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Abstract 35 

Human brain organisation involves the coordinated expression of thousands of genes. For example, 36 

the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to 37 

association regions. Here, optimised processing of the Allen Human Brain Atlas revealed two new 38 

components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for 39 

neuronal, metabolic and immune processes, specific cell-types and cytoarchitecture, and genetic 40 

variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas, and 41 

BrainSpan), we found that C1-C3 represent generalisable transcriptional programmes that are 42 

coordinated within cells, and differentially phased during foetal and postnatal development. Autism 43 

spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively, 44 

across neuroimaging, differential expression, and genome-wide association studies. Evidence 45 

converged especially in support of C3 as a normative transcriptional programme for adolescent brain 46 

development, which can lead to atypical supra-granular cortical connectivity in people at high genetic 47 

risk for schizophrenia. 48 

 49 

  50 
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Main Text  51 

Introduction 52 

How does the complex anatomical and functional organisation of the human brain develop from the 53 

expression of over twenty thousand genes 1? And how does this process go awry in 54 

neurodevelopmental disorders? In the last 10 years, whole-brain, whole-genome transcriptional 55 

atlases, such as the Allen Human Brain Atlas (AHBA) 
2
, have suggested that healthy brain organisation 56 

may depend on “transcriptional programmes” representing the coordinated expression of large 57 

numbers of genes over development 
3–7

. 58 

 59 

In 2012, Hawrylycz et al. showed that principal components of the AHBA dataset capture distinct 60 

features of cortical anatomy 2. In 2018, Burt et al. argued that the first principal component of cortical 61 

gene expression (C1) reflects an anterior-to-posterior “neuronal hierarchy”, defined in macaque tract-62 

tracing data by feedforward and feedback axonal connections between cortical areas 
8–10

 and indexed 63 

in humans by the ratio of T1- and T2-weighted MRI signals, a putative marker of cortical myelination 8. 64 

These discoveries echoed prior findings from studies of embryonic development of chick, mouse and 65 

human brains where spatially patterned transcriptional gradients have been shown to organise 66 

neurodevelopmental processes such as areal differentiation, axonal projection, and cortical lamination 67 

6,11–13. Single-cell RNA sequencing data has also revealed an anterior-to-posterior gradient in the gene 68 

expression of inhibitory interneurons, which is conserved across multiple species including humans 14. 69 

It is therefore likely that the principal component of gene expression in the adult human cortex 70 

represents a transcriptional programme key to its normative development. 71 

 72 

However, it is not clear that C1 is the only component of spatially patterned and 73 

neurodevelopmentally coordinated gene expression in the human brain. Hawrylycz et al. suggested 74 

that principal component analysis (PCA) of a restricted set of 1,000 genes in one of the six brains of 75 

the AHBA dataset revealed multiple biologically-relevant components 2 (Supplementary Fig. S1). Later, 76 

Goyal et al. used nonlinear dimension reduction across whole-genome spatial expression, again from 77 

only one of the six AHBA brains, to show that aerobic glycolysis was associated with a second 78 

transcriptional component 
15

. To our knowledge, more recent studies using all available AHBA data 79 

have reliably found only C1 8,16. This first component has been linked to a general “sensorimotor-80 

association axis” of brain organisation 
10

 derived from several macro-scale brain phenotypes, including 81 

among others the principal gradient of functional connectivity 17, maps of brain metabolism and blood 82 

flow 
15

, and the map of human cortical expansion compared to other primates 
18

. Although it is 83 
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parsimonious to assume that such diverse brain phenotypes could all be determined by a single 84 

transcriptional programme, it seems more realistic to expect that multiple transcriptional programmes 85 

are important for human brain development, as is generally the case for brain development in other 86 

species 
19

. 87 

 88 

Here we present two higher-order components of human cortical gene expression, C2 and C3, that 89 

likely represent additional transcriptional programmes distinct from the C1 component already 90 

reliably described 
8
. These higher-order components only emerged when optimised data-filtering and 91 

dimension-reduction methods were applied to the AHBA dataset. We found that C2 and C3 are each 92 

specifically enriched for biologically-relevant gene sets, and spatially co-located with distinct clusters 93 

of neuroimaging phenotypes or macro-scale brain maps. Leveraging independent RNA sequencing 94 

datasets on single-cell and developmental gene expression, we further demonstrated that all three 95 

components are generalisable to other datasets, representative of coordinated transcription within 96 

cells of the same class, and dynamically differentiated over the course of foetal, childhood and 97 

adolescent brain development. Finally, by triangulating evidence across case-control neuroimaging, 98 

differential gene expression, and genome-wide association studies (GWAS), we demonstrated that 99 

components C1 and C2 are specifically associated with autism spectrum disorder (ASD), and C3 with 100 

schizophrenia. While prior studies have used the AHBA to derive gene sets correlated with disorder-101 

related MRI phenotypes 20–25, this disorder-first, “imaging transcriptomics” 26–28 approach is 102 

susceptible to identifying genes whose co-location with MRI phenotypes reflects secondary 103 

associations or consequences of a disorder, such as behavioural changes (e.g. smoking, alcohol use), 104 

physical health disorders (e.g. obesity, diabetes), or pharmacological treatment 
29–31

. What is of most 105 

interest for neurodevelopmental disorders is to understand the pathogenic provenance of a clinically 106 

diagnosable disorder – to ask “what developed differently?” rather than merely “what is different?”. 107 

Our approach sought to distinctively address the question of what “develops differently” based on an 108 

understanding of “normal development”, by linking genetic risks and atypical phenotypes to a 109 

generalisable transcriptional architecture of healthy brain development. 110 

 111 

 112 

  113 
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Results  114 

Three components pattern cortical gene expression 115 

We first applied PCA to the entire AHBA dataset of 6 adult brains 
2
. Microarray measurements of 116 

relative messenger RNA levels were processed to represent mean expression of  ~16,000 genes at 117 

each of the 180 regions of the left hemispheric cortex defined by the HCP-MMP parcellation 
32–34

 118 

(Methods). We initially found that higher-order components (C2, C3) estimated by PCA of the 119 

resulting {180 × 16,000} data matrix were not robust to sampling variation of the six donor brains, 120 

with low generalisability, g, compared to C1: gC1 = 0.78, gC2 = 0.09, gC3 = 0.14 (Methods). However, two 121 

data processing improvements were found to enhance the generalisability of higher order 122 

components. First, we optimised the trade-off involved in excluding noisy data – by filtering spatially 123 

inconsistent genes (with low differential stability 35) and under-sampled brain regions – while seeking 124 

to maximise the anatomic and genomic scope of the data matrix (Extended Data Fig. 1). Second, we 125 

used the non-linear dimension reduction technique of diffusion map embedding (DME), instead of 126 

linear PCA, to identify coordinated gene expression patterns from the matrix. DME is robust to noise 127 

and more biologically plausible than PCA in this context because of its less strict orthogonality 128 

constraints (Methods). We found that while PCA and DME both identified the same components from 129 

the filtered gene expression matrix (Extended Data Fig. 1d), using DME was necessary to achieve high 130 

generalisability g while also retaining sufficient genes for downstream enrichment analyses. 131 

 132 

We applied DME to the (137 × 7,937} filtered AHBA data matrix comprising the expression of the 50% 133 

most stable genes measured in the 137 cortical areas with data available from at least three brains. 134 

The generalisability of the first three components was substantially increased, i.e., gC1 = 0.97, gC2 = 135 

0.72, gC3 = 0.65, while the generalisability of even higher-order components remained low, e.g., gC4 = 136 

0.28 (Fig 1a). We found that the cortical maps of C2 and C3 derived from DME on filtered data were 137 

more spatially smooth than the corresponding PCA-derived maps on unfiltered data (Fig. 1b), 138 

consistent with higher generalisability indicating less contamination by spatially random noise. C1-C3 139 

were also robust to variations in parameters for processing the AHBA, including choice of parcellation 140 

template (Extended Data Fig. 2). Finally, the transcriptional patterns represented by C1-C3 in the 141 

AHBA dataset were reproducible in an independent PsychENCODE dataset comprising bulk RNA-seq 142 

measurements of gene expression at 11 cortical regions from N=54 healthy controls 36 (regional 143 

correlation rC1 = 0.85, rC2 = 0.75, rC3 = 0.73; see Extended Data Fig. 3 and Supplementary Table S5). 144 

 145 

 146 
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 147 

Figure 1: Three generalisable components of human cortical gene expression were enriched for biological 148 

processes, cytoarchitecture, and cognitive capacity. a, To identify robust components of cortical gene 149 

expression, we split the six-brain AHBA dataset into two disjoint triplets of three brains, applied PCA to each 150 

triplet, and correlated the resulting matched components (C1, C2, C3…) (Methods). For each component, the 151 

median absolute correlation over all 10 permutations of triplet pairs was a proxy for its generalisability, g. Using 152 

PCA and previously published best practices for processing the AHBA dataset 
33,34

, generalisability decreased 153 

markedly beyond the first component: gC1 = 0.78, gC2 = 0.09, gC3 = 0.14 (Fig. 1a). Using diffusion map embedding 154 

(DME) with the top 50% most stable genes, and the 137 regions with data available from at least three brains, 155 
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the generalisability of the first three components substantially increased: gC1 = 0.97, gC2 = 0.72, gC3 = 0.65 (Fig 1a).  156 

b, Cortical maps of brain regional scores of components C1-C3 estimated by DME on the filtered AHBA dataset 157 

displayed smooth spatial gradients (right; Moran’s I 
37

 0.48, 0.58, and 0.21 for C1-C3 respectively), unlike those of 158 

PCA on the unfiltered data (left; Moran’s I 0.50, 0.09 and 0.07). c, Gene Ontology Biological Process enrichments 159 

for C1-C3 showed that the number of significant enrichments was greater for higher-order components, 160 

illustrating that they were more biologically specific. C2-positive genes were enriched for metabolism while C2-161 

negative genes were enriched for regulatory processes; C3-positive genes were enriched for synaptic plasticity 162 

and learning while C3-negative genes were enriched for immune processes. d, C1-C3 were distinctively enriched 163 

for marker genes of six cortical layers and white matter (WM) 
38

. e, C1-C3 were also distinctively enriched for 164 

marker genes of cell types and synapses 
44

. f, All three components were significantly enriched for genes mapped 165 

to common variants associated with educational attainment in prior GWAS data 
39

. g, C2 and C3 (but not C1) 166 

were significantly enriched for genes mapped to common variation in intelligence and cognition across four 167 

independent GWAS studies 
40–43

. For d-g, significance was computed by two-sided permutation tests (Methods) 168 

and FDR-corrected across all tests in each panel; *, **, *** respectively indicate FDR-corrected two-sided p-169 

values: 0.05, 0.01, 0.001. 170 

 171 

The first three DME components, C1-C3, explained 38%, 10%, and 6.5%, respectively, of the total 172 

variance of the filtered AHBA dataset (Methods). The proportion of variance explained was related to 173 

the number of genes that were strongly weighted (absolute correlation |r| ≥ 0.5) on each component: 174 

4,867 genes (61%) were strongly weighted on C1, 967 genes (12%) on C2, and 437 genes (5.5%) on C3 175 

(Supplementary Fig. S2). The three components also had distinct axial alignments in anatomical space, 176 

and the co-expression network of cortical regions displayed clear anatomical structure even when the 177 

highest-variance C1 component was regressed out (Extended Data Fig. 4). These findings demonstrate 178 

that these three expression patterns shared across hundreds to thousands of genes are likely to be 179 

biologically relevant. 180 

 181 

To interpret the DME-derived components in more detail, we first used enrichment analyses of the 182 

weights of the 7,973 genes on each component (Methods). Many more Gene Ontology (GO) Biological 183 

Process terms were significantly enriched (with false discovery rate [FDR] = 5%) for C2 (59 GO terms) 184 

and C3 (111 GO terms) than for C1 (15 GO terms) (Fig. 1c). 185 

 186 

Although C1 was enriched for relatively few, functionally general biological processes, it precisely 187 

matched the first principal component previously reported (r = 0.96) 8. The same interneuron marker 188 

genes (SST, PVALB, VIP, CCK) and glutamatergic neuronal genes (GRIN and GABRA) were strongly 189 

weighted with opposite signs (positive or negative) on C1 (Supplementary Fig. S3). 190 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2024. ; https://doi.org/10.1101/2022.10.05.510582doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.510582
http://creativecommons.org/licenses/by/4.0/


8 
Cortical gene expression architecture.., Dear et al., revised submission to Nature Neuroscience, Feb 2024 

For genes positively-weighted on C2, 23 of 36 enrichments were for metabolic processes, and for 191 

negatively-weighted genes, 19 of 23 enrichments were for epigenetic processes (Fig. 1c, 192 

Supplementary Table 2). Whereas, for genes positively-weighted on C3, 19 of 27 enrichments were 193 

related to synaptic plasticity or learning, and for negatively-weighted genes, 33 of 84 enrichments 194 

involved the immune system. We further analysed enrichment for genes identified as markers of 195 

specific cortical layers 
38

 (Fig. 1e) and cell types 
44

 (Fig. 1f), and in each case observed distinct 196 

enrichment profiles for C1-C3. For example, genes positively-weighted on C3 were enriched for 197 

marker genes of neurons, synapses, and cortical layers 2 and 3 (L2, L3), whereas genes negatively-198 

weighted on C3 were enriched for glial (especially oligodendroglial) marker genes. 199 

 200 

We also explored the biological relevance of the three components by enrichment tests for genes 201 

associated with variation in adult cognitive capacity. We found that all three components C1-C3 were 202 

enriched for genes significantly associated with educational attainment (Fig. 1f) 
39

. Across four 203 

independent GWAS studies of intelligence and cognition 40–43, genes strongly weighted on C1 were not 204 

significantly enriched, but genes negatively-weighted on C2 were enriched for genetic variants 205 

associated with intelligence in three of the four studies, and genes positively-weighted on C3 were 206 

enriched for genes identified by all four prior GWAS studies of intelligence (Fig. 1g). 207 

Neuroimaging maps align to three transcriptional components 208 

Prior work has linked gene transcription to a multimodal “sensorimotor-association axis” (S-A axis) 10 209 

of brain organisation, defined as the composite of 10 brain maps, comprising the first principal 210 

component of gene expression (C1) and 9 other MRI or PET neuroimaging maps that were selected to 211 

differentiate sensorimotor and association cortices. We first aimed to build on this work by analysing 212 

the correlation matrix of the same set of 9 brain maps together with the three transcriptional 213 

components derived from DME of the filtered AHBA dataset. Data-driven cluster analysis of this {12 x 214 

12} correlation matrix identified three clusters, each including one of the orthogonal transcriptional 215 

components (Fig. 2a, Methods). C1 was clustered together with 2 MRI maps: the  T1w/T2w 216 

myelination marker 45 and cortical thickness 46; C2 was clustered with 5 maps: aerobic glycolysis 47, 217 

cerebral blood flow 
48

, cortical expansion in humans relative to non-human primates 
18

, inter-areal 218 

allometric scaling 49 and external pyramidal cell density 50; and C3 was clustered with 2 maps: the 219 

principal gradient of fMRI connectivity 
17

 and first principal component of cognitive terms meta-220 

analysed by Neurosynth 51. While some maps were specifically aligned to one component, e.g. aerobic 221 

glycolysis rC2 = 0.66 (pspin = 0.004, FDR < 5%), others were moderately correlated with multiple 222 

transcriptional components, e.g., for cerebral blood flow: rC1 = 0.25, rC2 = 0.28 and rC3 = 0.33. This 223 
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clustering analysis suggests that it is overly parsimonious to align all 9 neuroimaging phenotypes with 224 

just one transcriptional component (C1) as part of a singular sensorimotor-association cortical axis. 225 

 226 
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Figure 2: Neuroimaging and macro-scale maps of brain structure, function, and development were 227 

distinctively co-located with three components of cortical gene expression. a, Correlation matrix of intrinsic 228 

transcriptional components C1-C3 together with the nine neuroimaging- and physiologically-derived maps that 229 

Sydnor et al. combined with C1 to define a ‘sensorimotor-association axis’ of brain organisation 
10

. Many of the 230 

maps were not highly correlated to each other (median |r|=0.31), and data-driven clustering of the matrix 231 

revealed three distinct clusters around each of the mutually orthogonal transcriptional components C1-C3, 232 

demonstrating that all three components are relevant for understanding macroscale brain organisation. b, 233 

Distributions of regional scores of C1-C3 in histologically-defined regions of laminar cytoarchitecture 
52

. C1 234 

distinguished idiotypic (p = 0.005) and paralimbic regions (p = 0.002), while C3 distinguished idiotypic (p = 0.002) 235 

and heteromodal regions (p = 0.01). * indicates FDR-adjusted two-sided p-value < 0.05, where p-value was 236 

computed by permutation test as the percentile of the mean z-score relative to null spin permutations, with 237 

adjustment for multiple comparisons across all 12 tests. c, Degree of fMRI functional connectivity 
53,54

 was 238 

significantly aligned to C1 (r = 0.78, pspin < 0.001). Blue/yellow highlighted points correspond to 239 

idiotypic/paralimbic cytoarchitectural regions as in b. d, MEG-derived theta power 
55

 was significantly aligned to 240 

C2 (r = 0.78, pspin = 0.002). e, Regional change in myelination over adolescence 
56,57

 was significantly aligned to C3 241 

(r = 0.43, pspin = 0.009). Blue/red highlighted points correspond to idiotypic/heteromodal cytoarchitectural regions 242 

as in b. For panels c-d, *, **, *** respectively indicate FDR-corrected two-sided spin-permutation p-values: 0.05, 243 

0.01, 0.001, with corrections for multiple comparisons of all maps in panels c-d being compared with all of C1-C3. 244 

 245 

We also found that the three transcriptional components were associated with a wider range of 246 

cellular, functional and developmental phenotypes than the 9 neuroimaging maps above, and that 247 

these associations were again distinct for the three components. For example, at cellular scale, 248 

histologically-defined regions of laminar cytoarchitectural differentiation 52 were co-located with C1 249 

and C3, but not C2 (ANOVA, p < 0.001; Fig. 2b). In functional MRI and magnetoencephalography 250 

(MEG) data, we found that weighted nodal degree of cortical regions in an fMRI network 
53,54

 was 251 

strongly correlated with C1 (rC1 = 0.78, pspin < 0.001, FDR = 5%, Fig. 2c) but not C2 or C3 (rC2 = -0.01, rC3 252 

= 0.00); across all canonical frequency intervals of MEG data 
55

, an FDR-significant association was 253 

observed between theta band (4-7 Hz) oscillations and C2 (rC2 = 0.78, pspin=0.002, FDR = 5%, Fig. 2d) 254 

but not C1 or C3 (rC2 = -0.18, rC3 = -0.02); see Extended Data Fig. 5 for other MEG results. And in 255 

support of the hypothetical prediction that adult brain transcriptional programmes are 256 

neurodevelopmentally relevant, we found that a prior map of adolescent cortical myelination, as 257 

measured by change in magnetisation transfer between 14-24 years (ΔMT) 56,57, was significantly co-258 

located with C3 (rC3 = 0.43, pspin = 0.009, Fig. 2e) but not C1 or C2 (rC2 = 0.17, rC3 = 0.15). 259 

 260 
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C1-C3 are distinctly developing intra-cellular programmes 261 

We next used two additional RNA-seq datasets to investigate the consistency of AHBA-derived 262 

components with gene co-expression in single cells, e.g., neurons or glia, and to explore the 263 

developmental phasing of gene transcription programmes represented by C1-C3. 264 

 265 

First, for single-cell RNA-seq data comprising 50,000 nuclei sampled from five cortical regions of three 266 

donor brains 58, the total weighted expression of the C1-C3 gene weights in each sample was 267 

computed separately for genes positively and negatively weighted in each component (Methods). We 268 

reasoned that if the components derived from bulk tissue microarray measurements in the AHBA 269 

dataset were merely reflective of regional differences in cellular composition, e.g. neuron-glia ratio, 270 

then genes weighted positively and negatively on each component should not have anti-correlated 271 

expression across cells of the same class. However, we observed that genes weighted positively and 272 

negatively on the same component had strongly anti-correlated expression at the single-cell level (Fig. 273 

3a), whereas genes that were positively and negatively weighted on different components were not 274 

anti-correlated (Supplementary Fig. S5). The anti-correlation of genes positively and negatively 275 

weighted on C1 or C2 was stronger within each class of cells than across multiple cell classes; and even 276 

stronger when the single-cell data were stratified by sub-classes of cells in specific cortical layers, e.g., 277 

L2 VIP-expressing interneurons (Fig. 3a inset). In contrast, for C3 the anti-correlation of positively and 278 

negatively weighted genes was stronger across cell classes than within each class, although there was 279 

still evidence for significantly coupled expression across cells of the same class or subclass. 280 

 281 
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 282 

Figure 3: Transcriptional components represent intracellular coordination of gene expression programmes 283 

with distinct developmental trajectories. a, For each of ~50,000 single-cell RNAseq samples, the weighted 284 

average expression of the negatively-weighted genes of each AHBA component C1-C3 is plotted against that of 285 

the positively-weighted genes (Methods). Samples are coloured by cell-type, demonstrating that genes positively 286 

and negatively weighted on C1-C3 have correlated expression within each major class of brain cells: N-Ex, 287 

excitatory neurons; N-In, inhibitory neurons; Astro, astrocytes; Endo, endothelial cells; Micro, microglia; Oligo, 288 

oligodendrocytes; and OPC, oligodendrocyte precursor cells. Inset, a subset of samples from Layer 2 VIP 289 

interneurons, illustrating that C1-C3 weighted genes were transcriptionally coupled even within a fine-grained, 290 

homogeneous group of cells. b, Cortical maps representing the regional scores of components C1-C3 for each of 291 

11 regions with transcriptional data available in the BrainSpan cohort of adult brains (left) and C1-C3 component 292 

scores for the matching subset of regions in the AHBA (right). c, Scatter plots of matched regional C1-C3 scores 293 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2024. ; https://doi.org/10.1101/2022.10.05.510582doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.510582
http://creativecommons.org/licenses/by/4.0/


13 
Cortical gene expression architecture.., Dear et al., revised submission to Nature Neuroscience, Feb 2024 

from b, demonstrating that the three transcriptional components defined in the AHBA had consistent spatial 294 

expression in BrainSpan. d, Correlations between AHBA C1-C3 scores and BrainSpan C1-C3 scores (as in c) for 295 

each of 3 age-defined subsets of the BrainSpan dataset. C1 and C2 component scores were strongly correlated 296 

between datasets for all age subsets, whereas C3 component scores were strongly correlated between datasets 297 

only for the 18-40y subset of BrainSpan. This indicates that C1 and C2 components were expressed in nearly adult 298 

form from the earliest measured phases of brain development, whereas C3 was not expressed in adult form until 299 

after adolescence. e, Developmental trajectories of brain gene expression as a function of age (-0.5 to 40 years; 300 

x-axis, log scale) were estimated for each gene (Methods) and then averaged within each decile of gene weights 301 

for each of C1-C3; fitted lines are colour-coded by decile. Genes weighted positively on C3 were most strongly 302 

expressed during adolescence, whereas genes weighted strongly on C1 or C2 were most expressed in the first 5 303 

years of life. Dots above the x-axis represent the post-mortem ages of the donor brains used to compute the 304 

curves. RPKM: reads per kilobase million. 305 

 306 

Second, to explore the developmental trajectories of the transcriptional components, we used 307 

BrainSpan, an independent dataset where gene expression was measured by RNA-seq of bulk tissue 308 

samples from between 4 and 14 cortical regions for each of 35 donor brains ranging in age from -0.5 309 

years (mid-gestation) to 40 postnatal years 6. We first asked if the gene weights for each of the 310 

components derived from the AHBA dataset would exhibit similar spatial patterns in the BrainSpan 311 

dataset. We projected the C1-C3 gene weights from the AHBA onto the subset of adult brains (18-40 312 

years, N = 8) in BrainSpan (Fig. 3b, Methods) and found that the resulting cortical maps of component 313 

scores in the BrainSpan data were highly correlated with the corresponding cortical maps derived 314 

from the AHBA dataset (rC1 = 0.96, rC2 = 0.88, rC3 = 0.84; Fig. 1d). This indicated that the three 315 

components defined in the AHBA were generalisable to the adult brains in the BrainSpan dataset (for 316 

a full replication of C1-C3 in independent data see Extended Data Fig. 3). We then similarly compared 317 

the cortical component maps derived from the AHBA dataset to the corresponding maps calculated 318 

for subsets of the BrainSpan cohort from two earlier developmental stages (prebirth, N = 20, and 319 

birth-13 years, N = 14). We observed that for C1 and C2, AHBA component scores were almost as 320 

highly correlated with BrainSpan component scores in foetal (prebirth) and childhood (birth-13 years) 321 

brains as in the adult (18-40 years) brains (birth-13 years, rC1 = 0.87, rC2 = 0.91; prebirth, rC1 = 0.74, rC2 = 322 

0.66; Fig. 3d). However, C3 scores in the AHBA dataset were not so strongly correlated with C3 scores 323 

in the foetal and childhood subsets of the BrainSpan dataset (prebirth, rC3 = 0.29; birth-13 years, rC3 = 324 

0.47). These results suggested that C3 may only emerge developmentally during adolescence, whereas 325 

the C1 and C2 have nearly-adult expression from the first years of life. 326 

 327 

We tested this hypothesis by further analysis of the BrainSpan dataset, modelling the non-linear 328 

developmental trajectories of each gene over the age range -0.5 to 40 years (Methods) and then 329 
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averaging trajectories over all genes in each decile of the distributions of gene weights on each of the 330 

three components. We found that genes in the top few deciles of C3 gene weights became more 331 

strongly expressed during and after adolescence, whereas genes in the top few (C2) or bottom few 332 

(C1) deciles of gene weights on the other two components were most strongly expressed in the first 5 333 

years of life and then declined or plateaued during adolescence and early adult life (Fig. 3e). These 334 

results confirmed that components C1-C3 have distinct neurodevelopmental trajectories, with genes 335 

positively weighted on C3 becoming strongly expressed after the first postnatal decade. 336 

 337 

Autism and schizophrenia have specific links to C1/C2 and C3 338 

Finally, we explored the clinical relevance of C1-C3 by analysis of prior neuroimaging, differential gene 339 

expression, and GWAS associations for autism spectrum disorder (ASD), major depressive disorder 340 

(MDD), and schizophrenia. 341 

 342 

First, we leveraged the BrainChart neuroimaging dataset of >125,000 MRI scans 
59

, in which atypical 343 

deviation of regional cortical volumes in psychiatric cases was quantified by centile scores relative to 344 

the median growth trajectories of normative brain development over the life-cycle (Fig. 4a). Using the 345 

Desikan-Killiany parcellation of 34 cortical regions necessitated by alignment with this dataset 346 

(Methods), we found that cortical shrinkage in ASD was significantly associated with both C1 and C2 347 

(rC1 = 0.49, pspin = 0.0002, FDR < 5%; rC2 = -0.28, pspin = 0.0006, FDR < 5%), while shrinkage in 348 

schizophrenia was specifically associated with C3 (rC3 = 0.43, pspin = 0.008, FDR < 5%) (Fig. 4b). 349 

 350 

Second, we compiled consensus lists of differentially expressed genes (DEGs) from RNA-seq 351 

measurements of dorsolateral prefrontal cortex tissue in independent studies of ASD 
36,64,65

, MDD 
66

, 352 

and schizophrenia 65,67–70 (Methods). We found that genes differentially expressed in ASD were 353 

specifically enriched in both C1 and C2 (but not C3); whereas genes differentially expressed in 354 

schizophrenia were enriched in C3 (but not C1 or C2); and genes differentially enriched in MDD were 355 

enriched only in C1 (Fig. 4b). Corroborating the enrichments of ASD DEGs, case-control differences in 356 

expression at 11 cortical regions for ASD cases compared to healthy controls showed the positively 357 

weighted genes on C1 and C2 were significantly less strongly expressed in ASD cases than in controls 358 

(Extended Data Fig. 3). 359 

 360 
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361 
 Figure 4: Genetics, transcriptomics, and neuroimaging of autism and schizophrenia were consistently and 362 

specifically linked to normative transcriptional programmes. a, First row: cortical volume shrinkage in autism 363 

spectrum disorder (ASD), major depressive disorder (MDD), and schizophrenia (SCZ) cases. Red indicates greater 364 

shrinkage, computed as z-scores of centiles from normative modelling of >125,000 MRI scans. Second row: AHBA 365 

components projected into the same Desikan-Killiany parcellation. b, Spatial correlations between volume 366 

changes and AHBA components, C1-C3. Significance tested by spatially autocorrelated spin permutations, and 367 
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corrected for multiple comparisons: *, **, *** respectively indicate FDR-adjusted two-sided p-values: 0.05, 0.01, 368 

0.001. c, Enrichments in C1-C3 for consensus lists of differentially expressed genes (DEGs) in postmortem brain 369 

tissue of donors with ASD, MDD, and SCZ compared to healthy controls (Methods). Significance assessed as 370 

percentile of mean weight of DEGs in each component relative to randomly permuted gene weights, and 371 

corrected for multiple comparisons: *, **, *** respectively indicate FDR-adjusted two-sided p-values: 0.05, 0.01, 372 

0.001. d, Enrichment in C1-C3 for GWAS risk genes for ASD
60

, MDD
61

, and SCZ
62

, tested for significance as in c, 373 

demonstrating alignment with both spatial associations to volume changes and enrichments for DEGs. e, Venn 374 

diagrams showing the lack of overlap of DEGs and GWAS risk genes reported by the primary studies summarised 375 

in panels c and d. f, DEGs and GWAS risk genes for each disorder were filtered for only C3-positive genes, then 376 

tested for enrichment with marker genes for each cortical layer 
38

. Significance was tested by one-sided Fisher’s 377 

exact test and corrected for multiple comparisons across all 42 tests. C3-positive DEGs and GWAS genes for SCZ 378 

(but not ASD or MDD) were both enriched for L2 and L3 marker genes, despite the DEGs and GWAS gene sets 379 

having nearly no overlap for each disorder (see Extended Data Fig. 6 for more detail). g, Convergent with L2/L3 380 

enrichment in the C3-positive schizophrenia-associated DEGs and GWAS genes, a cortical map of supragranular-381 

specific cortical thinning in schizophrenia 
63

 was significantly and specifically co-located with C3 (r = 0.55, two-382 

sided spin-permutation p-value = 0.002); each point is a region, color represents C3 score. 383 

 384 

Third, using data from the most recent GWAS studies of ASD 
60

, MDD 
61

, and schizophrenia 
62

, we 385 

found that genetic variants significantly associated with ASD were enriched in both C1 and C2 (but not 386 

C3); whereas genes associated with schizophrenia were enriched in C3 (but not C1 or C2) (Fig. 4d). 387 

Genes associated with MDD were not significantly enriched in any transcriptional component. These 388 

associations were replicated when using alternative methods (MAGMA 71 and H-MAGMA 72) to test 389 

the association between GWAS-derived p-values for the association of each gene with ASD, MDD or 390 

schizophrenia and the C1-C3 gene weights without requiring an explicit prioritisation of GWAS-391 

associated genes (Supplementary Fig. S6). This pattern of results for autism and schizophrenia GWAS 392 

associations evidently mirrored the pattern of prior results from analysis of case-control neuroimaging 393 

(Fig. 4b) and differential gene expression studies (Fig. 4c), with ASD consistently linked to components 394 

C1 and C2, and schizophrenia consistently linked to C3.  395 

 396 

Notably, this consistency of association between disorders and specific transcriptional components 397 

was observed despite minimal overlap between the DEGs and GWAS risk genes identified as 398 

significant by the primary studies of each disorder 
73

  (Fig. 4e). However, motivated by the association 399 

of C3 with regions of greatest laminar differentiation (Fig. 2b), we found that the subsets of the 400 

schizophrenia-associated DEG and GWAS gene sets that were positively-weighted on C3 were both 401 

significantly enriched for marker genes of layers L2 and L3 (Fig. 4g; Extended Data Fig. 6). These 402 

shared laminar associations between the non-overlapping DEG and GWAS gene sets were only present 403 
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when subsetting to C3-positive genes, and were specific to schizophrenia (i.e. C3-positive subsets of 404 

ASD and MDD genes did not show the same L2/L3 enrichments). Convergent with C3 revealing an 405 

L2/L3 association in schizophrenia-associated genes from DEG and GWAS, we found that the cortical 406 

map of C3 was significantly co-located with an MRI-derived map of specifically supragranular, L2/L3 407 

predominant thinning in schizophrenia 63 (rC3 = 0.55, pspin = 0.002, FDR < 1%, Fig. 4g). 408 

 409 

 410 

 411 

 412 

Discussion 413 

Our results offer a new perspective on how the brain’s macroscale organisation develops from the 414 

microscale transcription of the human genome. Through optimized processing of the AHBA and 415 

replication in PsychENCODE, we have shown that the transcriptional architecture of the human cortex 416 

comprises at least three generalisable components of coordinated gene expression. The two higher-417 

order components (C2 and C3) had not previously been robustly demonstrated, although the initial 418 

AHBA paper identified similar components to C1 and C2 by applying PCA to one of the six AHBA brains 419 

and filtering for only 1000 genes 
2
 (Supplementary Fig. S1). Here we derive C2 and C3 from all six 420 

AHBA brains and show they each represent the coordinated expression of hundreds of genes 421 

(Supplementary Fig. S2). Broadly, the C2 genes were enriched for “metabolic” and “epigenetic” 422 

processes, while the C3 genes were enriched for “synaptic” and “immune” processes (Fig. 1c). Both 423 

higher-order components were significantly enriched for genes associated with intelligence and 424 

educational attainment (Fig. 1f-g), indicating their relevance to the brain’s ultimate purpose of 425 

generating adaptive behaviour. The brain maps corresponding to each of the components were also 426 

distinctively co-located with multiple neuroimaging or other macroscale brain phenotypes (Fig. 2). 427 

These co-locations were often convergent with the gene enrichment results, triangulating evidence 428 

for C2 as a metabolically specialised component and for C3 as a component specialised for synaptic 429 

and immune processes underpinning adolescent plasticity; see Table 1. Together, these convergent 430 

results expand on the proposal of a single  “sensorimotor-association axis” 10,74 by demonstrating that 431 

macro-scale brain organisation emerges from multiple biologically-relevant transcriptional 432 

components. 433 

 434 

 435 

 436 

 437 
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 438 

  C1: Neuronal 

hierarchy 

C2: Cognitive 

metabolism 

C3: Adolescent 

plasticity 

Normative Biological 

processes 

(Fig. 1c) 

Most genes are 

aligned, especially 

PVALB, SST 

Metabolism 

Epigenetics 

Synaptic plasticity 

Learning/memory 

Immunity 

Architectonics 

(Fig. 1d) 

L4 

L1, L2, L6 

L4, L5, L6 

L2 

L2, L3, L4, L5, L6 

L1, WM 

Cell types 

(Fig. 1e) 

Oligodendrocytes 

Astrocytes 

Synapses,  

Endothelial cells 

Synapses, Neurons 

Oligodendrocytes, 

Microglia 

GWAS 

(Fig. 1f-g) 

Educational 

attainment 

Intelligence/cognition 

Educational 

attainment 

Intelligence/cognition 

Educational 

attainment 

Imaging 

(Fig. 2) 

fMRI degree 

T1w/T2w 

Cortical thickness 

MEG theta power 

Aerobic glycolysis 

Adolescent change in 

myelination 

Development 

(Fig. 3b-c) 

Prenatal, greatest 

expression at birth  

Prenatal, greatest 

expression in first 

decade 

Adolescence, greatest 

expression in 

adulthood 

Atypical Imaging 

(Fig. 4a-b, g) 

ASD volume shrinkage ASD volume shrinkage SCZ volume shrinkage 

and L2, L3-specific 

thinning 

RNA-seq of 

brain tissue 

(Fig. 4c,f) 

ASD DEGs ASD DEGs SCZ DEGs, with 

L2, L3 enrichment 

GWAS 

(Fig. 4d,f) 

ASD risk genes ASD risk genes SCZ risk genes, with 

L2, L3 enrichment 

Table 1: Summary of convergent results on the biological and clinical relevance of three human brain 439 

transcriptional programmes. Each of three components of normative human brain gene expression (C1, C2, C3; 440 

table columns) was biologically validated by testing for enrichment of gene weights on each component, and for 441 

co-location of regional component scores with neuroimaging or other macro-scale brain phenotypes, in healthy 442 

brain samples (normative) and in studies of neurodevelopmental disorders (atypical).  Each row summarises 443 

results for a distinct gene enrichment analysis (italicised) or spatial co-location analysis (plain font). Based on 444 

prior knowledge that theta oscillations are linked to intelligence and cognition 
75

 as well as to glucose 445 

metabolism 
76

, the spatial alignments between C2 and maps of MEG theta power (Fig. 2d) and aerobic glycolysis 446 

(Fig. 2a) were convergent with the enrichment of C2 for genes linked to cognitive capacity (Fig. 1f-g) and 447 

metabolism (Fig. 1c).  Similarly, prior knowledge implicates microglia and oligodendrocytes in the immune-448 

mediated synaptic pruning and myelination that over adolescence gives rise to adult cognitive capacity 
77,78

, such 449 
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that the spatial alignment between C3 and the map of adolescent myelination (Fig. 2d) was convergent with the 450 

enrichments of C3 for genes related to immunity, synaptic development, and learning (Fig. 1c); oligodendrocytes, 451 

microglia, and synapses (Fig. 1e); and cognitive capacity (Fig. 1f-g), among which one GWAS study explicitly 452 

linked intelligence to myelination 
41

. 453 

 454 

The discovery of these biologically-relevant, higher-order transcriptional components in the AHBA 455 

dataset raised further questions: i) do the components reflect coordinated gene expression within 456 

cells, or only variation in cell composition; ii) when do the components emerge during brain 457 

development; and (iii) how do they intersect with neurodevelopmental disorders? We addressed 458 

these questions using additional RNA-seq datasets (Supplementary Table S5). First, we found that 459 

genes positively or negatively weighted on the components derived from the AHBA bulk tissue 460 

samples had consistently coupled co-expression across RNA-seq measurements in single cells, e.g. 461 

individual neurons and glia (Fig. 3a). This indicated that C1-C3 represent transcriptional programmes 462 

coordinated at the intracellular level, not merely regional variation in the proportion of different cell 463 

types. Second, we found that C1-C3 have differentially phased developmental trajectories of 464 

expression, e.g. that the positive pole of C3 becomes strongly expressed only during adolescence, 465 

convergent with its spatial co-location with a map of adolescent cortical myelination (Fig. 3b-c). 466 

Finally, we established that these transcriptional programmes are not only critical for healthy brain 467 

development but, as might be expected, are also implicated in the pathogenesis of 468 

neurodevelopmental disorders (Fig. 4). 469 

 470 

The pattern of results for disorders was strikingly convergent across multiple data modalities: C1 and 471 

C2 were both enriched for genes implicated by both GWAS and DEG data on ASD, whereas C3 was 472 

specifically enriched for genes implicated by both GWAS and DEG data on schizophrenia (Table 1). We 473 

observed a similar pattern of significant co-location between C1-C3 maps and MRI phenotypes: 474 

developmentally normalised scores on reduced cortical volume in ASD were correlated with maps of 475 

C1 and C2, and for schizophrenia with the map of C3 (Fig. 4a-b). In contrast, there was no evidence for 476 

enrichment of C1-C3 by genes associated with risk of Alzheimer’s disease 79 (Supplementary Fig. S6). 477 

An intuitive generalisation of these results is that the developmental processes which give rise to 478 

these three components of gene expression in the healthy adult brain are pathogenically more 479 

relevant for neurodevelopmental disorders than for neurodegenerative disease. 480 

 481 

Overall, our results were strongly supportive of the motivating hypothesis that the transcriptional 482 

architecture of the human cortex represents developmental programmes crucial both to the brain’s 483 

healthy organisation and to the emergence of neurodevelopmental disorders. For example, when 484 
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interpreting C3 as a transcriptional programme mediating adolescent plasticity (Table 1), our finding 485 

that C3 represents coupled transcription of synapse- and immune-related genes within cells (Fig. 3a) is 486 

consistent with prior work indicating that the neuronal expression of immune-related, typically glial 487 

genes can play a mechanistic role in synaptic pruning 
80

; and, vice-versa, that neuronal genes 488 

associated with synapse and circuit development can also be expressed in glial cells 81. While atypical 489 

synaptic pruning has long been hypothesised to be a mechanistic cause of schizophrenia 
82–84

, prior 490 

results on the biology of schizophrenia have shown limited consistency, both between the primary 491 

data modalities of GWAS, post-mortem expression, and neuroimaging 
85,86

, and even between DEG 492 

studies 73. Here, we demonstrate that the C3 transcriptional programme offers a unifying link between 493 

these disparate prior results. When parsed by the C3 positive genes, the otherwise non-overlapping 494 

GWAS and DEG gene-sets for schizophrenia display a shared enrichment for supra-granular marker 495 

genes (Fig. 4e-f), and, convergently, C3 was spatially associated with supra-granular-specific thinning 496 

in schizophrenia (Fig. 4g). Supra-granular layers have dense cortico-cortical connections and are 497 

expanded in humans relative to other species 87–89, mature latest in development 90, have been linked 498 

to intelligence 
91

, and have previously been linked to schizophrenia 
92–94

. This triangulation of evidence 499 

strongly suggests that the third component of the brain’s gene expression architecture represents the 500 

transcriptional programme coordinating the normative, neuro-immune processes of synaptic pruning 501 

and myelination in adolescence 56, such that atypical expression of C3 genes due to schizophrenia 502 

genetic risk variants can result in atypical development of supra-granular cortical connectivity leading 503 

to the clinical emergence of schizophrenia. 504 

 505 

Clearly there are limits to what can be learnt from RNA measurements of bulk tissue samples from six 506 

healthy adult brains. Here, we explicitly identified the limits of the AHBA dataset by optimizing data 507 

processing against an unbiased measure of generalisability, g, which yielded three components. The 508 

architecture of human brain gene expression likely involves more than three components; however, 509 

our analysis suggests that their discovery will rely on additional high-granularity transcriptional data. 510 

In particular, gene expression varies with sex, age, genetics, and environment 
95

, so we expect that 511 

future data will reveal additional components that are more individually variable and demographically 512 

diverse than the three we have characterised here. Meanwhile, the code and data that supplement 513 

our results can help future research to leverage our work with the unique AHBA resource. 514 

 515 

 516 

 517 

  518 
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Extended Data Figures 519 

520 
Extended Data Fig. 1: Optimised processing of the AHBA identified three generalisable components. a, In the 521 

HCP-MMP parcellation, 43/180 regions are matched to samples representing less than 3 of the 6 AHBA donors. b, 522 

Distribution of differential stability of genes measured in the AHBA dataset processed in the HCP-MMP 523 

parcellation. c, Generalisability of first five components of the AHBA dataset computed with either principal 524 

components analysis (PCA) or diffusion map embedding (DME). Color represents generalisability g, defined as the 525 

median absolute correlation between matched components computed across all 10 disjoint triplet pairs 526 

(Methods); x-axis represents variation in the proportion of genes filtered out by differential stability prior to 527 

PCA/DME; y-axis represents variation in which regions are filtered out prior to PCA/DME. Tick mark indicates 528 

parameter combinations that exceed generalisability g > 0.6. Green highlights for C3 indicate the best parameter 529 

option with PCA and DME respectively, showing that switching to DME achieves similar generalisability while 530 

retaining more genes. d, Scatter plots of regional scores for AHBA components computed using the best 531 

PCA/DME options, demonstrating that PCA and DME derive spatially equivalent components. 532 
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  533 

 534 

Extended Data Fig. 2: Transcriptional components were robust to parcellation and processing. Transcriptional 535 

components were computed in four different parcellation templates (Methods). For each parcellation, the gene 536 

weights for the first three components were correlated with the weights obtained from the HCP-MMP 537 

parcellation used throughout. Gene weights were highly consistent, although in the less-granular (34-538 

regions/hemisphere) Desikan-Killiany parcellation, C2 and C3 were less well aligned to the other parcellations. b, 539 
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A wide range of parameters for processing the AHBA data were varied, and the resulting component region 540 

scores were correlated with the components obtained from the optimised parameters. For nearly all variations in 541 

parameters, highly consistent components were obtained, demonstrating the robustness of C1-C3. 542 

 543 

 544 

Extended Data Figure 3: AHBA transcriptional components were reproducible in independent PsychENCODE 545 

control data, with differential spatial expression in autism. a, Gene weights from dimension reduction applied 546 

to group-averaged bulk RNA-seq measurements from 11 cortical regions in N = 54 healthy control brains from 547 

the PsychENCODE dataset 
36

 were correlated with gene weights from the components of the AHBA (derived by 548 

DME in the 180-region HCP-MMP parcellation), showing that the genetic profiles of AHBA C1, C2, and C3 were 549 

reproduced by PsychENCODE C1, C2, and C4, respectively (highlighted in green). b, Regional scores of 550 

PsychENCODE C1, C2 and C4 were also correlated with region scores of AHBA C1, C2 and C3, showing that the 551 

matching genetic profiles correspond to matching spatial expression patterns. c, Variance explained by the first 552 

five components of each dataset, showing that AHBA C3 and PsychENCODE C4 account for similar proportions of 553 
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variance (6.5% and 7.1%, respectively). d, 1st row: Cortical maps of AHBA C1-C3 in the same 11 regions sampled 554 

in the PsychENCODE data. 2nd row: Cortical maps of PsychENCODE C1, C2, and C4 demonstrating their spatial 555 

similarity to AHBA C1-C3. 3rd row: Gene weights from the PsychENCODE healthy control data were projected 556 

onto transcriptional data of cases with autism spectrum disorder (ASD; N = 58) from the same dataset, 557 

demonstrating lower regional expression at the positive (red) pole of each component in the ASD cases compared 558 

to healthy controls. e, Distributions of regional scores for C1, C2 and C4, computed on group-average healthy 559 

controls as in a-d and projected to individual donor brains in the PsychENCODE dataset, demonstrating 560 

significant case-control differential expression for regions at the positive poles of C1-C3. T-tests of case-control 561 

differences were corrected for multiple comparisons across all 33 tests; boxplots represent the median, first, and 562 

third quartiles with whiskers showing 1.5 * inter-quartile range; *, **, *** indicate FDR-corrected two-sided p-563 

value < 0.05, 0.01, 0.001 respectively. Region names refer to the sampled Brodmann Areas (BA) 
36

: Visual = BA17, 564 

Temporal Pole = BA38, Somatosensory = BA3-1-2-5, Motor = BA4-6, Anterior Cingulate = BA24, Prefrontal = BA9, 565 

Broca's Area = BA44-45, Fusiform Gyrus = BA20-37, Auditory = BA41-42-22, Lateral Parietal = BA39-40, Dorsal 566 

Parietal = BA7.  567 

 568 
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 569 

Extended Data Figure 4: Higher-order components of cortical gene expression reflect anatomically relevant co-570 

expression structure. a, C1-C3 were orthogonally aligned in anatomical space, as computed by the Pearson’s 571 

correlations of the regional scores with the XYZ coordinates of the region centroids: C1 and C2 were both aligned 572 

with the anterior-to-posterior (y) and ventral-to-dorsal (z) plane, but with opposite signs along the anterior-to-573 

posterior axis, while only C3 was aligned to the medial-lateral (x) axis. The middle panel represents these 574 

alignments as vectors in 3D space. The right-hand upper table shows the correlations of C1-C3 with each 575 

anatomical axis, and the lower table shows the angle in degrees between the vectors, showing that C1-C3 are 576 

orthogonal. b, Co-expression matrices computed by Pearson’s correlations of gene expression between brain 577 

regions, computed with and without regressing out the first component C1, and annotated by the major cortical 578 

lobes as defined in the HCP-MMP parcellation 
32

. This further demonstrates that the gene co-expression structure 579 

captured by C2 and C3 (i.e., the residual variation beyond C1) is anatomically relevant. 580 

 581 

 582 
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583 
Extended Data Figure 5: Transcriptional components were distinctively associated with the regional power of 584 

canonical brain oscillation frequencies. Several MEG power bands 
55

 were highly correlated (|r|>0.6) with C1 585 

(delta, alpha, high-gamma) and C2 (beta, theta), although only the theta association to C2 survived FDR 586 

correction of the spin-test p-values (r=0.78, FDRspin=0.05). No MEG band was aligned with C3. 587 

 588 
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 589 

Extended Data Figure 6: C3 reveals shared biology across inconsistent postmortem brain RNA-seq studies of 590 

differentially expressed genes (DEGs) in schizophrenia. a, Euler diagram demonstrating the relative lack of 591 

overlap of genes linked to schizophrenia in four independent RNA-seq postmortem brain studies, as well as the 592 

latest GWAS study. b, Histogram of the schizophrenia GWAS and consensus DEG genes by C3 decile. The skew of 593 

the histograms towards higher C3 deciles reflects the significant enrichment of both non-overlapping gene sets, 594 

as in Fig. 4c-d. c, Histograms of the schizophrenia GWAS and DEG genes from each separate study by C3 decile, 595 
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coloured by cortical layer where the gene was identified as a marker gene 
38

. L2 genes are distinctly clustered 596 

towards the C3+ pole, while L1 and WM genes are clustered towards C3-. d, For schizophrenia and ASD, 597 

enrichments of the GWAS/DEG genes from each separate study for marker genes of cortical layers, showing that 598 

no consistent significant enrichments are found across the entire gene sets for studies of either disorder. e, 599 

Enrichments as in d, except for only genes positively weighted in C3 (corresponding to the right-hand five deciles 600 

of each histogram in panel c). For schizophrenia, significant enrichments for L2 and L3 are observed for three of 601 

the four DEG studies, as well as the GWAS study. No such enrichments were observed for ASD, demonstrating 602 

that C3 reveals convergent biology across otherwise inconsistent results specifically for schizophrenia. 603 

Significance was tested by one-sided Fisher’s exact test and corrected for multiple comparisons across all tests in 604 

each panel. *, **, *** indicate FDR-corrected one-sided p-value < 0.05, 0.01, 0.001 respectively. 605 

  606 
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Methods 842 

AHBA data and donor-level parcellation images 843 

Probe-level gene expression data with associated spatial coordinates were obtained from the Allen 844 

Institute website (https://human.brain-map.org), which collected the data after obtaining informed 845 

consent from the deceased’s next-of-kin. HCP-MMP1.0 parcellation images matched to the individual 846 

native MRI space of each donor brain (N=6) were obtained from Arnatkevičiūtė et al. 847 

(https://figshare.com/articles/dataset/AHBAdata/6852911) 
33

. The use of native donor parcellation 848 

images (rather than a standard parcellation image with sample coordinates mapped to MNI space) 849 

was chosen as it optimised the triplet generalisability metric (see following). 850 

AHBA processing parameters 851 

To correctly match AHBA samples to regions in native donor space parcellation images using published 852 

processing pipelines, we recommend the use of either (i) abagen version 0.1.3 or greater (for Python) 853 

34
, or (ii) the version of the AHBAprocessing pipeline updated in June 2021 or later (for Matlab) 

33
.  854 

 855 

Here we processed the AHBA with the abagen package, with one modification: we filtered the AHBA 856 

samples for only those annotated as cortical samples prior to subsequent processing steps. This was 857 

done such that subcortical and brainstem samples did not influence the intensity filter and probe 858 

aggregation steps. This modification was chosen as it optimised the triplet generalisability metric (see 859 

following). The code used to apply the modification is available in the code/processing_helpers.py file 860 

at https://github.com/richardajdear/AHBA_gradients. 861 

 862 

Other than this modification, abagen was run using the following parameters, which follow published 863 

recommendations 33 unless otherwise specified: 864 

Z Hemisphere: The right hemisphere samples that are present for two of the six donors were 865 

reflected along the midline and processed together with the left hemisphere samples of those 866 

donor datasets to increase sample coverage. 867 

Z Intensity-based filter: Probes were filtered to retain only those exceeding background noise 868 

(as defined by the binary flag provided with the data by the Allen Institute) in at least 50% of 869 

the samples 
33

. 870 

Z Probe aggregation: Probes were aggregated to genes by differential stability, meaning that for 871 

each gene, the probe with the highest mean correlation across donor pairs was used. 872 
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Z Distance threshold: Samples were matched to regions with a tolerance threshold of 2mm, 873 

using the voxel-mass algorithm in the abagen package. 874 

Z Sample normalisation: Prior to aggregating over donors, samples were normalised across all 875 

genes, using the scaled robust sigmoid method (a sigmoid transformation that is robust to 876 

outliers 33 ). 877 

Z Gene normalisation: Prior to aggregating over donors, genes were normalised across all 878 

samples, again using the scaled robust sigmoid. 879 

 880 

To ensure robustness, the primary analysis of computing components of the AHBA was repeated in a 881 

series of sensitivity analyses varying all of the processing parameters above, e.g. not mirroring right 882 

hemisphere samples to the left hemisphere, different or no intensity filter for genes, different 883 

methods for aggregating and normalising probes. Sensitivity analyses also included running the 884 

pipeline with alternative parcellation templates: HCP-MMP1.0 
32

, Schaefer-400 
96

, Desterieux 
97

, and 885 

Desikan-Killiany 98. (Extended Data Fig. 2).  886 

Gene filtering by differential stability 887 

Genes were filtered for those that showed more similar spatial patterns of expression across the six 888 

donors using the metric of differential stability (DS) as previously described by Hawrylycz et al. 35. For 889 

each gene, DS was calculated as the average correlation of that gene’s regional expression vector 890 

between each donor pair (15 pairs with all six brains, or 3 pairs in the triplets analysis, see below). 891 

Genes were ranked by DS and then only the top 50% percent of genes were retained. The 50% 892 

threshold was chosen on the basis of a grid-search (in combination with the region filter to optimise 893 

for generalisability) where the threshold for DS was varied between 10% and 100% (Extended Data 894 

Fig. 1). 895 

Filtering regions by donors represented 896 

Regions were filtered for those that included samples from at least three of the six AHBA donor brains, 897 

which in the HCP-MMP1.0 parcellation retained 137/180 regions. Note that in the triplets analysis (see 898 

below), this means only brain regions with samples from all three donors in the triplet were retained. 899 

The choice to filter for representation of three of the six donors was chosen on the basis of a grid-900 

search in combination with the differential stability gene filter to optimise for generalisability 901 

(Extended Data Fig. 1). 902 
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Triplets analysis: disjoint triplet correlation as a proxy for generalisability 903 

To test for generalizability we separated the six AHBA brains into pairs of disjoint triplets (for example 904 

donor brains 1,2,3 in one triplet and 4,5,6 in another). We applied our full analysis pipeline (including 905 

all processing steps e.g. probe aggregation, normalisation, and filters) independently to each of the 906 

twenty possible combinations of triplets, and correlated the regional scores for each DME or PCA 907 

component between each of the ten disjoint pairs (Pearson’s r). When filtering for consistently-908 

sampled regions, the retained regions were different for each triplet of donor brains, so correlations 909 

were performed on only the intersection of regions retained in both triplets of each pair. 910 

 911 

As the order of principal components can vary across different triplets, we employed a matching 912 

algorithm in which the full correlation matrix was computed between the top 5 principal components 913 

of both triplets (e.g. C1 from triplet A was correlated with each of C1-C5 of triplet B). The highest 914 

absolute correlation value in the matrix was then identified as representing two matched components 915 

and removed from the matrix, with the process repeated until all components were matched. The 916 

components were then ranked by the mean variance explained in each matched pair. 917 

 918 

The median absolute correlation across all ten disjoint triplet pairs represented the generalisability, g, 919 

of the AHBA components processed using the given set of parameters. Processing parameters, in 920 

particular the filters for regions and donors, were optimised so as to maximise g while retaining as 921 

many genes and regions as possible; see Extended Data Fig. 1. 922 

Dimension reduction methods 923 

Dimension reduction was performed using both principal component analysis (PCA) and diffusion map 924 

embedding (DME), the latter having been described for use in spatial gradient analysis of brain 925 

imaging data by Margulies et al. 17. For DME, the normalised cosine function was used as the kernel 926 

for the affinity matrix. No sparsity was added, and the alpha parameter was set at 1. These 927 

parameters were chosen as they optimised the inter-triplet correlation metric for generalisability. 928 

Both PCA and DME methods were implemented using the BrainSpace package 99. See Supplementary 929 

Methods for further explanation on DME and its benefits over PCA and other alternatives (e.g. ICA). 930 

 931 

Component gene weights 932 

For each component, gene weights were computed as the Pearson correlation of each gene’s 933 

individual spatial expression vector with the regional scores of the component. For PCA these 934 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2024. ; https://doi.org/10.1101/2022.10.05.510582doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.510582
http://creativecommons.org/licenses/by/4.0/


41 
Cortical gene expression architecture.., Dear et al., revised submission to Nature Neuroscience, Feb 2024 

correlations are equivalent to the PCA loadings (eigenvectors) multiplied by the square root of the 935 

variance explained by the component (eigenvalues). 936 

Variance explained 937 

For PCA, variance explained is given directly by the squared eigenvalues of the singular value 938 

decomposition. For DME, eigenvalues do not represent variance explained as the gene expression 939 

matrix is first converted to an affinity matrix using a kernel (here the normalized cosine). Therefore, 940 

variance explained was calculated as the difference in the total variance of the region-by-gene 941 

expression matrix before and after regressing the matrix on each component’s region scores. 942 

 943 

That is, defining the residual regional expression vector of gene g after regressing out i components as 944 

��,� , the total variance ��  of the residualised region-by-gene expression matrix is 945 

�� � �
�

������,�� 

and for each component 	� , variance explained �
�  is given by 946 

�
� � ���� � ��  . 947 

Gene Ontology enrichment analysis for biological processes 948 

Biological process enrichments of the gene weights for each component were computed using the 949 

‘proteins with values/ranks’ function of online software STRING 103, which tests whether the mean 950 

weight of each annotated gene list is significantly higher or lower than random permutations of the 951 

same gene weights (the “aggregate fold change” method 103,104), and includes a Benjamini-Hochberg 952 

adjustment of the False Discovery Rate (FDR).  953 

 954 

The aggregate fold change method was chosen as it does not require thresholding the gene weights of 955 

the components to define ‘target’ vs ‘background’ gene lists (as in e.g. Fisher’s exact test). That is, 956 

rather than setting a threshold for which genes are ‘in’ or ‘out’ of each component, we took the 957 

weighted gene list where all genes can have some contribution to each component, and for each 958 

component tested whether each Gene Ontology gene list was in aggregate more positively- or 959 

negatively-weighted than chance. 960 

 961 
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Layer and cell-type enrichment analyses 962 

The gene lists for cortical layer marker genes were obtained from published analyses of laminar 963 

enrichment in spatial transcriptomic data from human postmortem tissue in the dorsolateral 964 

prefrontal cortex 
38

 (columns Q-W of Table S4B in Maynard et al. 
38

). 965 

 966 

Cell-type gene lists were obtained from Seidlitz et al. 
22

, who compiled lists of significantly 967 

differentially expressed genes from five independent single-cell RNA-seq studies 44,105–108. The gene list 968 

for synaptic marker genes was the unfiltered gene list from SynaptomeDB 
109

. 969 

 970 

All enrichments for layers and cell-types were computed by the same aggregate fold change method 971 

104 as in the STRING software 103, whereby the mean gene weight of each gene list was computed for 972 

both the true set of gene weights of each component, and for 5,000 random permutations of the 973 

weights. The Z-scores and permutation test P-values for significance testing of enrichment were 974 

corrected for multiple comparisons with the Benjamini-Hochberg FDR. 975 

GWAS enrichment analyses for educational attainment and intelligence 976 

Genes associated with cognitive capacity by GWAS were obtained from:  977 

Z Lee et al. 2018, Supplementary Table 7 39 (educational attainment). 978 

Z Davies et al. 2018, Supplementary Table 6 40 979 

Z Savage et al. 2018, Supplementary Table 15 
42

 980 

Z Hill et al. 2019, Supplementary Table 5 41 981 

Z Hatoum et al. 2023, Supplementary Table 16 
43

 982 

 983 

Enrichment tests were performed by the aggregate fold change method 
104

, as above. 984 

Neuroimaging and other macro-scale brain maps (Fig. 2) 985 

Neuroimaging and other macro-scale maps were obtained as follows: 986 

Z The 9 neuroimaging and macro-scale maps in the clustering analysis (Fig. 2a) were obtained 987 

from the Neuromaps package 
110

, and are also available in Sydnor et al. 
10

. 988 

Z The regions of cytoarchitectural differentiation (Fig. 2b) were obtained from Paquola et al. 989 

2019 
111

 and averaged into the HCP-MMP parcellation using the Neuromaps package 
110

. 990 

Z The map of fMRI degree (Fig. 2c) was obtained from Paquola et al. 2020 50, and was originally 991 

computed from the HCP S900 release 
112

. 992 
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Z The maps of MEG power bands (Fig. 2d, Extended Data Fig. 5) were obtained from the 993 

Neuromaps package 110. 994 

Z The map of adolescent change in cortical myelination was obtained from Váša et al. 2020 57. 995 

 996 

All maps were aggregated into HCP-MMP parcellation, and are provided in Supplementary Table 3. 997 

 998 

Spatial associations between maps and the transcriptional components were computed by Pearson 999 

correlations and tested for significance using spin permutation tests (5,000 spins) by the Cornblath 1000 

method 113, leveraging tools from Neuromaps 110, and tested for significance with FDR correction for 1001 

multiple testing.  1002 

 1003 

For the regions of cytoarchitectural differentiation, the mean component scores in each architectonic 1004 

class were tested for differences between class mean scores using analysis of variance (ANOVA) 1005 

against spin-permuted null models, followed by correction for FDR. The associations between 1006 

individual cytoarchitectural regions and each component were computed by the Z-score of the mean 1007 

component score in each region normalised by a spin permutation distribution of the regional mean 1008 

component score with significance testing corrected for FDR. 1009 

Single-cell co-variation analysis (Fig. 3a) 1010 

Single-cell RNA-seq data were obtained from the Allen Cell Types Database (https://portal.brain-1011 

map.org/atlases-and-data/rnaseq) 58.  1012 

 1013 

Single-cell gene expression was filtered for the 7,873 genes in the optimally filtered AHBA dataset. To 1014 

perform the analysis in Fig. 3a, the positive and negative gene weights were separated for each of C1-1015 

C3, and the dot product taken with the gene expression matrix of single-cell samples. This produced a 1016 

vector of six numbers, representing the weighted total expression of C1+, C1-, C2+, C2-, C3+, C3- genes 1017 

respectively, for each of the 50,000 single-cell samples. 1018 

 1019 

That is, given the gene expression vector �� of each single-cell sample j, we computed the total 1020 

weighted positive and negative expression ���,��  and ���,��  from the C1-C3 gene weights as: 1021 

���,�� � �� 
 ��
��       and     ���,�� � �� 
 ��

��   1022 

where ��
�� � ������� , 0� and ��

�� � ������� , 0�. 1023 
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BrainSpan developmental gene expression processing (Fig. 3b-d) 1024 

BrainSpan data were obtained directly from the Allen Institute website 6 (http://brainspan.org) and 1025 

processed as follows: 1026 

1. The 11 cortical regions in the BrainSpan data were manually matched to the HCP-MMP1.0 1027 

parcellation regions according to the descriptions in the BrainSpan documentation. This 1028 

mapping is provided online at https://github.com/richardajdear/AHBA_gradients. 1029 

2. Exon-level expression data were filtered for only the matched BrainSpan regions. 1030 

3. Donor brains from which fewer than 4 regions were sampled were dropped. 1031 

4. Within each donor, expression of each gene was Z-normalised over regions. 1032 

5. Donors were aggregated into three age ranges (pre-birth, birth-13 years, and 18-40 years) and 1033 

expression was averaged for each gene. 1034 

AHBA-BrainSpan developmental consistency analysis (Fig. 3b-d) 1035 

Consistency between the AHBA components  and BrainSpan was evaluated as follows: 1036 

1. Processed BrainSpan data were filtered for only the 7,973 genes retained in the filtered AHBA 1037 

dataset (top 50% by differential stability; see above). 1038 

2. The dot product of the gene weights for C1-C3 were taken against the BrainSpan data, 1039 

resulting in ‘BrainSpan scores’ for each of C1-C3, for each of the 11 BrainSpan regions, at each 1040 

age range (pre-birth, birth-13 years, and 18-40 years). 1041 

3. In each of the 11 BrainSpan regions, ‘AHBA scores’ were computed as the mean of the 1042 

matching HCP-MMP region scores from the original C1-C3 maps derived from the AHBA. 1043 

4. The ‘BrainSpan scores’ and ‘AHBA scores’ were correlated over the 11 BrainSpan regions 1044 

(Pearson’s r), for each of C1-C3 and for each age bucket of the BrainSpan data. 1045 

 1046 

As further clarification: given gene weights ��  for AHBA component 	�  and the vector of expression 1047 

over genes �� for each BrainSpan sample j (with a given age and region), the ‘BrainSpan score’ is 1048 

��,� � �� 
 ��   1049 

and the consistency was tested as the correlation across the matched regions of the AHBA scores x 1050 

and the mean of the BrainSpan scores � of BrainSpan donors in each age range. 1051 

BrainSpan developmental trajectory modelling (Fig. 3e) 1052 

The developmental trajectories of each decile of C1-C3 were computed as follows: 1053 

1. The ages in the BrainSpan data were converted to post-conception days on a log10 scale. 1054 
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2. For each gene, a Generalised Additive Model was fitted using the GLMGam function in the 1055 

statsmodels python package with alpha=1, and 12 3rd-degree basis splines as a smoothing 1056 

function (df=12, degree=3 in the BSplines function). Sex and brain region were included as 1057 

covariates. 1058 

3. Developmental curves were plotted from the fitted models for each gene, sex, and region, 1059 

then averaged by decile of gene weight for each of C1-C3. 1060 

Disorder spatial associations (Fig. 4a-b) 1061 

Maps of the regional centile score differences in cortical volume for ASD, MDD, and schizophrenia 1062 

were obtained from the BrainCharts project by Bethlehem, Seidlitz, White et al. 
59

, in which normative 1063 

models were computed for multiple brain phenotypes across the human lifespan from a harmonised 1064 

dataset of >125,000 total MRI scans (Ncontrols = 38,839, NASD = 381, NMDD = 3,861, NSCZ = 315). As these 1065 

data were in the Desikan-Killiany parcellation, the AHBA components in the HCP-MMP parcellation 1066 

were mapped to a vertex-level surface map (FreeSurfer’s 41k fsaverage atlas) then re-averaged into 1067 

the Desikan-Killiany parcellation. Pearson correlations with cortical maps of C1-C3 scores were 1068 

computed, significance was assessed by spin permutation tests, and corrected for FDR across all nine 1069 

tests (three disorders by three components). 1070 

 1071 

These disorder maps are provided in Supplementary Table 4. 1072 

Disorder DEG associations (Fig. 4c) 1073 

Differentially expressed genes (DEGs; FDR < 5%) from RNA-seq of postmortem brain tissue were 1074 

obtained from the following case-control studies for each of ASD, MDD, and schizophrenia: 1075 

Z ASD: 1076 

Z Gandal et al. 2022, Supplementary Table S3 36, WholeCortex_ASD_FDR < 0.05 1077 

Z Gandal et al. 2018, Supplementary Table S1 
65

, ASD.fdr < 0.05 1078 

Z Parikshak et al. 2016, Supplementary Table S2 64, FDR-adjusted P value, ASD vs CTL < 1079 

0.05 1080 

Z MDD 1081 

Z Jaffe et al. 2022, Supplementary Table S2 66, Cortex_adjPVal_MDD < 0.05 1082 

Z Schizophrenia 1083 

Z Fromer et al. 2016, Supplementary Table S16 67, FDR estimate < 0.05 1084 

Z Gandal et al. 2018, Supplementary Table S1 
65

, SCZ.fdr < 0.05 1085 

Z Jaffe et al. 2018, Supplementary Table S9 70, fdr_qsva < 0.05 1086 
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Z Collado-Torres et al. 2019, Supplementary Table S11 
69

, adj.P.Val < 0.05 & region == 1087 

‘DLPFC’ 1088 

 1089 

A consensus list of DEGs was compiled for each disorder (except MDD where only one study was 1090 

included) by including only those genes identified in at least 2 studies. 1091 

 1092 

Enrichments for these gene sets in each disorder were computed by the aggregate fold change 1093 

method 
104

, i.e. computing the percentile of the mean weight of the DEGs in C1-C3 relative to the 1094 

5,000 random permutations of the gene labels. 1095 

Disorder-associated genes from GWAS (Fig. 4d) 1096 

Genes significantly associated with ASD, MDD, and schizophrenia by GWAS were obtained from: 1097 

Z ASD: Matoba et al. 2020, Supplementary Table S7 
60

 1098 

Z MDD: Howard et al. 2019, Supplementary Table S9 61 1099 

Z Schizophrenia: Trubetskoy et al. 2022, Extended GWAS 
62

: 1100 

https://figshare.com/articles/dataset/scz2022/19426775?file=35775617 1101 

 1102 

Associations with GWAS were calculated using three methods (Supplementary Figure S6):  1103 

Z Enrichment of the prioritised genes identified in each of the specific studies, using the 1104 

aggregate fold change method 104 as described above. 1105 

Z MAGMA 71, a regression technique which tests for association between each of the 1106 

components C1-C3 and the P-values for each gene’s association with ASD, MDD or SCZ (from 1107 

corresponding primary GWAS studies) without requiring a threshold to be applied to the 1108 

GWAS-derived P-values to define a prioritised subset of genes for enrichment analysis. 1109 

MAGMA additionally accounts for gene length and gene-gene correlations. The COVAR 1110 

function of MAGMA was used to test for association of the GWAS P-values with the C1-C3 1111 

gene weights as a continuous variable. For standard MAGMA, a SNP-to-gene mapping window 1112 

of +35kb/-10kb was used. 1113 

Z H-MAGMA 
72

, an extension of MAGMA where SNP-to-gene mapping is performed using Hi-C 1114 

chromatin measurements from postmortem brain tissue so as to capture trans-regulatory 1115 

effects. We used the Hi-C mapping from adult brain DLPFC available online from the original 1116 

H-MAGMA authors. 1117 
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Laminar enrichments shared across DEG and GWAS gene sets (Fig. 4f) 1118 

Enrichments for the marker genes of each cortical layer 38 were computed for the disorder-associated 1119 

gene lists from DEGs and GWAS using Fisher’s exact test. These enrichments were computed both 1120 

with and without filtering for only genes with positive C3 weights. 1121 

Schizophrenia supragranular-specific cortical thinning (Fig. 4g) 1122 

The MRI-derived map of supragranular cortical thinning in schizophrenia was obtained from Wagstyl 1123 

et al. 
63

 (N=90 subjects, 46 cases), and parcellated using the HCP-MMP1.0 parcellation. Pearson’s 1124 

correlations were computed with C1-C3 and significance assessed by spin permutation tests, corrected 1125 

for FDR. 1126 

 1127 

 1128 

Data availability 1129 

Regional scores and gene weights for the transcriptional components C1-C3 are provided in 1130 

Supplementary Table 1. 1131 

 1132 

Gene expression datasets used are all publicly available: 1133 

• The Allen Human Brain Atlas is available at http://human.brain-map.org, and individual donor 1134 

HCP-MMP parcellation images at https://figshare.com/articles/dataset/AHBAdata/6852911.  1135 

• The BrainSpan Atlas is available at https://www.brainspan.org/. 1136 

• The Allen Human Cell Atlas is available at https://portal.brain-map.org/atlases-and-1137 

data/rnaseq. 1138 

• The PsychENCODE dataset is available at https://github.com/dhglab/Broad-transcriptomic-1139 

dysregulation-across-the-cerebral-cortex-in-ASD. 1140 

 1141 

Neuroimaging maps of healthy brain features are available in the neuromaps package 1142 

(https://github.com/netneurolab/neuromaps). For convenience all brain maps used are provided in 1143 

Supplementary Table 3-4. Gene lists used for enrichment analyses were all obtained from prior 1144 

publications as detailed in Methods. 1145 

 1146 
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Code availability 1147 

Analyses were performed with Python v3.10.5 and R v.2.2. Key python packages include: 1148 

abagen==0.1.3, brainspace==0.1.10, neuromaps==0.0.3. Full details of all packages, a Dockerfile and 1149 

link to docker image, and all code used for these analyses are publicly available at 1150 

https://github.com/richardajdear/AHBA_gradients. 1151 
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