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Abstract
The hippocampus is classically divided into mesoscopic subfields which contain varying

microstructure that contribute to their unique functional roles. It has been challenging to
characterize this microstructure with current MR based neuroimaging techniques. In this work,
we used a novel surface-based approach in the hippocampus to show distinct microstructural
distributions of myelin, neurite density and dispersion, fractional anisotropy, and mean diffusivity
using diffusion MRI. To get at this issue we used the Neurite Orientation Dispersion and Density
Imaging (NODDI) model optimized for gray matter diffusivity and diffusion tensor imaging
(DTI). We found that neurite dispersion was highest in the Cornu Ammonis (CA) 1 and subiculum
subfields which likely captures the large heterogeneity of tangential and radial fibers, such as the
Schaffer collaterals, perforant path, and pyramidal neurites. Neurite density and myelin content
were highest in the subiculum and lowest in CA1, which may reflect known myeloarchitecture
differences between these subfields. We show macrostructural measures of gyrification,
thickness, and curvature which were in line with ex vivo descriptions of hippocampal anatomy.
We employed a multivariate orthogonal projective non-negative matrix factorization (OPNNMF)
approach to capture co-varying regions of macro- and microstructure across the hippocampus.
The clusters were highly variable along the medial-lateral (proximal-distal) direction, which is
expected as there are known differences in morphology, cytoarchitectonic profiles, and
connectivity. Long-axis (anterior-posterior) differences can also be seen in the OPNNMF
components, where the body of the hippocampus has more parcellations than the head and tail.
Finally, we show that by examining the main direction of diffusion relative to canonical
hippocampal axes, we could identify microstructure that may map onto specific tangential fiber
pathways, such as the Schaffer collaterals and perforant path. These results highlight the value of
combining in vivo diffusion MRI with computational approaches for capturing hippocampal
microstructure, which may provide useful features for understanding cognition and for diagnosis
of disease states.

Keywords: Hippocampus; Subfields; Microstructure; Neurite Density; Neurite Dispersion;
Diffusion MRI
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1. Introduction

The hippocampus is classically divided into mesoscopic subfields according to differences in cyto-
, myelo-, and chemoarchitecture defining structurally distinct units (Duvernoy et al., 2013; Ding
& Van Hoesen, 2015). The neurites and fiber pathway circuitry that compose the microstructure
of the hippocampus exist within and across the subfields. For example, the pyramidal neurites that
exist within the Cornu Ammonis (CA) and subiculum subfields have apical and basal dendrites
which project across the layers or laminae, while their axons project to the alveus, a major white
matter bundle adjoining the hippocampus. The trisynaptic pathway is the major circuitry
component which connects the subfields of the hippocampus. The entorhinal cortex connects to
the dentate gyrus (DG) and other subfields through the perforant path. The DG then projects to the
pyramidal neurites of CA3 through the mossy fibers, which then project to CA1 through the
Schaffer collaterals. Finally, CA1 projects to the subiculum and back to the entorhinal cortex as
the main hippocampal outflow. Hippocampal microstructure is key in producing unique cognitive
functions such as memory formation and storage and spatial navigation among others (Voss et al.,
2017; Goodroe et al., 2018; Horner et al., 2015). Furthermore, the hippocampus is typically one of
the earliest aberrant structures in many disease states where specific microstructural properties are
differentially afflicted or spared (Moodley & Chan, 2014; Dhikav & Anand, 2012; Small et al.,
2011). While much work has addressed volumetric characterization of the hippocampus,
understanding hippocampal microstructure can provide key insights into its complex cognitive
functions as well as its early deterioration in disease.

Diffusion magnetic resonance imaging (dMRI) is a particular technique which holds
promise in probing the hippocampal circuitry by sensitizing the measured MRI signal to the
movement of water molecules, which diffuse more readily parallel to microstructure. Several
models have been proposed that attribute measures of the dMRI signal to compartments which

have varying diffusivity environments (Assaf et al., 2008; Assaf & Basser, 2005; Zhang et al.,
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2012). One of the earliest and most widely used models proposed by Basser et al. (1994) is
diffusion tensor imaging (DTI). DTI estimates quantitative parameters such as fractional
anisotropy (FA - a measure of the restriction of diffusion), mean diffusivity (MD), and the
ellipsoidal orientation of the diffusion process. However, DTI has some notable limitations. At
increasing b-values (approximately greater than 1000-1500 s/mm?2) there is contribution from
multiple compartments with varying diffusivities (such as restricted intracellular water), which is
beyond the monoexponential decay assumptions of DTI (Assaf & Cohen. 2000). As well, regions
of crossing fibers result in planar DTI ellipsoids with understated FA values (Campbell et al.,
2005). Furthermore, DTI measures are sensitive to multiple microstructural properties at the same
time, decreasing its specificity (Pierpaoli et al., 1996). Newer models aim to utilize the dependence
of the diffusion signal attenuation to varying sets of biophysically motivated compartments.

One of the most popular compartmental models is Neurite Orientation Dispersion and

Density Imaging (NODDI), which aims to provide a biophysical interpretation of the diffusion
signal (Zhang et al., 2012). NODDI assumes that three microstructural environments consisting of
an intra-cellular, extra-cellular, and cerebrospinal fluid (CSF) compartment contribute to the
diffusion signal. The intracellular compartment is modeled as a set of infinitely anisotropic sticks
(diffusion can only be parallel to the main orientation of the stick), while the extracellular
compartment is modeled as a zeppelin with hindered diffusion perpendicular to its main axis. The
CSF compartment is modeled as a sphere with gaussian isotropic diffusion. Diffusion is assumed
to be contained separately within each compartment, where the resulting signal is the sum of all
compartments. NODDI aims to overcome the limitations of DTI by providing microstructural
scalars such as the neurite density index (NDI) and orientation dispersion index (ODI) which are
sensitive to fiber crossings and are biophysically grounded (Zhang et al., 2012).

Extant work has attempted to examine hippocampal microstructure with DTI and NODDI.

Some such studies have found age-related deterioration of hippocampal microstructure by
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averaging NODDI measures within subfields (Radhakrishnan et al., 2020) while others have
shown regionally specific deterioration using DTI (Yassa et al., 2010). Another study investigated
the variation of DTI and intracortical myelin across the hippocampus using non-negative matrix
factorization, however, they did not make quantitative comparisons of microstructure within and
across the subfields (Patel et al., 2020). A recent cortical study examined the distribution of
NODDI metrics and cortical thickness across the entire cerebral cortex including the hippocampus
by averaging metrics across all subjects within each cortical parcel (Fukutomi et al., 2018). Thus,
they only examined coarse-grained averages across the entire hippocampal volume. The
distributions of NODDI and DTI measures have not been extensively investigated within the
hippocampal subfields and across its longitudinal axis.

The orientation and trajectory of the hippocampal circuitry including the trisynaptic circuit
has been probed previously using tractography and polarized light imaging (PLI). Ex-vivo work
has indeed resolved all or part of the hippocampal circuitry using dMRI tractography (Beaujoin et
al., 2018) and PLI (Zeineh et al., 2017) in a small number of samples. While these studies serve as
ground-truth references for the orientation of hippocampal circuitry, a difficult step has been
recapitulation of this circuitry in-vivo, which is critical for characterization of variability associated
with healthy and disease states. Some in-vivo work has attempted to use DTI to capture parts of
the trisynaptic circuit such as the perforant path (Yassa et al., 2010) or the whole hippocampal
circuitry (Zeineh et al., 2012). However, it is unclear whether the found trajectories are
anatomically valid. Furthermore, at lower resolutions, tracts can be spurious requiring complex
acquisition and correction schemes, and since acquisitions can vary across studies, tractography
practically always requires separate optimization of its parameters (Zeineh et al., 2012). Improved
understanding of hippocampal microstructure in-vivo requires granular investigation of metrics
derived from common models like NODDI and DTI within and across the subfields, as well as

characterization of the main orientation of the microstructure that is used for tractography.
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In the current study, we examined the spatial distribution of NODDI and DTI metrics,
intracortical myelin, and macrostructural features of thickness, gyrification, and curvature across
the hippocampus using high-resolution in vivo human connectome project (HCP) data (Van Essen
et al., 2013). Furthermore, we use Orthogonal Projective Non-Negative Matrix Factorization
(OPNNMF) as a multivariate approach to capture regions of the hippocampus where these metrics
co-vary. We aimed to compare the current OPNNMF representation to previous work which has
looked to examine the dimensions of hippocampal organization along its medial-lateral (across
subfields) and anterior-posterior (longitudinal) axes (Genon et al., 2021; Robinson et al., 2015;
Zhong et al., 2019; Cheng et al., 2020; Plachti et al., 2019; Plachti et al., 2020; Patel et al., 2020,
DeKraker et al., 2020). We utilized a novel surface-based subfield segmentation approach called
HippUnfold (DeKraker et al., 2018; DeKraker et al., 2021a). The goal of surface-based alignment
is to project hippocampi to a 2D flat/unfolded surface. Using a surface-based approach can account
for interindividual differences in tissue curvature and digitation across the whole anterior-posterior
extent of the hippocampus (DeKraker et al., 2021b). Hippocampi in unfolded space are aligned
based on topology and the contiguity of subfields, allowing unprecedented anatomical detail.
Finally, hippocampal gray matter shows a laminar distribution similar to that of other cortical areas
with large radial and tangential neurite components, although the highly curved structure of the
hippocampus is reflected in the complexity of its neurite orientations. Importantly, these neurite
orientations tend to be highly aligned along one of the axes of the hippocampus that span the
anterior-posterior (AP longitudinal), proximal-distal (PD - across subfields), or inner-outer (across
laminae) directions (Figure 1A and B). HippUnfold provides a coordinate system along these three

axes. Thus, we also aimed to determine if the known stereotyped orientations of microstructure
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can be elucidated by analyzing their primary orientation along each of the axes in vivo, as depicted

in Figure 1B.

HippUnfold Structural Axes Hippocampal Microstructural Circuits

AP PD 10

Perforant Path (PD)
Mossy Fibers (PD)
Schaffer Collaterals (PD)
Pyramidal Neurites (I0)

CAT to Sub (PD)
Sub to ETC (PD)

Fimbria (AP)

Primary Diffusion Directions

CA4d_ CA3

NN\ N ///// /

Figure 1. Depicting hippocampal structural axes, the stereotyped organization of microstructure,

and diffusion vectors of the hippocampus. (A) A coronal slice depicting the structural axes of the
hippocampus defined as anterior-posterior (AP), proximal-distal (PD), and inner-outer (10)
provided by HippUnfold. (B) Known microstructural circuits within the hippocampus and their
main orientation relative to the hippocampus, defined by the colour coded legend on the right. (C)
Primary diffusion directions for one subject (p of the watson distribution from NODDI) overlaid
on a coronal slice of hippocampal subfields provided by HippUnfold. (D) Pictorial example
representing the NODDI and hippocampal axis vectors in a single voxel defined in (C). Cosine

similarities are represented as the angle between the NODDI vector and each hippocampal vector,
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providing a measure of orientation coherence along each cardinal axis (see 2.5). Sub - Subiculum,
CA - Cornu Ammonis, DG - Dentate Gyrus, SRLM - Stratum Radiatum Lacunosum Moleculare,

ETC - Entorhinal Cortex.
2. Methods

2.1 Overview

A subset of 100 unrelated subjects from the publicly available Human Connectome Project (HCP)
1200 dataset were used for this study (Van Essen et al., 2013). All 100 subjects were run through
HippUnfold (DeKraker et al., 2021a), a new automated tool for surface-based subfield
segmentation and hippocampal unfolding (see 2.3; DeKraker et al., 2018). The coordinates
generated from HippUnfold within each subject were used to calculate vector fields along each
main axis of the hippocampus (see 2.3 & Figure 1A). NODDI and DTI metrics were calculated in
each subject's native space using whole-brain diffusion images (see 2.2 and 2.4). Cosine
similarities between the NODDI orientational vector (defined as p of the Watson distribution see
2.4) and the vectors along each of the 3 axes (AP, PD, and 10) were calculated at each voxel.
Macrostructural measures of curvature, gyrification, and thickness were calculated along the
midthickness surface (middle of the hippocampal gray matter) of the hippocampus across all
subjects (see 2.6). NODDI measures of ODI and NDI, DTI measures of FA and MD, and the cosine
similarities were all sampled along the midthickness surface within each subject and averaged in
unfolded space (DeKraker et al., 2018). Plots of NODDI and DTI metrics, cosine similarities, and
macrostructure metrics across the midthickness surface were visualized as folded and unfolded
surfaces. Finally, Orthogonal Projective Non-Negative Matrix Factorization (OPNNMF) was used
to capture co-varying regions of the hippocampus and to examine the dimensions of macro- and

microstructure hippocampal organization.
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2.2 Data acquisition and preprocessing

We used the publicly available HCP young adult dataset (ages 22-35), which consisted of structural
and diffusion MRI data for 1200 subjects (Van Essen et al., 2013). To avoid any biases caused by
family structures, we chose the 100 unrelated subjects subset for analysis (mean age: 27.52 years
+/- 3.47 years; F/IM: 54/46). Data included T1-weighted (T1w) and T2-weighted (T2w) structural
images at 0.7 mm? isotropic resolution and diffusion-weighted data at 1.25 mm?2 isotropic
resolution. Structural images were obtained using a 3D MPRAGE sequence (TR-2400ms, TE-
2.14ms, T1-1000ms, FOV-224x224 mm). Diffusion images were obtained using a spin-echo echo-
planar sequence (b=0 (18 acquisitions), 1000, 2000, 3000s/mm?, 90 diffusion-encoding directions,
TR-5520ms, TE-89.5ms, FOV-210x180mm). Data used in the preparation of this work were
obtained from the Human Connectome Project (HCP) database (Van Essen et al., 2013). In this
work we utilized the preprocessed structural and diffusion images for the HCP dataset.
Preprocessing of structural images included: gradient distortion correction, coregistration and
averaging of repeated Tlw and T2w runs using 6-DOF rigid transformation, initial brain
extractions for T1w and T2w, field map distortion correction and registration of T2w with T1w
images, bias field correction, and atlas registration. Preprocessing of diffusion images included:
intensity normalization across runs, EPI distortion correction, eddy current and motion correction,
gradient nonlinearity correction, and registration of the mean b0 image to T1w native space. The
full pre-processing pipeline for structural and diffusion images were published elsewhere
(Andersson et al., 2015; Glasser et al., 2013; Jenkinson et al., 2002; Sotiropoulos et al., 2013) and

can be found at the HCP website
(https://www.humanconnectome.org/study/hcp-young-adult). Myelin maps were calculated by
dividing the T1w image intensity by the T2w image intensity and correcting for the bias field

(Glasser & Van Essen, 2011; Glasser et al., 2014), which is referred to as myelin for the rest of the
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paper. It should be noted that the T1w over T2w image ratio is thought to be sensitive to myelin
but is an indirect measure.

2.3 HippUnfold - Hippocampal Unfolding and surface-based segmentation

The newly developed HippUnfold (DeKraker et al., 2021a) tool was used in the current study. The
general steps of HippUnfold are: 1) preprocess and resample T2w images to a cropped subvolume
at 0.3mm? isotropic resolution for the left and right hemispheres, 2) automatically segment
hippocampal gray matter tissue via a custom model trained with nnUNet, a generalizable
implementation of a neural network U-Net architecture (Isensee et al., 2020), 3) post-processing
via fluid-label registration to a topologically averaged template, 4) impose coordinates by solving
Laplace’s equation along the AP, PD, and 10 axes, 5) extract gray matter macrostructural features
such as curvature, gyrification, and thickness along the midthickness surface which is defined by
Laplacian coordinates (see 2.6), 6) generate transformations from native to unfolded space using
the Laplace coordinates and scattered interpolation, and finally, 7) apply subfield boundaries
according to predefined topological coordinates from an unfolded high-resolution ground-truth
atlas (DeKraker et al., 2020). Due to the small size of the Dentate Gyrus (DG) and CA4, we
combined them into a single DG/CA4 subfield label. As well, most of the DG is excluded in our
surface representation. All subfield segmentations for both hemispheres were reviewed for gross
errors by BK. The midthickness surfaces used in this study were composed of 2004 vertices with
a spacing of roughly 1Imm. Each vertex is inherently aligned across subjects in unfolded space
since the generation of the Laplace coordinates used the same topological boundaries. Thus, this
implicit topological registration allows for the averaging of metrics across subjects at each vertex.
2.4 Characterization of microstructure with NODDI & DTI

NODDI models the diffusion signal as a combination from 3 microstructural environments:
intracellular, extracellular, and cerebrospinal fluid (CSF) (Zhang et al., 2012). The intracellular

compartment is considered the space that is bounded by neurites, which is modelled as a set of
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sticks. The stick geometry captures the restricted diffusion of water perpendicular to neurites, and
the relatively unhindered diffusion along them. Furthermore, sticks can capture the wide range of
neurite orientations, from highly coherent to highly dispersed tissue. The extracellular
compartment is the space around the neurites, which consists of glial cells and in gray matter, the
somas. In extracellular space, the signal is modeled as Gaussian anisotropic diffusion to represent
the hindered but not restricted movement of water. Finally, the CSF compartment is modelled as
Gaussian isotropic diffusion, representing the free movement of water. NODDI does not draw any
a priori assumptions about whether a voxel is gray matter, white matter or CSF, and thus it treats
each voxel as a possible combination of different compartments (Zhang et al., 2012). Thus, the

normalized dMRI signal can be written as:

ENODDI = fisoEiso (diso) + W(M' K) [fecEec(dperpr dpar) + ficEic (dpar)] (l)
Where fisoEiso, fecEec @nd fi-E;c are the volume and signal fractions of the CSF, extracellular, and
intracellular (NDI) compartments, respectively. The extracellular and intracellular compartments

are linked orientationally by the Watson distribution W (u, k), where k is the concentration
parameter (ODI = %arctan(i)) and u is the mean orientation of the Watson distribution (herein

referred to as the NODDI microstructural vector or primary diffusion direction). The hindered

perpendicular diffusion of the extracellular compartment d,,.,, is set via a tortuosity model. The
original NODDI model developed mainly for white matter sets the parallel diffusivity value d,;
3 mm?

2
equal to 1.7 X 10‘3% and the isotropic or CSF compartment diffusion to 3.0 x 10~ —

Previous studies in the gray matter have sought to optimize d,,,, and have consistently found that

2
the lowest mean squared error is achieved with d,,, equal to 1.1 x 1073 % (Guerrero et al.,

2019; Fukutomi et al., 2018). Thus, in the current study we used the gray matter optimized d,q,

2
value of 1.1 x 10‘3% for fitting the NODDI model. The Microstructure Diffusion Toolbox
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(MDT; Harms et al., 2017) was utilized to fit the NODDI model using whole-brain diffusion
images aligned to their respective T1w space with all b-values (b=0, 1000, 2000, 3000 s/mmz2).
MDT can fit models using Maximum Likelihood Estimation to get a point estimate on all
parameters or Markov Chain Monte Carlo sampling to recover the full posterior distribution of
model parameters. The validity of the assumptions of the NODDI model are discussed in section
4.8.

We also used the MDT (Harms et al., 2017) to calculate metrics of FA and MD using DTI.

N

DTI was performed using only the b = 1000 volumes to align with typical DTI experiments

mm?

(Behrens & Johansen-Berg, 2014). Both the NODDI and DTI metrics were mapped onto the
hippocampal midthickness surface using the process described below.

We used Connectome Workbench (https://github.com/Washington-
University/workbench) to sample values at each surface vertex from voxel data. In this study we
used 2004 vertices defined along the midthickness surface of the hippocampus to reduce partial
volume effects. To sample voxel data along the midthickness surface we used a ribbon-constrained
mapping algorithm which also requires the inner and outer surfaces also generated by HippUnfold.
The ribbon method constructs a polyhedron from the vertex’s neighbor on each surface defined,
and then estimates the volume of the polyhedron that falls inside any nearby voxels to use as
weights. We further reduced the weight of any particular voxel based on its distance from the
midthickness surface, where the scaling value was calculated using a Gaussian with a standard
deviation (sigma) determined by the cortical thickness at each vertex. This has the effect of more
aggressively down-weighting voxels further from the midthickness surface where the
hippocampus is thinner. We then averaged each metric at each vertex across all subjects to generate

the average maps which were plotted in folded and unfolded space.
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2.5 Examining the primary direction of diffusion relative to hippocampal axes

Analyses were performed to attempt to capture the stereotyped orientation of hippocampal
microstructure which tends to be highly aligned along the AP, PD, and 10 axes. We obtained
vector fields along the AP, PD, and IO axes by taking the first derivative of the respective
Laplacian coordinates provided by HippUnfold (Figure 1A), such that the vectors only pointed
along one of the axes. This was done within cropped subvolumes for each subject separately for
the left and right hemispheres. The result was 3 distinct vector images within a hemisphere for
each subject and axis. The NODDI microstructural vectors were rotated to the same cropped
subvolume space from their native T1w space. We then calculated cosine similarities between the
generated vectors along the AP, PD, and 10 axes and the NODDI microstructural vector at each
voxel (Figure 1C & D). All vectors were normalized before calculating cosine similarities. The

cosine similarity was defined as the inner product between vectors:

abs( au ) )

|lal lu|

Where a was a hippocampal axis vector in a single voxel (AP, PD, or 10), and u was the NODDI
microstructural vector (u of the Watson distribution) at the same voxel. We constrained the range
of cosine similarity values to be between 0 and 1 (representing angles of 90 degrees to 0 degrees
between vectors, respectively) since the vectors cross each other in each voxel.

All cosine similarities were calculated in an upsampled (0.3 mm?3) subject-specific cropped
subvolume space in each hemisphere. There were a total of 3 cosine similarity images (one for AP,
PD, and 10 similarity values) within each hemisphere for each subject. Each scalar cosine
similarity image was sampled along the midthickness surface. In the topologically aligned
unfolded space, we averaged cosine similarities across all subjects for the left and right

hemispheres separately.
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2.6 Correlations between all metrics
Correlations were performed at the level of the vertex averaged maps. Pearson’s R correlation
between all metrics were calculated using vertices averaged across all participants (Figure 2C-J
average maps) and across both left and right hemispheres. Before removing outliers, there were
2004 averaged vertices to be correlated between any two metrics. Outlier values were removed by
identifying vertices that were +- 3 standard deviations away from their respective metrics mean.
Since these correlations were mainly exploratory, we did not report a single cut-off alpha value to
be used to determine significance.
2.7 Orthogonal Projective NNMF (OPNNMF)
Orthogonal Projective NNMF (OPNNMF) was used in this work to attempt to identify co-varying
regions in the hippocampus using the metrics described above (Sotiras et al., 2015; Yang & Oja,
2010). OPNNMF decomposes an input matrix X of dimensions a x b into a component matrix C
(a x k) and a weight matrix W (k x b). The number of components (k) is defined a priori. The
component and weight matrices are derived such that their multiplication best reconstructs the
input data (X ~ C x W). OPNNMF solves the following minimization problem to estimate C
(Sotiras et al., 2015):

IX — CCTX||? subjectto C = 0,CTC =I1,and W = CTX (3)
Where || || 2 represents the squared Frobenius norm and | denotes the identity matrix which
enforces orthogonality among C. C is first initialized using a non-negative double singular value
decomposition (Boutsidis & Gallopoulos, 2008). Then, C is updated through an iterative process
until it converges on an optimal solution. The iterative multiplicative update rule is as reported by
Yang and Oja (2010):

N xxTc)yj
Cij = Cij oryxtor
(CcTxxTc);

(4)
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Where i represents the number of vertices and j represents the number of components. The
component matrix C represents the latent structure in the data and allows for an examination of
the underlying covariance in multivariate data. As done in Patel et al. (2020) the sparse and non-
overlapping component matrix allows for each vertex to be assigned an output component using a
winner take all method which improves the interpretability of the spatial output components. The
weight matrix W represents the subject-metric coefficients, allowing for an examination of subject-
specific and metric-specific contributions to each component.
2.8 Implementing OPNNMF
A total of 11 metrics were included in the OPNNMF implementation (ODI, NDI, myelin, FA, MD,
gyrification, thickness, curvature, AP cosine similarity, PD cosine similarity, 10 cosine similarity)
with subsets of these metrics used for more specific analyses (i.e. NODDI only, DTI only,
macrostructure only, and cosine similarity only). The input matrix X was built using all 2004
vertices of the midthickness surface in unfolded space for all 11 metrics across all 100 subjects per
hemisphere. That is, each subject contributed 11 unfolded space maps to the input matrix. Thus,
the input matrix had 1100 columns (100 subjects x 11 metrics - defined as subject-metrics) and
2004 rows (2004 vertices) for a single hemisphere. Normalization was required since the metrics
had varying magnitudes. First, each metric was z-scored within each hemisphere. Then, each z-
scored metric distribution was shifted by the minimum value from all the z-scored metrics to
ensure all metrics were on the same scale and there were no negative values. All distributions were
manually inspected to ensure the minimum value used was not an outlier.

OPNNMF was implemented using publicly available and open MATLAB code at
https://github.com/asotiras/brainparts (Sotiras et al., 2015; Yang & Oja, 2010; Boutsidis &
Gallopoulos, 2008; Halko et al., 2011). OPNNMF was run with a max number of iterations =

10000, tolerance = 0.00001, and non-negative double singular value decomposition initialization.
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2.9 Stability & Reconstruction Error

The quantification of OPNNMF decomposition stability followed that of Patel et al. (2020).
Stability was assessed by examining the similarity of the spatial component matrix C across
varying splits of data. All 100 subjects were randomly split into two groups of equal sizes.
OPNNMF was then performed on each split independently. A within-split similarity matrix was
then derived by multiplying a particular splits component matrix by the transpose of itself (i.e. a
cosine similarity). The result is a 2004x2004 (number of vertices x number of vertices) matrix
where each row contains the cosine similarity of component scores between a vertex and all other
vertices. Finally, a Pearson’s correlation coefficient was calculated across the rows of the cosine
similarity matrix between splits to quantify if the decomposition maintained the relationships
between vertices. The above process was repeated 6 times, each with a new random split of the
data. The mean and standard deviation of the correlation coefficient was taken across all vertices
and splits for a given component solution. A correlation of 1 represented perfect stability (i.e. each
split of the data had perfect correspondence between vertex relationships), whereas -1 represented
instability. The above process was then repeated for different component decompositions, from
k=2 to k=12. Reconstruction error was calculated through 3-steps. First, the component matrix C
and the weight matrix W were estimated and then multiplied together to return the reconstructed
input matrix. The original and reconstructed input matrix were then subtracted to obtain a
reconstruction error matrix. The Frobenius norm of the reconstruction error matrix was then taken
to get the reconstruction error. The gradient in the reconstruction error was taken across solutions
with varying component numbers to assess the magnitude of the improvement in reconstruction
error when adding more components.

2.10 Interpreting OPNNMF

The output component matrix C contains a component value for each vertex while the weight

matrix W describes how each subject-metric is projected onto each component. A large value in
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the component matrix can be interpreted as a particular vertex being identified as a part of the
variance pattern. The weight matrix can be used to elucidate which metrics contributed to each
component as well as inter-subject variance within metrics. In the current study these 2 matrices
were used to explore spatial patterns and the contributions of particular metrics to each component.
A winner-take-all method was used where a vertex was assigned the integer of the component with
the highest component weighting value from the matrix C. The whole matrix W was plotted to
examine metric-specific trends.

3. Results

The results begin with qualitative descriptions of average macro- and microstructural measures
and their correlations on the midthickness hippocampal surface (middle of the hippocampal gray
matter). We then present the cosine similarities between NODDI microstructure vectors and the
hippocampal axis vectors. Finally, we present the OPNNMF results including the stability analysis
and a 6-component solution.

3.1 Distributions of Hippocampal Metrics

Figure 2 presents Pearson’s R correlations, mean macro- and microstructural metrics, along with
subfield segmentations shown on an averaged hippocampal midthickness surface in folded and
unfolded space. The standard deviation of these metrics is shown in supplementary Figure 1. The
dispersion of neurites (ODI - Figure 2C) is highest in the anterior and middle parts of CA1 and the
distal parts of the subiculum, while dispersion is lower in the middle and posterior of CA3 and
CAZ2 and at the most proximal edge of the subiculum. Much like the neocortex, large radial and
tangential components exist across the hippocampal subfields (Duvernoy et al., 2013). Tangential
microstructure such as the Schaffer collaterals and most of the perforant path along with radial
microstructure such as the pyramidal neurites all contribute to the high orientational heterogeneity
seen in CA1 and the subiculum (Figure 1C), which likely drives the increased ODI seen there (see

4.1). Neurite density (NDI - Figure 2D) is largest in the body and tail of the subiculum, while there
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is lower neurite density in CAL1. The low density in CAL1 is likely a result of the large pyramidal
cell layer with the pyramids themselves noted as being widely separated, compared to the higher
density of neurites in CA2 and CA3 (Jurgen et al., 2011). Myelin has a strikingly similar
distribution to that of NDI, as found in previous cortical studies (Figure 2E Fukutomi et al., 2018).
Myelin, ODI, and NDI maps appear to strongly agree with subfield borders.

Macrostructure features of thickness, gyrification, and curvature are shown in Figure 2H-
J. Gyrification is largest in anterior CA1 and the DG/CA4. The thickest regions are the anterior
and posterior of the subiculum and CAL, as well as throughout the DG/CA4, while CA3 and CA2
are thin. Curvature tends to be highest in the anterior part of the subiculum, along the spine of the
hippocampus (red arrows in Figure 2H), and in CA3. The macrostructural measures appear to vary
greatly across the subfields (PD) and longitudinal (AP) axes. These findings are largely in line
with previous work (DeKraker et al., 2020).

Correlations between these metrics can be seen below the diagonal in Figure 2A and will
be described in the below sections.
3.2 Correlations between NODDI metrics & myelin
In Figure 2D and E, strong qualitative similarities can be seen between NDI and myelin. Both are
high in the subiculum and CA3/CAZ2 regions, while hypointensities are noted in CA1. A strong
positive correlation is seen between NDI and myelin (R = 0.86, p < 0.0000001, Figure 2A).
Although, it has been shown previously that the hippocampal NDI and myelin do not follow the
same relationship as other cortical areas after averaging across the whole hippocampal volume
(low myelin with high NDI compared to rest of cortex Fukutomi et al., 2018). Here we show that
a strong correlation still exists between the two when looking more granularly.

ODI (Figure 2C) and NDI (Figure 2D) are moderately to strongly correlated (R = -0.31, p

<0.0000001). This correlation has also been noted across the entire cortex (Fukutomi et al., 2018).
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3.3 Correlations between NODDI & DTI metrics

Qualitatively, the map of FA (Figure 2F) closely resembles the inverse of the ODI map (Figure
2C) while also following the NDI map (Figure 2D). Particularly, the distinct pattern of high
dispersion appears as low FA, while high neurite density appears as high FA. Furthermore, the
map of MD (Figure 2G) generally resembles the inverse of the NDI map (Figure 2D). The border
of CA2/CA1 has a distinctly low NDI which translates into an increased MD. ODI and FA are
strongly correlated (R =-0.85, p <0.0000001), and ODI and MD are weakly correlated (R =-0.10,
p <0.0001). Furthermore, NDI and FA are strongly correlated (R = 0.67, p <0.0000001) and NDI
and MD are moderately to strongly correlated (R = -0.40, p < 0.0000001).

A disentangling of FA as determined by ODI and NDI has been reported previously in
cortical gray matter (Zhang et al., 2012). Two voxels with different neurite densities can have the
same FA as long as the one with the larger neurite density also has the larger dispersion (Zhang et
al., 2012). We report a similar level of disentangling within the hippocampus in supplementary
Figure 2A.

3.4 Correlations between macrostructure and NODDI metrics

Thickness and NDI are moderately correlated (R = -0.25, p < 0.00001), thickness and ODI are not
correlated (R = 0.02, p = 0.5), and thickness and myelin are moderately correlated (R = -0.20, p <
0.00001). From Figure 2 it can be noticed that in the subiculum (apart from its most anterior region)
thickness is relatively low while NDI and myelin are high. Furthermore, along the anterior of the
hippocampus across all subfields thickness tends to be high while NDI and myelin tend to be low.
Thus, when thickness is increased in particular regions of the hippocampus, NDI and myelin tend
to decrease.

Gyrification and NDI are moderately to strongly correlated (R = -0.35, p < 0.000001),
gyrification and ODI are moderately correlated (R = 0.21, p < 0.000001), and gyrification and

myelin are strongly correlated (R = -0.48, p < 0.0000001). Gyrification is largest in CAl and the
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DG/CA4, and lowest in the subiculum and CA2. Conversely, myelin and NDI are largest in the
subiculum and lowest in CA1, resulting in a relatively strong negative correlation between the two.
Curvature and NDI are moderately correlated (R = -0.27, p < 0.000001), curvature and ODI
are weakly correlated (R =-0.15, p <0.0001), and curvature and myelin are moderately to strongly
correlated (R =-0.31, p < 0.0000001). Interestingly, the highly curved spine of the hippocampus
(Figure 2J - red arrows) appears to correspond to the large hypointense regions of myelin (Figure
2E) and NDI (Figure 2D), likely driving a large part of the noted correlations.
3.5 Examination of the primary direction of diffusion relative to hippocampal axes
This section qualitatively analyzes the mean of the cosine similarities (Figure 1D; Figure 3)
between the hippocampal vectors along the anterior-posterior (AP), proximal-distal (PD), and
inner-outer (10) (Figure 1A) axes and the NODDI microstructural vectors along the midthickness
surface (Figure 1C). Here we provide descriptions of microstructure (Figure 1B) that likely
contribute to the orientation results.

Anterior-Posterior alignment: The high AP alignment in the body of the DG to CA3 is
likely driven by the neighbouring fimbria, the largest bundle in that region oriented AP. High AP
alignment in the subiculum is likely caused by the cingulum, a large fiber bundle that traverses the
parahippocampal gyrus. Some partial voluming from the outer (where the cingulum exists) to the
midthickness surface is expected, which may drive this alignment.

Proximal-Distal alignment: High PD alignment in the head of CA3 is expected to be either
Schaffer collaterals which curve immediately PD off of the apical dendrites of the pyramidal cells
or from perforant projections coming from the entorhinal cortex and entering CA3 which are also
oriented PD. High PD alignment in CAL1 is likely a result of the Schaffer collaterals. The Schaffer
collaterals make synaptic contact at the apical and basal dendrites of CAl in a PD fashion

(Nieuwenhuys et al., 2008; Swanson et al., 1978). However, the perforant path could also
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contribute to a higher PD alignment as it moves from the entorhinal cortex to the DG synapsing

on CAl along the way (Nieuwenhuys et al., 2008).
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Figure 2. Correlations and plots of mean macro- and microstructure metrics on averaged
hippocampal midthickness surfaces in folded and unfolded space for left and right hemispheres.
(A) Heatmap showing Pearson’s R correlations after correlating all average map vertices between
two metrics, combining both left and right hemispheres. The on-diagonal elements represent the
percent of outliers for each average map shown in (C-J). (B) Left and right hippocampal subfields
from a manual segmentation of a histological reference (Ammunts et al., 2013; DeKraker et al.,
2020). Unfolded space is shown in the same orientation for left and right hemispheres. DG -
Dentate Gyrus, CA - Cornu Ammonis. (C,D) Orientation Dispersion Index (ODI) and Neurite
Density Index (NDI) from NODDI. White lines represent subfield borders shown in (B). (E)
Myelin content. (F,G) Diffusion Tensor Imaging metrics of Fractional Anisotropy (FA) and Mean
Diffusivity (MD - m?/s). (H-J) Macrostructure measures of thickness, gyrification, and curvature.
(J) Red arrows highlight the highly curved “spine” of the hippocampus.

Inner-Outer alignment: High 10 alignment seen in CAL is likely a result of the pyramidal
neurites. The pyramidal somas exist in the stratum pyramidale layer of the midthickness surface,
and are generally scattered in CA1 (Nieuwenhuys et al., 2008). Their axons and basal dendrites
move 10 towards the alveus/outer surface and their large apical dendrites move 10 towards the
stratum radiatum/inner surface. All 10 alignment seen in CA1 would be expected to be caused by
the pyramidal neurites or other afferent CA1 paths such as the Schaffer collaterals which curve 10
before making contact with the apical dendrites of the pyramidal neurites. High 10 alignment in
the subiculum is also likely caused by pyramidal neurites as in CAL.

The cosine similarities across subjects varied the greatest in CA1 and the subiculum across AP,

PD, and 10 directions (supplementary Figure 3).
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Figure 3. Mean of the cosine similarities between hippocampal axis vectors and NODDI vectors in the left

and right hemisphere along the midthickness surface. High cosine similarities correspond to a high alignment
of the NODDI vector along that particular hippocampal axis. (A) Distribution of cosine similarities along
the anterior-posterior direction. (B) Distribution of cosine similarities along the proximal-distal (tangential)
direction. (C) Distribution of cosine similarities along the inner-outer (laminar) direction.

3.6 Stability Analysis

The results of the stability analysis can be seen in Figure 4. Figure 4A presents the stability and

the gradient in the reconstruction error using all the metrics combined that are shown in Figure

4B-E. The goal of the stability analysis was to elucidate the largest component value that was still

stable and provided a relative gain in reconstruction error. In Figure 4A it can be seen that a
component solution of k=6 has good stability with relatively low standard deviation.
Comparatively, decomposing into a larger number of components decreases the stability of the
OPNNMF solution. As well, k=6 does provide a relative gain in reconstruction error, although the

largest gain in reconstruction error occurs when moving from a k=2 to a k=3 solution. The stability
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analysis suggests that k=6 is the highest component value that is largely stable, thus we use this

for the decomposition results using all metrics.
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Figure 4. Stability coefficient and the gradient in reconstruction error based on the number of

components used for the OPNNMF solution. Filled in circles plus solid lines are the left

hemisphere and filled in squares plus dotted lines are the right hemisphere. Error lines show +- 1

SD. (A) Stability coefficient (blue) and the gradient in reconstruction error (red) as a function of

the number of components using all metrics for NMF in B-E. (B) Stability coefficient for NODDI
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metrics (ODI and NDI) plus myelin (T1w/T2w). (C) Stability coefficient for DTI metrics (FA and
MD) plus myelin (T1w/T2w). (D) Stability coefficient for macrostructure metrics (gyrification,
thickness, curvature). (E) Stability coefficient for cosine similarities (AP, PD, and 10). Points
between hemispheres are slightly offset along the x-axis so that error bars are visible.

Another goal of the stability analysis was to compare the stability of the decomposition
using all metrics versus using smaller groupings of metrics, such as NODDI (ODI and NDI) plus
myelin. Comparing Figure 4A with Figure 4B-E, it can be seen that for almost all component
values the all metric solution tends to be more stable than any of the smaller metric groupings.
This is especially true for the larger component values above k=6. These results suggest that the
use of multiple metrics results in more stable parcellations, as found in Patel et al. (2020).

The 6-component solution using all metrics is presented in Figure 5 for both the left and
right hippocampus. 4-component solutions for all smaller metric combinations shown in Figure
4B-E can be found in supplementary Figure 6.

3.7 Description of the 6-component Solution

Figure 5A depicts the winner-take-all method applied at each vertex in folded and unfolded space
for 6-components. Figure 5B shows the z-scored subject-metric weight matrices. In the following
paragraph we describe the first 3 components including their location relative to the subfields
(proximal-distal/medial-lateral axes) as well as along the anterior-posterior (longitudinal) axis. We
also describe the features which contribute to each component. We then provide a general
description of the 6-component solution as a whole rather than in parts. The left and right
hippocampus do have similar covariance patterns although the component numbers differ. We will
adopt the ordering of the left hippocampus for the rest of the paper, which we will take as reference
to the spatially analogous region in the right hemisphere (ex. The spatial location of component 1

of the left hemisphere corresponds to the location of component 2 of the right hemisphere).
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Component 1 is characterized by a cluster of vertices through the body and tail of the most
proximal edge of the subiculum and through the body and tail of CA3. This component spans
around the bottom two-thirds of the hippocampus across its anterior-posterior axis. Component 1
is characterized by high NDI, myelin, FA, and AP cosine similarity. This likely reflects the large
AP oriented fiber bundles that are myelinated such as the cingulum bundle for the proximal edge
subiculum and the fimbria for CA3.

Component 2 is characterized by vertices that are present only in the body or middle one-
third along the anterior-posterior axis of CA1. This component is characterized by high ODI,
gyrification, and PD and 10 cosine similarities. This likely reflects a high heterogeneity in fiber
orientation in CA1l.

Component 3 is characterized by vertices that cross the subiculum and CA1 in a proximal-
distal fashion in the head of the hippocampus, as well as vertices that span the anterior-posterior
body of the hippocampus at the border between the subiculum and CAL. This component is
characterized by high ODI, thickness, and 10 cosine similarity.

A general pattern is noticed when examining the whole 6-components rather than looking
at its parts. Generally, the middle one-third along the anterior-posterior axis (body) seems to have
more parcellations than the top or bottom one-third (head and tail, respectively). That is, more

parcellations exist along the proximal-distal direction in the body than do in the head or tail.
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Winner-take all output at each vertex shown in folded and unfolded space. White lines denote subfield
borders. (B) Z-scored subject-metric weight matrices across each of the 6 components, denoting the z-scored

contribution of each metric to each component. AP, PD, and 10 represent the 3 cosine similarity metrics.
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4. Discussion

In the current study we examined the microstructure of the hippocampus across its subfields using
the in vivo HCP dMRI data and NODDI, along with structural data to utilize novel surface-based
methods. We found that ODI was highest in the CA1 and subiculum subfields, likely capturing the
large heterogeneity of tangential and radial fibers. NDI and myelin were found to be strongly
correlated and were highest in the subiculum and lowest in CAL, suggesting that NODDI may
contain information about myelinated neurites. OPNNMF components appeared to capture unique
co-varying clusters within the hippocampus, with high medial-lateral and long-axis variability.
Finally, we found that by examining the main direction of diffusion relative to the three
hippocampal axes, we could elucidate unique orientations which likely correspond to specific
microstructural properties.

4.1 Dispersion of neurites in the hippocampus may reflect heterogeneous radial and tangential
neurite components

The Orientation Dispersion Index (ODI) is meant to characterize the variation in neurite orientation
around a single dominant direction at every voxel. A previous study using ODI and patch-wise
circular variance measured using histology (measures variability in neurite orientations) has shown
that both measures have lower dispersion in demyelinated lesions in patients with multiple
sclerosis, where there is reduced geometrical complexity of neurites (Grussu et al., 2017). The
hippocampal gray matter has a general distribution of microstructure that is similar to the
neocortex, with tangential (proximal-distal) and radial (inner-outer) components that follow the
curvature of the hippocampus. In the current study we showed that CA1 has the largest ODI, and
thus can be considered to have the largest heterogeneity in neurite orientations. CA1 has large
tangential neural processes, like the Schaffer collaterals and perforant path, as well as a large (yet
dispersed) radial pyramidal neurite layer (Duvernoy et al., 2013). By measuring the orientation of

the main direction of diffusion relative to the three hippocampal axes in CAl (Figure 3), we found
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either high tangential or radial diffusion, supporting the idea that ODI reflects the heterogeneity of
these components. Conversely, ODI is lower in DG/CA4, CA3, and at the most proximal edge of
the subiculum. In these regions the main diffusion direction was minimally tangential or radial,
and was largely anterior-posterior or oblique. The apparent reduction in measured heterogeneity
of tangential and radial components may potentially explain the low ODI in these regions. In the
DG/CA4 and CA3 region this could be a result of partial voluming with the nearby fimbria, and
in the subiculum it could be due to partial voluming with the nearby cingulum bundle or the
perforant path at its most proximal edge. As hypothesized in the rest of the cortex (Fukutomi et
al., 2018), it is likely that ODI in the hippocampal gray matter is largely driven by the heterogeneity
of radial and tangential neurite components.

4.2 Hippocampal neurite density is highly correlated with measures of myelin

The distribution of the NDI and myelin across hippocampal gray matter was similar, as seen in
Figure 2D and E and as shown by their strong positive correlation. While the diffusion signal is
generally agnostic to water within myelin, previous work has shown that myelinated axons restrict
diffusion to a greater degree than unmyelinated axons (Behrens & Johansen-Berg, 2014),
suggesting that NDI may reflect the density of myelinated axons. The myelin content and NDI was
largest in the body and tail of the subiculum. High myelin content in the subiculum has been noted
previously with histology (Ding & Van Hoesen, 2015). Furthermore, it is likely that the white
matter of the cingulum bundle or perforant path contribute to the large myelin content seen in the
subiculum. Conversely, myelin and NDI were lower in CA1, which is likely a result of decreased
density of pyramidal cells along the midthickness surface or the unmyelinated Schaffer collaterals
(Jurgen et al., 2011; Szirmai et al., 2012). Overall, the distribution of myelin found here agrees
with previous studies (DeKraker et al., 2018; Abraham et al., 2012). A strong positive correlation
between NDI and myelin was found previously across the cortex. However, the hippocampus was

found to have moderate values in NDI but low values of myelin when compared to the rest of the
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cortical areas (Fukutomi et al., 2018). Here we show that a strong correlation between NDI and
myelin still exists in the hippocampus when comparing them at a finer spatial scale. This
correlation is further corroborated by another cortical study at high ex-vivo resolutions in the rodent
brain, in which cortical NDI was strongly correlated with staining intensity of myelinated axons
(Jespersen et al., 2010). Histological work has found similar correlations in white matter, where
myelin content was found to be strongly correlated with axon count (Schmierer et al., 2007).
However, a recent study utilizing a multicomponent relaxometry method for imaging myelin water
fraction found no significant correlation between myelin and NDI measured using NODDI in most
white matter structures (Qian et al., 2020). While NDI and myelin do appear to be correlated in
gray matter including the hippocampus, further work is needed to examine this correlation in other
white matter structures, including white matter surrounding the hippocampus such as the fimbria,
fornix, and alveus.

4.3 Microstructure metrics follow subfield borders

Microstructural metrics such as intracortical myelin and macrostructural cortical thickness have
been shown to be useful in parcellating the neocortex into subregions (Nieuwenhuys, 2013;
Glasser et al., 2014; Glasser & Van Essen, 2011). Furthermore, using non-negative matrix
factorization of intracortical myelin, MD, and FA it was found that a 4-component solution
qualitatively resembled hippocampal subfield borders (Patel et al., 2020), suggesting that myelin
and microstructure may provide sufficient separability to parcellate hippocampal subfields. In the
current study, we qualitatively found that myelin, NDI, and ODI closely correspond to the subfield
borders (Figure 2). Critically, it appears that NDI and ODI more closely correspond to the subfield
borders then FA and MD, suggesting that NODDI may be more useful than DTI in capturing
known microstructural differences across subfields. Furthermore, the usefulness of standard DTI
in the hippocampus is likely limited since FA and MD are understated in regions of crossing fibers.

Myelin has been demonstrated previously to closely correspond to averaged subfield borders
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(DeKraker et al., 2018). To a lesser extent, macrostructure appears to also follow the subfield
borders, which has been noted previously for thickness (DeKraker et al., 2018). While thickness
is consistently low in CA3 and CAZ2, and gyrification is consistently high in CAL, these measures
alone may not differentiate all subfield boundaries. Thus, a combination of NODDI and
macrostructural measures may provide complimentary information needed for subject-specific
subfield delineation. Future studies should quantify the utility of myelin and NODDI metrics to
parcellate hippocampal subfields.

4.4 Strong correlations between NDI and MD along with ODI and FA

In the current study we found relatively strong correlations between NDI and MD and ODI and
FA (Figure 2A). A previous post-mortem study in white matter found that MD was strongly
negatively correlated with NDI (Schmierer et al., 2011). Furthermore, a correlation study in the
whole cortex found a moderate correlation between NDI and MD when using the standard b =
1000 s/mm?shell for the DTI calculation (as done here), and a strong correlation between the two
when using all shells (b = 1000, 2000, 3000 s/mm?) to fit the DTI model (Fukutomi et al., 2018).
They also found strong correlations between ODI and FA using both methods of DTI fitting.
Recently, the same group has shown that DTI parameters with lower b-values suffer from non-
negligible CSF contributions and significant partial voluming, while high b-value DTI parallels
metrics calculated by NODDI in the cortex (Fukutomi et al., 2019). Thus, future work could use
higher b-values to calculate DTI metrics where a stronger correlation with NODDI metrics would
be expected in the hippocampus.

4.5 Orientation cosine similarities may be useful in identifying hippocampal microstructure
Typical hippocampal microstructural analyses average scalar diffusion metrics (such as FA, MD,
NDI, etc.) either across whole hippocampi (van Uden et al., 2015; Salmenpera et al., 2006) or
whole subfields (Radhakrishnan et al., 2020), which are inherently non-specific towards

microstructure which exists within and across subfields. Here we quantified the main direction of
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diffusion relative to the 3 main hippocampal axes which microstructure tends to align closely with.
The orientational analyses described here have the potential to increase specificity at in vivo
resolutions by utilizing known anatomical microstructure orientation. Future studies should use
other methods of diffusion orientation representation, such as the Orientation Distribution
Function (ODF) to capture crossing fibers. The peaks of the ODF can be used to quantify the
relative amount of diffusion along the hippocampal axes which can be related to known
microstructure orientations.

Applications of the proposed orientational methods may be useful to identify
microstructure deterioration in disease states, where affected microstructure may be less
prominent, and may appear as smaller cosine similarities along a particular axis. For example,
perforant path lesions in rats caused rapid memory loss which was akin to early-stage Alzheimer’s
disease (Kirkby & Higgins, 2001). A 2010 study found deterioration of the perforant path in aged
humans using diffusion tensor imaging (Yassa et al., 2010). Perforant path degradation should
result in less attenuation of the diffusion signal along its length, which may potentially show up as
smaller PD cosine similarities specifically in the subiculum, CA3, and CALl, as there should be
less PD oriented diffusion. This may be possible for other neurological diseases where specific
microstructure is affected, such as pyramidal neurite degradation which should result in smaller
IO cosine similarities. However, to draw such conclusions, further ex vivo validation with
tractography, which has been shown to be useful in capturing the microstructure described above,

will be essential to evaluate the usefulness of this method (Beaujoin et al. 2018).

4.6 6-component OPNNMF solution displays the two main dimensions of hippocampal
organization

The hippocampus is believed to have two main interacting dimensions of organization along its
medial-lateral/proximal-distal or subfield axis, and across its long or anterior-posterior axis (see

Genon et al., 2021 for review). In the current study with a 6-component OPNNMF solution we
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found a varying number of parcellations along the medial-lateral direction, suggesting that regions
along this axis have disparate macro- and microstructural properties. Variability along this axis is
expected, as the subfields show differences in morphology, cytoarchitectonic profiles (Duvernoy
et al., 2013; Ding & Van Hoesen, 2015), and connectivity (Andersen et al., 1971). Recently there
has been interest in the long-axis organization of the hippocampus, with strong evidence coming
from anatomical and physiological recordings in rodents (Chase etal., 2015). In the current study
we found more proximal-distal (medial-lateral) parcels in the body than in the head and tail of the
hippocampus. Previous research using task-based and resting-state functional connectivity found
similar clusters, with more medial-lateral clusters in the body then in the head or tail (Plachti et
al., 2019). While the head, body, and tail are often distinguished by task-based and resting state
functional MRI (tripartite model, Genon et al., 2021), here we show that these segments along the
anterior-posterior axis can also be identified when combining multiple disparate metrics into one
decomposition.

4.7 Using a surface-based approach is ideal for characterizing the hippocampus

Accurately aligning and segmenting the hippocampus across individuals is important in order to
provide anatomically meaningful results. However, inter-individual variability in the anterior-
posterior curvature and number of digitations of the hippocampus makes alignment and
parcellation into subfields a unique challenge (Ding & Van Hoesen, 2015; ten Hove & Poppenk,
2020; DeKraker et al., 2018). The issue of inter-individual variability of the hippocampus is
typically solved in one of two ways. First, manual segmentations aim to identify landmarks that
can be seen in histology and MRI that are consistently oriented to subfield boundaries across
individuals (DeKraker et al., 2021b). However, the alignment of landmarks is highly dependent
on the slice angle of the MRI and anterior-posterior distance along the hippocampus (head, body,
tail) (DeKraker et al., 2021b). Many manual protocols will also only segment the less complex

body of the hippocampus, opting to leave out the more complex head and tail. Second, reference
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atlases can be computationally registered to fit a given subject (DeKraker et al., 2021b). This is
most commonly used in automated segmentation methods. Automated methods are advantageous
for their reproducibility, efficiency, and ability to account for curvature along the anterior-posterior
axis. However, it is typically unclear how to register hippocampi with varying numbers of
digitations. In such cases, one digitation could be stretched over multiple reference digitations, or
vice versa (DeKraker et al., 2021b). This can cause major distortions in the resulting
segmentations, losing the known contiguity of hippocampal subfields and creating issues when all
subjects are aligned to a reference space. The current approach utilized HippUnfold: a novel
surface-based tool to segment the hippocampal subfields and project hippocampi to a 2D unfolded
space where they are aligned on the basis of topology and contiguity (DeKraker et al., 2018;
DeKraker et al., 2021a). The surface-based approach used here can account for interindividual
differences in tissue curvature and digitation across the whole anterior-posterior extent of the
hippocampus (DeKraker et al., 2021b). Interpretations also become much simpler and apparent in
unfolded space compared to results in 3D native space. Furthermore, at high resolutions a surface-
based approach can allow for characterization of metrics across the laminar layers of the
hippocampus. Finally, this approach can be used to capture the head and tail of the hippocampus,
which other studies typically avoid due to its complexity.

4.8 NODDI optimization in hippocampal gray matter

NODDI has been validated by histology and ex-vivo MRI, where ODI and NDI appear to have
high construct validity (Grussu et al., 2017). However, the original parameterization of the NODDI

model assumes the intracellular and extracellular parallel diffusivity values are equal to 1.7 x

2
1073 % which is sufficient for white matter but has been shown to not be accurate in gray

2
matter. In gray matter, a parallel diffusivity value of 1.1 x 1073 % has consistently been shown

to achieve the lowest mean squared error when fitting NODDI (Guerrero et al., 2019; Fukutomi et
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al., 2018), and as such we adopted this value for our modeling here. However, no study has
examined whether this assumption holds true specifically in the hippocampus. It may not be
unreasonable to assume that the 3-layered hippocampal allocortex may have different diffusivity
values than the 6-layered neocortex. Thus, future studies should look to examine and optimize
diffusivity values in the hippocampus to improve the accuracy of NODDI metrics. Another
assumption of the NODDI model is the equality of the intracellular and extracellular parallel
diffusivity. While this assumption is seen as more valid in gray matter than white matter (Jelescu
et al., 2015, Jelescu et al., 2016), a recent study using a general framework to map microstructural

metrics including diffusivity values found that while intraneurite diffusion in gray matter was

2
around 1.1 x 1073 % the extracellular parallel diffusivity was much higher (Novikov et al.,

2018). The validity of NODDI assumptions and characterization of hippocampal diffusivity should
be investigated further in the hippocampus.

5. Conclusion

In the current study we show distinct in-vivo microstructural distributions and orientations within
and across the hippocampal subfields, something that has not been investigated with comparable
granularity up to this point. Furthermore, we provide context for the use of surface-based
approaches to investigate hippocampal microstructure.

Our findings have several important implications for future work. The hippocampus is
particularly vulnerable to certain neurological diseases such as Alzheimer ’s disease and epilepsy,
in which it is often one of the earliest aberrant structures (Dhikav et al., 2012). Examining the
microstructure of the hippocampus at fine spatial resolutions in the simplified unfolded space, as
done in this study, may provide potentially useful clinical imaging markers of hippocampal
integrity. Furthermore, we noticed relatively large radial and tangential components of diffusion
mainly in CAl and the subiculum. Future work could attempt to tease apart these two

orientationally distinct populations, providing estimates which may be useful to examine
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microstructurally specific deterioration. Furthermore, using the same orientation methods in this
study, future work should focus on capturing multiple microstructure orientations as the
hippocampus contains many crossing fibers. Future work could also relate all the identified
OPNNMF components to demographic and cognitive variables to identify if there is a relationship
between variability in cognitive performance and variability in the metrics used in this study.
Finally, the macro- and microstructural metrics observed in this study appear to show good
separability between hippocampal subfields, suggesting they may be useful in future subfield
parcellations.
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Supplementary Figure 1. Plots of the standard deviations for macro- and microstructure metrics
on averaged hippocampal midthickness surfaces in folded and unfolded space for left and right
hemispheres. (A) Left and right hippocampal subfields from a manual segmentation of a
histological reference (Ammunts et al., 2013; DeKraker et al., 2020). Unfolded space is shown in
the same orientation for left and right hemispheres. DG - Dentate Gyrus, CA - Cornu Ammonis.
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(B,C) Orientation Dispersion Index (ODI) and Neurite Density Index (NDI) from NODDI. White
lines represent subfield borders shown in (A). (D) Myelin content. (E,F) Diffusion Tensor
Diffusivity (MD). (G-I)

Imaging metrics of Fractional Anisotropy (FA) and Mean
Macrostructure measures of thickness, gyrification, and curvature.
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Supplementary Figure 2. Diffusion Tensor Imaging (DTI) metrics and their correlations with
Neurite Orientation Dispersion and Density Imaging (NODDI) metrics. (A) Correlation between
ODI and NDI grouped by ranges of FA values. (B) Correlation between MD and NDI grouped

by ranges of ODI values.
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Supplementary Figure 3. Standard deviation of the cosine similarities between hippocampal
axis vectors and NODDI vectors. Cosine similarities were sampled across the midthickness
surface and are plotted on averaged surfaces.
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Thinnest Subiculum Thickest Subiculum

Region of the coherent perforant path

Supplementary Figure 4. Depicting the thinnest and thickest subiculum (purple subfield label)
out of all 100 subjects plotted on top of the native space ODI image. Blue arrows point to regions
of low dispersion which correspond to the highly coherent perforant path/angular bundle. Partial
voluming can be seen with the thinnest subiculum, as lower ODI values from the perforant
path/angular bundle are present in the gray matter. The thickest subiculum shows less partial
voluming.
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Supplementary figure 5. Varying the component value using all metrics for the NMF solution
on the midthickness surface for left and right hippocampi. Winner-take all output at each vertex
shown in folded and unfolded space at the top row of each box. White lines denote subfield
borders. Bottom row in each box denotes the z-scored contribution of each metric for each
component. (A) 4-component solution. (B) 5-component solution. (C) 6-component solution. (D)
7-component solution.
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Supplementary figure 6. Varying the input metrics for the NMF solution on the midthickness
surface for left and right hippocampi using a 4-component solution. Winner-take all output at
each vertex is shown in folded and unfolded space at the top row of each box. White lines denote
subfield borders. Bottom row in each box denotes the z-scored contribution of each metric for
each component. (A) ODI, NDI, myelin input matrix. (B) FA, MD, myelin input matrix. (C)
Macrostructure (gyrification, thickness, and curvature) input matrix. (D) Cosine similarity (AP,
PD, and IO) input matrix.
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