

1 **Systematic integration of protein affecting mutations, gene
2 fusions, and copy number alterations into a comprehensive
3 somatic mutational profile**

4 Shawn S Striker ¹, Sierra F Wilferd ¹, Erika M Lewis ¹, Samantha A O'Connor ¹, Christopher L
5 Plaisier ^{1*}

6 ¹ School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ

7 *To whom correspondence should be addressed: Christopher Plaisier, E-mail:
8 plaisier@asu.edu, Phone: (480) 965-6832, Address: P.O. Box 879709, Tempe, AZ 87287-9709

9 **Abstract**

10 A gene can be mutated across a tumor cohort by protein affecting mutations (PAMs), gene
11 fusions, or copy number alterations (CNAs). These mutations can have a similar phenotypic
12 effect (i.e., allelic heterogeneity) and should be integrated into a unified gene mutation profile.
13 We provide OncoMerge as a somatic mutation integration platform that tames allelic
14 heterogeneity, discovers causal mutations, integrates binary PAM and fusion with quantitative
15 CNA data types, and overcomes known obstacles in cancer genetics. OncoMerge was applied
16 to the 9,584 patient tumors from 32 cancers profiled by the TCGA Pan-Cancer Atlas to validate
17 the novel integration methods. Integration increased the number and frequency of somatically
18 mutated genes and improved the prediction of the somatic mutation role as either activating or
19 loss of function. Using OncoMerge integrated somatic mutations boosts the power to infer active
20 gene regulatory networks that increase the connectedness of the networks and incorporate
21 more somatic mutations and regulators associated with cancer biology. We extracted
22 transcription factor (TF) regulatory networks and found that they were enriched with feedback
23 and feed-forward loop network motifs. Subsequent, signed network motif analysis demonstrated
24 that coherent switch-like feedback motifs and delay-inducing feed-forward loops were the only
25 enriched configurations. This enrichment pattern suggests that evolution in general or in the
26 tumor microenvironment is selecting for these coherent functional configurations. The
27 OncoMerge integrated somatic mutations provide a more comprehensive platform for studies
28 linking somatic mutations to downstream cancer phenotypes and will lead to novel biological
29 insights in clinical samples.

30 **Keywords:** somatic mutations, allelic heterogeneity, cancer, oncogene, tumor suppressor gene

31 **Introduction**

32 The selective pressures driving the accrual of somatic mutations that affect cancer phenotypes
33 are shared across cancers. This phenomenon leads to genes being somatically mutated across
34 multiple cancers, e.g., oncogenes and tumor suppressors. The three main types of somatic
35 mutations that modify the function of a gene or render it non-functional are: 1) protein affecting
36 mutations (PAMs), 2) gene fusions, and 3) copy number alterations (CNAs). A PAM is a point
37 mutation, short insertion, or short deletion inside a gene's coding region or splice sites¹. Gene
38 fusions occur when genomic rearrangements join two genes into a novel chimeric gene or place
39 a promoter in front of a new gene, causing misexpression². Finally, CNAs occur frequently in
40 tumors where whole chromosomes, chromosomal arms, or localized genomic segments are
41 duplicated or deleted^{3,4}. Somatic mutation via PAM, gene fusion, or CNA can have similar
42 effects on cancer phenotypes, i.e., allelic heterogeneity. This interchangeability and the erratic
43 circumstances that produce somatic mutations lead to the mixture of mutation types observed in
44 large cohorts of patient tumors¹.

45 Describing how somatic mutations in a gene impact cancer phenotypes requires integrating the
46 information from all three mutation types. Currently, most studies linking somatic mutations to
47 cancer phenotypes focus on one mutation type. This leads to missing associations for mutations
48 primarily found in another type and reduced power to detect associations for mutations with high
49 allelic heterogeneity that span the mutation types. Thus, a current obstacle facing those
50 studying the downstream effects of somatic mutations is the lack of an established method for
51 integrating PAMs, gene fusions, and CNAs into a comprehensive gene mutation profile. The
52 lack of integration methods is due to several complicating factors. Firstly, the allelic
53 heterogeneity observed in and between tumors means that different mutations in the same gene
54 can be equivalently oncogenic. Second, it is challenging to discern driver (causal) from
55 passenger (non-causal) somatic mutations. Third, an algorithm must be able to systematically
56 integrate the binary PAM and gene fusion (mutated or not) with the quantitative copy number
57 from CNAs. Lastly, some tumors have drastically higher somatic mutation rates than other
58 tumors (e.g., microsatellite instability⁵ and hypermutation⁶). These higher mutation rates
59 confound any frequency-based integration approach and drive the discovery of spurious
60 somatic mutations. We developed OncoMerge to fill the somatic mutation integration niche by
61 providing an algorithm that systematically overcomes these obstacles to generate an integrated
62 gene mutation profile. The input for the OncoMerge algorithm is the output from state-of-the-art
63 methods for detecting PAMs (MC3¹ and MutSig2CV⁷), transcript fusions (PRADA^{2,8}), and CNAs
64 (GISTIC2.0⁹). The integrated mutation profiles will give more power to detect associations with
65 cancer phenotypes by capturing all tumors with a somatically mutated gene leading to a more
66 comprehensive understanding of how genetic alterations drive cancer phenotypes.

67 The tremendous amount of cancer genome sequencing data generated in the last ten years has
68 enabled efforts to discover and catalog somatic mutations across many cancers^{1,10}. Many
69 algorithms have been developed to discern which somatic mutations are drivers and how the
70 mutations affect genes^{6,7,11-15}. The impact of somatic mutations can be classified as activating
71 (Act) gene function (typically found in oncogenes), or loss of function (LoF) (typically found in
72 tumor suppressor genes)¹⁶. It has also been demonstrated that the systematic integration of
73 PAM and CNA somatic mutations for a gene improves the ability to determine Act or LoF
74 status¹⁶. These foundational studies have created a platform to develop an algorithm that
75 systematically integrates the three somatic mutation types.

76 The systematic integration of somatic mutations requires choosing a gene-level model that
77 determines how the data for the three somatic mutation types will be integrated, which in
78 OncoMerge is called the somatic mutation role. We determine the somatic mutation role by
79 employing rules similar to those used in OncodriveROLE¹⁶ (**Figure 1**). The possible somatic
80 mutation roles in OncoMerge are PAM, Fusion, CNA amplification (CNAamp), CNA deletion
81 (CNAdel), Act, or LoF. The PAM, Fusion, CNAamp, and CNAdel somatic mutation roles use the
82 somatic mutation profile of the role in the integrated mutation matrix. The Act and LoF are
83 integrated mutation roles that harness allelic heterogeneity. Allelic heterogeneity is especially
84 prevalent in tumor suppressor genes, where mutations at many positions in a gene can impede
85 its function to prevent cancer phenotypes⁴. Allelic heterogeneity is less prevalent for oncogenes
86 where a small number of specific gain of function alleles are needed to drive cancer
87 phenotypes⁴. Genes underlying CNAs can add another layer of information as tumor
88 suppressors are often deleted, which has an equivalent oncogenic effect as missense or
89 truncating PAMs. The LoF role is designated when PAMs, Fusions, and CNAdels are
90 integrated. Oncogenes are often amplified as this typically leads to overexpression of the
91 underlying genes, which has a similar positive effect on gene function as a gain of function
92 PAM. The Act role is designated when PAMs, Fusions, and CNAamps are integrated.
93 Systematic determination of the somatic gene role and application of the rules laid out above
94 will be used to integrate the three mutation types into a comprehensive somatic mutation profile.
95 The algorithms developed to discern somatic mutation drivers for cancers provide a set of gold
96 standard mutations with gene roles that can be used to assess the performance of the new
97 OncoMerge algorithm. The gold standards are classified by whether the somatic mutation of a
98 gene was cancer-specific or not. The TCGA consensus⁶ and Cancer Gene Census (CGC) from
99 COSMIC¹⁵ were used to develop gold standards with cancer-specific somatically mutated gene
100 roles. The TCGA consensus is a list of driver genes identified from the TCGA Pan-Cancer Atlas
101 labeled with somatic mutation role (oncogene or tumor suppressor) and cancer type. The CGC
102 from COSMIC is an expert-curated database of human cancer driver genes labeled with
103 somatic mutation role (oncogene and tumor suppressor) and cancer type. The 20/20 rule⁴,
104 OncodriveROLE¹⁶, and Tokheim ensemble¹⁴ were used to develop gold standards with
105 somatically mutated gene roles. The 20/20 rule defines oncogenes by requiring >20% of
106 mutations in recurrent positions and tumor suppressors as >20% of recorded mutations are
107 inactivating (missense or truncating)⁴. OncodriveROLE is a machine learning algorithm that
108 classifies genes according to their role (Act or LoF) based on well-curated genomic features¹⁶.
109 The Tokheim ensemble is an ensemble-based method that integrates MutSigCV, 20/20+, and
110 TUSON methods for predicting gene roles (oncogene and tumor suppressor)¹⁴. Comparisons of
111 somatic mutation role between OncoMerge and the gold standards were facilitated by
112 converting oncogenes to Act and tumor suppressors to LoF. Finally, a combined gene role
113 agnostic gold standard was developed based on a union of all somatic mutations from all five
114 gold standards. These gold standards were used to assess the utility of filters and the quality of
115 the OncoMerge integrated somatic mutation matrices through their ability to recall somatic
116 mutations with the appropriate gene role.
117 A primary goal of OncoMerge is to construct a comprehensive somatic mutation profile that will
118 increase the power to identify how mutations modulate cancer phenotypes. Previously, we have
119 used the Systems Genetics Network AnaLysis (SYGNAL) pipeline¹⁷ to build causal and
120 mechanistic gene regulatory networks (GRNs) for 31 cancers from the TCGA Pan-Cancer
121 Atlas¹⁸. Using SYGNAL, we link somatic mutations through the GRN to the hallmarks of

122 cancer^{19–21}, thereby linking somatic mutations to cancer phenotypes. These SYGNAL GRNs
123 describe how somatic mutations influence transcription factor (TF) or miRNA expression, which
124 modulates the expression of downstream genes. In SYGNAL, somatic mutations are used as
125 input for the Network Edge Orienting (NEO) portion of the pipeline that infers causal flows of
126 information (somatic mutation → TF or miRNA regulator → bicluster of co-regulated genes).
127 Thus, we use the OncoMerge integrated somatic mutation matrices in SYGNAL GRN inference
128 to demonstrate the increased power to identify how mutations modulate cancer phenotypes.

129 TFs are a significant factor in regulating gene expression in a cell, and interactions between TFs
130 could be used to explain much of the overall transcriptional state of a cell. Neph et al., 2012
131 constructed a human TF gene regulatory network by integrating genome-wide digital genomic
132 footprinting with DNA recognition motifs across 41 cell types²². The network architecture of
133 three-node network motifs was investigated and shown to have a pattern similar to other
134 biologically derived networks^{23–25}. Because these TF regulatory networks were generated based
135 on DNA binding alone, they are not an active representation of the effect on transcript levels but
136 static DNA binding maps. On the other hand, SYGNAL GRNs are trained using coexpression as
137 an integral element of network construction. Therefore, SYGNAL GRNs can be considered
138 active because transcriptional effects support regulatory interactions. We compare and contrast
139 the underlying architecture of active TF regulatory networks from SYGNAL relative to static TF
140 regulatory networks from DNA binding maps.

141 As proof of principle, we apply OncoMerge to the multi-omic characterization of 32 cancers by
142 the TCGA PanCancer Atlas to develop filters and demonstrate a meaningful benefit for
143 downstream analyses. We demonstrate the power of using an integrated mutation matrix in
144 downstream analysis by re-analyzing the causal relationships for pan-cancer SYGNAL
145 networks¹⁸. We constructed transcription factor (TF) regulatory networks²² and generated triad
146 significance profiles (TSPs)²⁴ to investigate the underlying network architecture^{23–25}. We provide
147 the complete OncoMerge code, comprehensive mutation matrices for 32 TCGA cancers,
148 regulatory networks for 31 cancers, and TF regulatory network architecture for 25 cancers.
149 These studies demonstrate that OncoMerge efficiently integrates PAMs, fusions, and CNAs into
150 a comprehensive mutational profile that strengthens downstream analyses linking somatic
151 mutations to cancer phenotypes.

152 **Methods**

153 **Clinical and molecular data from TCGA**

154 These studies used standardized, normalized, batch corrected, and platform-corrected multi-
155 omics data generated by the Pan-Cancer Atlas consortium for 11,080 participant tumors¹⁸.
156 Complete multi-omic profiles were available for 9,584 patient tumors. TCGA aliquot barcodes
157 flagged as "do not use" or excluded by pathology review from the Pan-Cancer Atlas Consortium
158 were removed from the study. The overall survival (OS, OS.time) data used were obtained from
159 Liu et al. 2018²⁶.

160 • Somatic protein affecting mutations (PAMs) in TCGA – Somatic PAMs were identified by
161 the Multi-Center Mutation Calling in Multiple Cancer (MC3) project¹ and were
162 downloaded from the ISB Cancer Gateway in the Cloud (ISB-CGC; [https://isb-
163 cgc.appspot.com/](https://isb-cgc.appspot.com/)). PAMs were required to have a FILTER value of either: PASS, wga,
164 or native_wga_mix. In addition, all PAMs needed to be protein-coding by requiring that
165 Variant_Classification had one of the following values: Frame_Shift_Del,

166 Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense_Mutation,
167 Nonsense_Mutation, Nonstop_Mutation, Splice_Site, or Translation_Start_Site.
168 Additionally, mutation calls were required to be made by two or more mutation callers
169 (NCALLERS > 1). When both normal tissue and blood were available, the blood was
170 used as the germline reference.

- 171 • Statistical significance of PAMs in TCGA – The likelihood that a gene is somatically
172 mutated by chance alone was determined using MutSig2CV¹¹ and downloaded for each
173 cancer from the Broad GDAC FIREHOSE (<https://gdac.broadinstitute.org/>). Genes with a
174 MutSig2CV False Discovery Rate (FDR) corrected p-value (q-value) less than or equal
175 to 0.1 were considered significantly mutated¹¹.
- 176 • Somatic transcript fusions in TCGA – The TumorFusions portal² provides a pan-cancer
177 analysis of tumor transcript fusions in the TCGA using the PRADA algorithm⁸.
- 178 • Somatic copy number alterations (CNAs) in TCGA – Genomic regions that were
179 significantly amplified or deleted were identified using Genomic Identification of
180 Significant Targets in Cancer (GISTIC2.0)⁹ and downloaded for each cancer from the
181 Broad GDAC FIREHOSE.

182 **Somatic mutation data import and preprocessing**

183 An essential first step in OncoMerge is loading up and binarizing the somatic mutation data. The
184 somatic mutation data comprised of four primary matrices: 1) PAMs, 2) fusions, 3) CNA
185 amplifications (CNAamps), and 4) CNA deletions (CNAdels) (**Figure 1**). In addition, two
186 derivative matrices Act and LoF are created by merging the PAM with the CNAamps or
187 CNAdels matrices, respectively (**Figure 1**). All files are formatted as comma-separated values
188 (CSV) files with genes as rows and patients as columns unless otherwise noted.

- 189 • PAM matrix - The matrix values are [0 or 1]: zero indicates the gene is not mutated in a
190 patient tumor, and one indicates the gene is mutated in a patient tumor.
- 191 • Fusion matrix - The matrix values are [0 or 1]: zero indicates no gene fusion in a patient
192 tumor, and one indicates the gene fused to another genomic locus in a patient tumor.
- 193 • CNAamp and CNAdel matrices – The all_thresholded_by_genes.csv GISTIC output file
194 is used to populate the CNAamp and CNAdel matrices. The all_thresholded_by_genes
195 matrix values range from -2 and have no positive bound, and the values indicate the
196 copy number relative to the background. A cutoff of greater than or equal to 2 was used
197 to identify deep amplifications and less than or equal to -2 for deep deletions. Only deep
198 amplifications or deletions were included in these studies due to heterogeneity of cell
199 types and tumor biopsy purity. Oncomerge allows this threshold to be modified through a
200 command line parameter ('-gt' or '--gistic-threshold').
 - 201 ○ CNAamp matrix – The matrix values are [0 or 1]: zero indicates a gene is not
202 amplified in a patient tumor, and one indicates the gene is amplified in a patient
203 tumor.
 - 204 ○ CNAdel matrix – The matrix values are [0 or 1]: zero indicates a gene is not
205 deleted in a patient tumor, and one indicates a gene is deleted in a patient tumor.
- 206 • Act matrix – The Act matrix is the bitwise OR combination of the PAM, Fusion, and
207 CNAamp matrices. The Act matrix has genes as rows and patients as columns. The
208 matrix values are [0 or 1]: zero indicates the gene is not mutated or amplified in a patient
209 tumor, and one indicates the gene is either mutated, fused, amplified, or some
210 combination in a patient tumor.

211 • LoF matrix – The LoF matrix is the bitwise OR combination of the PAM, Fusion, and
212 CNAdel matrices. The LoF matrix has genes as rows and patients as columns. The
213 matrix values are [0 or 1]: zero indicates the gene is not mutated or deleted in a patient
214 tumor, and one indicates the gene is either mutated, fused, deleted, or some
215 combination in a patient tumor.

216 **Seeding OncoMerge with putative somatic mutations**

217 OncoMerge focuses on likely causal somatic mutations by considering only somatic mutations
218 that were statistically shown to be mutated more often than expected by chance alone. These
219 statistically significant mutations were used as seeds for OncoMerge integration. Somatic PAMs
220 used as seeds were identified with MutSig2CV q-values less than or equal to 0.1⁷ and a
221 mutation frequency greater than 5%. Gene fusions used as seeds were identified as significant
222 in PRADA⁸ and a mutation frequency greater than 5%. CNAamps or CNAdelets used as seeds
223 were identified as significantly amplified or deleted from the amplified genes (amp_genes) or
224 deleted genes (del_genes) GISTIC output files with residual q-values less than or equal to 0.05.
225 CNAs from sex chromosomes (X and Y) were excluded. Genes from sex chromosomes can
226 enter OncoMerge as seeds from PAMs or fusions. These seed genes become the starting point
227 of the OncoMerge integration. Subsequent steps determine if Act or LoF merged mutation
228 profiles or their component PAM, Fusion, CNAamp, or CNAdel mutation roles are the most
229 appropriate integration model for a gene.

230 **Merging somatic mutations in OncoMerge**

231 The mutation role for each seed gene is assigned based on the following criteria (Supp. Fig 1):

232 • If Act frequency (PAM+Fusion+CNAamp) > PAM+Fusion frequency and the Act
233 frequency $\geq 5\%$ then the mutation role is set to Act.
234 • Else LoF frequency (PAM+Fusion+CNAdel) > PAM+Fusion frequency and the LoF
235 frequency $\geq 5\%$ then the mutation role is set to LoF.
236 • Else if the gene mutation role is not set to Act or LoF:
237 ○ If the gene is a PAM seed gene (MutSig2CV q-value ≤ 0.1 and frequency $\geq 5\%$)
238 and has a frequency greater than Fusion, CNAamp, and CNAdel, then the
239 mutation role is set to PAM.
240 ○ Else if the gene is a Fusion seed gene (TumorFusion.org frequency $\geq 5\%$) and
241 has a frequency greater than PAM, CNAamp, and CNAdel, then the mutation
242 role is set to Fusion.
243 ○ Else if the gene CNAamp frequency $\geq 5\%$ and has a frequency greater than
244 PAM, Fusion, and CNAdel, then the mutation role is set to CNAamp.
245 ○ Else if the gene CNAdel frequency $\geq 5\%$ and has a frequency greater than PAM,
246 Fusion, and CNAamp, then the mutation role is set to CNAdel.

247 **Permuted q-value (PQ) filter**

248 For putative Act and LoF mutations, a permuted q-value is computed by randomizing the order
249 of rows in the PAM, Fusion, and CNA mutation matrices' and then calculating the randomized
250 frequency distribution for Acts and LoFs. The observed frequency for an Act or LoF mutation is
251 then compared to the randomized frequency distribution to compute the permuted p-value.
252 Permuted p-values are corrected into q-values using the multiple-test Benjamini-Hochberg FDR-
253 based correction method. Only Acts or LoFs that had a permuted q-value ≤ 0.1 were retained.
254 Any Act or LoF with a permuted q-value > 0.1 was set to the mutation role of either PAM,

255 Fusion, CNAamp, or CNAdel based on which mutation role had the highest frequency. The
256 permuted q-value cutoff can be set through a command line parameter ('-pq', --perm_qv').

257 **Minimum final frequency (MFF) filter**

258 A low-pass genomic filter was applied to each CNA locus if the CNA locus had ≥ 10 underlying
259 genes. The number of genes underlying a CNA locus can be set through a command line
260 parameter ('-mlg', --min_loci_genes'). The filter keeps only the gene(s) with the maximum
261 mutation frequency, and all genes with the maximum mutation frequency are kept for ties.

262 **Microsatellite hypermutation censoring (MHC) filter**

263 The TCGA tumors used in this study have been characterized for both MSI⁵ and hypermutation⁶
264 (**Supplementary Table 1**). The tumors with MSI or hypermutation are loaded as a blocklist of
265 patient IDs through a command line parameter ('-bl' or '--blocklist'). All tumors in the blocklist are
266 excluded from consideration by the PQ and MFF filters while determining the genes to include in
267 the final somatic mutation matrix. The mutation status for blocklist tumors are included in the
268 final integrated mutation matrix.

269 **OncoMerge outputs**

270 OncoMerge provides four output files that provide valuable information about the integration
271 process and the final integrated mutation matrix that can be used in downstream studies. Here
272 is a brief description of each file and its contents:

- 273 • oncoMerge_mergedMuts.csv – The integrated mutation matrix is comprised of genes
274 (rows) by patient tumors (columns) of mutation status after integration by OncoMerge.
275 The matrix values are [0 or 1]: zero indicates that the gene is not mutated in a patient
276 tumor, and one indicates that the gene was mutated in a patient tumor.
- 277 • oncoMerge_CNA_loci.csv – A list of the genes mapping to each CNAamp or CNAdel
278 locus included in the OncoMerge integrated mutation matrix.
- 279 • oncoMerge_ActLoFPermPV.csv – List of all significant Act and LoF genes, their
280 OncoMerge mutation role, frequency, empirical p-value, and empirical q-value. This
281 output is before the application of the low-pass frequency filter.
- 282 • oncoMerge_summaryMatrix.csv – Matrix of genes (rows) by all information gathered by
283 OncoMerge.

284 To aid in comparisons between runs, we provide the save permutation option ('-sp' or '--
285 save_permutation') to output permutation results so that the same permuted distribution can be
286 used with different parameters in separate runs. We also provide the load permutation option ('-
287 lp' or '--load_permutation') to load up the permuted distribution from a previous run. The
288 permuted distributions are saved in the following files if requested:

- 289 • oncomerge_ampPerm.npy, oncomerge_delPerm.npy – Snapshot of the non-
290 deterministic permutation results from combining PAM, Fusion, and CNAamp or PAM,
291 Fusion, and CNAdel frequencies, respectively.

292 **Gold standard cancer-specific gene role validation datasets**

293 Gold standard datasets are vital to validating the usefulness of each feature in OncoMerge. Two
294 different sources of gold standard cancer-specific gene role (Act or LoF) datasets were used to
295 validate the OncoMerge predicted tumor-specific gene roles:

- 296 • TCGA consensus: The TCGA consensus was constructed by Bailey et al., 2018
297 wherein they catalog a list of 299 unique oncogenesis associated genes⁶. In the TCGA

298 consensus 280 cancer-specific oncogene roles were identified, and 417 cancer-specific
299 tumor suppressor roles were identified (**Supplementary Table 2**).

300 • **Cancer Gene Census (CGC)**: The CGC was developed by Catalogue of Somatic
301 Mutations in Cancer (COSMIC) as an expert-curated database of human cancer-driving
302 genes¹⁵. CGC cancers were mapped to the TCGA cancers by manual curation
303 (Supplementary Table 2). In the CGC 205 cancer-specific oncogene roles were
304 identified, and 304 cancer-specific tumor suppressor roles were identified
305 (**Supplementary Table 2**).

306 **Gold standard gene role validation datasets**

307 Three different sources of gold standard gene role (Act or LoF) datasets were used to validate
308 the OncoMerge predicted gene roles:

309 • **20/20 rule**: The 20/20 rule defines oncogenes (Act) by requiring >20% of mutations in
310 recurrent positions, and tumor suppressors (LoF) as >20% of recorded mutations are
311 inactivating (missense or truncating)⁴. With the 20/20 rule, 54 oncogene roles were
312 identified, and 71 tumor suppressor roles were identified (**Supplementary Table 2**).
313 • **OncodriveROLE**: The OncodriveROLE is a machine learning algorithm that classifies
314 genes according to their role based on well-curated genomic features¹⁶. With
315 OncodriveROLE, 76 oncogene (Act) roles were identified, and 109 tumor suppressor
316 (LoF) roles were identified (**Supplementary Table 2**).
317 • **Tokheim Ensemble**: Ensemble-based method from Tokheim et al., 2016¹⁴, which
318 integrates MutSigCV, 20/20+, and TUSON methods for predicting gene roles. With the
319 Tokheim Ensemble, 78 oncogene (Act) roles were identified, and 212 tumor suppressor
320 (LoF) roles were identified (**Supplementary Table 2**).

321 **Computing overlap between OncoMerge and gold standards**

322 A hypergeometric enrichment statistic was used to compute the significance of overlap
323 observed between each gene role in OncoMerge versus the gold standards. When possible, the
324 tumor specificity of the gene role was taken into consideration (TCGA consensus and CGC).
325 Enrichment p-values less than the Bonferroni corrected alpha value of 0.002 were considered
326 significant.

327 **TCGA Pan-Cancer SYstems Genetics Network AnaLysis (SYGNAL)**

328 The mRNA and miRNA expression data required to run SYGNAL were obtained from Thorsson
329 et al., 2018¹⁸. The SYGNAL pipeline is composed of 4 steps and command-line parameters for
330 all programs are described in detail in Plaisier et al., 2016¹⁷. Each cancer was run separately
331 through the pipeline to reduce the confounding from tissue of origin differences. Highly
332 expressed genes were discovered for each cancer by requiring that genes have greater than or
333 equal to the median expression of all genes across all conditions in $\geq 50\%$ of patients¹⁸. These
334 gene sets were then used as input to SYGNAL to construct the gene regulatory networks
335 (GRNs) for each cancer.

336 The underlying cMonkey2 biclustering results are identical to those from Thorsson et al., 2018¹⁸
337 as they do not rely upon genetic information. Using Network Edge Orienting (NEO)^{17,27} somatic
338 mutations are integrated with bicluster and regulator expression in the next step. The systems
339 genetics analysis with NEO was modified from Thorsson et al., 2018 in two ways: 1) we
340 removed constraints to identify immune-related regulatory interactions, which substantially
341 increased the size of the network by including additional patient survival-associated biclusters

342 not associated with immune functions; and 2) the OncoMerge integrated mutation matrix was
343 used and compared against the PAM only mutation matrix used previously in Thorsson et al.,
344 2018¹⁸.

345

346 **TF regulatory network construction for PanCan-SYGNAL networks**

347 A TF regulatory network was built for each cancer in three steps (**Figure 6A**). First, the TFs
348 regulating survival-associated biclusters were extracted from each cancer's SYGNAL GRN.
349 Second, a preliminary $\text{TF}_{\text{regulator}} \rightarrow \text{TF}_{\text{target}}$ regulatory network was constructed based on the
350 presence of a binding site for a putative $\text{TF}_{\text{regulator}}$ in the promoter of a $\text{TF}_{\text{target}}$ from the
351 Transcription Factor Target Gene Database¹⁷ (<http://tfbsdb.systemsbiology.net>). TF family
352 expansion¹⁷ was used to supplement TFs that did not have an experimentally determined DNA
353 recognition motif in the database. The assumption was that the motifs within a TF family would
354 not vary significantly. Therefore TF family members from the TFClass database²⁸ with a known
355 DNA recognition motif can be used as a proxy for a TF with no known DNA recognition motif.
356 Finally, the putative $\text{TF}_{\text{regulator}} \rightarrow \text{TF}_{\text{target}}$ regulatory network was filtered by requiring a significant
357 Pearson correlation between the mRNA expression of the $\text{TF}_{\text{regulator}}$ and $\text{TF}_{\text{target}}$ (Pearson's $|R| \geq$
358 0.3 and $p\text{-value} \leq 0.05$). The sign of the correlation coefficient can be used to determine the role
359 of a regulatory interaction: a positive correlation coefficient equates to the $\text{TF}_{\text{regulator}}$ being an
360 activator, and a negative correlation coefficient equates to the $\text{TF}_{\text{regulator}}$ being a repressor.
361 Networks with fewer than 50 interactions were not included in the analyses as they were not
362 sufficiently powered to run the network motif analysis. The cancer regulatory networks for
363 DLBC, KICH, KIRP, OV, TGCT, and THYM were excluded from further studies.

364

365 **TF regulatory network motif analysis**

366 Three-node network motifs were enumerated from the TF regulatory networks using mfinder²³ in
367 the same manner as Neph et al., 2012²² and used to compute triad significance profiles
368 (TSPs)²⁴. The parameters used with mfinder v1.20 were²²: motif size set at 3 (-s 3), requested
369 250 random networks to be generated (-r 250), and the Z-score threshold was set at -2000 to
370 ensure all motifs are reported (-z -2000). All Z-scores were extracted for each cancer and
371 converted to triad significance profiles using the methods of Milo et al., 2004²⁴.

372

373 For consistency, the TF regulatory networks for the 41 different cell types from Neph et al.,
374 2012²² were downloaded from <http://www.regulatorynetworks.org/> and analyzed using the same
375 approach described above.

376

377 **Signed network motif analysis incorporating TF regulator interaction roles**

378 The enrichment of signed feed-forward loops (FFLs), regulated feedback, and regulating
379 feedback network motifs was computed using FANMOD²⁵, which takes into consideration TF
380 regulatory roles (activation and repression). The command line version of FANMOD from
381 IndeCut²⁹ was used with default parameters, except for the inclusion of regulatory role (colored
382 edges)²⁵ (fanmod 3 100000 1 <input_file> 1 0 1 2 0 1 0 1000 3 3 <output_file> 1 1). Z-scores for
383 signed FFLs, regulated feedback, and regulating feedback network motifs were extracted for
384 each cancer and converted to triad significance profiles using the methods of Milo et al., 2004²⁴.
385 The signed FFL network motifs are broken down into C1, C2, C3, C4, I1, I2, I3, and I4, as
386 described previously³⁰.

387

388 Results

389 Establishing a baseline for the integration of somatic mutations

390 Somatic mutations play a significant role in cancer pathogenesis, and the main mutation types
391 are PAMs, fusions, and CNAs (amplifications and deletions). Somatic mutation of the same
392 gene with different mutation types can have similar downstream effects on cancer phenotypes.
393 We have developed OncoMerge as a systematic method to integrate PAM, fusion, and CNA
394 somatic mutations into a more comprehensive mutation matrix for subsequent analyses.
395 OncoMerge systematically integrates somatic mutations and defines a role for each gene
396 (**Figure 1**): PAM, fusion, CNA deletion (CNAdel), CNA amplification (CNAamp), Activating
397 (Act), and Loss of Function (LoF). The role assigned to a gene describes the rubric used to
398 integrate the data from the source data matrices.

399 A significant part of developing OncoMerge was constructing and optimizing the statistical filters
400 that provide an essential quality control step to identify somatically mutated genes that are more
401 likely to be functional in tumor biology. The selection and optimization of OncoMerge statistical
402 filters were performed using the 9,584 patient tumors from 32 cancers profiled by the TCGA
403 Pan-Cancer Atlas^{1,6}. We used three metrics to assess the value of potential filters: 1) impact on
404 the number of somatically mutated genes (**Figure 2A**); 2) impact on the distribution of the
405 number of genes mapping to genomic loci (**Figure 2B**); and 3) significance of the overlap
406 between somatically mutated genes from OncoMerge with gold standard datasets (including
407 overlap with gene roles and tumor-specific gene roles; **Figure 2C; Supplementary Table 3**).
408 These metrics ensure that the integrated somatic mutations are consistent with prior knowledge
409 and that the size of CNA mutations does not overwhelm the integration algorithm.

410 Next, we determined the integration baseline by applying OncoMerge to the TCGA Pan-Cancer
411 Atlas without filtering. Slightly less than one-third of the genome was considered somatically
412 mutated in at least 5% or greater of tumors in at least one of the 32 cancers (30% or 6,028
413 genes, **Figure 2A**). We observed a highly significant overlap between OncoMerge somatically
414 mutated genes and the combined gold standard (genes = 395, p-value = 1.1×10^{-44} , **Figure 2C**)
415 when gene role was not considered. Significant overlaps existed between the LoF somatic
416 mutations from three gold standards (TCGA consensus, CGC, and Vogelstein) with the somatic
417 mutations with the LoF predicted role from OncoMerge (**Figure 2C**). None of the comparisons of
418 Act somatic mutations were significantly overlapping (**Figure 2C**). Many of the 6,028 genes map
419 to the same copy number alteration genomic locus (**Figure 2B**). These unfiltered results reveal
420 two main integration biases. First, there is no overlap of Act somatic mutations with previously
421 identified Act mutations. Second, the integration with CNAs is causing the inclusion of many
422 passenger mutations mapping to the same genomic locus. OncoMerge applied to the TCGA
423 Pan-Cancer Atlas without filtering provides a baseline to benchmark success. Addressing the
424 integration biases we observed is the impetus we had for developing and optimizing filters for
425 OncoMerge.

426 Developing an optimal filtering strategy for the integration of somatic mutations

427 A key consideration in developing OncoMerge was that integrating the somatic mutation types
428 should highlight the functional somatic mutations over passenger mutations. Therefore, we
429 created two filters designed to prioritize somatically mutated genes that are more likely to be
430 functional. The first filter determined if the final mutation frequency after integrating PAM, fusion,
431 and CNA somatic mutations is larger than expected by chance alone. A permutation-based
432 approach empirically determined the background integrated mutation frequency distribution.

433 Then the observed frequencies are compared to the randomized background distribution to
434 calculate permuted p-values, which are corrected using the Benjamini-Hochberg method to
435 provide permuted q-values. A permuted q-value ≤ 0.1 denotes a significant final mutation
436 frequency. The permuted q-value (PQ) filter reduced the number of somatically mutated genes
437 to 5,630 (**Figure 2A**). This filtering improved LoF somatic mutations from three to four gold
438 standards (TCGA consensus, CGC, Vogelstein, and OncodriveROLE) with the somatic
439 mutations that had the LoF predicted role from OncoMerge. Still, the Act comparisons did not
440 show significant enrichment (**Figure 2C**). The PQ filter had a minimal impact on the number of
441 genes per locus (**Figure 2B**). This lack of significant overlap for Act somatic mutations
442 demonstrates that further filtering is required.

443 The second filter deals with passenger gene somatic mutations. An average CNA encompasses
444 3.8 ± 7.9 Mb of genomic sequence³¹, and genomic segments of this size typically include many
445 genes. These large genomic regions make it difficult to determine which of the affected genes
446 are the functional gene(s) underlying the CNA locus without integrating additional information.
447 We assert that passenger genes underlying a CNA locus can be considered noise and can be
448 identified by the lack of allelic heterogeneity. Thus, functional gene(s) can be identified through
449 allelic heterogeneity that boosts the somatic mutation frequency for a gene above the
450 background CNA frequency. We designed a low-pass filter that retains only the gene(s) with the
451 maximum final frequency (MFF). The MFF filter is only applied if a locus has more than ten
452 genes. Application of the MFF filter dramatically reduced the number of somatically mutated
453 genes from 6,028 to 1,459 (**Figure 2A**) and the number of genes per locus (**Figure 2B**). We
454 additionally observed a marked improvement in overlap with the gold standards. Significant
455 enrichment was observed for four Act gold standards with somatic mutations that OncoMerge
456 predicts to be Act, and all five of the LoF gold-standard versus OncoMerge predicted LoF
457 comparisons (**Figure 2C**). The MFF filter directly addresses the issue of too many genes in a
458 CNA locus. Removing more than three-quarters of the somatically mutated genes improves the
459 overlaps with gold standards.

460 We then assessed the impact of applying both the PQ and MFF filters. Simultaneous application
461 of both filters led to a slight reduction in the number of somatically mutated genes beyond the
462 MFF filter (1,398 genes; **Figure 2A**), and the improvement in the number of genes per locus
463 was retained (**Figure 2B**). There was also an improvement in the significant overlap with gold
464 standards where all five LoF gold-standard versus OncoMerge predicted LoF and four Act gold-
465 standard versus OncoMerge predicted Act were significant (**Figure 2C**). Importantly, none of the
466 gold standard Act versus LoF or LoF versus Act comparisons were significant for any filter
467 combination, demonstrating that the OncoMerge predicted roles are consistent with prior
468 knowledge.

469 **Reducing biases due to microsatellite instability and hypermutation**

470 Microsatellite instability (MSI) and hypermutation phenotypes drastically increase the number of
471 somatic mutations in a tumor. The PQ and MFF filters and OncoMerge's core algorithm rely
472 upon somatic mutation frequency which is susceptible to confounding by MSI or hypermutation.
473 Fortunately, all TCGA tumors used in this study are characterized for both MSI⁵ and
474 hypermutation⁶ status (**Figure 3A**). We observed a highly significant positive correlation
475 between MSI/hypermutation frequency and the total number of somatic mutations per cancer
476 after integration by OncoMerge ($R = 0.69$ and $p\text{-value} = 1.1 \times 10^{-5}$). This strong positive
477 correlation demonstrates that MSI/hypermutation is likely inflating the number of somatic

478 mutations discovered by OncoMerge. Therefore, we created the MSI and hypermutation
479 censoring filter (MHC) to exclude these tumors while OncoMerge determines which genes to
480 include in the final somatic mutation matrix. The mutation status for tumors with MSI and
481 hypermutation are included for genes in the final integrated mutation matrix. Applying the MHC
482 filter alongside the PQ and MFF filters reduced the overall number of somatically mutated genes
483 (1,133 genes; **Figure 2A**) and had minimal impact on the number of genes per locus (**Figure**
484 **2B; Supplementary Table 4**). The combined PQ, MFF, and MHC filters decreased the
485 correlation between the MSI/hypermutation frequency ($R = 0.53$ and $p\text{-value} = 1.7 \times 10^{-3}$). All
486 ten of the gold standard Act vs. Act and LoF vs. LoF comparisons were significant. These
487 results established that the MHC filter is valuable for removing passenger mutations introduced
488 by tumors with severely increased somatic mutation rates. The PQ, MFF, and MHC filters
489 comprise the default and final OncoMerge filter set. The filters deal with known complications in
490 cancer genetics and ensure that the mutation roles in the integrated matrix are correctly
491 assigned.

492 **Benefits of an integrated somatic mutation matrix**

493 We evaluated the benefits of systematic somatic mutation integration by comparing OncoMerge
494 integrated somatic mutation matrices to those from PAMs. The PAM somatic mutation matrices
495 were used as a reference point because we have successfully used them as the sole source for
496 somatic mutations in previous studies^{17,18}. We assessed the benefits of integration by tabulating
497 the number of somatic mutations and their roles (**Figure 3B**), the number of genes added by
498 integration (**Figure 3C**), and the increase in somatic mutation frequency due to integration
499 (**Figure 3E**). Impressively, Act and LoF mutations represented the bulk of the somatic mutations
500 in 30 cancers (**Figure 3B**). The papillary thyroid carcinoma (THCA) and kidney chromophobe
501 (KICH) were the only cancers that lacked Act or LoF mutations. Consistent with Agrawal et al.
502 2014³², THCA had only three mutations with a frequency $\geq 5\%$ BRAF, NRAS, and RET. On the
503 other hand, KICH was under-sampled in the TCGA Pan-Cancer atlas ($n = 65$), and LoF and Act
504 mutations would likely be discovered with the inclusion of more patient tumors.

505 We then investigated how many new genes the integration added for each cancer. Integration
506 added at least one somatically mutated gene for each cancer (**Figure 3C**), and more than eighty
507 somatically mutated genes for BLCA, LUAD, and UCEC (**Figure 3C**). The somatically mutated
508 genes added by OncoMerge make the integrated somatic mutation matrices more
509 comprehensive.

510 Next, we investigated the frequencies of the somatic mutations from the OncoMerge integrated
511 mutation matrices. The genes with the highest frequency map to well-known oncogenes (e.g.,
512 BRAF) and tumor suppressors (e.g., APC and TP53; **Figure 3D**). The two tumor suppressor
513 genes APC and TP53 were mutated in greater than eighty percent of the tumors for multiple
514 cancers (**Figure 3D**). The APC gene was mutated in greater than eighty percent of tumors for
515 colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ). The TP53 gene was
516 mutated in greater than eighty percent of tumors for esophageal carcinoma (ESCA), lung
517 squamous carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), rectal carcinoma
518 (READ), and uterine carcinosarcoma (UCS). These frequently mutated genes in the OncoMerge
519 integrated mutation matrices are consistent with prior knowledge of somatic mutations for each
520 cancer.

521 Finally, we calculated the frequency added through integration by subtracting the integrated
522 mutation frequency from the PAM frequency. The most substantial increases in somatic

523 mutation frequency were observed for TMPRSS2-ERG in prostate adenocarcinoma (PRAD)
524 and CDKN2A in mesothelioma (MESO), glioblastoma (GBM), diffuse large B-cell lymphoma
525 (DLBC), and esophageal carcinoma (ESCA; **Figure 3E**). Neither TMPRSS2-ERG nor CDKN2A
526 would have been identified as somatically mutated without incorporating fusions and CNAs,
527 respectively. These findings demonstrate that OncoMerge significantly improves the number
528 and frequency of somatically mutated genes in most cancers. Also, these results show that the
529 systematic integration of PAM, fusion, and CNA somatic mutations is crucial for obtaining a
530 comprehensive mutation matrix for each cancer.

531 **Pan-cancer somatic mutations capture many known tumor suppressors and**
532 **oncogenes**

533 Genes mutated in multiple cancers are of great interest as selective pressures have found a
534 common solution in different contexts to influence cancer phenotypes. Therefore, we searched
535 for genes somatically mutated in at least five cancers in the OncoMerge integrated mutation
536 matrices. The resulting gene list could be broken down into two groups of somatic mutations:
537 the LoF set (n = 28, **Figure 4A**) and the Act set (n = 18, **Figure 4B**). The FBXW7, KMT2C, and
538 KMT2D somatic mutations were challenging to classify as LoF or Act. The genes FBXW7 and
539 KMT2D were somatically mutated with PAMs in six and seven cancers, respectively (**Figure**
540 **4A**). The gene KMT2C (also known as MLL3) was primarily LoF and PAM but had the mutation
541 role of Act for ovarian cancer (OV) (**Figure 4B**). Based on a literature search, all three genes
542 have been classified as tumor suppressors³³⁻³⁵. Therefore, we grouped FBXW7, KMT2C, and
543 KMT2D mutations with the LoF set.

544 The pan-cancer somatically mutated genes harbored many well-known tumor suppressors and
545 oncogenes (**Figure 4C**). As expected, tumor suppressors³³ were significantly enriched in the
546 LoF group (overlap = 20, p-value = 2.0 x 10⁻²⁰), and oncogenes³⁶ were significantly enriched in
547 the Act group (overlap = 8, p-value = 9.2 x 10⁻⁹). The top three most somatically mutated tumor
548 suppressors were TP53, PTEN, and CDKN2A. These three tumor suppressors control important
549 checkpoints in the cell cycle making them functionally interesting. The gene TP53 was
550 somatically mutated in 24 cancers, primarily by PAMs, but four LoF were also observed for
551 glioblastoma (GBM), liver hepatocellular carcinoma (LHC), prostate adenocarcinoma (PRAD),
552 and sarcoma (SARC). The top three most mutated oncogenes across cancers were PIK3CA,
553 KRAS, and CCNE1. Two of these genes (PIK3CA and KRAS) become overactive kinases when
554 mutated, and CCNE1 is a fundamental part of the cell cycle regulatory machinery. Both PIK3CA
555 and KRAS have PAM and Act mutation roles across the different cancers, and only the NFE2L2
556 gene has a similar mixture of PAM and Act mutation roles. The remainder of the oncogenes are
557 like CCNE1 in that the gene somatic mutation roles are all Act. These pan-cancer analyses
558 further validate the systematic somatic mutation integration by OncoMerge through the
559 unbiased recall of tumor suppressors and oncogenes.

560 **Improving gene regulatory network inference**

561 A major goal of developing OncoMerge was to construct an integrated somatic mutation profile
562 that would increase the power to identify how mutations modulate cancer phenotypes.
563 Previously we used PAMs from the cancers in the TCGA Pan-Cancer Atlas as input for
564 SYGNAL to construct gene regulatory networks (GRNs)¹⁸. SYGNAL GRNs are composed of
565 causal and mechanistic interactions linking somatic mutations to a TF or miRNA regulator to a
566 co-regulated set of genes (bicluster). Somatic mutations in SYGNAL are used as input for the
567 Network Edge Orienting (NEO) portion of the pipeline that infers causal flows of information

568 (somatic mutation → TF or miRNA regulator → bicluster of co-regulated genes). Therefore, we
569 recomputed NEO analyses using the OncoMerge integrated somatic mutation matrices for each
570 cancer in the TCGA Pan-Cancer Atlas to demonstrate the increased power to detect causal
571 flows of information. The resulting networks were filtered to include only biclusters with good
572 quality co-expression that were significantly associated with patient survival. Regulatory
573 interactions were required to be both causal (significant evidence of information flow between a
574 mutation → regulator → bicluster) and mechanistic (enrichment of regulator binding sites in the
575 promoter or 3' UTR of the bicluster genes). We compare SYGNAL GRNs inferred using
576 OncoMerge integrated mutation matrices (**Supplementary Table 5**) with SYGNAL GRNs
577 inferred using the legacy PAM-based mutation matrices from Thorsson et al., 2018.

578 The GRNs are comprised of nodes and edges. The degree of a node is the number of edges
579 connecting it to other nodes. The average degree is a standard network metric computed as the
580 average of all node degrees in the network. We found that the average degree was larger for 26
581 OncoMerge GRNs relative to legacy GRNs (**Figure 5A**). The exceptions were GBM (average
582 degree was equal) and COAD and STAD (legacy had a larger average degree). COAD and
583 STAD have many MSI and hypermutation tumors (**Figure 3A**), suggesting that the MHC filter
584 removed spurious associations. Furthermore, the hypothesis that MSI and hypermutation
585 inflated the average degree of GRNs is supported by the reduction in the number of COAD
586 mutations in the OncoMerge GRN relative to the legacy GRN (**Figure 5B**). Thus, we have
587 increased the average degree in the networks and addressed a systematic bias found in legacy
588 networks.

589 Next, we considered the number of mutations in each GRN predicted to modulate the activity of
590 regulators. The OncoMerge GRNs contained more somatic mutation nodes than the legacy
591 GRNs for all cancers but COAD, likely due to MSI and hypermutation as described above
592 (**Figure 5B**). Then, we assessed the recall of somatic mutations previously associated with
593 each cancer from the DisGeNET database³⁷. All but two OncoMerge GRNs recalled more
594 previously associated somatic mutations than the legacy GRNs (**Figure 5C**). The exceptions
595 were UVM with the same amount and COAD with fewer (**Figure 5C**). This demonstrates that
596 OncoMerge integrated mutation matrices provide increased power for linking somatic mutation
597 matrices into GRNs, and improve the capture of somatic mutations previously associated with
598 each cancer.

599 Finally, we considered the number of predicted causal and mechanistic transcription factor (TF)
600 regulators in each GRN. The OncoMerge GRNs contained more predicted TF regulators than
601 legacy GRNs for all but GBM, which had one less TF (**Figure 5D**). We also assessed the recall
602 of TFs previously associated with each cancer from the DisGeNET database^{37,38}. Twenty-four of
603 the OncoMerge GRNs recalled more previously associated TFs than legacy GRNs (**Figure 5E**).
604 The GBM and KIRP GRNs had the same amount, and KICH and UVM had no recall of
605 previously associated TFs in either GRN (**Figure 5E**). In summary, using OncoMerge integrated
606 mutation matrices in GRN construction builds more extensive and biologically meaningful
607 networks.

608 **Comparing active and static TF regulatory network architectures**

609 The interactions between TFs are important for generating the transcriptional state of a human
610 cell. The underlying architecture of TF regulatory networks, comprised of TFs and their
611 interactions, are typically explored by enumerating all three-node network motifs and computing

612 their enrichment or depletion into triad significance profiles (TSPs)²⁴. Most studies of network
613 motif enrichment have relied upon unsigned interactions^{22,24,39-42}, which ignore whether the
614 interaction is activating or repressing. To facilitate comparisons, our first analysis of network
615 architecture uses unsigned TSPs to compare static and active TF regulatory networks. Static TF
616 regulatory networks were constructed using chromatin accessibility and DNA binding motifs for
617 41 cell types²². These TF regulatory networks are static because they do not incorporate gene
618 expression data in their construction. Active TF regulatory networks are derived from the
619 OncoMerge augmented SYGNAL pan-cancer GRNs, that were trained using patient tumor
620 transcriptional data and therefore are comprised of active TF regulatory interactions. Using the
621 following steps, we constructed TF regulatory networks for each cancer from the pan-cancer
622 SYGNAL GRNs (**Figure 6A**). First, we extracted all the TF regulators from the pan-cancer
623 GRNs. Interactions between TFs were inferred based on the presence of DNA binding motifs
624 from the TF target gene database¹⁷, and a significant correlation between the TF regulator and
625 TF target in patient tumor expression (Pearson's $|R| \geq 0.3$ and $p\text{-value} \leq 0.05$; **Figure 6A**;
626 **Supplementary Table 6**). The enrichment (or depletion) of motifs in the network was computed
627 using TSPs²⁴. Triad significance profiles were calculated for twenty-five TF regulatory networks
628 and summarized as the median TSP (**Figure 6A & B**). We excluded the cancer types DLBC,
629 KICH, KIRP, OV, TGCT, and THYM because they had too few inferred regulatory interactions
630 (< 50 interactions). Finally, we recomputed the TSPs for the static TF regulatory networks using
631 a more recent version of the mfinder algorithm (**Figure 6B**).

632 The median TSPs of the active and static TF regulatory networks were highly correlated ($R =$
633 0.75 , $p\text{-value} = 3.0 \times 10^{-3}$; **Figure 6B**). Demonstrating that the architecture of the active network
634 resembles the static network. However, the maximum enriched network motifs were different.
635 The regulated and regulating feedback motifs (motifs 108 and 46) were the most highly enriched
636 motifs from the static TF regulatory networks and were still enriched, although not as significant
637 as in the active networks. In contrast, the feed-forward loop (FFL, motif 38) is the most highly
638 enriched motif in the active TF regulatory networks. These two motifs are quite similar in
639 structure and differ only by a single edge. Feedback motifs and FFLs can be further broken
640 down into ten and eight signed network motifs that each have a unique functional output³⁰. Thus
641 exploring the enrichment of signed network motifs allows the discovery of what functions are
642 being selected for by evolution in general and the microcosm of tumor biology.

643 **Coherent feed-forward loops enriched in active TF regulatory networks**

644 Incorporating the sign of the regulatory interactions (activating or repressing) splits the FFL motif
645 into eight signed network motifs classified as coherent (C1, C2, C3, C4) and incoherent (I1, I2,
646 I3, I4)³⁰. Simulation studies have demonstrated that coherent FFLs lead to delays in target gene
647 expression, and incoherent FFLs accelerate target gene expression³⁰. FFLs were significantly
648 enriched in active TF regulatory networks, which led us to question whether coherent,
649 incoherent, or both FFLs were enriched. In active GRNs, the sign of the correlation between the
650 TF regulator to TF target can be used to determine the sign of the interaction ($R > 0$ equates to
651 activation, $R < 0$ equates to repression). The four coherent FFLs were enriched in the active TF
652 regulatory networks (**Figure 6C; Supplementary Table 7**), and incoherent FFLs were severely
653 under-enriched ($Z \ll 0$). In summary, coherent FFLs were enriched in our active TF regulatory
654 networks, suggesting that transcriptional delay mechanisms must provide a valuable function for
655 TF regulatory networks.

656 **Coherent switch-like feedback motifs enriched in active TF regulatory networks**

657 The regulated and regulating mutual feedback motifs have a two-node feedback loop at their
658 core. The double-positive and double-negative two-node mutual feedback loops act like
659 switches⁴³. We tested the twenty signed regulated and regulating mutual feedback network
660 motif configurations for enrichment in TF regulatory networks. Three regulating and three
661 regulated signed mutual feedback motifs (**Figure 6C; Supplementary Table 7**). These six
662 enriched regulated and regulating mutual feedback motifs had a commonality in their
663 configuration. Firstly, all the network motifs were coherent. Coherent regulated and regulating
664 feedback loops have interaction signs between the feedback loop that are either double-positive
665 or double-negative. And the regulated or regulating node interacts with the feedback loop nodes
666 using the same sign for double-positive feedback loops and the opposite sign for double-
667 negative feedback loops. Thus, there are three coherent configurations for both regulated and
668 regulating mutual feedback motifs making six total, coinciding with the six enriched
669 configurations (**Figure 6C; Supplementary Table 7**). The enriched motifs containing a double-
670 positive feedback loop had the same interactions with the non-feedback loop node, both
671 activating or repressing (**Figure 6C**). The enriched motif containing a double-negative feedback
672 loop had opposing interactions with the non-feedback loop node, one activating and one
673 repressing (**Figure 6C**). These enriched signed network motifs are the configurations that
674 function as molecular switches⁴⁴. Again, evolution has selected for coherent network motif
675 configurations likely because of their function.

676 **Discussion**

677 We developed OncoMerge to integrate PAMs, fusions, and CNAs into a more accurate
678 representation of the somatic mutation landscape of patient tumors. The OncoMerge integration
679 algorithm and three filters (PQ, MFF, and MHC) effectively address the issues of allelic
680 heterogeneity and the unification of binary and quantitative mutation data. These issues have
681 forced most studies of somatic mutations to focus on one somatic mutation type and were the
682 impetus for us to develop OncoMerge for the integration of the three most common somatic
683 mutation types. We tested OncoMerge by integrating the somatic mutation data from 32 cancers
684 from the TCGA Pan-Cancer Atlas. Comparison to gold standards confirmed that the genes and
685 roles selected by OncoMerge were accurate. The integration of somatic mutation types had
686 several quantifiable benefits for somatically mutated genes. First, most somatically mutated
687 genes had an integrated role of Act or LoF, demonstrating that consolidation of allelic
688 heterogeneity is vital to achieving a complete picture of somatic mutations for a patient cohort.
689 Second, genes somatically mutated primarily by fusions and CNAs were added by the
690 integration. Lastly, the frequency of many somatically mutated genes increased due to the
691 integration of the three somatic mutation types. We used the integrated somatic mutations as
692 input to SYGNAL to demonstrate improvements in power for systems genetics-based inference
693 of GRNs. Using integrated somatic mutations increased the average connectedness of the
694 GRNs by incorporating more somatic mutations and regulators previously linked to cancer
695 biology. Next, we found that while the underlying architecture of active SYGNAL TF regulatory
696 networks and static DNA binding TF regulatory networks were similar overall, the top most
697 enriched network motifs were different. We discovered that switch-like feedback and delay-
698 inducing feed-forward loop motifs were enriched in TF regulatory networks. We developed and
699 tested a novel systematic integration tool and demonstrated that integrated somatic mutations
700 improve our ability to link somatic mutations with cancer phenotypes.

701 The construction of active GRNs enabled the exploration of signed network motifs and led to the
702 discovery that specific signed network motif configurations are being enriched. The SYGNAL

703 GRNs construction method identifies active gene regulatory interactions by discovering
704 interactions that are supported by gene expression data from patient tumors [PMID =
705 27426982]. On the other hand, prior networks were static maps of DNA binding sites
706 constructed using digital genomic footprinting and the similarity of the underlying sequence of
707 the footprints for known DNA binding motifs²². The active networks use a correlation-based
708 method to determine TF regulatory roles (activator or repressor) for the interactions, which is not
709 possible using static binding maps. Analyzing signed network motifs provides a leap forward in
710 understanding how the underlying architecture of GRNs functions in real-world biological
711 systems. OncoMerge integrated somatic mutations offer a more solid platform to infer active
712 GRNs that can be used to explore the functional architecture of TF regulatory networks.

713 We discovered that coherent regulated and regulating feedback and FFL network motifs were
714 enriched in cancer TF regulatory networks. We cannot say whether this enrichment of network
715 motifs will generalize to all active GRNs or if this is a cancer-specific phenomenon. In normal
716 organismal development, feedback motifs have been previously shown to be important for cell
717 fate decision-making^{45,46}. On the other hand, in tumor cells and other cells in the tumor
718 microenvironment, the enriched feedback motifs may be maintaining a cell fate, or the disease
719 could be coopting the circuit to drive tumor biology. Likewise, coherent FFL network motifs have
720 also been associated with enhanced drug resistance⁴⁷. These coherent motifs are relevant for
721 normal and diseased cell biology, and evolution has specifically selected these motif
722 configurations because of their unique functional outputs.

723 We provide the OncoMerge software in several standard distribution formats to facilitate future
724 studies that aim to integrate somatic mutations. The source code is available on GitHub
725 (<https://github.com/plaisier-lab/OncoMerge>). Finally, a Docker image was created that can be
726 run as a virtual machine with all dependencies pre-installed
727 (<https://hub.docker.com/r/cplaisier/oncomerge>). Detailed documentation is provided, along with
728 a tutorial that describes the use of OncoMerge. The goal of disseminating OncoMerge in these
729 ways is to give end-users flexibility to choose what distribution method best fits their
730 computational platform.

731 Additionally, we provide the OncoMerge integrated somatic mutation matrices for those planning
732 studies that use somatic mutations from the TCGA Pan-Cancer Atlas
733 (<https://doi.org/10.6084/m9.figshare.20238867>). These integrated somatic mutation matrices
734 can be used for any downstream analyses incorporating somatic mutations and will provide the
735 same power boost observed in our studies. In addition, we also offer the pan-cancer SYGNAL
736 GRNs and TF regulatory networks as supplementary tables to expedite systems genetics
737 studies of TCGA cancers. We hope these accessible results will facilitate studies linking somatic
738 mutations to downstream cancer phenotypes and lead to novel biological insights in clinical
739 samples.

740 Future improvements to the OncoMerge algorithm include a more quantitative integration
741 approach for the somatic mutations, a replacement for or an improved maximum final frequency
742 filter, aggregation across pathways, and a determination of whether other genomic features may
743 be integrated (ecDNA⁴⁸ or epigenomics⁴⁹). Additionally, in future single-cell studies with both
744 transcriptome and genome information, it would be helpful to have an OncoMerge
745 implementation that integrates PAM, fusion, and CNA for every single cell. We envision
746 OncoMerge as a valuable tool in the somatic mutation characterization pipeline. We hope that it

747 will facilitate multi-omic studies and lead to novel discoveries that can be translated into clinical
748 insights.

749 **Acknowledgments**

750 This work was supported by NIH-NINDS Award # 1R01NS123038-01, and 1R01NS119650-01.
751 The authors also acknowledge Robert Schultz for assistance in preliminary studies, and the
752 Cancer Genome Atlas Research Network for the TCGA Pan-Cancer Atlas multi-omic patient
753 tumor profiles.

754 **References**

- 755 1. Ellrott, K. *et al.* Scalable Open Science Approach for Mutation Calling of Tumor Exomes
756 Using Multiple Genomic Pipelines. *Cell Syst.* **6**, 271-281.e7 (2018).
- 757 2. Hu, X. *et al.* TumorFusions: an integrative resource for cancer-associated transcript fusions.
758 *Nucleic Acids Res.* **46**, D1144–D1149 (2018).
- 759 3. Beroukhim, R. *et al.* The landscape of somatic copy-number alteration across human
760 cancers. *Nature* **463**, 899–905 (2010).
- 761 4. Vogelstein, B. *et al.* Cancer genome landscapes. *Science* **339**, 1546–1558 (2013).
- 762 5. Bonneville, R. *et al.* Landscape of Microsatellite Instability Across 39 Cancer Types. *JCO
763 Precis. Oncol.* **2017**, (2017).
- 764 6. Bailey, M. H. *et al.* Comprehensive Characterization of Cancer Driver Genes and Mutations.
765 *Cell* **173**, 371-385.e18 (2018).
- 766 7. Lawrence, M. S. *et al.* Discovery and saturation analysis of cancer genes across 21 tumour
767 types. *Nature* **505**, 495–501 (2014).
- 768 8. Torres-García, W. *et al.* PRADA: pipeline for RNA sequencing data analysis. *Bioinforma.
769 Oxf. Engl.* **30**, 2224–2226 (2014).
- 770 9. Mermel, C. H. *et al.* GISTIC2.0 facilitates sensitive and confident localization of the targets
771 of focal somatic copy-number alteration in human cancers. *Genome Biol.* **12**, R41 (2011).
- 772 10. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of
773 whole genomes. *Nature* **578**, 82–93 (2020).
- 774 11. Lawrence, M. S. *et al.* Mutational heterogeneity in cancer and the search for new cancer-
775 associated genes. *Nature* **499**, 214–218 (2013).
- 776 12. Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N. OncodriveCLUST: exploiting the
777 positional clustering of somatic mutations to identify cancer genes. *Bioinforma. Oxf. Engl.*
778 **29**, 2238–2244 (2013).
- 779 13. Davoli, T. *et al.* Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns
780 and shape the cancer genome. *Cell* **155**, 948–962 (2013).

781 14. Tokheim, C. J., Papadopoulos, N., Kinzler, K. W., Vogelstein, B. & Karchin, R. Evaluating
782 the evaluation of cancer driver genes. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 14330–14335
783 (2016).

784 15. Sondka, Z. *et al.* The COSMIC Cancer Gene Census: describing genetic dysfunction across
785 all human cancers. *Nat. Rev. Cancer* **18**, 696–705 (2018).

786 16. Schroeder, M. P., Rubio-Perez, C., Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N.
787 OncodriveROLE classifies cancer driver genes in loss of function and activating mode of
788 action. *Bioinforma. Oxf. Engl.* **30**, i549-555 (2014).

789 17. Plaisier, C. L. *et al.* Causal Mechanistic Regulatory Network for Glioblastoma Deciphered
790 Using Systems Genetics Network Analysis. *Cell Syst.* **3**, 172–186 (2016).

791 18. Thorsson, V. *et al.* The Immune Landscape of Cancer. *Immunity* **48**, 812-830.e14 (2018).

792 19. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. *Cell* **100**, 57–70 (2000).

793 20. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. *Cell* **144**, 646–
794 674 (2011).

795 21. Hanahan, D. Hallmarks of Cancer: New Dimensions. *Cancer Discov.* **12**, 31–46 (2022).

796 22. Neph, S. *et al.* Circuitry and dynamics of human transcription factor regulatory networks.
797 *Cell* **150**, 1274–1286 (2012).

798 23. Milo, R. *et al.* Network motifs: simple building blocks of complex networks. *Science* **298**,
799 824–827 (2002).

800 24. Milo, R. *et al.* Superfamilies of evolved and designed networks. *Science* **303**, 1538–1542
801 (2004).

802 25. Wernicke, S. & Rasche, F. FANMOD: a tool for fast network motif detection. *Bioinforma.*
803 *Oxf. Engl.* **22**, 1152–1153 (2006).

804 26. Liu, J. *et al.* An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality
805 Survival Outcome Analytics. *Cell* **173**, 400-416.e11 (2018).

806 27. Plaisier, C. L. *et al.* A systems genetics approach implicates USF1, FADS3, and other
807 causal candidate genes for familial combined hyperlipidemia. *PLoS Genet.* **5**, e1000642
808 (2009).

809 28. Wingender, E., Schoeps, T. & Dönitz, J. TFClass: an expandable hierarchical classification
810 of human transcription factors. *Nucleic Acids Res.* **41**, D165-170 (2013).

811 29. Ansariola, M., Megraw, M. & Koslicki, D. IndeCut evaluates performance of network motif
812 discovery algorithms. *Bioinforma. Oxf. Engl.* **34**, 1514–1521 (2018).

813 30. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. *Proc.*
814 *Natl. Acad. Sci. U. S. A.* **100**, 11980–11985 (2003).

815 31. Harbers, L. *et al.* Somatic Copy Number Alterations in Human Cancers: An Analysis of
816 Publicly Available Data From The Cancer Genome Atlas. *Front. Oncol.* **11**, 700568 (2021).

817 32. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary
818 thyroid carcinoma. *Cell* **159**, 676–690 (2014).

819 33. Zhao, M., Kim, P., Mitra, R., Zhao, J. & Zhao, Z. TSGene 2.0: an updated literature-based
820 knowledgebase for tumor suppressor genes. *Nucleic Acids Res.* **44**, D1023-1031 (2016).

821 34. Hillman, R. T. *et al.* KMT2D/MLL2 inactivation is associated with recurrence in adult-type
822 granulosa cell tumors of the ovary. *Nat. Commun.* **9**, 2496 (2018).

823 35. Gala, K. *et al.* KMT2C mediates the estrogen dependence of breast cancer through
824 regulation of ER α enhancer function. *Oncogene* **37**, 4692–4710 (2018).

825 36. Liu, Y., Sun, J. & Zhao, M. ONGene: A literature-based database for human oncogenes. *J.*
826 *Genet. Genomics Yi Chuan Xue Bao* **44**, 119–121 (2017).

827 37. Piñero, J. *et al.* The DisGeNET knowledge platform for disease genomics: 2019 update.
828 *Nucleic Acids Res.* **48**, D845–D855 (2020).

829 38. Lambert, S. A. *et al.* The Human Transcription Factors. *Cell* **172**, 650–665 (2018).

830 39. Gerstein, M. B. *et al.* Architecture of the human regulatory network derived from ENCODE
831 data. *Nature* **489**, 91–100 (2012).

832 40. Boyle, A. P. *et al.* Comparative analysis of regulatory information and circuits across distant
833 species. *Nature* **512**, 453–456 (2014).

834 41. Stergachis, A. B. *et al.* Conservation of trans-acting circuitry during mammalian regulatory
835 evolution. *Nature* **515**, 365–370 (2014).

836 42. Li, Y. *et al.* Construction and analysis of dynamic transcription factor regulatory networks in
837 the progression of glioma. *Sci. Rep.* **5**, 15953 (2015).

838 43. Alon, U. Network motifs: theory and experimental approaches. *Nat. Rev. Genet.* **8**, 450–461
839 (2007).

840 44. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in
841 *Escherichia coli*. *Nature* **403**, 339–342 (2000).

842 45. Davidson, E. H. *et al.* A genomic regulatory network for development. *Science* **295**, 1669–
843 1678 (2002).

844 46. McCauley, B. S., Weideman, E. P. & Hinman, V. F. A conserved gene regulatory network
845 subcircuit drives different developmental fates in the vegetal pole of highly divergent
846 echinoderm embryos. *Dev. Biol.* **340**, 200–208 (2010).

847 47. Charlebois, D. A., Balázs, G. & Kærn, M. Coherent feedforward transcriptional regulatory
848 motifs enhance drug resistance. *Phys. Rev. E Stat. Nonlin. Soft Matter Phys.* **89**, 052708
849 (2014).

850 48. Kim, H. *et al.* Extrachromosomal DNA is associated with oncogene amplification and poor
851 outcome across multiple cancers. *Nat. Genet.* **52**, 891–897 (2020).

852 49. Saghafinia, S., Mina, M., Riggi, N., Hanahan, D. & Ciriello, G. Pan-Cancer Landscape of
853 Aberrant DNA Methylation across Human Tumors. *Cell Rep.* **25**, 1066-1080.e8 (2018).

854

855 **Figure legends**

856 **Figure 1.** OncoMerge integrates PAMs, fusions, and CNAs into an integrated mutation matrix
857 with the most suitable mutation type for each gene. The input data for OncoMerge includes the
858 PAM, transcript fusion, and CNA matrices. OncoMerge then generates six matrices (PAM,
859 Fusion, CNAamp, CNAdel, Act, and LoF) and uses the mutational frequency and statistical
860 filters to determine each gene's most suitable mutation type.

861 **Figure 2.** OncoMerge inferred activating and loss of function mutations overlap significantly with
862 prior knowledge from five independent gold standard datasets. **A.** Impact of filter sets on the
863 number of somatically mutated genes inferred by OncoMerge in at least one cancer. **B.** Impact
864 of filter sets on the distribution of genes per CNA locus using the same set of filtering conditions
865 (y-axis is distributed on a log scale). The dashed line indicates the ten genes per loci cutoff that
866 invokes the MFF filter. **C.** Enrichment of the gold standard (GS) activating (Act) or loss of
867 function (LoF) somatic mutations with OncoMerge (OM) Act or LoF somatic mutations for each
868 filtering condition: no filters (None); permuted q-value filter (PQ); maximum final frequency
869 (MFF); combined PQ and MFF; and combined PQ, MFF, and microsatellite and hypermutation
870 censoring filter (MHC). After Bonferroni multiple hypothesis correction, significant enrichments
871 are highlighted in red ($p\text{-value} \leq 4.8 \times 10^{-4}$). The orange arrowheads indicate OM Act vs. GS
872 Act, and the green arrowheads indicate OM LoF vs. GS LoF.

873 **Figure 3.** Summary of effect on number and frequency of somatic mutations after integrating
874 mutation types. **A.** Frequency of hypermutation and microsatellite instability across cancers. **B.**
875 Number and distribution of mutation types. **C.** Number of somatically mutated genes with a
876 frequency $\geq 5\%$ added after integration. **D.** Integrated somatic mutation frequencies. **E.**
877 Increases in somatic mutation frequency relative to PAM frequency after integration.

878 **Figure 4.** Pan-cancer somatic mutations with a consistent functional impact across at least five
879 cancers. **A.** Pan-cancer somatic mutations from the loss of functions group. **B.** Pan-cancer
880 somatic mutations from the activating group. **C.** Prior knowledge of tumor suppressor or
881 oncogene status for each somatically mutated gene (black square indicates known tumor
882 suppressor or oncogene activity).

883 **Figure 5.** Demonstrating improvements in downstream SYGNAL analysis by comparing GRNs
884 constructed with an OncoMerge integrated somatic mutation matrix versus a legacy network
885 using only PAMs. **A.** Average degree of nodes in the PanCancer SYGNAL networks. OncoMerge
886 = orange, legacy = yellow. **B.** Mutations per cancer network. OncoMerge = red, legacy = blue.
887 **C.** Mutations that overlap with genes previously associated with a specific cancer in DisGeNET.
888 OncoMerge = red, legacy = blue. **D.** TFs per cancer network. OncoMerge = green, legacy =
889 purple. **E.** TFs that overlap with genes previously associated with a specific cancer in
890 DisGeNET. OncoMerge = green, legacy = purple.

891 **Figure 6.** The architecture of functional disease-specific TF regulatory networks from human
892 tumors. **A.** Active TF regulatory network construction pipeline: 1) TFs from all cancer regulatory
893 networks were identified, 2) A putative map of TF regulatory network interactions was
894 constructed, 3) TF \rightarrow TF relationships were filtered using Pearson's correlations computed from
895 patient tumor data, and 4) compute the triad significance profiles using mfinder. **B.** Comparison
896 of active TF regulatory network based on SYGNAL GRNs (red) to the static TF regulatory
897 network based on ENCODE DNA binding and accessibility (blue, Neph et al., 2012). **C.**

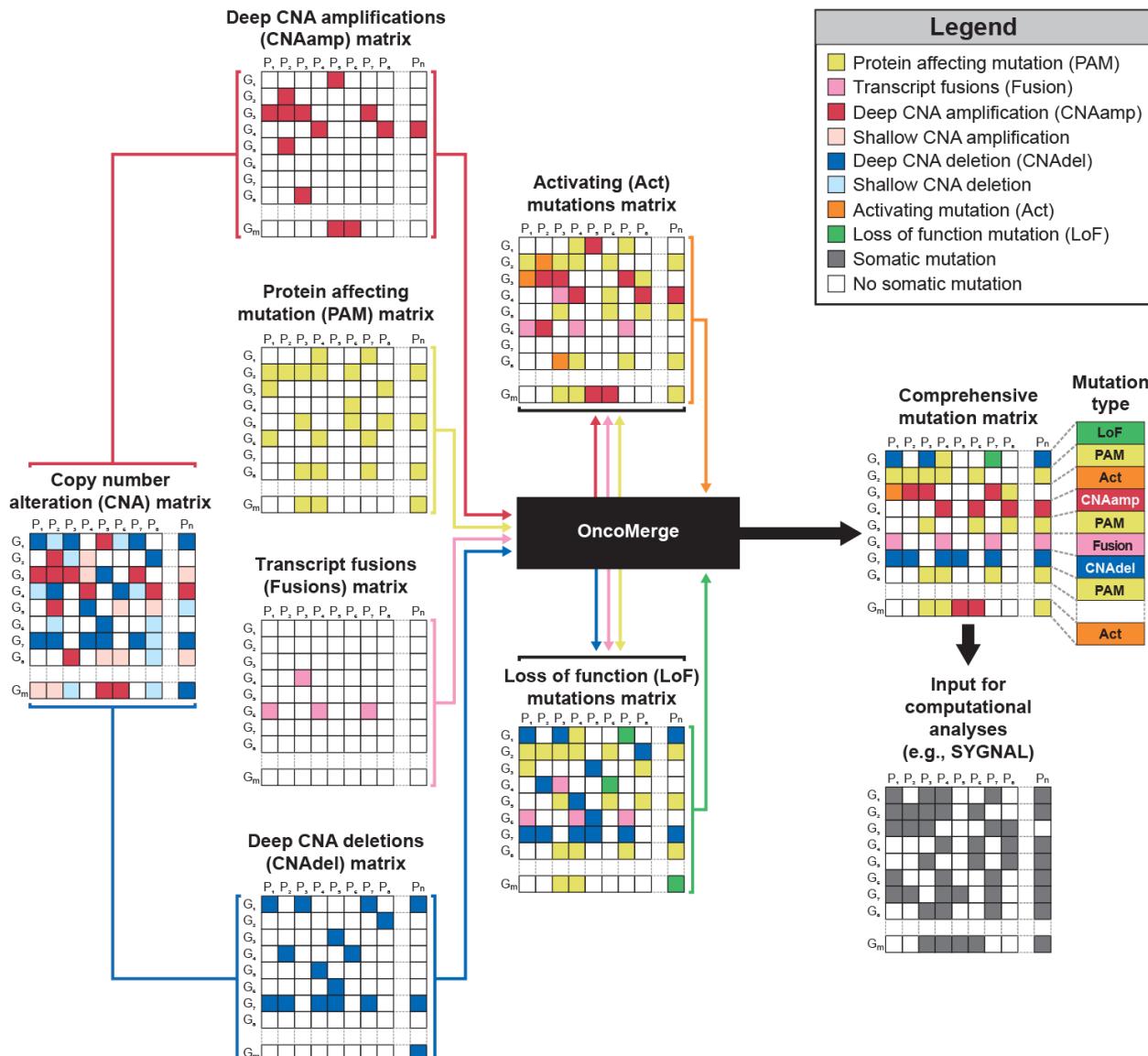
898 FANMOD enrichment normalized Z-scores for the three most enriched motifs from the active TF
899 regulatory network after incorporating TF regulatory interaction roles (activation or repression).
900 The first row, titled Coherent motifs, is shaded when the motif configuration is coherent and
901 white when it is incoherent. Normalized Z-scores are reported for each cancer, and diagonal
902 dashed lines are inserted when no Z-score was returned. The network motif can be found at the
903 bottom of each column, colored with regulatory roles (activation = green arrow, repression = red
904 perpendicular line). C1, C2, C3, C4 = coherent FFLs. I1, I2, I3, I4 = incoherent FFLs.

905

906 **Figures**

907

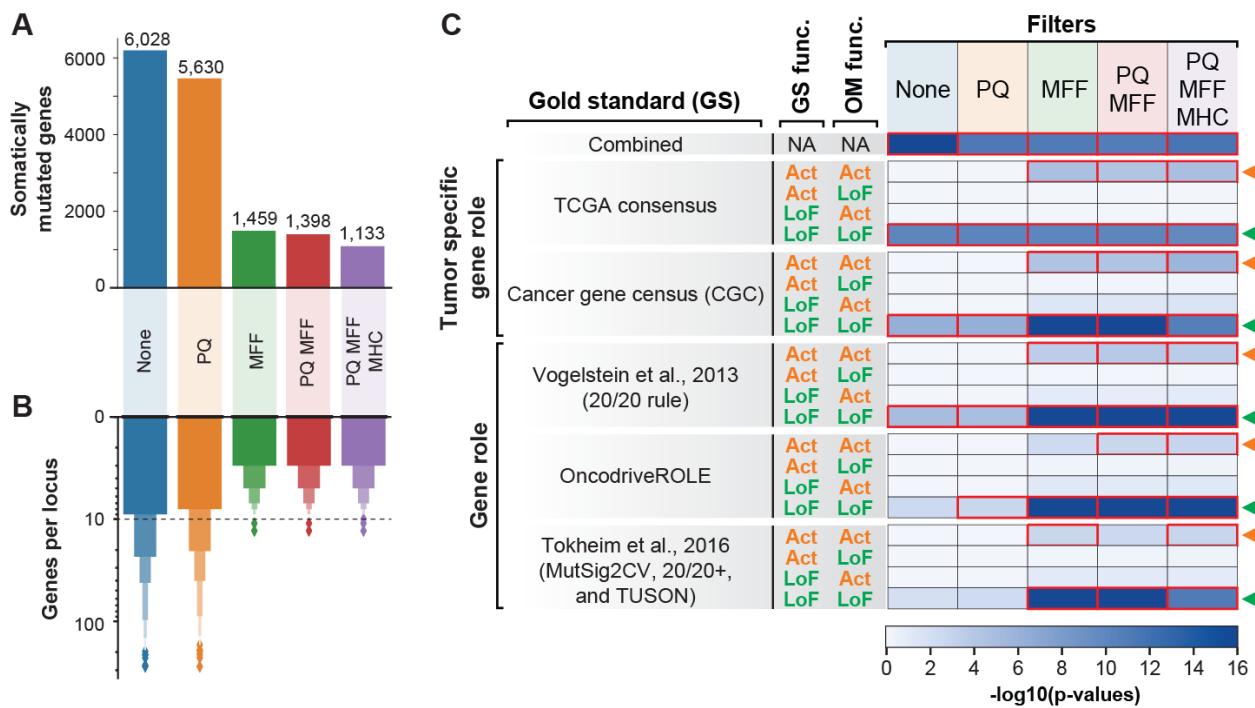
908 **Figure 1.**



909

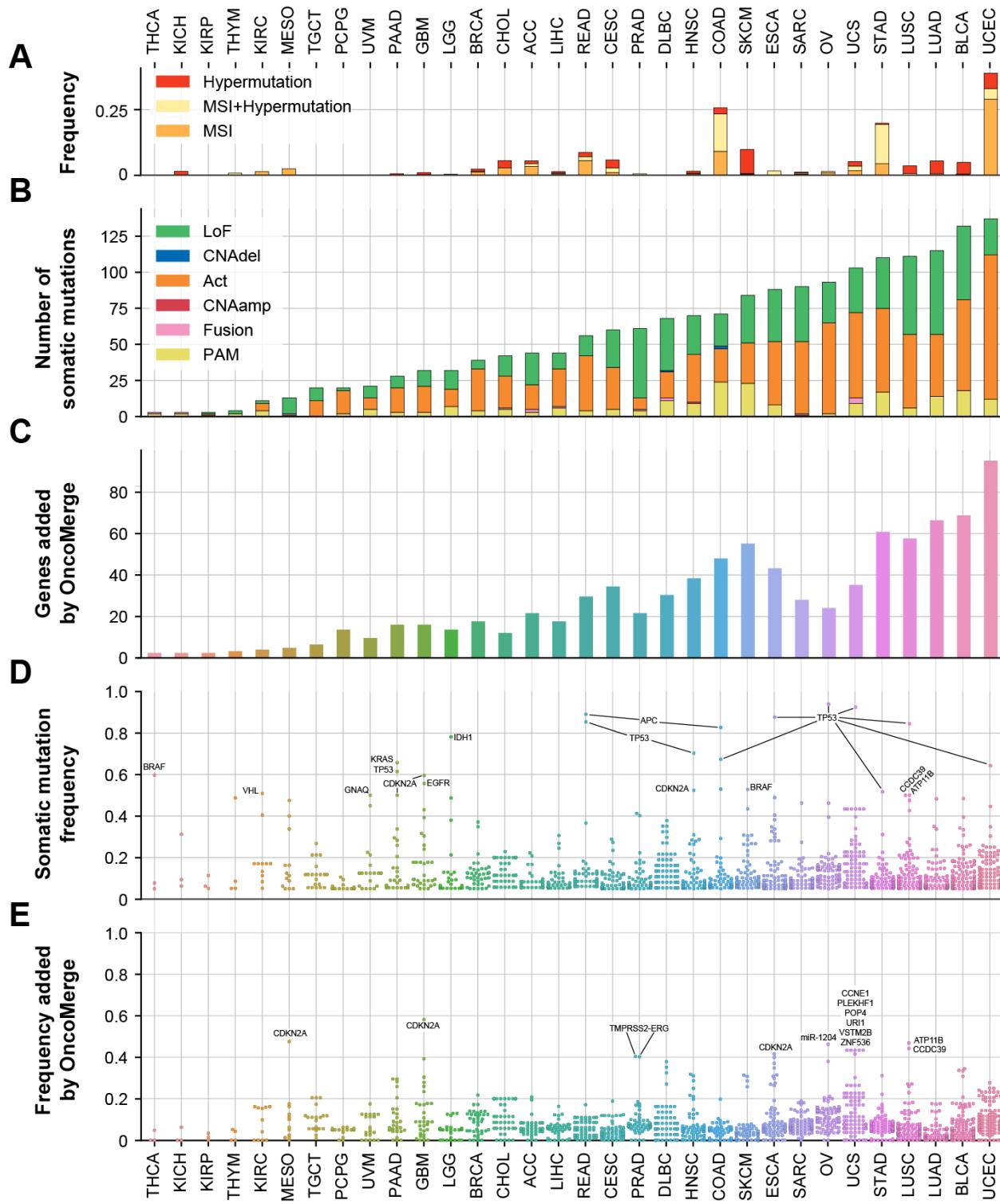
910

911 **Figure 2.**



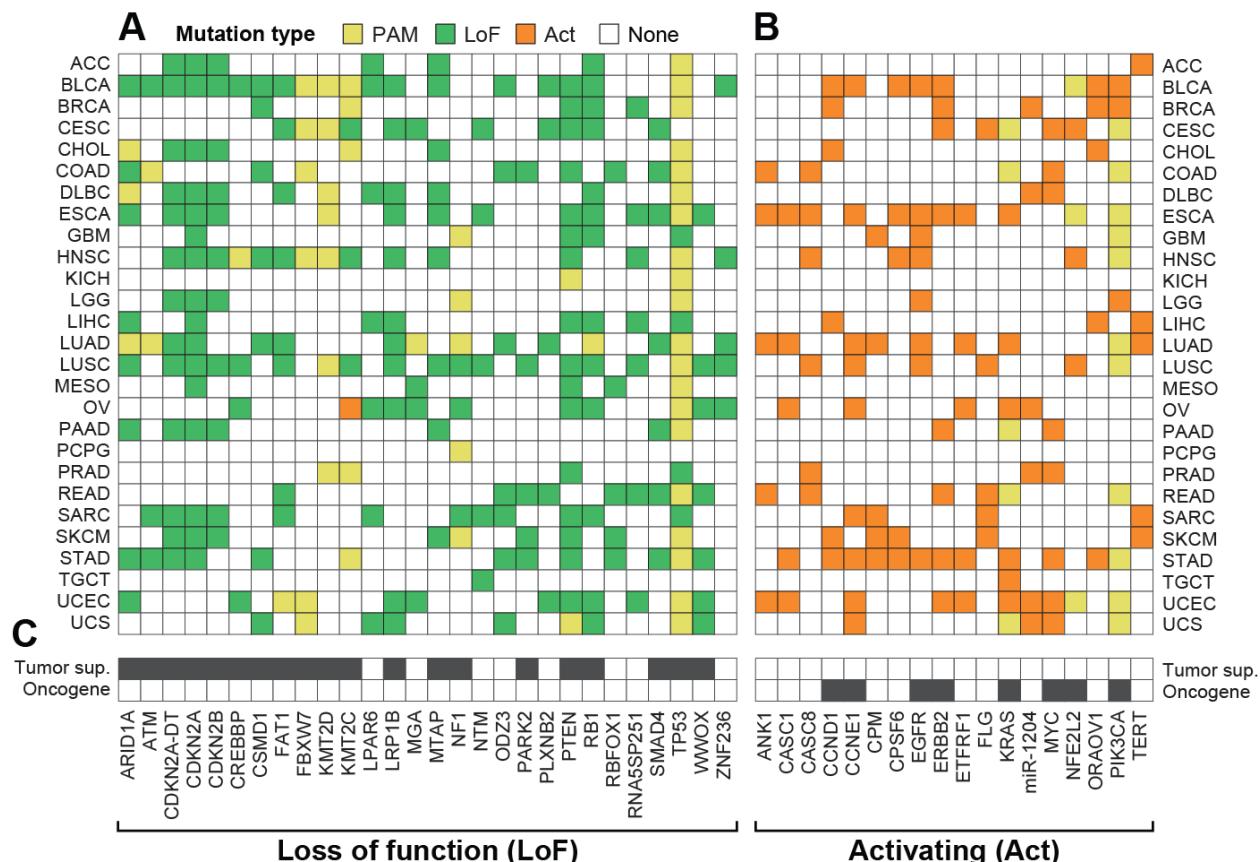
912
913

914 **Figure 3.**



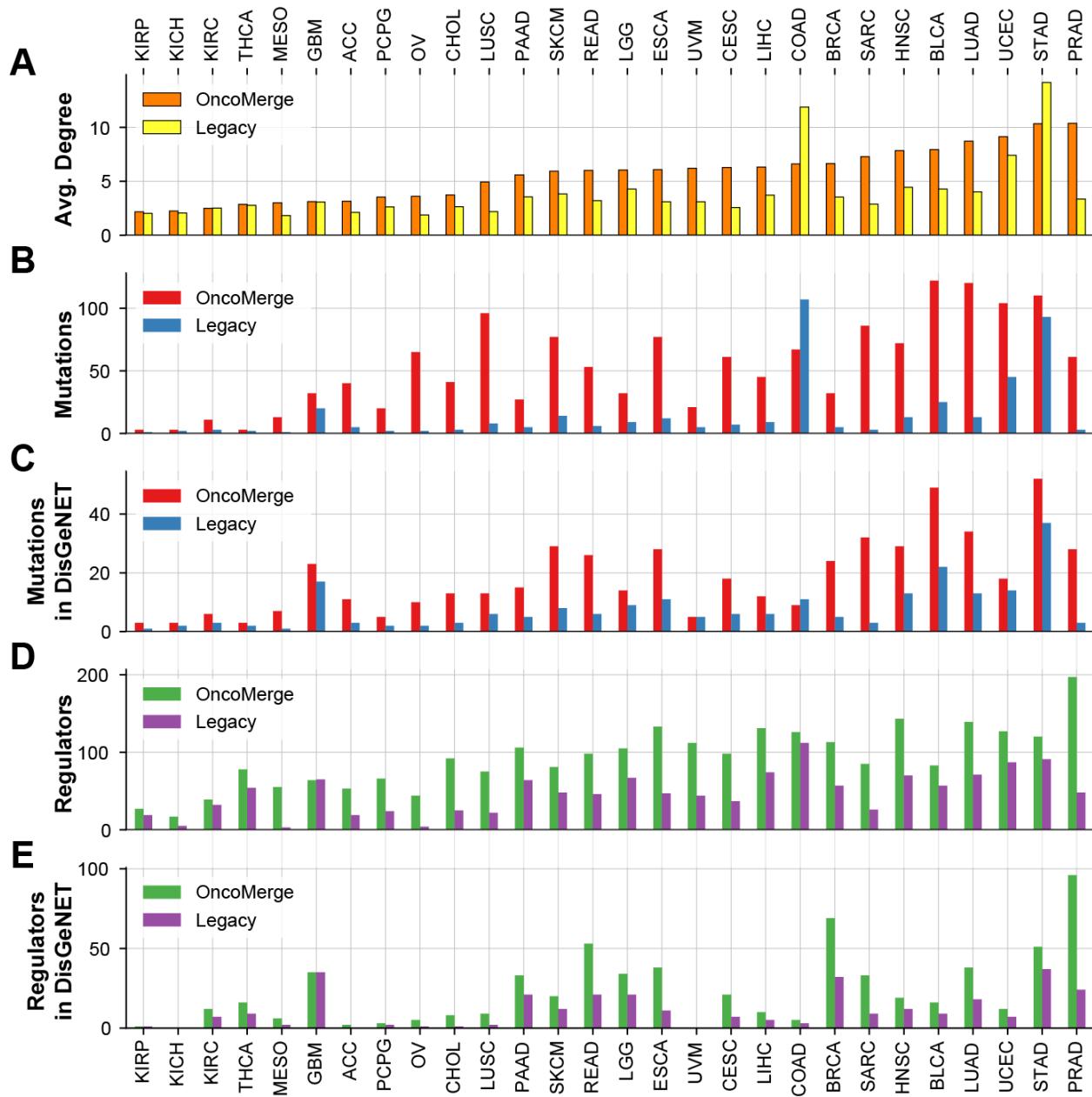
915
916

917 **Figure 4.**



918
919

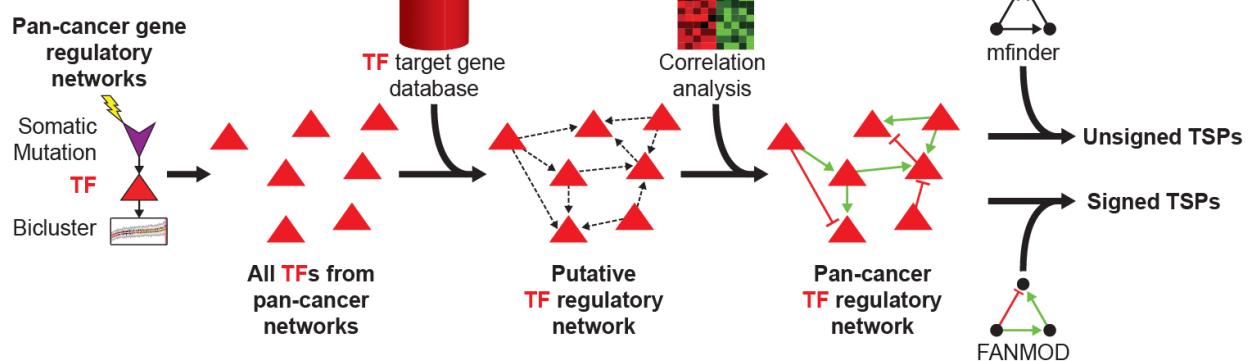
920 **Figure 5.**



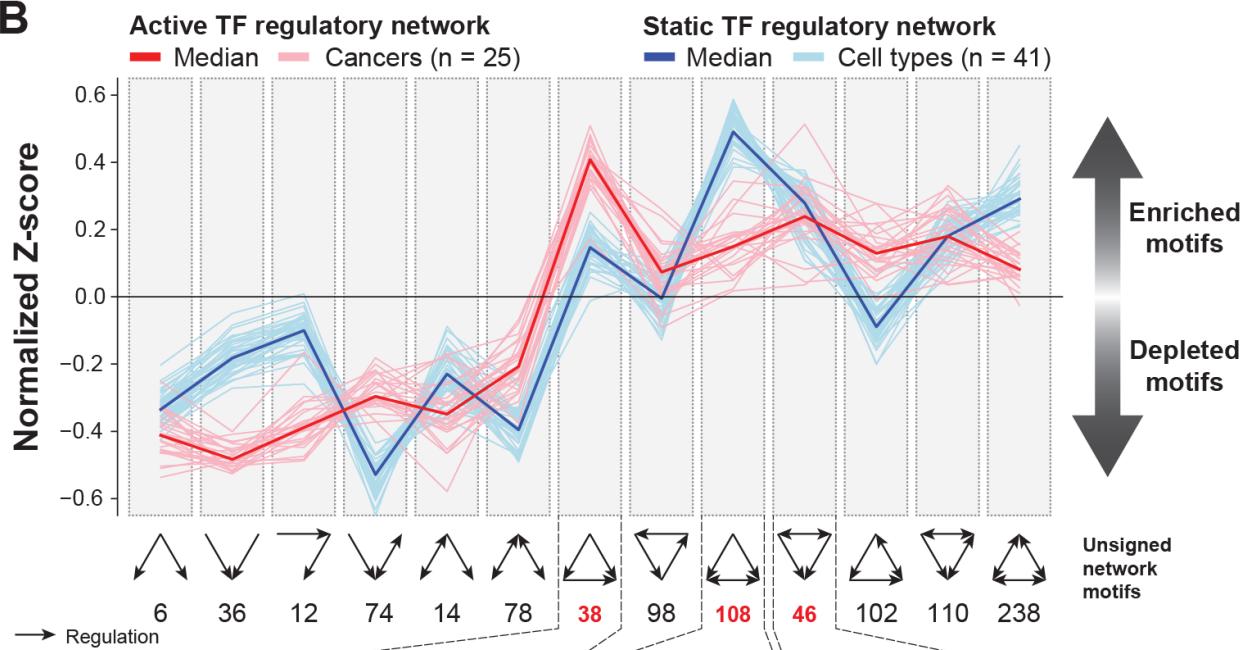
921
922

923 **Figure 6.**

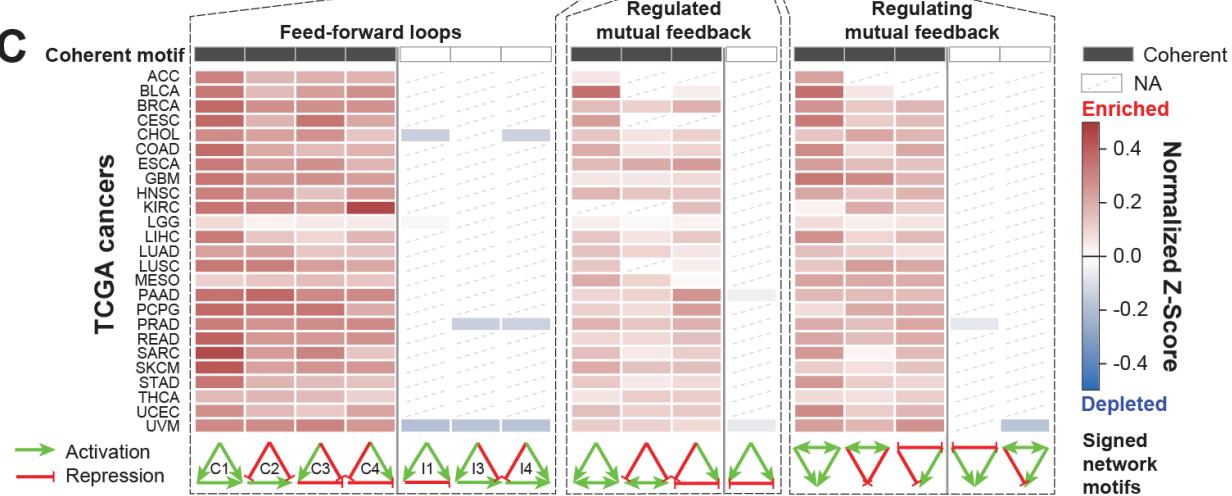
A



B



C



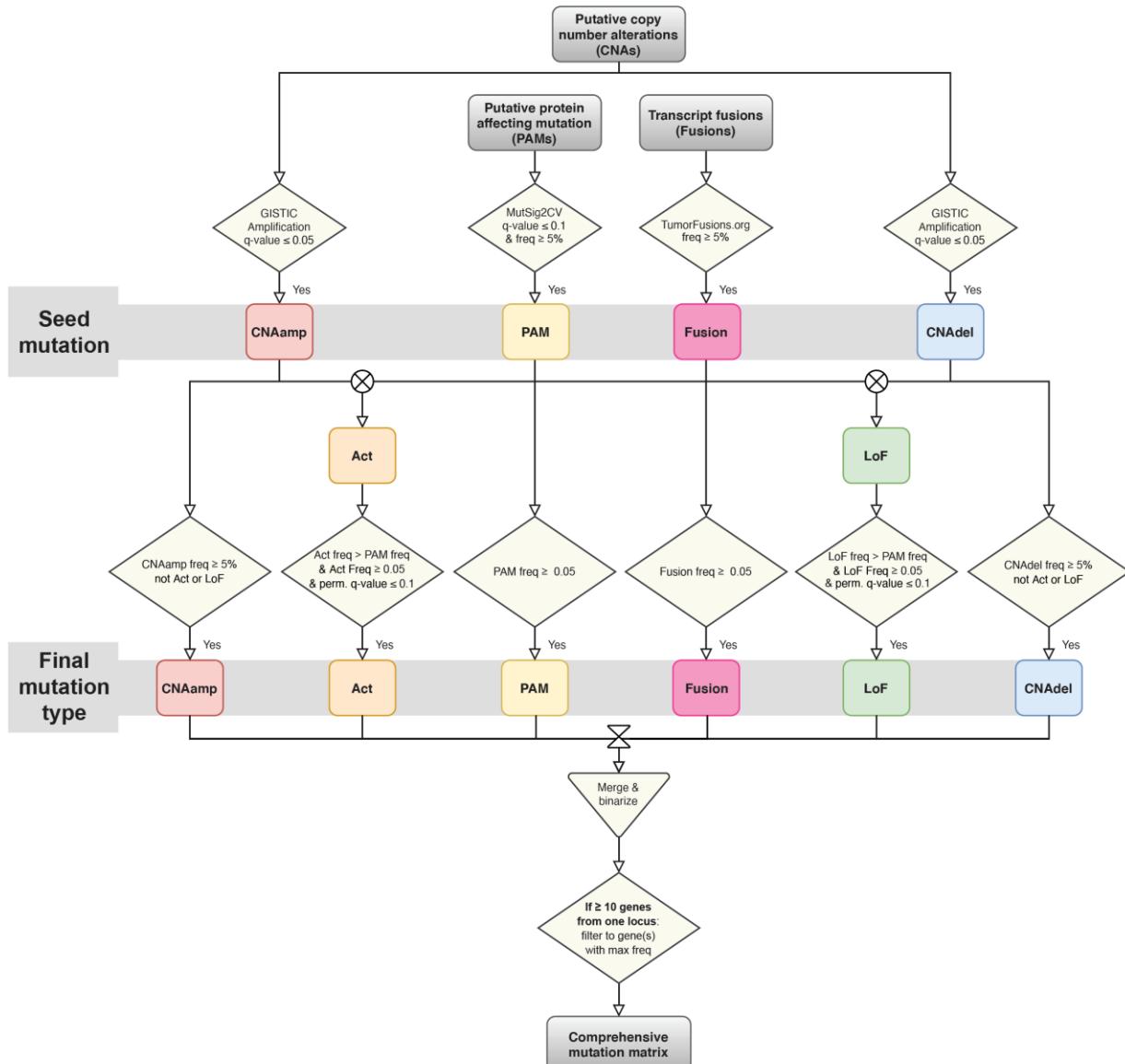
924

925

926 **Supplementary figures**

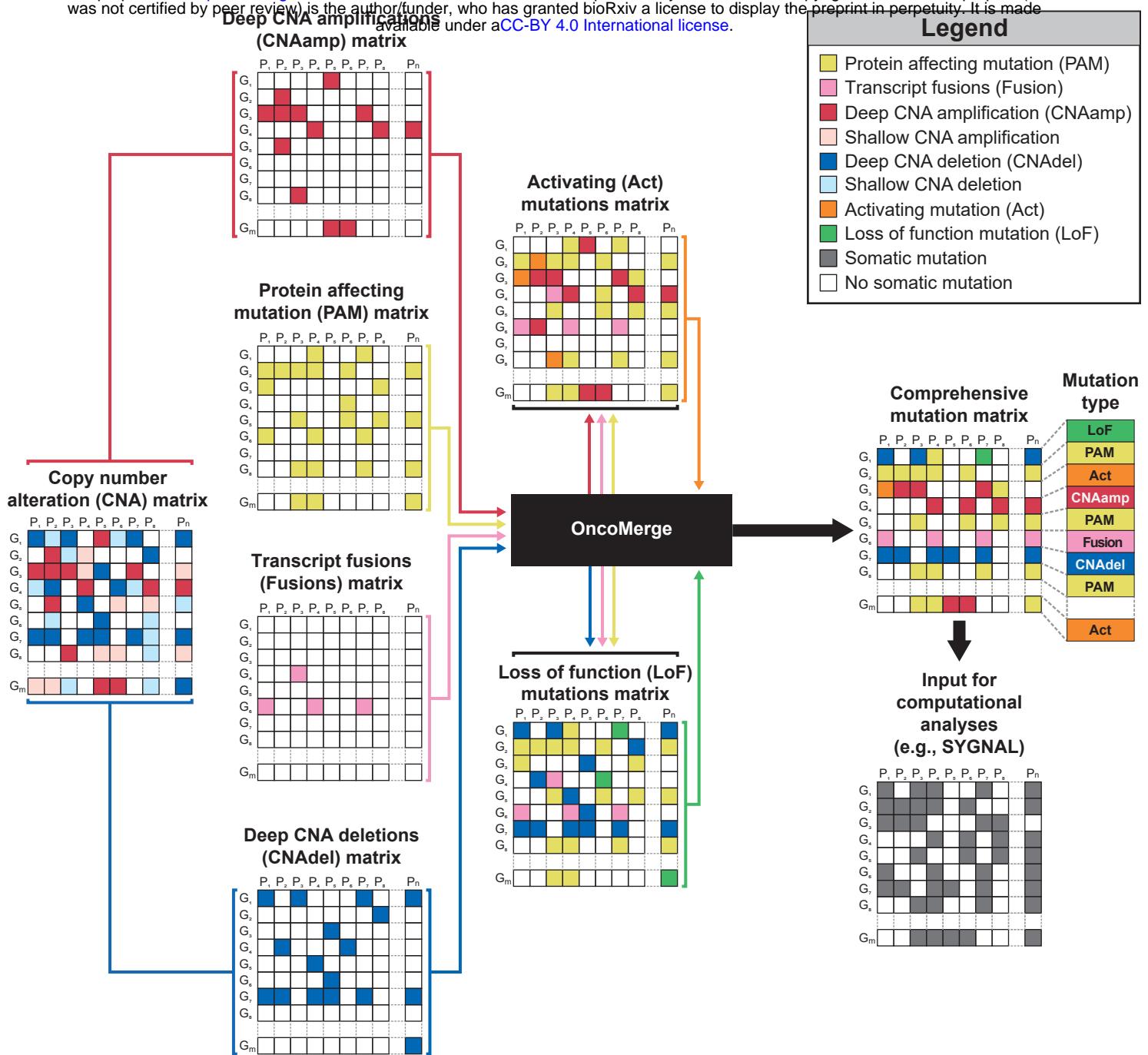
927

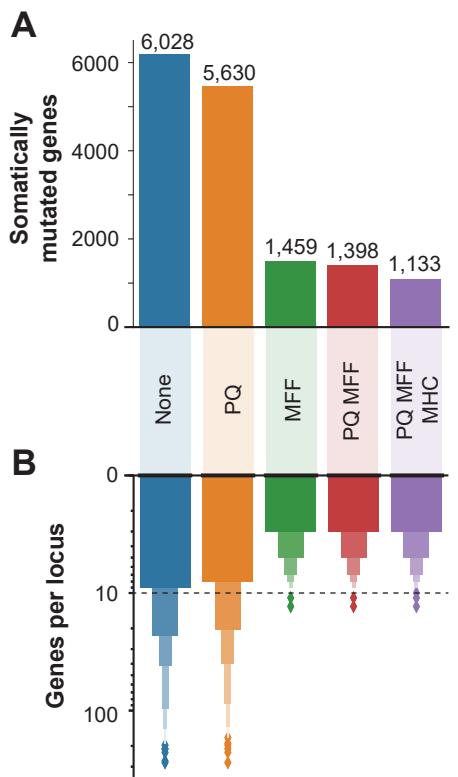
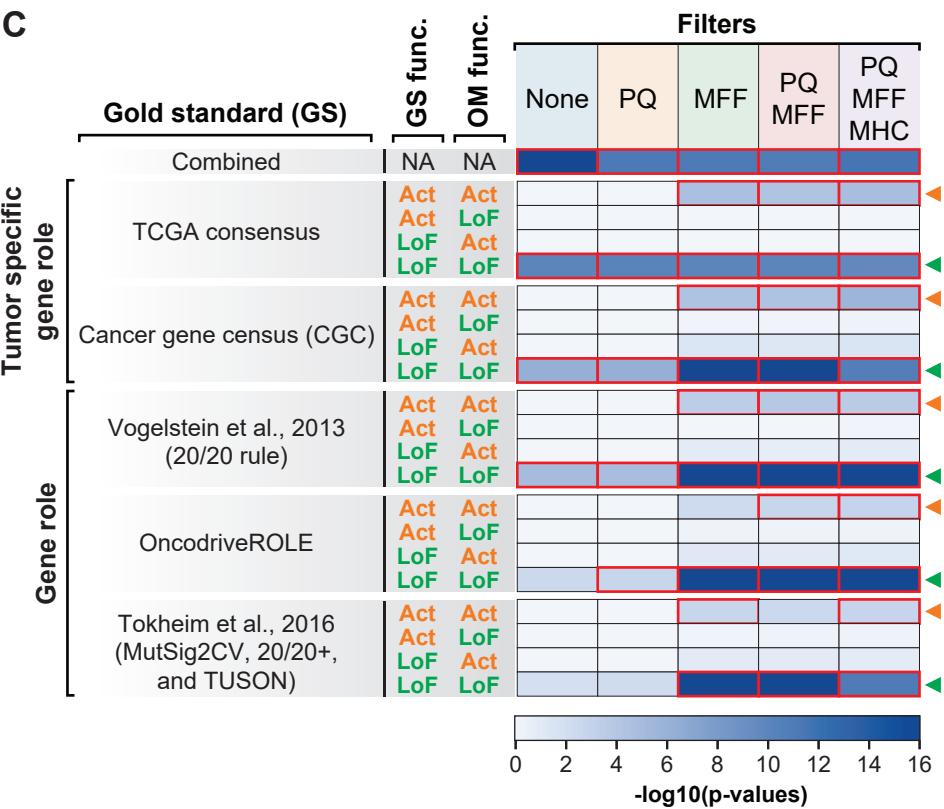
928 **Supplementary Figure 1.** OncoMerge flow-chart that describes how the putative protein
929 affecting mutation (PAM), transcript fusions (Fusion), and putative copy number alteration
930 (CNA) data are integrated and filtered to generate a integrated mutation matrix.

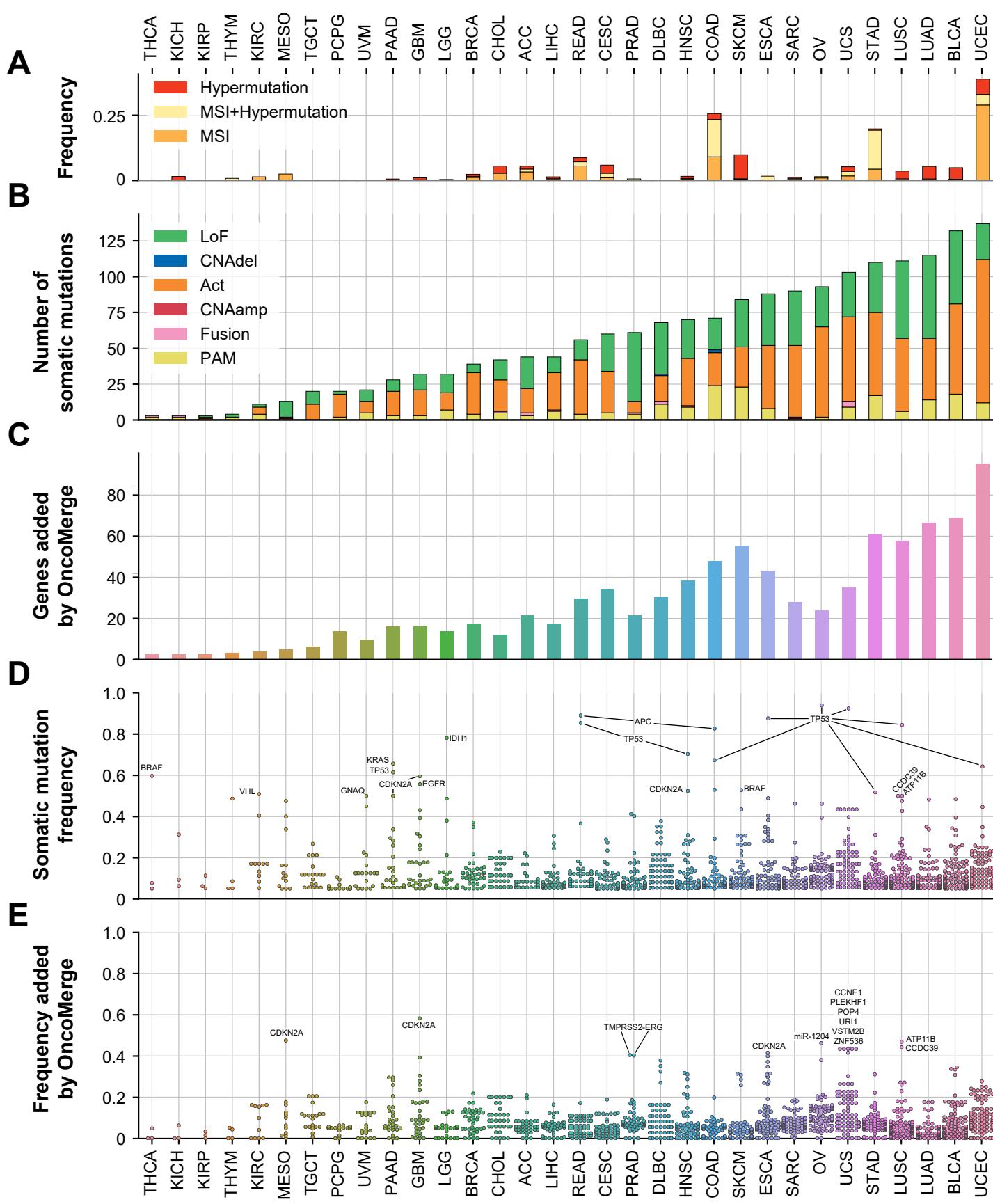


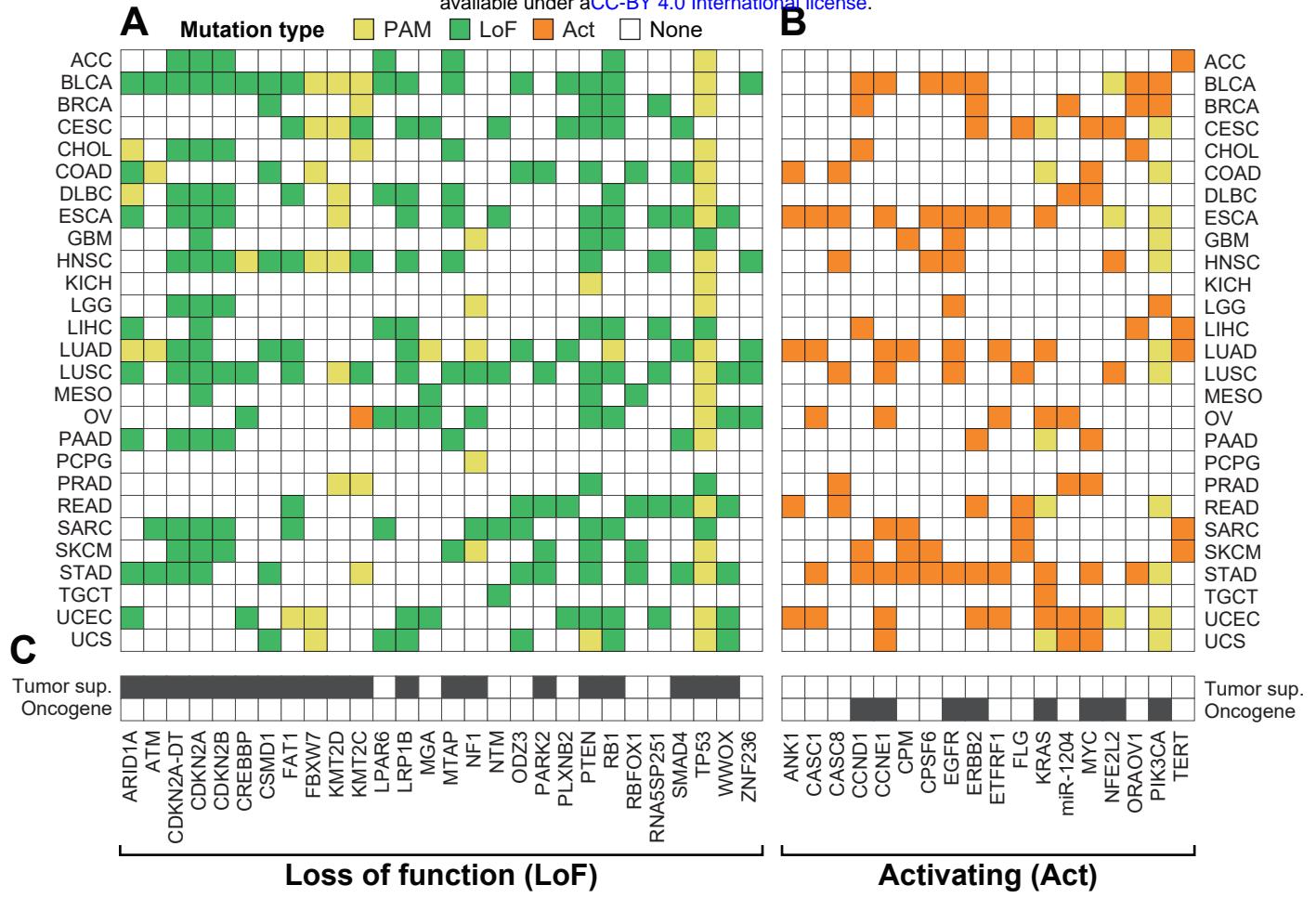
931

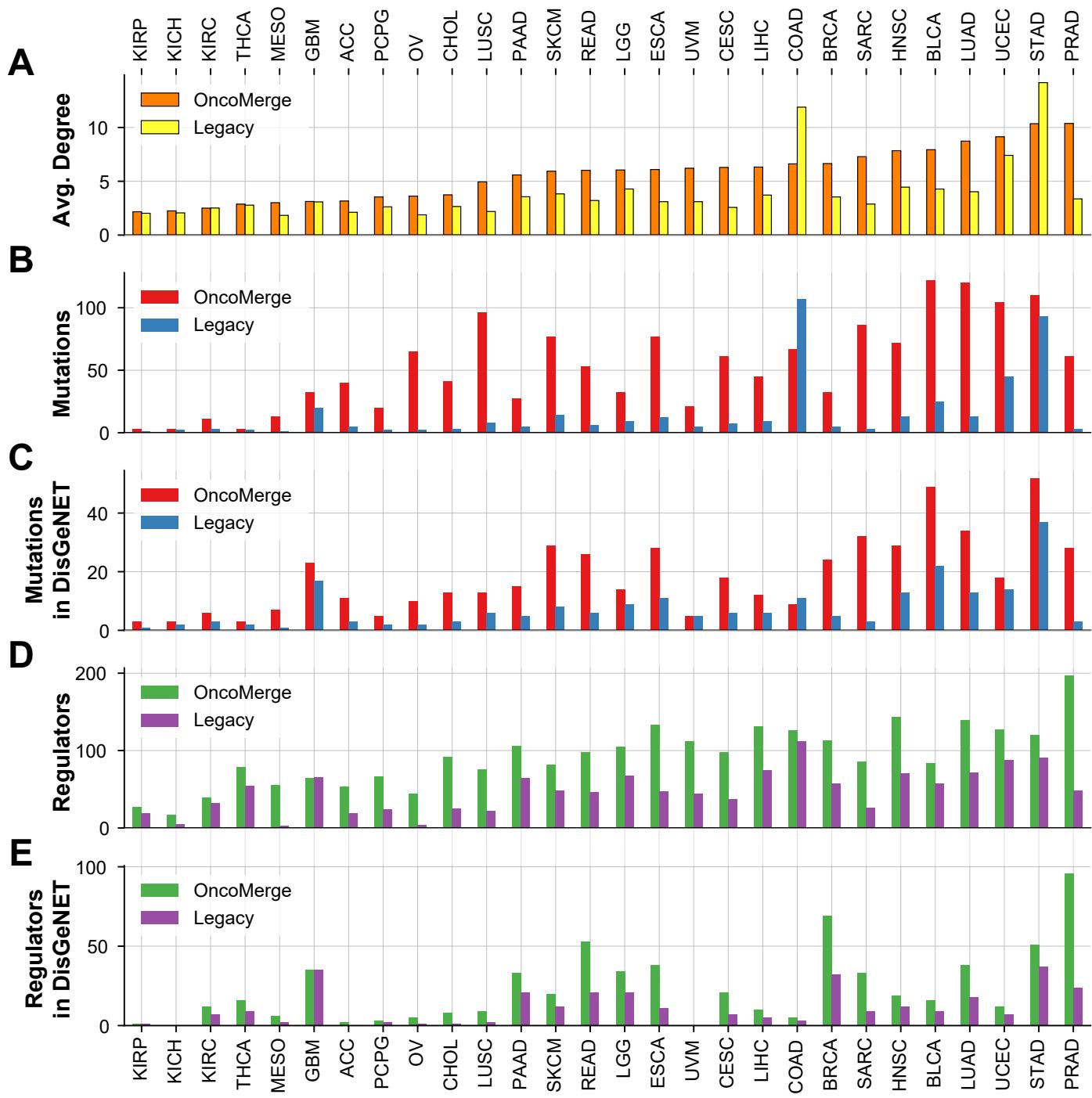
932



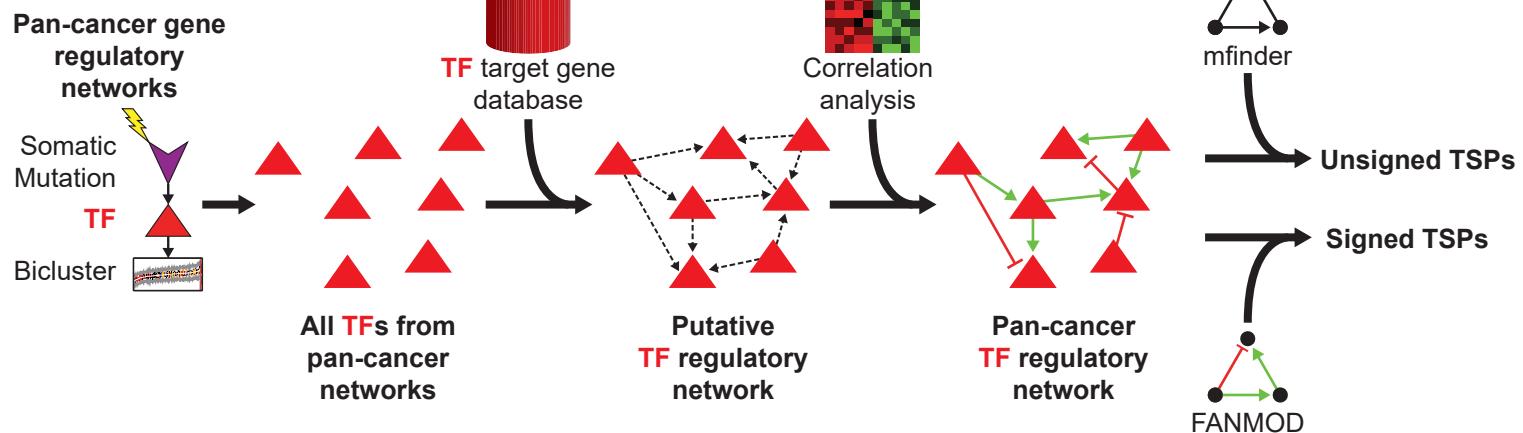




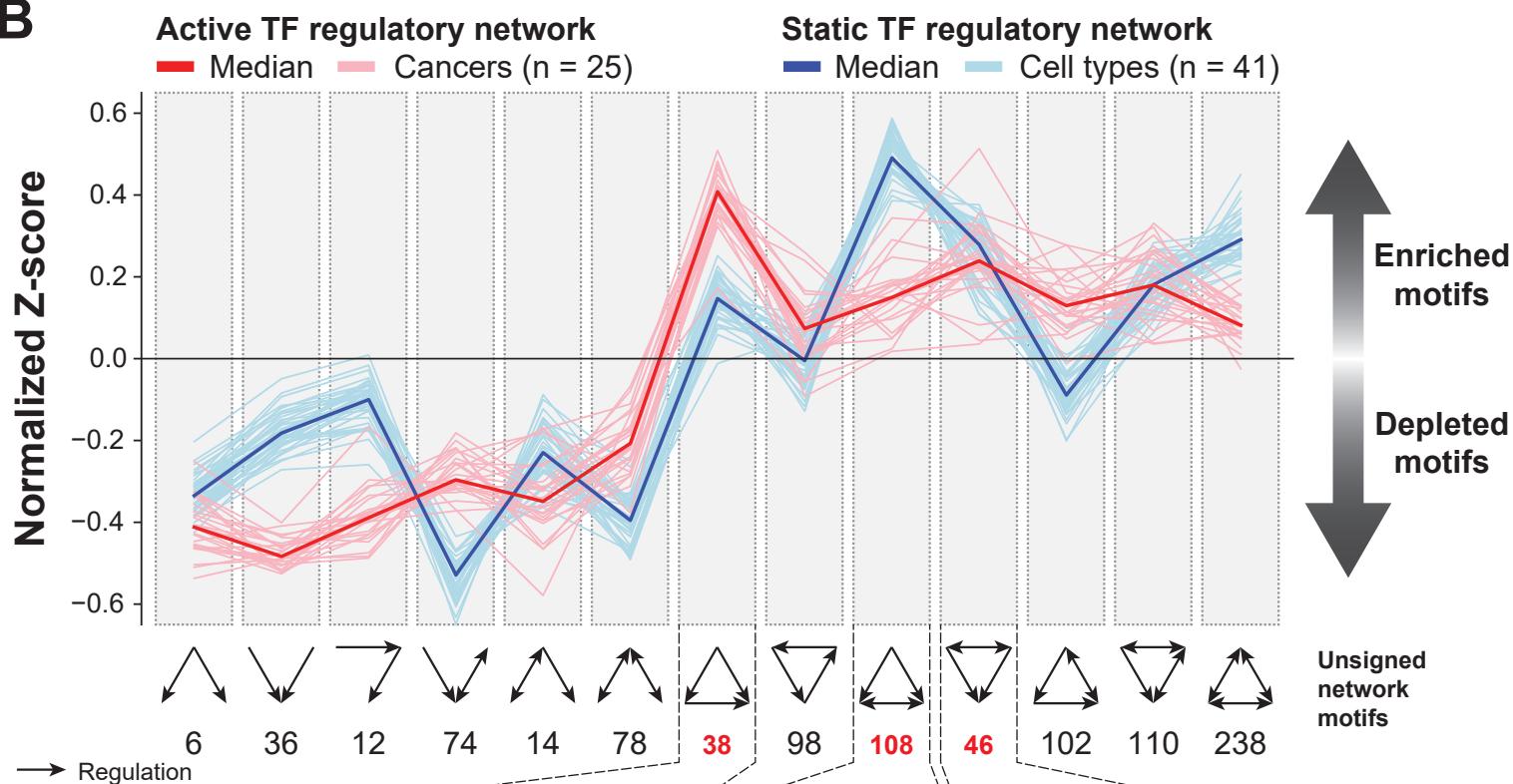




A



B



C

