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Abstract 
 
Functional magnetic resonance imaging (fMRI) of the human spinal cord (SC) is a unique non-
invasive method for characterizing neurovascular responses to stimuli. Group-analysis of SC fMRI 
data involves co-registration of subject-level data to standard space, which requires manual 
masking of the cord and may result in bias of group-level SC fMRI results. To test this, we 
examined variability in SC masks drawn in fMRI data from 21 healthy participants from a 
completed study mapping responses to sensory stimuli of the C7 dermatome. Masks were drawn 
on temporal mean functional image by eight raters with varying levels of neuroimaging 
experience, and the rater from the original study acted as a reference. Spatial agreement between 
rater and reference masks was measured using the Dice Similarity Coefficient, and the influence 
of rater and dataset was examined using ANOVA. Each rater’s masks were used to register 
functional data to the PAM50 template. Gray matter-white matter signal contrast of registered 
functional data was used to evaluate the spatial normalization accuracy across raters. Subject- and 
group-level analyses of activation during left- and right-sided sensory stimuli were performed for 
each rater’s co-registered data. Agreement with the reference SC mask was associated with both 
rater (F(7,140) = 32.12,  P < 2×10-16, η2 = 0.29) and dataset (F(20,140) = 20.58, P < 2×10-16, η2 = 
0.53). Dataset variations may reflect image quality metrics: the ratio between the signal intensity 
of spinal cord voxels and surrounding cerebrospinal fluid was correlated with DSC results 
(p<0.001). As predicted, variability in the manually-drawn masks influenced spatial normalization, 
and GM:WM contrast in the registered data showed significant effects of rater and dataset (rater: 
F(8,160) = 23.57,  P < 2×10-16, η2 = 0.24; dataset: F(20,160) = 22.00, P < 2×10-16, η2 = 0.56). 
Registration differences propagated into subject-level activation maps which showed rater-
dependent agreement with the reference. Although group-level activation maps differed between 
raters, no systematic bias was identified. Increasing consistency in manual contouring of spinal 
cord fMRI data improved co-registration and inter-rater agreement in activation mapping, however 
our results suggest that improvements in image acquisition and post-processing are also critical to 
address.  
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Introduction 
 
Functional magnetic resonance imaging (fMRI) of the spinal cord is a technique for understanding 
neurovascular responses to sensory and motor stimuli.[1-3] fMRI studies of the cord have 
demonstrated neural activation correlates to physiological mechanisms of sensation, illustrating 
dermatomal patterns[4-8], and motor control laterality.[9] Furthermore, studies have demonstrated 
interactions between the cortex and spinal cord in both sensory and motor learning paradigms that 
further our understanding of human neurology.[10-11] Encouraged by observations of coordinated 
intrinsic activity within functional brain networks, researchers have successfully demonstrated 
such "connectivity" properties within the spinal cord, and between the cord and brain.[11-13] 
Uniquely positioned to provide noninvasive functional mapping of large segments of the spinal 
cord in humans, spinal cord fMRI is poised to play a critical role in understanding both typical and 
pathologic sensation and movement. 

 
However, while significant advances have been made over the years, the breadth of literature 
studying the spinal cord still lags behind that of brain fMRI research, in part due to remaining 
technical challenges, including those related to cord anatomy. Specifically, analysis and 
interpretation of spinal cord fMRI data is hindered by the large changes in magnetic susceptibility 
of tissues approximating the cord, the small size of the target neural tissues (typically leading to 
low signal-to-noise ratio), and physiological noise from cardiac and respiratory processes.[14-18] 
Several analytical tools have been developed to improve characterization of spinal cord fMRI data. 
These tools include, but are not limited to the Spinal Cord Toolbox, the Neptune Toolbox, and 
Pantheon (formerly spinalfMRI8).[19-20] There are also specific analysis strategies developed for 
spinal cord fMRI denoising such as physiological noise modeling[17,21], slice-wise motion 
correction[19-20], anisotropic spatial smoothing [19], and principal and independent component 
analysis based denoising[22-24].   

 
At present, these noise-reduction strategies can dramatically improve the quality of fMRI data. 
However, in typical 3T fMRI scans, it remains challenging to confidently interpret activation maps 
in individual subject data. As in brain fMRI, an established way to make statistical inferences 
across the sample or a population is to combine fMRI data from many individuals for group-level 
analysis. One way to do this is by using region of interest (ROI)-based group analysis relying on 
regions defined at the subject level. However, in order to retain complete, voxelwise spatial 
information, it is often desirable to generate group-level activation maps. This process necessitates 
the co-registration of fMRI data to a common or standard space to facilitate comparisons across 
subjects with variable cord anatomy.[25] To this end, standard spinal cord templates and 
techniques for registration have been developed.[18] Notably, and unlike brain fMRI co-
registration, nearly all spinal cord fMRI registration techniques require user input. One early 
method that was iteratively developed required the user to indicate various reference lines to 
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inform affine transformation to a reference image with minimal curvature.[26-29] This technique 
was applied on sagittally acquired slices, and in 2015 an automated version was published.[30] 
Around the same time, different techniques were developed for axially acquired data. One study 
performed normalization by manually identifying the center of the cord in each slice, then 
performing an in-plane translation (2 degrees of freedom) to match a reference.[11] A similar 
approach using a manually defined spinal cord mask and 4 degrees of freedom (translation and 
scaling) was also developed.[6] Building on these axial normalization techniques, the 
sct_register_multimodal function was introduced as part of the spinal cord toolbox (SCT) in 2017. 
This was the first nonlinear registration algorithm for spinal cord fMRI and it has since been used 
in various studies of the cord.[7, 9, 19, 31]  
 

When using sct_register_multimodal to register functional data to a template, it is advisable to use 
the warping field from a previously completed structural to template registration to initialize the 
algorithm and exploit the high-resolution information available for the individual subject. 
Additionally, due to the challenges of image distortion in EPI data, it is recommended for this 
function that the user inputs a binary spinal cord mask in native fMRI space to inform registration. 
It is common for this input mask to be manually defined, as there are currently no reliable 
algorithms for segmenting the spinal cord in functional data. Note that spinal cord data acquired 
with non-EPI methods, and with high-resolution data acquired from a common field-of-view, may 
facilitate alternative automated approaches for cord masking that would not be impacted by the 
manual masking element explored in this paper. The remaining challenges of spinal cord fMRI 
data quality (e.g., low signal-to-noise, residual physiologic and motion artifacts, and poor contrast 
between spinal cord tissue and the surrounding cerebrospinal fluid (CSF)) may lead to subjective 
differences when contouring the cord. These differences could result in systematic bias in data co-
registration and thus alter individual and group analysis results. The extent of this source of 
variability in spinal cord fMRI processing pipelines is relatively unknown.  
 

Standardization of both imaging protocols and processing pipelines has been recommended to 
improve the robustness of spinal cord fMRI findings.[15, 18] In brain fMRI, differences in 
functional image processing pipelines have been shown to have large potential impacts on the 
resultant findings of a study.[32] Bowring et al. observed that variability in results from task fMRI 
in the brain are heterogeneous, depending on the input dataset and potentially each aspect of the 
image processing pipeline (including registration).[32] Furthermore, study results were also 
impacted by the software package utilized.[32] While there are multiple software packages for 
spatial normalization of fMRI in the brain[33-35], spinal cord studies have fewer options or must 
create bespoke techniques for registration to labeled structural templates of the cord.[18-19, 36] 
Given the lack of a unified method of preprocessing spinal cord fMRI data, reproducibility of 
reported results is likely to be limited, and improvements are needed to standardize image 
processing and reduce sources of variability and bias at every stage of analysis. 
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In this work, we specifically assess the impact of variable manual contouring of the spinal cord in 
native fMRI image space, as needed for spatial normalization of individual fMRI datasets to a 
standard template space. To achieve this, we examine the effects of mask variability at different 
stages of a single analysis pipeline for spinal cord fMRI using a previously published study dataset. 
We characterize the variability in spinal cord masks achieved by eight raters with varying levels 
of image analysis experience, with respect to a “reference” rater from the original study and 
publication. We then demonstrate how this variability is propagated following registration of 
functional imaging data to a standard spinal cord template image. We subsequently run individual- 
and group-level analyses for a sensory stimulus task, using each rater’s masks during co-
registration, to assess the impact on fMRI activation patterns at the single-subject and overall study 
level. Finally, we discuss the causes of this variability, their importance, and make 
recommendations for prioritizing future improvements in spinal cord fMRI. 

 

 

Methods 
2.1 Image acquisition and experimental protocol 

This work utilized a subset of anatomical and functional MRI data from 24 healthy participants 
from a previous study.[37] Images were acquired using a 3T Siemens Prisma scanner (Siemens, 
Erlangen, Germany), utilizing a 64-channel head/neck coil and a SatPad™ cervical collar (SatPad 
Clinical Imaging Solutions, West Chester, PA, USA). Anatomical T2-weighted images were 
acquired covering the cervical and upper thoracic spine, using the SPACE sequence (Siemens, 
Erlangen, Germany), with parameters: TR = 1500ms, TEeff = 135 ms, echo train = 74, flip angle 
= 90°/140°, slices = 64, effective voxel size = 0.8 x 0.8 x 0.8 mm3, iPAT acceleration factor = 3, 
interpolated in-plane resolution = 0.4 x 0.4 mm2.[38-39] T2*-weighted functional scans of the 
cervical spinal cord were acquired, with 25 axially acquired slices centered at the C5 vertebral 
level, using a gradient-echo echo-planar-imaging sequence with ZOOMit selective field-of-
view.[40-42] Functional imaging parameters were: TR3D  =  2000  ms, TE  =  30  ms, flip 
angle  =  80°, volumes = 450, slice order  was  interleaved, field-of-view  =  128  ×  44  mm2, 
acquisition matrix  =  128  ×  44 voxels, in-plane resolution  =  1  ×  1  mm2, slice 
thickness  =  3  mm, two dummy volumes discarded.  
 

During each functional scan, alternating left and right tactile stimuli were applied to the dorsum of 
each hand in the C7 dermatomal region.[37] Stimulation was applied manually at approximately 
2 Hz by examiners in the scan room. Stimulation lasted for 15 sec on each hand and was 
interspersed with a 15 second rest period. 
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Preprocessing of the functional MRI time series was performed as in the original study.[11] Motion 
correction was performed in two phases using FMRIB’s Linear Registration Tool (FLIRT) for 3D 
rigid body alignment (6 degrees of freedom), followed by rigid 2D slice-wise (axial) alignment (2 
degrees of freedom; x- and y-translation only) [34, 43], and was optimized for a binary masked 
region around the spinal canal. Temporal mean images were calculated from these preprocessed 
functional data. fMRI data were further denoised by removing periodic physiological noise 
confounds using the PNM (Physiological Noise Modelling) tool in FSL [21, 44], warped to the 
PAM 50 spinal cord template [45], and then smoothed with a 2mm3 full width half maximum 
Gaussian smoothing kernel prior to individual- and group-level activation mapping.[46]  
 
 
2.2 Manual contouring 
Raters (N=8) with differing levels of functional neuroimaging experience were recruited to 
manually contour the spinal cord on 21 temporal mean functional images, after 3 of the 24 datasets 
were utilized for rater training. Additionally, as this dataset was collected for a previously 
completed and published study,[37] the original masks from that work were included as 
“reference” contours. The reference masks (REF) are provided by a researcher with 10 years of 
experience with spinal cord fMRI (KAW). Including the reference contours, a total of 9 sets of 
masks were used in subsequent analyses. A description of each rater’s background and experience 
in the neuroimaging field is given in Table 1. Note that while raters with no previous experience 
would not be expected to generate masks in a typical preprocessing pipeline, their inclusion in this 
study serves two purposes. First, we use these raters to establish a baseline level of performance 
to which more experienced raters can be compared. Second, by considering the most extreme 
variability within reason, we leave no room to doubt whether our range of raters is wide enough 
to observe an effect.  
 
Contouring was performed by all raters in FSLeyes.[34] During an initial training session, raters 
who were unfamiliar with the process of contouring (E, G, H) were guided with specific 
instructions on using the software to optimize image brightness, contrast, image orientation, and 
zoom in order to discern the spinal cord boundary. All raters were instructed to inform their 
contouring decisions primarily from the axial view but were also allowed to assess the continuity 
of their masks in the sagittal and frontal views. In addition, raters were instructed to take 
approximately 15 minutes per dataset. Note that this training was primarily focused on utilizing 
software with minimal guidance on interpreting the spinal cord boundary, so we do not expect 
systematic similarity in mask variability as a result of training. Following the initial training 
session, 3 training datasets were released to all raters to ensure competency with the masking 
process. Then, the remaining 21 datasets were released in 3 blocks (7 datasets each) with a 
randomized order for each rater. Raters were given 2 weeks to complete each block of masks.  
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Table 1. Description of each rater’s background 
Rater Job Title MRI 

experience 
(years) 

SC MRI 
experience 

(years) 

SC fMRI 
experience 

(years) 

Research keywords 

Reference Instructor 12 10 10 Brain, spinal cord, pain, 
musculoskeletal MRI, 

neurological injury 

A Assistant 
professor 

14 2 2 Cerebrovascular MRI, 
fMRI denoising, 

physiologic modeling 

B PhD student 1 1 1 Spinal cord fMRI, 
analysis methods 

C Postdoctoral 
researcher 

8 8 1 Spinal Cord MRI, pain, 
traumatic injury 

D Undergraduate 
student 

1 1 1 Spinal cord fMRI, 
analysis methods 

E Undergraduate 
student 

0 0 0 N/A 

F Postdoctoral 
researcher 

7 0.5 0.5 Neuroscience, 
neuroimaging, 

cerebrovascular MRI 

G Undergraduate 
student 

0 0 0 N/A 

H Undergraduate 
student 

0 0 0 N/A 

 
 
2.3 Registration to standard space 

Image registration was performed with the Spinal Cord Toolbox (version 4.3).[19] First, the 
sct_deepseg_SC function was implemented to automatically identify the cord in the high-
resolution T2-weighted anatomical images[47], and the C3 and C7 vertebrae were manually 
labeled. The spinal cord segmentation and vertebral level labels were then used to register the 
anatomical image to the PAM50 spinal cord template image using the sct_register_to_template 
function.[19,45] The anatomical-to-template registration was performed once for each dataset and 
did not vary between raters. The temporal mean functional images were registered to the PAM50 
template using the sct_register_multimodal function, utilizing each rater’s manually contoured 
masks of the cord and initial warping field (generated from the anatomical registration above) as 
inputs. The input rater-drawn spinal cord masks were only considered in the second step of the 
command (see Appendix A). In this step, voxels within the mask were heavily weighted in the 
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warping field calculation, but added spatial regularization included in the selected algorithm 
(‘bsplinesyn’) warped voxels outside of the mask as well. An overview of the masking and 
registration process is shown in Figure 1. 

 
Figure 1: Outline of non-linear registration. A mean temporal image was created; then a 
reference rater and 8 raters with varied levels of experience contoured the spinal cord manually. 
Non-linear registration was performed with the Spinal Cord Toolbox, utilizing additional 
information from a high resolution anatomical T2 weighted image. The impact of the resulting 
registration of the functional image to template space was analyzed. 

 

2.4 Variability in pre- and post-registration masks 

The variability in rater-contoured masks was assessed by comparing each rater mask (RM) to the 
reference mask (REF). To quantify differences, the Dice Similarity Coefficient (DSC) was 
calculated for the total volume and for each axial slice as:  
 

𝐷𝐷𝐷𝐷𝐷𝐷 = 2∗|𝑅𝑅𝑅𝑅𝑅𝑅∩𝑅𝑅𝑅𝑅|
|𝑅𝑅𝑅𝑅𝑅𝑅|+|𝑅𝑅𝑅𝑅| . 

 

Since DSC is a proportion on the unit interval (e.g., [0,1]), it was logit-transformed for all analyses. 
This allows DSC to be more compatible with linear models, which are not constrained to the unit 
interval. Empirically, this resulted in improved model fits relative to modeling raw DSCs. ANOVA 
was used to compare DSC, averaged by dataset, between raters and the reference. The most 
superior and inferior slices were not included in these analyses due to poor image quality. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.03.25.485810doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.25.485810
http://creativecommons.org/licenses/by-nc-nd/4.0/


To assess the effect of fMRI image quality on rater agreement, two metrics were calculated for 
each dataset on the temporal mean functional image: 1) the coefficient of variation (CV) of voxels 
adjacent to the reference spinal cord mask and 2) the ratio between the mean signal of adjacent 
voxels and the mean signal within the reference spinal cord mask (Adjacent:SC ratio). For both 
metrics, adjacent voxels were defined by a 2-voxel dilation from the reference SC mask. The CV 
of adjacent voxels captures inconsistencies in CSF signal and the Adjacent:SC ratio represents the 
signal contrast required to contour spinal cord boundaries. A higher CV or lower Adjacent:SC 
ratio could obscure the delineation between spinal cord and surrounding CSF and would increase 
the difficulty of contouring the cord, potentially leading to increased variability in rater masks.  
 
We compared DSC with the two metrics of image quality (CV and Adjacent:SC ratio) for each 
axial slice of each dataset, rather than using a summary metric for the entire volume of each dataset. 
When raters contoured the spinal cord images, the cord was primarily viewed in the axial plane. 
In this orientation, image quality can vary across slice acquisitions: for example, there is decreased 
efficiency of head/neck coils in more inferior slices, where magnetic field inhomogeneities may 
also be increased due to magnetic susceptibility variation during respiration.[48] While shimming 
of the magnetic field can reduce static field inhomogeneities, present methods are still incapable 
of fully compensating for smaller field variations due to changes in anatomical structures such as 
the borders between spinal discs and vertebral bodies[14-15,18], and custom dynamic shimming 
techniques are not routinely available to fully mitigate dynamic effects of respiration Additionally, 
under normal breathing conditions, the cervical spinal cord moves most in the C4-T1 region.[49-
50] Combined, these factors can create significant variation in the image properties across axial 
slices of a given data set. Thus, we correlated slicewise metrics of image quality with DSC values 
for each RM (with respect to the REF) for all datasets. To do so, we calculated a separate 
Spearman’s ρ for each RM and dataset, with the variance within each RM-dataset pair arising from 
differences between slices—this approach prevents the dataset effects from dominating the 
correlations. The resulting correlations were then converted to Fisher’s z and averaged across 
datasets (within each RM). P-values were calculated using 5,000 max-T (or min-P) permutations, 
which control for multiple comparisons while accounting for covariation between outcomes. 
Within each permutation, we (1) scrambled the DSC values across slices within each RM-dataset 
pair, which assumes that the slices were exchangeable and independent, (2) calculated the 
Spearman’s ρ for each RM-dataset pair, (3) converted Spearman’s ρ to Fisher’s z, (4) averaged 
across datasets (within each RM), and (5) added the max absolute Fisher’s z to the permutation 
distribution. The observed absolute Fisher’s z values were compared to this distribution to 
calculate two-tailed P-values that were adjusted for multiple comparisons. 

 
To evaluate the accuracy of the alignment of functional data to the standard PAM50 template 
space, we considered the signal contrast between gray matter (GM) and white matter (WM) voxels 
using regions defined by the PAM50 spinal cord atlas. Inherent signal contrast between GM and 
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WM tissues within the spinal cord will vary across acquisitions, and the functional BOLD-
weighted sequence was not designed to optimize GM:WM contrast; therefore, this value is likely 
small and highly variable across datasets. However, we use this metric to evaluate the relative 
accuracy of the rater-specific spatial normalization procedures for a given dataset: perfect 
alignment with the PAM50 template should lead to maximal GM:WM contrast using regions 
defined by that template atlas. Imperfect alignment with the PAM50 template would cause mixing 
of GM and WM signals across the two atlas regions, reducing the observed GM:WM contrast for 
that dataset. The GM:WM ratio was calculated for each dataset, following spatial normalization 
procedures using each rater’s spinal cord mask (or the reference). Since GM:WM is a ratio, it was 
first log-transformed and then fitted via an ANOVA with rater and dataset as independent 
variables, thus allowing us to distinguish the impact of rater on spatial normalization accuracy 
from inherent variability in signal contrast across the datasets. The log-transformation improved 
the normality of the residuals. 
 
2.5 Variability in statistical activation in participant- and group-level analyses 
As described in the original study, participant-level analyses were performed to characterize 
significant activation associated with the sensory stimuli.[37] Note that while participant-level 
analysis is often performed in native space, where the impact of spinal cord masks would be 
negligible, the analysis in the original study was done in PAM50 space to facilitate comparison 
across subjects and interpretation of participant-level activation in standardized coordinates. In this 
scheme, manual contours inform registration to template space before the GLM is applied and can 
therefore lead to spatial variation in activation patterns. In PAM50 space, trialwise left- and right-
sided stimuli were convolved with hemodynamic response function and analyses were performed 
via a generalized linear model, using FILM with prewhitening.[51] Voxels with a Z-score > 2.3 (p 
< 0.01, uncorrected) were classified as active. These analyses were repeated for each rater. 
Participant-level activation maps (z-statistics) for left- and right-sided sensory stimuli were 
calculated using a fixed-effects analysis for each dataset and rater. Based on spinal cord anatomy, 
activation from the tactile stimulus was expected to localize to the ipsilateral hemicord around the 
C7 spinal level. We therefore initially focused our attention on ipsilateral activations, only. The 
spinal cord was divided into the left and right hemicord, excluding from analysis the center column 
of spinal cord voxels where the hemicords meet. We considered activation with the left-sided 
stimulus in the left hemicord, and activation with the right-sided stimulus in the right hemicord, 
calculating the spatial correlation (Fisher’s z) between the ipsilateral activation patterns for each 
rater and the reference for each individual dataset. 
 
Group-level activation results were achieved using the participant-level activation maps derived 
from each rater and the reference. As in the original study, all group-level analyses were 
performed in the region of intersection of the functional images, again using a fixed-level 
analysis in FILM, where voxels with a Z-score > 2.3 and multiple comparisons correction cluster 
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significance threshold of p < 0.05.[51] The original study found that activity was somewhat 
lateralized to the ipsilateral cord, but also deviated from these expectations, identifying activity 
more broadly distributed throughout the dorsal and ventral aspects of the cord and also superiorly 
and inferiorly to the expected cervical level.[37] Thus, considering the left and right hemicord 
regions separately, we assessed the distribution of z-statistics associated with ipsilateral 
activation (left cord, left stimulation; right cord, right stimulation) and contralateral activation 
(left cord, right stimulation; right cord, left stimulation) in the group-level results. These 
distributions were compared between the reference and the raters by standardizing (i.e., z-
scoring) each of the reference’s z-statistics (yi) relative to the raters’ distribution (𝑥𝑥𝚤𝚤���⃗ ) for each 
voxel i = 1, …, n, and then averaged the results: 

 

𝑧𝑧̅ = 1
𝑛𝑛
� 𝑦𝑦𝑖𝑖−𝑥𝑥𝚤𝚤���

𝜎𝜎𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
, 

 
Similarly, the standard deviation was also calculated: 

 

SD[𝑧𝑧] = � 1
𝑛𝑛−1

� �𝑦𝑦𝑖𝑖−𝑥𝑥𝚤𝚤�
𝜎𝜎𝑥𝑥𝑖𝑖

− 𝑧𝑧̅�
2𝑛𝑛

𝑖𝑖=1
. 

 

Results 
DSC comparisons between individual raters and the reference demonstrated variability across both 
rater and dataset as shown in Figure 2 (rater: F(7,140) = 32.12,  P < 2×10-16, η2 = 0.29; dataset: 
F(20,140) = 20.58, P < 2×10-16, η2 = 0.53). Note that both the rater and dataset axes in Figure 2 
are sorted by average logit-transformed DSC, and this ordering is also reflected in Table 1 
detailing rater experience (i.e. rater A achieved the highest average DSC while rater H achieved 
the worst). Consistent with expectation, the rater with the most MRI research experience (A) 
achieved the highest average DSC while 2 novice raters with no prior experience (G, H) achieved 
the lowest. However, it is notable that a researcher with 7 years of MRI experience (F) achieved 
lower DSC than a third novice rater (E). The DSC of all rater masks compared to the reference are 
additionally visualized by box-and-whisker plots in Supplementary Figure 1.  
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Figure 2: Color map of Dice similarity coefficients (DSC) comparing each rater mask with the 
reference mask for each of 21 datasets. Both the rater and dataset axes are organized from lowest 
to highest average logit-transformed DSC. The margins (left and bottom) contain estimated 
marginal means for each rater and dataset, and error bars indicate 95% CIs. Horizontal and 
vertical gradient trends indicate the effect of rater and dataset, respectively, on agreement with 
the reference. 

 
The horizontal trend in Figure 2 illustrates differences in DSC attributable to dataset features, 
potentially including image quality or subject anatomy. Reported in Table 2, the CV of voxels 
adjacent to the spinal cord was poorly to moderately negatively correlated with DSC for 6 raters 
(ρ = −0.50 to −0.14). The Adjacent:SC signal ratio was poorly to moderately positively correlated 
with DSC for 7 raters (ρ = 0.15 to 0.50). All corresponding Adjacent:SC and DSC values, for each 
imaging slice of each dataset, are shown in Supplementary Figure 2. 

 

Table 2. Spearman Correlations Between Rater agreement (DSC) with reference masks and 
Coefficient of Variation (CV) and Adjacent:SC Ratio across all participants and slices (n=467). 

 DSC vs. CV DSC vs. Adjacent:SC 
Rater Spearman’s ρ p-value Spearman’s ρ  p-value 

A -0.16 0.007 0.15 0.018 
B -0.31 < 0.001 0.45 < 0.001 
C -0.14 0.036 0.22 < 0.001 
D -0.26 < 0.001 0.23 < 0.001 
E -0.30 < 0.001 0.48 < 0.001 
F -0.39 < 0.001 0.42 < 0.001 
G -0.50 < 0.001 0.50 < 0.001 
H -0.30 < 0.001 0.23 < 0.001 
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Qualitatively, the registration of functional images to template space and the inverse registration 
of the template atlas to the functional image both showed visible differences in alignment (Figure 
3). For example, in Dataset 2, shown with registrations informed by the reference and rater H, the 
PAM50 template masks of GM and WM are clearly not co-localized.  

 

 
Figure 3: Differences in alignment between registration informed by reference and rater H 
masks, from dataset 2. The mean DSC was 0.736 across the axial slices for the input masks 
between the reference and rater for dataset 2. (Top) Registration of functional images to the 
PAM50 template. The yellow line represents the most anterior white matter voxel coordinate of 
the template mask. The orange arrow indicates an area of grey matter in the dorsal horn that is 
not aligned with the template mask in a registration informed by Rater H masking. (Bottom) 
Registration of the PAM50 template atlas to functional image space. The green line represents 
an estimate of the most dorsal coordinate of the functional image. The pink arrow indicates an 
area of grey matter in the dorsal horn that is not aligned with the atlas in Rater H registration. 
Accuracy of registration alignment is supported by the GM:WM ratio, as misalignment 
introduces a mixing of GM, WM, and potentially CSF voxels into the masked areas, reducing the 
observed contrast. 
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GM:WM contrast, calculated using the PAM50 template masks following spatial normalization of 
the functional data to the PAM50 template image (akin to the top panels in Figure 3), was greatest 
for the original study results (REF). Figure 4 shows the GM:WM contrast results for all raters and 
datasets, maintaining the ordering of Figure 2 with the REF results added on the top row. Across 
raters, this metric generally increased with higher agreement between RM and REF (with 
exceptions), as illustrated by a vertical gradient. As anticipated, there is also substantial variability 
of GM:WM contrast across the individual datasets, unrelated to rater masking and spatial 
normalization. ANOVA revealed that both rater and dataset had marked contributions to variance 
in GM:WM contrast, with dataset contributing relatively more variance, as anticipated (rater: 
F(8,160) = 23.57,  P < 2×10-16, η2 = 0.24; dataset: F(20,160) = 22.00, P < 2×10-16, η2 = 0.56).  

 

 
Figure 4: Color map of GM:WM contrast across all rater registrations. Higher GM:WM contrast 
for a given input dataset indicates relatively better registration alignment. The margins (left and 
bottom) contain estimated marginal means for each rater and dataset, and error bars indicate 
95% CIs. The reference masks produced registrations with the highest GM:WM contrast. Rater 
mask agreement with the reference mask (logit-transformed DSC) is correlated with higher levels 
of GM:WM contrast following spatial registration. Moreover, there are marked dataset effects on 
GM:WM, which are reflected by the ANOVA results. 

 
Fisher’s z spatial correlations between individual participant ipsilateral activation maps generated 
by each rater and the reference are shown in Figure 5. Horizontal and vertical trends are both 
present in the spatial correlations, indicating dataset and rater effects are both influencing the 
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agreement of observed activation maps at the individual-level. Note, datasets were ordered by 
initial logit-transformed DSC agreement (as described for Figure 2) for this visualization.  

 

 
Figure 5: Summary of the individual- (or dataset-) level activation maps. Spatial correlation of 
statistical activation maps derived from the individual-level analysis results of each rater and the 
reference, for ipsilateral activation of left- and right-sided stimulation trials. Results shown as a 
color map of Fisher’s z correlations between rater and reference un-thresholded statistical 
activation maps, with the dataset order matching Figures 2 and 4. The horizontal and vertical 
gradient trends indicate that rater agreement with the reference mask and dataset factors influence 
agreement with the reference individual-level statistical activation maps. Marginal mean Fisher’s 
z scores by dataset and rater are shown at the axes. Error bars on the marginal means indicate 
95% CIs. 
 
Results from group-level analyses are also shown in Figure 6 (left) and Table 3, where results 
from z-testing between the reference and raters for each stimulus and hemicord condition (e.g., 
Left hemicord, left stimulus) were distributed about 0 for all cases, illustrating no average Z-score 
differences.  
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Figure 6: Summary of the group-level activation maps. Left: distribution of group-level 
activation z-statistics in the left and right hemicords for left- and right-sided stimulation trials. 
The shape and centering of the distributions are generally similar across all raters illustrating 
no systematic difference in average z-score. Right: group-level activation maps from the 
reference, rater A, rater F, and rater H. Activation is thresholded at Z-score>2.3 (cluster 
corrected p<0.05).  Data have been transformed to the standard PAM50 template space, and the 
approximate level of C5-C7 spinal levels are indicated. (L=left, R=right sided stimulation). 

 

Table 3: Magnitude of the reference’s group-level z-statistics relative to the raters’ distribution. 
The reference group-level z-statistic for each voxel was scaled by the distribution of z-statistics 
from the other raters. Presented here are the mean and standard deviations of the standardized 
reference z-statistics. A mean of 0 would indicate that the reference has the same z-statistic as the 
other raters (on average); values greater than zero indicate greater z-statistics than the raters’ 
average; and values lower than zero indicate lower z-statistics than the raters’ average. 

Side Stimulation Mean  ± SD 

Left Ipsilateral 0.05 ±1.07 

Right Ipsilateral 0.30 ±1.35 

Left Contralateral -0.09 ±1.27 

Right Contralateral 0.49 ±1.30 
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Detailed in Table 4, spatial correlations between the raters’ and reference’s group-level results 
ranged from 0.954 to 0.875 (mean of 0.923) for the ipsilateral activations, and 0.952 to 0.781 
(mean of 0.892) for the contralateral activations. Thus, while systematic trends were not observed 
across the results of different raters, there was observable disagreement in activation mapping at 
the group-level. An illustration of these differences is shown in Figure 6 (right). 

 

Table 4: Group-level activation map spatial correlations (Fisher’s z) between each rater and the 
reference by side (Left (L) or Right (R)) and stimuli condition (ipsilateral or contralateral 
activation). 

 

 

Rater 

 

 

Side 

Spatial Correlation  

(Fisher’s z) 

Ipsilateral Contralateral 

A 
L 0.950 0.952 

R 0.931 0.924 

B 
L 0.952 0.942 

R 0.954 0.935 

C 
L 0.916 0.902 

R 0.930 0.871 

D 
L 0.933 0.901 

R 0.923 0.863 

E 
L 0.944 0.930 

R 0.910 0.895 

F 
L 0.943 0.907 

R 0.905 0.896 

G 
L 0.928 0.890 

R 0.902 0.839 

H 
L 0.875 0.849 

R 0.877 0.781 
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Discussion 
In this study, we assessed the potential impact of manual spinal cord contouring in native fMRI 
space, which is currently a recommended input to spatial normalization and group analyses in 
spinal cord fMRI. In a small cohort of 8 raters of varying experience, independently contouring 
the cord in 21 fMRI datasets acquired at 3T as part of a prior study, we observed mask differences 
attributable to both rater and dataset quality. Variability in masking was assessed by calculating 
DSC agreement with a reference rater (i.e., the rater from the original published work).  
 
Regarding inter-rater variability, a priori expectation was that raters with more neuroimaging 
experience would achieve higher DSC agreement with the reference. While this was observed to 
be true at the extremes, there are notable deviations from this prediction: ordering raters by average 
logit-transformed DSC, one novice rater with no prior imaging experience (E) outperformed a 
researcher with 7 years of MRI experience (F), and a trainee with 1 year of spinal MRI experience 
(B) outperformed a researcher with 8 years of spinal MRI experience (C). Considering rater 
experience as categorized in Table 1, years of experience specifically in spinal cord fMRI (as 
opposed to neuroimaging or spinal cord MRI more generally) may be a more important factor. The 
obscured spinal cord boundary in fMRI data (due to partial-volume effects, low tissue contrast, 
and physiologic noise) may also lead to highly variable contouring performance among all non-
experts. However, while rater F is surpassed by a novice rater (E) based on average logit-
transformed DSC, they achieve a noticeably small spread of DSC values across all datasets. as 
visualized by Supplementary Figure 1. This suggests that more experienced raters may generate 
contours in a more consistent manner, therefore DSC with the reference may suffer as a result of 
systematic differences in interpreting the cord rather than inconsistent masking. Observations from 
downstream analysis suggest that this consistency in masking can lead to more robust downstream 
analysis: rater F overtakes raters D and E in GM:WM (Figure 4) and spatial correlation in 
individual-level analysis (Figure 5). 
 
However, several limitations must also be acknowledged related to our choice of raters and their 
respective experience and training. First, while there is a wide range of MRI experience 
represented, all our raters have limited experience with spinal cord fMRI. We also acknowledge 
that there may be individuals more qualified than our reference rater to provide spinal cord masks 
for comparison (for example, a board certified neuroradiologist with equivalent years of spinal 
cord fMRI experience). We stress that the purpose of this study was to generate variability in 
masking by recruiting raters of varying levels of experience and describe how this variability 
affects the results of a previously published analysis pipeline. Our observations of downstream 
variability arising from this cohort of raters suggest that efforts should be made to standardize 
spinal cord masking to ensure robustness of results. One such way to increase robustness in 
masking may be to use the STAPLE method to combine segmentations from multiple experienced 
raters.[52] Another limitation is that the environment in which raters generated contours was not 
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controlled. Therefore, although raters were instructed to take approximately 15 minutes per 
dataset, there may have been variability in the level of effort or focus put into the masking process, 
possibly confounding rater trends that were observed. Note that this effect is not expected to be 
systematic across datasets and should therefore not affect trends attributable to dataset.  

 
Mask variability was attributable to dataset as well. Because these differences naturally occur 
along the edges of the cord, at the anatomical boundary of spinal cord white matter and surrounding 
CSF, we hypothesized that the signal contrast between these regions in each dataset would be 
associated with the agreement of rater masks with the reference. Indeed, better contrast at the edges 
of the cord (higher Adjacent:SC ratio) was significantly correlated with higher values of DSC, as 
shown in Supplementary Figure 2, which illustrates the slice-wise DSC and Adjacent:SC ratio 
correlations for every rater. Interestingly, we observe many datasets in this study presented with 
Adjacent:SC ratios less than 1, which is not anticipated given the T2* of tissue versus CSF. 
Furthermore, this ratio shows added variability across longitudinal image slices of each dataset. 
Signal dropout that could cause CSF voxels to appear darker than tissue voxels may be a result of 
susceptibility artifacts due to magnetic field inhomogeneity and intra-voxel dephasing through the 
use of thicker slices (3mm) in the functional acquisition. The breakdown of the expected positive 
contrast was often observed in the dorsal aspect of the cord, perhaps due to a posterior shift while 
a participant is being scanned in a supine position.[53] A posterior shift of the cord reduces the 
amount of CSF buffer between neural tissue and ligamentum flavum, disc, or bone from the spinal 
canal and may lead to increased partial volume averaging of these tissues. CSF flow may also 
impact the signal intensity of CSF voxels in this acquisition, potentially increasing or decreasing 
voxel brightness, thus influencing the Adjacent:SC ratio and mask fidelity. (Note, the effect of this 
contrast breakdown on rater masking was also captured by the negative association between CV 
of adjacent voxels and DSC: inconsistent brightness among voxels surrounding the cord led to 
decreased agreement of the rater mask with the reference mask.)  
 

This study used the temporal mean functional image for contouring the spinal cord, which may 
merge these flow artifacts and reduce apparent image contrast. It may be more successful to 
contour the spinal cord on one fMRI volume, rather than the temporal mean image, if a volume 
with maximal Adjacent:SC contrast can be identified. However, it will be challenging to do this in 
a robust and systematic manner and appropriately integrate this step into volume realignment (i.e., 
motion correction) procedures, and this would not fully compensate for inherently poor 
Adjacent:SC contrast across the scan. These findings support the need for continued improvement 
in spinal cord fMRI acquisition techniques to improve and stabilize image contrast (and 
particularly tissue-CSF contrast) along the length of the cord while mitigating flow artifacts, such 
as improved receive coils[18,54-55], higher static magnetic field strengths[18,54], sequence and 
protocol optimization[18,41-42], and image processing techniques [14-19,54].  
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Following spatial normalization to a template image, the functional image GM:WM ratio (using 
GM and WM masks from the PAM50 template) was also reflective of both rater and image quality. 
In T2*-weighted images, GM is expected to be brighter than WM, and thus a well-registered 
functional dataset will yield a more positive GM:WM contrast compared to a less successfully 
registered version of the same input data. Indeed, registration informed by the reference masks 
achieved the highest GM:WM values in 15 of the 21 datasets.  In our results (Figure 4), rater 
disagreement with the reference mask appeared associated with lower GM:WM ratios following 
image registration, suggesting that the underlying tissue projections onto the template contained a 
mix of tissue classes.  These results demonstrate how a rater’s manual contouring of the spinal 
cord in native fMRI space influences the success of image registration to template space.  
 

Reducing the dependency of the image registration algorithms on manual inputs could potentially 
mitigate many of these confounds: as has been done for the registration of high-resolution 
anatomical images of the spinal cord, convolutional neural networks could be trained for 
automated cord segmentation in fMRI datasets.[47] Such advances would have the added benefit 
of speeding up the image processing pipeline by removing the rate-limiting step of manual 
contouring, and would have the added benefit of improving analysis repeatability and facilitating 
robust sharing and combining of spinal cord fMRI data resources.  

 

Differences in masking were also shown to impact the spatial distribution of activation at the 
individual-level, shown in Figure 5, however the impact on group-level results is less obvious 
(Figure 6). This may be due to averaging over a relatively large voxel size (1x1x3mm) when 
evaluating the cord with an average size of 7.4±0.9mm anterior-posterior and 11.4±1.2mm left-
right at the C7 level.[56] The “straightening” of the cord inherent to registering individual spinal 
cord anatomy to the PAM50 template will produce subject-specific interpolation effects that could 
also influence the accuracy and sensitivity of group-level activation results. Additionally, the 
neural activation of interest, due to the tactile stimulus, is expected near the center of the cord, in 
GM, where rater masks are most likely to agree (Supplementary Figure 3) and the nonlinear 
registration algorithm may produce more consistent results. (Note that large BOLD signal changes 
may also occur in draining venous vessels, spanning both central and peripheral regions of the 
spinal cord.) Figure 6 (right) illustrates the group-level activation maps achieved using reference 
and example rater masks. While some spatial differences are observable (for example, Rater F 
misses activation to the left stimulus in superior slices of the cord), differences in spatial 
correlations of unthresholded activation patterns (Table 3) do not result in large qualitative 
differences in thresholded activation maps.  
 
To further investigate any systematic differences between the group-level activation maps for each 
rater and the reference rater, difference maps (Supplemental Figure 4, left) and a non-parametric 
one-sample t-test with threshold-free cluster enhancement were calculated. The Z-score difference 
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map tends negative in some regions, such as C6, (i.e., raters’ activation is less than that of the 
reference). Supplemental Figure 4 (right) shows voxels in which the difference between raters 
and the reference is significant (P<0.05, family-wise error rate controlled). Although this provides 
insight into the spatial distribution of activation differences between the raters and reference, it is 
a generous test and assumes the reference rater results to be a perfect ground-truth, as the 
variability of the reference rater masking and activation results is unknown. 

 
Finally, the lack of robust, systematic differences in the group-level results (despite clear impact 
on individual-level results) may also simply reflect the inherent challenges of measuring BOLD 
responses in the spinal cord, where there are poorly resolved physiologic motion confounds and a 
small anatomical target relative to the image resolution. In the original work, the classical 
definitions of dermatomal sensory distributions were not clearly observed in the group-level 
activation to left and right sensory stimuli.[37] Although predominantly ipsilateral activations 
were observed, they were not localized to the dorsal aspects of the cord, and activation spread 
across vertebral levels rather than localizing to the expected C7 region. One interpretation is that 
there is a more complex anatomical network underlying spinal neurological response to stimuli, 
and we refer the reader to the original work for a more detailed neurophysiological interpretation. 
However, it could also suggest that there remains a fundamental obstacle of low signal-to-noise 
ratio in spinal cord fMRI that hinders robust mapping of true activations. The results of this study 
indicate that such limitations in spinal cord fMRI sensitivity and specificity may be more critical 
to activation mapping than the subtle variations in image co-registration that arise from manually 
contoured spinal cord masks. However, as image quality improves, through developments in 
hardware, acquisition strategies, and image processing techniques, it may become apparent that 
co-registration of functional data to a standard template space is increasingly important in 
achieving accurate and robust group-level results. 

 
 
Conclusion 
We observed differences in individual rater masks of the spinal cord in fMRI data when compared 
to masks from a reference rater. These differences were driven by both rater and dataset effects, 
and led to variable co-registration with a standard spinal cord template image. This variability 
propagated into differences in individual-level fMRI activation results, as measured via spatial 
correlation between the reference and raters’ activation maps for left and right sensory stimuli. 
However, when performing group-level analyses, these masking and co-registration differences 
did not have a systematic effect on the average Z-score of resulting group-level activation. While 
increasing consistency in manual contouring of spinal cord fMRI data could improve data co-
registration and ultimately the inter-rater agreement in activation mapping, our results suggest that 
other improvements in image acquisition and post-processing may be more critical to address. 
Automated approaches for segmenting the spinal cord in fMRI data, although potentially inferior 
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to an expert manual segmentation, would speed processing times and potentially reduce rater bias 
in the analysis pipeline. Future work to ensure robust processing of functional imaging data is 
needed to improve the sensitivity and specificity to true neural activations in the human spinal 
cord. 
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Appendix A 
Spinal Cord Toolbox commands utilized to register functional images to the PAM50 template. 
 

sct_deepseg_sc  
-i anatomical_image  
-c t2  
-centerline svm  
-kernel 2d 

 
sct_register_to_template  

-i anatomical_image  
-s anatomical_image_segmented.nii.gz  
-l anatomical_image_vertebrae_labels  
-c t2 

 
sct_register_multimodal  

-i PAM50_t2*_template_image  
-iseg PAM50_spinal_cord_mask  
-d functional_mean_image  
-dseg functional_mean_image_spinal_cord_mask   
-param  

step=1 
type=seg 
algo=centermass 

step=2 
type=seg 
algo=bsplinesyn 
slicewise=1 
iter=3  

-initwarp template_to_anatomical_image  
-initwarpinv anatomical_image_to_template 
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Supplemental Figure 1:  DSC of each rater mask compared to the reference mask visualized as 
box-and-whisker plots. Top: DSC plotted by rater. Bottom: DSC plotted by dataset. 
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Supplemental Figure 2: Slice-wise DSC and Adj:SC ratio correlations for every rater. Top left: 
a visualization of masks defining adjacent and SC voxel regions on the reference mask. Plots A-
H: DSC and Adj:SC ratio are positively correlated for every rater. Greater contrast between 
spinal cord and adjacent voxels on a given transverse slice is associated with increased 
agreement with the reference (positive correlation). 
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Supplemental Figure 3. An example of the summed differences between the reference and the 
raters’ mask. Eight raters and reference rater contoured the spinal cord on temporal mean fMRI 
images. The reference mask was subtracted from each of the rater masks and the differences 
summed. The resultant summed difference maps are shown on the right. The difference map 
colorscale runs from -8 to +8, with negative values representing voxels included in the reference 
mask were not selected by the 8 raters, and positive values being the reverse, where the raters 
included voxels that were not selected by the reference. The difference maps illustrate the 
location of disagreement between the raters and reference is at the edges of the spinal cord. 
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Supplemental Figure 4. Left: mean difference of group-level activation Z-score maps (shown in 
Figure 6) between the reference and each of the 8 raters (e.g., rater A - Reference) for the left 
and right contrasts. Right: map of significant voxels from non-parametric one-sample t-test with 
threshold-free cluster enhancement (P<0.05, family-wise error rate controlled). For the left 
contrast, 6.20% (2.06% Raters > Ref., 4.14% Raters < Ref.) of voxels in the spinal cord were 
significantly different between the 8 raters and the reference rater. For the right contrast, 4.25% 
(1.90% Raters > Ref., 2.35% Raters < Ref.) of voxels in the spinal cord were significantly 
different between the 8 raters and the reference rater. Slices shown are the same as in Figure 6. 
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