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Abstract

Functional magnetic resonance imaging (fMRI) of the human spinal cord (SC) is a unique non-
invasive method for characterizing neurovascular responses to stimuli. Group-analysis of SC fMRI
data involves co-registration of subject-level data to standard space, which requires manual
masking of the cord and may result in bias of group-level SC fMRI results. To test this, we
examined variability in SC masks drawn in fMRI data from 21 healthy participants from a
completed study mapping responses to sensory stimuli of the C7 dermatome. Masks were drawn
on temporal mean functional image by eight raters with varying levels of neuroimaging
experience, and the rater from the original study acted as a reference. Spatial agreement between
rater and reference masks was measured using the Dice Similarity Coefficient, and the influence
of rater and dataset was examined using ANOVA. Each rater’s masks were used to register
functional data to the PAMS50 template. Gray matter-white matter signal contrast of registered
functional data was used to evaluate the spatial normalization accuracy across raters. Subject- and
group-level analyses of activation during left- and right-sided sensory stimuli were performed for
each rater’s co-registered data. Agreement with the reference SC mask was associated with both
rater (F(7,140) =32.12, P <2x107'%, n? = 0.29) and dataset (F(20,140) = 20.58, P <2x107!6, n* =
0.53). Dataset variations may reflect image quality metrics: the ratio between the signal intensity
of spinal cord voxels and surrounding cerebrospinal fluid was correlated with DSC results
(p<0.001). As predicted, variability in the manually-drawn masks influenced spatial normalization,
and GM:WM contrast in the registered data showed significant effects of rater and dataset (rater:
F(8,160) = 23.57, P <2x107'%, n? = 0.24; dataset: F(20,160) = 22.00, P < 2x10'¢, n? = 0.56).
Registration differences propagated into subject-level activation maps which showed rater-
dependent agreement with the reference. Although group-level activation maps differed between
raters, no systematic bias was identified. Increasing consistency in manual contouring of spinal
cord fMRI data improved co-registration and inter-rater agreement in activation mapping, however
our results suggest that improvements in image acquisition and post-processing are also critical to
address.
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Introduction

Functional magnetic resonance imaging (fMRI) of the spinal cord is a technique for understanding
neurovascular responses to sensory and motor stimuli.[1-3] fMRI studies of the cord have
demonstrated neural activation correlates to physiological mechanisms of sensation, illustrating
dermatomal patterns[4-8], and motor control laterality.[9] Furthermore, studies have demonstrated
interactions between the cortex and spinal cord in both sensory and motor learning paradigms that
further our understanding of human neurology.[10-11] Encouraged by observations of coordinated
intrinsic activity within functional brain networks, researchers have successfully demonstrated
such "connectivity" properties within the spinal cord, and between the cord and brain.[11-13]
Uniquely positioned to provide noninvasive functional mapping of large segments of the spinal
cord in humans, spinal cord fMRI is poised to play a critical role in understanding both typical and
pathologic sensation and movement.

However, while significant advances have been made over the years, the breadth of literature
studying the spinal cord still lags behind that of brain fMRI research, in part due to remaining
technical challenges, including those related to cord anatomy. Specifically, analysis and
interpretation of spinal cord fMRI data is hindered by the large changes in magnetic susceptibility
of tissues approximating the cord, the small size of the target neural tissues (typically leading to
low signal-to-noise ratio), and physiological noise from cardiac and respiratory processes.[14-18]
Several analytical tools have been developed to improve characterization of spinal cord fMRI data.
These tools include, but are not limited to the Spinal Cord Toolbox, the Neptune Toolbox, and
Pantheon (formerly spinalfMRIS8).[19-20] There are also specific analysis strategies developed for
spinal cord fMRI denoising such as physiological noise modeling[17,21], slice-wise motion
correction[ 19-20], anisotropic spatial smoothing [19], and principal and independent component
analysis based denoising[22-24].

At present, these noise-reduction strategies can dramatically improve the quality of fMRI data.
However, in typical 3T fMRI scans, it remains challenging to confidently interpret activation maps
in individual subject data. As in brain fMRI, an established way to make statistical inferences
across the sample or a population is to combine fMRI data from many individuals for group-level
analysis. One way to do this is by using region of interest (ROI)-based group analysis relying on
regions defined at the subject level. However, in order to retain complete, voxelwise spatial
information, it is often desirable to generate group-level activation maps. This process necessitates
the co-registration of fMRI data to a common or standard space to facilitate comparisons across
subjects with variable cord anatomy.[25] To this end, standard spinal cord templates and
techniques for registration have been developed.[18] Notably, and unlike brain fMRI co-
registration, nearly all spinal cord fMRI registration techniques require user input. One early
method that was iteratively developed required the user to indicate various reference lines to
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inform affine transformation to a reference image with minimal curvature.[26-29] This technique
was applied on sagittally acquired slices, and in 2015 an automated version was published.[30]
Around the same time, different techniques were developed for axially acquired data. One study
performed normalization by manually identifying the center of the cord in each slice, then
performing an in-plane translation (2 degrees of freedom) to match a reference.[11] A similar
approach using a manually defined spinal cord mask and 4 degrees of freedom (translation and
scaling) was also developed.[6] Building on these axial normalization techniques, the
sct_register multimodal function was introduced as part of the spinal cord toolbox (SCT) in 2017.
This was the first nonlinear registration algorithm for spinal cord fMRI and it has since been used
in various studies of the cord.[7, 9, 19, 31]

When using sct_register multimodal to register functional data to a template, it is advisable to use
the warping field from a previously completed structural to template registration to initialize the
algorithm and exploit the high-resolution information available for the individual subject.
Additionally, due to the challenges of image distortion in EPI data, it is recommended for this
function that the user inputs a binary spinal cord mask in native fMRI space to inform registration.
It is common for this input mask to be manually defined, as there are currently no reliable
algorithms for segmenting the spinal cord in functional data. Note that spinal cord data acquired
with non-EPI methods, and with high-resolution data acquired from a common field-of-view, may
facilitate alternative automated approaches for cord masking that would not be impacted by the
manual masking element explored in this paper. The remaining challenges of spinal cord fMRI
data quality (e.g., low signal-to-noise, residual physiologic and motion artifacts, and poor contrast
between spinal cord tissue and the surrounding cerebrospinal fluid (CSF)) may lead to subjective
differences when contouring the cord. These differences could result in systematic bias in data co-
registration and thus alter individual and group analysis results. The extent of this source of
variability in spinal cord fMRI processing pipelines is relatively unknown.

Standardization of both imaging protocols and processing pipelines has been recommended to
improve the robustness of spinal cord fMRI findings.[15, 18] In brain fMRI, differences in
functional image processing pipelines have been shown to have large potential impacts on the
resultant findings of a study.[32] Bowring et al. observed that variability in results from task fMRI
in the brain are heterogeneous, depending on the input dataset and potentially each aspect of the
image processing pipeline (including registration).[32] Furthermore, study results were also
impacted by the software package utilized.[32] While there are multiple software packages for
spatial normalization of fMRI in the brain[33-35], spinal cord studies have fewer options or must
create bespoke techniques for registration to labeled structural templates of the cord.[18-19, 36]
Given the lack of a unified method of preprocessing spinal cord fMRI data, reproducibility of
reported results is likely to be limited, and improvements are needed to standardize image
processing and reduce sources of variability and bias at every stage of analysis.
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In this work, we specifically assess the impact of variable manual contouring of the spinal cord in
native fMRI image space, as needed for spatial normalization of individual fMRI datasets to a
standard template space. To achieve this, we examine the effects of mask variability at different
stages of a single analysis pipeline for spinal cord fMRI using a previously published study dataset.
We characterize the variability in spinal cord masks achieved by eight raters with varying levels
of image analysis experience, with respect to a “reference” rater from the original study and
publication. We then demonstrate how this variability is propagated following registration of
functional imaging data to a standard spinal cord template image. We subsequently run individual-
and group-level analyses for a sensory stimulus task, using each rater’s masks during co-
registration, to assess the impact on fMRI activation patterns at the single-subject and overall study
level. Finally, we discuss the causes of this wvariability, their importance, and make
recommendations for prioritizing future improvements in spinal cord fMRI.

Methods

2.1 Image acquisition and experimental protocol

This work utilized a subset of anatomical and functional MRI data from 24 healthy participants
from a previous study.[37] Images were acquired using a 3T Siemens Prisma scanner (Siemens,
Erlangen, Germany), utilizing a 64-channel head/neck coil and a SatPad™ cervical collar (SatPad
Clinical Imaging Solutions, West Chester, PA, USA). Anatomical T2-weighted images were
acquired covering the cervical and upper thoracic spine, using the SPACE sequence (Siemens,
Erlangen, Germany), with parameters: TR = 1500ms, TEeff = 135 ms, echo train = 74, flip angle
= 90°/140°, slices = 64, effective voxel size = 0.8 x 0.8 x 0.8 mm?, iPAT acceleration factor = 3,
interpolated in-plane resolution = 0.4 x 0.4 mm?.[38-39] T2*-weighted functional scans of the
cervical spinal cord were acquired, with 25 axially acquired slices centered at the C5 vertebral
level, using a gradient-echo echo-planar-imaging sequence with ZOOMit selective field-of-
view.[40-42] Functional imaging parameters were: TRsp = 2000 ms, TE = 30 ms, flip
angle = 80°, volumes = 450, slice order was interleaved, field-of-view = 128 x 44 mm?
acquisition matrix = 128 x 44 voxels, in-plane resolution = 1 x 1 mm? slice
thickness = 3 mm, two dummy volumes discarded.

During each functional scan, alternating left and right tactile stimuli were applied to the dorsum of
each hand in the C7 dermatomal region.[37] Stimulation was applied manually at approximately
2 Hz by examiners in the scan room. Stimulation lasted for 15 sec on each hand and was
interspersed with a 15 second rest period.
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Preprocessing of the functional MRI time series was performed as in the original study.[11] Motion
correction was performed in two phases using FMRIB’s Linear Registration Tool (FLIRT) for 3D
rigid body alignment (6 degrees of freedom), followed by rigid 2D slice-wise (axial) alignment (2
degrees of freedom; x- and y-translation only) [34, 43], and was optimized for a binary masked
region around the spinal canal. Temporal mean images were calculated from these preprocessed
functional data. fMRI data were further denoised by removing periodic physiological noise
confounds using the PNM (Physiological Noise Modelling) tool in FSL [21, 44], warped to the
PAM 50 spinal cord template [45], and then smoothed with a 2mm? full width half maximum
Gaussian smoothing kernel prior to individual- and group-level activation mapping.[46]

2.2 Manual contouring

Raters (N=8) with differing levels of functional neuroimaging experience were recruited to
manually contour the spinal cord on 21 temporal mean functional images, after 3 of the 24 datasets
were utilized for rater training. Additionally, as this dataset was collected for a previously
completed and published study,[37] the original masks from that work were included as
“reference” contours. The reference masks (REF) are provided by a researcher with 10 years of
experience with spinal cord fMRI (KAW). Including the reference contours, a total of 9 sets of
masks were used in subsequent analyses. A description of each rater’s background and experience
in the neuroimaging field is given in Table 1. Note that while raters with no previous experience
would not be expected to generate masks in a typical preprocessing pipeline, their inclusion in this
study serves two purposes. First, we use these raters to establish a baseline level of performance
to which more experienced raters can be compared. Second, by considering the most extreme
variability within reason, we leave no room to doubt whether our range of raters is wide enough
to observe an effect.

Contouring was performed by all raters in FSLeyes.[34] During an initial training session, raters
who were unfamiliar with the process of contouring (E, G, H) were guided with specific
instructions on using the software to optimize image brightness, contrast, image orientation, and
zoom in order to discern the spinal cord boundary. All raters were instructed to inform their
contouring decisions primarily from the axial view but were also allowed to assess the continuity
of their masks in the sagittal and frontal views. In addition, raters were instructed to take
approximately 15 minutes per dataset. Note that this training was primarily focused on utilizing
software with minimal guidance on interpreting the spinal cord boundary, so we do not expect
systematic similarity in mask variability as a result of training. Following the initial training
session, 3 training datasets were released to all raters to ensure competency with the masking
process. Then, the remaining 21 datasets were released in 3 blocks (7 datasets each) with a
randomized order for each rater. Raters were given 2 weeks to complete each block of masks.
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Table 1. Description of each rater’s background

Rater Job Title MRI SC MRI SC fMRI Research keywords
experience | experience | experience
(years) (years) (years)
Reference Instructor 12 10 10 Brain, spinal cord, pain,

musculoskeletal MRI,
neurological injury

A Assistant 14 2 2 Cerebrovascular MRI,
professor fMRI denoising,
physiologic modeling
B PhD student 1 1 1 Spinal cord fMRI,
analysis methods
C Postdoctoral 8 8 1 Spinal Cord MRI, pain,
researcher traumatic injury
D Undergraduate 1 1 1 Spinal cord fMRI,
student analysis methods
E Undergraduate 0 0 0 N/A
student
F Postdoctoral 7 0.5 0.5 Neuroscience,
researcher neuroimaging,

cerebrovascular MRI

G Undergraduate 0 0 0 N/A
student

H Undergraduate 0 0 0 N/A
student

2.3 Registration to standard space

Image registration was performed with the Spinal Cord Toolbox (version 4.3).[19] First, the
sct_deepseg_SC function was implemented to automatically identify the cord in the high-
resolution T2-weighted anatomical images[47], and the C3 and C7 vertebrac were manually
labeled. The spinal cord segmentation and vertebral level labels were then used to register the
anatomical image to the PAMS5O0 spinal cord template image using the sct_register_to_template
function.[19,45] The anatomical-to-template registration was performed once for each dataset and
did not vary between raters. The temporal mean functional images were registered to the PAMS50
template using the sct_register_multimodal function, utilizing each rater’s manually contoured
masks of the cord and initial warping field (generated from the anatomical registration above) as
inputs. The input rater-drawn spinal cord masks were only considered in the second step of the
command (see Appendix A). In this step, voxels within the mask were heavily weighted in the
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warping field calculation, but added spatial regularization included in the selected algorithm
(‘bsplinesyn’) warped voxels outside of the mask as well. An overview of the masking and
registration process is shown in Figure 1.

Functional image registered to
_____ template atlas

Temporal Mean fMRI

Non-Linear

-_f__,

Initial Warp from
Anatomical Image to Atlas

Reference
Registration
Reference Mask

High Resolution
Anatomical Image

High Resolution
Atlas

Figure 1: Outline of non-linear registration. A mean temporal image was created, then a
reference rater and 8 raters with varied levels of experience contoured the spinal cord manually.
Non-linear registration was performed with the Spinal Cord Toolbox, utilizing additional
information from a high resolution anatomical T2 weighted image. The impact of the resulting
registration of the functional image to template space was analyzed.

2.4 Variability in pre- and post-registration masks

The variability in rater-contoured masks was assessed by comparing each rater mask (RM) to the
reference mask (REF). To quantify differences, the Dice Similarity Coefficient (DSC) was
calculated for the total volume and for each axial slice as:

_ 2+|REFNRM|
~ |REF|+|RM|"

DSC

Since DSC is a proportion on the unit interval (e.g., [0,1]), it was logit-transformed for all analyses.
This allows DSC to be more compatible with linear models, which are not constrained to the unit
interval. Empirically, this resulted in improved model fits relative to modeling raw DSCs. ANOVA
was used to compare DSC, averaged by dataset, between raters and the reference. The most
superior and inferior slices were not included in these analyses due to poor image quality.
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To assess the effect of fMRI image quality on rater agreement, two metrics were calculated for
each dataset on the temporal mean functional image: 1) the coefficient of variation (CV) of voxels
adjacent to the reference spinal cord mask and 2) the ratio between the mean signal of adjacent
voxels and the mean signal within the reference spinal cord mask (Adjacent:SC ratio). For both
metrics, adjacent voxels were defined by a 2-voxel dilation from the reference SC mask. The CV
of adjacent voxels captures inconsistencies in CSF signal and the Adjacent:SC ratio represents the
signal contrast required to contour spinal cord boundaries. A higher CV or lower Adjacent:SC
ratio could obscure the delineation between spinal cord and surrounding CSF and would increase
the difficulty of contouring the cord, potentially leading to increased variability in rater masks.

We compared DSC with the two metrics of image quality (CV and Adjacent:SC ratio) for each
axial slice of each dataset, rather than using a summary metric for the entire volume of each dataset.
When raters contoured the spinal cord images, the cord was primarily viewed in the axial plane.
In this orientation, image quality can vary across slice acquisitions: for example, there is decreased
efficiency of head/neck coils in more inferior slices, where magnetic field inhomogeneities may
also be increased due to magnetic susceptibility variation during respiration.[48] While shimming
of the magnetic field can reduce static field inhomogeneities, present methods are still incapable
of fully compensating for smaller field variations due to changes in anatomical structures such as
the borders between spinal discs and vertebral bodies[14-15,18], and custom dynamic shimming
techniques are not routinely available to fully mitigate dynamic effects of respiration Additionally,
under normal breathing conditions, the cervical spinal cord moves most in the C4-T1 region.[49-
50] Combined, these factors can create significant variation in the image properties across axial
slices of a given data set. Thus, we correlated slicewise metrics of image quality with DSC values
for each RM (with respect to the REF) for all datasets. To do so, we calculated a separate
Spearman’s p for each RM and dataset, with the variance within each RM-dataset pair arising from
differences between slices—this approach prevents the dataset effects from dominating the
correlations. The resulting correlations were then converted to Fisher’s z and averaged across
datasets (within each RM). P-values were calculated using 5,000 max-T (or min-P) permutations,
which control for multiple comparisons while accounting for covariation between outcomes.
Within each permutation, we (1) scrambled the DSC values across slices within each RM-dataset
pair, which assumes that the slices were exchangeable and independent, (2) calculated the
Spearman’s p for each RM-dataset pair, (3) converted Spearman’s p to Fisher’s z, (4) averaged
across datasets (within each RM), and (5) added the max absolute Fisher’s z to the permutation
distribution. The observed absolute Fisher’s z values were compared to this distribution to
calculate two-tailed P-values that were adjusted for multiple comparisons.

To evaluate the accuracy of the alignment of functional data to the standard PAMS50 template
space, we considered the signal contrast between gray matter (GM) and white matter (WM) voxels
using regions defined by the PAMSO0 spinal cord atlas. Inherent signal contrast between GM and
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WM tissues within the spinal cord will vary across acquisitions, and the functional BOLD-
weighted sequence was not designed to optimize GM: WM contrast; therefore, this value is likely
small and highly variable across datasets. However, we use this metric to evaluate the relative
accuracy of the rater-specific spatial normalization procedures for a given dataset: perfect
alignment with the PAMS0 template should lead to maximal GM:WM contrast using regions
defined by that template atlas. Imperfect alignment with the PAMS50 template would cause mixing
of GM and WM signals across the two atlas regions, reducing the observed GM:WM contrast for
that dataset. The GM:WM ratio was calculated for each dataset, following spatial normalization
procedures using each rater’s spinal cord mask (or the reference). Since GM:WM is a ratio, it was
first log-transformed and then fitted via an ANOVA with rater and dataset as independent
variables, thus allowing us to distinguish the impact of rater on spatial normalization accuracy
from inherent variability in signal contrast across the datasets. The log-transformation improved
the normality of the residuals.

2.5 Variability in statistical activation in participant- and group-level analyses

As described in the original study, participant-level analyses were performed to characterize
significant activation associated with the sensory stimuli.[37] Note that while participant-level
analysis is often performed in native space, where the impact of spinal cord masks would be
negligible, the analysis in the original study was done in PAMS50 space to facilitate comparison
across subjects and interpretation of participant-level activation in standardized coordinates. In this
scheme, manual contours inform registration to template space before the GLM is applied and can
therefore lead to spatial variation in activation patterns. In PAMS50 space, trialwise left- and right-
sided stimuli were convolved with hemodynamic response function and analyses were performed
via a generalized linear model, using FILM with prewhitening.[51] Voxels with a Z-score > 2.3 (p
< 0.01, uncorrected) were classified as active. These analyses were repeated for each rater.
Participant-level activation maps (z-statistics) for left- and right-sided sensory stimuli were
calculated using a fixed-effects analysis for each dataset and rater. Based on spinal cord anatomy,
activation from the tactile stimulus was expected to localize to the ipsilateral hemicord around the
C7 spinal level. We therefore initially focused our attention on ipsilateral activations, only. The
spinal cord was divided into the left and right hemicord, excluding from analysis the center column
of spinal cord voxels where the hemicords meet. We considered activation with the left-sided
stimulus in the left hemicord, and activation with the right-sided stimulus in the right hemicord,
calculating the spatial correlation (Fisher’s z) between the ipsilateral activation patterns for each
rater and the reference for each individual dataset.

Group-level activation results were achieved using the participant-level activation maps derived
from each rater and the reference. As in the original study, all group-level analyses were
performed in the region of intersection of the functional images, again using a fixed-level
analysis in FILM, where voxels with a Z-score > 2.3 and multiple comparisons correction cluster


https://doi.org/10.1101/2022.03.25.485810
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.25.485810; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

significance threshold of p < 0.05.[51] The original study found that activity was somewhat
lateralized to the ipsilateral cord, but also deviated from these expectations, identifying activity
more broadly distributed throughout the dorsal and ventral aspects of the cord and also superiorly
and inferiorly to the expected cervical level.[37] Thus, considering the left and right hemicord
regions separately, we assessed the distribution of z-statistics associated with ipsilateral
activation (left cord, left stimulation; right cord, right stimulation) and contralateral activation
(left cord, right stimulation; right cord, left stimulation) in the group-level results. These
distributions were compared between the reference and the raters by standardizing (i.e., z-
scoring) each of the reference’s z-statistics (y:) relative to the raters’ distribution (x;) for each
voxel i =1, ..., n, and then averaged the results:

Similarly, the standard deviation was also calculated:

1 \N" (vi-% 2
SD[z] = ﬁ} 1(%_2_) '
i= i

Results

DSC comparisons between individual raters and the reference demonstrated variability across both
rater and dataset as shown in Figure 2 (rater: F(7,140) = 32.12, P < 2x107'®, n* = 0.29; dataset:

F(20,140) = 20.58, P < 2x10°'®, n* = 0.53). Note that both the rater and dataset axes in Figure 2
are sorted by average logit-transformed DSC, and this ordering is also reflected in Table 1
detailing rater experience (i.e. rater A achieved the highest average DSC while rater H achieved
the worst). Consistent with expectation, the rater with the most MRI research experience (A)
achieved the highest average DSC while 2 novice raters with no prior experience (G, H) achieved
the lowest. However, it is notable that a researcher with 7 years of MRI experience (F) achieved
lower DSC than a third novice rater (E). The DSC of all rater masks compared to the reference are
additionally visualized by box-and-whisker plots in Supplementary Figure 1.
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Figure 2: Color map of Dice similarity coefficients (DSC) comparing each rater mask with the
reference mask for each of 21 datasets. Both the rater and dataset axes are organized from lowest
to highest average logit-transformed DSC. The margins (left and bottom) contain estimated
marginal means for each rater and dataset, and error bars indicate 95% Cls. Horizontal and
vertical gradient trends indicate the effect of rater and dataset, respectively, on agreement with
the reference.

The horizontal trend in Figure 2 illustrates differences in DSC attributable to dataset features,
potentially including image quality or subject anatomy. Reported in Table 2, the CV of voxels
adjacent to the spinal cord was poorly to moderately negatively correlated with DSC for 6 raters
(p=-0.50to —0.14). The Adjacent:SC signal ratio was poorly to moderately positively correlated
with DSC for 7 raters (o = 0.15 to 0.50). All corresponding Adjacent:SC and DSC values, for each
imaging slice of each dataset, are shown in Supplementary Figure 2.

Table 2. Spearman Correlations Between Rater agreement (DSC) with reference masks and
Coefficient of Variation (CV) and Adjacent:SC Ratio across all participants and slices (n=467).

DSC vs. CV DSC vs. Adjacent:SC
Rater | Spearman’s p p-value | Spearman’s p p-value
A -0.16 0.007 0.15 0.018
B -0.31 <0.001 0.45 <0.001
C -0.14 0.036 0.22 <0.001
D -0.26 <0.001 0.23 <0.001
E -0.30 <0.001 0.48 <0.001
F -0.39 <0.001 0.42 <0.001
G -0.50 <0.001 0.50 <0.001
H -0.30 <0.001 0.23 <0.001
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Qualitatively, the registration of functional images to template space and the inverse registration
of the template atlas to the functional image both showed visible differences in alignment (Figure
3). For example, in Dataset 2, shown with registrations informed by the reference and rater H, the
PAMS50 template masks of GM and WM are clearly not co-localized.

Functional to Template Registration: Dataset 2

Template Reference Rater H
GM:WM =1.071 GM:WM =1.001

Template to Functional Registration: Dataset 2

Functional Image Reference Rater H
GM:WM = 1.066 GM:WM =0.991

Figure 3: Differences in alignment between registration informed by reference and rater H
masks, from dataset 2. The mean DSC was 0.736 across the axial slices for the input masks
between the reference and rater for dataset 2. (Top) Registration of functional images to the
PAMS50 template. The yellow line represents the most anterior white matter voxel coordinate of
the template mask. The orange arrow indicates an area of grey matter in the dorsal horn that is
not aligned with the template mask in a registration informed by Rater H masking. (Bottom)
Registration of the PAMS50 template atlas to functional image space. The green line represents
an estimate of the most dorsal coordinate of the functional image. The pink arrow indicates an
area of grey matter in the dorsal horn that is not aligned with the atlas in Rater H registration.
Accuracy of registration alignment is supported by the GM:WM ratio, as misalignment
introduces a mixing of GM, WM, and potentially CSF voxels into the masked areas, reducing the
observed contrast.
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GM:WM contrast, calculated using the PAMS50 template masks following spatial normalization of
the functional data to the PAMS50 template image (akin to the top panels in Figure 3), was greatest
for the original study results (REF). Figure 4 shows the GM:WM contrast results for all raters and
datasets, maintaining the ordering of Figure 2 with the REF results added on the top row. Across
raters, this metric generally increased with higher agreement between RM and REF (with
exceptions), as illustrated by a vertical gradient. As anticipated, there is also substantial variability
of GM:WM contrast across the individual datasets, unrelated to rater masking and spatial
normalization. ANOVA revealed that both rater and dataset had marked contributions to variance
in GM:WM contrast, with dataset contributing relatively more variance, as anticipated (rater:

F(8,160) =23.57, P <2x10', n? = 0.24; dataset: F(20,160) = 22.00, P < 2x10°'6, n* = 0.56).

GM:WM
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Figure 4: Color map of GM:WM contrast across all rater registrations. Higher GM:WM contrast
for a given input dataset indicates relatively better registration alignment. The margins (left and
bottom) contain estimated marginal means for each rater and dataset, and error bars indicate
95% Cls. The reference masks produced registrations with the highest GM:WM contrast. Rater
mask agreement with the reference mask (logit-transformed DSC) is correlated with higher levels
of GM:WM contrast following spatial registration. Moreover, there are marked dataset effects on
GM:WM, which are reflected by the ANOVA results.

Fisher’s z spatial correlations between individual participant ipsilateral activation maps generated
by each rater and the reference are shown in Figure 5. Horizontal and vertical trends are both
present in the spatial correlations, indicating dataset and rater effects are both influencing the


https://doi.org/10.1101/2022.03.25.485810
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.25.485810; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

agreement of observed activation maps at the individual-level. Note, datasets were ordered by
initial logit-transformed DSC agreement (as described for Figure 2) for this visualization.

Individual-level analysis

Fisher's z & . Fisher's z ; . : ;
1 28 Left cord, left stimulation 1 28 Right cord, right stimulation
A . A .
B . B .
Cc . Cc .
@ D . D e
o
g E . E .
F L] F .
G e G e
H e H o m
25 259
. o . . =
seettit it ittt 1 1 L I L R B ..15.
1234567 8 9101112131415161718192021 12345678 9101112131415161718192021 N
Dataset Dataset
Fisher's z
S
0 1 2 3

Figure 5: Summary of the individual- (or dataset-) level activation maps. Spatial correlation of
statistical activation maps derived from the individual-level analysis results of each rater and the
reference, for ipsilateral activation of left- and right-sided stimulation trials. Results shown as a
color map of Fisher’s z correlations between rater and reference un-thresholded statistical
activation maps, with the dataset order matching Figures 2 and 4. The horizontal and vertical
gradient trends indicate that rater agreement with the reference mask and dataset factors influence
agreement with the reference individual-level statistical activation maps. Marginal mean Fisher’s
z scores by dataset and rater are shown at the axes. Error bars on the marginal means indicate

95% Cls.

Results from group-level analyses are also shown in Figure 6 (left) and Table 3, where results
from z-testing between the reference and raters for each stimulus and hemicord condition (e.g.,
Left hemicord, left stimulus) were distributed about O for all cases, illustrating no average Z-score

differences.
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Figure 6: Summary of the group-level activation maps. Left: distribution of group-level
activation z-statistics in the left and right hemicords for left- and right-sided stimulation trials.
The shape and centering of the distributions are generally similar across all raters illustrating
no systematic difference in average z-score. Right: group-level activation maps from the
reference, rater A, rater F, and rater H. Activation is thresholded at Z-score>2.3 (cluster
corrected p<0.05). Data have been transformed to the standard PAMS50 template space, and the
approximate level of C5-C7 spinal levels are indicated. (L=left, R=right sided stimulation).

Table 3: Magnitude of the reference’s group-level z-statistics relative to the raters’ distribution.
The reference group-level z-statistic for each voxel was scaled by the distribution of z-statistics
from the other raters. Presented here are the mean and standard deviations of the standardized
reference z-statistics. A mean of 0 would indicate that the reference has the same z-statistic as the
other raters (on average),; values greater than zero indicate greater z-statistics than the raters’
average, and values lower than zero indicate lower z-statistics than the raters’ average.

Side Stimulation Mean +SD
Left Ipsilateral 0.05 +1.07
Right Ipsilateral 0.30 +1.35
Left Contralateral -0.09 +1.27

Right Contralateral 0.49 $1.30
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Detailed in Table 4, spatial correlations between the raters’ and reference’s group-level results
ranged from 0.954 to 0.875 (mean of 0.923) for the ipsilateral activations, and 0.952 to 0.781
(mean of 0.892) for the contralateral activations. Thus, while systematic trends were not observed
across the results of different raters, there was observable disagreement in activation mapping at
the group-level. An illustration of these differences is shown in Figure 6 (right).

Table 4: Group-level activation map spatial correlations (Fisher’s z) between each rater and the
reference by side (Left (L) or Right (R)) and stimuli condition (ipsilateral or contralateral
activation).

Spatial Correlation

(Fisher’s 7)

Rater Side Ipsilateral Contralateral

L 0.950 0.952
A

R 0.931 0.924

L 0.952 0.942
B

R 0.954 0.935

L 0.916 0.902
C

R 0.930 0.871

L 0.933 0.901
D

R 0.923 0.863

L 0.944 0.930
E

R 0.910 0.895

L 0.943 0.907
F

R 0.905 0.896

L 0.928 0.890
G

R 0.902 0.839

L 0.875 0.849
H

R 0.877 0.781
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Discussion

In this study, we assessed the potential impact of manual spinal cord contouring in native fMRI
space, which is currently a recommended input to spatial normalization and group analyses in
spinal cord fMRI. In a small cohort of 8 raters of varying experience, independently contouring
the cord in 21 fMRI datasets acquired at 3T as part of a prior study, we observed mask differences
attributable to both rater and dataset quality. Variability in masking was assessed by calculating
DSC agreement with a reference rater (i.e., the rater from the original published work).

Regarding inter-rater variability, a priori expectation was that raters with more neuroimaging
experience would achieve higher DSC agreement with the reference. While this was observed to
be true at the extremes, there are notable deviations from this prediction: ordering raters by average
logit-transformed DSC, one novice rater with no prior imaging experience (E) outperformed a
researcher with 7 years of MRI experience (F), and a trainee with 1 year of spinal MRI experience
(B) outperformed a researcher with 8 years of spinal MRI experience (C). Considering rater
experience as categorized in Table 1, years of experience specifically in spinal cord fMRI (as
opposed to neuroimaging or spinal cord MRI more generally) may be a more important factor. The
obscured spinal cord boundary in fMRI data (due to partial-volume effects, low tissue contrast,
and physiologic noise) may also lead to highly variable contouring performance among all non-
experts. However, while rater F is surpassed by a novice rater (E) based on average logit-
transformed DSC, they achieve a noticeably small spread of DSC values across all datasets. as
visualized by Supplementary Figure 1. This suggests that more experienced raters may generate
contours in a more consistent manner, therefore DSC with the reference may suffer as a result of
systematic differences in interpreting the cord rather than inconsistent masking. Observations from
downstream analysis suggest that this consistency in masking can lead to more robust downstream
analysis: rater F overtakes raters D and E in GM:WM (Figure 4) and spatial correlation in
individual-level analysis (Figure 5).

However, several limitations must also be acknowledged related to our choice of raters and their
respective experience and training. First, while there is a wide range of MRI experience
represented, all our raters have limited experience with spinal cord fMRI. We also acknowledge
that there may be individuals more qualified than our reference rater to provide spinal cord masks
for comparison (for example, a board certified neuroradiologist with equivalent years of spinal
cord fMRI experience). We stress that the purpose of this study was to generate variability in
masking by recruiting raters of varying levels of experience and describe how this variability
affects the results of a previously published analysis pipeline. Our observations of downstream
variability arising from this cohort of raters suggest that efforts should be made to standardize
spinal cord masking to ensure robustness of results. One such way to increase robustness in
masking may be to use the STAPLE method to combine segmentations from multiple experienced
raters.[52] Another limitation is that the environment in which raters generated contours was not
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controlled. Therefore, although raters were instructed to take approximately 15 minutes per
dataset, there may have been variability in the level of effort or focus put into the masking process,
possibly confounding rater trends that were observed. Note that this effect is not expected to be
systematic across datasets and should therefore not affect trends attributable to dataset.

Mask variability was attributable to dataset as well. Because these differences naturally occur
along the edges of the cord, at the anatomical boundary of spinal cord white matter and surrounding
CSF, we hypothesized that the signal contrast between these regions in each dataset would be
associated with the agreement of rater masks with the reference. Indeed, better contrast at the edges
of the cord (higher Adjacent:SC ratio) was significantly correlated with higher values of DSC, as
shown in Supplementary Figure 2, which illustrates the slice-wise DSC and Adjacent:SC ratio
correlations for every rater. Interestingly, we observe many datasets in this study presented with
Adjacent:SC ratios less than 1, which is not anticipated given the T2* of tissue versus CSF.
Furthermore, this ratio shows added variability across longitudinal image slices of each dataset.
Signal dropout that could cause CSF voxels to appear darker than tissue voxels may be a result of
susceptibility artifacts due to magnetic field inhomogeneity and intra-voxel dephasing through the
use of thicker slices (3mm) in the functional acquisition. The breakdown of the expected positive
contrast was often observed in the dorsal aspect of the cord, perhaps due to a posterior shift while
a participant is being scanned in a supine position.[53] A posterior shift of the cord reduces the
amount of CSF buffer between neural tissue and ligamentum flavum, disc, or bone from the spinal
canal and may lead to increased partial volume averaging of these tissues. CSF flow may also
impact the signal intensity of CSF voxels in this acquisition, potentially increasing or decreasing
voxel brightness, thus influencing the Adjacent:SC ratio and mask fidelity. (Note, the effect of this
contrast breakdown on rater masking was also captured by the negative association between CV
of adjacent voxels and DSC: inconsistent brightness among voxels surrounding the cord led to
decreased agreement of the rater mask with the reference mask.)

This study used the temporal mean functional image for contouring the spinal cord, which may
merge these flow artifacts and reduce apparent image contrast. It may be more successful to
contour the spinal cord on one fMRI volume, rather than the temporal mean image, if a volume
with maximal Adjacent:SC contrast can be identified. However, it will be challenging to do this in
a robust and systematic manner and appropriately integrate this step into volume realignment (i.e.,
motion correction) procedures, and this would not fully compensate for inherently poor
Adjacent:SC contrast across the scan. These findings support the need for continued improvement
in spinal cord fMRI acquisition techniques to improve and stabilize image contrast (and
particularly tissue-CSF contrast) along the length of the cord while mitigating flow artifacts, such
as improved receive coils[18,54-55], higher static magnetic field strengths[18,54], sequence and
protocol optimization[18,41-42], and image processing techniques [14-19,54].
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Following spatial normalization to a template image, the functional image GM:WM ratio (using
GM and WM masks from the PAMS50 template) was also reflective of both rater and image quality.
In T2*-weighted images, GM is expected to be brighter than WM, and thus a well-registered
functional dataset will yield a more positive GM:WM contrast compared to a less successfully
registered version of the same input data. Indeed, registration informed by the reference masks
achieved the highest GM:WM values in 15 of the 21 datasets. In our results (Figure 4), rater
disagreement with the reference mask appeared associated with lower GM:WM ratios following
image registration, suggesting that the underlying tissue projections onto the template contained a
mix of tissue classes. These results demonstrate how a rater’s manual contouring of the spinal
cord in native fMRI space influences the success of image registration to template space.

Reducing the dependency of the image registration algorithms on manual inputs could potentially
mitigate many of these confounds: as has been done for the registration of high-resolution
anatomical images of the spinal cord, convolutional neural networks could be trained for
automated cord segmentation in fMRI datasets.[47] Such advances would have the added benefit
of speeding up the image processing pipeline by removing the rate-limiting step of manual
contouring, and would have the added benefit of improving analysis repeatability and facilitating
robust sharing and combining of spinal cord fMRI data resources.

Differences in masking were also shown to impact the spatial distribution of activation at the
individual-level, shown in Figure 5, however the impact on group-level results is less obvious
(Figure 6). This may be due to averaging over a relatively large voxel size (1x1x3mm) when
evaluating the cord with an average size of 7.4+0.9mm anterior-posterior and 11.4+1.2mm left-
right at the C7 level.[56] The “straightening” of the cord inherent to registering individual spinal
cord anatomy to the PAMS50 template will produce subject-specific interpolation effects that could
also influence the accuracy and sensitivity of group-level activation results. Additionally, the
neural activation of interest, due to the tactile stimulus, is expected near the center of the cord, in
GM, where rater masks are most likely to agree (Supplementary Figure 3) and the nonlinear
registration algorithm may produce more consistent results. (Note that large BOLD signal changes
may also occur in draining venous vessels, spanning both central and peripheral regions of the
spinal cord.) Figure 6 (right) illustrates the group-level activation maps achieved using reference
and example rater masks. While some spatial differences are observable (for example, Rater F
misses activation to the left stimulus in superior slices of the cord), differences in spatial
correlations of unthresholded activation patterns (Table 3) do not result in large qualitative
differences in thresholded activation maps.

To further investigate any systematic differences between the group-level activation maps for each
rater and the reference rater, difference maps (Supplemental Figure 4, left) and a non-parametric
one-sample t-test with threshold-free cluster enhancement were calculated. The Z-score difference
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map tends negative in some regions, such as C6, (i.e., raters’ activation is less than that of the
reference). Supplemental Figure 4 (right) shows voxels in which the difference between raters
and the reference is significant (P<0.05, family-wise error rate controlled). Although this provides
insight into the spatial distribution of activation differences between the raters and reference, it is
a generous test and assumes the reference rater results to be a perfect ground-truth, as the
variability of the reference rater masking and activation results is unknown.

Finally, the lack of robust, systematic differences in the group-level results (despite clear impact
on individual-level results) may also simply reflect the inherent challenges of measuring BOLD
responses in the spinal cord, where there are poorly resolved physiologic motion confounds and a
small anatomical target relative to the image resolution. In the original work, the classical
definitions of dermatomal sensory distributions were not clearly observed in the group-level
activation to left and right sensory stimuli.[37] Although predominantly ipsilateral activations
were observed, they were not localized to the dorsal aspects of the cord, and activation spread
across vertebral levels rather than localizing to the expected C7 region. One interpretation is that
there is a more complex anatomical network underlying spinal neurological response to stimuli,
and we refer the reader to the original work for a more detailed neurophysiological interpretation.
However, it could also suggest that there remains a fundamental obstacle of low signal-to-noise
ratio in spinal cord fMRI that hinders robust mapping of true activations. The results of this study
indicate that such limitations in spinal cord fMRI sensitivity and specificity may be more critical
to activation mapping than the subtle variations in image co-registration that arise from manually
contoured spinal cord masks. However, as image quality improves, through developments in
hardware, acquisition strategies, and image processing techniques, it may become apparent that
co-registration of functional data to a standard template space is increasingly important in
achieving accurate and robust group-level results.

Conclusion

We observed differences in individual rater masks of the spinal cord in fMRI data when compared
to masks from a reference rater. These differences were driven by both rater and dataset effects,
and led to variable co-registration with a standard spinal cord template image. This variability
propagated into differences in individual-level fMRI activation results, as measured via spatial
correlation between the reference and raters’ activation maps for left and right sensory stimuli.
However, when performing group-level analyses, these masking and co-registration differences
did not have a systematic effect on the average Z-score of resulting group-level activation. While
increasing consistency in manual contouring of spinal cord fMRI data could improve data co-
registration and ultimately the inter-rater agreement in activation mapping, our results suggest that
other improvements in image acquisition and post-processing may be more critical to address.
Automated approaches for segmenting the spinal cord in fMRI data, although potentially inferior
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to an expert manual segmentation, would speed processing times and potentially reduce rater bias
in the analysis pipeline. Future work to ensure robust processing of functional imaging data is
needed to improve the sensitivity and specificity to true neural activations in the human spinal
cord.
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Appendix A

Spinal Cord Toolbox commands utilized to register functional images to the PAMS50 template.

sct_deepseg_sc
-i anatomical_image
-c t2
-centerline svm
-kernel 2d

sct_register_to_template
-i anatomical_image
-s anatomical_image segmented.nii.gz
-| anatomical_image_vertebrae_labels
-c t2

sct_register_multimodal
-i PAM50_t2* template_image
-iseg PAM50_spinal_cord_mask
-d functional_mean_image

-dseg functional_mean_image_spinal_cord_mask

-param
step=1
type=seg
algo=centermass
step=2
type=seg
algo=bsplinesyn
slicewise=1
iter=3

-initwarp template_to_anatomical_image
-initwarpinv anatomical_image _to_template
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Supplemental Figure 1: DSC of each rater mask compared to the reference mask visualized as
box-and-whisker plots. Top: DSC plotted by rater. Bottom: DSC plotted by dataset.
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Supplemental Figure 2: Slice-wise DSC and Adj:SC ratio correlations for every rater. Top left:
a visualization of masks defining adjacent and SC voxel regions on the reference mask. Plots A-
H: DSC and Adj:SC ratio are positively correlated for every rater. Greater contrast between
spinal cord and adjacent voxels on a given transverse slice is associated with increased
agreement with the reference (positive correlation).
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Supplemental Figure 3. An example of the summed differences between the reference and the
raters’ mask. Eight raters and reference rater contoured the spinal cord on temporal mean fMRI
images. The reference mask was subtracted from each of the rater masks and the differences
summed. The resultant summed difference maps are shown on the right. The difference map
colorscale runs from -8 to +8, with negative values representing voxels included in the reference
mask were not selected by the 8 raters, and positive values being the reverse, where the raters
included voxels that were not selected by the reference. The difference maps illustrate the
location of disagreement between the raters and reference is at the edges of the spinal cord.
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Supplemental Figure 4. Left: mean difference of group-level activation Z-score maps (shown in
Figure 6) between the reference and each of the 8 raters (e.g., rater A - Reference) for the left
and right contrasts. Right: map of significant voxels from non-parametric one-sample t-test with
threshold-free cluster enhancement (P<0.05, family-wise error rate controlled). For the left
contrast, 6.20% (2.06% Raters > Ref., 4.14% Raters < Ref.) of voxels in the spinal cord were
significantly different between the 8 raters and the reference rater. For the right contrast, 4.25%
(1.90% Raters > Ref., 2.35% Raters < Ref.) of voxels in the spinal cord were significantly
different between the 8 raters and the reference rater. Slices shown are the same as in Figure 6.
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