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Abstract 9 

A gene can be mutated across a tumor cohort by protein affecting mutations (PAMs), gene 10 

fusions, or copy number alterations (CNAs). These mutations can have a similar phenotypic 11 

effect (i.e., allelic heterogeneity) and should be integrated into a unified gene mutation profile. 12 

We provide OncoMerge as a somatic mutation integration platform that tames allelic 13 

heterogeneity, discovers causal mutations, integrates binary PAM and fusion with quantitative 14 

CNA data types, and overcomes known obstacles in cancer genetics. OncoMerge was applied 15 

to the 9,584 patient tumors from 32 cancers profiled by the TCGA Pan-Cancer Atlas to validate 16 

the novel integration methods. Integration increased the number and frequency of somatically 17 

mutated genes and improved the prediction of the somatic mutation role as either activating or 18 

loss of function. Using OncoMerge integrated somatic mutations boosts the power to infer active 19 

gene regulatory networks that increase the connectedness of the networks and incorporate 20 

more somatic mutations and regulators associated with cancer biology. We extracted 21 

transcription factor (TF) regulatory networks and found that they were enriched with feedback 22 

and feed-forward loop network motifs. Subsequent, signed network motif analysis demonstrated 23 

that coherent switch-like feedback motifs and delay-inducing feed-forward loops were the only 24 

enriched configurations. This enrichment pattern suggests that evolution in general or in the 25 

tumor microenvironment is selecting for these coherent functional configurations. The 26 

OncoMerge integrated somatic mutations provide a more comprehensive platform for studies 27 

linking somatic mutations to downstream cancer phenotypes and will lead to novel biological 28 

insights in clinical samples. 29 
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Introduction 31 

The selective pressures driving the accrual of somatic mutations that affect cancer phenotypes 32 

are shared across cancers. This phenomenon leads to genes being somatically mutated across 33 

multiple cancers, e.g., oncogenes and tumor suppressors. The three main types of somatic 34 

mutations that modify the function of a gene or render it non-functional are:  1) protein affecting 35 

mutations (PAMs), 2) gene fusions, and 3) copy number alterations (CNAs). A PAM is a point 36 

mutation, short insertion, or short deletion inside a gene's coding region or splice sites 1. Gene 37 

fusions occur when genomic rearrangements join two genes into a novel chimeric gene or place 38 

a promoter in front of a new gene, causing misexpression 2. Finally, CNAs occur frequently in 39 

tumors where whole chromosomes, chromosomal arms, or localized genomic segments are 40 

duplicated or deleted 3,4. Somatic mutation via PAM, gene fusion, or CNA can have similar 41 

effects on cancer phenotypes, i.e., allelic heterogeneity. This interchangeability and the erratic 42 

circumstances that produce somatic mutations lead to the mixture of mutation types observed in 43 

large cohorts of patient tumors 1.  44 

Describing how somatic mutations in a gene impact cancer phenotypes requires integrating the 45 

information from all three mutation types. Currently, most studies linking somatic mutations to 46 

cancer phenotypes focus on one mutation type. This leads to missing associations for mutations 47 

primarily found in another type and reduced power to detect associations for mutations with high 48 

allelic heterogeneity that span the mutation types. Thus, a current obstacle facing those 49 

studying the downstream effects of somatic mutations is the lack of an established method for 50 

integrating PAMs, gene fusions, and CNAs into a comprehensive gene mutation profile. The 51 

lack of integration methods is due to several complicating factors. Firstly, the allelic 52 

heterogeneity observed in and between tumors means that different mutations in the same gene 53 

can be equivalently oncogenic. Second, it is challenging to discern driver (causal) from 54 

passenger (non-causal) somatic mutations. Third, an algorithm must be able to systematically 55 

integrate the binary PAM and gene fusion (mutated or not) with the quantitative copy number 56 

from CNAs. Lastly, some tumors have drastically higher somatic mutation rates than other 57 

tumors (e.g., microsatellite instability5 and hypermutation6). These higher mutation rates 58 

confound any frequency-based integration approach and drive the discovery of spurious 59 

somatic mutations. We developed OncoMerge to fill the somatic mutation integration niche by 60 

providing an algorithm that systematically overcomes these obstacles to generate an integrated 61 

gene mutation profile. The input for the OncoMerge algorithm is the output from state-of-the-art 62 

methods for detecting PAMs (MC31 and MutSig2CV7), transcript fusions (PRADA2,8), and CNAs 63 

(GISTIC2.09). The integrated mutation profiles will give more power to detect associations with 64 

cancer phenotypes by capturing all tumors with a somatically mutated gene leading to a more 65 

comprehensive understanding of how genetic alterations drive cancer phenotypes. 66 

The tremendous amount of cancer genome sequencing data generated in the last ten years has 67 

enabled efforts to discover and catalog somatic mutations across many cancers 1,10. Many 68 

algorithms have been developed to discern which somatic mutations are drivers and how the 69 

mutations affect genes 6,7,11–15. The impact of somatic mutations can be classified as activating 70 

(Act) gene function (typically found in oncogenes), or loss of function (LoF) (typically found in 71 

tumor suppressor genes)16. It has also been demonstrated that the systematic integration of 72 

PAM and CNA somatic mutations for a gene improves the ability to determine Act or LoF 73 

status16. These foundational studies have created a platform to develop an algorithm that 74 

systematically integrates the three somatic mutation types. 75 
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The systematic integration of somatic mutations requires choosing a gene-level model that 76 

determines how the data for the three somatic mutation types will be integrated, which in 77 

OncoMerge is called the somatic mutation role. We determine the somatic mutation role by 78 

employing rules similar to those used in OncodriveROLE16 (Figure 1). The possible somatic 79 

mutation roles in OncoMerge are PAM, Fusion, CNA amplification (CNAamp), CNA deletion 80 

(CNAdel), Act, or LoF. The PAM, Fusion, CNAamp, and CNAdel somatic mutation roles use the 81 

somatic mutation profile of the role in the integrated mutation matrix. The Act and LoF are 82 

integrated mutation roles that harness allelic heterogeneity. Allelic heterogeneity is especially 83 

prevalent in tumor suppressor genes, where mutations at many positions in a gene can impede 84 

its function to prevent cancer phenotypes4. Allelic heterogeneity is less prevalent for oncogenes 85 

where a small number of specific gain of function alleles are needed to drive cancer 86 

phenotypes4. Genes underlying CNAs can add another layer of information as tumor 87 

suppressors are often deleted, which has an equivalent oncogenic effect as missense or 88 

truncating PAMs. The LoF role is designated when PAMs, Fusions, and CNAdels are 89 

integrated. Oncogenes are often amplified as this typically leads to overexpression of the 90 

underlying genes, which has a similar positive effect on gene function as a gain of function 91 

PAM. The Act role is designated when PAMs, Fusions, and CNAamps are integrated. 92 

Systematic determination of the somatic gene role and application of the rules laid out above 93 

will be used to integrate the three mutation types into a comprehensive somatic mutation profile. 94 

The algorithms developed to discern somatic mutation drivers for cancers provide a set of gold 95 

standard mutations with gene roles that can be used to assess the performance of the new 96 

OncoMerege algorithm. The gold standards are classified by whether the somatic mutation of a 97 

gene was cancer-specific or not. The TCGA consensus6 and Cancer Gene Census (CGC) from 98 

COSMIC15 were used to develop gold standards with cancer-specific somatically mutated gene 99 

roles. The TCGA consensus is a list of driver genes identified from the TCGA Pan-Cancer Atlas 100 

labeled with somatic mutation role (oncogene or tumor suppressor) and cancer type. The CGC 101 

from COSMIC is an expert-curated database of human cancer driver genes labeled with 102 

somatic mutation role (oncogene and tumor suppressor) and cancer type. The 20/20 rule4, 103 

OncodriveROLE16, and Tokheim ensemble14 were used to develop gold standards with 104 

somatically mutated gene roles. The 20/20 rule defines oncogenes by requiring >20% of 105 

mutations in recurrent positions and tumor suppressors as >20% of recorded mutations are 106 

inactivating (missense or truncating)4. OncodriveROLE is a machine learning algorithm that 107 

classifies genes according to their role (Act or LoF) based on well-curated genomic features16. 108 

The Tokheim ensemble is an ensemble-based method that integrates MutSigCV, 20/20+, and 109 

TUSON methods for predicting gene roles (oncogene and tumor suppressor)14. Comparisons of 110 

somatic mutation role between OncoMerge and the gold standards were facilitated by 111 

converting oncogenes to Act and tumor suppressors to LoF. Finally, a combined gene role 112 

agnostic gold standard was developed based on a union of all somatic mutations from all five 113 

gold standards. These gold standards were used to assess the utility of filters and the quality of 114 

the OncoMerege integrated somatic mutation matrices through their ability to recall somatic 115 

mutations with the appropriate gene role. 116 

A primary goal of OncoMerge is to construct a comprehensive somatic mutation profile that will 117 

increase the power to identify how mutations modulate cancer phenotypes. Previously, we have 118 

used the Systems Genetics Network AnaLysis (SYGNAL) pipeline17 to build causal and 119 

mechanistic gene regulatory networks (GRNs) for 31 cancers from the TCGA Pan-Cancer 120 

Atlas18. Using SYGNAL, we link somatic mutations through the GRN to the hallmarks of 121 
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cancer19–21, thereby linking somatic mutations to cancer phenotypes. These SYGNAL GRNs 122 

describe how somatic mutations influence transcription factor (TF) or miRNA expression, which 123 

modulates the expression of downstream genes. In SYGNAL, somatic mutations are used as 124 

input for the Network Edge Orienting (NEO) portion of the pipeline that infers causal flows of 125 

information (somatic mutation → TF or miRNA regulator → bicluster of co-regulated genes). 126 

Thus, we use the OncoMerge integrated somatic mutation matrices in SYGNAL GRN inference 127 

to demonstrate the increased power to identify how mutations modulate cancer phenotypes. 128 

TFs are a significant factor in regulating gene expression in a cell, and interactions between TFs 129 

could be used to explain much of the overall transcriptional state of a cell. Neph et al., 2012 130 

constructed a human TF gene regulatory network by integrating genome-wide digital genomic 131 

footprinting with DNA recognition motifs across 41 cell types22. The network architecture of 132 

three-node network motifs was investigated and shown to have a pattern similar to other 133 

biologically derived networks23–25. Because these TF regulatory networks were generated based 134 

on DNA binding alone, they are not an active representation of the effect on transcript levels but 135 

static DNA binding maps. On the other hand, SYGNAL GRNs are trained using coexpression as 136 

an integral element of network construction. Therefore, SYGNAL GRNs can be considered 137 

active because transcriptional effects support regulatory interactions. We compare and contrast 138 

the underlying architecture of active TF regulatory networks from SYGNAL relative to static TF 139 

regulatory networks from DNA binding maps. 140 

As proof of principle, we apply OncoMerge to the multi-omic characterization of 32 cancers by 141 

the TCGA PanCancer Atlas to develop filters and demonstrate a meaningful benefit for 142 

downstream analyses. We demonstrate the power of using an integrated mutation matrix in 143 

downstream analysis by re-analyzing the causal relationships for pan-cancer SYGNAL 144 

networks18. We constructed transcription factor (TF) regulatory networks22 and generated triad 145 

significance profiles (TSPs)24 to investigate the underlying network architecture23–25. We provide 146 

the complete OncoMerge code, comprehensive mutation matrices for 32 TCGA cancers, 147 

regulatory networks for 31 cancers, and TF regulatory network architecture for 25 cancers. 148 

These studies demonstrate that OncoMege efficiently integrates PAMs, fusions, and CNAs into 149 

a comprehensive mutational profile that strengthens downstream analyses linking somatic 150 

mutations to cancer phenotypes. 151 

Methods 152 

Clinical and molecular data from TCGA 153 

These studies used standardized, normalized, batch corrected, and platform-corrected multi-154 

omics data generated by the Pan-Cancer Atlas consortium for 11,080 participant tumors18. 155 

Complete multi-omic profiles were available for 9,584 patient tumors. TCGA aliquot barcodes 156 

flagged as "do not use" or excluded by pathology review from the Pan-Cancer Atlas Consortium 157 

were removed from the study. The overall survival (OS, OS.time) data used were obtained from 158 

Liu et al. 201826. 159 

• Somatic protein affecting mutations (PAMs) in TCGA – Somatic PAMs were identified by 160 

the Multi-Center Mutation Calling in Multiple Cancer (MC3) project1 and were 161 

downloaded from the ISB Cancer Gateway in the Cloud (ISB-CGC; https://isb-162 

cgc.appspot.com/). PAMs were required to have a FILTER value of either:  PASS, wga, 163 

or native_wga_mix. In addition, all PAMs needed to be protein-coding by requiring that 164 

Variant_Classification had one of the following values:  Frame_Shift_Del, 165 
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Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense_Mutation, 166 

Nonsense_Mutation, Nonstop_Mutation, Splice_Site, or Translation_Start_Site. 167 

Additionally, mutation calls were required to be made by two or more mutation callers 168 

(NCALLERS > 1). When both normal tissue and blood were available, the blood was 169 

used as the germline reference.  170 

• Statistical significance of PAMs in TCGA – The likelihood that a gene is somatically 171 

mutated by chance alone was determined using MutSig2CV11 and downloaded for each 172 

cancer from the Broad GDAC FIREHOSE (https://gdac.broadinstitute.org/). Genes with a 173 

MutSig2CV False Discovery Rate (FDR) corrected p-value (q-value) less than or equal 174 

to 0.1 were considered significantly mutated11. 175 

• Somatic transcript fusions in TCGA – The TumorFusions portal2 provides a pan-cancer 176 

analysis of tumor transcript fusions in the TCGA using the PRADA algorithm8. 177 

• Somatic copy number alterations (CNAs) in TCGA – Genomic regions that were 178 

significantly amplified or deleted were identified using Genomic Identification of 179 

Significant Targets in Cancer (GISTIC2.0)9 and downloaded for each cancer from the 180 

Broad GDAC FIREHOSE.  181 

Somatic mutation data import and preprocessing 182 

An essential first step in OncoMerge is loading up and binarizing the somatic mutation data. The 183 

somatic mutation data comprised of four primary matrices: 1) PAMs, 2) fusions, 3) CNA 184 

amplifications (CNAamps), and 4) CNA deletions (CNAdels) (Figure 1). In addition, two 185 

derivative matrices Act and LoF are created by merging the PAM with the CNAamps or 186 

CNAdels matrices, respectively (Figure 1). All files are formatted as comma-separated values 187 

(CSV) files with genes as rows and patients as columns unless otherwise noted. 188 

• PAM matrix - The matrix values are [0 or 1]:  zero indicates the gene is not mutated in a 189 

patient tumor, and one indicates the gene is mutated in a patient tumor. 190 

• Fusion matrix - The matrix values are [0 or 1]:  zero indicates no gene fusion in a patient 191 

tumor, and one indicates the gene fused to another genomic locus in a patient tumor. 192 

• CNAamp and CNAdel matrices – The all_thresholded_by_genes.csv GISTIC output file 193 

is used to populate the CNAamp and CNAdel matrices. The all_thresholeded_by_genes 194 

matrix values range from -2 and have no positive bound, and the values indicate the 195 

copy number relative to the background. A cutoff of greater than or equal to 2 was used 196 

to identify deep amplifications and less than or equal to -2 for deep deletions. Only deep 197 

amplifications or deletions were included in these studies due to heterogeneity of cell 198 

types and tumor biopsy purity. Oncomerge allows this threshold to be modified through a 199 

command line parameter ('-gt' or '--gistic-threshold'). 200 

o CNAamp matrix – The matrix values are [0 or 1]:  zero indicates a gene is not 201 

amplified in a patient tumor, and one indicates the gene is amplified in a patient 202 

tumor. 203 

o CNAdel matrix – The matrix values are [0 or 1]:  zero indicates a gene is not 204 

deleted in a patient tumor, and one indicates a gene is deleted in a patient tumor. 205 

• Act matrix – The Act matrix is the bitwise OR combination of the PAM, Fusion, and 206 

CNAamp matrices. The Act matrix has genes as rows and patients as columns. The 207 

matrix values are [0 or 1]: zero indicates the gene is not mutated or amplified in a patient 208 

tumor, and one indicates the gene is either mutated, fused, amplified, or some 209 

combination in a patient tumor. 210 
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• LoF matrix – The LoF matrix is the bitwise OR combination of the PAM, Fusion, and 211 

CNAdel matrices. The LoF matrix has genes as rows and patients as columns. The 212 

matrix values are [0 or 1]:  zero indicates the gene is not mutated or deleted in a patient 213 

tumor, and one indicates the gene is either mutated, fused, deleted, or some 214 

combination in a patient tumor. 215 

Seeding OncoMerge with putative somatic mutations 216 

OncoMerge focuses on likely causal somatic mutations by considering only somatic mutations 217 

that were statistically shown to be mutated more often than expected by chance alone. These 218 

statistically significant mutations were used as seeds for OncoMerge integration. Somatic PAMs 219 

used as seeds were identified with MutSig2CV q-values less than or equal to 0.17 and a 220 

mutation frequency greater than 5%. Gene fusions used as seeds were identified as significant 221 

in PRADA8 and a mutation frequency greater than 5%. CNAamps or CNAdels used as seeds 222 

were identified as significantly amplified or deleted from the amplified genes (amp_genes) or 223 

deleted genes (del_genes) GISTIC output files with residual q-values less than or equal to 0.05. 224 

CNAs from sex chromosomes (X and Y) were excluded. Genes from sex chromosomes can 225 

enter OncoMerge as seeds from PAMs or fusions. These seed genes become the starting point 226 

of the OncoMerge integration. Subsequent steps determine if Act or LoF merged mutation 227 

profiles or their component PAM, Fusion, CNAamp, or CNAdel mutation roles are the most 228 

appropriate integration model for a gene. 229 

Merging somatic mutations in OncoMerge 230 

The mutation role for each seed gene is assigned based on the following criteria (Supp. Fig 1): 231 

• If Act frequency (PAM+Fusion+CNAamp) > PAM+Fusion frequency and the Act 232 

frequency ≥ 5% then the mutation role is set to Act. 233 

• Else LoF frequency (PAM+Fusion+CNAdel) > PAM+Fusion frequency and the LoF 234 

frequency ≥ 5% then the mutation role is set to LoF. 235 

• Else if the gene mutation role is not set to Act or LoF: 236 

o If the gene is a PAM seed gene (MutSig2CV q-value ≤ 0.1 and frequency ≥ 5%) 237 

and has a frequency greater than Fusion, CNAamp, and CNAdel, then the 238 

mutation role is set to PAM. 239 

o Else if the gene is a Fusion seed gene (TumorFusion.org frequency ≥ 5%) and 240 

has a frequency greater than PAM, CNAamp, and CNAdel, then the mutation 241 

role is set to Fusion. 242 

o Else if the gene CNAamp frequency ≥ 5% and has a frequency greater than 243 

PAM, Fusion, and CNAdel, then the mutation role is set to CNAamp. 244 

o Else if the gene CNAdel frequency ≥ 5% and has a frequency greater than PAM, 245 

Fusion, and CNAamp, then the mutation role is set to CNAdel. 246 

Permuted q-value (PQ) filter 247 

For putative Act and LoF mutations, a permuted q-value is computed by randomizing the order 248 

of rows in the PAM, Fusion, and CNA mutation matrices' and then calculating the randomized 249 

frequency distribution for Acts and LoFs. The observed frequency for an Act or Lof mutation is 250 

then compared to the randomized frequency distribution to compute the permuted p-value. 251 

Permuted p-values are corrected into q-values using the multiple-test Benjamini-Hochberg FDR-252 

based correction method. Only Acts or LoFs that had a permuted q-value ≤ 0.1 were retained. 253 

Any Act or LoF with a permuted q-value > 0.1 was set to the mutation role of either PAM, 254 
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Fusion, CNAamp, or CNAdel based on which mutation role had the highest frequency. The 255 

permuted q-value cutoff can be set through a command line parameter ('-pq', --perm_qv'). 256 

Minimum final frequency (MFF) filter 257 

A low-pass genomic filter was applied to each CNA locus if the CNA locus had ≥ 10 underlying 258 

genes. The number of genes underlying a CNA locus can be set through a command line 259 

parameter ('-mlg', --min_loci_genes'). The filter keeps only the gene(s) with the maximum 260 

mutation frequency, and all genes with the maximum mutation frequency are kept for ties. 261 

Microsatellite hypermutation censoring (MHC) filter 262 

The TCGA tumors used in this study have been characterized for both MSI5 and hypermutation6 263 

(Supplementary Table 1). The tumors with MSI or hypermutation are loaded as a blocklist of 264 

patient IDs through a command line parameter ('-bl' or '--blocklist'). All tumors in the blocklist are 265 

excluded from consideration by the PQ and MFF filters while determining the genes to include in 266 

the final somatic mutation matrix. The mutation status for blocklist tumors are included in the 267 

final integrated mutation matrix. 268 

OncoMerge outputs 269 

OncoMerge provides four output files that provide valuable information about the integration 270 

process and the final integrated mutation matrix that can be used in downstream studies. Here 271 

is a brief description of each file and its contents: 272 

• oncoMerge_mergedMuts.csv – The integrated mutation matrix is comprised of genes 273 

(rows) by patient tumors (columns) of mutation status after integration by OncoMerge. 274 

The matrix values are [0 or 1]:  zero indicates that the gene is not mutated in a patient 275 

tumor, and one indicates that the gene was mutated in a patient tumor. 276 

• oncoMerge_CNA_loci.csv – A list of the genes mapping to each CNAamp or CNAdel 277 

locus included in the OncoMerge integrated mutation matrix. 278 

• oncoMerge_ActLofPermPV.csv – List of all significant Act and LoF genes, their 279 

OncoMerge mutation role, frequency, empirical p-value, and empirical q-value. This 280 

output is before the application of the low-pass frequency filter. 281 

• oncoMerge_summaryMatrix.csv – Matrix of genes (rows) by all information gathered by 282 

OncoMerge. 283 

To aid in comparisons between runs, we provide the save permutation option ('-sp' or '--284 

save_permutation') to output permutation results so that the same permuted distribution can be 285 

used with different parameters in separate runs. We also provide the load permutation option ('-286 

lp' or '--load_permutation') to load up the permuted distribution from a previous run. The 287 

permuted distributions are saved in the following files if requested: 288 

• oncomerge_ampPerm.npy, oncomerge_delPerm.npy – Snapshot of the non-289 

deterministic permutation results from combining PAM, Fusion, and CNAamp or PAM, 290 

Fusion, and CNAdel frequencies, respectively. 291 

Gold standard cancer-specific gene role validation datasets 292 

Gold standard datasets are vital to validating the usefulness of each feature in OncoMerge. Two 293 

different sources of gold standard cancer-specific gene role (Act or LoF) datasets were used to 294 

validate the OncoMerge predicted tumor-specific gene roles: 295 

• TCGA consensus:  The TCGA consensus was constructed by Bailey et al., 2018 296 

wherein they catalog a list of 299 unique oncogenesis associated genes6. In the TCGA 297 
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consensus 280 cancer-specific oncogene roles were identified, and 417 cancer-specific 298 

tumor suppressor roles were identified (Supplementary Table 2). 299 

• Cancer Gene Census (CGC):  The CGC was developed by Catalogue of Somatic 300 

Mutations in Cancer (COSMIC) as an expert-curated database of human cancer-driving 301 

genes15. CGC cancers were mapped to the TCGA cancers by manual curation 302 

(Supplementary Table 2). In the CGC 205 cancer-specific oncogene roles were 303 

identified, and 304 cancer-specific tumor suppressor roles were identified 304 

(Supplementary Table 2). 305 

Gold standard gene role validation datasets 306 

Three different sources of gold standard gene role (Act or LoF) datasets were used to validate 307 

the OncoMerge predicted gene roles: 308 

• 20/20 rule:  The 20/20 rule defines oncogenes (Act) by requiring >20% of mutations in 309 

recurrent positions, and tumor suppressors (LoF) as >20% of recorded mutations are 310 

inactivating (missense or truncating)4. With the 20/20 rule, 54 oncogene roles were 311 

identified, and 71 tumor suppressor roles were identified (Supplementary Table 2). 312 

• OncodriveROLE:  The OncodriveROLE is a machine learning algorithm that classifies 313 

genes according to their role based on well-curated genomic features16. With 314 

OncodriveROLE, 76 oncogene (Act) roles were identified, and 109 tumor suppressor 315 

(LoF) roles were identified (Supplementary Table 2). 316 

• Tokheim Ensemble:  Ensemble-based method from Tokheim et al., 201614, which 317 

integrates MutSigCV, 20/20+, and TUSON methods for predicting gene roles. With the 318 

Tokheim Ensemble, 78 oncogene (Act) roles were identified, and 212 tumor suppressor 319 

(LoF) roles were identified (Supplementary Table 2). 320 

Computing overlap between OncoMerge and gold standards 321 

A hypergeometric enrichment statistic was used to compute the significance of overlap 322 

observed between each gene role in OncoMerge versus the gold standards. When possible, the 323 

tumor specificity of the gene role was taken into consideration (TCGA consensus and CGC). 324 

Enrichment p-values less than the Bonferroni corrected alpha value of 0.002 were considered 325 

significant. 326 

TCGA Pan-Cancer SYstems Genetics Network AnaLysis (SYGNAL) 327 

The mRNA and miRNA expression data required to run SYGNAL were obtained from Thorsson 328 

et al., 201818. The SYGNAL pipeline is composed of 4 steps and command-line parameters for 329 

all programs are described in detail in Plaisier et al., 201617. Each cancer was run separately 330 

through the pipeline to reduce the confounding from tissue of origin differences. Highly 331 

expressed genes were discovered for each cancer by requiring that genes have greater than or 332 

equal to the median expression of all genes across all conditions in ≥ 50% of patients18. These 333 

gene sets were then used as input to SYGNAL to construct the gene regulatory networks 334 

(GRNs) for each cancer. 335 

The underlying cMonkey2 biclustering results are identical to those from Thorsson et al., 201818 336 

as they do not rely upon genetic information. Using Network Edge Orienting (NEO)17,27 somatic 337 

mutations are integrated with bicluster and regulator expression in the next step. The systems 338 

genetics analysis with NEO was modified from Thorsson et al., 2018 in two ways:  1) we 339 

removed constraints to identify immune-related regulatory interactions, which substantially 340 

increased the size of the network by including additional patient survival-associated biclusters 341 
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not associated with immune functions; and 2) the OncoMerge integrated mutation matrix was 342 

used and compared against the PAM only mutation matrix used previously in Thorsson et al., 343 

201818. 344 

 345 

TF regulatory network construction for PanCan-SYGNAL networks 346 

A TF regulatory network was built for each cancer in three steps (Figure 6A). First, the TFs 347 

regulating survival-associated biclusters were extracted from each cancer's SYGNAL GRN. 348 

Second, a preliminary TFregulator→TFtarget regulatory network was constructed based on the 349 

presence of a binding site for a putative TFregulator in the promoter of a TFtarget from the 350 

Transcription Factor Target Gene Database17 (http://tfbsdb.systemsbiology.net). TF family 351 

expansion17 was used to supplement TFs that did not have an experimentally determined DNA 352 

recognition motif in the database. The assumption was that the motifs within a TF family would 353 

not vary significantly. Therefore TF family members from the TFClass database28 with a known 354 

DNA recognition motif can be used as a proxy for a TF with no known DNA recognition motif. 355 

Finally, the putative TFregulator→TFtarget regulatory network was filtered by requiring a significant 356 

Pearson correlation between the mRNA expression of the TFregulator and TFtarget (Pearson's |R| ≥ 357 

0.3 and p-value ≤ 0.05). The sign of the correlation coefficient can be used to determine the role 358 

of a regulatory interaction: a positive correlation coefficient equates to the TFregulator being an 359 

activator, and a negative correlation coefficient equates to the TFregulator being a repressor. 360 

Networks with fewer than 50 interactions were not included in the analyses as they were not 361 

sufficiently powered to run the network motif analysis. The cancer regulatory networks for 362 

DLBC, KICH, KIRP, OV, TGCT, and THYM were excluded from further studies. 363 

 364 

TF regulatory network motif analysis 365 

Three-node network motifs were enumerated from the TF regulatory networks using mfinder23 in 366 

the same manner as Neph et al., 201222 and used to compute triad significance profiles 367 

(TSPs)24. The parameters used with mfinder v1.20 were22:  motif size set at 3 (-s 3), requested 368 

250 random networks to be generated (-r 250), and the Z-score threshold was set at -2000 to 369 

ensure all motifs are reported (-z -2000). All Z-scores were extracted for each cancer and 370 

converted to triad significance profiles using the methods of Milo et al., 200424. 371 

 372 

For consistency, the TF regulatory networks for the 41 different cell types from Neph et al., 373 

201222 were downloaded from http://www.regulatorynetworks.org/ and analyzed using the same 374 

approach described above. 375 

 376 

Signed network motif analysis incorporating TF regulator interaction roles 377 

The enrichment of signed feed-forward loops (FFLs), regulated feedback, and regulating 378 

feedback network motifs was computed using FANMOD25, which takes into consideration TF 379 

regulatory roles (activation and repression). The command line version of FANMOD from 380 

IndeCut29 was used with default parameters, except for the inclusion of regulatory role (colored 381 

edges)25 (fanmod 3 100000 1 <input_file> 1 0 1 2 0 1 0 1000 3 3 <output_file> 1 1). Z-scores for 382 

signed FFLs, regulated feedback, and regulating feedback network motifs were extracted for 383 

each cancer and converted to triad significance profiles using the methods of Milo et al., 200424. 384 

The signed FFL network motifs are broken down into C1, C2, C3, C4, I1, I2, I3, and I4, as 385 

described previously30. 386 

 387 
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Results 388 

Establishing a baseline for the integration of somatic mutations 389 

Somatic mutations play a significant role in cancer pathogenesis, and the main mutation types 390 

are PAMs, fusions, and CNAs (amplifications and deletions). Somatic mutation of the same 391 

gene with different mutation types can have similar downstream effects on cancer phenotypes. 392 

We have developed OncoMerge as a systematic method to integrate PAM, fusion, and CNA 393 

somatic mutations into a more comprehensive mutation matrix for subsequent analyses. 394 

OncoMerge systematically integrates somatic mutations and defines a role for each gene 395 

(Figure 1):  PAM, fusion, CNA deletion (CNAdel), CNA amplification (CNAamp), Activating 396 

(Act), and Loss of Function (LoF). The role assigned to a gene describes the rubric used to 397 

integrate the data from the source data matrices. 398 

A significant part of developing OncoMerge was constructing and optimizing the statistical filters 399 

that provide an essential quality control step to identify somatically mutated genes that are more 400 

likely to be functional in tumor biology. The selection and optimization of OncoMerge statistical 401 

filters were performed using the 9,584 patient tumors from 32 cancers profiled by the TCGA 402 

Pan-Cancer Atlas1,6. We used three metrics to assess the value of potential filters:  1) impact on 403 

the number of somatically mutated genes (Figure 2A); 2) impact on the distribution of the 404 

number of genes mapping to genomic loci (Figure 2B); and 3) significance of the overlap 405 

between somatically mutated genes from OncoMerge with gold standard datasets (including 406 

overlap with gene roles and tumor-specific gene roles; Figure 2C; Supplementary Table 3). 407 

These metrics ensure that the integrated somatic mutations are consistent with prior knowledge 408 

and that the size of CNA mutations does not overwhelm the integration algorithm. 409 

Next, we determined the integration baseline by applying OncoMerge to the TCGA Pan-Cancer 410 

Atlas without filtering. Slightly less than one-third of the genome was considered somatically 411 

mutated in at least 5% or greater of tumors in at least one of the 32 cancers (30% or 6,028 412 

genes, Figure 2A). We observed a highly significant overlap between OncoMerge somatically 413 

mutated genes and the combined gold standard (genes = 395, p-value = 1.1 x 10-44, Figure 2C) 414 

when gene role was not considered. Significant overlaps existed between the LoF somatic 415 

mutations from three gold standards (TCGA consensus, CGC, and Vogelstein) with the somatic 416 

mutations with the LoF predicted role from OncoMerge (Figure 2C). None of the comparisons of 417 

Act somatic mutations were significantly overlapping (Figure 2C). Many of the 6,028 genes map 418 

to the same copy number alteration genomic locus (Figure 2B). These unfiltered results reveal 419 

two main integration biases. First, there is no overlap of Act somatic mutations with previously 420 

identified Act mutations. Second, the integration with CNAs is causing the inclusion of many 421 

passenger mutations mapping to the same genomic locus. OncoMerge applied to the TCGA 422 

Pan-Cancer Atlas without filtering provides a baseline to benchmark success. Addressing the 423 

integration biases we observed is the impetus we had for developing and optimizing filters for 424 

OncoMerge. 425 

Developing an optimal filtering strategy for the integration of somatic mutations 426 

A key consideration in developing OncoMerge was that integrating the somatic mutation types 427 

should highlight the functional somatic mutations over passenger mutations. Therefore, we 428 

created two filters designed to prioritize somatically mutated genes that are more likely to be 429 

functional. The first filter determined if the final mutation frequency after integrating PAM, fusion, 430 

and CNA somatic mutations is larger than expected by chance alone. A permutation-based 431 

approach empirically determined the background integrated mutation frequency distribution. 432 
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Then the observed frequencies are compared to the randomized background distribution to 433 

calculate permuted p-values, which are corrected using the Benjamini-Hochberg method to 434 

provide permuted q-values. A permuted q-value ≤ 0.1 denotes a significant final mutation 435 

frequency. The permuted q-value (PQ) filter reduced the number of somatically mutated genes 436 

to 5,630 (Figure 2A). This filtering improved LoF somatic mutations from three to four gold 437 

standards (TCGA consensus, CGC, Vogelstein, and OncodriveROLE) with the somatic 438 

mutations that had the LoF predicted role from OncoMerge. Still, the Act comparisons did not 439 

show significant enrichment (Figure 2C). The PQ filter had a minimal impact on the number of 440 

genes per locus (Figure 2B). This lack of significant overlap for Act somatic mutations 441 

demonstrates that further filtering is required. 442 

The second filter deals with passenger gene somatic mutations. An average CNA encompasses 443 

3.8 ± 7.9 Mb of genomic sequence31, and genomic segments of this size typically include many 444 

genes. These large genomic regions make it difficult to determine which of the affected genes 445 

are the functional gene(s) underlying the CNA locus without integrating additional information. 446 

We assert that passenger genes underlying a CNA locus can be considered noise and can be 447 

identified by the lack of allelic heterogeneity. Thus, functional gene(s) can be identified through 448 

allelic heterogeneity that boosts the somatic mutation frequency for a gene above the 449 

background CNA frequency. We designed a low-pass filter that retains only the gene(s) with the 450 

maximum final frequency (MFF). The MFF filter is only applied if a locus has more than ten 451 

genes. Application of the MFF filter dramatically reduced the number of somatically mutated 452 

genes from 6,028 to 1,459 (Figure 2A) and the number of genes per locus (Figure 2B). We 453 

additionally observed a marked improvement in overlap with the gold standards. Significant 454 

enrichment was observed for four Act gold standards with somatic mutations that OncoMerge 455 

predicts to be Act, and all five of the LoF gold-standard versus OncoMerge predicted LoF 456 

comparisons (Figure 2C). The MFF filter directly addresses the issue of too many genes in a 457 

CNA locus. Removing more than three-quarters of the somatically mutated genes improves the 458 

overlaps with gold standards. 459 

We then assessed the impact of applying both the PQ and MFF filters. Simultaneous application 460 

of both filters led to a slight reduction in the number of somatically mutated genes beyond the 461 

MFF filter (1,398 genes; Figure 2A), and the improvement in the number of genes per locus 462 

was retained (Figure 2B). There was also an improvement in the significant overlap with gold 463 

standards where all five LoF gold-standard versus OncoMerge predicted LoF and four Act gold-464 

standard versus OncoMerge predicted Act were significant (Figure 2C). Importantly, none of the 465 

gold standard Act versus LoF or LoF versus Act comparisons were significant for any filter 466 

combination, demonstrating that the OncoMerge predicted roles are consistent with prior 467 

knowledge. 468 

Reducing biases due to microsatellite instability and hypermutation 469 

Microsatellite instability (MSI) and hypermutation phenotypes drastically increase the number of 470 

somatic mutations in a tumor. The PQ and MFF filters and OncoMerge's core algorithm rely 471 

upon somatic mutation frequency which is susceptible to confounding by MSI or hypermutation. 472 

Fortunately, all TCGA tumors used in this study are characterized for both MSI5 and 473 

hypermutation6 status (Figure 3A). We observed a highly significant positive correlation 474 

between MSI/hypermutation frequency and the total number of somatic mutations per cancer 475 

after integration by OncoMerge (R = 0.69 and p-value = 1.1 x 10-5). This strong positive 476 

correlation demonstrates that MSI/hypermutation is likely inflating the number of somatic 477 
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mutations discovered by OncoMerge. Therefore, we created the MSI and hypermutation 478 

censoring filter (MHC) to exclude these tumors while OncoMerge determines which genes to 479 

include in the final somatic mutation matrix. The mutation status for tumors with MSI and 480 

hypermutation are included for genes in the final integrated mutation matrix. Applying the MHC 481 

filter alongside the PQ and MFF filters reduced the overall number of somatically mutated genes 482 

(1,133 genes; Figure 2A) and had minimal impact on the number of genes per locus (Figure 483 

2B; Supplementary Table 4). The combined PQ, MFF, and MHC filters decreased the 484 

correlation between the MSI/hypermutation frequency (R = 0.53 and p-value = 1.7 x 10-3). All 485 

ten of the gold standard Act vs. Act and LoF vs. LoF comparisons were significant. These 486 

results established that the MHC filter is valuable for removing passenger mutations introduced 487 

by tumors with severely increased somatic mutation rates. The PQ, MFF, and MHC filters 488 

comprise the default and final OncoMerge filter set. The filters deal with known complications in 489 

cancer genetics and ensure that the mutation roles in the integrated matrix are correctly 490 

assigned. 491 

Benefits of an integrated somatic mutation matrix 492 

We evaluated the benefits of systematic somatic mutation integration by comparing OncoMerge 493 

integrated somatic mutation matrices to those from PAMs. The PAM somatic mutation matrices 494 

were used as a reference point because we have successfully used them as the sole source for 495 

somatic mutations in previous studies17,18. We assessed the benefits of integration by tabulating 496 

the number of somatic mutations and their roles (Figure 3B), the number of genes added by 497 

integration (Figure 3C), and the increase in somatic mutation frequency due to integration 498 

(Figure 3E). Impressively, Act and LoF mutations represented the bulk of the somatic mutations 499 

in 30 cancers (Figure 3B). The papillary thyroid carcinoma (THCA) and kidney chromophobe 500 

(KICH) were the only cancers that lacked Act or LoF mutations. Consistent with Agrawal et al. 501 

201432, THCA had only three mutations with a frequency ≥ 5% BRAF, NRAS, and RET. On the 502 

other hand, KICH was under-sampled in the TCGA Pan-Cancer atlas (n = 65), and LoF and Act 503 

mutations would likely be discovered with the inclusion of more patient tumors. 504 

We then investigated how many new genes the integration added for each cancer. Integration 505 

added at least one somatically mutated gene for each cancer (Figure 3C), and more than eighty 506 

somatically mutated genes for BLCA, LUAD, and UCEC (Figure 3C). The somatically mutated 507 

genes added by OncoMerge make the integrated somatic mutation matrices more 508 

comprehensive. 509 

Next, we investigated the frequencies of the somatic mutations from the OncoMerge integrated 510 

mutation matrices. The genes with the highest frequency map to well-known oncogenes (e.g., 511 

BRAF) and tumor suppressors (e.g., APC and TP53; Figure 3D). The two tumor suppressor 512 

genes APC and TP53 were mutated in greater than eighty percent of the tumors for multiple 513 

cancers (Figure 3D). The APC gene was mutated in greater than eighty percent of tumors for 514 

colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ). The TP53 gene was 515 

mutated in greater than eighty percent of tumors for esophageal carcinoma (ESCA), lung 516 

squamous carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), rectal carcinoma 517 

(READ), and uterine carcinosarcoma (UCS). These frequently mutated genes in the OncoMerge 518 

integrated mutation matrices are consistent with prior knowledge of somatic mutations for each 519 

cancer. 520 

Finally, we calculated the frequency added through integration by subtracting the integrated 521 

mutation frequency from the PAM frequency. The most substantial increases in somatic 522 
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mutation frequency were observed for TMPRSS2-ERG in prostate adenocarcinoma (PRAD) 523 

and CDKN2A in mesothelioma (MESO), glioblastoma (GBM), diffuse large B-cell lymphoma 524 

(DLBC), and esophageal carcinoma (ESCA; Figure 3E). Neither TMPRSS2-ERG nor CDKN2A 525 

would have been identified as somatically mutated without incorporating fusions and CNAs, 526 

respectively. These findings demonstrate that OncoMerge significantly improves the number 527 

and frequency of somatically mutated genes in most cancers. Also, these results show that the 528 

systematic integration of PAM, fusion, and CNA somatic mutations is crucial for obtaining a 529 

comprehensive mutation matrix for each cancer. 530 

Pan-cancer somatic mutations capture many known tumor suppressors and 531 

oncogenes 532 

Genes mutated in multiple cancers are of great interest as selective pressures have found a 533 

common solution in different contexts to influence cancer phenotypes. Therefore, we searched 534 

for genes somatically mutated in at least five cancers in the OncoMerge integrated mutation 535 

matrices. The resulting gene list could be broken down into two groups of somatic mutations:  536 

the LoF set (n = 28, Figure 4A) and the Act set (n = 18, Figure 4B). The FBXW7, KMT2C, and 537 

KMT2D somatic mutations were challenging to classify as LoF or Act. The genes FBXW7 and 538 

KMT2D were somatically mutated with PAMs in six and seven cancers, respectively (Figure 539 

4A). The gene KMT2C (also known as MLL3) was primarily LoF and PAM but had the mutation 540 

role of Act for ovarian cancer (OV) (Figure 4B). Based on a literature search, all three genes 541 

have been classified as tumor suppressors33–35. Therefore, we grouped FBXW7, KMT2C, and 542 

KMT2D mutations with the LoF set. 543 

The pan-cancer somatically mutated genes harbored many well-known tumor suppressors and 544 

oncogenes (Figure 4C). As expected, tumor suppressors33 were significantly enriched in the 545 

LoF group (overlap = 20, p-value = 2.0 x 10-20), and oncogenes36 were significantly enriched in 546 

the Act group (overlap = 8, p-value = 9.2 x 10-9). The top three most somatically mutated tumor 547 

suppressors were TP53, PTEN, and CDKN2A. These three tumor suppressors control important 548 

checkpoints in the cell cycle making them functionally interesting. The gene TP53 was 549 

somatically mutated in 24 cancers, primarily by PAMs, but four LoF were also observed for 550 

glioblastoma (GBM), liver hepatocellular carcinoma (LIHC), prostate adenocarcinoma (PRAD), 551 

and sarcoma (SARC). The top three most mutated oncogenes across cancers were PIK3CA, 552 

KRAS, and CCNE1. Two of these genes (PIK3CA and KRAS) become overactive kinases when 553 

mutated, and CCNE1 is a fundamental part of the cell cycle regulatory machinery. Both PIK3CA 554 

and KRAS have PAM and Act mutation roles across the different cancers, and only the NFE2L2 555 

gene has a similar mixture of PAM and Act mutation roles. The remainder of the oncogenes are 556 

like CCNE1 in that the gene somatic mutation roles are all Act. These pan-cancer analyses 557 

further validate the systematic somatic mutation integration by OncoMerge through the 558 

unbiased recall of tumor suppressors and oncogenes. 559 

Improving gene regulatory network inference 560 

A major goal of developing OncoMerge was to construct an integrated somatic mutation profile 561 

that would increase the power to identify how mutations modulate cancer phenotypes. 562 

Previously we used PAMs from the cancers in the TCGA Pan-Cancer Atlas as input for 563 

SYGNAL to construct gene regulatory networks (GRNs)18. SYGNAL GRNs are composed of 564 

causal and mechanistic interactions linking somatic mutations to a TF or miRNA regulator to a 565 

co-regulated set of genes (bicluster). Somatic mutations in SYGNAL are used as input for the 566 

Network Edge Orienting (NEO) portion of the pipeline that infers causal flows of information 567 
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(somatic mutation → TF or miRNA regulator → bicluster of co-regulated genes). Therefore, we 568 

recomputed NEO analyses using the OncoMerge integrated somatic mutation matrices for each 569 

cancer in the TCGA Pan-Cancer Atlas to demonstrate the increased power to detect causal 570 

flows of information. The resulting networks were filtered to include only biclusters with good 571 

quality co-expression that were significantly associated with patient survival. Regulatory 572 

interactions were required to be both causal (significant evidence of information flow between a 573 

mutation → regulator → bicluster) and mechanistic (enrichment of regulator binding sites in the 574 

promoter or 3' UTR of the bicluster genes). We compare SYGNAL GRNs inferred using 575 

OncoMerge integrated mutation matrices (Supplementary Table 5) with SYGNAL GRNs 576 

inferred using the legacy PAM-based mutation matrices from Thorsson et al., 2018. 577 

The GRNs are comprised of nodes and edges. The degree of a node is the number of edges 578 

connecting it to other nodes. The average degree is a standard network metric computed as the 579 

average of all node degrees in the network. We found that the average degree was larger for 26 580 

OncoMerge GRNs relative to legacy GRNs (Figure 5A). The exceptions were GBM (average 581 

degree was equal) and COAD and STAD (legacy had a larger average degree). COAD and 582 

STAD have many MSI and hypermutation tumors (Figure 3A), suggesting that the MHC filter 583 

removed spurious associations. Furthermore, the hypothesis that MSI and hypermutation 584 

inflated the average degree of GRNs is supported by the reduction in the number of COAD 585 

mutations in the OncoMerge GRN relative to the legacy GRN (Figure 5B). Thus, we have 586 

increased the average degree in the networks and addressed a systematic bias found in legacy 587 

networks. 588 

Next, we considered the number of mutations in each GRN predicted to modulate the activity of 589 

regulators. The OncoMerge GRNs contained more somatic mutation nodes than the legacy 590 

GRNs for all cancers but COAD, likely due to MSI and hypermutation as described above 591 

(Figure 5B). Then, we assessed the recall of somatic mutations previously associated with 592 

each cancer from the DisGeNET database37. All but two OncoMerge GRNs recalled more 593 

previously associated somatic mutations than the legacy GRNs (Figure 5C). The exceptions 594 

were UVM with the same amount and COAD with fewer (Figure 5C). This demonstrates that 595 

OncoMerge integrated mutation matrices provide increased power for linking somatic mutation 596 

matrices into GRNs, and improve the capture of somatic mutations previously associated with 597 

each cancer. 598 

Finally, we considered the number of predicted causal and mechanistic transcription factor (TF) 599 

regulators in each GRN. The OncoMerge GRNs contained more predicted TF regulators than 600 

legacy GRNs for all but GBM, which had one less TF (Figure 5D). We also assessed the recall 601 

of TFs previously associated with each cancer from the DisGeNET database37,38. Twenty-four of 602 

the OncoMerge GRNs recalled more previously associated TFs than legacy GRNs (Figure 5E). 603 

The GBM and KIRP GRNs had the same amount, and KICH and UVM had no recall of 604 

previously associated TFs in either GRN (Figure 5E). In summary, using OncoMerge integrated 605 

mutation matrices in GRN construction builds more extensive and biologically meaningful 606 

networks.  607 

Comparing active and static TF regulatory network architectures 608 

The interactions between TFs are important for generating the transcriptional state of a human 609 

cell. The underlying architecture of TF regulatory networks, comprised of TFs and their 610 

interactions, are typically explored by enumerating all three-node network motifs and computing 611 
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their enrichment or depletion into triad significance profiles (TSPs)24. Most studies of network 612 

motif enrichment have relied upon unsigned interactions22,24,39–42, which ignore whether the 613 

interaction is activating or repressing. To facilitate comparisons, our first analysis of network 614 

architecture uses unsigned TSPs to compare static and active TF regulatory networks. Static TF 615 

regulatory networks were constructed using chromatin accessibility and DNA binding motifs for 616 

41 cell types22. These TF regulatory networks are static because they do not incorporate gene 617 

expression data in their construction. Active TF regulatory networks are derived from the 618 

OncoMerge augmented SYGNAL pan-cancer GRNs, that were trained using patient tumor 619 

transcriptional data and therefore are comprised of active TF regulatory interactions. Using the 620 

following steps, we constructed TF regulatory networks for each cancer from the pan-cancer 621 

SYGNAL GRNs (Figure 6A). First, we extracted all the TF regulators from the pan-cancer 622 

GRNs. Interactions between TFs were inferred based on the presence of DNA binding motifs 623 

from the TF target gene database17, and a significant correlation between the TF regulator and 624 

TF target in patient tumor expression (Pearson's |R|  0.3 and p-value  0.05; Figure 6A; 625 

Supplementary Table 6). The enrichment (or depletion) of motifs in the network was computed 626 

using TSPs24. Triad significance profiles were calculated for twenty-five TF regulatory networks 627 

and summarized as the median TSP (Figure 6A & B). We excluded the cancer types DLBC, 628 

KICH, KIRP, OV, TGCT, and THYM because they had too few inferred regulatory interactions 629 

(< 50 interactions). Finally, we recomputed the TSPs for the static TF regulatory networks using 630 

a more recent version of the mfinder algorithm (Figure 6B). 631 

The median TSPs of the active and static TF regulatory networks were highly correlated (R = 632 

0.75, p-value = 3.0 x 10-3; Figure 6B). Demonstrating that the architecture of the active network 633 

resembles the static network. However, the maximum enriched network motifs were different. 634 

The regulated and regulating feedback motifs (motifs 108 and 46) were the most highly enriched 635 

motifs from the static TF regulatory networks and were still enriched, although not as significant 636 

as in the active networks. In contrast, the feed-forward loop (FFL, motif 38) is the most highly 637 

enriched motif in the active TF regulatory networks. These two motifs are quite similar in 638 

structure and differ only by a single edge. Feedback motifs and FFLs can be further broken 639 

down into ten and eight signed network motifs that each have a unique functional output30. Thus 640 

exploring the enrichment of signed network motifs allows the discovery of what functions are 641 

being selected for by evolution in general and the microcosm of tumor biology. 642 

Coherent feed-forward loops enriched in active TF regulatory networks 643 

Incorporating the sign of the regulatory interactions (activating or repressing) splits the FFL motif 644 

into eight signed network motifs classified as coherent (C1, C2, C3, C4) and incoherent (I1, I2, 645 

I3, I4)30. Simulation studies have demonstrated that coherent FFLs lead to delays in target gene 646 

expression, and incoherent FFLs accelerate target gene expression30. FFLs were significantly 647 

enriched in active TF regulatory networks, which led us to question whether coherent, 648 

incoherent, or both FFLs were enriched. In active GRNs, the sign of the correlation between the 649 

TF regulator to TF target can be used to determine the sign of the interaction (R > 0 equates to 650 

activation, R < 0 equates to repression). The four coherent FFLs were enriched in the active TF 651 

regulatory networks (Figure 6C; Supplementary Table 7), and incoherent FFLs were severely 652 

under-enriched (Z << 0). In summary, coherent FFLs were enriched in our active TF regulatory 653 

networks, suggesting that transcriptional delay mechanisms must provide a valuable function for 654 

TF regulatory networks. 655 

Coherent switch-like feedback motifs enriched in active TF regulatory networks 656 
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The regulated and regulating mutual feedback motifs have a two-node feedback loop at their 657 

core. The double-positive and double-negative two-node mutual feedback loops act like 658 

switches43. We tested the twenty signed regulated and regulating mutual feedback network 659 

motif configurations for enrichment in TF regulatory networks. Three regulating and three 660 

regulated signed mutual feedback motifs (Figure 6C; Supplementary Table 7). These six 661 

enriched regulated and regulating mutual feedback motifs had a commonality in their 662 

configuration. Firstly, all the network motifs were coherent. Coherent regulated and regulating 663 

feedback loops have interaction signs between the feedback loop that are either double-positive 664 

or double-negative. And the regulated or regulating node interacts with the feedback loop nodes 665 

using the same sign for double-positive feedback loops and the opposite sign for double-666 

negative feedback loops. Thus, there are three coherent configurations for both regulated and 667 

regulating mutual feedback motifs making six total, coinciding with the six enriched 668 

configurations (Figure 6C; Supplementary Table 7). The enriched motifs containing a double-669 

positive feedback loop had the same interactions with the non-feedback loop node, both 670 

activating or repressing (Figure 6C). The enriched motif containing a double-negative feedback 671 

loop had opposing interactions with the non-feedback loop node, one activating and one 672 

repressing (Figure 6C). These enriched signed network motifs are the configurations that 673 

function as molecular switches44. Again, evolution has selected for coherent network motif 674 

configurations likely because of their function. 675 

Discussion 676 

We developed OncoMerge to integrate PAMs, fusions, and CNAs into a more accurate 677 

representation of the somatic mutation landscape of patient tumors. The OncoMerge integration 678 

algorithm and three filters (PQ, MFF, and MHC) effectively address the issues of allelic 679 

heterogeneity and the unification of binary and quantitative mutation data. These issues have 680 

forced most studies of somatic mutations to focus on one somatic mutation type and were the 681 

impetus for us to develop OncoMerge for the integration of the three most common somatic 682 

mutation types. We tested OncoMerge by integrating the somatic mutation data from 32 cancers 683 

from the TCGA Pan-Cancer Atlas. Comparison to gold standards confirmed that the genes and 684 

roles selected by OncoMerge were accurate. The integration of somatic mutation types had 685 

several quantifiable benefits for somatically mutated genes. First, most somatically mutated 686 

genes had an integrated role of Act or LoF, demonstrating that consolidation of allelic 687 

heterogeneity is vital to achieving a complete picture of somatic mutations for a patient cohort. 688 

Second, genes somatically mutated primarily by fusions and CNAs were added by the 689 

integration. Lastly, the frequency of many somatically mutated genes increased due to the 690 

integration of the three somatic mutation types. We used the integrated somatic mutations as 691 

input to SYGNAL to demonstrate improvements in power for systems genetics-based inference 692 

of GRNs. Using integrated somatic mutations increased the average connectedness of the 693 

GRNs by incorporating more somatic mutations and regulators previously linked to cancer 694 

biology. Next, we found that while the underlying architecture of active SYGNAL TF regulatory 695 

networks and static DNA binding TF regulatory networks were similar overall, the top most 696 

enriched network motifs were different. We discovered that switch-like feedback and delay-697 

inducing feed-forward loop motifs were enriched in TF regulatory networks. We developed and 698 

tested a novel systematic integration tool and demonstrated that integrated somatic mutations 699 

improve our ability to link somatic mutations with cancer phenotypes. 700 

The construction of active GRNs enabled the exploration of signed network motifs and led to the 701 

discovery that specific signed network motif configurations are being enriched. The SYGNAL 702 
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GRNs construction method identifies active gene regulatory interactions by discovering 703 

interactions that are supported by gene expression data from patient tumors [PMID = 704 

27426982]. On the other hand, prior networks were static maps of DNA binding sites 705 

constructed using digital genomic footprinting and the similarity of the underlying sequence of 706 

the footprints for known DNA binding motifs22. The active networks use a correlation-based 707 

method to determine TF regulatory roles (activator or repressor) for the interactions, which is not 708 

possible using static binding maps. Analyzing signed network motifs provides a leap forward in 709 

understanding how the underlying architecture of GRNs functions in real-world biological 710 

systems. OncoMerge integrated somatic mutations offer a more solid platform to infer active 711 

GRNs that can be used to explore the functional architecture of TF regulatory networks. 712 

We discovered that coherent regulated and regulating feedback and FFL network motifs were 713 

enriched in cancer TF regulatory networks. We cannot say whether this enrichment of network 714 

motifs will generalize to all active GRNs or if this is a cancer-specific phenomenon. In normal 715 

organismal development, feedback motifs have been previously shown to be important for cell 716 

fate decision-making45,46. On the other hand, in tumor cells and other cells in the tumor 717 

microenvironment, the enriched feedback motifs may be maintaining a cell fate, or the disease 718 

could be coopting the circuit to drive tumor biology. Likewise, coherent FFL network motifs have 719 

also been associated with enhanced drug resistance47. These coherent motifs are relevant for 720 

normal and diseased cell biology, and evolution has specifically selected these motif 721 

configurations because of their unique functional outputs. 722 

We provide the Oncomerge software in several standard distribution formats to facilitate future 723 

studies that aim to integrate somatic mutations. The source code is available on GitHub 724 

(https://github.com/plaisier-lab/OncoMerge). Finally, a Docker image was created that can be 725 

run as a virtual machine with all dependencies pre-installed 726 

(https://hub.docker.com/r/cplaisier/oncomerge). Detailed documentation is provided, along with 727 

a tutorial that describes the use of OncoMerge. The goal of disseminating OncoMerge in these 728 

ways is to give end-users flexibility to choose what distribution method best fits their 729 

computational platform. 730 

Additionally, we provide the OncoMerge integrated somatic mutation matrices for those planning 731 

studies that use somatic mutations from the TCGA Pan-Cancer Atlas  732 

(https://doi.org/10.6084/m9.figshare.20238867). These integrated somatic mutation matrices 733 

can be used for any downstream analyses incorporating somatic mutations and will provide the 734 

same power boost observed in our studies. In addition, we also offer the pan-cancer SYGNAL 735 

GRNs and TF regulatory networks as supplementary tables to expedite systems genetics 736 

studies of TCGA cancers. We hope these accessible results will facilitate studies linking somatic 737 

mutations to downstream cancer phenotypes and lead to novel biological insights in clinical 738 

samples.  739 

Future improvements to the OncoMerge algorithm include a more quantitative integration 740 

approach for the somatic mutations, a replacement for or an improved maximum final frequency 741 

filter, aggregation across pathways, and a determination of whether other genomic features may 742 

be integrated (ecDNA48 or epigenomics49). Additionally, in future single-cell studies with both 743 

transcriptome and genome information, it would be helpful to have an OncoMerge 744 

implementation that integrates PAM, fusion, and CNA for every single cell. We envision 745 

OncoMerge as a valuable tool in the somatic mutation characterization pipeline. We hope that it 746 
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will facilitate multi-omic studies and lead to novel discoveries that can be translated into clinical 747 

insights. 748 
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Figure legends 855 

Figure 1. OncoMerge integrates PAMs, fusions, and CNAs into an integrated mutation matrix 856 

with the most suitable mutation type for each gene. The input data for OncoMerge includes the 857 

PAM, transcript fusion, and CNA matrices. OncoMerge then generates six matrices (PAM, 858 

Fusion, CNAamp, CNAdel, Act, and LoF) and uses the mutational frequency and statistical 859 

filters to determine each gene's most suitable mutation type. 860 

Figure 2. OncoMerge inferred activating and loss of function mutations overlap significantly with 861 

prior knowledge from five independent gold standard datasets. A. Impact of filter sets on the 862 

number of somatically mutated genes inferred by OncoMerge in at least one cancer. B. Impact 863 

of filter sets on the distribution of genes per CNA locus using the same set of filtering conditions 864 

(y-axis is distributed on a log scale). The dashed line indicates the ten genes per loci cutoff that 865 

invokes the MFF filter. C. Enrichment of the gold standard (GS) activating (Act) or loss of 866 

function (LoF) somatic mutations with OncoMerge (OM) Act or LoF somatic mutations for each 867 

filtering condition:  no filters (None); permuted q-value filter (PQ); maximum final frequency 868 

(MFF); combined PQ and MFF; and combined PQ, MFF, and microsatellite and hypermutation 869 

censoring filter (MHC). After Bonferroni multiple hypothesis correction, significant enrichments 870 

are highlighted in red (p-value ≤ 4.8 x 10-4). The orange arrowheads indicate OM Act vs. GS 871 

Act, and the green arrowheads indicate OM LoF vs. GS LoF. 872 

Figure 3. Summary of effect on number and frequency of somatic mutations after integrating 873 

mutation types. A. Frequency of hypermutation and microsatellite instability across cancers. B. 874 

Number and distribution of mutation types. C. Number of somatically mutated genes with a 875 

frequency ≥5% added after integration. D. Integrated somatic mutation frequencies. E. 876 

Increases in somatic mutation frequency relative to PAM frequency after integration. 877 

Figure 4. Pan-cancer somatic mutations with a consistent functional impact across at least five 878 

cancers. A. Pan-cancer somatic mutations from the loss of functions group. B. Pan-cancer 879 

somatic mutations from the activating group. C. Prior knowledge of tumor suppressor or 880 

oncogene status for each somatically mutated gene (black square indicates known tumor 881 

suppressor or oncogene activity). 882 

Figure 5. Demonstrating improvements in downstream SYGNAL analysis by comparing GRNs 883 

constructed with an OncoMerge integrated somatic mutation matrix versus a legacy network 884 

using only PAMs. A. Average degree of nodes in the PanCaner SYGNAL networks. OncoMerge 885 

= orange, legacy = yellow. B. Mutations per cancer network. OncoMerge = red, legacy = blue. 886 

C. Mutations that overlap with genes previously associated with a specific cancer in DisGeNET. 887 

OncoMerge = red, legacy = blue. D. TFs per cancer network. OncoMerge = green, legacy = 888 

purple. E. TFs that overlap with genes previously associated with a specific cancer in 889 

DisGeNET. OncoMerge = green, legacy = purple. 890 

Figure 6. The architecture of functional disease-specific TF regulatory networks from human 891 

tumors. A. Active TF regulatory network construction pipeline: 1) TFs from all cancer regulatory 892 

networks were identified, 2) A putative map of TF regulatory network interactions was 893 

constructed, 3) TF → TF relationships were filtered using Pearson's correlations computed from 894 

patient tumor data, and 4) compute the triad significance profiles using mfinder. B. Comparison 895 

of active TF regulatory network based on SYGNAL GRNs (red) to the static TF regulatory 896 

network based on ENCODE DNA binding and accessibility (blue, Neph et al., 2012). C. 897 
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FANMOD enrichment normalized Z-scores for the three most enriched motifs from the active TF 898 

regulatory network after incorporating TF regulatory interaction roles (activation or repression). 899 

The first row, titled Coherent motifs, is shaded when the motif configuration is coherent and 900 

white when it is incoherent. Normalized Z-scores are reported for each cancer, and diagonal 901 

dashed lines are inserted when no Z-score was returned. The network motif can be found at the 902 

bottom of each column, colored with regulatory roles (activation = green arrow, repression = red 903 

perpendicular line). C1, C2, C3, C4 = coherent FFLs. I1, I2, I3, I4 = incoherent FFLs. 904 

905 
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Figures 906 

 907 

Figure 1. 908 
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Figure 2. 911 
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Figure 3. 914 
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Figure 4. 917 
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Figure 5. 920 
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Figure 6. 923 
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Supplementary figures 926 

 927 

Supplementary Figure 1. OncoMerge flow-chart that describes how the putative protein 928 

affecting mutation (PAM), transcript fusions (Fusion), and putative copy number alteration 929 

(CNA) data are integrated and filtered to generate a integrated mutation matrix. 930 
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