

1 **Pharmacologic hyperstabilisation of the HIV-1 capsid lattice**
2 **induces capsid failure**
3
4

5 K. M. Rifat Faysal¹, Nadine Renner^{2,3}, Chantal L. Márquez^{1,3}, Vaibhav B. Shah¹, Andrew J.
6 Tuckwell¹, Michelle P. Christie³, Michael W. Parker^{3,4}, Stuart G. Turville⁵, Greg J. Towers⁶, Leo
7 James², David A. Jacques^{1,*}, Till Böcking^{1,*}
8

9 1. EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSW
10 Sydney, NSW 2052, Australia
11

12 2. MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
13

14 3. Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
15 Institute, University of Melbourne, Victoria 3010, Australia
16

17 4. Structural Biology Unit, St. Vincent's Institute of Medical Research, Victoria, Australia
18

19 5. The Kirby Institute, UNSW Sydney, NSW 2052, Australia
20

21 6. Division of Infection and Immunity, University College London, WC1E 6BT London, United
22 Kingdom
23

24 [#]equal contribution
25 *Corresponding authors: David Jacques (d.jacques@unsw.edu.au); Till Böcking
26 (till.boecking@unsw.edu.au)
27
28

29 **Abstract**

30 The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir,
31 developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use.
32 Here we investigate the effect of Lenacapavir on HIV capsid stability and uncoating. We
33 employ a single particle approach that simultaneously measures capsid content release and
34 lattice persistence. We demonstrate that Lenacapavir's potent antiviral activity is
35 predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of
36 compartmentalisation. This study highlights that disrupting capsid metastability is a powerful
37 strategy for the development of novel antivirals.

38

39 **Introduction**

40 The cytoplasm is a hostile environment for HIV, as the reverse transcribed cDNA genome is
41 a target for innate immune sensors which if activated unleash a potent interferon response
42 that can suppress replication (Alvarez et al., 2022; Lahaye et al., 2013; Rasaiyaah et al.,
43 2013). For a productive infection to occur, the reverse transcribing genome must be trafficked
44 through the cytoplasm, enter the nucleus and integrate into the preferred sites in the host
45 chromatin, all while evading detection by the host cell. The viral capsid facilitates these early
46 steps in the replication cycle by encapsulating the genome and associated viral enzymes. In
47 doing so it protects the genome from being sensed and destroyed by nucleases, prevents loss
48 of viral enzymes from the reverse transcription complex, and forms the interface through
49 which all cytoplasmic, and many nuclear, host-virus interactions occur.

50

51 The conical capsid shell is comprised of ~1500 copies of the capsid protein (CA), which
52 spontaneously assemble into a lattice. This lattice consists of mostly hexamers and exactly 12
53 pentamers to form a closed fullerene cone (Ganser et al., 1999; Pornillos et al., 2011). While
54 the capsid must be stable enough to transit the cytoplasmic compartment without exposing
55 the genome, it must also be able to release the reverse transcribed cDNA at the appropriate
56 time and in the appropriate location in the nucleus. This process is called capsid uncoating
57 and its regulation and mechanism is poorly understood. Recently, we demonstrated that
58 uncoating proceeds through two discrete steps *in vitro*: capsids opening, in which the
59 integrity of the cone is compromised and encapsidated proteins are released; and catastrophic
60 disassembly of the lattice by release of CA (Márquez et al., 2018). We have also shown that
61 recruitment of cellular cofactors or binding of pharmacological agents to the capsid can
62 greatly alter both processes.

63

64 To engage with host cofactors, the mature HIV capsid utilises at least three cytoplasmic-
65 facing surfaces (Temple et al., 2020). One of these is the central pore, which is formed by a
66 ring of positively charged arginine residues at the six-fold symmetry axis in CA hexamers
67 and at the five-fold axis in pentamers (Jacques et al., 2016). It serves to recruit nucleotides
68 required for reverse transcription and as a binding site for inositol hexakisphosphate (IP6), a
69 metabolite present at concentrations of ~40–50 μ M in human cells (Bunce et al., 1993;
70 Letcher et al., 2008; Veiga et al., 2006). IP6 is specifically packaged into immature virions
71 during assembly in producer cells, leading to a \geq 10-fold enrichment, and its interaction with
72 the central hexamer pore is essential for the assembly and stability of the capsid (Dick et al.,
73 2018; Mallery et al., 2018; Obr et al., 2021; Sowd and Aiken, 2021). The central pore has
74 also been implicated in the capsid's interaction with microtubule-based motor proteins
75 (Huang et al., 2019).

76

77 Another important interface is the cyclophilin binding loop. As its name suggests, this largely
78 unstructured loop protrudes from the capsid surface to recruit cyclophilin A (CypA). This
79 interaction is mediated by a conserved glycine-proline motif (G89-P90) that inserts into the
80 CypA active site. The implications of this interaction are still to be fully understood, but are
81 thought to include viral evasion of innate host defences (Kim et al., 2019; Miles et al., 2020;
82 Rasaiyaah et al., 2013; Towers et al., 2003). Importantly, we have previously shown that this
83 interaction can be exploited *in vitro* to 'paint' the capsid (Márquez et al., 2018). By using a
84 fluorescently labelled CypA, we found that it is possible to detect, quantify, and monitor
85 disassembly of the CA lattice in permeabilised virions by total internal reflection
86 fluorescence (TIRF) microscopy without significantly influencing the capsid opening
87 process.

88

89 The third host-interaction surface, the FG-binding site, is a hydrophobic pocket in the CA N-
90 terminal domain situated near the intra-hexameric junction between CA molecules (Figure 1).
91 This site serves as the binding interface for several host factors, including the cytoplasmic
92 protein Sec24C (Rebensburg et al., 2021), the nuclear pore complex component NUP153
93 (Matreyek et al., 2013), and the nuclear protein CPSF6 (Bhattacharya et al., 2014; Price et al.,
94 2014), which are crucial for nuclear entry and correct integration site targeting (Bejarano et
95 al., 2019; Saito et al., 2016; Schaller et al., 2011). Each of these proteins interacts with the
96 capsid via a phenylalanine-glycine (FG) motif. Additionally, several generations of antiviral
97 compounds also target this site by effectively mimicking the FG-motif (Price et al., 2014).
98 Interestingly, the potency and mechanism of action of these agents varies, despite their shared
99 binding site.

100 Compounds that target the FG-binding pocket include BI-2 (Lamorte et al., 2013), PF74
101 (Blair et al., 2010), and lenacapavir (LEN, GS-6207) (Link et al., 2020). BI-2 has a relatively
102 small binding footprint on the CA N-terminal domain, barely extending beyond the FG-
103 binding pocket (Figure 1A). This limited interaction is reflected in the relatively weak K_D
104 (1.2 μ M) and half maximal inhibitory concentration (IC50) (3 μ M) during the early stage of
105 infection (Price et al., 2014). PF74, on the other hand, extends its interaction beyond the FG-
106 binding pocket to make additional contacts with a neighbouring CA molecule (Figure 1B).
107 These bridging contacts are thought to be responsible for PF74's 10-fold tighter K_D (120 nM)
108 and IC50 (relative to BI-2). Both BI-2 and PF74 have been shown to compete with host
109 cofactors (Sec24C, Nup153, and CPSF6) (Fricke et al., 2014; Matreyek et al., 2013; Peng et
110 al., 2014; Price et al., 2014; Rebensburg et al., 2021), but have also been suggested to
111 destabilise the capsid directly (Bhattacharya et al., 2014; Fricke et al., 2014; Shi et al., 2011),
112 which interferes with reverse transcription (Jennings et al., 2020; Mallory et al., 2018; Sowd
113 et al., 2021). In contrast to BI-2 and PF74, which have found use exclusively in the
114 laboratory, LEN is a first-in-class HIV-1 capsid inhibitor currently in clinical trials (Dvory-
115 Sobol et al., 2022; Link et al., 2020). Structurally, LEN makes extensive contacts across two
116 neighbouring CA monomers (Figure 1C), allowing for a very high-affinity interaction (K_D =
117 215 pM). It interferes with early and late phases of the HIV-1 replication cycle at low and
118 mid pM concentrations, respectively, making it orders of magnitude more potent than PF74
119 and BI-2 (Bester et al., 2020; Link et al., 2020). Successive post-entry steps differ in their
120 sensitivity to the drug (Bester et al., 2020; Link et al., 2020), whereby integration of HIV-1
121 DNA into host chromatin is inhibited most potently (<500 pM), followed by nuclear import
122 and reverse transcription, which is inhibited at high pM (Sowd et al., 2021) to low nM LEN
123 (Bester et al., 2020). Remarkably, imaging studies (Bester et al., 2020) and biochemical
124 assays (Selyutina et al., 2022) showed that LEN increased the number of viral cores in the
125 cytoplasm in a dose-dependent manner. Thus, the drug apparently exhibited contrasting
126 inhibitory effects at higher concentrations: inhibition of reverse transcription and stabilization
127 of viral cores.

128 Here we have used our single-molecule fluorescence imaging assay with a dual read-out
129 strategy to show that LEN compromises capsid integrity while preventing lattice
130 disintegration at substoichiometric levels of binding, thus providing a rationale for the
131 attenuated reverse transcription and capsid stabilization previously observed at nanomolar
132 concentrations of the drug. PF74 induces the same effects but with less potency, while BI-2
133 leads to rapid capsid breakage but does not prevent disintegration. Conversely, a peptide from
134 CPSF6 has modest capsid-breaking capacity but strongly promotes lattice stability,
135 suggesting that FG pocket binders differentially affect these steps of the uncoating process.
136 We also show that LEN drives the formation of aberrant CA structures, which cannot be

139 rescued by IP6. Altogether, our data suggest that LEN promotes CA assembly and stability at
140 the cost of intact fully closed capsids.

141 **Results**

142 **143 Single-virion analysis of intrinsic capsid stability and uncoating.**

144 We used a single-molecule fluorescence imaging assay to measure the intrinsic capsid
145 stability and uncoating kinetics at the level of individual viral particles (Márquez et al., 2018)
146 and then measured the effect of LEN treatment on these processes. As shown schematically
147 in Figure 2A, we used pore-forming proteins to permeabilise GFP-loaded HIV particles
148 immobilised at the bottom surface of a microfluidic channel device. Using TIRF microscopy,
149 we then detected the stepwise loss of the GFP signal for each virion appearing as a
150 diffraction-limited spot in the field of view. Upon membrane permeabilization, virions with
151 an incomplete or defective capsid lost their entire GFP signal in a single step (Figure 2B,
152 “leaky”). In contrast, virions containing an intact capsid retained the pool of GFP inside the
153 capsid (~10-20% of the total fluorescence). This residual GFP signal was either constant
154 when the capsid remained intact throughout the experiment (Figure 2B, “closed”) or lost in a
155 second step upon spontaneous loss of capsid integrity (Figure 2B, “opening”), whereby the
156 lifetime of each opening capsid was given by the time difference between the two GFP
157 release steps.

158
159 To quantify the capsid uncoating kinetics across the typically several hundred virions per
160 field of view in an unbiased fashion, we used step-fitting to measure the lifetime of each
161 capsid and classify particles according to the GFP release profiles defined above. The
162 distribution of capsid lifetimes (survival curve) for untreated virions (Figure 2D, no drug)
163 showed the typical multiphasic decay profile reflective of different capsid stability types. The
164 corresponding classification showed that more than half of virions contained improperly
165 assembled (leaky) capsids, about a third of virions released GFP from the capsid (short- and
166 long-lived opening) while the remainder retained GFP (closed) until the end of the 30 min
167 experiment (Figure 2E).

168
169 As a complementary measurement, we used AF568-labelled CypA as a “paint” that binds
170 transiently to the outside of the capsid, rapidly reaching a dynamic equilibrium, whereby the
171 AF568-CypA intensity is proportional to the number of CA subunits in the lattice.
172 Importantly, AF658-CypA was used at concentrations (0.5–1 μ M) where fewer than 4% of
173 the available cyclophilin loops are occupied, and we have previously shown that uncoating
174 kinetics are not affected under these conditions (Márquez et al., 2018). Single-particle
175 analysis showed that the AF568-CypA signal remained constant while the capsid was intact
176 (Figure 2B, “closed”) but decayed to background levels after the capsid opened (Figure 2B,
177 “leaky” and “opening”). Analysis of all leaky and opening traces aligned to the time of GFP
178 release (represented as CypA paint heatmaps, Figure 2–Figure Supplement 2A) showed that
179 the median CypA signal decayed with a half-life of less than 1 minute. This rapid decay is
180 consistent with a failure cascade that propagates across the whole capsid resulting in
181 complete lattice disassembly. Taken together, our single-particle analysis shows that GFP
182 release pinpoints the time the first defect appears in the capsid while the CypA paint signal
183 provides an indirect read-out for the disassembly kinetics of the CA lattice thereafter.

184
185 **LEN induces capsid opening but prevents loss of CA from the lattice of open capsids.**

186 In the next set of experiments, we focused on the effect of LEN on the intrinsic capsid
187 stability without capsid-binding cofactors; the interplay between LEN and the host cofactor
188 IP6, which is essential for maintaining capsid stability in cells, is described in later sections.
189 To measure the maximum effect of LEN on capsid uncoating, we added the drug at the
190 beginning of the experiment at a concentration (500 nM) that leads to rapid near saturation

191 occupancy (99.96%) of FG binding sites. Uncoating traces recorded of single virions in the
192 presence of 500 nM LEN (Figure 2C) revealed two fundamental differences to the single-
193 particle profiles described above. First, LEN treatment caused earlier release of the
194 encapsidated GFP (Figure 2C, “opening”), resulting in a faster decaying survival curve
195 (Figure 2D, light green line) and a concomitant 3-fold decrease in the fraction of closed
196 capsids at the end of the experiment (Figure 2E). Second, the AF568-CypA signal of capsids
197 that were defective to begin with (Figure 2C, “leaky”) or started to uncoat (Figure 2C,
198 “opening”) remained constant. This striking stabilisation effect was also clear in the heatmaps
199 of leaky and opening capsids (Figure 2–Figure Supplement 1B). Since the CypA paint traces
200 of leaky and opening capsids showed the same characteristics, we combined these classes in
201 subsequent analysis. The combined CypA paint heatmaps for untreated virions (rapid signal
202 decay) and LEN-treated virions (constant signal) are shown in Figure 3C (see panels for 0
203 nM and 500 nM, respectively). Together, the GFP release and CypA paint analysis in the
204 presence of 500 nM LEN suggest that binding of LEN induces rupture of capsids (leading to
205 early GFP release) but prevents the loss of CA subunits from defective or ruptured capsids
206 (stable CypA paint signal).

207
208 To further quantify these apparently opposing effects on capsid integrity and CA lattice
209 stability, we injected LEN at concentrations ranging from 0.5–500 nM into the flow channel
210 at the beginning of the experiment and measured GFP release and CypA paint traces for
211 hundreds of capsids at each condition (Figure 3). Control uncoating experiments recorded
212 without LEN resulted in the typical survival kinetics (Figure 3A, 0 nM LEN) with capsid
213 half-lives of 1–2 minutes (short-lived) or ~16 minutes (long-lived) reflecting subsets of
214 virions with less or more stable capsids, respectively (Figure 3–figure supplement 1).
215 Classification based on GFP release traces showed on average 55% leaky, 35% opening
216 (comprising 12% short-lived and 23% long-lived capsids) and 10% closed capsids at the end
217 of the experiment (Figure 3B, 0 nM LEN). However, treatment with LEN resulted in a 2-fold
218 (5 nM) or 3-fold (\geq 50 nM) decrease in the proportion of capsids that remained closed
219 throughout the experiment (30 min) with a concomitant increase primarily in the fraction of
220 leaky and short-lived capsids (Figure 3B). This decrease in capsid stability was also apparent
221 in the survival curves (Figure 3A), showing a pronounced concentration-dependent increase
222 in capsid opening kinetics with an intermediate effect at 5 nM and the maximal effect at \geq 50
223 nM LEN. Analysis of the CypA paint signal of particles with leaky or opening capsids
224 (Figure 3C) showed that the CA lattice disassembled within ~1 minute of the appearance of
225 the first defect at LEN concentrations \leq 5 nM. In contrast, LEN at concentrations of \geq 50 nM
226 prevented disassembly of leaky and opening capsids, as evidenced by the stable CypA paint
227 signal (Figure 3C), which persisted for at least 5 h (500 nM) after complete loss of GFP
228 (Figure 3D). In summary, LEN dose-dependently increased the proportion of open capsids
229 but increased the stability of their lattices. The dose-dependence observed here differs from
230 previous *in vitro* uncoating measurements showing (partial) capsid lattice stabilisation down
231 to 0.05 nM LEN; in those experiments 50–65% of cores stained with the irreversibly bound
232 tetrameric probe CypA-dsRed remained detectable after 30 min of incubation (Bester et al.,
233 2020). Nevertheless, our observations of open but highly stabilised capsids is consistent with
234 the LEN dose-dependent increase in the number of viral cores detected in the cytoplasm of
235 infected cells (Bester et al., 2020; Selyutina et al., 2022).

236
237 To relate the capsid-altering effects of the drug to the occupancy of FG binding sites on the
238 CA lattice, we used published association and dissociation rate constants for LEN (Link et
239 al., 2020) to calculate the drug binding curves at the concentrations used in the experiments
240 above (shown as bold beige lines for each concentration in Figure 3A). Notably, the time

241 required for binding to approach equilibrium ranges is >18 hours at 0.5 nM, ~2.5 hours at 5
242 nM, ~15 minutes at 50 nM and ~2 minutes at 500 nM. Under the conditions used in the
243 single-particle uncoating assay, the capsid is exposed to the membrane-permeable drug for ~2
244 minutes before the pore forming protein permeabilises the viral membrane. Thus, we first
245 calculated the occupancy at this time point to estimate the threshold required to stabilise
246 defective capsids. Unsurprisingly, the low occupancy at 0.5 nM and 5 nM LEN (calculated to
247 be 0.4% and 4%, respectively) was insufficient for lattice stabilisation. In contrast, 50 nM
248 LEN, which should occupy 32% of sites, was sufficient to prevent CA lattice disassembly.
249

250 Next, we similarly estimated the threshold at which LEN was able to induce capsid breakage.
251 At 0.5 nM, the calculated occupancy remains too low (<6%) throughout the experiment and
252 uncoating kinetics were unaffected. In the presence of 5 nM LEN, the calculated occupancy
253 is ~20% over the first 10 minutes after membrane permeabilisation, during which an
254 intermediate effect on capsid opening was observed. Maximum capsid-breaking activity was
255 observed at 50 nM LEN, whereby most capsid rupture during the first 5 minutes with the
256 calculated occupancy reaching ~70–80%. Based on these considerations, we estimate that
257 structural effects are already observed when fewer than half of the available binding sites are
258 occupied, possibly requiring an average occupancy as low as 1 LEN molecule per hexamer to
259 accelerate capsid opening and 2 LEN molecules per hexamer to slow the release of CA
260 subunits from the lattice.
261

262 **IP6 raises the threshold of drug binding required for LEN to break the capsid.**
263 We have previously shown that the cellular cofactor IP6 stabilises capsids and delays capsid
264 opening *in vitro*, hence increasing the half-life of the closed capsid to ~10 hours when added
265 at a concentration of 100 μ M (Mallery et al., 2018). Given IP6 is present in cells (typically
266 40–50 μ M) and therefore expected to impact the effects of LEN *in vivo*, we asked if IP6
267 could prevent LEN-induced rupture of the capsid. As before, addition of IP6 (100 μ M) to the
268 solution strongly stabilised capsids in permeabilised virions, leading to reduced capsid
269 opening kinetics (Figure 4A, 0 nM LEN/+IP6) and a ~3-fold increase in the fraction of closed
270 capsids at the end of the experiment (Figure 4B, 0 nM LEN/+IP6). Next, we tested the effect
271 of adding 100 μ M IP6 in combination with LEN at concentrations above the threshold
272 required to damage the integrity of the capsid (\geq 5 nM LEN). IP6 partially counteracted the
273 capsid-breaking effect when <40% of FG sites are occupied (5 nM LEN), but even at this
274 concentration the drug increased capsid opening kinetics relative to control with IP6 only
275 (Figure 4A, compare 0 nM LEN/+IP6 and 5 nM LEN/+IP6). At high LEN concentrations
276 (\geq 50 nM), the survival curves measured in the presence and absence of IP6 were essentially
277 the same, showing that IP6 was no longer able to counteract the premature rupture of the
278 capsid induced by the drug (Figure 4A, 50 nM and 500 nM). This acceleration in capsid
279 opening (regardless of whether IP6 was present) led to a 10-fold reduction in the fraction of
280 closed capsids to 3% at the end of the experiment compared to the control with IP6 only
281 (Figure 4B, compare 0 nM LEN/+IP6 with 50 nM LEN/+IP6 or 500 nM LEN/+IP6). We
282 conclude that IP6-stabilised capsids require a higher drug occupancy ($>50%$ of sites) than in
283 the absence of IP6 for defects to manifest. The ability of IP6 to counteract LEN-induced
284 damage to the capsid has also been proposed based on observations by others that LEN more
285 potently inhibits reverse transcription *in vitro* and in cells when IP6 levels are low (Sowd et
286 al., 2021).

287 Finally, we analysed the CypA paint data from the above experiments to determine if IP6
288 could act in conjunction with LEN to stabilise the CA lattice when the capsid had opened. As
289 observed for other polyanions binding at the R18 ring at the centre of the CA hexamer
290

291 (Márquez et al., 2018), IP6 slows but does not prevent the catastrophic collapse of the CA
292 lattice once the first capsid defect has appeared (Figure 4–Figure Supplement 1). CA lattice
293 dissociation of leaky and opening capsids is also slower but not completely inhibited when
294 IP6 is added to 5 nM LEN (<10% occupancy of FG sites at the time of membrane
295 permeabilization) (Figure 4–Figure Supplement 2A and B). At 50 nM LEN (>30%
296 occupancy of FG sites), the CypA paint signal remains constant in the presence and absence
297 of IP6 (Figure 4–Figure Supplement 2C and D), such that differences in stability during the
298 time frame of the experiment are difficult to ascertain. Overall, these data suggest that IP6
299 further stabilises LEN-stabilised CA lattices but not to the extent where it can prevent CA
300 release from lattices at low LEN occupancy.

301

302 **Slow LEN binding kinetics delay the structural drug effects at low concentrations.**

303 To verify that LEN binding kinetics affect the structural effects on capsid, we preincubated
304 virions with 5 nM LEN for 4 h, during which 95% of sites are occupied. Analysis of GFP
305 release traces showed that preincubation increased the fraction of leaky capsids from 60% to
306 80% (Figure 5A and B) concomitant with the loss of short-lived opening capsids, suggesting
307 that this comparatively less stable subset is more susceptible to LEN-induced rupture. CypA
308 paint analysis showed that CA lattice disassembly was inhibited with, but not without,
309 preincubation (Figure 5C). These observations suggest that the full extent of the capsid-
310 altering effects is observed after binding occupancy reaches the requisite threshold level. The
311 increase in the fraction of leaky capsids after preincubation (exceeding the fraction of leaky
312 capsids observed at 500 nM without preincubation, Figure 3B) further suggests that drug-
313 induced capsid rupture manifests over time and that rupture, or build-up of the strain required
314 for rupture, can already occur before release of the capsid from the virion.

315

316 Next, we tested whether preincubation of virions with LEN for 48 h would result in higher
317 potency of the drug in Jurkat cells infected with VSV-G pseudotyped HIV encoding GFP as a
318 reporter. We chose 48 h because this time is required for binding at the reported 50%
319 inhibitory concentration (IC₅₀) of ~0.05–0.1 nM to reach near equilibrium (Figure 5–Figure
320 Supplement 1). Similar to the capsid-targeting drug PF74 (Price et al., 2014; Saito et al.,
321 2016), the dose-response curves of LEN showed a biphasic inhibition profile, whereby the
322 first phase (~0.1 nM) reduced infection to about 10% before a second inhibitory mechanism
323 operating in the low nM range reduced infection levels to less than 1%. Preincubation had
324 little effect on inhibition during the first phase and resulted in an only 1.3-fold reduction in
325 IC₅₀ (Figure 5D and E). This observation suggests that without preincubation infection was
326 blocked sufficiently late post entry such that the drug had sufficient time to reach the
327 requisite occupancy threshold. The IC₅₀ measured after preincubation (0.093±0.008 nM)
328 allowed us to calculate that the first inhibitory phase required LEN to bind to ~30% of sites
329 (assuming that the LEN concentration in the cell is the same as in that added to the culture
330 medium). To reach this level of binding (30%) at the IC₅₀ measured without preincubation
331 (0.125±0.013 nM) would require 20 hours (see corresponding occupancy curve in Figure
332 5D). This analysis suggests that the low concentration block to infection occurs at a step after
333 nuclear entry.

334

335 In contrast to the modest effect at low LEN concentrations, preincubation reduced infection
336 2–3-fold at concentrations \geq 0.256 nM (i.e., during the second inhibitory phase), whereby the
337 IC₉₅ was 0.5 nM and 1 nM with and without preincubation, respectively (Figure 5D). To
338 estimate the time at which the second block occurs, we first calculated that ~70% of sites
339 were occupied at equilibrium at 0.5 nM LEN (i.e., at the IC₉₅ with preincubation). This level
340 is also reached 7 hours after addition of 1 nM LEN (IC₉₅ without preincubation). Overall, we

341 conclude that LEN inhibits a late post-entry step when binding to ~30% of sites (reached at
342 ~0.1 nM without preincubation), but this block is insufficient to reduce infection below a
343 level of ~10%. At \geq 70% occupancy of sites on the CA lattice, LEN additionally blocks
344 infection at a step that occurs 7 hours post infection, ultimately reducing infection to levels
345 below 1%.

346
347 Next, we determined the dose-dependent effect of LEN on reverse transcription using qPCR
348 with primers amplifying total viral DNA (Figure 5F). The IC50 for reverse transcription in
349 Jurkat cells was 1.08 nM LEN without preincubation, consistent with the dose-response in
350 CEM cells (IC50 = 0.68 nM) (Sowd et al., 2021). This value dropped to 0.59 nM when
351 virions were preincubated for 48 h with LEN prior to infection. Inspection of the occupancy
352 curves (Figure 5F) revealed that half-maximal inhibition of reverse transcription required an
353 occupancy of ~70% and occurred at ~7 h after cell entry, coinciding with 95% inhibition of
354 infection. Overall, this analysis showed that reverse transcription can no longer proceed as a
355 result of the second inhibition mechanism of LEN.

356
357 **LEN and IP6 synergise to promote CA assembly but compete to bias the assembly**
358 **pathway towards tube (LEN) versus cone (IP6) formation.**

359 Since both IP6 (Dick et al., 2018; Renner et al., 2021) and LEN (Bester et al., 2020; Link et
360 al., 2020) promote CA assembly and lattice stability *in vitro*, we tested how the combination
361 of these molecules affects CA assembly in low salt conditions. We monitored the assembly
362 kinetics of recombinant CA by measuring the absorbance at 350 nm and collected samples at
363 the end of each experiment for analysis by negative stain electron microscopy (Figure 6).
364 First, we varied the concentration of IP6 and observed that CA (75 μ M) assembled with
365 similar kinetics in the presence of 100 μ M or 150 μ M IP6 but did not assemble at lower IP6
366 concentrations (Figure 6A, left). As expected, negative stain EM images of assembly
367 products formed with only IP6 showed primarily conical shapes with dimensions, similar to
368 those observed for native HIV capsids (Figure 6A, right). When we repeated this titration in
369 the presence of 50 μ M LEN (substoichiometric relative to CA), we observed CA assembly
370 across the entire concentration range (10–150 μ M IP6), with IP6 accelerating assembly
371 kinetics and yields in a concentration-dependent manner (Figure 6B). Strikingly, LEN in the
372 presence of low IP6 promoted formation of CA tubes (often closed at their ends) with lengths
373 of >500 nm, whereby increasing IP6 concentrations biased assembly increasingly towards
374 shorter tubes and conical shapes. Next, we varied the concentration of LEN in the presence of
375 200 μ M IP6. Addition of 1–50 μ M LEN increased CA assembly efficiency in a
376 concentration-dependent manner above the level observed for IP6 only (Figure 6C, left).
377 Notably, the highest LEN concentration (50 μ M) did not promote CA (75 μ M) assembly
378 without IP6 in low salt conditions (Figure 6B, left). Negative stain EM images confirmed
379 cone formation in the presence 200 μ M IP6 and showed that addition of drug led to the
380 formation of aberrant and broken structures in a concentration-dependent manner (Figure 6C,
381 right). We conclude that LEN is insufficient to promote CA assembly by itself in low salt
382 conditions but synergises with IP6 to increase assembly kinetics and yields. Importantly, IP6
383 promotes cone assembly, whereas LEN biases assembly toward tube formation such that
384 closed tubes form in the presence of high drug and sufficiently low IP6. When both
385 molecules are present at high concentrations, where neither molecule can dominate the
386 assembly pathway, assembly proceeds in an aberrant fashion yielding heterogeneous
387 structures. Taken together these observations show that IP6 and LEN synergise to promote
388 assembly but preferentially stabilise different CA lattice structures. Since IP6 is enriched in
389 HIV particles (reaching concentrations of ~500 μ M (Mallery et al., 2018)), this drug-cofactor
390 synergy driving aberrant assembly is likely to play out during capsid assembly in virions

391 produced in the presence of drug, consistent with the observation that virions produced in the
392 presence of LEN (Link et al., 2020) or the closely related compound GS-CA1 (Yant et al.,
393 2019) contain improperly shaped capsids.

394

395 **LEN promotes CA overassembly inside mature virions.**

396 As the single-particle TIRF analysis suggested that LEN alters capsid properties inside the
397 intact virion, we used cryo-electron tomography (cryoET) to image purified virions that were
398 either left untreated or treated with 700 nM LEN for 30 minutes (Figure 7), conditions that
399 are expected to essentially saturate FG binding sites on the capsid. We carried out 3-
400 dimensional reconstructions on 139 untreated and 96 drug-treated virions and assigned the
401 tomograms to one of five categories according to maturation state and appearance of the
402 capsid (Figure 7A) as in previous work (Fontana et al., 2016; Mallory et al., 2021; Mattei et
403 al., 2014; Renner et al., 2021). As expected, the virion preparation contained a small fraction
404 of particles with immature lattice (<10%) irrespective of drug treatment. Most untreated
405 particles contained mature capsids with a conical or tubular morphology (74%) while a
406 smaller fraction contained mature capsids with an irregular shape (17%). These categories
407 were largely unaffected by incubation with LEN but showed a small shift from particles with
408 conical/tubular capsid (64%) to particles with irregular capsids (25%). While the tomograms
409 of virions with LEN did not reveal obvious capsid defects (such as large holes or capsid
410 breakage), we frequently observed additional lattices next to the main capsid. To quantify the
411 different types of additional structure, we further divided particles with a conical/tubular
412 capsid into subclasses depending on whether they contained an open CA lattice or additional
413 capsids and/or whether a second CA layer had formed around the capsid (Figure 7B). As
414 expected, untreated virions contained mostly single capsids comprised of a single CA layer
415 (74%) and a minority contained additional open (13%) or closed (7%) lattices. Double
416 layered capsids were infrequent (6%). In stark contrast, we observed that almost all drug-
417 treated virions contained additional CA structures (61%) and/or appeared with a double
418 layered capsid (45%) while canonical capsids (single closed structure comprised of a single
419 CA layer) were infrequent (<4%). These observations suggest that LEN induces assembly of
420 the pool of free CA that is otherwise not incorporated into the capsid. To corroborate this
421 overassembly phenotype and obtain an estimate of its kinetics, we used our TIRF assay to
422 obtain the intensity of the CypA paint signal as a measure of CA lattice size. This analysis
423 showed an average 1.7–1.8-fold increase of the CypA paint signal in virions treated with 500
424 nM LEN relative to untreated control (Figure 7C and Figure 7–Figure Supplement 1),
425 consistent with the presence of a larger overall CA lattice surface area contained within the
426 permeabilised membrane. This CypA paint signal increase was already observed after short
427 incubation (2 minutes) and did not increase further after longer incubation (30 minutes)
428 suggesting that CA overassembly induced at high drug concentrations inside mature virions is
429 rapid.

430

431 **PF74 but not BI-2 slows CA lattice disassembly after capsid rupture.**

432 We have shown before using single-molecule TIRF uncoating assays that PF74, an HIV
433 inhibitor that binds to the same site as LEN, strongly accelerates capsid opening and
434 stabilises the lattice of the capsid thereafter (Márquez et al., 2018). The concentration (10
435 μ M) used in those experiments is 40–80-fold above the K_D determined for the interaction
436 with CA hexamers (between 0.12 μ M (Price et al., 2014) to 0.26 μ M (Bhattacharya et al.,
437 2014)), such that 97–99% of binding sites of the capsid are predicted to be occupied with a
438 drug molecule. PF74 is an important tool to study HIV capsid-associated processes but has
439 been described to either promote capsid uncoating (Santos et al., 2016; Selyutina et al., 2022;
440 Shi et al., 2011) or to stabilise capsids (Rankovic et al., 2018) or to have no effect on capsid

441 integrity (Hulme et al., 2015). To resolve this ambiguity and further characterise the ability of
442 PF74 to stabilise CA lattices, we carried out CypA paint experiments in the presence of 0.1–
443 10 μ M PF74 (Figure 8A). In this concentration range, binding reaches equilibrium (Lad et al.,
444 2015) before membrane permeabilization in our assay. PF74 slowed the loss of CA from
445 leaky and opening capsids in a concentration-dependent manner, but we observed high levels
446 of stabilisation (loss of less than 10% of signal over the 8 min imaging period) only at high
447 concentrations ($\geq 5 \mu$ M, $\geq 95\%$ occupancy). However, even 10 μ M PF74 was unable to
448 prevent CA lattice disassembly over longer periods of time, and we observed $\sim 70\%$ signal
449 loss after 80 min (Figure 8B). PF74 also required high occupancy to accelerate capsid
450 opening, and the drug showed only partial capsid-breaking at a concentration of 1 μ M (79–
451 89% occupancy) (Figure 8–Figure Supplement 1).

452
453 The FG pocket-binding drug BI-2 also has potent capsid-breaking activity (Márquez et al.,
454 2018) when used at a concentration (50 μ M) that is ~ 40 -fold above the K_D (1.2 μ M) of the
455 interaction with CA hexamers (Price et al., 2014). We predicted that BI-2 would be unable to
456 stabilise CA lattices after capsid opening since the compound contacts only one of the two
457 CA subunits forming the FG binding pocket (Figure 1A). As expected, CypA paint analysis
458 showed that 50 μ M BI-2 did not slow the release of CA subunits from the lattice (Figure 8E).
459 These observations together with those described above suggest that PF74 exerts the same
460 structural effects on the capsid as LEN but less potently, while BI-2 breaks the capsid but is
461 unable to slow subsequent disassembly.

462
463 To relate the degree of the capsid-altering effects of PF74 to its effects on HIV infection, we
464 measured the dose-response curve for inhibiting infection of Jurkat cells with VSV-G
465 pseudotyped HIV encoding GFP as a reporter (Figure 8C). To facilitate comparison to the
466 corresponding LEN data, we replotted the dose-response curves as a function of drug
467 concentration divided by the respective affinity to the CA hexamer (Figure 8D). Curves for
468 both drugs showed the characteristic biphasic profile with the first phase levelling off at
469 $\sim 10\%$ infection over a ~ 10 -fold concentration range followed by a second drop in infection.
470 Compared to PF74, the LEN curve was shifted by a factor of 10 to lower concentrations
471 relative to K_D , such that the IC50 for infection occurred at a concentration of $\sim 0.5 \times K_D$ and
472 $\sim 5 \times K_D$ for LEN and PF74, respectively. Thus, early phase inhibition required 33% occupancy
473 for LEN and 83% occupancy for PF74. Similarly, the second inhibition required a
474 concentration of $\sim 4.7 \times K_D$ for LEN (82% occupancy) and $\sim 31 \times K_D$ for PF74 (97%
475 occupancy). These data suggest that not only is the second phase of inhibition due to capsid
476 detrimental structural changes, but that LEN has a greater potency for eliciting these changes.
477

478 **CPSF6 peptide stabilises the CA lattice at low occupancy.**

479 Given that different compounds can influence uncoating mechanisms in different ways, it is
480 conceivable that the virus uses endogenous ligands to tune capsid stability. We therefore
481 sought to compare the effect of the above drugs with CPSF6, a host cell protein which also
482 binds the FG-pocket, and bridges the gap between monomers (Price et al., 2012). CPSF6
483 colocalises with the capsids at the nuclear pore complex and inside the nucleus where it plays
484 a role in facilitating nuclear entry and dictating integration site position (Bejarano et al.,
485 2019; Schaller et al., 2011; Sowd et al., 2016; Zila et al., 2021). To investigate the effect of
486 CPSF6 on capsid stability, we performed single-molecule TIRF uncoating experiments in the
487 presence of the minimal CPSF6 peptide that binds to the FG pocket (Figure 1D). At 100 μ M
488 (2-fold above the K_D of 50 μ M for binding to CA hexamers), CPSF6 peptide promoted
489 capsid opening, but with slower kinetics than the FG pocket-binding drugs (Figure 9–Figure
490 Supplement 1). CypA paint analysis showed that 100 μ M CPSF6 peptide strongly inhibited

491 CA release (Figure 9A) as evident from slow decay in the CypA paint signal over 80 min
492 (Figure 9C). Further experiments showed that 1 μ M CPSF6 peptide was insufficient to
493 stabilise the lattice but 5 μ M partially and 10 μ M strongly inhibited CA lattice dissociation.
494 Next, we used a TIRF microscopy-based interaction assay to count the number of
495 fluorescently labelled CPSF6 molecules bound to the capsid at concentrations up to 5 μ M
496 (measurements at higher concentrations were hampered by high background fluorescence).
497 This analysis showed that on average 278 ± 19 molecules are bound per capsid at 5 μ M
498 (Figure 9B and Figure 9—Figure supplement 2). Thus, CPSF6 peptide was more strongly
499 stabilising relative to K_D than capsid inhibitors, providing partial stabilisation when less than
500 20% of binding sites are occupied.
501

502 Discussion

503 Here we show that the antiretroviral LEN has two opposing effects on the HIV-1 capsid at
504 high occupancy: it prevents dissociation of CA from the lattice but induces capsid rupture.
505 This apparently counterintuitive phenomenon is consistent with a model in which the lattice
506 must be simultaneously stable but flexible. The antiviral mechanism of LEN can therefore be
507 considered a form of ‘lethal hyperstability’ in which lattice stability is increased at the cost of
508 its flexibility and ultimately capsid integrity. This is reminiscent of the ‘lethal mutagenesis’
509 mechanism of antiviral polymerase drugs such as favipiravir (Perales et al., 2011). Just as
510 with capsid stability, viral replication has conflicting requirements – errors are necessary to
511 promote mutagenesis and evolvability (Tokuriki and Tawfik, 2009) but too many errors and
512 fidelity is compromised. Lethal mutagenesis drugs exert their antiviral affects by pushing
513 viral polymerases to these unsustainable error rates. Similarly, lethal hyperstability capsid
514 drugs like LEN push the capsid lattice to such extreme stabilities that the integrity of the
515 capsid is compromised. Importantly, this mechanism dominates at drug doses required to
516 suppress replication to clinically relevant levels (Dvory-Sobol et al., 2022).
517

518 Kinetically, the effects of lethal hyperstability occur within minutes and are observable prior
519 to reaching binding equilibrium or full occupancy. We estimate that the threshold for drug-
520 induced capsid rupture and lattice stabilisation is lower than 50% occupancy. The cofactor
521 IP6, which, in the absence of drug, would normally delay spontaneous capsid opening by
522 many hours, raises the threshold to greater ~70% occupancy but is ultimately unable to
523 prevent rapid LEN-induced capsid rupture. Due to the high affinity of the drug, sub-nM
524 concentrations are sufficient to exceed this threshold, but it takes hours to reach the requisite
525 binding level. It is also worth noting that HIV capsids are pleiomorphic and exhibit different
526 levels of intrinsic stability as evident from our single-particle analysis, such that the threshold
527 for LEN-induced structural changes is likely to vary between different capsid architectures.
528

529 The comparison of the single-particle analysis of the three major drugs (BI-2, PF74, and
530 LEN) offers insight into how binding stabilises the CA lattice, even when it is no longer a
531 closed shell. BI-2 is the simplest compound, and only makes contacts within a single
532 monomer and has the lowest affinity. As such it offers no potential for enhancing contacts
533 between individual proteins within the lattice. It is therefore unsurprising that, even at 50 μ M
534 (approaching the solubility limit of the drug), BI-2 provides no significant lattice stabilisation
535 once the capsid has ruptured. PF74 and LEN, on the other hand, both make contacts across
536 the junction between monomers within the context of the hexamer, and both have been
537 shown to have higher affinity for hexamers than monomers. This suggests that the two drugs
538 lock monomers together within the hexamer, potentially limiting their ability to move with
539 respect to each other - reducing degrees of freedom and hence flexibility within the lattice
540 overall. Evidence that the hexamers are stabilised comes from lattice assembly experiments

541 in which LEN promotes CA assembly in the presence of IP6 (Figure 6) or high salt (Bester et
542 al., 2020; Link et al., 2020). While PF74 does stabilise the CA lattice post-rupture, the lattice
543 will deteriorate on a time scale of an hour. LEN-treated cores, on the other hand, show no
544 lattice loss even after 5 hours post-rupture. The degree of lattice stabilisation, therefore,
545 correlates with the degree to which the drugs bridge the junction between monomers.
546

547 How exactly stabilising the lattice triggers capsid rupture is less clear. It has previously been
548 suggested that the binding of the drug reduces the flexibility of the CA molecule and
549 therefore the lattice plasticity required to maintain capsid integrity (Bhattacharya et al.,
550 2014). These authors also suggest that, due to its hexamer preference, PF74 stabilises
551 hexamers at the cost of pentamers. As precisely 12 pentamers are required, any process that
552 disfavour pentamers, would necessarily lead to capsid rupture. A recent cryoET study
553 comparing the structures of hexamers and pentamers identified residues 58-61 as being a
554 potential ‘switch’ between the two states (Schirra et al., 2022). Importantly, the pentamer
555 configuration of these residues results in a remodelling of the FG-binding site. The authors
556 speculate that LEN may result in an induced fit switch to the hexameric configuration, and
557 our data would be consistent with such a model. Another cryoET study of HIV cores
558 incubated under conditions that facilitate reverse transcription inside the capsid showed that
559 treatment with GS-CA1 (an analogue of LEN) for 4 hours led to loss of CA lattice pieces and
560 a flattening of the remaining lattice (Christensen et al., 2020). The authors proposed that the
561 compound restricts CA flexibility, causing a build-up of lattice strain, and consequently
562 lattice fracture. We previously proposed a similar mode of action for the capsid-breaking
563 activity of PF74 (Márquez et al., 2018).
564

565 Importantly, LEN also possesses antiviral activity during viral production. Not only does
566 LEN compromise the integrity of existing capsid cores but it interferes with
567 assembly/maturation as well. Our *in vitro* assembly experiments suggest that, while LEN
568 promotes IP6-driven assembly it leads to improperly assembled cones that cannot be closed.
569 This is consistent with the observation that LEN (Bester et al., 2020) and the closely related
570 analogue GS-CA1 (Yant et al., 2019) lead to the formation of aberrant capsids in virions. IP6
571 binds to the electropositive ‘pore’ created by 6 (or 5) copies of Arg18 at the centre of each
572 CA hexamer (or pentamer). By neutralising the charge repulsion, IP6 stabilises these
573 structures and is thought to be particularly important for incorporation of pentamers (Gupta et
574 al., 2022; Renner et al., 2021) required for forming the high curvature lattice at the ends of
575 the cone. On the other hand, LEN drives assembly of low curvature hexameric lattices
576 (Figure 6B). Both compounds together might lead to uncontrolled lattice growth without the
577 ability to reverse defects and/or LEN might drive remodelling of pentamers at the growing
578 lattice edge into hexamers (Grime et al., 2016). Furthermore, the over-assembly phenotype
579 that we observe upon drug treatment of mature virions supports the notion that LEN both
580 causes aberrant CA assembly and also distorts existing structures. While our data do not
581 resolve how the LEN-induced capsid defects manifest structurally in isolated capsids, within
582 mature virions this could be due to a build-up of strain within the primary capsid. In addition,
583 ‘secondary CA lattices’ would likely compete for the limited IP6 present within the virion,
584 effectively reducing the amount available to the primary capsid, thereby reducing its
585 resistance to rupture and possibly also adjusting the hexamer/pentamer balance.
586

587 The antiviral multimodality of LEN is also seen in the biphasic response curve in the
588 infection assay. The high-dose phase occurs above 0.5 nM LEN, above which the
589 considerations of capsid rupture are relevant. The high-dose phase also corresponds to the
590 concentrations at which reverse transcription is also inhibited. A biphasic inhibition curve has

591 previously been seen for PF74 (and is repeated here) where, similarly, loss of reverse
592 transcription accompanies this high-dose phase. We and others had previously attributed the
593 loss of reverse transcriptase activity to the opening of the capsid lattice and release of the RT
594 enzyme (Christensen et al., 2020; Jennings et al., 2020; Sowd et al., 2021). Our data support
595 this same explanation for LEN-induced loss of RT. However, LEN is not simply a tighter-
596 binding version of PF74. Figure 8D shows that when the drug response curves are normalised
597 to K_D , LEN exerts its effects at much lower capsid occupancy than PF74. In a previous study,
598 when BI-2 and PF74 were similarly compared, they were found to be identical (Price et al.,
599 2014). This suggests that increased CA affinity only partially explains LEN's superior
600 potency and may speak to a greater 'rigidification potential' or ultrastructure-altering
601 capability relative to prior compounds that target this same site.

602
603 While the second phase of the dose response curve has a clear explanation, the activity of the
604 drugs at the first phase remains controversial. At these concentrations (<0.5 nM for LEN; <4
605 nM PF74, <50 nM for BI-2) neither capsid rupture nor loss of viral DNA synthesis are
606 observed. One possible explanation could be that at low drug concentration the low
607 occupancy contributes to CA lattice stability, without the concomitant rupture observed at
608 higher doses. In combination with the cone-stabilising activity of IP6, low dose LEN could
609 render the capsid core too stable thereby leading to altered genome release kinetics during
610 infection. However, the observation that 2-LTR circle formation is not reduced at the EC50
611 for infection (Bester et al., 2020) is inconsistent with this model as failure to release the viral
612 cDNA from the capsid would be expected as a result of capsid stabilisation. Alternatively,
613 disrupting the ability of the capsid to interact with FG-containing cofactors (Sec24C,
614 Nup153, and CPSF6) has also been proposed to inhibit infection. Our data predict that, at its
615 EC50, LEN occupies approximately one third of the FG-binding sites, while PF74 occupies
616 >80% of sites (Figure 8D). However, the true degree to which these drugs are able to
617 compete with cofactor binding during infection is complicated by the spatial organisation of
618 the cofactors in the cell, the unknown degree to which they compete with each other, the
619 possibility that they exist as high-avidity multimers, and fluctuations in their abundances
620 throughout the cell cycle and between cell types.

621
622 The fact that these drugs target a cofactor binding site (the FG pocket) and are capable of
623 modulating capsid rupture and stability raises the question as to whether the virus is
624 employing these cofactors to regulate uncoating. This has previously been suggested for
625 cofactors binding at other CA lattice sites, such as the interactions between CypA and the
626 cyclophilin loop (Rasaiyaah et al., 2013) or between IP6 and the R18 ring (Mallery et al.,
627 2018). The best characterised of the cofactors interacting with the FG pocket is CPSF6,
628 which binds via a linear peptide motif and, like PF74 and LEN makes contacts across the
629 junction between monomers. Our observation that CPSF6 stabilises the CA lattice is
630 consistent with the notion that this bridging interaction promotes stability. A surprising result
631 was the degree to which CPSF6 provided stabilisation, achieving this effect as low as 20%
632 binding sites are occupied. This could indicate that the nature of the bridging interaction is
633 somehow more flexible than those observed for the drugs, leading to differences in the
634 dependence of binding on the curvature of the CA lattice. Indeed, cryoET imaging of CA
635 cones have shown that CPSF6 binding is independent of lattice curvature while PF74 prefers
636 low curvature regions. We acknowledge that we are studying an isolated monomeric peptide
637 motif, while endogenous CPSF6 will likely have a higher binding constant due to avidity, as
638 it is expected to be at least a dimer (Ning et al., 2018), but possibly higher, as CPSF6 has
639 been associated with phase separated condensates within the nucleus (Greig et al., 2020). The
640 nuclear localisation of CPSF6 and the above stabilisation activity, may account for the

641 observation of capsid remnants in the nucleus discrete from integrated proviral DNA (Müller
642 et al., 2021; Zila et al., 2021).

643

644 For decades, the concept that the HIV capsid must release its contents to complete infection
645 has been accepted, and the metastability of the capsid has been recognised as critical for the
646 viral life cycle. LEN is the first capsid-targeting drug for treatment of HIV infection. Our
647 work here shows that LEN functions by lethal hyperstabilisation, and that this is a powerful
648 mechanism for achieving multi-log impacts on viral infectivity. As such, this mechanism and
649 the tools that we and others have developed for studying it will likely be relevant to the
650 development of new therapeutics targeting a range of viral infections. Furthermore, LEN
651 reveals that FG-pocket binding can drastically alter the capsid integrity. The exact nature of
652 the induced ultrastructural defect warrants further study, as does the role of single and
653 multiple endogenous cofactors on the uncoating process.

654

655 **Materials and Methods**

656 **Production of GFP-loaded HIV particles for TIRF uncoating experiments**

657 HIV particles lacking envelope protein were produced, biotinylated and purified as described
658 (Márquez et al., 2019). Briefly, HEK293T cells were transfected using PEI with a mixture of
659 the plasmids pNL4.3-iGFP-ΔEnv and psPAX2 (1.4:1, mol/mol) to produce GFP-loaded HIV
660 particles or with a mixture of pCRV1-GagPol and pCSGW (1:1.7, mol/mol) to produce dark
661 HIV particles. The medium was exchanged 18 h post transfection and the virus-containing
662 medium was collected 72 hours post transfection and centrifuged (2100 x g, 20 min, 4 °C) to
663 remove cells. The viral particles were then biotinylated using EZ-Link Sulfo-NHS-LC-LC-
664 Biotin and purified by size exclusion chromatography.

665

666 **Expression and purification of DLY**

667 The gene encoding the pore-forming protein desulfolysin (DLY) was subcloned by ligation
668 independent cloning into the pMCSG7 vector from the pET22b construct described in (Hotze
669 et al., 2013) to introduce an N-terminal His-tag. DLY was expressed in *E. coli* BL21(DE3)
670 pREP4 cells in TB media with Ampicillin (100 mg/mL) by induction with 0.2 mM IPTG at
671 37 °C with shaking for 4 hours. Cells were harvested by centrifugation and lysed in 20 mM
672 Tris pH 7.2 300 mM NaCl buffer with 10% glycerol, protease inhibitor, 0.1% Triton-X100,
673 DNase and lysozyme for 1 hour at room temperature. The lysate was clarified by
674 centrifugation and passed over a HisTrap™ HP column (Cytiva Life Sciences) equilibrated in
675 20 mM Tris pH 7.2, 300 mM NaCl and 5% glycerol. DLY was eluted over a linear gradient
676 of 0–500 mM imidazole. The eluted protein was further purified by size exclusion
677 chromatography on a HiLoad 16/60 Superdex 200 pg column (Cytiva Life Sciences)
678 preequilibrated with 20 mM Tris pH 7.2, 300 mM NaCl, 5% glycerol, 0.5 mM DTT.

679

680 **Expression and purification of CypA**

681 Human CypA was expressed in BL21(DE3) *E. coli* for 3 h after IPTG induction in LB
682 medium at 37 °C with shaking. Cells were harvested by centrifugation and lysed by
683 sonication on ice in a buffer containing 25 mM HEPES, pH 7.6, 1 mM DTT, 0.02% NaN₃,
684 ‘Complete’ protease inhibitor and 1 mg mL⁻¹ lysozyme. The lysate was clarified by
685 centrifugation. CypA was purified by subtractive anion exchange chromatography using a 10
686 mL HiTrap Q HP column (GE Healthcare Life Science) equilibrated with 25 mM HEPES,
687 pH 7.6, 1 mM DTT, 0.02% NaN₃. CypA fractions eluting in the flow-through were adjusted
688 to pH of with 1% v/v acetic acid, centrifuged and applied to a cation exchange
689 chromatography column (5 mL HiTrap SP HP, GE Healthcare Life Science) equilibrated
690 with 25 mM sodium phosphate, pH 5.8, 1 mM DTT, 0.02% NaN₃. CypA was eluted with a
691 linear gradient from 0 to 1 M NaCl over 20 column volumes. CypA was dialyzed against
692 storage buffer (25 mM MOPS, pH 6.6, 1 mM DTT, 0.02% NaN₃), concentrated using an
693 Amicon-15 Ultra centrifugal filtration device (10 k MWCO, Merck) and frozen in liquid
694 nitrogen for storage at -80 °C.

695

696 **Labelling of CypA**

697 CypA was dialysed against PBS (pH 7.4, 0.1 mM TCEP) and labeled by reaction with a 4-
698 fold molar excess of Alexa-Fluor 568-C5-maleimide (Thermo Fisher Scientific, A10254) for
699 10 minutes at room temperature. The reaction was quenched by addition of DTT. Labeled
700 CypA was separated from unconjugated dye using Zeba desalting spin columns (Thermo
701 Fisher Scientific) equilibrated with 50 mM Tris, pH 7.9, 20% v/v glycerol, 1 mM DTT.
702 Under these conditions, CypA is quantitatively labeled at residue C51. Labeled CypA was
703 frozen in liquid nitrogen and stored at -40 °C.

704

705 **CPSF6 peptides**

706 The peptides CPSF6₃₁₃₋₃₂₇ (CPSF6p) and CPSF6₃₁₃₋₃₂₇ with an extra cysteine at the C-
707 terminus (CPSF6p-Cys) were synthetized by GenScript. Peptides were dissolved in water at a
708 concentration of 2.5 mM and stored in aliquots at -40°C.

709

710 **Labelling of CPSF6 peptide**

711 CPSF6p-Cys was labelled with Alexa-Fluor 568-C5-maleimide (Thermo Fisher Scientific)
712 added at an equimolar ratio in HEPES buffer pH 8. Labelling was verified by thin layer
713 chromatography (TLC). No unconjugated dye was observed on TLC. CPSF6p-Cys- AF568
714 solution stored in aliquots at -40°C.

715

716 **Single-molecule TIRF uncoating assay**

717 Single-molecule imaging of viral particles was carried out using TIRF microscopy with
718 microfluidic sample delivery according to our previously published methods (Márquez et al.,
719 2019). Briefly, biotinylated viral particles were captured onto coverslips attached to PDMS
720 microfluidic flow cells and imaged using a custom-built TIRF microscope with an ASI-
721 RAMM frame (Applied Scientific Instrumentation), a Nikon 100× CFI Apochromat TIRF
722 (1.49 NA) oil immersion objective and NicoLase laser system (Nicovich et al., 2017).
723 Immobilized virions were treated with imaging buffer containing 200 nM pore forming
724 protein (DLY or SLO) to permeabilize viral membrane and AF568-labeled CypA (0.8 μM) to
725 paint the capsid. Drugs (LEN, PF74, BI-2) were added to the imaging buffer as stock
726 solutions in DMSO (final concentration not exceeding 0.5%). Images were acquired at a rate
727 of 1 frame per 6 s for 30 minutes unless specified otherwise.

728

729 **TIRF image analysis**

730 Single-virion fluorescence traces were extracted from the TIRF image stacks using the JIM
731 Immobilized Microscopy analysis package and further analyzed in MATLAB (The
732 MathWorks Inc.). Capsid opening via GFP release: Change-point analysis of GFP intensity
733 traces was used to identify the presence and time of steps corresponding to membrane
734 permeabilization and capsid opening. Traces were automatically sorted into four classes on
735 the basis of the following criteria: (1) loss of entire GFP signal in one step; (2) loss of GFP
736 intensity in one large (permeabilization) and one small (capsid opening) step; (3) loss of the
737 majority of the GFP signal in one step with residual GFP signal persisting for the rest of the
738 experiment; (4) no permeabilization or otherwise uninterpretable traces (excluded from
739 analysis). Capsid opening times were calculated for traces in class two as the time difference
740 between permeabilization and capsid opening. Survival curves were constructed from the
741 pooled opening times acquired in independent uncoating experiments. Analysis of CA lattice
742 stability via CypA paint: Heatmaps and median traces of leaky or closed particles were
743 generated after aligning at traces in the corresponding category at the time of membrane
744 permeabilization. Traces of opening particles were aligned at the time of membrane
745 permeabilization (shown in the first panel) and aligned at the time of capsid opening (shown
746 in the second panel). Quantification bound molecules: The number of bound AF568-labelled
747 CPSF6p molecules was determined from the ratio of the CPSF6p-AF568 fluorescence
748 intensity associated with the capsid at equilibrium to the fluorescence intensity of a single
749 CPSF6p-AF568 molecule.

750

751 **Production of pseudotyped-virus particles for cell-based assays**

752 VSV-G pseudotyped GFP-encoding virus particles were generated by co-transfecting
753 HEK293T cells with pCRV1-GagPol, pCSGW and pMD2.G (1:1.1:1.3 mol/mol) using PEI
754 25K. The culture medium was removed 16 hours post-transfection and replenished with a

755 fresh medium containing 10 mM MgCl₂, 0.5 mM CaCl₂ and 100 U of DNase. Virus-
756 containing medium was harvested 72 hours post-transfection, centrifuged (2100 x g, 20 min,
757 4°C) to remove cell debris, divided into aliquots and stored at -80°C.
758

759 **Infection assays**

760 Infection assays were performed in 96 well plates using 0.75 x 10⁵ Jurkat cells per well pre-
761 treated with the indicated drug (LEN, PF74) concentrations for 30 minutes at 37°C. The cells
762 were then infected in triplicate with VSV-G-pseudotyped GFP-encoding virus in the presence
763 of polybrene (10 µg/ml; Sigma) at room temperature for 20 minutes, followed by
764 spinoculation at 800 x g for 1 hour at room temperature. The culture media were removed
765 and replenished with fresh media containing drugs at the indicated concentrations. At 48
766 hours post infection, the cells were fixed in 2% paraformaldehyde (Electron Microscopy
767 Sciences) for 1 hour at room temperature and analyzed by flow cytometry using a
768 LSRFortessa cell analyzer (BD Biosciences) and FlowJo software. For experiments involving
769 preincubation with drugs, the virus was incubated with LEN at the indicated concentrations
770 for 48 hours at room temperature and then used to infect cells as above. For quantitative PCR
771 (qPCR) analysis, virus was treated with DNase for 30 minutes at 37°C and then used to infect
772 1 x 10⁵ Jurkat cells in duplicate as described above. Cells were harvested 24 hours post
773 infection and processed for qPCR.
774

775 **Quantitative PCR analysis**

776 Genomic DNA was isolated from pelleted cells using a DNeasy blood and tissue kit
777 (Qiagen). The concentration of purified DNA was determined using a Nanodrop
778 spectrophotometer. To quantify total viral DNA, quantitative PCR was performed using
779 sequence-specific primers and SsoAdvanced Universal SYBR Green Supermix (Bio-Rad).
780 For 2-LTR circles, quantitative PCR was performed using sequence-specific primers,
781 TaqMan probes (Thermo Fisher Scientific) and iQ Supermix (Bio-Rad). PCR conditions for
782 vDNA amplification: Initial denaturation, 95°C, 3 min; Denaturation, 95°C, 10 s;
783 Annealing/Extension, 60°C, 30 s; 45 cycles. PCR conditions for 2-LTR amplification: Initial
784 denaturation, 95°C, 3 min; Denaturation, 95°C, 15 s; Annealing/Extension, 60°C, 60 s; 50
785 cycles.
786

787 **Expression and purification of CA for in vitro assembly experiments**

788 *E. coli* C41 cells expressing CA were lysed and cell debris was removed by centrifugation.
789 CA was precipitated by addition of 25% ammonium sulphate to the supernatant, collected by
790 centrifugation, resuspended, and dialysed against 50 mM MES (pH 6.0), 20 mM NaCl, 1 mM
791 DTT. The CA protein was further purified on a cation exchange column with a gradient from
792 20 mM to 1 M NaCl followed by size exclusion chromatography with Tris pH 8.0, 20 mM
793 NaCl, 1 mM DTT and finally snap frozen.
794

795 **Turbidity assay to measure CA assembly kinetics**

796 CA proteins were dialysed against 50 mM MES (pH 6.0), 1 mM DTT. CA proteins were
797 assembled at a final concentration of 75 µM in the presence of 2% DMSO. LEN titration:
798 LEN (final concentration between 0.5–50 µM) was added to the CA solution and assembly
799 was initiated by adding IP6 (final concentration of 200 µM). IP6 titration: IP6 (final
800 concentration between 50–150 µM) ± LEN (final concentration 50 µM) was added to the CA
801 solution to induce assembly. The increase in Abs₃₅₀ was measured with a PHERAstar FSX
802 Plate reader (BMG Labtech) in 384-well plate every 22 s with shaking after each
803 measurement.
804

805 **Treatment of self-assembled CA cones with LEN**

806 CA cones were assembled by adding IP6 (final concentration of 1 mM) to a solution of CA
807 (final concentration of 75 μ M) in 50 mM MES (pH 6.0) and incubating the reaction mixture
808 for 2 h. LEN (final concentration of 50 μ M) was added and the CA cones and the mixture
809 was applied to an EM grid for negative staining with uranyl acetate at the indicated time
810 points.

811

812 **Negative staining EM of self-assembled CA structures**

813 The samples from the turbidity assay were allowed to sediment overnight. Then 5 μ L of each
814 sample was applied to a carbon coated grid (Cu, 400 mesh, Electron Microscopy Services)
815 previously cleaned by glow discharge. The grids were then washed, and samples stained with
816 2% uranyl-acetate. Micrographs were taken at room temperature on a Tecnai Spirit (FEI)
817 operated at an accelerated voltage of 120 keV and recorded with a Gatan 2k \times 2k CCD
818 camera. Images were collected with a total dose of \sim 30 e $^-$ / \AA^2 and a defocus of 1–3 μ m.

819

820 **HIV particle production for cryo-electron tomography**

821 Replication deficient VSV-G pseudotyped HIV-1 virions were produced in HEK293T cells
822 using pCRV1-GagPol, pCSGW and pMD2.G as described previously (Price et al., 2014). At
823 24–48 h post transfection, the supernatants were harvested and passed through 0.22 μ m
824 nitrocellulose filter. The virions were concentrated by ultracentrifugation through a 20%
825 (w/v) sucrose cushion (2 h at 28,000 rpm in a SW32 rotor [Beckman Coulter Life Sciences]).
826 The pellet was resuspended in PBS, snap-frozen and stored at -80 °C. LEN-treated virions
827 were incubated in presence of 700 nM LEN for 1.5 h at room temperature prior to plunge-
828 freezing for cryo-ET.

829

830 **Cryo-electron tomography of LEN-treated HIV particles**

831 Colloidal gold beads (10 nm diameter) were added to the purified HIV particles and 6 μ l of
832 this suspension was applied to a C-Flat 2/2 3C grid cleaned by glow discharge (20 mA, 40 s).
833 The grids were blotted and plunge-frozen in liquid ethane using an FEI Vitrobot Mark II at 16
834 °C and 100% humidity. Tomographic tilt series between -40° and +40° with increments of
835 3°, defoci between -3 μ m and -6 μ m at a magnification of 50,000x were acquired using
836 Serial-EM (Mastronarde, 2005) on a TF2 Tecnai F20 transmission electron microscope under
837 low-dose conditions at 200 kV and images recorded with a Falcon III direct electron detector.
838 The Imod package (IMOD Version 4.9.0) was used to generate tomograms (Kremer et al.,
839 1996). The alignment of 2D projection images of the tilt series was done using gold particles
840 as fiducial markers. A 3D reconstruction was generated using back projection of the tilt-
841 series.

842

843

844

845 **Acknowledgements**

846 This work was supported by NHMRC Ideas Grant APP1182212 (DAJ, TB), Wellcome Trust
847 Collaborator Award 214344/Z/18/Z (GJT, LJ, DAJ, TB), NHMRC Investigator Grant
848 APP1194263 (MWP), Australian Research Council Grants DP160101874 and DP200102871
849 (MWP) and a UNSW Scientia Award (KMRF). CM received an Australian Government
850 Research Training Program Scholarship. Infrastructure support from the NHMRC
851 Independent Research Institutes Infrastructure Support Scheme and the Victorian State
852 Government Operational Infrastructure Support Program to St. Vincent's Institute are
853 gratefully acknowledged. MWP is an NHMRC Leadership Fellow. We thank Sara Lawrence
854 (St. Vincent's Institute) for expression and purification of recombinant DLY, Claire Dickson
855 and Prabhjeet Phalora for critical feedback on the manuscript.

856

857

858 **Author contributions**

859 K.M. Rifat Faysal: Methodology; Investigation; Formal analysis; Writing-Original draft.
860 Nadine Renner: Investigation; Formal analysis; Writing-review and editing
861 Chantal Márquez: Investigation; Formal analysis; Writing-review and editing
862 Vaibhav Shah: Investigation; Formal analysis; Writing-review and editing
863 Andrew Tuckwell: Formal analysis; Writing-review and editing
864 Michelle Christie: Resources; Writing-review and editing
865 Michael Parker: Resources; Writing-review and editing; Supervision; Funding acquisition
866 Stuart Turville: Resources; Writing-review and editing; Supervision; Funding acquisition
867 Greg Towers: Writing-review and editing; Funding acquisition
868 Leo James: Writing-review and editing; Supervision; Funding acquisition
869 David Jacques: Conceptualisation; Writing-original draft; Supervision; Funding acquisition
870 Till Böcking: Conceptualisation; Methodology; Writing-original draft; Supervision; Funding
871 acquisition

872

873 **ORCID IDs**

874 K.M. Rifat Faysal:

875 Nadine Renner:

876 Chantal Márquez: 000-0002-3935-4554

877 Vaibhav Shah: 0000-0002-9123-0180

878 Andrew Tuckwell: 0000-0002-8940-7768

879 Michelle Christie: 0000-0002-7001-3400

880 Michael Parker: 0000-0002-3101-1138

881 Stuart Turville: 0000-0003-1918-5343

882 Greg Towers: 0000-0002-7707-0264

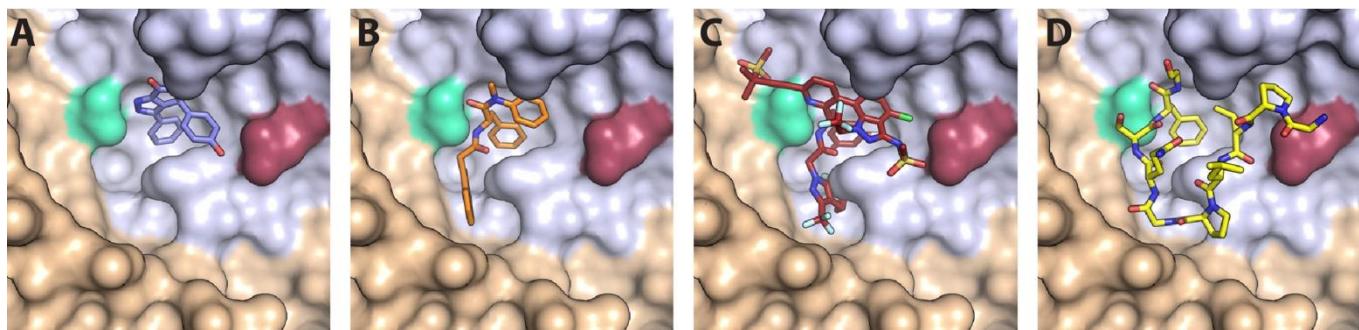
883 Leo James: 0000-0003-2131-0334

884 David Jacques: 000-0002-6426-4510

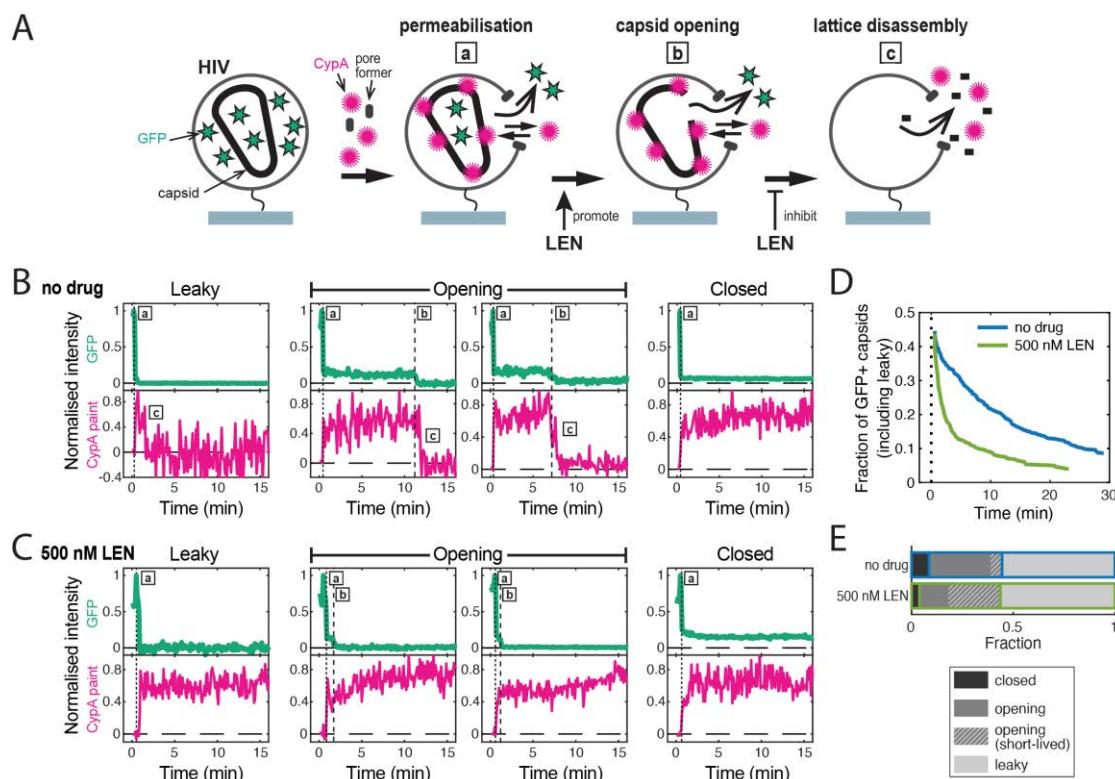
885 Till Böcking: 0000-0003-1165-3122

886

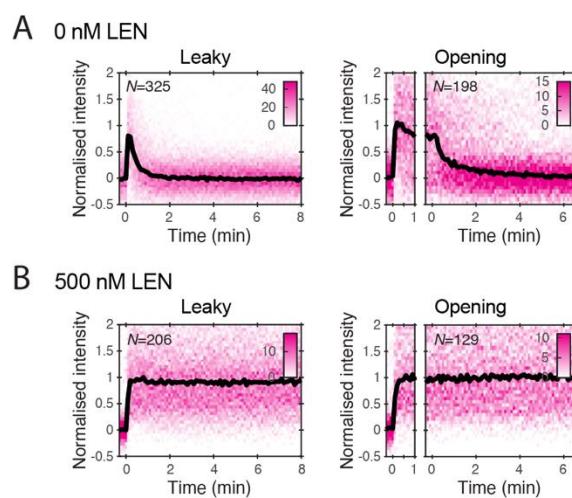
887 **References**

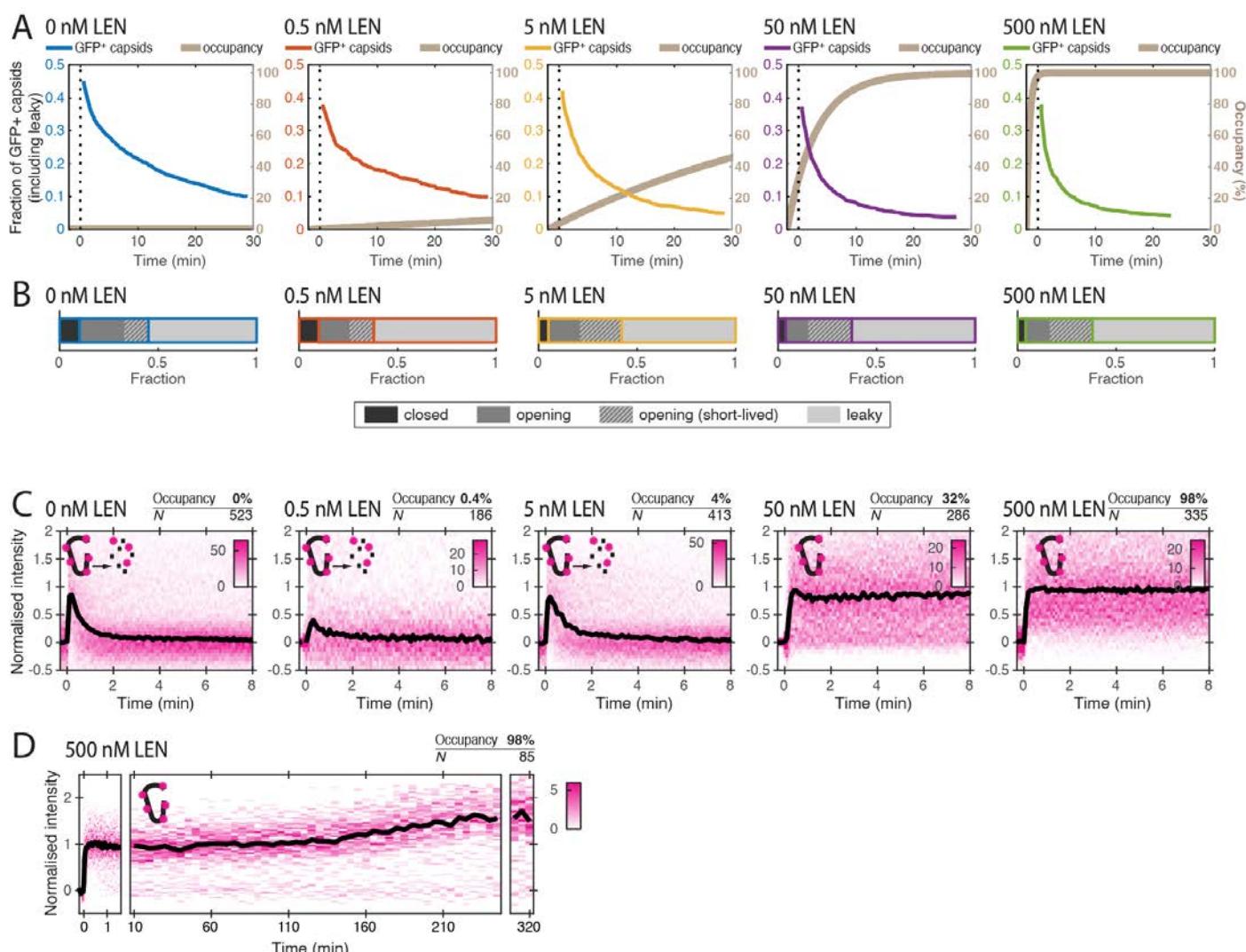

- 888
- 889
- 890 Alvarez LZ, Govasli ML, Rasaiyaah J, Monit C, Perry SO, Sumner RP, McAlpine-Scott S, Dickson C,
891 Faysal KMR, Hilditch L, Miles RJ, Bibollet-Ruche F, Hahn BH, Boecking T, Pinotsis N, James LC,
892 Jacques DA, Towers GJ. 2022. Macrophage activation of cGAS and TRIM5 distinguish pandemic
893 and non-pandemic HIV. *Biorxiv* 2022.01.21.477263. doi:10.1101/2022.01.21.477263
- 894 Bejarano DA, Peng K, Laketa V, Börner K, Jost KL, Lucic B, Glass B, Lusic M, Müller B, Kräusslich H-
895 G. 2019. HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the
896 nuclear pore complex. *Elife* 8:e41800. doi:10.7554/elife.41800
- 897 Bester SM, Wei G, Zhao H, Adu-Ampratwum D, Iqbal N, Courouble VV, Francis AC, Annamalai AS,
898 Singh PK, Shkriabai N, Blerkom PV, Morrison J, Poeschla EM, Engelman AN, Melikyan GB, Griffin
899 PR, Fuchs JR, Asturias FJ, Kvaratskhelia M. 2020. Structural and mechanistic bases for a potent
900 HIV-1 capsid inhibitor. *Sci New York N Y* 370:360–364. doi:10.1126/science.abb4808
- 901 Bhattacharya A, Alam SL, Fricke T, Zadrozny K, Sedzicki J, Taylor AB, Demeler B, Pornillos O,
902 Ganser-Pornillos BK, Diaz-Griffero F, Ivanov DN, Yeager M. 2014. Structural basis of HIV-1 capsid
903 recognition by PF74 and CPSF6. *Proceedings of the National Academy of Sciences* 111:18625–
904 18630. doi:10.1073/pnas.1419945112
- 905 Blair WS, Pickford C, Irving SL, Brown DG, Anderson M, Bazin R, Cao J, Ciaramella G, Isaacson J,
906 Jackson L, Hunt R, Kjerrstrom A, Nieman JA, Patick AK, Perros M, Scott AD, Whitby K, Wu H,
907 Butler SL. 2010. HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention.
908 *PLoS Pathogens* 6. doi:10.1371/journal.ppat.1001220
- 909 Bunce CM, French PJ, Allen P, Mountford JC, Moor B, Greaves MF, Michell RH, Brown G. 1993.
910 Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal
911 counterparts. *Biochem J* 289:667–673. doi:10.1042/bj2890667
- 912 Christensen DE, Ganser-Pornillos BK, Johnson JS, Pornillos O, Sundquist WI. 2020. Reconstitution
913 and visualization of HIV-1 capsid-dependent replication and integration in vitro. *Sci New York N Y*
914 370. doi:10.1126/science.abc8420
- 915 Dick RA, Zadrozny KK, Xu C, Schur FKM, Lyddon TD, Ricana CL, Wagner JM, Perilla JR, Ganser-
916 Pornillos BK, Johnson MC, Pornillos O, Vogt VM. 2018. Inositol phosphates are assembly co-
917 factors for HIV-1. *Nature* 560:1. doi:10.1038/s41586-018-0396-4
- 918 Dvory-Sobol H, Shaik N, Callebaut C, Rhee MS. 2022. Lenacapavir: a first-in-class HIV-1 capsid
919 inhibitor. *Curr Opin Hiv Aids* 17:15–21. doi:10.1097/coh.0000000000000713
- 920 Fontana J, Keller PW, Urano E, Ablan SD, Steven AC, Freed EO. 2016. Identification of an HIV-1
921 Mutation in Spacer Peptide 1 That Stabilizes the Immature CA-SP1 Lattice. *J Virol* 90:972–978.
922 doi:10.1128/jvi.02204-15
- 923 Fricke T, Buffone C, Opp S, Valle-Casuso J, Diaz-Griffero F. 2014. BI-2 destabilizes HIV-1 cores
924 during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid. *Retrovirology* 11:1–7.
925 doi:10.1186/s12977-014-0120-x
- 926 Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI. 1999. Assembly and analysis of conical models
927 for the HIV-1 core. *Science (New York, NY)* 283:80–3. doi:10.1126/science.283.5398.80
- 928 Greig JA, Nguyen TA, Lee M, Holehouse AS, Posey AE, Pappu RV, Jedd G. 2020. Arginine-Enriched
929 Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation. *Mol Cell* 77:1237–
930 1250.e4. doi:10.1016/j.molcel.2020.01.025

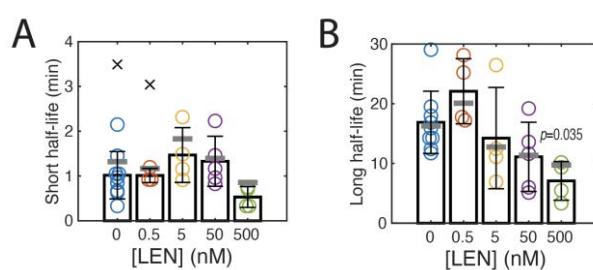
- 931 Grime JM, Dama JF, Ganser-Pornillos BK, Woodward CL, Jensen GJ, Yeager M, Voth GA. 2016.
932 Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. *Nature*
933 *communications* 7:11568. doi:10.1038/ncomms11568
- 934 Gupta M, Pak AJ, Voth GA. 2022. Critical Mechanistic Role of Inositol Hexakisphosphate (IP6) in HIV-
935 1 Viral Capsid Assembly. *Biorxiv* 2022.05.03.490470. doi:10.1101/2022.05.03.490470
- 936 Hori T, Takeuchi H, Saito H, Sakuma R, Inagaki Y, Yamaoka S. 2013. A Carboxy-Terminally
937 Truncated Human CPSF6 Lacking Residues Encoded by Exon 6 Inhibits HIV-1 cDNA Synthesis
938 and Promotes Capsid Disassembly. *Journal of Virology* 87:7726–7736. doi:10.1128/jvi.00124-13
- 939 Hotze EM, Le HM, Sieber JR, Bruxvoort C, McInerney MJ, Tweten RK. 2013. Identification and
940 Characterization of the First Cholesterol-Dependent Cytolysins from Gram-Negative Bacteria.
941 *Infect Immun* 81:216–225. doi:10.1128/iai.00927-12
- 942 Huang P-T, Summers BJ, Xu C, Perilla JR, Malikov V, Naghavi MH, Xiong Y. 2019. FEZ1 Is Recruited
943 to a Conserved Cofactor Site on Capsid to Promote HIV-1 Trafficking. *Cell Reports*.
944 doi:10.1016/j.celrep.2019.07.079
- 945 Hulme AE, Kelley Z, Foley D, Hope TJ. 2015. Complementary Assays Reveal a Low Level of CA
946 Associated with Viral Complexes in the Nuclei of HIV-1-Infected Cells. *Journal of virology*
947 89:5350–61. doi:10.1128/jvi.00476-15
- 948 Jacques DA, McEwan WA, Hilditch L, Price AJ, Towers GJ, James LC. 2016. HIV-1 uses dynamic
949 capsid pores to import nucleotides and fuel encapsidated DNA synthesis. *Nature* 536:349–53.
950 doi:10.1038/nature19098
- 951 Jennings J, Shi J, Varadarajan J, Jamieson PJ, Aiken C. 2020. The Host Cell Metabolite Inositol
952 Hexakisphosphate Promotes Efficient Endogenous HIV-1 Reverse Transcription by Stabilizing the
953 Viral Capsid. *Mbio* 11. doi:10.1128/mbio.02820-20
- 954 Kim K, Dauphin A, Komurlu S, McCauley SM, Yurkovetskiy L, Carbone C, Diehl WE, Strambio-De-
955 Castillia C, Campbell EM, Luban J. 2019. Cyclophilin A protects HIV-1 from restriction by human
956 TRIM5α. *Nat Microbiol* 4:1–8. doi:10.1038/s41564-019-0592-5
- 957 Kremer JR, Mastronarde DN, McIntosh JR. 1996. Computer Visualization of Three-Dimensional
958 Image Data Using IMOD. *J Struct Biol* 116:71–76. doi:10.1006/jsb.1996.0013
- 959 Lad L, Clancy S, Koditek D, Wong MH, Jin D, Niedziela-Majka A, Papalia GA, Hung M, Yant S,
960 Somoza JR, Hu E, Chou C, Tse W, Halcomb R, Sakowicz R, Pagratis N. 2015. Functional Label-
961 Free Assays for Characterizing the in Vitro Mechanism of Action of Small Molecule Modulators of
962 Capsid Assembly. *Biochemistry-us* 54:2240–2248. doi:10.1021/acs.biochem.5b00151
- 963 Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, Hurbain I, Marjou AE, Lacabaratz C, Lelièvre J-
964 DD, Manel N. 2013. The capsids of HIV-1 and HIV-2 determine immune detection of the viral
965 cDNA by the innate sensor cGAS in dendritic cells. *Immunity* 39:1132–42.
966 doi:10.1016/j.immuni.2013.11.002
- 967 Lamorte L, Titolo S, Lemke CT, Goudreau N, Mercier J-FF, Wardrop E, Shah VB, Schwedler UK von,
968 Langelier C, Banik SS, Aiken C, Sundquist WI, Mason SW. 2013. Discovery of novel small-
969 molecule HIV-1 replication inhibitors that stabilize capsid complexes. *Antimicrobial agents and*
970 *chemotherapy* 57:4622–31. doi:10.1128/aac.00985-13
- 971 Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, Julias JG, Vandegraaff N, Baumann JG, Wang R,
972 Yuen W, Takemura T, Shelton K, Taniuchi I, Li Y, Sodroski J, Littman DR, Coffin JM, Hughes SH,
973 Unutmaz D, Engelman A, KewalRamani VN. 2010. Flexible Use of Nuclear Import Pathways by
974 HIV-1. *Cell Host & Microbe* 7. doi:10.1016/j.chom.2010.02.007

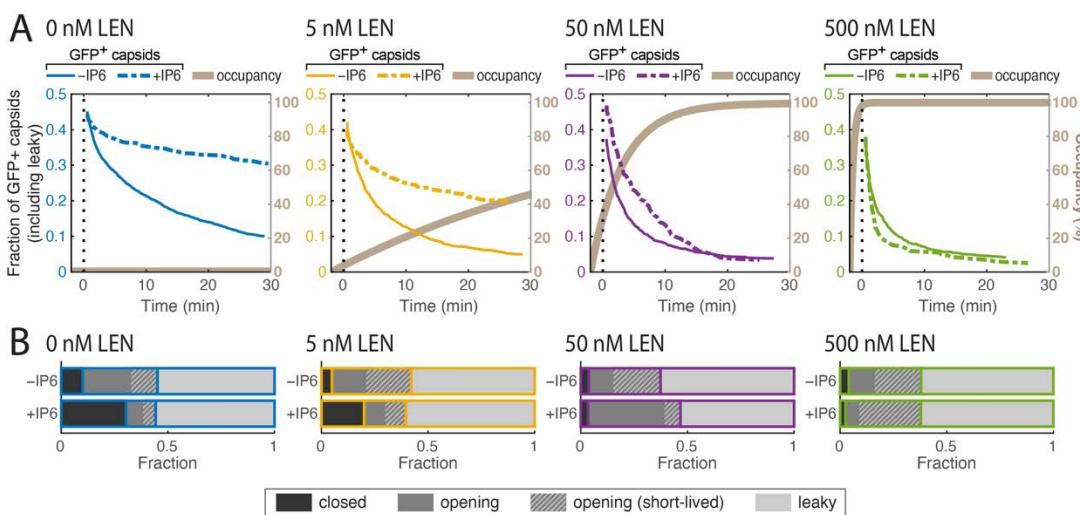

- 975 Letcher AJ, Schell MJ, Irvine RF. 2008. Do mammals make all their own inositol hexakisphosphate?
976 *Biochem J* 416:263–270. doi:10.1042/bj20081417
- 977 Link JO, Rhee MS, Tse WC, Zheng J, Somoza JR, Rowe W, Begley R, Chiu A, Mulato A, Hansen D,
978 Singer E, Tsai LK, Bam RA, Chou C-H, Canales E, Brizgys G, Zhang JR, Li J, Graupe M,
979 Morganelli P, Liu Q, Wu Q, Halcomb RL, Saito RD, Schroeder SD, Lazerwith SE, Bondy S, Jin D,
980 Hung M, Novikov N, Liu X, Villaseñor AG, Cannizzaro CE, Hu EY, Anderson RL, Appleby TC, Lu
981 B, Mwangi J, Liclican A, Niedziela-Majka A, Papalia GA, Wong MH, Leavitt SA, Xu Y, Koditek D,
982 Stepan GJ, Yu H, Pagratis N, Clancy S, Ahmadyar S, Cai TZ, Sellers S, Wolkenhauer SA, Ling J,
983 Callebaut C, Margot N, Ram RR, Liu Y-P, Hyland R, Sinclair GI, Ruane PJ, Crofoot GE, McDonald
984 CK, Brainard DM, Lad L, Swaminathan S, Sundquist WI, Sakowicz R, Chester AE, Lee WE, Daar
985 ES, Yant SR, Cihlar T. 2020. Clinical targeting of HIV capsid protein with a long-acting small
986 molecule. *Nature* 584:1–5. doi:10.1038/s41586-020-2443-1
- 987 Mallery DL, Kleinpeter AB, Renner N, Faysal KMR, Novikova M, Kiss L, Wilson MSC, Ahsan B, Ke Z,
988 Briggs JAG, Saiardi A, Böcking T, Freed EO, James LC. 2021. A stable immature lattice packages
989 IP6 for HIV capsid maturation. *Sci Adv* 7:eabe4716. doi:10.1126/sciadv.abe4716
- 990 Mallery DL, Márquez CL, McEwan WA, Dickson C, Jacques DA, Anandapadamanaban M, Bichel K,
991 Towers GJ, Saiardi A, Böcking T, James LC. 2018. IP6 is an HIV pocket factor that prevents
992 capsid collapse and promotes DNA synthesis. *eLife* 7:e35335. doi:10.7554/eLife.35335
- 993 Márquez C, Lau D, Walsh J, Faysal KMR, Parker M, Turville S, Böcking T. 2019. Fluorescence
994 Microscopy Assay to Measure HIV-1 Capsid Uncoating Kinetics in vitro. *Bio-protocol* 9:e3297.
995 doi:10.21769/bioprotoc.3297
- 996 Márquez CL, Lau D, Walsh J, Shah V, McGuinness C, Wong A, Aggarwal A, Parker MW, Jacques
997 DA, Turville S, Böcking T. 2018. Kinetics of HIV-1 capsid uncoating revealed by single-molecule
998 analysis. *eLife* 7. doi:10.7554/eLife.34772
- 999 Mastronarde DN. 2005. Automated electron microscope tomography using robust prediction of
1000 specimen movements. *J Struct Biol* 152:36–51. doi:10.1016/j.jsb.2005.07.007
- 1001 Matreyek KA, Yücel SS, Li X, Engelman A. 2013. Nucleoporin NUP153 Phenylalanine-Glycine Motifs
1002 Engage a Common Binding Pocket within the HIV-1 Capsid Protein to Mediate Lentiviral
1003 Infectivity. *Plos Pathog* 9:e1003693. doi:10.1371/journal.ppat.1003693
- 1004 Mattei S, Anders M, Konvalinka J, Kräusslich H-G, Briggs JA, Müller B. 2014. Induced maturation of
1005 human immunodeficiency virus. *J Virol* 88:13722–31. doi:10.1128/jvi.02271-14
- 1006 Miles RJ, Kerridge C, Hilditch L, Monit C, Jacques DA, Towers GJ. 2020. MxB sensitivity of HIV-1 is
1007 determined by a highly variable and dynamic capsid surface. *Elife* 9:e56910.
1008 doi:10.7554/elife.56910
- 1009 Müller TG, Zila V, Peters K, Schifferdecker S, Stanic M, Lucic B, Laketa V, Lusic M, Müller B,
1010 Kräusslich H-G. 2021. HIV-1 uncoating by release of viral cDNA from capsid-like structures in the
1011 nucleus of infected cells. *Elife* 10:e64776. doi:10.7554/elife.64776
- 1012 Nicovich PR, Walsh J, Böcking T, Gaus K. 2017. NicoLase—An open-source diode laser combiner,
1013 fiber launch, and sequencing controller for fluorescence microscopy. *Plos One* 12:e0173879.
1014 doi:10.1371/journal.pone.0173879
- 1015 Ning J, Zhong Z, Fischer DK, Harris G, Watkins SC, Ambrose Z, Zhang P. 2018. Truncated CPSF6
1016 Forms Higher-Order Complexes That Bind and Disrupt HIV-1 Capsid. *Journal of Virology*
1017 92:e00368-18. doi:10.1128/JVI.00368-18

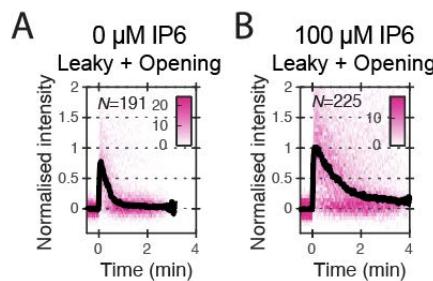
- 1018 Obr M, Schur FKM, Dick RA. 2021. A Structural Perspective of the Role of IP6 in Immature and
1019 Mature Retroviral Assembly. *Viruses* 13:1853. doi:10.3390/v13091853
- 1020 Peng K, Muranyi W, Glass B, Laketa V, Yant SR, Tsai L, Cihlar T, Müller B, Kräusslich H-G. 2014.
1021 Quantitative microscopy of functional HIV post-entry complexes reveals association of replication
1022 with the viral capsid. *Elife* 3:e04114. doi:10.7554/elife.04114
- 1023 Pornillos O, Ganser-Pornillos BK, Yeager M. 2011. Atomic-level modelling of the HIV capsid. *Nature*
1024 469:424–427. doi:10.1038/nature09640
- 1025 Price AJ, Fletcher AJ, Schaller T, Elliott T, Lee K, KewalRamani VN, Chin JW, Towers GJ, James LC.
1026 2012. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. *PLoS*
1027 *Pathogens* 8:e1002896. doi:10.1371/journal.ppat.1002896
- 1028 Price AJ, Jacques DA, McEwan WA, Fletcher AJ, Essig S, Chin JW, Halambage UD, Aiken C, James
1029 LC. 2014. Host Cofactors and Pharmacologic Ligands Share an Essential Interface in HIV-1
1030 Capsid That Is Lost upon Disassembly. *PLoS Pathogens* 10:e1004459.
1031 doi:10.1371/journal.ppat.1004459
- 1032 Rankovic S, Ramalho R, Aiken C, Rousso I. 2018. PF74 reinforces the HIV-1 capsid to impair reverse
1033 transcription-induced uncoating. *Journal of Virology* JVI.00845-18. doi:10.1128/jvi.00845-18
- 1034 Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, Jacques DA, Selwood DL,
1035 James LC, Noursadeghi M, Towers GJ. 2013. HIV-1 evades innate immune recognition through
1036 specific cofactor recruitment. *Nature* 503:402–405. doi:10.1038/nature12769
- 1037 Rebensburg SV, Wei G, Larue RC, Lindenberger J, Francis AC, Annamalai AS, Morrison J, Shkriabai
1038 N, Huang S-W, KewalRamani V, Poeschla EM, Melikyan GB, Kvaratskhelia M. 2021. Sec24C is
1039 an HIV-1 host dependency factor crucial for virus replication. *Nat Microbiol* 1–10.
1040 doi:10.1038/s41564-021-00868-1
- 1041 Renner N, Mallery DL, Faysal KMR, Peng W, Jacques DA, Böcking T, James LC. 2021. A lysine ring
1042 in HIV capsid pores coordinates IP6 to drive mature capsid assembly. *Plos Pathog* 17:e1009164.
1043 doi:10.1371/journal.ppat.1009164
- 1044 Saito A, Ferhadian D, Sowd GA, Serrao E, Shi J, Halambage UD, Teng S, Soto J, Siddiqui MA,
1045 Engelman AN, Aiken C, Yamashita M. 2016. Roles of Capsid-Interacting Host Factors in
1046 Multimodal Inhibition of HIV-1 by PF74. *J Virol* 90:5808–23. doi:10.1128/jvi.03116-15
- 1047 Santos CDS, Tartour K, Cimarelli A. 2016. A Novel Entry/Uncoating Assay Reveals the Presence of
1048 at Least Two Species of Viral Capsids During Synchronized HIV-1 Infection. *Plos Pathog*
1049 12:e1005897. doi:10.1371/journal.ppat.1005897
- 1050 Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hué S, Fletcher AJ, Lee K,
1051 KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ. 2011. HIV-1
1052 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and
1053 Replication Efficiency. *PLoS Pathogens* 7:e1002439. doi:10.1371/journal.ppat.1002439
- 1054 Schirra RT, Santos NFB dos, Zadrozny KK, Kucharska I, Ganser-Pornillos BK, Pornillos O. 2022. A
1055 molecular switch modulates assembly and host factor binding of the HIV-1 capsid. *Biorxiv*
1056 2022.08.25.505312. doi:10.1101/2022.08.25.505312
- 1057 Selyutina A, Hu P, Miller S, Simons LM, Yu HJ, Hultquist JF, Lee K, KewalRamani VN, Diaz-Griffero
1058 F. 2022. GS-CA1 and lenacapavir stabilize the HIV-1 core and modulate the core interaction with
1059 cellular factors. *Iscience* 25:103593. doi:10.1016/j.isci.2021.103593

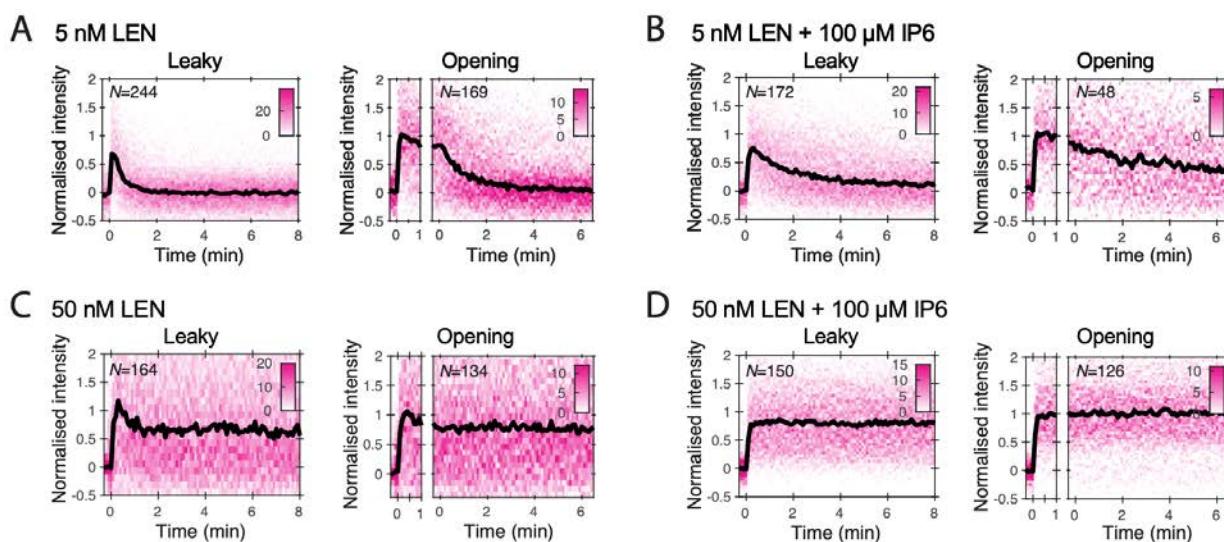

- 1060 Shi J, Zhou J, Shah VB, Aiken C, Whitby K. 2011. Small-Molecule Inhibition of Human
1061 Immunodeficiency Virus Type 1 Infection by Virus Capsid Destabilization. *Journal of Virology*
1062 85:542–549. doi:10.1128/JVI.01406-10
- 1063 Sowd GA, Aiken C. 2021. Inositol phosphates promote HIV-1 assembly and maturation to facilitate
1064 viral spread in human CD4+ T cells. *Plos Pathog* 17:e1009190. doi:10.1371/journal.ppat.1009190
- 1065 Sowd GA, Serrao E, Wang H, Wang W, Fadel HJ, Poeschla EM, Engelman AN. 2016. A critical role
1066 for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally
1067 active chromatin. *Proc National Acad Sci* 113:E1054–E1063. doi:10.1073/pnas.1524213113
- 1068 Sowd GA, Shi J, Aiken C. 2021. HIV-1 CA inhibitors are antagonized by inositol phosphate
1069 stabilization of the viral capsid in cells. *J Virol* JVI0144521. doi:10.1128/jvi.01445-21
- 1070 Temple J, Tripler TN, Shen Q, Xiong Y. 2020. A snapshot of HIV-1 capsid–host interactions. *Curr Res*
1071 *Struct Biology* 2:222–228. doi:10.1016/j.crstbi.2020.10.002
- 1072 Towers GJ, Hatzioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD. 2003. Cyclophilin A modulates
1073 the sensitivity of HIV-1 to host restriction factors. *Nat Med* 9:1138–1143. doi:10.1038/nm910
- 1074 Veiga N, Torres J, Domínguez S, Mederos A, Irvine RF, Díaz A, Kremer C. 2006. The behaviour of
1075 myo-inositol hexakisphosphate in the presence of magnesium(II) and calcium(II): Protein-free
1076 soluble InsP6 is limited to 49µM under cytosolic/nuclear conditions. *J Inorg Biochem* 100:1800–
1077 1810. doi:10.1016/j.jinorgbio.2006.06.016
- 1078 Yant SR, Mulato A, Hansen D, Tse WC, Niedziela-Majka A, Zhang JR, Stepan GJ, Jin D, Wong MH,
1079 Perreira JM, Singer E, Papalia GA, Hu EY, Zheng J, Lu B, Schroeder SD, Chou K, Ahmadyar S,
1080 Liclican A, Yu H, Novikov N, Paoli E, Gonik D, Ram RR, Hung M, McDougall WM, Brass AL,
1081 Sundquist WI, Cihlar T, Link JO. 2019. A highly potent long-acting small-molecule HIV-1 capsid
1082 inhibitor with efficacy in a humanized mouse model. *Nature Medicine* 25. doi:10.1038/s41591-019-
1083 0560-x
- 1084 Zila V, Margiotta E, Turoňová B, Müller TG, Zimmerli CE, Mattei S, Allegretti M, Börner K, Rada J,
1085 Müller B, Lusic M, Kräusslich H-G, Beck M. 2021. Cone-shaped HIV-1 capsids are transported
1086 through intact nuclear pores. *Cell*. doi:10.1016/j.cell.2021.01.025
- 1087

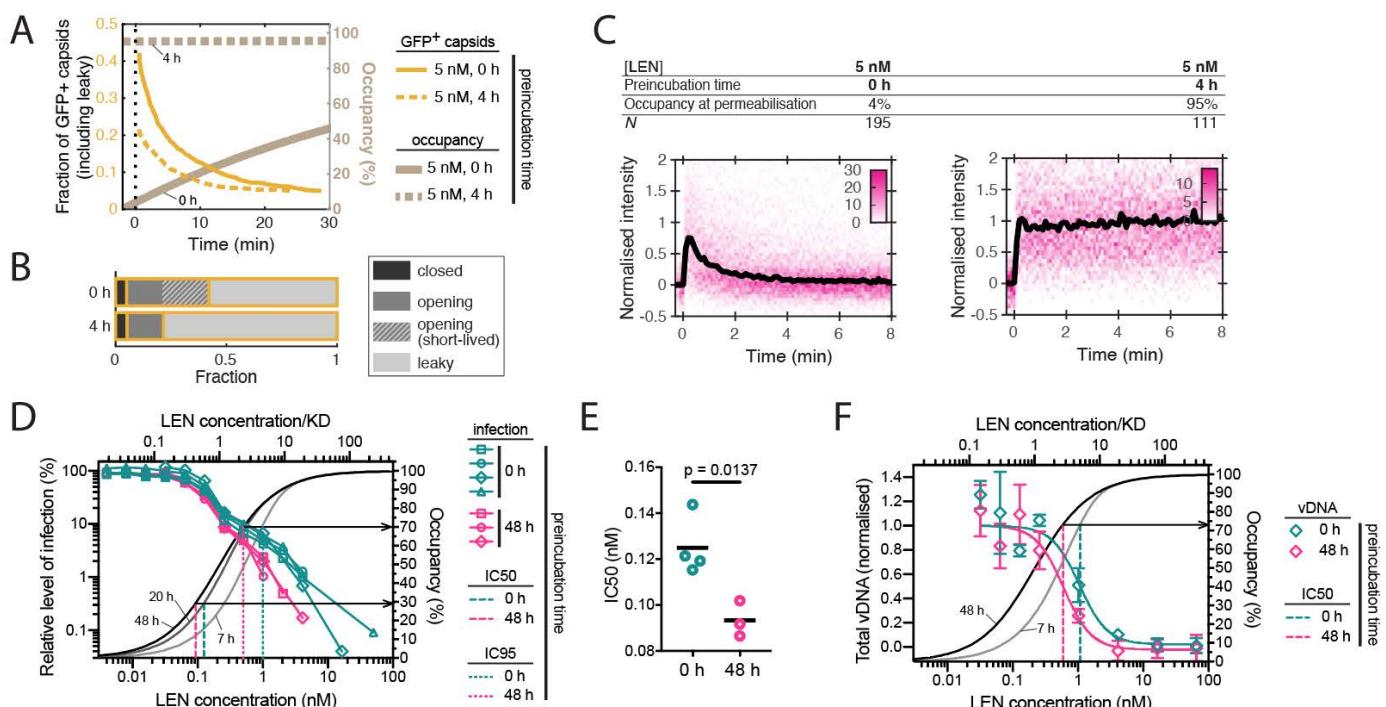

Figure 1. CA hexamer structures in complex with FG-binding pocket ligands. Two neighbouring CA molecules (grey, light brown) are shown as surface representation. Landmark residues N57 (pale green) and N74 (red-brown) are highlighted. Ligands are shown as sticks: **A.** BI-2. **B.** PF74. **C.** LEN. **D.** CPSF6 peptide. PDB IDs in A, B and D: 4U0F, 4U0E, 4U0A (Price et al., 2014). PDB ID in C: 6V2F (Link et al., 2020). Images were generated with PyMol version 2.3.5.

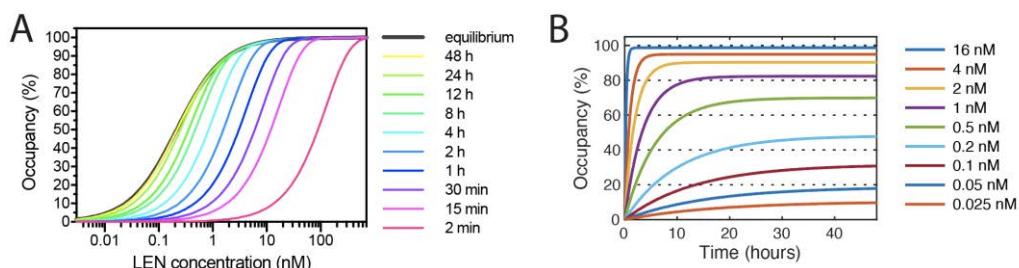

Figure 2. Single-particle HIV capsid uncoating kinetics measured by TIRF microscopy. **A.** Schematic diagram of a viral particle at different stages of uncoating detected in the assay. HIV particles were produced using a proviral construct with internal GFP that is released from the viral Gag protein during maturation and packaged as a solution phase marker inside the two compartments bound by the viral membrane and the capsid, respectively. These GFP-loaded HIV particles are immobilised on the coverslip surface and permeabilised in the presence of AF568-labelled CypA while recording fluorescence traces at the locations of individual HIV particles by TIRF microscopy. Permeabilisation of the viral membrane (step a) with a pore-forming protein leads to loss of ~80–90% of the GFP signal corresponding to the pool of GFP outside the capsid. AF568-CypA molecules diffuse through the membrane pores and bind to the capsid to reach a level that is proportional to the number of CA subunits in the capsid. Capsid opening (step b) leads to loss of the residual GFP that is inside the capsid. CA lattice disassembly (step c) is apparent from the rapid loss of the CypA paint signal. **B/C.** Example GFP release (blue-green) and CypA paint (magenta) traces for particles with capsids that are already leaky (i.e. contain defects and release all GFP in one step), undergo opening at various times after permeabilization or remain closed throughout the observation period. In the absence of drug (B), the CypA paint intensity decays rapidly when the capsid is no longer closed (complete loss of GFP signal). In the presence of 500 nM LEN (C), the CypA paint signal remains constant even when the GFP signal is completely lost showing that the drug stabilises the ruptured capsid. **D/E.** Analysis of all single-particle traces in the field of view to yield capsid survival curves (D) and fraction of leaky, opening and closed capsids at the end of the experiment (E) showing that LEN induces rupture of the capsid.

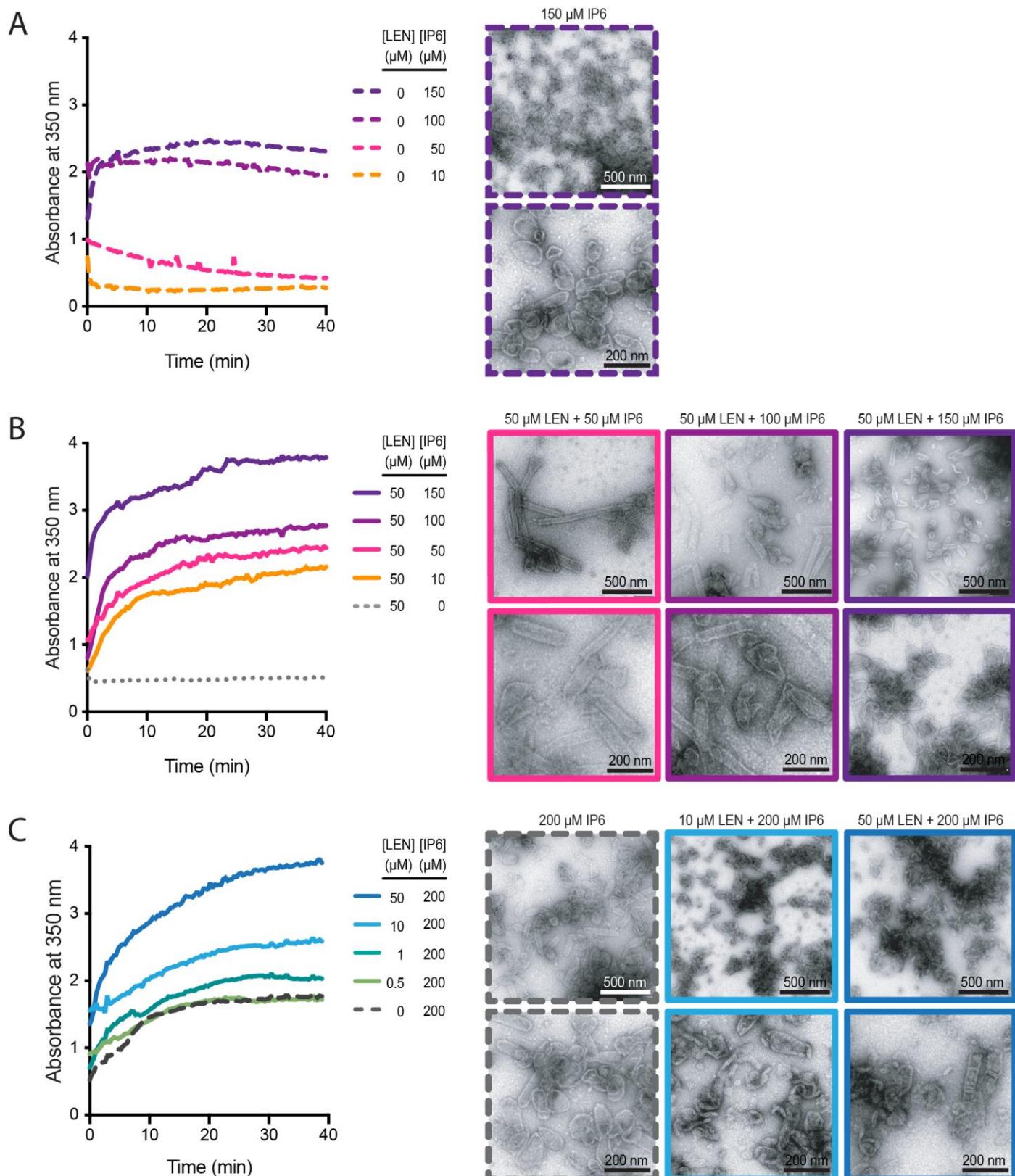

Figure 2—Figure Supplement 1. Heatmaps (magenta) and median traces (black line) of the CypA intensity measured at particles with leaky (left) or opening (right) capsids in the absence (A) or presence (B) of 500 nM LEN. LEN prevents dissociation of CA from the lattice of capsids that are no longer closed cones.

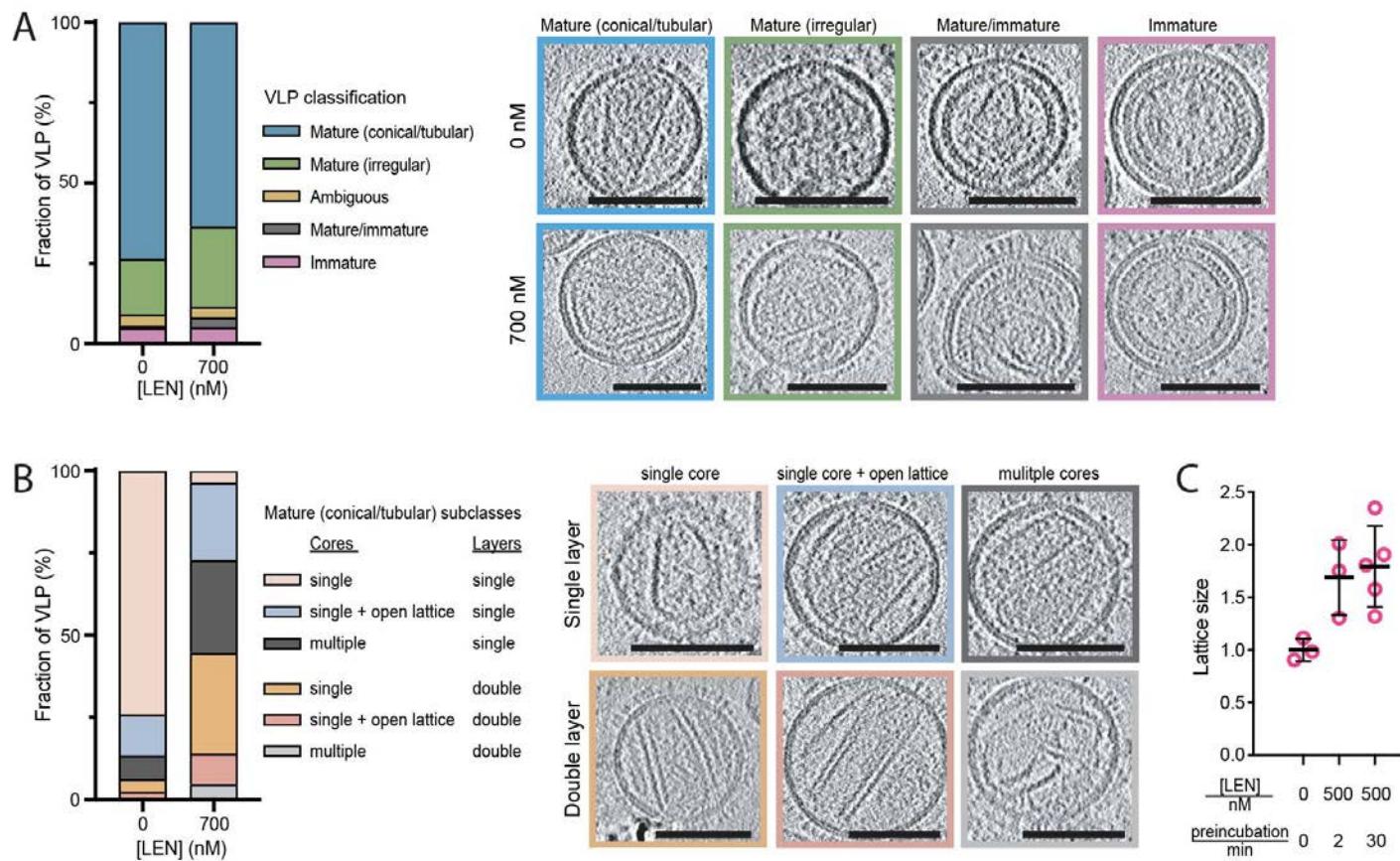

Figure 3. LEN accelerates capsid opening and subsequently promotes CA lattice stability. Single-particle analysis of the effect of 0–500 nM LEN on capsid uncoating via GFP release and CypA paint. **A/B.** Capsid survival curves (A) and fraction of leaky, opening and closed capsids at the end of the experiment (B) showing that the drug induces rupture of the capsid. Pooled data from multiple experiments (total number of traces): 0 nM (4325); 0.5 nM (1242); 5 nM (1585); 50 nM (1520); 500 nM (1048). **C.** Heatmaps (magenta) and median traces (black line) of the CypA intensity measured at particles with leaky or opening capsids in the presence of 0–500 nM LEN showing that LEN stabilises the CA lattice of ruptured capsids above an occupancy threshold of ~30%. **D.** Heatmap (magenta) and median trace (black line) of the CypA intensity of particles (leaky/opening) showing that 500 nM LEN prevents CA loss from the ruptured capsid for at least 5 hours.

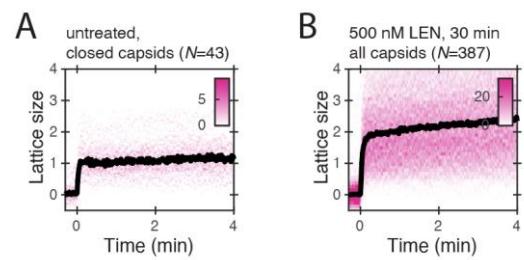

Figure 3–Figure Supplement 1. Half-lives of the short-lived fraction (A) and the long-lived fraction (B) of opening capsids determined from a biexponential fit of survival curves. Each symbol represents an independent single-particle TIRF uncoating experiment. Outliers are indicated by the symbol 'x'. Black bars represent the mean and error bars represent the standard deviation. The grey lines indicate the half-lives obtained from the fits of the survival curves of pooled data from all experiments at each concentration. Statistical comparison using one-way ANOVA with Dunnett's multiple comparison test. The differences between conditions are not statistically significant apart from the comparison between the long half-lives for control (0 nM LEN) and 500 nM LEN in panel B ($p=0.035$).

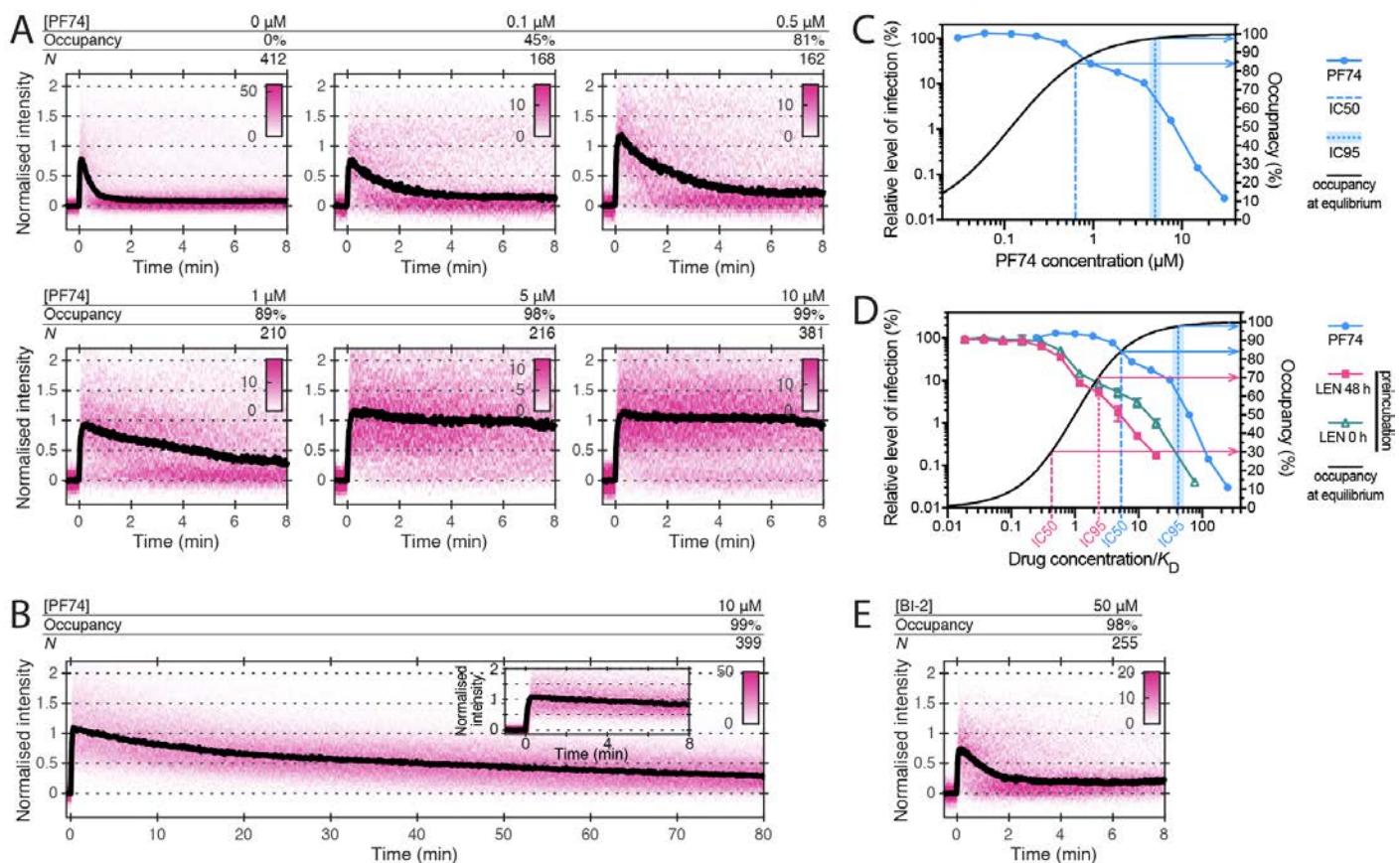

Figure 4. IP6 partially counteracts LEN-induced capsid rupture. Single-particle analysis of the effect of 0–500 nM LEN on capsid uncoating via GFP release and CypA paint in the presence of 100 μ M IP6. The corresponding uncoating data in the absence of IP6 from Figure 3 is reproduced to facilitate comparison. **A/B.** Capsid survival curves (A) and fraction of leaky, opening and closed capsids at the end of the experiment (B) showing that IP6 partially counteracts the drug-induced rupture of the capsid at low but not high concentrations of LEN. Pooled data from multiple experiments (total number of traces): 0 nM LEN+IP6 (836); 5 nM LEN+IP6 (589); 50 nM LEN+IP6 (321); 500 nM LEN+IP6 (238).

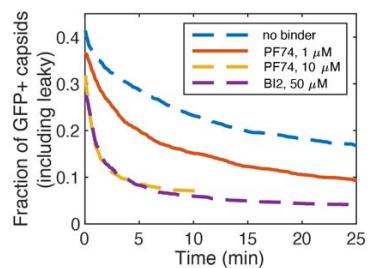

Figure 4—Figure Supplement 1. Heatmaps (magenta) and median traces (black line) of the CypA intensity measured at particles with leaky or opening capsids in the absence (A) or presence (B) of 100 μ M IP6.

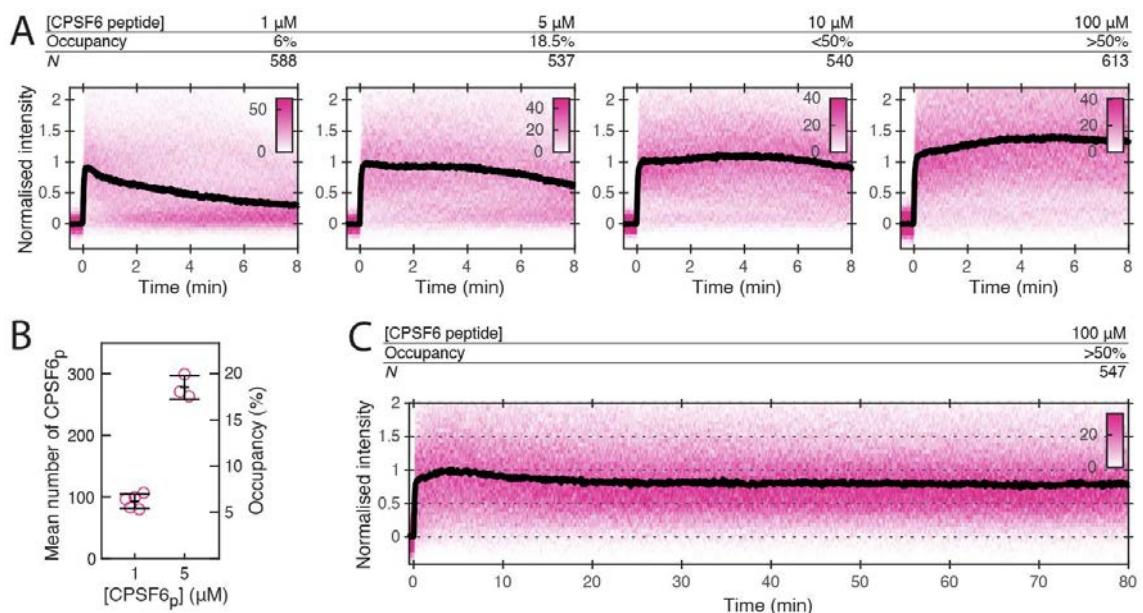

Figure 4—Figure Supplement 2. Heatmaps (magenta) and median traces (black line) of the CypA intensity measured at particles with leaky (left) or opening (right) capsids. **A/B.** 5 nM LEN in the absence (A) or presence (B) of 100 μ M IP6. The presence of IP6 slows capsid disassembly in the presence of 5 nM LEN but does not prevent it. **C/D.** 50 nM LEN in the absence (C) or presence (D) of 100 μ M IP6. 50 nM LEN stabilises the CypA paint signal, regardless of whether IP6 is present.

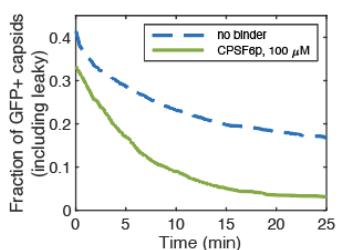

Figure 5. Preincubating HIV particles with LEN is required to obtain the full effect of the drug on capsid stability, HIV infection and reverse transcription. **A-C.** Single-particle analysis of capsid uncoating in the presence of 5 nM LEN added to the viral particles at the start (0 h preincubation) or 4 h before the start (4 h preincubation) of the TIRF assay. Capsid survival curves (A) and fraction of leaky, opening and closed capsids at the end of the experiment (B) show that preincubation with drug increases capsid rupture. Pooled data from multiple experiments (total number of traces): 5 nM LEN, 0 h (1585); 5 nM LEN, 4 h (1159). (C) CypA paint heatmaps and median CypA paint intensity traces of leaky and opening capsids show that preincubation is required to stabilise the CA lattice after capsid rupture. **D.** Dose-response curves of Jurkat cells infected with VSV-G-pseudotyped GFP-encoding virus that was preincubated for 0 h or 48 h with the corresponding concentration of LEN. The number of infected cells was determined by flow cytometry 48 h post infection. Data points represent percent infectivity relative to the vehicle control. The graph shows data from four (0 h preincubation) or three (48 h preincubation) independent experiments. The vertical dashed lines indicate the IC50 values determined from least squares fits of the curves and the vertical dotted lines indicate the IC95 values determined as the concentration where the relative level of infection reaches 5% (0 h preincubation: 1.024 nM [5.3% infection]; 48 h preincubation: 0.512 nM [5.1% infection]). **E.** Relative IC50 values determined from least squares fits of the data in D giving values of 125 ± 13 pM without preincubation and 93 ± 8 pM with 48 h preincubation. Statistical analysis using an unpaired two-tailed t-test. **F.** Quantification using qPCR of total viral DNA from Jurkat cells collected 24 h after infection with VSV-G-pseudotyped GFP-encoding virus as in panel D (with 0 h or 48 h preincubation with LEN). Normalized copy numbers (mean \pm SD) from two independent experiments with two technical repeats each. Least squares fit (solid line) providing IC50 values of ~ 1080 pM without preincubation and ~ 590 pM with 48 h preincubation.


Figure 5—Figure Supplement 1. Occupancy of binding pockets on the CA lattice with LEN as a function of concentration (A, plotted for different time points) and as a function of time (B, plotted for different concentrations). Curves were calculated using $k_{on} = 6.5E4$ M $^{-1}$ s $^{-1}$ and $k_{off} = 1.4E-5$ s $^{-1}$ determined by surface plasmon resonance spectroscopy (Link et al., 2020).


Figure 6. IP6 and LEN synergise to promote CA assembly. In vitro assembly reactions of CA (75 μM) were carried out in 50 mM MES (pH 6.0) containing 1 mM DTT and monitored in real time by absorbance measurements at 350 nm. The assembly products obtained at the end of the reaction were imaged by negative staining electron microscopy. **A/B.** Assembly kinetics (left) and products (right) formed at 10–150 μM in the absence (A) or the presence (B) of 50 μM LEN. **C.** Assembly kinetics (left) and products (right) formed at 0–50 μM LEN in the presence of 200 μM IP6.


Figure 7. LEN promotes assembly of additional CA structures outside the capsid in mature HIV particles. A/B. CryoET analysis of untreated HIV and HIV incubated with 700 nM LEN for 30 min. A total of 139 untreated and 96 drug-treated viral particles were analysed, and the frequency of each phenotype is plotted as a percentage in the bar plots. Slices through representative tomograms of each phenotype are shown. Scale bars, 100 nm. (A) Virions were classified as either immature, mature/immature, ambiguous, mature (irregular) or mature (conical/tubular). (B) The mature (conical/tubular) particles from C were further divided into subclasses reflecting the number of CA assemblies and the absence or presence of assemblies with two CA layers. **C.** CypA paint intensity analysis to estimate the level of CA lattice assembly (“lattice size”) in HIV particles preincubated with 500 nM LEN for 30 min before permeabilization relative to the lattice size of closed capsids in untreated HIV particles. Comparison of lattice size in untreated control (3 experiments) and HIV preincubated with 500 nM LEN for 2 minutes (3 experiments) or 30 minutes (4 experiments) showing that drug induces an increase in lattice size. An example CypA paint heatmaps is shown in Figure 7–Figure Supplement 1.


Figure 7–Figure Supplement 1. CypA paint intensity analysis to estimate the level of CA lattice assembly (“lattice size”) in HIV particles preincubated with 500 nM LEN for 30 min before permeabilization relative to the lattice size of closed capsids in untreated HIV particles. Example CypA paint heatmaps (magenta) and median traces (black) of closed capsids in untreated HIV (A) and all capsids in HIV preincubated with drug (B).


Figure 8. Effects of PF74 and BI-2 on CA lattice stability. **A/B.** Heatmaps (magenta) and median traces (black line) of the CypA intensity measured at particles with leaky or opening capsids in the presence of 0–10 μM PF74 showing that PF74 stabilises the CA lattice at concentrations >10-fold above the K_D of the drug-CA hexamer interaction. (A) PF74 titration in 8 min experiments. (B) 10 μM PF74 in an 80 min experiment showing that capsids disassemble over this time period. The inset shows the first 8 min of the trace. **C.** Dose-response curve of Jurkat cells infected with VSV-G-pseudotyped GFP-encoding virus in the presence of the indicated concentrations of PF74. The number of infected cells was determined by flow cytometry 48 h post infection. Data points represent percent infectivity relative to the vehicle control. The dotted lines indicate the IC₅₀ determined from least squares fits of the curves (~0.6 μM , corresponding to ~5 $\times K_D$). **D.** Dose-response curves with drug concentration normalized by the K_D of the respective drug binding to CA hexamers for LEN (0 h and 48 h preincubation) and PF74 (same data as in Figure 5D and 8C, respectively). The dashed lines indicate the relative IC₅₀ determined from least squares fits of the curves (~0.4 $\times K_D$ for LEN [48 h preincubation] and ~5 $\times K_D$ for PF74). **E.** Heatmap (magenta) and median trace (black line) of the CypA intensity at particles with leaky or opening capsids in the presence of 50 μM BI-2 showing that BI-2 does not stabilise the CA lattice.

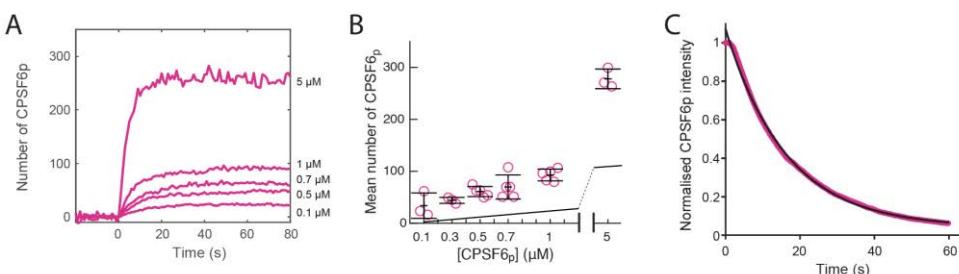

Figure 8 – Figure Supplement 1. PF74 and BI-2 binding at high occupancy leads to capsid rupture. Capsid survival curves were determined from GFP release traces. The control curve (no binder) and the curves determined in the presence of 10 μM PF74 and 50 μM BI-2 are reproduced from Marquez et al, 2018.

Figure 9. CPSF6 peptide stabilises the CA lattice at low occupancy. **A.** Heatmaps (magenta) and median traces (black line) of the CypA intensity measured at particles with leaky capsids in the presence of 1–100 μ M CPSF6 peptide showing that the peptide stabilises the CA lattice at concentrations below the K_D of the peptide-CA hexamer interaction. **B.** Mean number of CPSF6 peptides bounds per capsid determined from CPSF6p-Cys-AF568 binding experiments. Each symbol represents an independent binding experiment, black bars indicate mean and standard deviation. **C.** Heatmap (magenta) and median trace (black line) of the CypA intensity at particles with leaky or opening capsids in the presence of 100 μ M CPSF6 monitored over 80 minutes, showing long-term stabilisation of the CA lattice.

Figure 9 – Figure Supplement 1. Capsid survival curves were determined from GFP release traces. The control curve (no binder) is reproduced from Marquez et al, 2018.

Figure 9 – Figure Supplement 2. Binding of CPSF6 peptide to closed capsids. **A.** Mean binding traces recorded at the indicated concentrations of labelled CPSF6 peptide. Binding traces were recorded at the locations of viral particles with closed capsid, whereby $t = 0$ corresponds to the time of viral membrane permeabilization. **B.** Mean number of labelled CPSF6 peptides bounds per capsid determined from binding experiments (see panel A for an example). Each symbol represents an independent binding experiment, black bars indicate mean and standard deviation. The black line represent the binding curve calculated using the published value of $K_D = 50 \mu M$. **C.** Mean CPSF6 peptide intensity measured at closed capsids after wash-out of CPSF6 peptide from the flow channel at $t = 0$. The black line represents a fit of the data with a single exponential decay function.