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Abstract  
 
Genomic researchers are increasingly utilizing commercial cloud platforms (CCPs) to manage their 
data and analytics needs. Commercial clouds allow researchers to grow their storage and analytics 
capacity on demand, keeping pace with expanding project data footprints and enabling researchers 
to avoid large capital expenditures while paying only for IT capacity consumed by their project. Cloud 
computing also allows researchers to overcome common network and storage bottlenecks 
encountered when combining or re-analysing large datasets. However, cloud computing presents a 
new set of challenges. Without adequate security controls, the risk of unauthorised access may be 
higher for data stored on the cloud. In addition, regulators are increasingly mandating data access 
patterns and specific security protocols on the storage and use of genomic data to safeguard rights 
of the study participants. While CCPs provide tools for security and regulatory compliance, utilising 
these tools to build the necessary controls required for cloud solutions is not trivial as such skill sets 
are not commonly found in a genomics lab. The Research Assets Provisioning and Tracking Online 
Repository (RAPTOR) by the Genome Institute of Singapore is a cloud native genomics data 
repository and analytics platform focusing on security and regulatory compliance. Using a “five-
safes” framework (Safe Purpose, Safe People, Safe Settings, Safe Data and Safe Output), RAPTOR 
provides security and governance controls to data contributors and users leveraging cloud 
computing for sharing and analysis of large genomic datasets without the risk of security breaches or 
running afoul of regulations. RAPTOR can also enable data federation with other genomic data 
repositories using GA4GH community-defined standards, allowing researchers to boost the 
statistical power of their work and overcome geographic and ancestry limitations of data sets 
 

Abbreviations: 
AAI: Authentication and Authorisation Infrastructure  
AMI: Amazon Machine Image 
API: Application Programming Interface 
AWS: Amazon Web Services 
BAA: Business Associate Agreement 
CCP: Commercial Cloud Platform 
CREST: Council of Registered Ethical Security Testers 
CSP: Cloud Service Provider 
CVE: Common Vulnerabilities and Exposure 
DAC: Data Access Committee 
DRS: Data Repository Service 
DUO: Data Use Ontology 
EBS: Elastic Block Storage 
EC2: Elastic Computing Cloud 
EMR: Elastic Map Reduce 
GA4GH: Global Alliance for Genomics and Health 
GCP: Google Cloud Platform  
HIPPA: Health Insurance Portability and Accountability Act 
IAM: Identity Access Management 
IMDA: Inforcomm Media Development Authority 
KMS: Key Management System 
MAF: Minor Allele Frequency 
MTCS: Multi-Tiered Cloud Security 
POAG: Primary Open Angle Glaucoma 
QLDB: Quantum Ledger Database 
RAPTOR: Research Assets Provisioning and Tracking Online Repository 
RDP: Remote Desktop Protocol 
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S3: Simple Storage Service 
SCHS: Singapore Chinese Health Study 
SSH: Secure Shell 
TCP/IP: Transmission Control Protocol/Internet Protocol 
TES: Task Execution Service 
TOPMed:  Trans-Omics in Precision Medicine 
URI: Universal Resource Identifier  
VPC: Virtual Private Cloud 
WES: Workflow Execution Service 
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Introduction 
 
Data footprint for genomics projects has increased rapidly. The UK Biobank for example, holds about 
11 petabytes of genomic data, which is projected to grow above 40 petabytes by 20251. To 
effectively store and process data at petabyte-scale requires significant IT capacity, operated by 
experienced specialists. These capacities are often out-of-reach for small to medium size companies 
and academic labs. There is also the added issue of effectively sharing large-scale data with 
collaborators. To transfer 1 petabyte of data across a network which allows actual sustained 
throughput (not line speed) of 1024Mbps will take more than 90 days. If data is moved through the 
public internet, the transfer time is estimated to be at least 5 times longer2.  
 
Public cloud computing platforms, such as Amazon Web Services (AWS), Google Cloud Platform 
(GCP) and Microsoft Azure, provide feasible ways around these constraints. Commercial clouds 
provide elastic and scalable IT resources (i.e servers and storage) allowing users to grow their IT 
infrastructure in tandem with data generation without loss in reliability, availability or performance3–

5. Operators can also adjust the scale and subsequent costs of cloud-based IT operations on demand, 
to match different project phases. In contrast, operators building on-premise data centres must 
build-in sufficient capacity to take on the peak load of the project and not the most common load 
level. Therefore, an on-premise system operator will have to bear the cost of maintaining the entire 
system designed for peak usage, even during lull periods when most of the servers are idle. In 
addition, once data is available on the cloud, collaboration and sharing can be achieved by having 
users run analytics within the same “cloud region” where the data resides, effectively side-stepping 
the challenge of moving large data across networks. The AnVIL project, for example, leverages GCP 
to host and share more than 3 petabytes of genomic data6. For analysis, AnVIL provides its users 
with the ability to work directly on cloud by integrating with various analytics platforms, including 
Galaxy, Juypter and Dockstore. These platforms enable users to bring computation to the data 
repository, effectively “inverting the model of data sharing”6. However, cloud computing can 
introduce significant security risks. Without well designed access controls, data placed on cloud can 
potentially be accessed from anywhere and by anyone with internet access. Active data on cloud 
may spend considerable time moving through storage and servers shared with many other users, 
allowing data to be silently replicated many times over while in flight. Furthermore, cloud data 
sharing requires setting up an endpoint which is accessible from the internet. As evidenced by 
remote attacks through OpenSSH with GNU Bash, this may create opportunities for malicious actors 
who can either break in using forged credentials or vulnerabilities in the software used to host the 
data7.  
 
There have been several initiatives to address these security concerns of genomic data. The Global 
Alliance for Genomics and Health (GA4GH), has developed protocols, tools, and policies for 
responsible sharing of genomics data8. In particular, the GA4GH Data Security workstream has 
delivered a data security infrastructure policy which outlines recommendations for securing IT 
infrastructures used for genomic and clinical data9. The Authentication and Authorisation 
Infrastructure guide additionally provides a comprehensive framework for cloud users to safely 
authenticate users and assign authorisations for use of data10 . The Ministry of Health of Singapore 
has also issued a HealthTech Instruction Manual providing instructions for IT and data governance11. 
These include standard procedures and algorithms for data encryption, configuration of network 
partition and data access points, and management and securing user accounts12.  
 
Major Cloud Service Providers (CSP) already supply many tools needed to build a secure platform 
following best practices and compliance to regulations13–15. However, this remains a complex task 
requiring deep information technology expertise and knowledge of relevant regulations that may 
not be available in a genomics lab16. The Research Assets Provisioning and Tracking Online 
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Repository (RAPTOR) was developed to fill this need. RAPTOR is a serverless, cloud native, genomics 
data repository and analytics platform that focuses on data security and regulatory compliance 
(Figure 1). AWS is the current CSP for RAPTOR. The goal of RAPTOR is to provide a secure, regulatory 
compliant platform for researchers to leverage elasticity and scalability of cloud computing for large-
scale data analysis. With data-in-place analytics, RAPTOR also circumvents the challenge of 
transferring large data sets across public networks while providing accountability of data usage.  
 
Results 
 
RAPTOR is designed to be foundationally secure and embedded with all elements essential for data 
governance. Security and data governance strategies and procedures are considered and designed 
into the platform using a “5 Safes” framework–Safe Purpose, Safe People, Safe Settings, Safe Data 
and Safe Output.  
 
Safe Purpose. 
 
Safe purpose refers to measures adopted to ensure data contributors’ control of data deposited with 
RAPTOR. Users who wish to access a dataset must submit an access request on the platform. 
Mandatory fields of this request include their proposal and the duration of their access. Users who 
wish to access datasets beyond the original deadline must submit an extension request through the 
platform. 
 
It is mandatory to provide at least one data access committee (DAC) contact when depositing data 
onto RAPTOR and RAPTOR will forward any access request to the relevant DAC. After evaluation, the 
DAC has the option to approve or deny the access request using RAPTOR’s data management 
console. The DAC may also choose to grant access to specific subsets of files or allow access with 
modified parameters. For instance, a DAC may choose to modify certain data access expiry dates for 
specific sub-datasets on the same console.  
 
RAPTOR hosts data on AWS S3. The hosting buckets are configured to block all access except those 
coming through a specific S3 Endpoint. An S3 Endpoint is analogous to a proxy for a webserver, 
providing an interface for the bucket to interact with the outside world without any direct 
connection. Access policies can be applied to the endpoint to govern traffic to the bucket. For 
example, in the case of allowing read access from a specific EC2 instance, when data users request 
to work on a dataset, a customised policy is generated on the fly based on permissions granted by 
the DAC.  
 
Once access has been granted, users can analyse the dataset using RAPTOR’s Analytics Workspace. 
This is an on-demand, dedicated virtual network where all interactions by a user with the chosen 
data set can occur. The Analytics Workspace comes in three flavours: single node AWS EC2 virtual 
machine instance, elastic spark cluster and high-performance computing cluster. Through this 
design, RAPTOR automates the provisioning of selected data, creation and configuration of virtual 
machines, and the enforcement of security policies, on one computational resource.  
 
Within the EC2 instance, users have full administrator rights by default and can install tools directly 
from the internet. To save operating costs, workspaces can be shut down when not in use, with the 
virtual server retaining its mount points, tools, and environment. Only the terminate command will 
destroy the workspace completely. Users have the option of exporting their virtual machine, the 
Amazon Machine Image (AMI), to be shared with collaborators. AMIs flagged for export will be 
reviewed by RAPTOR administrators to ensure the image is safe and does not contain unwanted 
data. Second, RAPTOR’s elastic spark cluster invokes AWS Elastic MapReduce Service to provision an 
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Apache SPARK cluster (https://spark.apache.org/) with a Zeppelin notebook 
(https://zeppelin.apache.org/) serving as the front end. This workspace also comes with common 
genomic analysis tools, such as Hail (https://hail.is/) pre-installed to facilitate data analytics. Third, 
within the high-performance computing cluster, users can create a dedicated linux computing 
cluster complete with SLURM scheduler (https://www.schedmd.com/) and a share storage for 
processing data requiring heavy computational demands. 
 
Workspaces do not create local copies of datasets. The operating system mount points read data 
directly from where selected datasets are housed on RAPTOR, thereby allowing users to side-step 
the issue of moving large data files across the network. RAPTOR uses AWS FSX to provision Lustre 
filesystem (https://www.lustre.org/) for both runtime scratch and analysis outputs. Outputs and 
results are flushed into S3 for persistent storage when the workspace is shut down. AWS Service 
Endpoints are used to route function calls to native AWS services. This allows the workspace to 
function even if all external network access is disabled. 
 
Importantly, the DAC can modify the conditions of data being shared even after RAPTOR has granted 
user access. For instance, DACs may revoke a user’s permission to modify the original dataset while 
still allowing the user to access data for specific analysis. Additionally, the DAC may stop all access 
immediately with a kill switch. i.e., the mounted drive containing the selected data set will 
immediately disconnect from the analytics workspace. Under Safe Usage, data contributors are thus 
able to have effective and direct control of datasets housed on RAPTOR. 
 
Safe User. 
 
RAPTOR ensures all users within the system are properly validated and does not allow anonymised 
access. As part of the user registration process, RAPTOR administrators verify the identity of the 
applicant. This typically involves running checks with the applicant’s institute or collaborator.  
 
User management and authentication controls in RAPTOR are handled by AWS Cognito due to its 
compliance with key security standards including ISO 27001, HIPPA BAA and Multi-Tiered Cloud 
Security (MTCS)17,18. RAPTOR does not store user credentials. All user records are encrypted both at 
rest and in transit. A 2-Factor authentication is mandatory for all users for better protection, which 
also discourages users from sharing accounts. Additionally, Cognito allows integration with major 
identity providers, including active directory, and supports protocols including OAuth2, SAML and 
OpenID Connect19, facilitating future integration with systems that conform to GA4GH 
Authentication and Authorisation Infrastructure20. 
 
RAPTOR’s Safe user protocols can also extend to the platform’s core administration and 
development team. For example, in the case of Singapore, developers and system administrators 
working on RAPTOR must receive security clearance from Singapore’s Ministry of Home Affairs to 
work with restricted data. These measures ensure that data deposited in RAPTOR will only be 
accessed by approved individuals. 
 
Safe Settings. 
 
RAPTOR employs a multi-layer strategy to protect hosted data against unauthorised access, starting 
with the host infrastructure. RAPTOR is a serverless, cloud native application that leverages CSP with 
the Platform-as-a-Service (PaaS) model. RAPTOR’s features are constructed from scripts and 
functions by hosting CSP’s native services (Figure 2). For example, RAPTOR’s graphical user interface 
is built from a set of Java Scripts hosted on AWS CloudFront, meaning that RAPTOR does not manage 
or operate any servers. Notably, AWS is a CSP adopted to host public services for the Singaporean 
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government21, and  was one of the first CSPs to attain MTCS level 3 (Highest level) under 
SS584:2020, a security standard designed by Infocomm Media Development Authority (IMDA) 
Singapore22, which is required for a CSP to host data and services for the Singapore government. 
Thus, adopting AWS in RAPTOR for application and data security allows us to provide stringent 
operating procedures for infrastructure security.  
 
Data encryption provides an added layer of data protection. RAPTOR encrypts all data with 
symmetric AES256. This extends to data stored on interim server stores within the analytics 
workspace, dataset metadata and search indexes. To guard against accidental leakage and to 
provide additional protection against malicious actors, data encryption keys are stored in a separate 
system, the AWS Key management system (KMS). RAPTOR leverages AWS Parameters Store to 
encrypt key IDs to prevent accidental leakage of key identifiers when invoking routines. All 
connections between the user’s computer and RAPTOR are encrypted with SSH2, RC4 or TLS version 
no older than 1.2. 
 
RAPTOR further provides enhanced data protection for data requiring egress restrictions with the 
Secure Analytics Workspace (Secure Sandbox). This is a locked-down version of a regular analytics 
workspace. It provides complete network isolation (no internet), blocking all data egress. A specially 
provisioned bastion node using Remote Desktop Protocol (RDP) with copy and print redirection 
disabled is the only way for users to access a Secure Analytics Workspace. Bastion nodes can further 
restrict its access to whitelisted IPs and subnets. 
 
To validate the effectiveness of RAPTOR’s security measures, RAPTOR undergoes penetration tests 
and vulnerability assessment by CREST certified assessors at least once every twelve months. During 
the annual assessment, RAPTOR will be assessed against well-known exploits (published CVEs) and 
potential weakness in any of RAPTOR’s system dependencies.  
 
Beyond the direct security measures, RAPTOR has an extensive event logging system which tracks all 
actions performed on datasets, including each time it comes up during a search, when a user 
submits an access request, and every instance the dataset is provisioned to a workspace. RAPTOR’s 
logs provide network (TCP/IP) level granularity and are encrypted to protect against tampering. Logs 
are kept for at least 12 months and can be made available for evaluations upon request.  
 
Taken collectively, RAPTOR ensures that there are adequate mechanisms to protect hosted data, all 
system vulnerabilities will be promptly patched, and makes available extensive logs to allow 
reconstruction of events to identify issues or support audits. 
 
Safe Data and Safe Output.  
 
Safe Data and Safe Output refers to RAPTOR’s data protection mechanism for ingress and egress. 
RAPTOR’s ingress procedure requires the data contributors to deposit their data into a pre-set 
staging S3 bucket. Data going into RAPTOR is both screened for malware and checked for 
authorisation from the project’s DAC before it becomes available for use on RAPTOR. Data hosted on 
RAPTOR cannot be modified without authorisation from the data contributor. Data on RAPTOR is 
transparently spread across multiple AWS S3 storage tiers to optimise between cost and access 
efficiency. The use of AWS S3 also provides data with 11 9s in data durability and 2 9s in data 
availability23. For data contributors who desire higher levels of assurance, options such as data 
immutability, file level versioning and cross-region backups are available.  
 
To enable egress protection, RAPTOR allows data contributors to mandate the use of Secure 
Analytics Workspace for users working on their data. To copy files out of a Secure Analytics 
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Workspace, users must submit an egress request on RAPTOR. A copy of the data for egress will be 
made in a bucket. The requestors will not have any access to this bucket, and requestors cannot 
change the contents of the files to be egressed after submitting a request. RAPTOR will notify the 
data contributor of the egress request. The data contributor will then have full file level access to the 
files RAPTOR had duplicated. The contributor can spin up a “Review workspace” to run content 
filtering or validation routines on the files submitted. The contributor can subsequently approve the 
egress request from their data management console and the requestors can export these approved 
files. If the egress request consists of several datasets that have been combined, all contributors of 
the respective datasets are required to approve the egress request before the requestor will be 
allowed to perform data egress. 
 
Case-study: Secure imputation analysis on RAPTOR.  
 
Utilizing population-specific reference panels,  during imputation can significantly improve accuracy 
of low frequency variants (MAF < 1%) for the relevant study population24–27. We  evaluated the 
performance of imputing additional genotypes on the Singapore Chinese Health Study (SCHS) 
dataset (N = 23,600) 27,28, 29 and the Asian datasets from the Breast Cancer Association Consortium 
(BCAC, N = 40,001) using local population-specific reference panels from the SG10K whole-genome 
sequencing initiative (SG10K Health)30 on the RAPTOR platform. Alleles for all SNPs were coded to 
the forward strand and mapped to HG38. Minimac4 (version 1.0.0) was used to impute variants in 
the SCHS study using 9,770 local Singaporean population sample reference panels from the SG10K 
study31. Additional imputation on the same SCHS dataset was performed using Trans-Omics in 
Precision Medicine (TOPMed)32 imputation reference panel (version r2) that includes data from 
97,256 reference samples (https://imputation.biodatacatalyst.nhlbi.nih.gov). The quality of imputed 
SNPs from both analyses were determined by impute r2 values and high-quality common SNPs (MAF 
≥ 1%) were those with an impute r2 > 0.3 and high-quality rare SNPs (MAF < 1%) were those with an 
impute r2 > 0.6.  
 
The SG10K data deposited in RAPTOR was flagged as sensitive and thus, the SCHS genotyped data 
was linked to the SG10K reference panels in the Secure Sandbox. Access to this instance was 
restricted to a Windows bastion node and users could only connect to the bastion node with the 
Windows Remote Desktop Protocol (RDP) that has print and clip-board function disabled. Within the 
bastion node, users will find Secure Shell (ssh) credentials to access the imputation server, with both 
the SCHS study and the SG10K panels data available as mount points. After the end of imputation, 
we submitted an egress request for the folder containing imputed dosage data.  
 
Ancestry Matched Reference Panels Improve Imputation of Rare Variants.  
 
We compared the imputation performance in the SCHS after imputing for additional variants using 
the Trans-Omics in Precision Medicine (TOPMed)32 and local SG10K reference panels using the 
RAPTOR platform. Expectedly, high quality common variants (MAF ≥ 1%) obtained after imputation 
on the TOPMed and SG10K reference panels were similar (7,236,027 and 7,263,376 bi-allelic SNPs 
obtained after TOPMed and SG10K imputations, respectively, Table 1). However, a substantially 
higher number of high-quality rare variants (MAF < 1%) were obtained in the SCHS study through 
imputation with local SG10K reference panels as compared to the TOPMed imputed data (1,271,426 
additional rare SNPs from SG10K imputation procedures, Table 1).   
 
Five Safes Framework enabled efficient usage of consortia level data in RAPTOR. 
 
BCAC data consisted of South Asian and South-East Asian ancestry subjects that were genotyped on 
the Infinium OncoArray (N = 27, 501) and the iCOGS array (N = 12,500). Data was highlighted as 
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sensitive and similarly required mandatory use of the Secure Sandbox, as well as requiring limited 
usage for only imputation protocols. The BCAC study folder was linked to the SG10K reference 
panels in the Secure Sandbox and access to this instance was similarly restricted to a Windows 
bastion node paired exclusively to the instance running imputation service. Of note, even on the a 
single AWS EC2 instance (r5.8xLarge), this entire work for imputation of the relatively large BCAC 
dataset (N = 40,001) in a secure setting, took only around 20 days (end-to-end), and incurred modest 
costs of about USD 3,000 worth of AWS utilisation, highlighting that the RAPTOR platform enables 
for effective and secure usage of large-scale consortia level data. 
 
Remote Data Retrieval Using GA4GH Standards. 
 
Data integration with other data platforms, such as combining RAPTOR’s genomic data with another 
repository holding phenotype information, is a key feature of RAPTOR. GA4GH work streams have 
defined several standards and APIs to facilitate data federation across different genomic 
repositories. The first task in any data exchange is to discover and list datasets available in the 
remote host. This is most effective when performed before initialising user authentication and 
authorisation. Hence common standards are crucial in enabling two different data sources to 
exchange “data catalogues” securely without authentication. The GA4GH Discovery workstream’s 
Beacon V2 standard33 provides an efficient mechanism for such activity. We do not anticipate major 
roadblocks adding this functionality to RAPTOR as the Discovery workstream has provided a working 
reference for implementation of the Beacon v2 standard. Furthermore, as RAPTOR is serverless, 
every conceptual “layer” of the application is exposed via APIs and a thin integration layer between 
the Beacon v2 reference implementation and RAPTOR’s hosting services can be readily incorporated. 
The integration layer will serve to translate functions and calls from the Beacon v2 implementation 
into native service calls for RAPTOR, allowing RAPTOR to reuse the Beacon v2 reference 
implementation with minimal modifications. The GA4GH Data Repository Service (DRS)34 is a set of 
APIs providing consumers (both users and workflows) with direct access to data in a repository. A 
key feature of DRS is the provision of a Universal Resource Identifier (URI) to provide an exclusive 
identification for a single file or group of files within a repository. This will allow data consumers to 
access resources without prior knowledge of repository’s data organisation or file hierarchy. RAPTOR 
also enables data contributors to define groups of files or directories termed a Collection. RAPTOR 
Collections can be shared and referenced by data consumers independently of Collection’s parent 
data set. Therefore, it may be possible to extend RAPTOR Collections to a DRS compliant resource. 
DAC approval can be integrated into authentication and authorisation workflows before retrieving 
data using DRS. Destination endpoint IP address for remote retrieval can also be whitelisted.  
 
Federated analysis with Data-In-Place. 
 
Even with DRS approval and IP whitelisting, remote data retrieval may inevitably weaken RAPTOR’s 
Safe Purpose assurance. In addition, when working with data sets on the scale of multiple terabytes 
or more, cost and latency for replicating large data volume across networks can quickly become 
prohibitive. A more feasible approach, would be to send the compute job to the data and return 
outputs of the job. GA4GH has defined three standards for sending compute jobs to be executed on 
remote sites, including the Tools Registry Service (TRS), Workflow Execution Service (WES) and Task 
Execution Service (TES)35. TRS provides standardization for tools discovery, providing standardize 
descriptions of docker-based tools and popular workflow engines36. Dockstore 
(https://dockstore.org/) is an example of a TRS compliant container repository. WES then build on 
top of TRS to provide a common interface to interact with TRS tools and workflows. TES is similar to 
WES in that it also defines an interface defining and running compute tasks37. TES is differentiated 
from WES in that a TES task can be modelled as a single job execution such as executing a single 
script or a command, while a WES is designed for executing a pre-composed workflow. It is possible 
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for a TES to be “nested” within a WES. For example, a Nextflow workflow can serve as a TES client 
submitting tasks to a TES server38.  
 
These three services, however, are insufficient for RAPTOR to provide federation services to third 
party repositories. As a serverless application, RAPTOR does not have any ready virtual servers to 
execute remote workflows or tasks requests. The Analytics Workspace is also not suitable as it is 
designed for direct interactions with end-users and would be unwieldy to automate. In addition, 
these standards do not provide an easy way to inform RAPTOR of the type of virtual machines 
required for execution. As an example, while TES allows for resource specification within a task 
request, the resource request is defined in the form of cores, ram, disk size and name or URI of a 
docker container. These parameters alone are not sufficient to identify an instance type. Specifically, 
on AWS, just specifying “2 cores and 8 GB ram” maps to at least 7 different instance types, each with 
a unique hardware profile, optimised for different use-case. There is also no means of specifying a 
type of platform (x86 or ARM, Memory optimised, or GPU enabled), and loading containers or 
images from third party repository is not compatible with RAPTOR’s operations. To preserve 
RAPTOR’s Safe Purpose assurance, RAPTOR administrators would have to manually clear an AMI or 
container before allowing it for use, which would require the container or image to be hosted within 
a restricted repository trusted by RAPTOR administrators. The remote user would thus have to 
perform an “out-of-band” communication with the data contributor on RAPTOR to learn the 
identifier of the AMI or container to be referenced with TES. This may complicate workflow scripting 
or automation. 
 
To overcome these limitations, RAPTOR’s development team evaluated an early concept where we 
could pre-define and associate an AMI with a data set. AMIs allow users to define key features for a 
virtual server, such as platform configured tools (x86 or ARM, ROCm or CUDA) and even reference 
files. At the same time, AMIs provide some flexibility for users to determine the appropriate sizing 
(core counts, amount of ram, volume of attached disks) during runtime. The exchange only involves 
the universal identifier of the AMI, not the actual image file. When a remote compute request has 
been received, RAPTOR will initialise a virtual machine using AWS Batch, with core count and ram 
size matching the values from TES. Batch will initialise the virtual machine, execute the command, 
write-back the output to requestor and terminate the machine.  
 
Case-study: prototype of federated analysis on RAPTOR.  
 
As a case study, the RAPTOR development team recognized the challenge of performing these 
activities within the defined set of GA4GH APIs. We thus implemented an early-stage proof of 
concept where a RAPTOR instance received a remote computation request together with an AMI 
and docker identifier, with task execution and termination of the virtual server after the results were 
returned.  
 
In the prototype, we evaluated a federated imputation workflow in RAPTOR by performing 
imputation on a Primary Open Angle Glaucoma dataset (POAG) using Minimac4 (version 1.0.0) with 
the same SG10K health reference panels. However, in this scenario, two RAPTOR instances were 
created, one hosting POAG and the other SG10K health panels. Each customised instance had added 
functions, providing a minimal implementation of TES and task invocation via the API Gateway and 
Batch. The team limited the POC’s scope to TES, since the initial DRS exchange only involved 
inserting additional data content under “alias” section of response to a DRS “Get” call. Hence, we 
configured the RAPTOR instances assuming that information can be packed within the single DRS get 
call. Specifically, these include the AMI id, minimac4 imputation commands, mount paths and 
customised AWS IAM role (Role created for this workflow only, will be destroyed after the end of 
workflow) and egress IP address. The IAM role and IP were used to configure POAG RAPTOR to allow 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2022. ; https://doi.org/10.1101/2022.10.27.514127doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.27.514127
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

NFS read-write mounts from the SG10K RAPTOR. This allowed SG10K RAPTOR to read and write data 
to POAG RAPTOR.  
 
The complete imputation workflow could then be broken down into four main TES tasks, 1. Creating 
unphased VCFs, 2. Conversion to phased VCFs, 3. Addition of prefix “chr” to entries in phased VCFs 
and 4. Imputation. During the evaluation, the POAG RAPTOR submitted the four TES tasks creation 
calls in sequence. Each task was invoked after the previous one had been completed successfully 
(validated via TES “Get task” call). With every task received, the SG10K RAPTOR will submit a job to 
AWS Batch service using its account with a predefined Virtual Private Network (VPC) using 
parameters received from TES calls. To allow reading both data sets during analysis and writing of 
outputs to either (or both) of RAPTOR instances, a virtual machine was set-up to run FUSE mounts to 
both POAG RAPTOR and SG10K RAPTOR. AWS Batch service will run the TES tasks and write outputs 
back into POAG RAPTOR. After the end of an AWS Batch job, AWS Batch Service will automatically 
stop and delete all resources associate with the task (Except files written to output directories). 
Users on POAG RAPTOR can monitor the task status by issuing TES “Get task” calls to SG10K 
RAPTOR. Once a task was completed, the user will submit the subsequent TES task until all 4 tasks 
are completed (figure 3).  
 
Using the POC system, we completed the imputation of POAG chr21 with SG10K Health. Results 
from the POC system were consistent with results from work done on our production RAPTOR 
(Whole-genome imputation of POAG with SG10K Health panel).  With this approach, the “host” site 
controls the tools, security policies and the virtual machines, while the remote user directs where 
the outputs are written. The use of Batch ensures all interim data in scratch will be deleted. Hence, 
we believe this protype approach can provide both the remote user and the host strong protections 
against data leaks. 
 
Discussion 
 
Value of RAPTOR-like platforms for genomics research. 
 
A cornerstone to precision and personalised medicine is the ability to effectively access and 
thoroughly evaluate a multitude of genomic datasets to improve our molecular understanding of 
health and disease processes. Managing large scale data analysis across multiple datasets, however, 
remains challenging. Hyper-scale computational capabilities provided by CSPs such as AWS provide a 
full suite of computational resources to enable concurrent in-data-analysis data on an AWS S3 
Bucket. Nevertheless, harnessing these resources requires knowledge on programming and cloud 
computing expertise. Additionally, the sensitive nature of genomics data and increased emphasis on 
data governance and security limits capabilities of individual labs to setup a cloud platform for 
effective large-scale genomic collaboration studies. Data contributors from public sectors also 
routinely request for specific controls to be put in place, such as AES256 symmetric for data 
encryption at rest and the version of TLS/SSH protocols for data encryption during transit.  Data 
hosting facilities may also require certifications such as ISO 27001 or MCTS Level 3. 
 
RAPTOR provides users with a platform which addresses these computation and security concerns. 
Through RAPTOR, users seamlessly run their analysis as they would have on an on-premise system or 
their private cloud machine while, still staying compliant to overarching governance and security 
regulations. Our case example on performing imputation on large-scale and consortia level datasets 
demonstrates these capabilities in RAPTOR and highlights the potential of integrating various genetic 
resources to improve genetic studies, while, at the same time, remaining compliant to required 
restrictions of sensitive genetic data.  
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Beyond security, datasets hosted on RAPTOR become FAIR (Findable, Accessible, Interoperable and 
Repeatable)39. RAPTOR allows contributors to add meta-data as tags to their data sets, allowing for 
quick way to filter out relevant data sets using RAPTOR’s simple search form (Example: Show all data 
sets where “Country = Singapore and ethnicity = Malay").  RAPTOR users can submit request to 
access any dataset hosted on RAPTOR, with levels of access determined by the respective DACs. As 
RAPTOR manages all data provisioning tasks, users can start working on the requested data sets 
immediately upon receiving approval. RAPTOR’s AMI sharing feature further allows users to save 
and share their intermediate data and work environment (i.e. Juypter-style Notebook or even the 
whole Linux machine) with other RAPTOR users, enabling interoperability and repeatability. 
 
RAPTOR went live in 2021 and has uniquely built a collection of Asian genetic SNP array-based 
genetic datasets that are primarily from the local Singapore ethnic population groups (Singapore 
Chinese, Malay, and Indian datasets). As of October 2022, RAPTOR is hosting close to 100,000 
samples with more than half from Singapore (Table 2). 
 
In the long-term, platforms such as RAPTOR are likely to represent options as trusted custodians for 
national-scale genomic data. RAPTOR’s next phase will also focus on expanding the types of data 
hosted on the platform. Various transcriptomic datasets from local population datasets are expected 
to be housed in RAPTOR, facilitating larger-scale transcriptomic studies and combinatorial 
expression quantitative trail loci studies. To do so, RAPTOR will continuously update security 
measures and operating procedures to ensure compliance with relevant data and IT governance 
policies. While we have not extensively reviewed RAPTOR’s alignment to similar policies from other 
jurisdictions, we note that RAPTOR’s core features facilitates alignment to 5 of the 7 core principles 
of European Union’s data protection law (GDPR)40. These include lawfulness, fairness and 
transparency and purpose limitation by providing the DAC with control over how data is used and 
who can access data, data minimisation where data contributors may create cub-collections of data 
for sharing, integrity and confidentiality through RAPTOR’s security capabilities and encryption 
adoptions as well as accountability through the storage of logs of every activity on RAPTOR. The two 
remaining principles on Accuracy and Storage limitation are perhaps, beyond the scope for a data 
and analysis platform such as RAPTOR and may be adopted by the data contributor and DAC.  
 
Federated analysis and data sharing using GA4GH protocols. 
 
For RAPTOR, the ability to integrate with other repositories (either via data movement or federated 
analysis) will be essential for the next phase of development. GA4GH protocols will be the key 
interface between RAPTOR and other repositories and platforms. The key challenge, as highlighted, 
is ensuring this implementation continues while retaining the 5 Safes assurances. One current 
limitation in our study was that for our DRS implementation, there required be a mandatory, out-of-
band approval seeking with dataset’s DAC before a data set can be retrieved to remote site. Notably, 
while DRS’s standards require the use of OAuth2 tokens for authentication, the standard is silent on 
the authentication and authorisation procedures. RAPTOR is already utilising OAuth2 for user 
authentication. RAPTOR’s authentication mechanism can be extended to applications and scripts 
(i.e., automated flow triggered by user or software), with IP whitelisting as replacement for 2FA. 
However, once data has egressed, there would be no effective way for DAC to track subsequent 
usage or enforce additional compliances. It should, however, be noted that RAPTOR Data marked as 
sensitive (mandatory use of secure analysis workspace) will not be valid for retrieval using DRS. 
 
We propose that RAPTOR’s federated analysis will provide stronger adherence to the 5 Safes. The 
federated analysis environment and tools are pre-determined by the data contributors (i.e., the 
remote data site) and are immutable. All endpoints are IP-locked, with the pre-determined write out 
process. The data owners therefore have full control of how the data is to be used and the outputs 
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which will be shared with the remote user. Data access expiry can be automatically enforced by 
RAPTOR. 
 
RAPTOR’s federated analysis is implemented with GA4GH DRS and TES API interfaces. RAPTOR 
utilises free text sections within the DRS and TEST schemas to exchange essential integration 
information, including the data paths and tools available for use. The goal of using DRS and TES APIs 
is not to allow “ad-hoc” invocations from remote users. The goal of using GA4GH APIs is mostly to 
reduce the implementation and customisation overheads. 
         
RAPTOR’s technical advantage and roadmap. 
 
A key advantage from building RAPTOR as a “serverless” application is that RAPTOR is completely 
abstracted from both the system hardware and software, including the operating system. Instead, 
core RAPTOR services including the user interface and user management are plugged directly into 
AWS’s hyper-scale compute and storage fabric. All button clicks and function calls are distributed to 
a managed cluster of servers that ensures consistent performance that scales with load while 
keeping the cost of upkeep low, since RAPTOR is billed only for the resources for the functions 
executed, not for the number of servers it ran on. Apart from cost efficiency and performance 
scaling, a serverless resource also provides an easier pathway for integration with existing 
applications and services. The reason is that major CSP such as AWS reduces entire system 
infrastructure as a service to a series of functions calls that are by design consistent with cloud 
native service calls utilised for core RAPTOR functions. This means it is programmatically similar for 
us to deploy a complete system of applications as to implement a button on the user interface, 
hence appreciably reducing the effort and time required to integrate 3rd party applications. For 
example, we have plans to enhance hosted data’s findability by providing improvements on meta-
data capture and adopting GA4GH’s Data Use Ontology (DUO)41. However, instead of building more 
native services, we are evaluating ways to integrate with 3rd party tool suites such as those from 
Centre for Expanded Data Annotation and Retrieval (CEDAR)42. We will package the entire system 
into a software-defined infrastructure that will be provisioned on-demand. 
 
Based from learnings from this prototype, the next developmental goal for RAPTOR is put to 
implement a feature complete data exchange with third party data sources (data federation) using 
combinations of community defined standards, including GA4GH Beacon v2, Data Repository Service 
(DRS) and WES. 
 
In conclusion, we propose that the RAPTOR computational platform provides researchers a 
significant resource that enables power of cloud-based computing while, ensuring a safe and secure 
environment to meet regulatory requirements for genomic data. Additionally, RAPTOR enables 
flexibility in data federation and offers potentials to integrate multiple data repositories that would 
enable for more effective analysis of large-scale genomic data. 
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Figure 1: RAPTOR Overview and the modes of data analysis supported. RAPTOR provides access via 
Standalone Linux machines with sudo access, Juypter Notebooks, and EMR Cluster with pre-
configured Hail tools. 
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Figure 2: As a serverless application, RAPTOR is composed of native AWS services integrated 
together with Lambda functions. User Interfaces are composed of CloudFront hosting graphical user 
interfaces made with java scripts. User authentications are managed with Cognito. Hosted data sets 
sit on S3 (with automated tiering) while all meta-data are stored on DynamoDB. Data staging 
activities are managed using S3 Batch. Data ingress and egress are managed through TransferFamily. 
The Analytics workspace relies on FSX to provide scratch storage and depending on the mode of 
compute, either EC2, Elastic Map Reduce or Parallel Cluster will provide computing power. Data 
access from the nodes is regulated by Service Endpoints. All permissions and authorisations are 
managed using IAM. Encryption keys used by S3, EBS and DynamoDB are stored within KMS. All 
RAPTOR activities are written into AWS QLDB.  
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Figure 3: Using existing GA4GH DRS and TES for federated computation on RAPTOR. (i) A client 
invokes Get to describe an existing data collection ‘C’ on RAPTOR. In addition to content and access 
descriptions, RAPTOR also sends identity of the AMI associated with C under ‘alias’. The provided 
information includes AMI id, pre-installed tools, mount points for accessing data and the customised 
IAM role and end-point IP – these are used by RAPTOR to read and write data from the remote 
client. (ii) The remote client invokes a task using TES. In the call, inputs are used for the client to 
inform RAPTOR which URI is to be mapped to which mount point. Under executors, the remote 
client will inform RAPTOR which AMI is to be used. (iii) Batch instantiates an EC2 machine AMI and 
parameters provided by TES task. The machine will mount paths from POAG RAPTOR and SG10K 
RAPTOR within the same machine using the customised IAM role. 
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Table 1: Numbers of total, common and rare SNPs obtained after imputation of the SCHS dataset 
with TOPMed and SG10K imputation panels. 
 

 SCHS (N=23,756) 

 TOPMed 
Imputation 

SG10K 
Imputation 

Total SNPs obtained after imputation 271,221,018 42,602,074 

Common SNPs (MAF ≥ 1%) with high imputation quality (r2 > 0.3) 7,236,027 7,263,376 

Rare SNPs (MAF < 1%) with high imputation quality (r2 > 0.6) 9,496,227 10,767,653 
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Table 2: Datasets hosted on RAPTOR. # denotes studies with samples from Singapore.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Studies N Ethnicity Data available 
Singapore Chinese Health Study# 23,756 Chinese GWAS Array / CNV data 
SCHS Coronary Artery Disease Cohort# 2,003 Chinese GWAS Array 

Singapore Chinese Eye Study# 1,889 Chinese GWAS Array 

Singapore Malay Eye Study# 2,542 Malay GWAS Array 

Singapore Indian Eye Study# 2,538 Indians GWAS Array 

Singapore Coronary Artery Disease Genetics Study# 1,943 Chinese, Malay, and 
Indians 

GWAS Array 

Study of Macro-angiopathy and Micro-vascular 
Reactivity in Type 2 Diabetes (SMART2D) dataset # 1,893 Chinese, Malay, and 

Indians 
GWAS Array 

Diabetic Nephropathy dataset # 2,563 Chinese, Malay, and 
Indians 

GWAS Array 

SG10K Health r5.5 # 9,770 Chinese, Malay, and 
Indians 

Imputation Reference 
Panel  

Jerusalem Perinatal study 2,593 Israeli GWAS Array 

Singapore Prospective Study Program # 2,434 Chinese GWAS Array 

Primary Open Angle Glaucoma Study# 3,580 Chinese GWAS Array 

Singapore Cohort Of the Risk factors for Myopia # 1,029 Chinese GWAS Array 

Breast Cancer Association Consortium  40,001 Pan Asian GWAS Array 
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