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Abstract 
Parallel reporter assays provide rich data to decipher gene regulatory regions with deep 
learning. Here we introduce LegNet, a convolutional network architecture that secured the 
first place for our autosome.org team in the DREAM 2022 challenge of predicting gene 
expression from gigantic parallel reporter assays. To construct LegNet, we drew inspiration 
from EfficientNetV2 and reformulated the sequence-to-expression regression problem as a 
soft-classification task. Here, with published data, we demonstrate that LegNet outperforms 
existing models and accurately predicts gene expression per se as well as the effects of 
sequence alterations, such as single-nucleotide variants. 

Keywords: parallel reporter assays, deep learning, gene regulation, regulatory variants, 
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Introduction 
The basic level of gene expression regulation in eukaryotes, the mRNA transcription, is 
controlled by transcription factors (TFs), which bind cis-regulatory regions, promoters, and 
enhancers, and affect the assembly and functioning of the mRNA transcription machinery [1]. 
The transcription factors can recognize particular DNA patterns, allowing them to act at 
particular genomic addresses and affect particular sets of target genes [2]. It is a longstanding 
challenge in computational biology to decipher the sequence-level regulatory code completely, 
from the prediction of individual TF binding sites of varying affinity to the identification of 
composite elements [3] and complete sequence-level annotation of promoters and enhancers.  
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A commonly accepted approach is bottom-up, where binding specificities of individual 
transcription factors are profiled with various TF-centric techniques [4], revealing TF-specific 
binding motifs. With individual motifs at hand, the higher-order regulatory grammar can be 
studied in silico [5]. However, genome-level analysis is hampered by numerous confounding 
factors, hence direct experiments are required to explicitly profile the binding preferences of 
TF complexes [6,7]. It remains challenging to apply the knowledge obtained in vitro to genomic 
regulatory regions and performing direct experiments for all TF combinations also remains 
hardly realistic. 

A possible alternative approach to resolving the rules of regulatory grammar comes 
with massive parallel reporter assays [8], which can profile the activity of dozens of millions of 
synthetic or genomic regulatory sequences [9,10] in a single experiment. The resulting data are 
uniform and diverse enough to allow an orthogonal approach: properly trained biochemical [9] 
and advanced machine learning models [11,12] can provide quantitative and highly accurate 
predictions of regulatory activity just from the DNA sequence. In terms of machine learning, 
two questions remain unanswered in this setting. First, whether the current prediction errors 
are comparable to experimental noise or if there remains room for improvement of the 
computational models. Second, whether the high-level deep learning architectures such as 
attention transformers are truly necessary for modeling short regulatory regions, or if the task 
can be handled by advanced convolutional networks. 

Here we introduce the LegNet convolutional network that our autosome.org team used 
to secure 1st place in the DREAM 2022 challenge of predicting expression yield from gigantic 
parallel reporter assay (GPRA) data. By using previously published GPRA data, we demonstrate 
that LegNet outperforms existing methods in predicting both expression and sequence variant 
effects. 

Results and Discussion 
LegNet is a deep neural network designed during the DREAM 2022 challenge of predicting 
gene expression from millions of promoter sequences analyzed in gigantic parallel reporter 
assays. The design of LegNet is based on a fully-convolutional neural network architecture 
inspired by EfficientNetV2 [13] with some features from DenseNet [14] and additional custom 
blocks. In the DREAM2022 promoter expression challenge, LegNet scored first both in the 
overall assessment and in multiple individual subchallenges covering different categories of 
promoter sequences (e.g. high- and low-expressed promoters, synthetic promoters, etc). To 
further prove the reliability of our approach, here we applied LegNet to the previously 
published GPRA results [11] (Figure 1, A) and evaluated its performance in predicting 
expression per se as well as estimating the effect of single-nucleotide variants (Figure 1, B). 

The dataset of Vaishnav et al. [11] contains more than 30 million measurements of 
promoter activity for yeast culture grown in a complex medium (YPD) and 20 million 
measurements for a defined medium (SD-Ura). For these data, the experimental setup was the 
same as in the DREAM 2022 challenge. For YPD and SD-Ura datasets, LegNet was trained 
separately with the same architecture and hyperparameters as originally in the DREAM 2022 
promoter challenge except for the number of epochs, which was adjusted to account for the 
increased volume of the training data. The original authors' train-test split was used for model 
training and evaluation, see Methods for details. 
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Key features of LegNet 
LegNet is an EfficientNetV2-based fully convolutional neural network [13] employing several 
domain-specific ideas and improvements to reach accurate expression modeling and prediction 
from a DNA sequence. The data preparation was extended over the standard one-hot encoding 
approach by discerning whether a target sequence was observed in the experiment only once 
(a singleton) or multiple times, as the singletons constitute more than half of the training data 
but eventually provide noisier expression estimates. Next, we included a dedicated channel 
denoting promoter orientation to perform training-time data augmentation with reverse 
complementary sequences properly. Finally, we reformulated the expression prediction as a 
soft-classification problem: LegNet was trained to predict not the single expression value but 
a vector of expression bin probabilities. At the model evaluation stage, the predicted 
probabilities are multiplied by bin numbers to convert the vector into a single predicted 
expression value, see Methods for details. 

LegNet improves prediction of promoter expression 
First, we evaluated LegNet in predicting native promoter expression for GRPA data from yeast 
grown in complex (YPD) or defined (SD-Ura) media. In both cases, LegNet demonstrated high 
and consistent performance, scoring significantly higher than the state-of-the-art transformer 
model published along with the GPRA data by Vaishnav et al. [11] (Figure 2). Note that the 
prediction "wall" encountered at around expression levels 4 (complex) and 2.5 (defined) is a 
known issue with the training data also learned by models of [9,11], which is likely caused by 
the cell sorter having limited signal-to-noise ratio in this range or inadvertently truncated 
distribution. We also compared LegNet against earlier deep learning approaches tested in [11] 
(Figure S1), thus highlighting the gap between LegNet (~0.96-0.98 Pearson and Spearman 
correlation against the ground truth test data) and conventional deep learning models such as 
DeepSEA and DanQ (correlations around ~0.92-0.94). 

LegNet delivers accurate estimates of sequence variant effects 
In the DREAM challenge, LegNet was highly successful in estimating the expression of 
promoters with single-nucleotide variants. To demonstrate it with independent data and 
further explore LegNet reliability in predicting the effects of multiple nucleotide substitutions, 
we utilized the GRPA data capturing expression divergence under random genetic drift. For 
1,000 unique random promoter sequences, Vaishnav et al. randomly introduced single-
nucleotide mutations for three generations and measured the promoter expression in each. 

We evaluated the capability of LegNet to quantitatively estimate the difference 
between expression for original and mutated promoter sequences depending on the number 
of nucleotide substitutions (1,2, or 3), and compared the performance with the state-of-the-
art transformer model of Vaishnav et al. Estimating the single-nucleotide variant effects was 
the most difficult, but in all scenarios, LegNet showed a consistent and significant increase in 
prediction performance (Figure 3). 
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Methods 

Experimental data overview 
In this study, we used previously published results of gigantic parallel reporter assays (GPRAs) 
[11] that included (respectively) 30 and 20 million of promoter-driven expression 
measurements in the yeast S. cerevisiae cultured in YPD medium (complex medium: yeast 
extract, peptone, and dextrose) and SD-Ura medium (synthetic defined medium lacking uracil).  
In the GPRA experiment, yeast cells are transformed with a construction containing 80bp 
random promoters. These constructions contain the YFP gene regulated by such promoters 
and the RFP gene, which is expressed constitutively.  Yeast cells are then sorted into 18 
expression bins (numbered 0 to 17) with regard to their logarithmic relative protein 
fluorescence. The expression estimate for a particular promoter sequence is calculated as a 
weighted average of the numbers of expression bins where it is observed [9]. 

The train and test datasets were derived from the original Vaishnav et al. paper [11]. A 
total of 20,616,659 (defined medium) and 30,722,376 (complex medium) random promoter 
sequences were used to train LegNet in each case. The test data were collected in an 
independent experiment and included only the high quality measurements obtained for native 
(i.e., present in the yeast genome) promoter sequences (N=3928 for the complex medium, 
N=3977 for the defined medium), see the details in [11]. A subset of the test data containing 
3733 promoter sequences assessed in yeast cultures in the complex medium was used to 
compare the performance against conventional deep learning methods according to [11]. To 
evaluate how LegNet captures effects of minor alterations of promoter sequences, we used 
the 'genetic drift' data of [11] where 1 to 3 single-nucleotide substitutions were introduced 
into 1,000 random starting sequences assessed in both defined and complex media. The 
respective GPRA data are available in GEO (https://www.ncbi.nlm.nih.gov/geo/) under 
accession numbers GSE104878 and GSE163045. 

Sequence-to-expression as a soft-classification problem 
A straightforward formal description of a machine learning problem arising from a GPRA 
experiment is a regression of a single real value (the expression defined by the cell sorting bin) 
from a fixed-length DNA sequence. However, a direct approach cannot benefit from the nature 
of the experimental data. We have reformulated the sequence-to-expression regression 
problem as a soft classification task by transforming expression estimates into class 
probabilities. Given a measured expression 𝑒𝑒 (the average observed bin number), we 
heuristically assume that the real expression is a normally distributed random variable (see 
Figure 2b in [9]): 

𝜌𝜌∼𝑁𝑁(𝜇𝜇=𝑒𝑒+0.5, 𝑠𝑠𝑠𝑠=0.5). 
In this approach, for each class 𝑖𝑖 from 1 to 16 defined by an original measurement bin, a 
probability of the class is the cumulative probability to fall into [𝑖𝑖,𝑖𝑖+1) range, with 0 and 17 
classes (bins) represented by special ranges of (−∞, 1]  and  [17, +∞), respectively. 

Thus, for the model loss, we selected the Kullback–Leibler divergence between the 
distribution derived from the training data and the model output vector containing 18 
probabilities corresponding to each class (bin). To obtain a predicted expression value for a 
sequence during the expression inference step (in model validation or test scenario), the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521582doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?A6V5ar
https://www.zotero.org/google-docs/?F1e2ZU
https://www.zotero.org/google-docs/?l5Fftl
https://www.zotero.org/google-docs/?gZYTnm
https://www.zotero.org/google-docs/?o66Xeq
https://www.zotero.org/google-docs/?0YvgZ2
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1101/2022.12.22.521582
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

predicted probabilities were multiplied by the corresponding bin numbers. This model layer, if 
joined with softmax, is called soft-argmax [3], see Figure S2:  

𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = ∑ 𝑖𝑖 ⋅ 𝑝𝑝𝑖𝑖17
𝑖𝑖=0  . 

Adapting GPRA data for a deep learning model 
First, we padded the sequences from the 5' end with the respective constant segments of the 
plasmids to achieve the total fixed length of 150 base pairs. Next, sequences were encoded 
into 4-dimensional vectors with one-hot encoding.  

We considered the integer expression estimates to belong to the singleton promoters 
observed only once across all bins. The singletons are more likely to have noisier expression 
estimates, compared to other promoters with non-integer expression values obtained by 
averaging two or more observations. To supply this information to the model, we used a binary 
is_singleton channel (1 for singletons, 0 for other training sequences). The final predictions 
for evaluation were made by setting is_singleton=0. Since the regulatory elements could 
be asymmetric with regard to their strand orientation and position relative to the transcription 
start sites, different scores are expected for the direct and reverse complementary orientation 
of a particular sequence. Therefore, the training data were augmented by providing each 
sequence both in native and reverse complementary form, explicitly specifying 0 and 1, 
respectively, in an additional is_reverse channel. We also performed the test-time 
augmentation by averaging the predictions made for direct (is_reverse=0) and reverse 
complementary (is_reverse=1) input of each promoter. A scheme of the input sequence 
representation is shown in Figure S3. 

LegNet architecture 
Our model (Figure S1, A) is based upon a fully-convolutional neural network architecture 
inspired by EfficientNetV2 [13] with selected features from DenseNet [14] and additional 
custom blocks. 

The first LegNet block (Stem block) is a standard convolution with kernel_size=7, 
followed by BatchNorm and SiLU activation (Figure S1, B). The output of the first block is 
passed to the sequence of six convolution blocks of EfficientNet-like structure (Figure S1, C) 
but using the grouped convolution instead of the depthwise of the original EfficientNetV2. The 
standard residual connections were replaced with residual channel-wise concatenation (Figure 
S1, C). All convolutions are used with padding set to the mode 'same'. Convolutions followed 
by batch normalization were trained with no bias. The resize block is of the same structure as 
the stem block used at the start of the network (Figure S1, B).  

The Squeeze and Excitation (SE) block used as a part of EfficientNet-like block is a 
modification of that of the original EfficientNetV2 (Figure S1, E). The number of parameters in 
the bilinear block inside of SE block is reduced with low-rank representation of the 
parameterized tensor via canonical polyadic decomposition implementation provided by the 
TensorLy [15] library.   

The final block consists of a single convolutional layer with kernel_size=1 followed 
by channel-wise Global Average Pooling and SoftMax activation (Figure S1, D). We used 256 
channels for the first block and [128, 128, 64, 64, 64, 64] channels for six EfficientNetV2-like 
blocks, respectively. The total number of parameters in our model is 1,852,846. 
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Model training procedure 
To train our neural network, we used One Cycle Policy [16] with FastAI [17] modifications: (1) 
two phases (instead of the original three), (2) the cosine annealing strategy instead of the linear 
one, (3) the AdamW optimizer (weight_decay=0.01) instead of the SGD with momentum. 
The parameters of the One Cycle Policy were selected using 1/10 of the training data of the 
DREAM2022 promoter expression challenge. To select the max learning rate (0.005) for the 
One Cycle Learning Rate Policy, we used the LR-range test as suggested in [18].  

Each epoch consisted of 1000 batches of size 1024. The model was trained for 150 
epochs (defined medium) and 300 epochs (complex medium) achieving a reasonable trade-off 
between training time and validation variance. For the final model, we used the 
hyperparameters based on the validation on the last k-fold (10th) of the training data, but the 
final model was trained from scratch on the whole training dataset. 

We used the same weight initialization as in EfficientNetV2 [13]. The training of the 
final model took about 12 hours for the defined medium model and 24 hours for the complex 
medium model using the NVIDIA RTX A5000 GPU and PyTorch version 1.11.0+cu113. 

Conclusions 
In this study, we presented LegNet, a new deep-learning approach for predicting promoter 
expression from DNA sequence. With the data from gigantic parallel reporter assays, we have 
demonstrated LegNet efficiency in predicting expression per se as well as quantitatively 
estimating the effects of sequence variants, and have shown that LegNet significantly 
outperforms conventional models and the previous state-of-the-art transformer model. Thus, 
while today the researchers' preference is biased toward complex architectures, we conclude 
that the fully convolutional networks should be considered as a solid method of choice for the 
computational modeling of short gene regulatory regions and predicting sequence alteration 
effects. 
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Figures 

 
 
Figure 1. Learning and predicting promoter expression and effects of single-nucleotide 
variants from massive parallel reporter assays with LegNet. 
A. An overall pipeline. The regression task is reformulated as the soft-classification problem 
mirroring the original experimental setup where cells were sorted into different bins 
depending on reporter protein fluorescence. Bottom: sequence encoding and prediction of 
the expression bin probabilities with LegNet.  
B. Variant effect estimation with LegNet. Both original and mutated promoter sequences are 
passed separately to the trained neural network. The variant effect is estimated as a 
difference between corresponding predictions and compared against the ground truth 
experimental data. 
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Figure 2. LegNet accurately predicts promoter expression. 
A-B. Prediction of native promoter expression for yeast grown in complex medium (YPD, A) 
and defined medium (SD-Ura, B), hexagonal binning plots.  
C-D. Comparison of LegNet prediction performance for native yeast promoter sequences 
compared to the transformer model of Vaishnav et al. C: Pearson correlation between 
predictions and ground truth, D: Spearman correlation. Violin plots show bootstrap with 
n=10,000. *p < 0.001, Silver dependent correlations test [18] for the total data. 
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Figure 3. LegNet demonstrates better prediction of variant effects for yeast grown in 
complex (A-B) and defined (C-D) medium compared to the transformer model of Vaishnav et 
al. A, C: Pearson correlation between predictions and ground truth; B, D: Spearman 
correlation. Violin plots show bootstrap with n=10,000, *p < 0.0001, Silver dependent 
correlations test [18] for the total data. 
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