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Abstract

A gene can be mutated across a tumor cohort by protein affecting mutations (PAMs), gene
fusions, or copy number alterations (CNAs). These mutations can have a similar phenotypic
effect (i.e., allelic heterogeneity) and should be integrated into a unified gene mutation profile.
We provide OncoMerge as a somatic mutation integration platform that tames allelic
heterogeneity, discovers causal mutations, integrates binary PAM and fusion with quantitative
CNA data types, and overcomes known obstacles in cancer genetics. OncoMerge was applied
to the 9,584 patient tumors from 32 cancers profiled by the TCGA Pan-Cancer Atlas to validate
the novel integration methods. Integration increased the number and frequency of somatically
mutated genes and improved the prediction of the somatic mutation role as either activating or
loss of function. Using OncoMerge integrated somatic mutations boosts the power to infer active
gene regulatory networks that increase the connectedness of the networks and incorporate
more somatic mutations and regulators associated with cancer biology. We extracted
transcription factor (TF) regulatory networks and found that they were enriched with feedback
and feed-forward loop network motifs. Subsequent, signed network motif analysis demonstrated
that coherent switch-like feedback motifs and delay-inducing feed-forward loops were the only
enriched configurations. This enrichment pattern suggests that evolution in general or in the
tumor microenvironment is selecting for these coherent functional configurations. The
OncoMerge integrated somatic mutations provide a more comprehensive platform for studies
linking somatic mutations to downstream cancer phenotypes and will lead to novel biological
insights in clinical samples.

Keywords: somatic mutations, allelic heterogeneity, cancer, oncogene, tumor suppressor gene


https://doi.org/10.1101/2022.07.22.501139
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.22.501139; this version posted July 23, 2022. The copyright holder for this preprint (which

31

32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction

The selective pressures driving the accrual of somatic mutations that affect cancer phenotypes
are shared across cancers. This phenomenon leads to genes being somatically mutated across
multiple cancers, e.g., oncogenes and tumor suppressors. The three main types of somatic
mutations that modify the function of a gene or render it non-functional are: 1) protein affecting
mutations (PAMS), 2) gene fusions, and 3) copy humber alterations (CNAs). A PAM is a point
mutation, short insertion, or short deletion inside a gene's coding region or splice sites . Gene
fusions occur when genomic rearrangements join two genes into a novel chimeric gene or place
a promoter in front of a new gene, causing misexpression 2. Finally, CNAs occur frequently in
tumors where whole chromosomes, chromosomal arms, or localized genomic segments are
duplicated or deleted 3. Somatic mutation via PAM, gene fusion, or CNA can have similar
effects on cancer phenotypes, i.e., allelic heterogeneity. This interchangeability and the erratic
circumstances that produce somatic mutations lead to the mixture of mutation types observed in
large cohorts of patient tumors *.

Describing how somatic mutations in a gene impact cancer phenotypes requires integrating the
information from all three mutation types. Currently, most studies linking somatic mutations to
cancer phenotypes focus on one mutation type. This leads to missing associations for mutations
primarily found in another type and reduced power to detect associations for mutations with high
allelic heterogeneity that span the mutation types. Thus, a current obstacle facing those
studying the downstream effects of somatic mutations is the lack of an established method for
integrating PAMs, gene fusions, and CNAs into a comprehensive gene mutation profile. The
lack of integration methods is due to several complicating factors. Firstly, the allelic
heterogeneity observed in and between tumors means that different mutations in the same gene
can be equivalently oncogenic. Second, it is challenging to discern driver (causal) from
passenger (non-causal) somatic mutations. Third, an algorithm must be able to systematically
integrate the binary PAM and gene fusion (mutated or not) with the quantitative copy number
from CNAs. Lastly, some tumors have drastically higher somatic mutation rates than other
tumors (e.g., microsatellite instability® and hypermutation®). These higher mutation rates
confound any frequency-based integration approach and drive the discovery of spurious
somatic mutations. We developed OncoMerge to fill the somatic mutation integration niche by
providing an algorithm that systematically overcomes these obstacles to generate an integrated
gene mutation profile. The input for the OncoMerge algorithm is the output from state-of-the-art
methods for detecting PAMs (MC3* and MutSig2CV’), transcript fusions (PRADA28), and CNAs
(GISTIC2.0%). The integrated mutation profiles will give more power to detect associations with
cancer phenotypes by capturing all tumors with a somatically mutated gene leading to a more
comprehensive understanding of how genetic alterations drive cancer phenotypes.

The tremendous amount of cancer genome sequencing data generated in the last ten years has
enabled efforts to discover and catalog somatic mutations across many cancers 11°, Many
algorithms have been developed to discern which somatic mutations are drivers and how the
mutations affect genes 8711715, The impact of somatic mutations can be classified as activating
(Act) gene function (typically found in oncogenes), or loss of function (LoF) (typically found in
tumor suppressor genes)'®. It has also been demonstrated that the systematic integration of
PAM and CNA somatic mutations for a gene improves the ability to determine Act or LoF
status?®. These foundational studies have created a platform to develop an algorithm that
systematically integrates the three somatic mutation types.
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76  The systematic integration of somatic mutations requires choosing a gene-level model that

77  determines how the data for the three somatic mutation types will be integrated, which in

78  OncoMerge is called the somatic mutation role. We determine the somatic mutation role by

79  employing rules similar to those used in OncodriveROLE?® (Figure 1). The possible somatic

80  mutation roles in OncoMerge are PAM, Fusion, CNA amplification (CNAamp), CNA deletion

81 (CNAdel), Act, or LoF. The PAM, Fusion, CNAamp, and CNAdel somatic mutation roles use the
82  somatic mutation profile of the role in the integrated mutation matrix. The Act and LoF are

83 integrated mutation roles that harness allelic heterogeneity. Allelic heterogeneity is especially
84  prevalent in tumor suppressor genes, where mutations at many positions in a gene can impede
85 its function to prevent cancer phenotypes®. Allelic heterogeneity is less prevalent for oncogenes
86  where a small number of specific gain of function alleles are needed to drive cancer

87  phenotypes*. Genes underlying CNAs can add another layer of information as tumor

88  suppressors are often deleted, which has an equivalent oncogenic effect as missense or

89  truncating PAMs. The LoF role is designated when PAMSs, Fusions, and CNAdels are

90 integrated. Oncogenes are often amplified as this typically leads to overexpression of the

91 underlying genes, which has a similar positive effect on gene function as a gain of function

92 PAM. The Act role is designated when PAMs, Fusions, and CNAamps are integrated.

93  Systematic determination of the somatic gene role and application of the rules laid out above
94  will be used to integrate the three mutation types into a comprehensive somatic mutation profile.

95 The algorithms developed to discern somatic mutation drivers for cancers provide a set of gold
96  standard mutations with gene roles that can be used to assess the performance of the new
97  OncoMerege algorithm. The gold standards are classified by whether the somatic mutation of a
98 gene was cancer-specific or not. The TCGA consensus® and Cancer Gene Census (CGC) from
99 COSMIC? were used to develop gold standards with cancer-specific somatically mutated gene
100 roles. The TCGA consensus is a list of driver genes identified from the TCGA Pan-Cancer Atlas
101 labeled with somatic mutation role (oncogene or tumor suppressor) and cancer type. The CGC
102 from COSMIC is an expert-curated database of human cancer driver genes labeled with
103  somatic mutation role (oncogene and tumor suppressor) and cancer type. The 20/20 rule?,
104  OncodriveROLE?®, and Tokheim ensemble!* were used to develop gold standards with
105 somatically mutated gene roles. The 20/20 rule defines oncogenes by requiring >20% of
106  mutations in recurrent positions and tumor suppressors as >20% of recorded mutations are
107 inactivating (missense or truncating)*. OncodriveROLE is a machine learning algorithm that
108 classifies genes according to their role (Act or LoF) based on well-curated genomic features?®.
109 The Tokheim ensemble is an ensemble-based method that integrates MutSigCV, 20/20+, and
110 TUSON methods for predicting gene roles (oncogene and tumor suppressor)4. Comparisons of
111  somatic mutation role between OncoMerge and the gold standards were facilitated by
112  converting oncogenes to Act and tumor suppressors to LoF. Finally, a combined gene role
113 agnostic gold standard was developed based on a union of all somatic mutations from all five
114  gold standards. These gold standards were used to assess the utility of filters and the quality of
115 the OncoMerege integrated somatic mutation matrices through their ability to recall somatic
116  mutations with the appropriate gene role.

117 A primary goal of OncoMerge is to construct a comprehensive somatic mutation profile that will
118 increase the power to identify how mutations modulate cancer phenotypes. Previously, we have
119 used the Systems Genetics Network AnaLysis (SYGNAL) pipeline!’ to build causal and

120 mechanistic gene regulatory networks (GRNSs) for 31 cancers from the TCGA Pan-Cancer

121  Atlas®. Using SYGNAL, we link somatic mutations through the GRN to the hallmarks of
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cancer!®2! thereby linking somatic mutations to cancer phenotypes. These SYGNAL GRNs
describe how somatic mutations influence transcription factor (TF) or miRNA expression, which
modulates the expression of downstream genes. In SYGNAL, somatic mutations are used as
input for the Network Edge Orienting (NEO) portion of the pipeline that infers causal flows of
information (somatic mutation — TF or miRNA regulator — bicluster of co-regulated genes).
Thus, we use the OncoMerge integrated somatic mutation matrices in SYGNAL GRN inference
to demonstrate the increased power to identify how mutations modulate cancer phenotypes.

TFs are a significant factor in regulating gene expression in a cell, and interactions between TFs
could be used to explain much of the overall transcriptional state of a cell. Neph et al., 2012
constructed a human TF gene regulatory network by integrating genome-wide digital genomic
footprinting with DNA recognition motifs across 41 cell types?2. The network architecture of
three-node network motifs was investigated and shown to have a pattern similar to other
biologically derived networks?-2°, Because these TF regulatory networks were generated based
on DNA binding alone, they are not an active representation of the effect on transcript levels but
static DNA binding maps. On the other hand, SYGNAL GRNSs are trained using coexpression as
an integral element of network construction. Therefore, SYGNAL GRNs can be considered
active because transcriptional effects support regulatory interactions. We compare and contrast
the underlying architecture of active TF regulatory networks from SYGNAL relative to static TF
regulatory networks from DNA binding maps.

As proof of principle, we apply OncoMerge to the multi-omic characterization of 32 cancers by
the TCGA PanCancer Atlas to develop filters and demonstrate a meaningful benefit for
downstream analyses. We demonstrate the power of using an integrated mutation matrix in
downstream analysis by re-analyzing the causal relationships for pan-cancer SYGNAL
networks?8. We constructed transcription factor (TF) regulatory networks?? and generated triad
significance profiles (TSPs)? to investigate the underlying network architecture?-2°, We provide
the complete OncoMerge code, comprehensive mutation matrices for 32 TCGA cancers,
regulatory networks for 31 cancers, and TF regulatory network architecture for 25 cancers.
These studies demonstrate that OncoMege efficiently integrates PAMs, fusions, and CNAs into
a comprehensive mutational profile that strengthens downstream analyses linking somatic
mutations to cancer phenotypes.

Methods

Clinical and molecular data from TCGA

These studies used standardized, normalized, batch corrected, and platform-corrected multi-
omics data generated by the Pan-Cancer Atlas consortium for 11,080 participant tumors?8,
Complete multi-omic profiles were available for 9,584 patient tumors. TCGA aliquot barcodes
flagged as "do not use" or excluded by pathology review from the Pan-Cancer Atlas Consortium
were removed from the study. The overall survival (OS, OS.time) data used were obtained from
Liu et al. 20182,

e Somatic protein affecting mutations (PAMSs) in TCGA — Somatic PAMs were identified by
the Multi-Center Mutation Calling in Multiple Cancer (MC3) project! and were
downloaded from the ISB Cancer Gateway in the Cloud (ISB-CGC; https://isb-
cqc.appspot.com/). PAMs were required to have a FILTER value of either: PASS, wga,
or native_wga_mix. In addition, all PAMs needed to be protein-coding by requiring that
Variant_Classification had one of the following values: Frame_Shift Del,
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Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense_Mutation,
Nonsense_Mutation, Nonstop_Mutation, Splice_Site, or Translation_Start_Site.
Additionally, mutation calls were required to be made by two or more mutation callers
(NCALLERS > 1). When both normal tissue and blood were available, the blood was
used as the germline reference.

Statistical significance of PAMs in TCGA — The likelihood that a gene is somatically
mutated by chance alone was determined using MutSig2CV*! and downloaded for each
cancer from the Broad GDAC FIREHOSE (https://gdac.broadinstitute.org/). Genes with a
MutSig2CV False Discovery Rate (FDR) corrected p-value (g-value) less than or equal
to 0.1 were considered significantly mutated*?.

Somatic transcript fusions in TCGA — The TumorFusions portal® provides a pan-cancer
analysis of tumor transcript fusions in the TCGA using the PRADA algorithm&,

Somatic copy number alterations (CNAs) in TCGA — Genomic regions that were
significantly amplified or deleted were identified using Genomic Identification of
Significant Targets in Cancer (GISTIC2.0)° and downloaded for each cancer from the
Broad GDAC FIREHOSE.

Somatic mutation data import and preprocessing

An essential first step in OncoMerge is loading up and binarizing the somatic mutation data. The
somatic mutation data comprised of four primary matrices: 1) PAMs, 2) fusions, 3) CNA
amplifications (CNAamps), and 4) CNA deletions (CNAdels) (Figure 1). In addition, two
derivative matrices Act and LoF are created by merging the PAM with the CNAamps or
CNAdels matrices, respectively (Figure 1). All files are formatted as comma-separated values
(CSV) files with genes as rows and patients as columns unless otherwise noted.

PAM matrix - The matrix values are [0 or 1]: zero indicates the gene is not mutated in a
patient tumor, and one indicates the gene is mutated in a patient tumor.

Fusion matrix - The matrix values are [0 or 1]: zero indicates no gene fusion in a patient
tumor, and one indicates the gene fused to another genomic locus in a patient tumor.
CNAamp and CNAdel matrices — The all_thresholded by genes.csv GISTIC output file
is used to populate the CNAamp and CNAdel matrices. The all_thresholeded_by genes
matrix values range from -2 and have no positive bound, and the values indicate the
copy number relative to the background. A cutoff of greater than or equal to 2 was used
to identify deep amplifications and less than or equal to -2 for deep deletions. Only deep
amplifications or deletions were included in these studies due to heterogeneity of cell
types and tumor biopsy purity. Oncomerge allows this threshold to be modified through a
command line parameter ('-gt' or '--gistic-threshold").

o CNAamp matrix — The matrix values are [0 or 1]: zero indicates a gene is not
amplified in a patient tumor, and one indicates the gene is amplified in a patient
tumor.

o CNAdel matrix — The matrix values are [0 or 1]: zero indicates a gene is not
deleted in a patient tumor, and one indicates a gene is deleted in a patient tumor.

Act matrix — The Act matrix is the bitwise OR combination of the PAM, Fusion, and
CNAamp matrices. The Act matrix has genes as rows and patients as columns. The
matrix values are [0 or 1]: zero indicates the gene is not mutated or amplified in a patient
tumor, and one indicates the gene is either mutated, fused, amplified, or some
combination in a patient tumor.
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e LoF matrix — The LoF matrix is the bitwise OR combination of the PAM, Fusion, and
CNAdel matrices. The LoF matrix has genes as rows and patients as columns. The
matrix values are [0 or 1]: zero indicates the gene is not mutated or deleted in a patient
tumor, and one indicates the gene is either mutated, fused, deleted, or some
combination in a patient tumor.

Seeding OncoMerge with putative somatic mutations

OncoMerge focuses on likely causal somatic mutations by considering only somatic mutations
that were statistically shown to be mutated more often than expected by chance alone. These
statistically significant mutations were used as seeds for OncoMerge integration. Somatic PAMs
used as seeds were identified with MutSig2CV g-values less than or equal to 0.1” and a
mutation frequency greater than 5%. Gene fusions used as seeds were identified as significant
in PRADA® and a mutation frequency greater than 5%. CNAamps or CNAdels used as seeds
were identified as significantly amplified or deleted from the amplified genes (amp_genes) or
deleted genes (del_genes) GISTIC output files with residual g-values less than or equal to 0.05.
CNAs from sex chromosomes (X and Y) were excluded. Genes from sex chromosomes can
enter OncoMerge as seeds from PAMs or fusions. These seed genes become the starting point
of the OncoMerge integration. Subsequent steps determine if Act or LoF merged mutation
profiles or their component PAM, Fusion, CNAamp, or CNAdel mutation roles are the most
appropriate integration model for a gene.

Merging somatic mutations in OncoMerge
The mutation role for each seed gene is assigned based on the following criteria (Supp. Fig 1):

o If Act frequency (PAM+Fusion+CNAamp) > PAM+Fusion frequency and the Act
frequency = 5% then the mutation role is set to Act.

e Else LoF frequency (PAM+Fusion+CNAdel) > PAM+Fusion frequency and the LoF
frequency = 5% then the mutation role is set to LoF.

e Else if the gene mutation role is not set to Act or LoF:

o Ifthe gene is a PAM seed gene (MutSig2CV g-value < 0.1 and frequency = 5%)
and has a frequency greater than Fusion, CNAamp, and CNAdel, then the
mutation role is set to PAM.

o Else if the gene is a Fusion seed gene (TumorFusion.org frequency = 5%) and
has a frequency greater than PAM, CNAamp, and CNAdel, then the mutation
role is set to Fusion.

o Else if the gene CNAamp frequency = 5% and has a frequency greater than
PAM, Fusion, and CNAdel, then the mutation role is set to CNAamp.

o Else if the gene CNAdel frequency = 5% and has a frequency greater than PAM,
Fusion, and CNAamp, then the mutation role is set to CNAdel.

Permuted g-value (PQ) filter

For putative Act and LoF mutations, a permuted g-value is computed by randomizing the order
of rows in the PAM, Fusion, and CNA mutation matrices' and then calculating the randomized
frequency distribution for Acts and LoFs. The observed frequency for an Act or Lof mutation is
then compared to the randomized frequency distribution to compute the permuted p-value.
Permuted p-values are corrected into g-values using the multiple-test Benjamini-Hochberg FDR-
based correction method. Only Acts or LoFs that had a permuted g-value < 0.1 were retained.
Any Act or LoF with a permuted g-value > 0.1 was set to the mutation role of either PAM,
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Fusion, CNAamp, or CNAdel based on which mutation role had the highest frequency. The
permuted g-value cutoff can be set through a command line parameter (-pq’, --perm_qgv').

Minimum final frequency (MFF) filter

A low-pass genomic filter was applied to each CNA locus if the CNA locus had = 10 underlying
genes. The number of genes underlying a CNA locus can be set through a command line
parameter (-mlg’, --min_loci_genes'). The filter keeps only the gene(s) with the maximum
mutation frequency, and all genes with the maximum mutation frequency are kept for ties.

Microsatellite hypermutation censoring (MHC) filter

The TCGA tumors used in this study have been characterized for both MSI® and hypermutation®
(Supplementary Table 1). The tumors with MSI or hypermutation are loaded as a blocklist of
patient IDs through a command line parameter (-bl' or '--blocklist’). All tumors in the blocklist are
excluded from consideration by the PQ and MFF filters while determining the genes to include in
the final somatic mutation matrix. The mutation status for blocklist tumors are included in the
final integrated mutation matrix.

OncoMerge outputs

OncoMerge provides four output files that provide valuable information about the integration
process and the final integrated mutation matrix that can be used in downstream studies. Here
is a brief description of each file and its contents:

e oncoMerge mergedMuts.csv — The integrated mutation matrix is comprised of genes
(rows) by patient tumors (columns) of mutation status after integration by OncoMerge.
The matrix values are [0 or 1]: zero indicates that the gene is not mutated in a patient
tumor, and one indicates that the gene was mutated in a patient tumor.

e oncoMerge CNA loci.csv — A list of the genes mapping to each CNAamp or CNAdel
locus included in the OncoMerge integrated mutation matrix.

e oncoMerge ActLofPermPV.csv — List of all significant Act and LoF genes, their
OncoMerge mutation role, frequency, empirical p-value, and empirical g-value. This
output is before the application of the low-pass frequency filter.

e oncoMerge summaryMatrix.csv — Matrix of genes (rows) by all information gathered by
OncoMerge.

To aid in comparisons between runs, we provide the save permutation option ('-sp' or '--

save_permutation’) to output permutation results so that the same permuted distribution can be

used with different parameters in separate runs. We also provide the load permutation option ('

Ip' or '--load_permutation’) to load up the permuted distribution from a previous run. The

permuted distributions are saved in the following files if requested:

e oncomerge ampPerm.npy, oncomerge delPerm.npy — Snapshot of the non-

deterministic permutation results from combining PAM, Fusion, and CNAamp or PAM,
Fusion, and CNAdel frequencies, respectively.

Gold standard cancer-specific gene role validation datasets
Gold standard datasets are vital to validating the usefulness of each feature in OncoMerge. Two
different sources of gold standard cancer-specific gene role (Act or LoF) datasets were used to
validate the OncoMerge predicted tumor-specific gene roles:
e TCGA consensus: The TCGA consensus was constructed by Bailey et al., 2018
wherein they catalog a list of 299 unique oncogenesis associated genes®. In the TCGA
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consensus 280 cancer-specific oncogene roles were identified, and 417 cancer-specific
tumor suppressor roles were identified (Supplementary Table 2).

e Cancer Gene Census (CGC): The CGC was developed by Catalogue of Somatic
Mutations in Cancer (COSMIC) as an expert-curated database of human cancer-driving
genes?®. CGC cancers were mapped to the TCGA cancers by manual curation
(Supplementary Table 2). In the CGC 205 cancer-specific oncogene roles were
identified, and 304 cancer-specific tumor suppressor roles were identified
(Supplementary Table 2).

Gold standard gene role validation datasets
Three different sources of gold standard gene role (Act or LoF) datasets were used to validate
the OncoMerge predicted gene roles:

e 20/20 rule: The 20/20 rule defines oncogenes (Act) by requiring >20% of mutations in
recurrent positions, and tumor suppressors (LoF) as >20% of recorded mutations are
inactivating (missense or truncating)*. With the 20/20 rule, 54 oncogene roles were
identified, and 71 tumor suppressor roles were identified (Supplementary Table 2).

e OncodriveROLE: The OncodriveROLE is a machine learning algorithm that classifies
genes according to their role based on well-curated genomic features!®. With
OncodriveROLE, 76 oncogene (Act) roles were identified, and 109 tumor suppressor
(LoF) roles were identified (Supplementary Table 2).

e Tokheim Ensemble: Ensemble-based method from Tokheim et al., 2016, which
integrates MutSigCV, 20/20+, and TUSON methods for predicting gene roles. With the
Tokheim Ensemble, 78 oncogene (Act) roles were identified, and 212 tumor suppressor
(LoF) roles were identified (Supplementary Table 2).

Computing overlap between OncoMerge and gold standards

A hypergeometric enrichment statistic was used to compute the significance of overlap
observed between each gene role in OncoMerge versus the gold standards. When possible, the
tumor specificity of the gene role was taken into consideration (TCGA consensus and CGC).
Enrichment p-values less than the Bonferroni corrected alpha value of 0.002 were considered
significant.

TCGA Pan-Cancer SYstems Genetics Network AnalLysis (SYGNAL)

The mRNA and miRNA expression data required to run SYGNAL were obtained from Thorsson
et al., 20188, The SYGNAL pipeline is composed of 4 steps and command-line parameters for
all programs are described in detail in Plaisier et al., 2016*". Each cancer was run separately
through the pipeline to reduce the confounding from tissue of origin differences. Highly
expressed genes were discovered for each cancer by requiring that genes have greater than or
equal to the median expression of all genes across all conditions in = 50% of patients!®. These
gene sets were then used as input to SYGNAL to construct the gene regulatory networks
(GRNSs) for each cancer.

The underlying cMonkey? biclustering results are identical to those from Thorsson et al., 20188
as they do not rely upon genetic information. Using Network Edge Orienting (NEO)"?” somatic
mutations are integrated with bicluster and regulator expression in the next step. The systems
genetics analysis with NEO was modified from Thorsson et al., 2018 in two ways: 1) we
removed constraints to identify immune-related regulatory interactions, which substantially
increased the size of the network by including additional patient survival-associated biclusters
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not associated with immune functions; and 2) the OncoMerge integrated mutation matrix was
used and compared against the PAM only mutation matrix used previously in Thorsson et al.,
201818,

TF regulatory network construction for PanCan-SYGNAL networks

A TF regulatory network was built for each cancer in three steps (Figure 6A). First, the TFs
regulating survival-associated biclusters were extracted from each cancer's SYGNAL GRN.
Second, a preliminary TFreguator— T Frarget regulatory network was constructed based on the
presence of a binding site for a putative TFreguiator in the promoter of a TFarger from the
Transcription Factor Target Gene Database!’ (http:/tfbsdb.systemsbiology.net). TF family
expansion!’ was used to supplement TFs that did not have an experimentally determined DNA
recognition motif in the database. The assumption was that the motifs within a TF family would
not vary significantly. Therefore TF family members from the TFClass database?® with a known
DNA recognition motif can be used as a proxy for a TF with no known DNA recognition motif.
Finally, the putative TFreguator— T Frarget regulatory network was filtered by requiring a significant
Pearson correlation between the mRNA expression of the TFreguator aNd TFrager (Pearson's |R| 2
0.3 and p-value < 0.05). The sign of the correlation coefficient can be used to determine the role
of a regulatory interaction: a positive correlation coefficient equates to the TFreguiaor DEING AN
activator, and a negative correlation coefficient equates to the TFeguator being a repressor.
Networks with fewer than 50 interactions were not included in the analyses as they were not
sufficiently powered to run the network motif analysis. The cancer regulatory networks for
DLBC, KICH, KIRP, OV, TGCT, and THYM were excluded from further studies.

TF regulatory network motif analysis

Three-node network motifs were enumerated from the TF regulatory networks using mfinder® in
the same manner as Neph et al., 201222 and used to compute triad significance profiles
(TSPs)?*. The parameters used with mfinder v1.20 were?2. motif size set at 3 (-s 3), requested
250 random networks to be generated (-r 250), and the Z-score threshold was set at -2000 to
ensure all motifs are reported (-z -2000). All Z-scores were extracted for each cancer and
converted to triad significance profiles using the methods of Milo et al., 200424,

For consistency, the TF regulatory networks for the 41 different cell types from Neph et al.,
201222 were downloaded from http://www.regulatorynetworks.org/ and analyzed using the same
approach described above.

Signed network motif analysis incorporating TF regulator interaction roles

The enrichment of signed feed-forward loops (FFLs), regulated feedback, and regulating
feedback network motifs was computed using FANMOD?, which takes into consideration TF
regulatory roles (activation and repression). The command line version of FANMOD from
IndeCut?® was used with default parameters, except for the inclusion of regulatory role (colored
edges)?® (fanmod 3 100000 1 <input_file>1 0120 1 0 1000 3 3 <output_file> 1 1). Z-scores for
signed FFLs, regulated feedback, and regulating feedback network motifs were extracted for
each cancer and converted to triad significance profiles using the methods of Milo et al., 2004%*.
The signed FFL network motifs are broken down into C1, C2, C3, C4, 11, 12, 13, and 14, as
described previously®.
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Results

Establishing a baseline for the integration of somatic mutations

Somatic mutations play a significant role in cancer pathogenesis, and the main mutation types
are PAMs, fusions, and CNAs (amplifications and deletions). Somatic mutation of the same
gene with different mutation types can have similar downstream effects on cancer phenotypes.
We have developed OncoMerge as a systematic method to integrate PAM, fusion, and CNA
somatic mutations into a more comprehensive mutation matrix for subsequent analyses.
OncoMerge systematically integrates somatic mutations and defines a role for each gene
(Figure 1): PAM, fusion, CNA deletion (CNAdel), CNA amplification (CNAamp), Activating
(Act), and Loss of Function (LoF). The role assigned to a gene describes the rubric used to
integrate the data from the source data matrices.

A significant part of developing OncoMerge was constructing and optimizing the statistical filters
that provide an essential quality control step to identify somatically mutated genes that are more
likely to be functional in tumor biology. The selection and optimization of OncoMerge statistical
filters were performed using the 9,584 patient tumors from 32 cancers profiled by the TCGA
Pan-Cancer Atlas'®. We used three metrics to assess the value of potential filters: 1) impact on
the number of somatically mutated genes (Figure 2A); 2) impact on the distribution of the
number of genes mapping to genomic loci (Figure 2B); and 3) significance of the overlap
between somatically mutated genes from OncoMerge with gold standard datasets (including
overlap with gene roles and tumor-specific gene roles; Figure 2C; Supplementary Table 3).
These metrics ensure that the integrated somatic mutations are consistent with prior knowledge
and that the size of CNA mutations does not overwhelm the integration algorithm.

Next, we determined the integration baseline by applying OncoMerge to the TCGA Pan-Cancer
Atlas without filtering. Slightly less than one-third of the genome was considered somatically
mutated in at least 5% or greater of tumors in at least one of the 32 cancers (30% or 6,028
genes, Figure 2A). We observed a highly significant overlap between OncoMerge somatically
mutated genes and the combined gold standard (genes = 395, p-value = 1.1 x 10*, Figure 2C)
when gene role was not considered. Significant overlaps existed between the LoF somatic
mutations from three gold standards (TCGA consensus, CGC, and Vogelstein) with the somatic
mutations with the LoF predicted role from OncoMerge (Figure 2C). None of the comparisons of
Act somatic mutations were significantly overlapping (Figure 2C). Many of the 6,028 genes map
to the same copy number alteration genomic locus (Figure 2B). These unfiltered results reveal
two main integration biases. First, there is no overlap of Act somatic mutations with previously
identified Act mutations. Second, the integration with CNAs is causing the inclusion of many
passenger mutations mapping to the same genomic locus. OncoMerge applied to the TCGA
Pan-Cancer Atlas without filtering provides a baseline to benchmark success. Addressing the
integration biases we observed is the impetus we had for developing and optimizing filters for
OncoMerge.

Developing an optimal filtering strategy for the integration of somatic mutations

A key consideration in developing OncoMerge was that integrating the somatic mutation types
should highlight the functional somatic mutations over passenger mutations. Therefore, we
created two filters designed to prioritize somatically mutated genes that are more likely to be
functional. The first filter determined if the final mutation frequency after integrating PAM, fusion,
and CNA somatic mutations is larger than expected by chance alone. A permutation-based
approach empirically determined the background integrated mutation frequency distribution.
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Then the observed frequencies are compared to the randomized background distribution to
calculate permuted p-values, which are corrected using the Benjamini-Hochberg method to
provide permuted g-values. A permuted g-value < 0.1 denotes a significant final mutation
frequency. The permuted g-value (PQ) filter reduced the number of somatically mutated genes
to 5,630 (Figure 2A). This filtering improved LoF somatic mutations from three to four gold
standards (TCGA consensus, CGC, Vogelstein, and OncodriveROLE) with the somatic
mutations that had the LoF predicted role from OncoMerge. Still, the Act comparisons did not
show significant enrichment (Figure 2C). The PQ filter had a minimal impact on the number of
genes per locus (Figure 2B). This lack of significant overlap for Act somatic mutations
demonstrates that further filtering is required.

The second filter deals with passenger gene somatic mutations. An average CNA encompasses
3.8 + 7.9 Mb of genomic sequence®, and genomic segments of this size typically include many
genes. These large genomic regions make it difficult to determine which of the affected genes
are the functional gene(s) underlying the CNA locus without integrating additional information.
We assert that passenger genes underlying a CNA locus can be considered noise and can be
identified by the lack of allelic heterogeneity. Thus, functional gene(s) can be identified through
allelic heterogeneity that boosts the somatic mutation frequency for a gene above the
background CNA frequency. We designed a low-pass filter that retains only the gene(s) with the
maximum final frequency (MFF). The MFF filter is only applied if a locus has more than ten
genes. Application of the MFF filter dramatically reduced the number of somatically mutated
genes from 6,028 to 1,459 (Figure 2A) and the number of genes per locus (Figure 2B). We
additionally observed a marked improvement in overlap with the gold standards. Significant
enrichment was observed for four Act gold standards with somatic mutations that OncoMerge
predicts to be Act, and all five of the LoF gold-standard versus OncoMerge predicted LoF
comparisons (Figure 2C). The MFF filter directly addresses the issue of too many genes in a
CNA locus. Removing more than three-quarters of the somatically mutated genes improves the
overlaps with gold standards.

We then assessed the impact of applying both the PQ and MFF filters. Simultaneous application
of both filters led to a slight reduction in the number of somatically mutated genes beyond the
MFF filter (1,398 genes; Figure 2A), and the improvement in the number of genes per locus
was retained (Figure 2B). There was also an improvement in the significant overlap with gold
standards where all five LoF gold-standard versus OncoMerge predicted LoF and four Act gold-
standard versus OncoMerge predicted Act were significant (Figure 2C). Importantly, none of the
gold standard Act versus LoF or LoF versus Act comparisons were significant for any filter
combination, demonstrating that the OncoMerge predicted roles are consistent with prior
knowledge.

Reducing biases due to microsatellite instability and hypermutation

Microsatellite instability (MSI) and hypermutation phenotypes drastically increase the number of
somatic mutations in a tumor. The PQ and MFF filters and OncoMerge's core algorithm rely
upon somatic mutation frequency which is susceptible to confounding by MSI or hypermutation.
Fortunately, all TCGA tumors used in this study are characterized for both MSI® and
hypermutation® status (Figure 3A). We observed a highly significant positive correlation
between MSI/hypermutation frequency and the total number of somatic mutations per cancer
after integration by OncoMerge (R = 0.69 and p-value = 1.1 x 10®). This strong positive
correlation demonstrates that MSI/hypermutation is likely inflating the number of somatic
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mutations discovered by OncoMerge. Therefore, we created the MSI and hypermutation
censoring filter (MHC) to exclude these tumors while OncoMerge determines which genes to
include in the final somatic mutation matrix. The mutation status for tumors with MSI and
hypermutation are included for genes in the final integrated mutation matrix. Applying the MHC
filter alongside the PQ and MFF filters reduced the overall number of somatically mutated genes
(1,133 genes; Figure 2A) and had minimal impact on the number of genes per locus (Figure
2B; Supplementary Table 4). The combined PQ, MFF, and MHC filters decreased the
correlation between the MSI/hypermutation frequency (R = 0.53 and p-value = 1.7 x 103). All
ten of the gold standard Act vs. Act and LoF vs. LoF comparisons were significant. These
results established that the MHC filter is valuable for removing passenger mutations introduced
by tumors with severely increased somatic mutation rates. The PQ, MFF, and MHC filters
comprise the default and final OncoMerge filter set. The filters deal with known complications in
cancer genetics and ensure that the mutation roles in the integrated matrix are correctly
assigned.

Benefits of an integrated somatic mutation matrix

We evaluated the benefits of systematic somatic mutation integration by comparing OncoMerge
integrated somatic mutation matrices to those from PAMs. The PAM somatic mutation matrices
were used as a reference point because we have successfully used them as the sole source for
somatic mutations in previous studies”8, We assessed the benefits of integration by tabulating
the number of somatic mutations and their roles (Figure 3B), the number of genes added by
integration (Figure 3C), and the increase in somatic mutation frequency due to integration
(Figure 3E). Impressively, Act and LoF mutations represented the bulk of the somatic mutations
in 30 cancers (Figure 3B). The papillary thyroid carcinoma (THCA) and kidney chromophobe
(KICH) were the only cancers that lacked Act or LoF mutations. Consistent with Agrawal et al.
2014%, THCA had only three mutations with a frequency = 5% BRAF, NRAS, and RET. On the
other hand, KICH was under-sampled in the TCGA Pan-Cancer atlas (n = 65), and LoF and Act
mutations would likely be discovered with the inclusion of more patient tumors.

We then investigated how many new genes the integration added for each cancer. Integration
added at least one somatically mutated gene for each cancer (Figure 3C), and more than eighty
somatically mutated genes for BLCA, LUAD, and UCEC (Figure 3C). The somatically mutated
genes added by OncoMerge make the integrated somatic mutation matrices more
comprehensive.

Next, we investigated the frequencies of the somatic mutations from the OncoMerge integrated
mutation matrices. The genes with the highest frequency map to well-known oncogenes (e.g.,
BRAF) and tumor suppressors (e.g., APC and TP53; Figure 3D). The two tumor suppressor
genes APC and TP53 were mutated in greater than eighty percent of the tumors for multiple
cancers (Figure 3D). The APC gene was mutated in greater than eighty percent of tumors for
colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ). The TP53 gene was
mutated in greater than eighty percent of tumors for esophageal carcinoma (ESCA), lung
squamous carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), rectal carcinoma
(READ), and uterine carcinosarcoma (UCS). These frequently mutated genes in the OncoMerge
integrated mutation matrices are consistent with prior knowledge of somatic mutations for each
cancer.

Finally, we calculated the frequency added through integration by subtracting the integrated
mutation frequency from the PAM frequency. The most substantial increases in somatic
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mutation frequency were observed for TMPRSS2-ERG in prostate adenocarcinoma (PRAD)
and CDKN2A in mesothelioma (MESO), glioblastoma (GBM), diffuse large B-cell ymphoma
(DLBC), and esophageal carcinoma (ESCA; Figure 3E). Neither TMPRSS2-ERG nor CDKN2A
would have been identified as somatically mutated without incorporating fusions and CNAs,
respectively. These findings demonstrate that OncoMerge significantly improves the number
and frequency of somatically mutated genes in most cancers. Also, these results show that the
systematic integration of PAM, fusion, and CNA somatic mutations is crucial for obtaining a
comprehensive mutation matrix for each cancer.

Pan-cancer somatic mutations capture many known tumor suppressors and
oncogenes

Genes mutated in multiple cancers are of great interest as selective pressures have found a
common solution in different contexts to influence cancer phenotypes. Therefore, we searched
for genes somatically mutated in at least five cancers in the OncoMerge integrated mutation
matrices. The resulting gene list could be broken down into two groups of somatic mutations:
the LoF set (n = 28, Figure 4A) and the Act set (n = 18, Figure 4B). The FBXW7, KMT2C, and
KMT2D somatic mutations were challenging to classify as LoF or Act. The genes FBXW?7 and
KMT2D were somatically mutated with PAMSs in six and seven cancers, respectively (Figure
4A). The gene KMT2C (also known as MLL3) was primarily LoF and PAM but had the mutation
role of Act for ovarian cancer (OV) (Figure 4B). Based on a literature search, all three genes
have been classified as tumor suppressors®*-%. Therefore, we grouped FBXW7, KMT2C, and
KMT2D mutations with the LoF set.

The pan-cancer somatically mutated genes harbored many well-known tumor suppressors and
oncogenes (Figure 4C). As expected, tumor suppressors® were significantly enriched in the
LoF group (overlap = 20, p-value = 2.0 x 10%°), and oncogenes® were significantly enriched in
the Act group (overlap = 8, p-value = 9.2 x 10°). The top three most somatically mutated tumor
suppressors were TP53, PTEN, and CDKN2A. These three tumor suppressors control important
checkpoints in the cell cycle making them functionally interesting. The gene TP53 was
somatically mutated in 24 cancers, primarily by PAMs, but four LoF were also observed for
glioblastoma (GBM), liver hepatocellular carcinoma (LIHC), prostate adenocarcinoma (PRAD),
and sarcoma (SARC). The top three most mutated oncogenes across cancers were PIK3CA,
KRAS, and CCNEL1. Two of these genes (PIK3CA and KRAS) become overactive kinases when
mutated, and CCNEL1 is a fundamental part of the cell cycle regulatory machinery. Both PIK3CA
and KRAS have PAM and Act mutation roles across the different cancers, and only the NFE2L2
gene has a similar mixture of PAM and Act mutation roles. The remainder of the oncogenes are
like CCNEL in that the gene somatic mutation roles are all Act. These pan-cancer analyses
further validate the systematic somatic mutation integration by OncoMerge through the
unbiased recall of tumor suppressors and oncogenes.

Improving gene regulatory network inference

A major goal of developing OncoMerge was to construct an integrated somatic mutation profile
that would increase the power to identify how mutations modulate cancer phenotypes.
Previously we used PAMs from the cancers in the TCGA Pan-Cancer Atlas as input for
SYGNAL to construct gene regulatory networks (GRNs)!®. SYGNAL GRNs are composed of
causal and mechanistic interactions linking somatic mutations to a TF or miRNA regulator to a
co-regulated set of genes (bicluster). Somatic mutations in SYGNAL are used as input for the
Network Edge Orienting (NEO) portion of the pipeline that infers causal flows of information
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568  (somatic mutation — TF or miRNA regulator — bicluster of co-regulated genes). Therefore, we
569 recomputed NEO analyses using the OncoMerge integrated somatic mutation matrices for each
570 cancer in the TCGA Pan-Cancer Atlas to demonstrate the increased power to detect causal
571  flows of information. The resulting networks were filtered to include only biclusters with good
572  quality co-expression that were significantly associated with patient survival. Regulatory

573 interactions were required to be both causal (significant evidence of information flow between a
574  mutation — regulator — bicluster) and mechanistic (enrichment of regulator binding sites in the
575  promoter or 3' UTR of the bicluster genes). We compare SYGNAL GRNSs inferred using

576  OncoMerge integrated mutation matrices (Supplementary Table 5) with SYGNAL GRNs

577 inferred using the legacy PAM-based mutation matrices from Thorsson et al., 2018.

578 The GRNs are comprised of nodes and edges. The degree of a node is the number of edges
579  connecting it to other nodes. The average degree is a standard network metric computed as the
580 average of all node degrees in the network. We found that the average degree was larger for 26
581 OncoMerge GRNs relative to legacy GRNs (Figure 5A). The exceptions were GBM (average
582 degree was equal) and COAD and STAD (legacy had a larger average degree). COAD and

583  STAD have many MSI and hypermutation tumors (Figure 3A), suggesting that the MHC filter
584  removed spurious associations. Furthermore, the hypothesis that MSI and hypermutation

585 inflated the average degree of GRNs is supported by the reduction in the number of COAD

586  mutations in the OncoMerge GRN relative to the legacy GRN (Figure 5B). Thus, we have

587 increased the average degree in the networks and addressed a systematic bias found in legacy
588  networks.

589  Next, we considered the number of mutations in each GRN predicted to modulate the activity of
590 regulators. The OncoMerge GRNs contained more somatic mutation nodes than the legacy
591  GRNs for all cancers but COAD, likely due to MSI and hypermutation as described above

592  (Figure 5B). Then, we assessed the recall of somatic mutations previously associated with

593 each cancer from the DisGeNET database®’. All but two OncoMerge GRNSs recalled more

594  previously associated somatic mutations than the legacy GRNs (Figure 5C). The exceptions
595 were UVM with the same amount and COAD with fewer (Figure 5C). This demonstrates that
596  OncoMerge integrated mutation matrices provide increased power for linking somatic mutation
597  matrices into GRNs, and improve the capture of somatic mutations previously associated with
598 each cancer.

599 Finally, we considered the number of predicted causal and mechanistic transcription factor (TF)
600 regulators in each GRN. The OncoMerge GRNs contained more predicted TF regulators than
601 legacy GRNs for all but GBM, which had one less TF (Figure 5D). We also assessed the recall
602  of TFs previously associated with each cancer from the DisGeNET database®’:38, Twenty-four of
603 the OncoMerge GRNs recalled more previously associated TFs than legacy GRNs (Figure 5E).
604 The GBM and KIRP GRNs had the same amount, and KICH and UVM had no recall of

605 previously associated TFs in either GRN (Figure 5E). In summary, using OncoMerge integrated
606  mutation matrices in GRN construction builds more extensive and biologically meaningful

607  networks.

608 Comparing active and static TF regulatory network architectures

609 The interactions between TFs are important for generating the transcriptional state of a human
610 cell. The underlying architecture of TF regulatory networks, comprised of TFs and their

611 interactions, are typically explored by enumerating all three-node network motifs and computing
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their enrichment or depletion into triad significance profiles (TSPs)?*. Most studies of network
motif enrichment have relied upon unsigned interactions?>24:3%-42 which ignore whether the
interaction is activating or repressing. To facilitate comparisons, our first analysis of network
architecture uses unsigned TSPs to compare static and active TF regulatory networks. Static TF
regulatory networks were constructed using chromatin accessibility and DNA binding motifs for
41 cell types?2. These TF regulatory networks are static because they do not incorporate gene
expression data in their construction. Active TF regulatory networks are derived from the
OncoMerge augmented SYGNAL pan-cancer GRNs, that were trained using patient tumor
transcriptional data and therefore are comprised of active TF regulatory interactions. Using the
following steps, we constructed TF regulatory networks for each cancer from the pan-cancer
SYGNAL GRNs (Figure 6A). First, we extracted all the TF regulators from the pan-cancer
GRNSs. Interactions between TFs were inferred based on the presence of DNA binding motifs
from the TF target gene database'’, and a significant correlation between the TF regulator and
TF target in patient tumor expression (Pearson's |R| > 0.3 and p-value < 0.05; Figure 6A;
Supplementary Table 6). The enrichment (or depletion) of motifs in the network was computed
using TSPs?4. Triad significance profiles were calculated for twenty-five TF regulatory networks
and summarized as the median TSP (Figure 6A & B). We excluded the cancer types DLBC,
KICH, KIRP, OV, TGCT, and THYM because they had too few inferred regulatory interactions
(< 50 interactions). Finally, we recomputed the TSPs for the static TF regulatory networks using
a more recent version of the mfinder algorithm (Figure 6B).

The median TSPs of the active and static TF regulatory networks were highly correlated (R =
0.75, p-value = 3.0 x 10°%; Figure 6B). Demonstrating that the architecture of the active network
resembles the static network. However, the maximum enriched network motifs were different.
The regulated and regulating feedback motifs (motifs 108 and 46) were the most highly enriched
motifs from the static TF regulatory networks and were still enriched, although not as significant
as in the active networks. In contrast, the feed-forward loop (FFL, motif 38) is the most highly
enriched motif in the active TF regulatory networks. These two motifs are quite similar in
structure and differ only by a single edge. Feedback motifs and FFLs can be further broken
down into ten and eight signed network motifs that each have a unique functional output®. Thus
exploring the enrichment of signed network motifs allows the discovery of what functions are
being selected for by evolution in general and the microcosm of tumor biology.

Coherent feed-forward loops enriched in active TF regulatory networks
Incorporating the sign of the regulatory interactions (activating or repressing) splits the FFL motif
into eight signed network motifs classified as coherent (C1, C2, C3, C4) and incoherent (11, 12,
13, 14)%. Simulation studies have demonstrated that coherent FFLs lead to delays in target gene
expression, and incoherent FFLs accelerate target gene expression®. FFLs were significantly
enriched in active TF regulatory networks, which led us to question whether coherent,
incoherent, or both FFLs were enriched. In active GRNSs, the sign of the correlation between the
TF regulator to TF target can be used to determine the sign of the interaction (R > 0 equates to
activation, R < 0 equates to repression). The four coherent FFLs were enriched in the active TF
regulatory networks (Figure 6C; Supplementary Table 7), and incoherent FFLs were severely
under-enriched (Z << 0). In summary, coherent FFLs were enriched in our active TF regulatory
networks, suggesting that transcriptional delay mechanisms must provide a valuable function for
TF regulatory networks.

Coherent switch-like feedback motifs enriched in active TF regulatory networks
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The regulated and regulating mutual feedback motifs have a two-node feedback loop at their
core. The double-positive and double-negative two-node mutual feedback loops act like
switches*3. We tested the twenty signed regulated and regulating mutual feedback network
motif configurations for enrichment in TF regulatory networks. Three regulating and three
regulated signed mutual feedback motifs (Figure 6C; Supplementary Table 7). These six
enriched regulated and regulating mutual feedback motifs had a commonality in their
configuration. Firstly, all the network motifs were coherent. Coherent regulated and regulating
feedback loops have interaction signs between the feedback loop that are either double-positive
or double-negative. And the regulated or regulating node interacts with the feedback loop nodes
using the same sign for double-positive feedback loops and the opposite sign for double-
negative feedback loops. Thus, there are three coherent configurations for both regulated and
regulating mutual feedback motifs making six total, coinciding with the six enriched
configurations (Figure 6C; Supplementary Table 7). The enriched motifs containing a double-
positive feedback loop had the same interactions with the non-feedback loop node, both
activating or repressing (Figure 6C). The enriched motif containing a double-negative feedback
loop had opposing interactions with the non-feedback loop node, one activating and one
repressing (Figure 6C). These enriched signed network motifs are the configurations that
function as molecular switches**. Again, evolution has selected for coherent network motif
configurations likely because of their function.

Discussion

We developed OncoMerge to integrate PAMs, fusions, and CNAs into a more accurate
representation of the somatic mutation landscape of patient tumors. The OncoMerge integration
algorithm and three filters (PQ, MFF, and MHC) effectively address the issues of allelic
heterogeneity and the unification of binary and quantitative mutation data. These issues have
forced most studies of somatic mutations to focus on one somatic mutation type and were the
impetus for us to develop OncoMerge for the integration of the three most common somatic
mutation types. We tested OncoMerge by integrating the somatic mutation data from 32 cancers
from the TCGA Pan-Cancer Atlas. Comparison to gold standards confirmed that the genes and
roles selected by OncoMerge were accurate. The integration of somatic mutation types had
several quantifiable benefits for somatically mutated genes. First, most somatically mutated
genes had an integrated role of Act or LoF, demonstrating that consolidation of allelic
heterogeneity is vital to achieving a complete picture of somatic mutations for a patient cohort.
Second, genes somatically mutated primarily by fusions and CNAs were added by the
integration. Lastly, the frequency of many somatically mutated genes increased due to the
integration of the three somatic mutation types. We used the integrated somatic mutations as
input to SYGNAL to demonstrate improvements in power for systems genetics-based inference
of GRNSs. Using integrated somatic mutations increased the average connectedness of the
GRNs by incorporating more somatic mutations and regulators previously linked to cancer
biology. Next, we found that while the underlying architecture of active SYGNAL TF regulatory
networks and static DNA binding TF regulatory networks were similar overall, the top most
enriched network motifs were different. We discovered that switch-like feedback and delay-
inducing feed-forward loop motifs were enriched in TF regulatory networks. We developed and
tested a novel systematic integration tool and demonstrated that integrated somatic mutations
improve our ability to link somatic mutations with cancer phenotypes.

The construction of active GRNs enabled the exploration of signed network motifs and led to the
discovery that specific signed network motif configurations are being enriched. The SYGNAL
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GRNs construction method identifies active gene regulatory interactions by discovering
interactions that are supported by gene expression data from patient tumors [PMID =
27426982]. On the other hand, prior networks were static maps of DNA binding sites
constructed using digital genomic footprinting and the similarity of the underlying sequence of
the footprints for known DNA binding motifs?2. The active networks use a correlation-based
method to determine TF regulatory roles (activator or repressor) for the interactions, which is not
possible using static binding maps. Analyzing signed network motifs provides a leap forward in
understanding how the underlying architecture of GRNs functions in real-world biological
systems. OncoMerge integrated somatic mutations offer a more solid platform to infer active
GRNSs that can be used to explore the functional architecture of TF regulatory networks.

We discovered that coherent regulated and regulating feedback and FFL network motifs were
enriched in cancer TF regulatory networks. We cannot say whether this enrichment of network
motifs will generalize to all active GRNs or if this is a cancer-specific phenomenon. In normal
organismal development, feedback motifs have been previously shown to be important for cell
fate decision-making*>6. On the other hand, in tumor cells and other cells in the tumor
microenvironment, the enriched feedback motifs may be maintaining a cell fate, or the disease
could be coopting the circuit to drive tumor biology. Likewise, coherent FFL network motifs have
also been associated with enhanced drug resistance*’. These coherent motifs are relevant for
normal and diseased cell biology, and evolution has specifically selected these motif
configurations because of their unique functional outputs.

We provide the Oncomerge software in several standard distribution formats to facilitate future
studies that aim to integrate somatic mutations. The source code is available on GitHub
(https://github.com/plaisier-lab/OncoMerge). Finally, a Docker image was created that can be
run as a virtual machine with all dependencies pre-installed
(https://hub.docker.com/r/cplaisier/oncomerge). Detailed documentation is provided, along with
a tutorial that describes the use of OncoMerge. The goal of disseminating OncoMerge in these
ways is to give end-users flexibility to choose what distribution method best fits their
computational platform.

Additionally, we provide the OncoMerge integrated somatic mutation matrices for those planning
studies that use somatic mutations from the TCGA Pan-Cancer Atlas
(https://doi.org/10.6084/m9.figshare.20238867). These integrated somatic mutation matrices
can be used for any downstream analyses incorporating somatic mutations and will provide the
same power boost observed in our studies. In addition, we also offer the pan-cancer SYGNAL
GRNs and TF regulatory networks as supplementary tables to expedite systems genetics
studies of TCGA cancers. We hope these accessible results will facilitate studies linking somatic
mutations to downstream cancer phenotypes and lead to novel biological insights in clinical
samples.

Future improvements to the OncoMerge algorithm include a more quantitative integration
approach for the somatic mutations, a replacement for or an improved maximum final frequency
filter, aggregation across pathways, and a determination of whether other genomic features may
be integrated (ecDNA“® or epigenomics*®). Additionally, in future single-cell studies with both
transcriptome and genome information, it would be helpful to have an OncoMerge
implementation that integrates PAM, fusion, and CNA for every single cell. We envision
OncoMerge as a valuable tool in the somatic mutation characterization pipeline. We hope that it
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747  will facilitate multi-omic studies and lead to novel discoveries that can be translated into clinical
748  insights.
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855 Figure legends

856  Figure 1. OncoMerge integrates PAMs, fusions, and CNAs into an integrated mutation matrix
857  with the most suitable mutation type for each gene. The input data for OncoMerge includes the
858 PAM, transcript fusion, and CNA matrices. OncoMerge then generates six matrices (PAM,

859 Fusion, CNAamp, CNAdel, Act, and LoF) and uses the mutational frequency and statistical
860 filters to determine each gene's most suitable mutation type.

861  Figure 2. OncoMerge inferred activating and loss of function mutations overlap significantly with
862  prior knowledge from five independent gold standard datasets. A. Impact of filter sets on the
863  number of somatically mutated genes inferred by OncoMerge in at least one cancer. B. Impact
864  of filter sets on the distribution of genes per CNA locus using the same set of filtering conditions
865  (y-axis is distributed on a log scale). The dashed line indicates the ten genes per loci cutoff that
866  invokes the MFF filter. C. Enrichment of the gold standard (GS) activating (Act) or loss of

867  function (LoF) somatic mutations with OncoMerge (OM) Act or LoF somatic mutations for each
868 filtering condition: no filters (None); permuted g-value filter (PQ); maximum final frequency

869 (MFF); combined PQ and MFF; and combined PQ, MFF, and microsatellite and hypermutation
870 censoring filter (MHC). After Bonferroni multiple hypothesis correction, significant enrichments
871 are highlighted in red (p-value < 4.8 x 10#). The orange arrowheads indicate OM Act vs. GS
872  Act, and the green arrowheads indicate OM LoF vs. GS LoF.

873  Figure 3. Summary of effect on number and frequency of somatic mutations after integrating
874  mutation types. A. Frequency of hypermutation and microsatellite instability across cancers. B.
875  Number and distribution of mutation types. C. Number of somatically mutated genes with a
876 frequency 25% added after integration. D. Integrated somatic mutation frequencies. E.

877 Increases in somatic mutation frequency relative to PAM frequency after integration.

878  Figure 4. Pan-cancer somatic mutations with a consistent functional impact across at least five
879  cancers. A. Pan-cancer somatic mutations from the loss of functions group. B. Pan-cancer
880  somatic mutations from the activating group. C. Prior knowledge of tumor suppressor or

881  oncogene status for each somatically mutated gene (black square indicates known tumor

882  suppressor or oncogene activity).

883  Figure 5. Demonstrating improvements in downstream SYGNAL analysis by comparing GRNs
884  constructed with an OncoMerge integrated somatic mutation matrix versus a legacy network
885 using only PAMs. A. Average degree of nodes in the PanCaner SYGNAL networks. OncoMerge
886 = orange, legacy = yellow. B. Mutations per cancer network. OncoMerge = red, legacy = blue.
887  C. Mutations that overlap with genes previously associated with a specific cancer in DisGeNET.
888 OncoMerge =red, legacy = blue. D. TFs per cancer network. OncoMerge = green, legacy =
889  purple. E. TFs that overlap with genes previously associated with a specific cancer in

890 DisGeNET. OncoMerge = green, legacy = purple.

891  Figure 6. The architecture of functional disease-specific TF regulatory networks from human
892  tumors. A. Active TF regulatory network construction pipeline: 1) TFs from all cancer regulatory
893  networks were identified, 2) A putative map of TF regulatory network interactions was

894  constructed, 3) TF — TF relationships were filtered using Pearson's correlations computed from
895  patient tumor data, and 4) compute the triad significance profiles using mfinder. B. Comparison
896  of active TF regulatory network based on SYGNAL GRNs (red) to the static TF regulatory

897  network based on ENCODE DNA binding and accessibility (blue, Neph et al., 2012). C.
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898 FANMOD enrichment normalized Z-scores for the three most enriched motifs from the active TF
899 regulatory network after incorporating TF regulatory interaction roles (activation or repression).
900 The first row, titled Coherent motifs, is shaded when the motif configuration is coherent and

901 white when it is incoherent. Normalized Z-scores are reported for each cancer, and diagonal
902 dashed lines are inserted when no Z-score was returned. The network motif can be found at the
903  bottom of each column, colored with regulatory roles (activation = green arrow, repression = red
904  perpendicular line). C1, C2, C3, C4 = coherent FFLs. 11, 12, 13, 14 = incoherent FFLs.

905
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Supplementary Figure 1. OncoMerge flow-chart that describes how the putative protein
affecting mutation (PAM), transcript fusions (Fusion), and putative copy number alteration
(CNA) data are integrated and filtered to generate a integrated mutation matrix.
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