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Abstract 
The hippocampus is classically divided into mesoscopic subfields which contain varying 

microstructure that contribute to their unique functional roles. It has been challenging to 

characterize this microstructure with current MR based neuroimaging techniques. In this work, 

we used a novel surface-based approach in the hippocampus to show distinct microstructural 

distributions of myelin, neurite density and dispersion, fractional anisotropy, and mean diffusivity 

using diffusion MRI. To get at this issue we used the Neurite Orientation Dispersion and Density 

Imaging (NODDI) model optimized for gray matter diffusivity and diffusion tensor imaging 

(DTI). We found that neurite dispersion was highest in the Cornu Ammonis (CA) 1 and subiculum 

subfields which likely captures the large heterogeneity of tangential and radial fibers, such as the 

Schaffer collaterals, perforant path, and pyramidal neurites. Neurite density and myelin content 

were highest in the subiculum and lowest in CA1, which may reflect known myeloarchitecture 

differences between these subfields. We show macrostructural measures of gyrification, 

thickness, and curvature which were in line with ex vivo descriptions of hippocampal anatomy. 

We employed a multivariate orthogonal projective non-negative matrix factorization (OPNNMF) 

approach to capture co-varying regions of macro- and microstructure across the hippocampus. 

The clusters were highly variable along the medial-lateral (proximal-distal) direction, which is 

expected as there are known differences in morphology, cytoarchitectonic profiles, and 

connectivity. Long-axis (anterior-posterior) differences can also be seen in the OPNNMF 

components, where the body of the hippocampus has more parcellations than the head and tail. 

Finally, we show that by examining the main direction of diffusion relative to canonical 

hippocampal axes, we could identify microstructure that may map onto specific tangential fiber 

pathways, such as the Schaffer collaterals and perforant path. These results highlight the value of 

combining in vivo diffusion MRI with computational approaches for capturing hippocampal 

microstructure, which may provide useful features for understanding cognition and for diagnosis 

of disease states. 
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1. Introduction 

The hippocampus is classically divided into mesoscopic subfields according to differences in cyto-

, myelo-, and chemoarchitecture defining structurally distinct units (Duvernoy et al., 2013; Ding 

& Van Hoesen, 2015). The neurites and fiber pathway circuitry that compose the microstructure 

of the hippocampus exist within and across the subfields. For example, the pyramidal neurites that 

exist within the Cornu Ammonis (CA) and subiculum subfields have apical and basal dendrites 

which project across the layers or laminae, while their axons project to the alveus, a major white 

matter bundle adjoining the hippocampus. The trisynaptic pathway is the major circuitry 

component which connects the subfields of the hippocampus. The entorhinal cortex connects to 

the dentate gyrus (DG) and other subfields through the perforant path. The DG then projects to the 

pyramidal neurites of CA3 through the mossy fibers, which then project to CA1 through the 

Schaffer collaterals. Finally, CA1 projects to the subiculum and back to the entorhinal cortex as 

the main hippocampal outflow. Hippocampal microstructure is key in producing unique cognitive 

functions such as memory formation and storage and spatial navigation among others (Voss et al., 

2017; Goodroe et al., 2018; Horner et al., 2015). Furthermore, the hippocampus is typically one of 

the earliest aberrant structures in many disease states where specific microstructural properties are 

differentially afflicted or spared (Moodley & Chan, 2014; Dhikav & Anand, 2012; Small et al., 

2011). While much work has addressed volumetric characterization of the hippocampus, 

understanding hippocampal microstructure can provide key insights into its complex cognitive 

functions as well as its early deterioration in disease. 

Diffusion magnetic resonance imaging (dMRI) is a particular technique which holds 

promise in probing the hippocampal circuitry by sensitizing the measured MRI signal to the 

movement of water molecules, which diffuse more readily parallel to microstructure. Several 

models have been proposed that attribute measures of the dMRI signal to compartments which 

have varying diffusivity environments (Assaf et al., 2008; Assaf & Basser, 2005; Zhang et al., 
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2012). One of the earliest and most widely used models proposed by Basser et al. (1994) is 

diffusion tensor imaging (DTI). DTI estimates quantitative parameters such as fractional 

anisotropy (FA - a measure of the restriction of diffusion), mean diffusivity (MD), and the 

ellipsoidal orientation of the diffusion process. However, DTI has some notable limitations. At 

increasing b-values (approximately greater than 1000-1500 𝑠/𝑚𝑚2) there is contribution from 

multiple compartments with varying diffusivities (such as restricted intracellular water), which is 

beyond the monoexponential decay assumptions of DTI (Assaf & Cohen. 2000). As well, regions 

of crossing fibers result in planar DTI ellipsoids with understated FA values (Campbell et al., 

2005). Furthermore, DTI measures are sensitive to multiple microstructural properties at the same 

time, decreasing its specificity (Pierpaoli et al., 1996). Newer models aim to utilize the dependence 

of the diffusion signal attenuation to varying sets of biophysically motivated compartments. 

One of the most popular compartmental models is Neurite Orientation Dispersion and 

Density Imaging (NODDI), which aims to provide a biophysical interpretation of the diffusion 

signal (Zhang et al., 2012). NODDI assumes that three microstructural environments consisting of 

an intra-cellular, extra-cellular, and cerebrospinal fluid (CSF) compartment contribute to the 

diffusion signal. The intracellular compartment is modeled as a set of infinitely anisotropic sticks 

(diffusion can only be parallel to the main orientation of the stick), while the extracellular 

compartment is modeled as a zeppelin with hindered diffusion perpendicular to its main axis. The 

CSF compartment is modeled as a sphere with gaussian isotropic diffusion. Diffusion is assumed 

to be contained separately within each compartment, where the resulting signal is the sum of all 

compartments. NODDI aims to overcome the limitations of DTI by providing microstructural 

scalars such as the neurite density index (NDI) and orientation dispersion index (ODI) which are 

sensitive to fiber crossings and are biophysically grounded (Zhang et al., 2012). 

Extant work has attempted to examine hippocampal microstructure with DTI and NODDI. 

Some such studies have found age-related deterioration of hippocampal microstructure by 
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averaging NODDI measures within subfields (Radhakrishnan et al., 2020) while others have 

shown regionally specific deterioration using DTI (Yassa et al., 2010). Another study investigated 

the variation of DTI and intracortical myelin across the hippocampus using non-negative matrix 

factorization, however, they did not make quantitative comparisons of microstructure within and 

across the subfields (Patel et al., 2020). A recent cortical study examined the distribution of 

NODDI metrics and cortical thickness across the entire cerebral cortex including the hippocampus 

by averaging metrics across all subjects within each cortical parcel (Fukutomi et al., 2018). Thus, 

they only examined coarse-grained averages across the entire hippocampal volume. The 

distributions of NODDI and DTI measures have not been extensively investigated within the 

hippocampal subfields and across its longitudinal axis. 

The orientation and trajectory of the hippocampal circuitry including the trisynaptic circuit 

has been probed previously using tractography and polarized light imaging (PLI). Ex-vivo work 

has indeed resolved all or part of the hippocampal circuitry using dMRI tractography (Beaujoin et 

al., 2018) and PLI (Zeineh et al., 2017) in a small number of samples. While these studies serve as 

ground-truth references for the orientation of hippocampal circuitry, a difficult step has been 

recapitulation of this circuitry in-vivo, which is critical for characterization of variability associated 

with healthy and disease states. Some in-vivo work has attempted to use DTI to capture parts of 

the trisynaptic circuit such as the perforant path (Yassa et al., 2010) or the whole hippocampal 

circuitry (Zeineh et al., 2012). However, it is unclear whether the found trajectories are 

anatomically valid. Furthermore, at lower resolutions, tracts can be spurious requiring complex 

acquisition and correction schemes, and since acquisitions can vary across studies, tractography 

practically always requires separate optimization of its parameters (Zeineh et al., 2012). Improved 

understanding of hippocampal microstructure in-vivo requires granular investigation of metrics 

derived from common models like NODDI and DTI within and across the subfields, as well as 

characterization of the main orientation of the microstructure that is used for tractography. 
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In the current study, we examined the spatial distribution of NODDI and DTI metrics, 

intracortical myelin, and macrostructural features of thickness, gyrification, and curvature across 

the hippocampus using high-resolution in vivo human connectome project (HCP) data (Van Essen 

et al., 2013). Furthermore, we use Orthogonal Projective Non-Negative Matrix Factorization 

(OPNNMF) as a multivariate approach to capture regions of the hippocampus where these metrics 

co-vary. We aimed to compare the current OPNNMF representation to previous work which has 

looked to examine the dimensions of hippocampal organization along its medial-lateral (across 

subfields) and anterior-posterior (longitudinal) axes (Genon et al., 2021; Robinson et al., 2015; 

Zhong et al., 2019; Cheng et al., 2020; Plachti et al., 2019; Plachti et al., 2020; Patel et al., 2020, 

DeKraker et al., 2020). We utilized a novel surface-based subfield segmentation approach called 

HippUnfold (DeKraker et al., 2018; DeKraker et al., 2021a). The goal of surface-based alignment 

is to project hippocampi to a 2D flat/unfolded surface. Using a surface-based approach can account 

for interindividual differences in tissue curvature and digitation across the whole anterior-posterior 

extent of the hippocampus (DeKraker et al., 2021b). Hippocampi in unfolded space are aligned 

based on topology and the contiguity of subfields, allowing unprecedented anatomical detail. 

Finally, hippocampal gray matter shows a laminar distribution similar to that of other cortical areas 

with large radial and tangential neurite components, although the highly curved structure of the 

hippocampus is reflected in the complexity of its neurite orientations. Importantly, these neurite 

orientations tend to be highly aligned along one of the axes of the hippocampus that span the 

anterior-posterior (AP longitudinal), proximal-distal (PD - across subfields), or inner-outer (across 

laminae) directions (Figure 1A and B). HippUnfold provides a coordinate system along these three 

axes. Thus, we also aimed to determine if the known stereotyped orientations of microstructure 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.07.29.502031doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502031
http://creativecommons.org/licenses/by/4.0/


7 

 

can be elucidated by analyzing their primary orientation along each of the axes in vivo, as depicted 

in Figure 1B. 

Figure 1. Depicting hippocampal structural axes, the stereotyped organization of microstructure, 

and diffusion vectors of the hippocampus. (A) A coronal slice depicting the structural axes of the 

hippocampus defined as anterior-posterior (AP), proximal-distal (PD), and inner-outer (IO) 

provided by HippUnfold. (B) Known microstructural circuits within the hippocampus and their 

main orientation relative to the hippocampus, defined by the colour coded legend on the right. (C) 

Primary diffusion directions for one subject (μ of the watson distribution from NODDI) overlaid 

on a coronal slice of hippocampal subfields provided by HippUnfold. (D) Pictorial example 

representing the NODDI and hippocampal axis vectors in a single voxel defined in (C). Cosine 

similarities are represented as the angle between the NODDI vector and each hippocampal vector, 
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providing a measure of orientation coherence along each cardinal axis (see 2.5). Sub - Subiculum, 

CA - Cornu Ammonis, DG - Dentate Gyrus, SRLM - Stratum Radiatum Lacunosum Moleculare, 

ETC - Entorhinal Cortex. 

2. Methods 

2.1 Overview 

A subset of 100 unrelated subjects from the publicly available Human Connectome Project (HCP) 

1200 dataset were used for this study (Van Essen et al., 2013). All 100 subjects were run through 

HippUnfold (DeKraker et al., 2021a), a new automated tool for surface-based subfield 

segmentation and hippocampal unfolding (see 2.3; DeKraker et al., 2018). The coordinates 

generated from HippUnfold within each subject were used to calculate vector fields along each 

main axis of the hippocampus (see 2.3 & Figure 1A). NODDI and DTI metrics were calculated in 

each subject's native space using whole-brain diffusion images (see 2.2 and 2.4). Cosine 

similarities between the NODDI orientational vector (defined as μ of the Watson distribution see 

2.4) and the vectors along each of the 3 axes (AP, PD, and IO) were calculated at each voxel. 

Macrostructural measures of curvature, gyrification, and thickness were calculated along the 

midthickness surface (middle of the hippocampal gray matter) of the hippocampus across all 

subjects (see 2.6). NODDI measures of ODI and NDI, DTI measures of FA and MD, and the cosine 

similarities were all sampled along the midthickness surface within each subject and averaged in 

unfolded space (DeKraker et al., 2018). Plots of NODDI and DTI metrics, cosine similarities, and 

macrostructure metrics across the midthickness surface were visualized as folded and unfolded 

surfaces. Finally, Orthogonal Projective Non-Negative Matrix Factorization (OPNNMF) was used 

to capture co-varying regions of the hippocampus and to examine the dimensions of macro- and 

microstructure hippocampal organization. 
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2.2 Data acquisition and preprocessing 

We used the publicly available HCP young adult dataset (ages 22-35), which consisted of structural 

and diffusion MRI data for 1200 subjects (Van Essen et al., 2013). To avoid any biases caused by 

family structures, we chose the 100 unrelated subjects subset for analysis (mean age: 27.52 years 

+/- 3.47 years; F/M: 54/46). Data included T1-weighted (T1w) and T2-weighted (T2w) structural 

images at 0.7 mm3 isotropic resolution and diffusion-weighted data at 1.25 mm3 isotropic 

resolution. Structural images were obtained using a 3D MPRAGE sequence (TR-2400ms, TE–

2.14ms, TI-1000ms, FOV-224x224 mm). Diffusion images were obtained using a spin-echo echo-

planar sequence (b=0 (18 acquisitions), 1000, 2000, 3000s/mm2, 90 diffusion-encoding directions, 

TR-5520ms, TE-89.5ms, FOV-210x180mm). Data used in the preparation of this work were 

obtained from the Human Connectome Project (HCP) database (Van Essen et al., 2013). In this 

work we utilized the preprocessed structural and diffusion images for the HCP dataset. 

Preprocessing of structural images included: gradient distortion correction, coregistration and 

averaging of repeated T1w and T2w runs using 6-DOF rigid transformation, initial brain 

extractions for T1w and T2w, field map distortion correction and registration of T2w with T1w 

images, bias field correction, and atlas registration. Preprocessing of diffusion images included: 

intensity normalization across runs, EPI distortion correction, eddy current and motion correction, 

gradient nonlinearity correction, and registration of the mean b0 image to T1w native space. The 

full pre-processing pipeline for structural and diffusion images were published elsewhere 

(Andersson et al., 2015; Glasser et al., 2013; Jenkinson et al., 2002; Sotiropoulos et al., 2013) and 

can be found at the HCP website 

(https://www.humanconnectome.org/study/hcp-young-adult). Myelin maps were calculated by 

dividing the T1w image intensity by the T2w image intensity and correcting for the bias field 

(Glasser & Van Essen, 2011; Glasser et al., 2014), which is referred to as myelin for the rest of the 
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paper. It should be noted that the T1w over T2w image ratio is thought to be sensitive to myelin 

but is an indirect measure. 

2.3 HippUnfold - Hippocampal Unfolding and surface-based segmentation 

The newly developed HippUnfold (DeKraker et al., 2021a) tool was used in the current study. The 

general steps of HippUnfold are: 1) preprocess and resample T2w images to a cropped subvolume 

at 0.3mm3 isotropic resolution for the left and right hemispheres, 2) automatically segment 

hippocampal gray matter tissue via a custom model trained with nnUNet, a generalizable 

implementation of a neural network U-Net architecture (Isensee et al., 2020), 3) post-processing 

via fluid-label registration to a topologically averaged template, 4) impose coordinates by solving 

Laplace’s equation along the AP, PD, and IO axes, 5) extract gray matter macrostructural features 

such as curvature, gyrification, and thickness along the midthickness surface which is defined by 

Laplacian coordinates (see 2.6), 6) generate transformations from native to unfolded space using 

the Laplace coordinates and scattered interpolation, and finally, 7) apply subfield boundaries 

according to predefined topological coordinates from an unfolded high-resolution ground-truth 

atlas (DeKraker et al., 2020). Due to the small size of the Dentate Gyrus (DG) and CA4, we 

combined them into a single DG/CA4 subfield label. As well, most of the DG is excluded in our 

surface representation. All subfield segmentations for both hemispheres were reviewed for gross 

errors by BK. The midthickness surfaces used in this study were composed of 2004 vertices with 

a spacing of roughly 1mm. Each vertex is inherently aligned across subjects in unfolded space 

since the generation of the Laplace coordinates used the same topological boundaries. Thus, this 

implicit topological registration allows for the averaging of metrics across subjects at each vertex. 

2.4 Characterization of microstructure with NODDI & DTI 

NODDI models the diffusion signal as a combination from 3 microstructural environments: 

intracellular, extracellular, and cerebrospinal fluid (CSF) (Zhang et al., 2012). The intracellular 

compartment is considered the space that is bounded by neurites, which is modelled as a set of 
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sticks. The stick geometry captures the restricted diffusion of water perpendicular to neurites, and 

the relatively unhindered diffusion along them. Furthermore, sticks can capture the wide range of 

neurite orientations, from highly coherent to highly dispersed tissue. The extracellular 

compartment is the space around the neurites, which consists of glial cells and in gray matter, the 

somas. In extracellular space, the signal is modeled as Gaussian anisotropic diffusion to represent 

the hindered but not restricted movement of water. Finally, the CSF compartment is modelled as 

Gaussian isotropic diffusion, representing the free movement of water. NODDI does not draw any 

a priori assumptions about whether a voxel is gray matter, white matter or CSF, and thus it treats 

each voxel as a possible combination of different compartments (Zhang et al., 2012). Thus, the 

normalized dMRI signal can be written as: 

              𝐸𝑁𝑂𝐷𝐷𝐼 =  𝑓𝑖𝑠𝑜𝐸𝑖𝑠𝑜(𝑑𝑖𝑠𝑜) + 𝑊(𝜇, κ)[𝑓𝑒𝑐𝐸𝑒𝑐(𝑑𝑝𝑒𝑟𝑝, 𝑑𝑝𝑎𝑟) +  𝑓𝑖𝑐𝐸𝑖𝑐(𝑑𝑝𝑎𝑟)]         (1)      

Where 𝑓𝑖𝑠𝑜𝐸𝑖𝑠𝑜 , 𝑓𝑒𝑐𝐸𝑒𝑐 and 𝑓𝑖𝑐𝐸𝑖𝐶 are the volume and signal fractions of the CSF, extracellular, and 

intracellular (NDI) compartments, respectively. The extracellular and intracellular compartments 

are linked orientationally by the Watson distribution 𝑊(𝜇, κ) , where κ  is the concentration 

parameter (ODI =  
2

𝜋
arctan(

1

κ
)) and 𝜇 is the mean orientation of the Watson distribution (herein 

referred to as the NODDI microstructural vector or primary diffusion direction). The hindered 

perpendicular diffusion of the extracellular compartment 𝑑𝑝𝑒𝑟𝑝 is set via a tortuosity model. The 

original NODDI model developed mainly for white matter sets the parallel diffusivity value 𝑑𝑝𝑎𝑟 

equal to 1.7 × 10−3 𝑚𝑚2

𝑠
 and the isotropic or CSF compartment diffusion to 3.0 × 10−3 𝑚𝑚2

𝑠
. 

Previous studies in the gray matter have sought to optimize 𝑑𝑝𝑎𝑟, and have consistently found that 

the lowest mean squared error is achieved with 𝑑𝑝𝑎𝑟 equal to 1.1 ×  10−3 𝑚𝑚2

𝑠
  (Guerrero et al., 

2019; Fukutomi et al., 2018).  Thus, in the current study we used the gray matter optimized  𝑑𝑝𝑎𝑟 

value of 1.1 × 10−3 𝑚𝑚2

𝑠
 for fitting the NODDI model. The Microstructure Diffusion Toolbox 
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(MDT; Harms et al., 2017) was utilized to fit the NODDI model using whole-brain diffusion 

images aligned to their respective T1w space with all b-values (b=0, 1000, 2000, 3000 s/mm2). 

MDT can fit models using Maximum Likelihood Estimation to get a point estimate on all 

parameters or Markov Chain Monte Carlo sampling to recover the full posterior distribution of 

model parameters. The validity of the assumptions of the NODDI model are discussed in section 

4.8.  

 We also used the MDT (Harms et al., 2017) to calculate metrics of FA and MD using DTI. 

DTI was performed using only the 𝑏 = 1000 
𝑠

𝑚𝑚2 volumes to align with typical DTI experiments 

(Behrens & Johansen-Berg, 2014). Both the NODDI and DTI metrics were mapped onto the 

hippocampal midthickness surface using the process described below.  

We used Connectome Workbench (https://github.com/Washington-

University/workbench) to sample values at each surface vertex from voxel data. In this study we 

used 2004 vertices defined along the midthickness surface of the hippocampus to reduce partial 

volume effects. To sample voxel data along the midthickness surface we used a ribbon-constrained 

mapping algorithm which also requires the inner and outer surfaces also generated by HippUnfold. 

The ribbon method constructs a polyhedron from the vertex’s neighbor on each surface defined, 

and then estimates the volume of the polyhedron that falls inside any nearby voxels to use as 

weights. We further reduced the weight of any particular voxel based on its distance from the 

midthickness surface, where the scaling value was calculated using a Gaussian with a standard 

deviation (sigma) determined by the cortical thickness at each vertex. This has the effect of more 

aggressively down-weighting voxels further from the midthickness surface where the 

hippocampus is thinner. We then averaged each metric at each vertex across all subjects to generate 

the average maps which were plotted in folded and unfolded space. 
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2.5 Examining the primary direction of diffusion relative to hippocampal axes 

Analyses were performed to attempt to capture the stereotyped orientation of hippocampal 

microstructure which tends to be highly aligned along the AP, PD, and IO axes. We obtained 

vector fields along the AP, PD, and IO axes by taking the first derivative of the respective 

Laplacian coordinates provided by HippUnfold (Figure 1A), such that the vectors only pointed 

along one of the axes. This was done within cropped subvolumes for each subject separately for 

the left and right hemispheres. The result was 3 distinct vector images within a hemisphere for 

each subject and axis. The NODDI microstructural vectors were rotated to the same cropped 

subvolume space from their native T1w space. We then calculated cosine similarities between the 

generated vectors along the AP, PD, and IO axes and the NODDI microstructural vector at each 

voxel (Figure 1C & D). All vectors were normalized before calculating cosine similarities. The 

cosine similarity was defined as the inner product between vectors: 

                                                                         𝑎𝑏𝑠 (
𝑎 ̅∙ 𝑢

|𝑎̅| |𝑢|
)                                                                   (2) 

Where 𝑎̅ was a hippocampal axis vector in a single voxel (AP, PD, or IO), and 𝑢̅ was the NODDI 

microstructural vector (𝜇 of the Watson distribution) at the same voxel. We constrained the range 

of cosine similarity values to be between 0 and 1 (representing angles of 90 degrees to 0 degrees 

between vectors, respectively) since the vectors cross each other in each voxel.  

All cosine similarities were calculated in an upsampled (0.3 mm3) subject-specific cropped 

subvolume space in each hemisphere. There were a total of 3 cosine similarity images (one for AP, 

PD, and IO similarity values) within each hemisphere for each subject. Each scalar cosine 

similarity image was sampled along the midthickness surface. In the topologically aligned 

unfolded space, we averaged cosine similarities across all subjects for the left and right 

hemispheres separately. 
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2.6 Correlations between all metrics 

Correlations were performed at the level of the vertex averaged maps. Pearson’s R correlation 

between all metrics were calculated using vertices averaged across all participants (Figure 2C-J 

average maps) and across both left and right hemispheres. Before removing outliers, there were 

2004 averaged vertices to be correlated between any two metrics. Outlier values were removed by 

identifying vertices that were +- 3 standard deviations away from their respective metrics mean. 

Since these correlations were mainly exploratory, we did not report a single cut-off alpha value to 

be used to determine significance. 

2.7 Orthogonal Projective NNMF (OPNNMF) 

Orthogonal Projective NNMF (OPNNMF) was used in this work to attempt to identify co-varying 

regions in the hippocampus using the metrics described above (Sotiras et al., 2015; Yang & Oja, 

2010). OPNNMF decomposes an input matrix X of dimensions a x b into a component matrix C 

(a x k) and a weight matrix W (k x b). The number of components (k) is defined a priori. The 

component and weight matrices are derived such that their multiplication best reconstructs the 

input data (X ~ C x W). OPNNMF solves the following minimization problem to estimate C 

(Sotiras et al., 2015):  

                              ‖𝑋 − 𝐶𝐶𝑇𝑋‖2 subject to 𝐶 ≥ 0, 𝐶𝑇𝐶 = 𝐼, and 𝑊 = 𝐶𝑇𝑋                       (3) 

Where || || 2  represents the squared Frobenius norm and I denotes the identity matrix which 

enforces orthogonality among C.  C is first initialized using a non-negative double singular value 

decomposition (Boutsidis & Gallopoulos, 2008).  Then, C is updated through an iterative process 

until it converges on an optimal solution. The iterative multiplicative update rule is as reported by 

Yang and Oja (2010): 

                                                      𝐶̀𝑖𝑗 = 𝐶𝑖𝑗

(𝑋𝑋𝑇𝐶)𝑖𝑗

(𝐶𝐶𝑇𝑋𝑋𝑇𝐶)𝑖𝑗
                                                               (4) 
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Where i represents the number of vertices and j represents the number of components. The 

component matrix C represents the latent structure in the data and allows for an examination of 

the underlying covariance in multivariate data. As done in Patel et al. (2020) the sparse and non-

overlapping component matrix allows for each vertex to be assigned an output component using a 

winner take all method which improves the interpretability of the spatial output components.  The 

weight matrix W represents the subject-metric coefficients, allowing for an examination of subject-

specific and metric-specific contributions to each component.  

2.8 Implementing OPNNMF 

A total of 11 metrics were included in the OPNNMF implementation (ODI, NDI, myelin, FA, MD, 

gyrification, thickness, curvature, AP cosine similarity, PD cosine similarity, IO cosine similarity) 

with subsets of these metrics used for more specific analyses (i.e. NODDI only, DTI only, 

macrostructure only, and cosine similarity only). The input matrix X was built using all 2004 

vertices of the midthickness surface in unfolded space for all 11 metrics across all 100 subjects per 

hemisphere. That is, each subject contributed 11 unfolded space maps to the input matrix. Thus, 

the input matrix had 1100 columns (100 subjects x 11 metrics - defined as subject-metrics) and 

2004 rows (2004 vertices) for a single hemisphere. Normalization was required since the metrics 

had varying magnitudes. First, each metric was z-scored within each hemisphere. Then, each z-

scored metric distribution was shifted by the minimum value from all the z-scored metrics to 

ensure all metrics were on the same scale and there were no negative values. All distributions were 

manually inspected to ensure the minimum value used was not an outlier. 

OPNNMF was implemented using publicly available and open MATLAB code at 

https://github.com/asotiras/brainparts (Sotiras et al., 2015; Yang & Oja, 2010; Boutsidis & 

Gallopoulos, 2008; Halko et al., 2011). OPNNMF was run with a max number of iterations = 

10000, tolerance = 0.00001, and non-negative double singular value decomposition initialization. 
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2.9 Stability & Reconstruction Error 

The quantification of OPNNMF decomposition stability followed that of Patel et al. (2020). 

Stability was assessed by examining the similarity of the spatial component matrix C across 

varying splits of data. All 100 subjects were randomly split into two groups of equal sizes. 

OPNNMF was then performed on each split independently. A within-split similarity matrix was 

then derived by multiplying a particular splits component matrix by the transpose of itself (i.e. a 

cosine similarity). The result is a 2004x2004 (number of vertices x number of vertices) matrix 

where each row contains the cosine similarity of component scores between a vertex and all other 

vertices. Finally, a Pearson’s correlation coefficient was calculated across the rows of the cosine 

similarity matrix between splits to quantify if the decomposition maintained the relationships 

between vertices. The above process was repeated 6 times, each with a new random split of the 

data. The mean and standard deviation of the correlation coefficient was taken across all vertices 

and splits for a given component solution. A correlation of 1 represented perfect stability (i.e. each 

split of the data had perfect correspondence between vertex relationships), whereas -1 represented 

instability. The above process was then repeated for different component decompositions, from 

k=2 to k=12. Reconstruction error was calculated through 3-steps. First, the component matrix C 

and the weight matrix W were estimated and then multiplied together to return the reconstructed 

input matrix. The original and reconstructed input matrix were then subtracted to obtain a 

reconstruction error matrix. The Frobenius norm of the reconstruction error matrix was then taken 

to get the reconstruction error. The gradient in the reconstruction error was taken across solutions 

with varying component numbers to assess the magnitude of the improvement in reconstruction 

error when adding more components. 

2.10 Interpreting OPNNMF 

The output component matrix C contains a component value for each vertex while the weight 

matrix W describes how each subject-metric is projected onto each component. A large value in 
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the component matrix can be interpreted as a particular vertex being identified as a part of the 

variance pattern. The weight matrix can be used to elucidate which metrics contributed to each 

component as well as inter-subject variance within metrics. In the current study these 2 matrices 

were used to explore spatial patterns and the contributions of particular metrics to each component. 

A winner-take-all method was used where a vertex was assigned the integer of the component with 

the highest component weighting value from the matrix C. The whole matrix W was plotted to 

examine metric-specific trends. 

3. Results 

The results begin with qualitative descriptions of average macro- and microstructural measures 

and their correlations on the midthickness hippocampal surface (middle of the hippocampal gray 

matter). We then present the cosine similarities between NODDI microstructure vectors and the 

hippocampal axis vectors. Finally, we present the OPNNMF results including the stability analysis 

and a 6-component solution.  

3.1 Distributions of Hippocampal Metrics 

Figure 2 presents Pearson’s R correlations, mean macro- and microstructural metrics, along with 

subfield segmentations shown on an averaged hippocampal midthickness surface in folded and 

unfolded space. The standard deviation of these metrics is shown in supplementary Figure 1. The 

dispersion of neurites (ODI - Figure 2C) is highest in the anterior and middle parts of CA1 and the 

distal parts of the subiculum, while dispersion is lower in the middle and posterior of CA3 and 

CA2 and at the most proximal edge of the subiculum. Much like the neocortex, large radial and 

tangential components exist across the hippocampal subfields (Duvernoy et al., 2013). Tangential 

microstructure such as the Schaffer collaterals and most of the perforant path along with radial 

microstructure such as the pyramidal neurites all contribute to the high orientational heterogeneity 

seen in CA1 and the subiculum (Figure 1C), which likely drives the increased ODI seen there (see 

4.1). Neurite density (NDI - Figure 2D) is largest in the body and tail of the subiculum, while there 
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is lower neurite density in CA1. The low density in CA1 is likely a result of the large pyramidal 

cell layer with the pyramids themselves noted as being widely separated, compared to the higher 

density of neurites in CA2 and CA3 (Jürgen et al., 2011). Myelin has a strikingly similar 

distribution to that of NDI, as found in previous cortical studies (Figure 2E Fukutomi et al., 2018). 

Myelin, ODI, and NDI maps appear to strongly agree with subfield borders. 

Macrostructure features of thickness, gyrification, and curvature are shown in Figure 2H-

J. Gyrification is largest in anterior CA1 and the DG/CA4. The thickest regions are the anterior 

and posterior of the subiculum and CA1, as well as throughout the DG/CA4, while CA3 and CA2 

are thin. Curvature tends to be highest in the anterior part of the subiculum, along the spine of the 

hippocampus (red arrows in Figure 2H), and in CA3. The macrostructural measures appear to vary 

greatly across the subfields (PD) and longitudinal (AP) axes. These findings are largely in line 

with previous work (DeKraker et al., 2020). 

Correlations between these metrics can be seen below the diagonal in Figure 2A and will 

be described in the below sections. 

3.2 Correlations between NODDI metrics & myelin 

In Figure 2D and E, strong qualitative similarities can be seen between NDI and myelin. Both are 

high in the subiculum and CA3/CA2 regions, while hypointensities are noted in CA1. A strong 

positive correlation is seen between NDI and myelin (R = 0.86, p < 0.0000001, Figure 2A). 

Although, it has been shown previously that the hippocampal NDI and myelin do not follow the 

same relationship as other cortical areas after averaging across the whole hippocampal volume 

(low myelin with high NDI compared to rest of cortex Fukutomi et al., 2018). Here we show that 

a strong correlation still exists between the two when looking more granularly. 

ODI (Figure 2C) and NDI (Figure 2D) are moderately to strongly correlated (R = -0.31, p 

< 0.0000001). This correlation has also been noted across the entire cortex (Fukutomi et al., 2018). 
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3.3 Correlations between NODDI & DTI metrics 

Qualitatively, the map of FA (Figure 2F) closely resembles the inverse of the ODI map (Figure 

2C) while also following the NDI map (Figure 2D). Particularly, the distinct pattern of high 

dispersion appears as low FA, while high neurite density appears as high FA. Furthermore, the 

map of MD (Figure 2G) generally resembles the inverse of the NDI map (Figure 2D). The border 

of CA2/CA1 has a distinctly low NDI which translates into an increased MD. ODI and FA are 

strongly correlated (R = -0.85, p < 0.0000001), and ODI and MD are weakly correlated (R = -0.10, 

p < 0.0001). Furthermore, NDI and FA are strongly correlated (R = 0.67, p < 0.0000001) and NDI 

and MD are moderately to strongly correlated (R = -0.40, p < 0.0000001). 

A disentangling of FA as determined by ODI and NDI has been reported previously in 

cortical gray matter (Zhang et al., 2012). Two voxels with different neurite densities can have the 

same FA as long as the one with the larger neurite density also has the larger dispersion (Zhang et 

al., 2012). We report a similar level of disentangling within the hippocampus in supplementary 

Figure 2A. 

3.4 Correlations between macrostructure and NODDI metrics 

Thickness and NDI are moderately correlated (R = -0.25, p < 0.00001), thickness and ODI are not 

correlated (R = 0.02, p = 0.5), and thickness and myelin are moderately correlated (R = -0.20, p < 

0.00001). From Figure 2 it can be noticed that in the subiculum (apart from its most anterior region) 

thickness is relatively low while NDI and myelin are high. Furthermore, along the anterior of the 

hippocampus across all subfields thickness tends to be high while NDI and myelin tend to be low. 

Thus, when thickness is increased in particular regions of the hippocampus, NDI and myelin tend 

to decrease. 

Gyrification and NDI are moderately to strongly correlated (R = -0.35, p < 0.000001), 

gyrification and ODI are moderately correlated (R = 0.21, p < 0.000001), and gyrification and 

myelin are strongly correlated (R = -0.48, p < 0.0000001). Gyrification is largest in CA1 and the 
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DG/CA4, and lowest in the subiculum and CA2. Conversely, myelin and NDI are largest in the 

subiculum and lowest in CA1, resulting in a relatively strong negative correlation between the two. 

Curvature and NDI are moderately correlated (R = -0.27, p < 0.000001), curvature and ODI 

are weakly correlated (R = -0.15, p < 0.0001), and curvature and myelin are moderately to strongly 

correlated (R = -0.31, p < 0.0000001). Interestingly, the highly curved spine of the hippocampus 

(Figure 2J - red arrows) appears to correspond to the large hypointense regions of myelin (Figure 

2E) and NDI (Figure 2D), likely driving a large part of the noted correlations. 

3.5 Examination of the primary direction of diffusion relative to hippocampal axes 

This section qualitatively analyzes the mean of the cosine similarities (Figure 1D; Figure 3) 

between the hippocampal vectors along the anterior-posterior (AP), proximal-distal (PD), and 

inner-outer (IO) (Figure 1A) axes and the NODDI microstructural vectors along the midthickness 

surface (Figure 1C). Here we provide descriptions of microstructure (Figure 1B) that likely 

contribute to the orientation results. 

Anterior-Posterior alignment: The high AP alignment in the body of the DG to CA3 is 

likely driven by the neighbouring fimbria, the largest bundle in that region oriented AP. High AP 

alignment in the subiculum is likely caused by the cingulum, a large fiber bundle that traverses the 

parahippocampal gyrus. Some partial voluming from the outer (where the cingulum exists) to the 

midthickness surface is expected, which may drive this alignment. 

Proximal-Distal alignment: High PD alignment in the head of CA3 is expected to be either 

Schaffer collaterals which curve immediately PD off of the apical dendrites of the pyramidal cells 

or from perforant projections coming from the entorhinal cortex and entering CA3 which are also 

oriented PD. High PD alignment in CA1 is likely a result of the Schaffer collaterals. The Schaffer 

collaterals make synaptic contact at the apical and basal dendrites of CA1 in a PD fashion 

(Nieuwenhuys et al., 2008; Swanson et al., 1978). However, the perforant path could also 
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contribute to a higher PD alignment as it moves from the entorhinal cortex to the DG synapsing 

on CA1 along the way (Nieuwenhuys et al., 2008). 
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Figure 2. Correlations and plots of mean macro- and microstructure metrics on averaged 

hippocampal midthickness surfaces in folded and unfolded space for left and right hemispheres. 

(A) Heatmap showing Pearson’s R correlations after correlating all average map vertices between 

two metrics, combining both left and right hemispheres. The on-diagonal elements represent the 

percent of outliers for each average map shown in (C-J). (B) Left and right hippocampal subfields 

from a manual segmentation of a histological reference (Ammunts et al., 2013; DeKraker et al., 

2020). Unfolded space is shown in the same orientation for left and right hemispheres. DG - 

Dentate Gyrus, CA - Cornu Ammonis. (C,D) Orientation Dispersion Index (ODI) and Neurite 

Density Index (NDI) from NODDI. White lines represent subfield borders shown in (B). (E) 

Myelin content. (F,G) Diffusion Tensor Imaging metrics of Fractional Anisotropy (FA) and Mean 

Diffusivity (MD - 𝑚2/𝑠). (H-J) Macrostructure measures of thickness, gyrification, and curvature. 

(J) Red arrows highlight the highly curved “spine” of the hippocampus. 

Inner-Outer alignment: High IO alignment seen in CA1 is likely a result of the pyramidal 

neurites. The pyramidal somas exist in the stratum pyramidale layer of the midthickness surface, 

and are generally scattered in CA1 (Nieuwenhuys et al., 2008). Their axons and basal dendrites 

move IO towards the alveus/outer surface and their large apical dendrites move IO towards the 

stratum radiatum/inner surface. All IO alignment seen in CA1 would be expected to be caused by 

the pyramidal neurites or other afferent CA1 paths such as the Schaffer collaterals which curve IO 

before making contact with the apical dendrites of the pyramidal neurites. High IO alignment in 

the subiculum is also likely caused by pyramidal neurites as in CA1. 

The cosine similarities across subjects varied the greatest in CA1 and the subiculum across AP, 

PD, and IO directions (supplementary Figure 3). 
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Figure 3. Mean of the cosine similarities between hippocampal axis vectors and NODDI vectors in the left 

and right hemisphere along the midthickness surface. High cosine similarities correspond to a high alignment 

of the NODDI vector along that particular hippocampal axis. (A) Distribution of cosine similarities along 

the anterior-posterior direction. (B) Distribution of cosine similarities along the proximal-distal (tangential) 

direction. (C) Distribution of cosine similarities along the inner-outer (laminar) direction. 

3.6 Stability Analysis 

The results of the stability analysis can be seen in Figure 4. Figure 4A presents the stability and 

the gradient in the reconstruction error using all the metrics combined that are shown in Figure 

4B-E. The goal of the stability analysis was to elucidate the largest component value that was still 

stable and provided a relative gain in reconstruction error. In Figure 4A it can be seen that a 

component solution of k=6 has good stability with relatively low standard deviation. 

Comparatively, decomposing into a larger number of components decreases the stability of the 

OPNNMF solution. As well, k=6 does provide a relative gain in reconstruction error, although the 

largest gain in reconstruction error occurs when moving from a k=2 to a k=3 solution. The stability 
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analysis suggests that k=6 is the highest component value that is largely stable, thus we use this 

for the decomposition results using all metrics. 

Figure 4. Stability coefficient and the gradient in reconstruction error based on the number of 

components used for the OPNNMF solution. Filled in circles plus solid lines are the left 

hemisphere and filled in squares plus dotted lines are the right hemisphere. Error lines show +- 1 

SD. (A) Stability coefficient (blue) and the gradient in reconstruction error (red) as a function of 

the number of components using all metrics for NMF in B-E. (B) Stability coefficient for NODDI 
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metrics (ODI and NDI) plus myelin (T1w/T2w). (C) Stability coefficient for DTI metrics (FA and 

MD) plus myelin (T1w/T2w). (D) Stability coefficient for macrostructure metrics (gyrification, 

thickness, curvature). (E) Stability coefficient for cosine similarities (AP, PD, and IO). Points 

between hemispheres are slightly offset along the x-axis so that error bars are visible. 

Another goal of the stability analysis was to compare the stability of the decomposition 

using all metrics versus using smaller groupings of metrics, such as NODDI (ODI and NDI) plus 

myelin. Comparing Figure 4A with Figure 4B-E, it can be seen that for almost all component 

values the all metric solution tends to be more stable than any of the smaller metric groupings. 

This is especially true for the larger component values above k=6. These results suggest that the 

use of multiple metrics results in more stable parcellations, as found in Patel et al. (2020). 

The 6-component solution using all metrics is presented in Figure 5 for both the left and 

right hippocampus. 4-component solutions for all smaller metric combinations shown in Figure 

4B-E can be found in supplementary Figure 6. 

3.7 Description of the 6-component Solution 

Figure 5A depicts the winner-take-all method applied at each vertex in folded and unfolded space 

for 6-components. Figure 5B shows the z-scored subject-metric weight matrices. In the following 

paragraph we describe the first 3 components including their location relative to the subfields 

(proximal-distal/medial-lateral axes) as well as along the anterior-posterior (longitudinal) axis. We 

also describe the features which contribute to each component. We then provide a general 

description of the 6-component solution as a whole rather than in parts. The left and right 

hippocampus do have similar covariance patterns although the component numbers differ. We will 

adopt the ordering of the left hippocampus for the rest of the paper, which we will take as reference 

to the spatially analogous region in the right hemisphere (ex. The spatial location of component 1 

of the left hemisphere corresponds to the location of component 2 of the right hemisphere). 
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Component 1 is characterized by a cluster of vertices through the body and tail of the most 

proximal edge of the subiculum and through the body and tail of CA3. This component spans 

around the bottom two-thirds of the hippocampus across its anterior-posterior axis. Component 1 

is characterized by high NDI, myelin, FA, and AP cosine similarity. This likely reflects the large 

AP oriented fiber bundles that are myelinated such as the cingulum bundle for the proximal edge 

subiculum and the fimbria for CA3. 

Component 2 is characterized by vertices that are present only in the body or middle one-

third along the anterior-posterior axis of CA1. This component is characterized by high ODI, 

gyrification, and PD and IO cosine similarities. This likely reflects a high heterogeneity in fiber 

orientation in CA1. 

Component 3 is characterized by vertices that cross the subiculum and CA1 in a proximal-

distal fashion in the head of the hippocampus, as well as vertices that span the anterior-posterior 

body of the hippocampus at the border between the subiculum and CA1. This component is 

characterized by high ODI, thickness, and IO cosine similarity. 

A general pattern is noticed when examining the whole 6-components rather than looking 

at its parts. Generally, the middle one-third along the anterior-posterior axis (body) seems to have 

more parcellations than the top or bottom one-third (head and tail, respectively). That is, more 

parcellations exist along the proximal-distal direction in the body than do in the head or tail. 
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Figure 5. 6-component NMF solution on the midthickness surface for left and right hippocampi. (A) 

Winner-take all output at each vertex shown in folded and unfolded space. White lines denote subfield 

borders. (B) Z-scored subject-metric weight matrices across each of the 6 components, denoting the z-scored 

contribution of each metric to each component. AP, PD, and IO represent the 3 cosine similarity metrics. 
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4. Discussion 

In the current study we examined the microstructure of the hippocampus across its subfields using 

the in vivo HCP dMRI data and NODDI, along with structural data to utilize novel surface-based 

methods. We found that ODI was highest in the CA1 and subiculum subfields, likely capturing the 

large heterogeneity of tangential and radial fibers. NDI and myelin were found to be strongly 

correlated and were highest in the subiculum and lowest in CA1, suggesting that NODDI may 

contain information about myelinated neurites. OPNNMF components appeared to capture unique 

co-varying clusters within the hippocampus, with high medial-lateral and long-axis variability. 

Finally, we found that by examining the main direction of diffusion relative to the three 

hippocampal axes, we could elucidate unique orientations which likely correspond to specific 

microstructural properties. 

4.1 Dispersion of neurites in the hippocampus may reflect heterogeneous radial and tangential 

neurite components 

The Orientation Dispersion Index (ODI) is meant to characterize the variation in neurite orientation 

around a single dominant direction at every voxel. A previous study using ODI and patch-wise 

circular variance measured using histology (measures variability in neurite orientations) has shown 

that both measures have lower dispersion in demyelinated lesions in patients with multiple 

sclerosis, where there is reduced geometrical complexity of neurites (Grussu et al., 2017). The 

hippocampal gray matter has a general distribution of microstructure that is similar to the 

neocortex, with tangential (proximal-distal) and radial (inner-outer) components that follow the 

curvature of the hippocampus. In the current study we showed that CA1 has the largest ODI, and 

thus can be considered to have the largest heterogeneity in neurite orientations. CA1 has large 

tangential neural processes, like the Schaffer collaterals and perforant path, as well as a large (yet 

dispersed) radial pyramidal neurite layer (Duvernoy et al., 2013). By measuring the orientation of 

the main direction of diffusion relative to the three hippocampal axes in CA1 (Figure 3), we found 
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either high tangential or radial diffusion, supporting the idea that ODI reflects the heterogeneity of 

these components. Conversely, ODI is lower in DG/CA4, CA3, and at the most proximal edge of 

the subiculum. In these regions the main diffusion direction was minimally tangential or radial, 

and was largely anterior-posterior or oblique. The apparent reduction in measured heterogeneity 

of tangential and radial components may potentially explain the low ODI in these regions. In the 

DG/CA4 and CA3 region this could be a result of partial voluming with the nearby fimbria, and 

in the subiculum it could be due to partial voluming with the nearby cingulum bundle or the 

perforant path at its most proximal edge. As hypothesized in the rest of the cortex (Fukutomi et 

al., 2018), it is likely that ODI in the hippocampal gray matter is largely driven by the heterogeneity 

of radial and tangential neurite components. 

4.2 Hippocampal neurite density is highly correlated with measures of myelin 

The distribution of the NDI and myelin across hippocampal gray matter was similar, as seen in 

Figure 2D and E and as shown by their strong positive correlation. While the diffusion signal is 

generally agnostic to water within myelin, previous work has shown that myelinated axons restrict 

diffusion to a greater degree than unmyelinated axons (Behrens & Johansen-Berg, 2014), 

suggesting that NDI may reflect the density of myelinated axons. The myelin content and NDI was 

largest in the body and tail of the subiculum. High myelin content in the subiculum has been noted 

previously with histology (Ding & Van Hoesen, 2015). Furthermore, it is likely that the white 

matter of the cingulum bundle or perforant path contribute to the large myelin content seen in the 

subiculum. Conversely, myelin and NDI were lower in CA1, which is likely a result of decreased 

density of pyramidal cells along the midthickness surface or the unmyelinated Schaffer collaterals 

(Jürgen et al., 2011; Szirmai et al., 2012). Overall, the distribution of myelin found here agrees 

with previous studies (DeKraker et al., 2018; Ábrahám et al., 2012). A strong positive correlation 

between NDI and myelin was found previously across the cortex. However, the hippocampus was 

found to have moderate values in NDI but low values of myelin when compared to the rest of the 
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cortical areas (Fukutomi et al., 2018). Here we show that a strong correlation between NDI and 

myelin still exists in the hippocampus when comparing them at a finer spatial scale. This 

correlation is further corroborated by another cortical study at high ex-vivo resolutions in the rodent 

brain, in which cortical NDI was strongly correlated with staining intensity of myelinated axons 

(Jespersen et al., 2010). Histological work has found similar correlations in white matter, where 

myelin content was found to be strongly correlated with axon count (Schmierer et al., 2007). 

However, a recent study utilizing a multicomponent relaxometry method for imaging myelin water 

fraction found no significant correlation between myelin and NDI measured using NODDI in most 

white matter structures (Qian et al., 2020). While NDI and myelin do appear to be correlated in 

gray matter including the hippocampus, further work is needed to examine this correlation in other 

white matter structures, including white matter surrounding the hippocampus such as the fimbria, 

fornix, and alveus. 

4.3 Microstructure metrics follow subfield borders 

Microstructural metrics such as intracortical myelin and macrostructural cortical thickness have 

been shown to be useful in parcellating the neocortex into subregions (Nieuwenhuys, 2013; 

Glasser et al., 2014; Glasser & Van Essen, 2011). Furthermore, using non-negative matrix 

factorization of intracortical myelin, MD, and FA it was found that a 4-component solution 

qualitatively resembled hippocampal subfield borders (Patel et al., 2020), suggesting that myelin 

and microstructure may provide sufficient separability to parcellate hippocampal subfields. In the 

current study, we qualitatively found that myelin, NDI, and ODI closely correspond to the subfield 

borders (Figure 2). Critically, it appears that NDI and ODI more closely correspond to the subfield 

borders then FA and MD, suggesting that NODDI may be more useful than DTI in capturing 

known microstructural differences across subfields. Furthermore, the usefulness of standard DTI 

in the hippocampus is likely limited since FA and MD are understated in regions of crossing fibers. 

Myelin has been demonstrated previously to closely correspond to averaged subfield borders 
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(DeKraker et al., 2018). To a lesser extent, macrostructure appears to also follow the subfield 

borders, which has been noted previously for thickness (DeKraker et al., 2018). While thickness 

is consistently low in CA3 and CA2, and gyrification is consistently high in CA1, these measures 

alone may not differentiate all subfield boundaries. Thus, a combination of NODDI and 

macrostructural measures may provide complimentary information needed for subject-specific 

subfield delineation. Future studies should quantify the utility of myelin and NODDI metrics to 

parcellate hippocampal subfields. 

4.4 Strong correlations between NDI and MD along with ODI and FA 

In the current study we found relatively strong correlations between NDI and MD and ODI and 

FA (Figure 2A). A previous post-mortem study in white matter found that MD was strongly 

negatively correlated with NDI (Schmierer et al., 2011). Furthermore, a correlation study in the 

whole cortex found a moderate correlation between NDI and MD when using the standard b = 

1000 s/mm2 shell for the DTI calculation (as done here), and a strong correlation between the two 

when using all shells (b = 1000, 2000, 3000 s/mm2) to fit the DTI model (Fukutomi et al., 2018). 

They also found strong correlations between ODI and FA using both methods of DTI fitting. 

Recently, the same group has shown that DTI parameters with lower b-values suffer from non-

negligible CSF contributions and significant partial voluming, while high b-value DTI parallels 

metrics calculated by NODDI in the cortex (Fukutomi et al., 2019). Thus, future work could use 

higher b-values to calculate DTI metrics where a stronger correlation with NODDI metrics would 

be expected in the hippocampus. 

4.5 Orientation cosine similarities may be useful in identifying hippocampal microstructure 

Typical hippocampal microstructural analyses average scalar diffusion metrics (such as FA, MD, 

NDI, etc.) either across whole hippocampi (van Uden et al., 2015; Salmenpera et al., 2006) or 

whole subfields (Radhakrishnan et al., 2020), which are inherently non-specific towards 

microstructure which exists within and across subfields. Here we quantified the main direction of 
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diffusion relative to the 3 main hippocampal axes which microstructure tends to align closely with. 

The orientational analyses described here have the potential to increase specificity at in vivo 

resolutions by utilizing known anatomical microstructure orientation. Future studies should use 

other methods of diffusion orientation representation, such as the Orientation Distribution 

Function (ODF) to capture crossing fibers. The peaks of the ODF can be used to quantify the 

relative amount of diffusion along the hippocampal axes which can be related to known 

microstructure orientations. 

Applications of the proposed orientational methods may be useful to identify 

microstructure deterioration in disease states, where affected microstructure may be less 

prominent, and may appear as smaller cosine similarities along a particular axis. For example, 

perforant path lesions in rats caused rapid memory loss which was akin to early-stage Alzheimer’s 

disease (Kirkby & Higgins, 2001). A 2010 study found deterioration of the perforant path in aged 

humans using diffusion tensor imaging (Yassa et al., 2010). Perforant path degradation should 

result in less attenuation of the diffusion signal along its length, which may potentially show up as 

smaller PD cosine similarities specifically in the subiculum, CA3, and CA1, as there should be 

less PD oriented diffusion. This may be possible for other neurological diseases where specific 

microstructure is affected, such as pyramidal neurite degradation which should result in smaller 

IO cosine similarities. However, to draw such conclusions, further ex vivo validation with 

tractography, which has been shown to be useful in capturing the microstructure described above, 

will be essential to evaluate the usefulness of this method (Beaujoin et al. 2018). 

4.6 6-component OPNNMF solution displays the two main dimensions of hippocampal 

organization 

The hippocampus is believed to have two main interacting dimensions of organization along its 

medial-lateral/proximal-distal or subfield axis, and across its long or anterior-posterior axis (see 

Genon et al., 2021 for review). In the current study with a 6-component OPNNMF solution we 
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found a varying number of parcellations along the medial-lateral direction, suggesting that regions 

along this axis have disparate macro- and microstructural properties. Variability along this axis is 

expected, as the subfields show differences in morphology, cytoarchitectonic profiles (Duvernoy 

et al., 2013; Ding & Van Hoesen, 2015), and connectivity (Andersen et al., 1971). Recently there 

has been interest in the long-axis organization of the hippocampus, with strong evidence coming 

from anatomical and physiological recordings in rodents (Chase etal., 2015). In the current study 

we found more proximal-distal (medial-lateral) parcels in the body than in the head and tail of the 

hippocampus. Previous research using task-based and resting-state functional connectivity found 

similar clusters, with more medial-lateral clusters in the body then in the head or tail (Plachti et 

al., 2019). While the head, body, and tail are often distinguished by task-based and resting state 

functional MRI (tripartite model, Genon et al., 2021), here we show that these segments along the 

anterior-posterior axis can also be identified when combining multiple disparate metrics into one 

decomposition. 

4.7 Using a surface-based approach is ideal for characterizing the hippocampus 

Accurately aligning and segmenting the hippocampus across individuals is important in order to 

provide anatomically meaningful results. However, inter-individual variability in the anterior-

posterior curvature and number of digitations of the hippocampus makes alignment and 

parcellation into subfields a unique challenge (Ding & Van Hoesen, 2015; ten Hove & Poppenk, 

2020; DeKraker et al., 2018). The issue of inter-individual variability of the hippocampus is 

typically solved in one of two ways. First, manual segmentations aim to identify landmarks that 

can be seen in histology and MRI that are consistently oriented to subfield boundaries across 

individuals (DeKraker et al., 2021b). However, the alignment of landmarks is highly dependent 

on the slice angle of the MRI and anterior-posterior distance along the hippocampus (head, body, 

tail) (DeKraker et al., 2021b). Many manual protocols will also only segment the less complex 

body of the hippocampus, opting to leave out the more complex head and tail. Second, reference 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.07.29.502031doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502031
http://creativecommons.org/licenses/by/4.0/


34 

 

atlases can be computationally registered to fit a given subject (DeKraker et al., 2021b). This is 

most commonly used in automated segmentation methods. Automated methods are advantageous 

for their reproducibility, efficiency, and ability to account for curvature along the anterior-posterior 

axis. However, it is typically unclear how to register hippocampi with varying numbers of 

digitations. In such cases, one digitation could be stretched over multiple reference digitations, or 

vice versa (DeKraker et al., 2021b). This can cause major distortions in the resulting 

segmentations, losing the known contiguity of hippocampal subfields and creating issues when all 

subjects are aligned to a reference space. The current approach utilized HippUnfold: a novel 

surface-based tool to segment the hippocampal subfields and project hippocampi to a 2D unfolded 

space where they are aligned on the basis of topology and contiguity (DeKraker et al., 2018; 

DeKraker et al., 2021a). The surface-based approach used here can account for interindividual 

differences in tissue curvature and digitation across the whole anterior-posterior extent of the 

hippocampus (DeKraker et al., 2021b). Interpretations also become much simpler and apparent in 

unfolded space compared to results in 3D native space. Furthermore, at high resolutions a surface-

based approach can allow for characterization of metrics across the laminar layers of the 

hippocampus. Finally, this approach can be used to capture the head and tail of the hippocampus, 

which other studies typically avoid due to its complexity. 

4.8 NODDI optimization in hippocampal gray matter 

NODDI has been validated by histology and ex-vivo MRI, where ODI and NDI appear to have 

high construct validity (Grussu et al., 2017). However, the original parameterization of the NODDI 

model assumes the intracellular and extracellular parallel diffusivity values are equal to 1.7 ×

10−3 𝑚𝑚2

𝑠
, which is sufficient for white matter but has been shown to not be accurate in gray 

matter. In gray matter, a parallel diffusivity value of  1.1 × 10−3 𝑚𝑚2

𝑠
 has consistently been shown 

to achieve the lowest mean squared error when fitting NODDI (Guerrero et al., 2019; Fukutomi et 
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al., 2018), and as such we adopted this value for our modeling here. However, no study has 

examined whether this assumption holds true specifically in the hippocampus. It may not be 

unreasonable to assume that the 3-layered hippocampal allocortex may have different diffusivity 

values than the 6-layered neocortex. Thus, future studies should look to examine and optimize 

diffusivity values in the hippocampus to improve the accuracy of NODDI metrics. Another 

assumption of the NODDI model is the equality of the intracellular and extracellular parallel 

diffusivity. While this assumption is seen as more valid in gray matter than white matter (Jelescu 

et al., 2015, Jelescu et al., 2016), a recent study using a general framework to map microstructural 

metrics including diffusivity values found that while intraneurite diffusion in gray matter was 

around 1.1 × 10−3 𝑚𝑚2

𝑠
, the extracellular parallel diffusivity was much higher (Novikov et al., 

2018). The validity of NODDI assumptions and characterization of hippocampal diffusivity should 

be investigated further in the hippocampus. 

5. Conclusion 

In the current study we show distinct in-vivo microstructural distributions and orientations within 

and across the hippocampal subfields, something that has not been investigated with comparable 

granularity up to this point. Furthermore, we provide context for the use of surface-based 

approaches to investigate hippocampal microstructure. 

Our findings have several important implications for future work. The hippocampus is 

particularly vulnerable to certain neurological diseases such as Alzheimer ’s disease and epilepsy, 

in which it is often one of the earliest aberrant structures (Dhikav et al., 2012). Examining the 

microstructure of the hippocampus at fine spatial resolutions in the simplified unfolded space, as 

done in this study, may provide potentially useful clinical imaging markers of hippocampal 

integrity. Furthermore, we noticed relatively large radial and tangential components of diffusion 

mainly in CA1 and the subiculum. Future work could attempt to tease apart these two 

orientationally distinct populations, providing estimates which may be useful to examine 
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microstructurally specific deterioration. Furthermore, using the same orientation methods in this 

study, future work should focus on capturing multiple microstructure orientations as the 

hippocampus contains many crossing fibers. Future work could also relate all the identified 

OPNNMF components to demographic and cognitive variables to identify if there is a relationship 

between variability in cognitive performance and variability in the metrics used in this study. 

Finally, the macro- and microstructural metrics observed in this study appear to show good 

separability between hippocampal subfields, suggesting they may be useful in future subfield 

parcellations. 
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Supplementary Material

Supplementary Figure 1. Plots of the standard deviations for macro- and microstructure metrics
on averaged hippocampal midthickness surfaces in folded and unfolded space for left and right
hemispheres. (A) Left and right hippocampal subfields from a manual segmentation of a
histological reference (Ammunts et al., 2013; DeKraker et al., 2020). Unfolded space is shown in
the same orientation for left and right hemispheres. DG - Dentate Gyrus, CA - Cornu Ammonis.
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(B,C) Orientation Dispersion Index (ODI) and Neurite Density Index (NDI) from NODDI. White
lines represent subfield borders shown in (A). (D) Myelin content. (E,F) Diffusion Tensor
Imaging metrics of Fractional Anisotropy (FA) and Mean Diffusivity (MD). (G-I)
Macrostructure measures of thickness, gyrification, and curvature.

Supplementary Figure 2. Diffusion Tensor Imaging (DTI) metrics and their correlations with
Neurite Orientation Dispersion and Density Imaging (NODDI) metrics. (A) Correlation between
ODI and NDI grouped by ranges of FA values. (B) Correlation between MD and NDI grouped
by ranges of ODI values.
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Supplementary Figure 3. Standard deviation of the cosine similarities between hippocampal
axis vectors and NODDI vectors. Cosine similarities were sampled across the midthickness
surface and are plotted on averaged surfaces.
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Supplementary Figure 4. Depicting the thinnest and thickest subiculum (purple subfield label)
out of all 100 subjects plotted on top of the native space ODI image. Blue arrows point to regions
of low dispersion which correspond to the highly coherent perforant path/angular bundle. Partial
voluming can be seen with the thinnest subiculum, as lower ODI values from the perforant
path/angular bundle are present in the gray matter. The thickest subiculum shows less partial
voluming.
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Supplementary figure 5. Varying the component value using all metrics for the NMF solution
on the midthickness surface for left and right hippocampi. Winner-take all output at each vertex
shown in folded and unfolded space at the top row of each box. White lines denote subfield
borders. Bottom row in each box denotes the z-scored contribution of each metric for each
component. (A) 4-component solution. (B) 5-component solution. (C) 6-component solution. (D)
7-component solution.
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Supplementary figure 6. Varying the input metrics for the NMF solution on the midthickness
surface for left and right hippocampi using a 4-component solution. Winner-take all output at
each vertex is shown in folded and unfolded space at the top row of each box. White lines denote
subfield borders. Bottom row in each box denotes the z-scored contribution of each metric for
each component. (A) ODI, NDI, myelin input matrix. (B) FA, MD, myelin input matrix. (C)
Macrostructure (gyrification, thickness, and curvature) input matrix. (D) Cosine similarity (AP,
PD, and IO) input matrix.
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