/dhglab/Broad-transcriptomic-
1140 dysregulation-across-the-cerebral-cortex-in-ASD.

1141

1142  Neuroimaging maps of healthy brain features are available in the neuromaps package

1143  (https://github.com/netneurolab/neuromaps). For convenience all brain maps used are provided in
1144  Supplementary Table 3-4. Gene lists used for enrichment analyses were all obtained from prior
1145  publications as detailed in Methods.

1146
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1147 Code availability

1148  Analyses were performed with Python v3.10.5 and R v.2.2. Key python packages include:
1149  abagen==0.1.3, brainspace==0.1.10, neuromaps==0.0.3. Full details of all packages, a Dockerfile and
1150 link to docker image, and all code used for these analyses are publicly available at
1151 https://github.com/richardajdear/AHBA gradients.
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