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Chromatin contacts are essential for gene-expression regulation, however, obtaining a high-resolution genome-wide chromatin contact map
is still prohibitively expensive owing to large genome sizes and the quadratic scale of pairwise data. Chromosome conformation capture (3C)
based methods such as Hi-C have been extensively used to obtain chromatin contacts. However, since the sparsity of these maps increases
with an increase in genomic distance between contacts, long-range or trans chromatin contacts are especially challenging to sample.

Here, we created a high density reference genome-wide chromatin contact map using a meta-analytic approach. We integrate 3600 Human,
6700 Mouse, and 500 Fly 3C experiments to create species-specific meta-3C contact maps with 304 billion, 193 billion, and 19 billion contacts
in respective species. We validate that meta-3C are uniquely powered to capture functional chromatin contacts in both cis and trans. Unlike
individual experiments, meta-3C gene contacts predict gene coexpression for long-range and trans chromatin contacts. Similarly, for long-
range cis-regulatory interactions, meta-3C contacts outperform all individual experiments, providing an improvement over the conventionally
used linear genomic distance-based association. Assessing between species, we find patterns of chromatin contacts conservation in both
cis and trans and strong associations with coexpression even in species for which 3C data is lacking.

We have generated an integrated chromatin interaction network which complements a large nhumber of methodological and analytic ap-
proaches focused on improved specificity or interpretation. This high-depth “super-experiment” is surprisingly powerful in capturing long-
range functional relationships of chromatin interactions, which are now able to predict coexpression, expression quantitative trait loci (eQTL),
and cross-species relationships.

Hi-C | metaanalysis | co-expression | ...

Introduction

The physical associations generated by chromatin contacts are a critical factor to regulate and determine gene-expression
patterns (1-3). Functional chromatin contacts can form across a wide range of genomic distances within a chromosome (cis) or
across a chromosome (trans). Although trans contacts are non-random (4) and there is evidence of trans-regulatory interactions
(5, 6), studying the functional role of these interactions is difficult due to the high sparsity of available contact maps in trans.

Obtaining high-density contact maps at all genomic distances and in trans is not yet feasible with most existing maps
being essentially probabilistic in nature, capturing some fraction of likely-present contacts in a distance-dependent manner.
Genome-wide contact maps can be obtained using chromosome conformation capture (3C)-based technologies such as Hi-C
(7). However, due to large genome sizes and the quadratic scale of pairwise data, obtaining these maps at high resolution
would require prohibitively expensive sequencing at even 1X depth in the pairwise space. Capturing long-range and trans
chromatin contacts is made more difficult since the frequency of contacts decreases with an increase in genomic distance
between contacting loci in cis (7). And in trans, the contacts are at least 2 orders of magnitude less frequent (4) while also
having a larger search space than cis.

To overcome the sequencing-depth barrier targeted 3C-based techniques such as ChiA-PET (8) and Capture-Hi-C (9) are
widely used to obtain high-resolution contacts maps for specific proteins or selected loci respectively. Alternatively, several
in-silico methods have taken the advantage of existing limited resolution contact maps to either generate higher resolution maps
using machine learning approaches (10-13) and/or detect statistically significant interactions by background fitting (14, 15).
However, with a few exceptions (16, 17), most of the available methods are only tested to enhance cis interactions because
longer range interactions are essentially unavailable within any given data set.

In this work, we propose a meta-analysis approach where we leverage several hundreds of available CC-maps generated from
3C-based experiments to create a dense genome-wide CC-map for three species; Human, Mouse, and Fly. We show that these
maps are valuable for capturing long-range and trans-chromosomal interactions. We evaluated the effectiveness of contact maps
using three criteria; CC-maps were used to predict 1] gene-expression profiles, 2] target genes for eQTLs , and 3] conservation
across pairs of species (Human-Mouse, Human-Fly, and Mouse-Fly). Our reference networks complement a very diverse array
of efforts in genomics, from those focused on more targeted experiments in 3C which now have an overall “null” with which
to compare individual results, to genome interpretation methods, whether interpreting variants, expression patterning, or
regulatory sequence.
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Fig. 1. Creating meta-3C network. A) Genes are co-localized in chromatin 3D structure through frequent chromatin contacts. The structure can be represented with networks
where nodes are genes and edges are interaction frequencies. The cis and trans networks consist of intra-chromosome and inter-chromosome edges respectively. B) Individual
3C experiments are aggregated to create a meta-3C network. C) Runs, projects, and contacts in Human, Mouse, and Fly meta-3C networks. D) Total contacts (sequencing
depth) distribution across projects in cis and trans for each species.

Results

Meta-3C network predicts coexpression at greater resolution and scale than individual networks

In brief, for building the meta-3C network, we uniformly processed 3619, 6732, and 487 3C runs for Human, Mouse, and Fly
respectively (Figure 1C). The runs were obtained after querying Sequence Read Archive (SRA) with field limitations of given
species and Hi-C as experiment strategy. A genome-wide interaction matrix was created for each run after mapping the reads
to the same reference genome for each species. Within SRA, all the runs (SRR) belonging to a study are grouped together
as project (SRP). A project can consist of multiple runs, which can include biological or technical replicates across multiple
tissues or cell types. All the interaction matrices within a project were aggregated to create a project-level aggregate. There
were 119, 33, and 29 projects for Human, Mouse, and Fly respectively. The meta-3C map was created after further aggregating
all processed runs within their respective species (Figure 1B). For subsequent analysis, the genome-wide contact matrix was
mapped to genes (see Methods) to create networks where nodes are genes and edges are the interaction frequency between
genes. The genome-wide networks were divided into cis and trans depending on if the edge connects two genes in the same
chromosome or different chromosome respectively (Figure 1A). To validate the predictive power of the meta-3C network, we
benchmarked it against networks inferred from individual projects for each species.

As our first performance test, we assessed the tendency for spatially co-localized to be co-expressed (18, 19), using previously
derived shared patterns of expression in independent data (20). The underlying hypothesis is that spatial proximity may be a
useful way to organize regulatory relationships, as in the case of linear sequence, thus yielding shared spatial relationships for
genes that are co-expressed. Thus, while perfect performance at predicting coexpression is not expected, the genome-wide
scale of the assessment makes it useful for assessing cis and trans effects. For each gene, we measure the ability of interaction
frequency to predict the gene’s top 1% coexpression partners (Figure 2A). We call this measure “contact coexpression” and is
expressed as an AUC (Area Under the ROC Curve) with possible values ranging between 0 and 1. A score of 1 indicates that
interaction frequency perfectly predicts coexpression; 0.5 indicates no relationship. We evaluated the contact coexpression as a
function of the sequencing depth of the 3C network (Figure 2B and Figure 2C). We find that performance is linearly dependent
on the log of sequencing depth and meta-analysis provides additional coverage. We find that in cis the best powered individual
experiments are close to the saturation depth that maximizes performance (Figure 2B), although performing substantially
worse in trans. In trans, the meta-3C network acts like a "super-experiment", where the additional coverage fully converts into
substantial additional performance (Figure 2C). We found similar results for Mouse (Figure S1) and Fly (Figure S2).

In order to validate that the meta-3C network has more uniform coverage, we compared the contact coexpression of individual
3C networks and meta-3C networks at various linear distance thresholds in cis. We find that for long-range contacts meta-3C
network performs better than every individual 3C network (Figure 2D). For both individual networks and meta-3C network, the
performance decreases in the absence of short-range contacts. This could be due to a higher number of short-range regulatory
interactions or due to the similarity of the chromatin environment for nearby genes. The contact coexpression is dependent on
the resolution of the 3C network used and therefore we compared the performance of individual 3C and meta-3C networks at
various resolutions. We find that for the individual networks performance increases with an increase in resolution, plateaus,
and then slightly falls off in cis (Figure 2D). In essence, improved resolution is useful in cis because the coverage is adequate
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Fig. 2. Meta-3C network benchmarking. A) Contact coexpression metric schematic. Circles represent genes and lines represent edges of that gene in respective networks. For
each target gene, we use its ranked edges in 3C network to predict the top 1% of its edges in the coexpression network. We perform this task for every gene and then report
the average across all genes. B) The circles are contact coexpression for individual and meta3C network in cis as a function of sequencing depth at 1KB resolution C) Same as
B) but in trans and at 10KB resolution. D) The boxplot shows the distribution of contact coexpression in cis for each project at various distance thresholds. E) The boxplot shows
the distribution of contact coexpression for each project at various resolutions in cis. Circles represent the performance of cis meta-3C network. F) Same as E) but using trans
networks. G) Contact-CRE and proximity CRE metric schematic. For contact-CRE and proximity-CRE, for each variant, the edges are ranked by contact frequency or inverse of
the genomic distance from the variant respectively. The labels are obtained from eQTL associations (Methods). We perform this task for every variant and then report the
average across all variants. H) Contact-CRE for individual project and meta-3C network i) Contact-CRE and Proximity-CRE for meta-3C network, distribution across individual
networks at various minimum distance thresholds.
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for it to provide useful signal until the very finest resolution where most experiments begin to decline, although the meta-3C
network continues to slightly increase, as might be expected. In contrast, in trans (Figure 2E) the performance monotonically
falls with an increase in resolution for individual experiments. However, the in trans pattern for meta-3C networks strongly
resembles that of individual experiments in cis, increasing and then plateauing with improvements in resolution (Figure 2D,
Figure 2E). This suggests unlike individual networks, meta-3C networks are dense enough to be analyzed at high resolutions
even in trans. We found similar results for Mouse (Figure S1) and Fly (Figure S2).

At a large genomic scale, the genome is spatially segregated into two compartments; A and B (7). These compartments
can be identified using long-range chromatin contacts. Since the interaction between genes is largely constrained to occur
within the same compartment we asked the question if the contact coexpression performance of trans meta-3C network can be
explained with A/B compartments. In each individual network, we identified the compartment of each gene and then binarized
the compartment preference for each gene pair: gene pair found in the same compartment or different compartment. For
each gene, we measure the ability of same compartment frequency to predict the gene’s top 1% coexpression partners (Figure
S3). We call this measure “compartment coexpression” and is expressed as an AUC with possible values ranging between 0
and 1. A score of 1 indicates that same compartment frequency perfectly predicts coexpression; 0.5 indicates no relationship.
We compared this performance with contact coexpression performance (Figure S3). We find that compartment co-expression
performance is a small fraction of contact co-expression, suggesting either more complex sub-compartmental relationships or
other trans interactions contribute.

Meta-3C network effectively capture more eQTL interactions

For our second performance assessment, we tested the hypothesis that genetic variants (eVariant) regulate gene expression
of the target gene (eGene) via physical contact (21, 22). The set of eQTLs was obtained from GTEx (Methods). For each
eVariant, the interaction frequency with all genes falling in unique contact map bins at 1KB resolution was used to predict the
eGene (Figure 2G). This is termed “contact-CRE’ where CRE stands for cis-regulatory elements and is expressed as an AUC
with possible values ranging between 0-1, with 1 and 0 meaning that the eVariant and target eGenes have the highest and
lowest interaction frequency respectively when compared to all eVariant and non-eGenes interactions. Similar to the previous
benchmarking test we find that performance is linearly dependent on the log of sequencing depth and meta-analysis provides
additional coverage; meta-3C network has higher performance when compared to any of the individual networks (Figure 2H).
This emphasizes the significance of dense contact networks in identifying regulatory interactions.

We further evaluated the ability of meta-3C networks to predict target genes for variants by comparing their performance
with a linear genomic distance-based predictor, the current standard approach. The distance between the variant and gene
transcription start site (TSS) remains almost the only metric widely used to annotate target genes for variants (23). For
each eVariant the inverse of linear distance (1/TSS) with all genes is ranked and then used to predict the eGene (Figure
2G). This is termed “proximity-CRE’ and is expressed as an AUC with possible values ranging between 0-1, with 1 and 0
meaning that eGenes are the closest and farthest from the eVariant respectively. We compared contact-CRE of individual
3C networks, and meta-3C networks at various linear distance thresholds (Figure 2I). We reassuringly find that meta-3C
network outperforms individual networks at all distance thresholds. Furthermore, the performance for both contact-CRE and
proximity-CRE decreases in the absence of short-range contacts. This is in agreement with our previous observation where we
find that contact coexpression decreases in the absence of short-range contacts.

Trans-chromosomal chromatin contacts show evolutionary conservation

Having established that meta-3C networks are well powered to capture meaningful contacts, we now use them to study the
conservation of genomic contacts between species. Since chromatin contacts regulate gene expression, it is reasonable to expect
some conservation of these contacts across species even in the context of large scale genomic alteration and, in the reverse,
divergence in contacts across species can help explain regulatory evolution (24, 25). We evaluated the conservation of contacts
across species in three different ways; we compare the contact coexpression scores for ortholog genes in each species pair, we use
the 3C network of one species to predict either 3C network (“contact conservation”) or coexpression network in another species.

Before directly comparing the contact map across species we first compared the contact coexpression scores for 1:1 orthologous
genes across species. We find a strong linear relationship between Human and Mouse scores and a somewhat weaker relationship
between Human and Fly scores in both cis (Figure S4A) and trans (Figure 3A). This suggests that if a gene is spatially
co-regulated in one species, it is likely to be spatially co-regulated across other species.

We next characterized the degree to which gene contacts are conserved by directly comparing the meta-3C network across
species (Figure 3B). Each gene’s shared neighborhood is defined by ranking all edges in the chromatin contact network and
then using it to predict the gene’s top 10% of edges in another species. We call this “contact conservation” and again, treat it
as a prediction task with 1 meaning perfect contact conservation, 0.5 consistent with random reordering of neighborhoods, and
0 meaning that contacting partners have reversed. For trans conservation score, only the trans gene pairs in both species are
used, similarly for cis analysis. As expected, we find that the contact conservation is higher for Human-Mouse (AUC > 0.8)
when compared with Human-Fly (AUC 0.5) or Mouse-Fly (AUC 0.5) (Figure 3C) in both cis and trans. We also find that
genes with high contact conservation in Human-Mouse are likely to have high contact coexpression.

We also re-validated the power of the meta-3C network: we compared the ‘contact conservation’ scores for individual and
meta-3C networks at various resolutions. We reassuringly find that the meta-3C network outperforms individual projects at high
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Fig. 3. Chromatin contacts are conserved across species in both cis and trans. A) Contact coexpression in trans for 1:1 orthologs in Human-Mouse and Human-Fly. B) Contact
conservation schematic. For each gene ranked edges in Human 3C network are used to predict the top 10% of Mouse 3C network edges. This task is repeated for each gene
and in both directions and we report the average AUC. C) The distribution of contact conservation score using meta-3C network for various pairs of species. D) Human-Mouse
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function of contact conservation. F) The median performance across all genes when the Human meta-3C network is used to predict coexpression across other species. G)
Same as F) but only using the same set of ortholog genes across species. The error bars represent a 68% confidence interval.
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resolutions in both cis and trans (Figure 3D, S4C and D). This again suggests that the meta-3C network is efficient in capturing
chromatin contacts when compared to individual networks. Although the conservation of cis chromatin structure across species
is not surprising and is evident in the presence of syntenic regions between species, the conservation of trans-chromatin contacts
is noteworthy. It suggests that the trans-chromatin structure is likely selected for preservation to maintain function.

We further investigated the evolution of trans chromatin contacts in Human by comparing the degree to which the Human
contacts can predict coexpression across several species. This method allowed us to extend our analysis to species for which the
meta-3C network is not available. Each gene’s neighborhood is defined by ranking all edges in the chromatin contact network
of one species and then used to predict the gene’s top 10% of coexpressed gene pairs in another species. We call this “contact
coexpression conservation” and calculate the AUC as above. When contact coexpression conservation is plotted along with
the phylogenetic distance across species, we find that the performance decreases with an increase in phylogenetic distance
using both cis and trans meta-3C networks (Figure 3F). This suggests that the contacts diverge as the species pair becomes
distant across evolution. The number of 1:1 orthologs also decreases with an increase in the phylogenetic distance (Figure S4B)
and it seemed possible that our observation was dominated by the number of ortholog pairs between species. To eliminate
this possibility, we redid our analysis but using only the same set of ortholog genes (429 genes) in each species and our result
persisted (Figure 3G). Species more than 100 million years of distance (mya) from Humans have stronger divergence in contacts
when compared to species within the Mammalia Class. The species included in Figure 3G were limited to the Chordata phylum
to ensure a reasonable number of genes in the analysis.

Data availability and Online Tool

In order to facilitate the broad adoption of meta-3C by the community, we have made data available via an online tool
(https://gillisweb.cshl.edu/HiC/). Contact data can be obtained in two ways: a] Network download: Direct download of the de-
sired resolution, species meta-3C contact matrix in cis or trans available at https://labshare.cshl.edu/shares/gillislab /resource/HiC
in HiCMatrix format (https://github.com/deeptools/HiCMatrix). b] Gene vector download: Contact frequency with every
genomic loci at the chosen resolution and for any desired gene found in the respective species (Figure 4A). The downloaded file
is in bed file format which can be uploaded to UCSC genome browser for further analysis as desired (Figure 4B).

Discussion

In this work, we created a high-depth, genome-wide chromatin contact map using a meta-analytic approach, validated it, and
further used it to reveal chromatin structure to function relationships. We find that for the three species analyzed in this study
(Human, Mouse, and Fly), chromatin contacts strongly predicted the coexpression of genes. We also show that chromatin
contacts are better than linear proximity for predicting eQTLs when high-resolution chromatin contact data is available. Our
results persist even when only long-range chromatin contacts are analyzed. Additionally, we find that trans chromosomal
contacts show evidence of conservation across species.

Meta-3C networks are an effective means for capturing otherwise hard to characterize long-range interactions providing
potentially uniquely important practical applications. One important application for a wide area of genomics is their ability to
prioritize distant target genes for variants. We expect these networks to be powerful training data for future machine learning
attempts to predict chromosomal contacts, an important area of ongoing research (10-13). Additionally, meta-3C networks
can be used with other cell-type-specific ‘omics datasets such as ChIP-Seq to reveal cell-type-specific enhancer-promoter
contacts. Previously, Nasser et al (26, 27) used averaged Hi-C data across 10 cell-types in their ABC model to accurately make
cell-type-specific enhancer—gene predictions. Thus, the continuing evolution of methods with improved specificity is likely to
complement our better-powered but less condition-specific meta-analytic approach.

Within 3C analysis, and even outside of it, aggregation of data is well appreciated to be a useful strategy. Reproducible
biological replicates within the same study are often combined to increase the density of 3C data thereby capturing more
interactions (15, 28). Our approach can be thought of as the most extreme version of this idea, combining experiments as
broadly as possible to capture statistical relationships that are common. This is most useful if the depth is a major limitation,
as in trans contacts, as it comes with the cost of a loss of condition-specificity. Thus, the route forward for the field as a whole
will doubtless involve both improved specificity, integration, and interpretive methods.

In summary, our study sheds new light on the functional role of long-range and trans chromosomal contacts and provides a
critical resource for use by a wide range of genomics research.

Materials and Methods

3C Data Sources and processing pipeline

The 3C data for each species were obtained from SRA search (https://www.ncbi.nlm.nih.gov/sra/) with the field limitations of “Organism”:
[“Homo sapiens”, “Mus musculus”, “Drosophila melanogaster”], “Strategy”: “hi ¢”. We found 3913, 8431, 502 samples for Human, Mouse,
and Fly respectively. We also added 268, 17, and 25 samples manually that were labeled OTHER in SRA, but were deemed to be valid
3C data based on publication details. After manual additions, filtering out Runs without available restriction enzyme information and
excluding Runs that failed processing, we had 3621, 6733, 487 samples for Human, Mouse, and Fly. In total, we aggregated 119 Human
Projects, 33 Mouse Projects, and 29 Fly Projects (Table S1, S2, and S3). All samples were reprocessed from short read sequence data
to reduce differential computational noise across experiments. Restriction enzymes were identified for each sample from the literature.
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A)
Hi-C Aggregate Resource

We provide a Hi-C data aggregate resource. The aggregate is constructed of at least 3500 human, 6600 mouse and 400 drosophila SRA runs.

Full Aggregate for All Resolutions

All genome-wide Hi-C aggregate dataset for a species/resolution combination is available here . The downloaded file is in Hi-C Explorer format. Files range from a
few MB to tens of GB, so download times may be long.

Gene Vectors

Obtain the contacts of a gene with the entire genome for various species/resolution combination under the Gene Vector tab. The downloaded vector is a BED file
where the coloumns are chrom chromStart chromEnd contact_frequency. This file can be loaded in UCSC genome browser as a custom track

B) Gene Vectors for A” ReSOIUtionS C) f:r:i;; ;ype:bedG“r;jaep'aha ;ime=FBgn0000008 drosophila_40kbp_hic_contacts

chr3R 40000 80000 7
chr3R 80000 120000 71
chr3R 120000 160000 28
. . chr3R 160000 200000 80
Species drosophila ~ chr3R 200000 240000 53
chr3R 240000 280000 88
chr3R 280000 320000 61
chr3R 320000 360000 44
Resolution 40kbp ~ chr3R 360000 400000 93
chr3R 400000 440000 49
chr3R 440000 480000 206
chr3R 480000 520000 78
Target Gene chr3R 520000 560000 250
chr3R 560000 600000 200
chr3R 600000 640000 188
FBgn0000008 v chr3R 640000 680000 167
chr3R 680000 720000 91
chr3R 720000 760000 196
chr3R 760000 800000 215
chr3R 800000 840000 214
chr3R 840000 880000 354

chr3R 880000 920000 366
chr3R 920000 960000 242
@ DOWHIOBd} chr3R 960000 1000000 98

Fig. 4. Snapshot of the tool page (https://gillisweb.cshl.edu/HiC/) (A) gene vector download page (B). C) Downloaded bed file snapshot where the first column is chromosome
name, next two columns are genomic bin and the last column is raw contact frequency.
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SRA files were downloaded using prefetch, then converted to paired FASTQ files using fasterq-dump. FASTQ files were processed using
the HiCUP tool (29), with the alteration that short reads were aligned using the STAR aligner, instead of the default Bowtie2. HiCUP
truncates the reads based on restriction site, aligns them, and filters artifactual and duplicated data. Reads were aligned to the hg38,
mm10, and dm6 genomes. Output SAM files were converted to indexed and compressed Pairs files using the bam2pairs tool. Finally,
pairwise chromosome-chromosome contact matrices were generated at single base-pair resolution.

Building CC-maps

To obtain CC-maps, each chromosome is divided up into “bins” of a specific size. The number of base pairs in each bin represents the
“resolution” of the matrix. The contact frequency for each bin pair is obtained by summing the reads falling in that bin. CC-maps were
generated at 8 resolutions (1KB, 5KB, 10KB, 25KB, 40KB, 100KB, 250KB, and 500KB) in cis for all species and trans for only Fly.
For Human and Mouse, trans CC-map at 1KB and 5KB resolutions were not processed due to high memory requirements (more than
2TB). These files were written in HiCMatrix (https://github.com/deeptools/HiCMatrix) h5 format. For each species, we excluded sex
chromosomes and considered only autosomes (Human: chrl to chr22, Mouse:chrl to chrl9 and Fly: chr2L, chr2R, chr3L, chr3R, chr4).
The contact frequency of each genomic pair coordinate was summed across runs to generate project-level CC-maps. The sequencing
depth of a project in cis and trans is obtained by summing all the contacts in cis and trans respectively. The contact frequency was
KR-normalized separately for the cis and trans networks to adjust for nonuniformities in coverage introduced due to experimental bias
(30) using hicCorrectMatrix tool of HiCexplorerV3.6 (31). All project level CC-maps within each species were further summated to create
species level meta-3C maps. To determine contact frequency between each gene pair we use the maximum contact frequency between each
bin in which genes reside. Gene TSS and TES were used to determine the bins in which the gene resides. List of genes, T'SS, and TES
were obtained as GTF files from ENSEMBEL (September 2019). A list of 1:1 orthologs for pair of species was obtained from OrthoDB
(32). Species diverge time was sourced from Timetree (33). Gene compartments were identified using "hicPCA’ tool of HiCexplorerV3.6
(31) using each chromosome KR-normalized cis-contact matrix.

Coexpression data

The coexpression network used in this study is a ‘high confidence gene’ aggregated coexpression network generated using the method
previously described in CoCoCoNet (20). In brief, several bulk RNA-seq datasets were obtained from NCBI’s SRA database (unique
SRA Study IDs). Networks for each dataset are built by calculating the Spearman correlation between all pairs of genes, then ranking
the correlation coefficients for all gene-gene pairs, with NAs assigned the median rank. Each network is then rank standardized and
normalized by dividing through by the maximum rank. Aggregate networks are then generated by averaging rank standardized networks
from individual datasets.

eQTL data source and processing

A list of tissue-specific ‘significant’ variant gene pair associations and ‘all’ variant gene pair associations (including non-significant
associations) across 54 tissues along with the distance between the variant and gene TSS (at bp resolution) were obtained from GTEx
Portal v8 at https://gtexportal.org. Since the meta-3C network is not tissue-specific, we combined the data across tissues to generate a
set of unique ‘significant’ and ‘all’ variant gene pair associations. To obtain a list of ‘non-significant’ gene pair associations, ‘significant’
variant gene pair associations were removed from ‘all’ variant gene pair associations data. All variants in the coding regions and up to
1KB of any gene TSS and TES were removed. For performance score 1KB cis CC-map is used and for each eVariant only genes in unique
bins are tested.

Data Availability

The Meta 3C networks for Human, Mouse, and Fly are available for download from online tool (https://gillisweb.cshl.edu/HiC/) or direct
download (https://labshare.cshl.edu/shares/gillislab/resource/HiC/)

Supplementary Information

Figures
Fig S1: B) C) D) and E) of Fig2 for Mouse
Fig S2: B) C) D) and E) of Fig2 for Fly
Fig S3: Compartment vs contact prediction in trans
Fig S4: Fig3 B) in cis and cross-species conservation at various resolutions
Tables
Table S1: Details of each individual project used for building Human meta-3C network
Table S2: Same as Table S1 but for Mouse:
Table S3: Same as Table S1 but for Fly

Table S1. Details of each individual project used for building Human meta-3C network

‘ Project ‘ Reference study of runs | Total Contacts
SRP050102 (15) 217 21903231337
SRP012412 (34) 618 21526850534
SRP152979 (35) 89 22953596600
SRP152879 (36) 27 7171511913
SRP118999 (37) 501 12590883331
SRP154953 (38) 31 9373339255
SRP199098 (39) 8 10496943998
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SRP234115
SRP094854
SRP149906
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SRP117084
SRP218691
SRP233368
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SRP125488
SRP250432
SRP141473
ERP107279
SRP224133
SRP184300
SRP168606
SRP216194
SRP178527
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SRP239849
SRP106379
SRP162098
SRP120957
DRP005280
SRP150259
SRP170743
SRP131003
SRP158113
SRP186190
SRP212073
SRP133031
SRP135798
SRP131871
SRP158276
SRP114754
SRP267107
SRP227918
SRP271101
SRP186277
SRP115913
SRP157799
SRP110964
SRP194362
SRP151075
SRP157894
SRP160101
SRP157048
SRP221518
SRP225696
ERP104251
SRP105082
SRP223060
SRP234897
SRP250333
SRP113633
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SRP162056 5 670529013
SRP201909 | (78) 8 694131646
SRP153415 | (79) 4 574542701
SRP127183 | (80) 2 624271125
ERP118600 3 804408269
SRP274139 | (81) 3 564434221
SRP115572 | (82) 76 372409309
SRP099610 | (83) 4 620448038
SRP108500 | (84) 60 411838736
SRP195614 | (85) 4 371304283
SRP235557 | (86) 1 607333953
SRP264796 | (87) 3 630348911
SRP197114 6 266221302
SRP132233 | (88) 1 456935896
SRP244334 2 360094743
SRP113478 5 131412179
SRP107148 2 243243433
SRP083971 2 216849003
SRP192392 | (89) 2 417818971
SRP145420 | (90) 6 359393402
SRP152361 | (91) 2 364093153
SRP141229 5 359844610
SRP261300 2 140068804
SRP154986 | (92) 3 262627353
SRP261299 2 190528229
SRP150629 | (93) 10 201563278
SRP111140 1 205355109
SRP130935 | (94) 8 511638458
SRP165232 2 176738015
SRP098826 2 146110482
SRP102403 | (95) 2 313084130
SRP154399 2 184474817
SRP090318 | (96) 4 163096218
DRP005173 | (97) 9 237678253
SRP107149 2 168664932
SRP245657 2 213200567
SRP149124 4 369028739
SRP060755 2 136528125
SRP163366 | (93) 1 35514017
SRP071243 1 151366598
SRP272124 | (99) 1 101271490
SRP103077 2 128669702
SRP163908 2 149842370
SRP170855 | (100) 1 136131087
SRP217227 | (74) 2 63146633
SRP132876 | (101) 1 74105800
SRP100408 | (102) 10 32147936
SRP105086 1 17034573
SRP076397 2 990958
SRP182670 1 352599
SRP109036 4 9968
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S1. A) The boxplot shows the distribution of median AUC across all genes for each project at various resolutions in cis (left) and trans (right). B) The circles represent the
median AUC across all genes for each project vs sequencing depth at 1KB resolution in cis (left) and 10KB resolution in trans (right).
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S2. A) The boxplot shows the distribution of median AUC across all genes for each project at various resolutions in cis (left) and trans (right). B) The circles represent the
median AUC across all genes for each project vs sequencing depth at 1KB resolution in cis (left) and 10KB resolution in trans (right).
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Table S2. Details of each individual project used for building Mouse meta-3C network

Project Reference study of runs  Total Contacts
SRP217487 (103) 573 72472272945
SRP101928 (104) 56 19175842719
SRP075985 (105) 573 13165889801
SRP105082 (69) 361 11550001954
SRP165933 (41) 22 8027513684
SRP261290 (106) 20 5039895689
SRP118601 (107) 200 3677569528
SRP107774 (108, 109) 60 6606308156
SRP226118 68 4301950689
SRP252213 (110) 24 2762736772
SRP229756 52 3844845689
SRP250878 56 3338952796
SRP131117 (111) 21 3373187973
SRP247488 (112) 52 2550365588
SRP223513 (113) 78 4143881490
SRP119332 (114) 37 2279482102
SRP268173 (67) 36 2920915986
SRP270993 (115) 57 2276128337
SRP179647 (116) 48 2443326437
SRP255620 (117) 22 1699512024
SRP100871 (118) 30 3309838005
SRP192917 (11) 35 3455012039
SRP156597 (119) 63 3274402425
SRP227097 (67) 37 1925624481
ERP114475 24 1092282117
SRP249897 (120) 2544 1171971517
SRP096571 (121) 48 641165329
SRP144391 (122) 52 930492853
SRP110616 (123) 211 790590876
SRP292639 (120) 1002 598654244
SRP194410 (124) 67 252418461
SRP200567 (125) 131 307721826
SRP218950 (119) 73 173739328
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Table S3. Details of each individual project used for building Mouse meta-3C network

Project Reference study of runs  Total Contacts
ERP122732 (126) 76 4268124240
SRP165773 (127) 12 1214638382
SRP119928 (128) 15 485650828
ERP112882 38 509996238
SRP050096 (129) 17 1176311012
SRP223221 (130) 4 473122715
SRP097891 (131) 13 500368469
ERP016479 17 1215808351
SRP104256 (132) 11 565652294
SRP186730 (133) 8 1284274100
SRP230396 (134) 32 1330184944
SRP107636 (135) 10 255856377
SRP073988 (136) 6 1035207740
SRP111713 (137) 6 1030632363
SRP107637 (135) 7 207440463
SRP195621 (85) 4 493068117
SRP193880 24 780569203
SRP168946 (138) 4 406168278
SRP107556 (135) 2 414118766
SRP158369 (139) 8 368378383
SRP110166 10 424475815
SRP165772 (140) 6 232779025
ERP112723 12 80844400
SRP219433 6 81129339
SRP156199 (141) 8 184854440
SRP199618 (142) 122 96407920
SRP132075 (143) 4 119651337
SRP140881 4 85005475
SRP181908 (144) 1 36788399
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