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Abstract

Machine Learning is increasingly applied to improve the efficiency and accuracy of

Molecular Dynamics (MD) simulations. Although the growth of distributed computer

clusters has allowed researchers to obtain higher amounts of data, unbiased MD sim-

ulations have difficulty sampling rare states, even under massively parallel adaptive

sampling schemes. To address this issue, several algorithms inspired by reinforcement

learning (RL) have arisen to promote exploration of the slow collective variables (CVs)

of complex systems. Nonetheless, most of these algorithms are not well-suited to lever-

age the information gained by simultaneously sampling a system from different initial
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states (e.g., a protein in different conformations associated with distinct functional

states). To fill this gap, we propose two algorithms inspired by multi-agent RL that

extend the functionality of closely-related techniques (REAP and TSLC) to situations

where the sampling can be accelerated by learning from different regions of the energy

landscape through coordinated agents. Essentially, the algorithms work by remem-

bering which agent discovered each conformation and sharing this information with

others at the action-space discretization step. A stakes function is introduced to mod-

ulate how different agents sense rewards from discovered states of the system. The

consequences are threefold: (i) agents learn to prioritize CVs using only relevant data,

(ii) redundant exploration is reduced, and (iii) agents that obtain higher stakes are

assigned more actions. We compare our algorithm with other adaptive sampling tech-

niques (Least Counts, REAP, TSLC, and AdaptiveBandit) to show and rationalize the

gain in performance.

1 Introduction

Molecular dynamics (MD) simulations are a well-established computational method in chem-

istry, condensed matter physics, materials science, and biology. They are useful to probe

properties of atomic-scale systems at time scales and levels of resolution rarely accessible

by experimental techniques.1 Despite the significant improvements in the performance of

hardware and software utilized to run MD simulations, sampling conformational changes in

large systems remains challenging in common practice.2 This is due to the onerous computa-

tional cost of running MD simulations. In biological applications, most modern studies are

restricted to sampling systems for a few microseconds only. However, cellular processes of in-

terest occur at slower time scales, such as protein folding,3 activation of signalling proteins,4,5

transport across transmembrane proteins,6–8 and ligand binding.9,10

To alleviate this problem, numerous enhanced sampling methods have been proposed.11

The shared goal of these techniques is to reduce the required run time to obtain adequate
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sampling of the system at hand. Nonetheless, different techniques are usually developed with

different applications in mind, and thus the best choice of method may vary depending on

the goal of a study. Enhanced sampling methods can be roughly divided into two categories

depending on their requirement of collective variables (CVs). CVs are functions of one or

more degrees of freedom of the system and they are useful because they can describe state

transitions in a reduced dimensional space.12 Methods that require the user to define appro-

priate CVs use this information to bias the sampling along these coordinates to accelerate

the exploration of states of interest. A subset of this class of methods (e.g., metadynamics,

umbrella sampling) achieve this by biasing the underlying potential along the CVs.13,14 A

different subset of CV-based methods, which are the focus of this study, statistically bias

the sampling along user-defined coordinates or bins by adaptively selecting new simulation

starting points (e.g., Least Counts adaptive sampling, weighted ensemble MD).15–17 These

methods are particularly well-suited to exploit the power of large clusters through parallel

simulations.2,17,18 It must be noted that some adaptive sampling methods are not depen-

dent on reaction coordinates.19,20 The second class of enhanced sampling methods alter the

systems Hamiltonian to enhance exploration across all degrees of freedom (e.g., accelerated

MD, REMD-SSA).21,22

Since MD simulations typically seek to explore relevant regions of the systems phase

space, a natural trade off that often occurs is termed the exploration-exploitation dilemma.23

The dilemma is whether we should devote computational resources to sample already ex-

plored areas of the phase space to improve the estimate of a metric of interest (e.g., the free

energy of a proteins metastable state) or explore new areas of the space to find new relevant

regions (e.g., a rare state transition). Diverse forms of this dilemma occur in many areas

of science and have been addressed particularly by a branch of machine learning (ML) de-

nominated reinforcement learning (RL).24 In RL, the optimization problem is formulated in

terms of reward maximization rather than loss minimization.25 Developments in ML meth-

ods have informed the workflows used by MD simulation practitioners. ML-based techniques
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are now used to both conduct MD simulations and analyze the resulting data.26,27 In this

way, several enhanced sampling techniques based on RL principles or algorithms have arisen

(e.g., FAST,23 REAP,28 TSMD,29 AdaptiveBandit30 and TALOS31).

Since the thermodynamic ensembles sampled by MD simulations usually follow a Boltz-

mann distribution, the probability of sampling a state decays exponentially with its energy.

For this reason, exploration of the rare transitions is often more computationally challeng-

ing than the sampling of known metastable states. Therefore, RL-based enhanced sampling

methods tend to focus on encouraging the exploration of the energy landscape under the

assumption that researchers can later extend sampling of discovered states to reduce the

uncertainty of their measurements.

RL-based adaptive sampling (REAP) is a technique that enhances the exploration of the

energy landscape along user-defined CVs. Unlike other similar techniques, it utilizes a reward

function where each CV is weighted based on knowledge from the data collected so far. These

weights are iteratively updated, so that the user can interpret which CV is more relevant

at a given point of the simulation. In general the REAP algorithm can be summarized as

follows: a set of MD trajectories is first clustered to discretize and reduce the size of the

set of conformations from which new simulations can be run (action space discretization).

Clusters with the lowest number of members are selected as candidates. Then, the weights

of the CVs are updated such that the cumulative rewards from the candidates is maximized.

Finally, new simulations are spawned from the conformations with highest rewards. This

cycle is repeated until the system reaches a desired final state.28

REAP was intended to explore free energy landscapes where a few orthogonal CVs can

describe the relevant transitions. Biologically relevant examples of such landscapes include

kinase activation,4,32,33 transmembrane transport,34 and protein folding.3 In those cases,

the system has to diffuse across orthogonal CVs to reach the final state. Here, REAP

can effectively push the system from one state to another by learning which CV must be

prioritized.28
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However, the functionality of REAP is limited by the assumption that new regions of the

landscape will tend to show new extrema along the prioritized CVs. A simple example where

such assumption is violated is when MD practitioners start sampling a system from different

states. For example, a transporter may be studied via MD simulations through parallel runs

from its inward facing and outward facing states. The REAP algorithm would not be suitable

in this situation because it preferentially selects conformations that show extreme values of

the CVs. However, it is possible that unexplored regions of the conformational landscape

that are crucial for the transition between states are contained within the range of the CVs

(Figure 1c). In such cases, even the simpler Least Counts (LC) sampling scheme might show

better performance at capturing this transition (Figure 1a).16,35 Moreover, we can imagine a

case where a researcher starts independent simulations from different states of a system but

does not combine the resulting data until sampling is deemed appropriate. In this case, the

risk is that regions of the landscape that were already discovered are redundantly sampled,

thus wasting computational resources.

In order to provide a sampling scheme that incorporates the benefits of REAP and is bet-

ter suited to simultaneously harness data from different regions of a free energy landscape, we

turned to multi-agent reinforcement learning (MARL) to develop multi-agent (MA) REAP.

For the remainder of the paper, the terms REAP and single-agent (SA) REAP will be used

interchangeably and in contrast to the multi-agent implementation. An agent is defined as a

learning system that must find an optimal function (the policy) to map agent states (e.g., set

of discovered conformations) into actions (e.g., which conformations to use to launch new

trajectories). In most MD literature drawing on MARL terminology, there is a tendency

to equate an agent with a single trajectory (multiple walker metadynamics,36 TALOS31).

However, such correspondence is not theoretically required and in this study we think of an

agent as a mathematical model that manages a set of simulations on behalf of the researcher.

In comparison to the baseline REAP algorithm, the value added by this multi-agent

formulation comes from two features that were absent in the single-agent implementation:
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Figure 1: Diagrams showing the different behavior of adaptive sampling algorithms in a
hypothetical landscape. The red and green X’s mark the starting structures for the sampling.
The states are divided by a grid, rather than clusters. Green grid cells represent states that
would be rewarding for each algorithm. The star in (c) represents the approximate location
of the mean of the data distribution. (a) Least Counts selects restarting states that contain
the fewest observed frames. (b) FAST employs a binomial reward function that biases the
choice of restarting states towards the states with maximum (or minimum) values of a single
CV. The undirected term favors exploration by rewarding states with low frame counts.
(c) REAP assigns rewards based on the distance of conformations to the average of the
population. If sampling is started in two different states, pooling all the data together may
result in a reward function that only favors conformations that exhibit extreme values of
the CVs, rather than conformations that approach a rare or intermediate state. (d) Multi-
agent REAP incorporates multiple agents that compartmentalize their data, allowing them
to independently sample along high-variance CVs and sharing data only when in proximity
to another agent’s discovered states.

data compartmentalization and information sharing. Data compartmentalization arises from

the fact that conformations are labeled and utilized by the agent who discovers them, so each

agent learns the parameters to compute the rewards from different data points. This is done

with the intention to constrain what information will be used to score the conformations

in a region of the landscape. Moreover, the agents share information at the action-space

discretization step to signal to others what conformations should be deprioritized based on
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the structures they have already observed.

The idea of utilizing prior known states of a system to accelerate MD simulations has

been explored in the past. For instance, FAST and TSMD use scoring functions that can

be set to the RMSD between the current conformation and the desired final state to guide

simulations. Nonetheless, the goal of Multi-agent REAP is not to observe transitions between

predetermined conformations; if two agents start exploring a landscape from different initial

states, their exploration efficiency may improve by interacting with each other to avoid

resampling observed regions, but no assumptions are made about the new states that may

be discovered.

Tangent Space Least Adaptive Clustering (TSLC) is an algorithm tightly related to

REAP but whose clustering and reward schemes are better suited to handle nonlinear CVs.37

Given that this algorithm belongs to the family of adaptive sampling regimes that perform a

discretization of the action space, our multi-agent formulation can be easily extended to this

algorithm. To show the flexibility of the main idea behind our multi-agent formulation, we

also introduce a multi-agent version of TSLC (Multi-agent TSLC) and compare it against

its single-agent baseline.

The rest of this paper is organized as follows: the method section describes the modified

versions of REAP and TSLC. Then, performance comparisons are made on artificial toy

potentials to illustrate the behavior of the multi-agent algorithms. Following, a comparison

between Multi-agent REAP and AdaptiveBandit is done using MD simulations of alanine

dipeptide. Lastly, we compare the original and multi-agent REAP algorithms on realistic

systems (Src kinase,4 OsSWEET2b38) using kinetic Monte Carlo (KMC) sampling based on

data from previous studies. We found that in all cases the multi-agent algorithms were able

to more quickly explore the free energy landscape compared to their single-agent counterparts

and AdaptiveBandit.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.31.494208doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494208
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Methods

2.1 Multi-agent REAP algorithm

Algorithm 1 shows the outline for Multi-agent REAP. Since this method shares most of its

logic with the original REAP algorithm,28 we will focus on describing the changes in the

multi-agent formulation.

Algorithm 1 Multi-agent REAP

Input: potential V (~x), CVs {θ1(~x), . . . , θK(~x)}, clustering function C, reward function rK ,
stakes function S, number of agents N , initial weights W 0

N×K , learning threshold δ,
number of candidates P , number of epochs E, trajectory length L, number of trajectories
per epoch M , reward combination regime R

1: Sample initial data X0 from V
2: for e in 1 . . . E do
3: Project data onto CVs:

Θe = [θ1(X
e−1) . . . θK(Xe−1)]

4: Set agent labels I for each conformation in Θe

5: Cluster data, select P least-count candidates (CP ), and obtain their cluster centers
(QP ):
CP , QP = C(Θe, P )

6: Compute agents’ stakes:
SN×P = S(CP , I)

7: for a in 1 . . . N do
8: Optimize reward and return agent’s weights:

~we
a = arg max

~wa

∑
p sap · rK(~wa, ~qp) subject to we

ak ≥ 0,
∑

k w
e
ak = 1, |we

ak −we−1
ak | ≤ δ

9: end for
10: Combine agents’ rewards to obtain R(~qp) ∀~qp ∈ QP

11: Let QM ⊂ QP be the set of M configurations that maximize R(~qp) and XM the set of
full dimensional vectors that were mapped to those in QM in step 3

12: for all ~xm ∈ XM do
13: Sample L new data points from V starting from ~xm
14: end for
15: Concatenate new data to Xe−1 to obtain Xe

16: end for

The first notion to discuss is the definition of an agent. In general, an agent is an object

that can collect observations from an environment. Based on its observations, the agent falls

into a specific state from a potentially infinite state set. The policy function will then map
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the agent’s state into the next set of actions. The environment will return new observations

dependent on the actions taken. To guide the behavior of the agent, a reward function is

defined such that it dictates the development of the agent’s policy.25 Namely, the policy will

select actions that optimize the current or future rewards.

For Multi-agent REAP, the definitions of environment, state, and action remain un-

changed in comparison to the original REAP algorithm. The environment is usually the

Hamiltonian of a many-body system. An important feature of such a Hamiltonian is that its

free energy landscape lies near a low-dimensional manifold. This low-dimensional space is

spanned by a set of CVs. Each REAP agent can rank user-given CVs to prioritize a direction

of exploration, but no new variables can be discovered. The agents can make observations

by sampling a thermodynamic ensemble of the system using standard MD methods. The

state of an agent is defined as the set of conformations that the agent has discovered. An

action is defined as a conformation from which the agent can launch an MD trajectory.

The reward function of Multi-agent REAP differs from that of the original implemen-

tation. To explain the difference between the single- and multi-agent reward functions we

introduce the concept of an agent’s stake in an action. REAP relies on a clustering step where

the action space is reduced and discretized. In other words, the large amount of possible

conformations from which to launch new simulations is reduced to a relatively small number

of representative clusters. Usually, the centroids of the clusters conform the reduced action

space. In Multi-agent REAP, the data from all agents is pooled together during action-space

discretization (step 5 in algorithm 1), so agents are effectively sharing information. More-

over, each agent possesses a “stake” in each cluster. The stake s~qa that agent a has on action

~q is computed as a function of the number of conformations discovered by agent a classified

into the cluster corresponding to action ~q. A simple example of a stake function is one that

returns the fraction of frames in the cluster of action ~q that belong to agent a. We propose

other alternatives (see equations 3–6), but note that the choice among these functions does

not dramatically alter the results (see Supporting results). Stakes are intended to fulfill the
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condition
∑

a s
~q
a = 1 for any action ~q. In essence, Multi-agent REAP uses each agent’s stake

to weight the reward that it feels from a given cluster. Since the REAP algorithm is intended

to encourage exploration, the reward is proportional to the standardized Euclidean distance

between the action and the mean of the discovered conformations in CV space. Although

the use of different distance functions is possible, this metric is retained by our multi-agent

formulation.

The single-agent reward function is defined as

rKsingle(~w, ~q) =
K∑
i

wi
|qi − µi|
σi

(1)

where K is the number of CVs, wi is the weight assigned to CV i, ~q is a cluster center (in CV

space), ~µ is the mean of all the discovered conformations, and ~σ is the standard deviation.

Building from equation 1, the reward an agent assigns to an action is simply expressed as

rKa ( ~wa, ~q) = s~qa ·
K∑
i

wai
|qi − µai|
σai

(2)

where s~qa is the stake that agent a has on cluster center ~q, ~wa are agent’s a weights, and ~µa

and ~σa are the mean and standard deviation of all the conformations discovered by agent a.

The stake is computed using a function S. The proposed forms of S are

s~qa = Sfraction(~fq, a) =
fqa∑
i fqi

(3)

s~qa = Smax(~fq, a) = I{max ~fq}(fqa) (4)

s~qa = Sequal(~fq, a) =
I{fqi∀i:fqi 6=0}(fqa)∑

i:fqi 6=0 1
(5)
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s~qa = Slogistic(~fq, a, κ) =


0, if fqa = 0(

1

1+e−κ(Sfraction(~fq,a)−1/2)

)
N , otherwise

(6)

where the length of ~fq is the number of agents and each entry contains the number of

frames classified as action ~q that each agent discovered, I is the indicator function, κ is a

tunable parameter, and N is a normalization factor. In simple terms, Sfraction returns the

fraction of conformations that agent a possesses in action ~q, Smax assigns a stake of 1 to

the agent with the largest number of conformations in the action (and 0 to the rest), Sequal

assigns equal stakes to all agents with at least one frame in the cluster, and Slogistic provides

the option of a tunable function that can produce intermediate behaviors according to the

value of κ (for large κ, it approximates Smax and for small κ, it approximates Sequal).

Once the agents’ stakes have been assigned, the CV weights are updated by optimizing

the reward. It is important to highlight that the agents only share information during

action-space discretization. For this reason, all other parameters remain constant when

updating the weights. Since the reward function only depends on the weights from the

given agent, we can carry out agent-wise optimization at step 8 of algorithm 1. S affects the

reward optimization by determining how much weight each cluster will carry according to the

relative representation of each agent. Employing Smax would result in agents only optimizing

the reward with respect to the clusters where they are highly represented, whereas utilizing

Sequal would allow the agents to equally weight all the clusters they have observed at least

once. Sfraction results in the clusters being weighted in direct proportion to the representation

of the agent in the cluster. Results of Slogistic will depend on the value of κ. For a comparison

among these functions see the Supporting results. Sfraction was used in all the tests unless

otherwise noted.

In regards to the policy followed to choose the actions, the single-agent implementation

simply selects the top M actions when ranked by their reward. However, the multi-agent

implementation must deal with the nontrivial question about how to combine the rewards
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from different agents. We propose three ways in which the actions can be selected. The

proposed schemes to combine the rewards are

Rcollaborative(~q) =
∑
a

rKa ( ~wa, ~q) (7)

Rnon-collaborative(~q) = max
a
rKa ( ~wa, ~q) (8)

Rcompetitive(~q) = 2Rnon-collaborative(~q)−Rcollaborative(~q) (9)

In equation 7, the rewards from all agents are added together. In the RL literature,

such schemes where rewards are added to select the most optimal global actions are termed

collaborative regimes.39 On the other hand, equation 8 sets the reward of the action as the

maximum reward assigned by a single agent. We term this regime non-collaborative. Finally,

we proposed a competitive regime where the global reward of an action is the maximum

reward set by an agent minus the reward assigned by all others. Intuitively, the exploration

of a free energy landscape can be framed as a collaborative task; if an action is deemed to

be highly rewarding by all agents, then it should be selected. We cannot discard the (albeit

counterintuitive) possibility that a competitive regime may lead to better performance in

settings where actions that are deemed rewarding by multiple agents should be discouraged.

Nonetheless, we did not detect a significant difference between reward combination regimes

in our tests (see Results and discussion).

The new data generated after selecting action ~q is assigned to the agent that possesses the

highest stake in that action. In other words, the agent whose stake is maximal for a selected

action is the one that “executes” it. A consequence of this decision is that the agents that

are the most “proficient” at exploring the landscape will continue receiving higher rewards

and executing new actions. Therefore, computational resources are distributed unequally

across agents.
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2.2 Multi-agent TSLC algorithm

The multi-agent REAP algorithm shows improved performance in systems with linear and

orthogonal CVs (see Results and discussion). However, when the relevant CVs that describe

the slow dynamics of the system are not linear, a different method to derive the weights may

be better suited. Tangent Space Least Adaptive Clustering (TSLC) was introduced as an

extension of REAP precisely to handle these cases.37 However, despite its ability to capture

non-linear CVs, TSLC shows limitations similar to those of single-agent REAP, and for this

reason we introduce Algorithm 2. This extension of TSLC is analogous to that presented in

Algorithm 1 for REAP.

TSLC utilizes a distinct clustering function termed Clust.37 The clustering of the data

is independent of which agent discovered each conformation (i.e., the data is shared among

agents during this step as in Multi-agent REAP). The distribution parameters that the agents

use to obtain their rewards are replaced by a matrix Aa that is computed in the same way

as in Buenfil et al.37 except for the fact that the stake modulates how the cluster is weighted

by the agent (step 10 in Algorithm 2). The matrix Aa is constructed by first approximating

the local tangent space of each cluster (using PCA, step 7), finding the gradients of the

CVs at each cluster center (step 8), and then adding the contribution of each cluster in step

10. In step 11, we find the linear combination of the gradients of the CVs that maximize

the projection onto the tangent spaces. This maximization is expressed as an eigenvalue

problem and the final weights are the squared entries of the eigenvector associated with the

largest eigenvalue. The last steps are identical to those in Algorithm 1, noting that the

values rK(~wa, ~qp) are computed to select the actions but not to optimize the CV weights.
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Algorithm 2 Multi-agent TSLC

Input: potential V (~x), CVs {θ1(~x), . . . , θK(~x)}, clustering function C, reward function rK ,
stakes function S, number of agents N , initial weights W 0

N×K , intrinsic dimensionality d,
number of candidates P , number of epochs E, trajectory length L, number of trajectories
per epoch M , reward combination regime R

1: Sample initial data X0 from V
2: for e in 1 . . . E do
3: Project data onto CVs:

Θe = [θ1(X
e−1) . . . θK(Xe−1)]

4: Set agent labels I for each conformation in Θe

5: Cluster data, obtain cluster centers (Q), select least-count candidates (CP ⊂ C) and
their cluster centers (QP ⊂ Q):
C,Q,CP , QP = C(Θe, P )

6: Compute agents’ stakes:
S = S(C, I)

7: Compute d principal components per cluster:
Bc = PCA(Xe(c), d)) ∀c ∈ C

8: Compute normalized gradients:
Gc = ~∇θk(~qc)(

1
|C|
∑

c ||∇θk(~qc)||)−1 ∀c ∈ C, ∀k ∈ {1, . . . , K}
9: for a in 1 . . . N do

10: Compute agent’s A matrix:
Aa =

∑
c sac(G

T
c VcV

T
c Gc)

11: Compute weights ~wa as the squared entries of the first eigenvector of Aa

12: end for
13: Compute rewards rK(~wa, ~qp) and combine agents’ rewards to obtain R(~qp) ∀~qp ∈ QP

14: Let QM ⊂ QP be the set of M configurations that maximize R(~qp) and XM the full
dimensional vectors that were mapped to those in QM in step 3

15: for all ~xm ∈ XM do
16: Sample L new data points from V starting from ~xm
17: end for
18: Concatenate new data to Xe−1 to obtain Xe

19: end for

3 Results and discussion

3.1 Cross potentials

We begin by showing the behavior of Multi-agent REAP in two idealized potentials where a

single particle diffuses following a Langevin dynamic.28 These examples represent “adversar-

ial” landscapes for Single agent REAP because they showcase its shortcomings in comparison

to the multi-agent implementation. LC runs were also performed and are used as baselines
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to compare the algorithms. Details of the simulations are described in Supporting methods.

Figure 2 shows the results of comparing the algorithms in a symmetric cross potential.

The potential is shaped like a cross; diffusion along the x variable is more relevant for the

exploration of the horizontal arms, while the y variable is more relevant for the exploration

of the vertical arms. The agents are initially placed on the horizontal arms (see Figure 2a).

Figure 2c shows the difference in area explored (defined as difference in normalized number

of grid points discovered) between Multi-agent REAP and LC. The difference between Single

agent REAP and LC is also plotted. The error bars show the 95% confidence intervals after

500 repetitions of the simulations. There are statistically significant differences among all

methods; while Multi-agent REAP is able to explore a larger area compared to LC, the single-

agent implementation performs worse after roughly 10 epochs. The curves show that around

epoch 10, Multi-agent REAP reaches the maximum difference in area explored with respect to

LC (approximately 10%) and after that both methods start to converge (as expected for long

enough simulation times). However, the Single agent REAP implementation continuously

selects actions at the edge of the horizontal arms (Figure 2b), which results on the lack of

exploration of the vertical arms. On the other hand, the snapshot of the Multi-agent REAP

run shows that the agent starting on the left arm reached the extremes of the vertical arms

(and therefore, the other agent does not have the need to launch trajectories in those areas).

One may argue that a user of the original REAP algorithm would simply start two inde-

pendent REAP runs that do not share any information at each starting conformation (i.e.,

incommunicado agents), so that exploration would not become hampered by the greedy

selection of actions at the extremes of the x variable. But in this case, the agents redun-

dantly explore the same areas of the landscape (see Figure 2d), thus wasting computational

resources.

Employing different reward combination regimes did not yield differences (see Figure S2).

Figure 3 shows the comparison results on an asymmetric cross potential. This potential

is similar to the symmetric one but the minimum at the left extreme of the horizontal arm
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Energy units

x

y

x

y

x

y

Area explored difference (Least Counts baseline)
Area overlap difference 

(incommunicado agents baseline)

Symmetric cross potential SA REAP run snapshot MA REAP run snapshot(a) (b)

(c) (d)

Figure 2: Results on the symmetric cross potential. (a) Plot of the free energy landscape.
The white and pink stars mark the initial positions of the agents (both positions are observed
by the unique agent in Single agent REAP). (b) Snapshots of the trajectories generated by
Single agent REAP (left) and Multi-agent REAP (right) after a full run. Trajectories are
colored according to the agent who executed the simulation. Black dots indicate the last
set of selected actions. (c) Comparison of normalized area explored. The blue and orange
curves show the differences (mean ± 95% confidence interval) between the areas explored by
Multi-agent REAP or Single agent REAP and LC. (d) Comparison in overlap area between
agents. Overlap is defined as the fraction of grid points that both agents have observed
over the total number of explored grid points. The curve shows the difference (mean ± 95%
confidence interval) between Multi-agent REAP and two incommunicado agents.

is deeper than the one on the right. The initial positions of the agents is set to the extremes

of the horizontal arms. In this comparison, it is noticeable once again that the Multi-agent

REAP algorithm is more efficient at exploring the landscape than the LC adaptive sampling

scheme (Figure 3c), while the Single agent REAP implementation suffers from similar non-

optimal behavior as in the previous example. However, in this case, the reason for this

difference in performance stems from the ability of Multi-agent REAP to allocate more

actions to agents that discover new states and earn higher rewards. As the snapshots in

Figure 3b show, the agent starting at the right arm is better-poised to explore the landscape
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in comparison to the left agent, which starts in a deep free energy minimum (e.g., a kinetic

trap or absorbing state). Given that the agent starting on the right explores a wider area,

it possesses all the stakes in the newly discovered sates, it receives higher rewards, and it is

assigned more actions as the run continues (Figure 3d).

Energy units

x

y

x

y

x

y

Workload distribution

Asymmetric cross potential SA REAP run snapshot MA REAP run snapshot(a) (b)

(c) (d)

Agent 1

Agent 2

Area explored difference (Least Counts baseline)

Figure 3: Results on the asymmetric cross potential. (a) Plot of the free energy landscape.
The white and pink stars mark the initial positions of the agents (both positions are observed
by the unique agent in Single agent REAP). (b) Snapshots of the trajectories generated by
Single agent REAP (left) and Multi-agent REAP (right) after a full run. Trajectories are
colored according to the agent who executed the simulation. Black dots indicate the last
set of selected actions. In the multi-agent snapshot, the agent that starts at the right arm
explores most of the landscape because it is assigned more actions. (c) Comparison of
normalized area explored. The blue and orange curves show the differences (mean ± 95%
confidence interval) between the areas explored by Multi-agent REAP or Single agent REAP
and LC. (d) Cumulative percentage of actions assigned to each agent after the given epoch
for the run plotted in part (b).

In summary, our multi-agent implementation retains the ability of REAP to sample

landscapes where there is a clear advantage to preferentially sample along a relevant variable.

This is demonstrated by the better higher exploration area of Multi-agent REAP when

compared to LC adaptive sampling. Moreover, our algorithm addresses the shortcomings
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that Single agent REAP presented when attempting to utilize information from distinct

regions of the landscape simultaneously. This is evidenced by the ability of Multi-agent

REAP to compartmentalize information (the agents only learn from data that comes from

their explored region), reduce redundant sampling (area overlap between agents is diminished

in comparison to independent agents), and distribute the workload unequally (the agent that

explores more is assigned more actions).

3.2 Alanine dipeptide

In this section, we simulate alanine dipeptide, a usual example of an all-atom system typically

employed to compare MD simulation methods. We compare the performance of Multi-agent

REAP against continuous MD and another adaptive sampling regime based on the classical

multi-armed bandit algorithm (AdaptiveBandit).30 For details on the simulations, see the

Supporting methods.

Figure 4 shows the results of the comparison among the three simulation methods. The

CVs used for exploration were the φ and ψ dihedral angles (for both Multi-agent REAP

and AdaptiveBandit). We observed that, for a total simulation time of 16 ns, Multi-agent

REAP was able to reach and thoroughly explore the state with φ > 0 (Figure 4, bottom

panels). This state was not reached by a continuous MD simulation of the same length

(Figure 4, top panels). Although AdaptiveBandit sampled a low number of frames in this

state, the algorithm did not readily select such structures to restart simulations (Figure 4

middle panels). The result was a largely unexplored area of the landscape.

The result is likely due to the fact that the reward function for AdaptiveBandit balances

the exploration of new regions of the landscape with the exploitation of known metastable

states, as reflected by its binomial reward function.30 In this case, the presence of highly

stable states with φ < 0 favors the exploitation of the well-characterized actions over the

exploration of the states with uncertain rewards. Since AdaptiveBandit is grounded on the

basis of the upper confidence bound (UCB1) algorithm, this sampling scheme presumably
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obeys the optimal theoretical bound on its regret Lt, O(kT logLt).
30 However, optimally

bounding this definition of regret is not necessarily the reason an adaptive sampling tech-

nique is utilized. Given that the reward function from AdaptiveBandit is defined as the

expected value of the negative free energy, actions that do not achieve the absolute free

energy minimum (i.e., the optimal action) will be assigned lower action-values. Nonetheless,

MD practitioners often desire to enhance the sampling of rare transitions, excited states, or

off-equilibrium processes which are associated with high energies. Therefore, it is favorable

for a wide variety of applications to sacrifice the theoretical upper boundary on the regret

to accelerate the sampling of such high-energy states.

Ramachandran plot

Figure 4: Alanine dipeptide simulation results. (Left panels) Probability density distribution
along the φ dihedral angle for a single run (top), AdaptiveBandit (middle), and Multi-agent
REAP (bottom). Curves show mean± standard error across replicates. (Right panels) Snap-
shots after a total of 16 ns of MD simulation. The stars represent the starting configurations
for the Multi-agent REAP agents and the AdaptiveBandit run. For Multi-agent REAP
(bottom), the frames obtained by different agents are colored differently. Multi-agent REAP
thoroughly explores the highlighted region, while a continuous MD and AdaptiveBandit fail
to sample this area.

A user of Multi-agent REAP would hypothetically harness the ability of our algorithm
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to quickly explore the landscape of the system to later execute an “exploitation” step, where

longer, continuous simulations are launched from the observed states to improve the sampling

statistics. Similar workflows have been employed in studies such as Zimmerman et al.2

We can also observe that the probability density distribution along the φ CV in both

AdaptiveBandit and Multi-agent REAP deviates from the equilibrium value (computed from

three 250 ns continuous MD simulations retrieved from mdshare40,41). Nonetheless, after

employing an adaptive sampling scheme, the probability density of an observable would be

reweighted through a Markov state model (MSM) to eliminate the statistical bias caused by

the repeated restart of simulations from selected states.42

3.3 Src kinase

In this section, we compare the performance of Single agent REAP and Multi-agent REAP

employing Src kinase, a realistic system involved in critical signalling pathways whose mal-

function is associated with cancer.43 We utilize a previously constructed MSM4 to carry out

KMC simulations. For details about the simulations, see Supporting methods. The discov-

ery of intermediate states in this system is particularly relevant because they may exhibit

allosteric sites that can be targeted by drug design but that are absent in the active or

inactive conformations.4

Figure 5 shows the results of the KMC simulations. Simulations were started from

the active and inactive conformations of the kinase (Figure 5a,b), mimicking the initial

information that a researcher would possess from resolved crystal structures.44,45 The two

CVs that are utilized to project the MSM states are the RMSD of the A-loop and the distance

between K295 and E310.4

Figure 5c shows the difference in the number of states discovered between Multi-agent

REAP (blue curve) or Single agent REAP (orange curve) and LC adaptive sampling. Both

SA and Multi-agent REAP discover more intermediate states than LC for the same sim-

ulation time, but Multi-agent REAP outperforms Single agent REAP until both methods
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converge around 6 µs (all methods should converge for long enough simulation times).

Figure 5d shows the distribution of number of states explored (normalized to the max-

imum achieved) for the 500 trials after 2 µs. The vertical dashed lines show the means of

the distributions. We can observe that Multi-agent REAP achieves a higher average perfor-

mance than Single agent REAP and LC. Unsurprisingly, both single- and multi-agent REAP

improve upon the continuous MD run performance.

Unlike the results in Figure 2c and Figure 3c, Single agent REAP performs better than

LC (Figure 5c,d). There are two reasons for this. Firstly, the cross potentials were specifically

crafted as adversarial examples for Single agent REAP, so it is expected that the single-agent

algorithm will perform particularly poorly. Secondly, KMC simulations allow the system

to change states discretely rather than simulating Langevin diffusion. Therefore, selecting

actions that present extreme values of the CVs may still result in transitions that uncover

intermediate states, avoiding continuously launching unproductive trajectories.

We can also observe that it takes roughly 1 µs for Multi-agent REAP to display its full

advantage with respect to other methods (Figure 5c). This is likely due to the time it takes

agent 2 (initially in the inactive conformation) to learn advantageous weights (Figure S5).

For this agent, moving along the K-E distance CV leads to the discovery of more intermediate

states.

In summary, we have shown that Multi-agent REAP discovers intermediate states more

efficiently compared to REAP and LC in a KMC simulation of a realistic system.

3.4 OsSWEET2b

OsSWEET2b is a vacuolar glucose transporter in rice.46,47 The study of this system is relevant

to the improvement of crop yields.48 Similarly to our Src kinase comparison, we perform

KMC on an MSM previously built on the glucose-bound transporter.38 Unlike the previous

example, the landscape does not present the typical L-shape where REAP is expected to carry

a clear advantage.28 This is due to the existence of hourglass-like intermediate states.38,49,50
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(a)
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Figure 5: KMC simulation results on Src kinase. (a) Projection of the MSM states on two
collective variables (x-axis: RMSD of A-loop, y-axis: distance between K295 and E310). The
stars represent the starting conformations for the simulation. (b) Representative structures
of the active (A) and inactive (I) states. The A-loop is colored in red. K295 and E310
are labelled. (c) Performance difference between adaptive sampling schemes. The y-axis
corresponds to the difference in number of states discovered between MA or Single agent
REAP and LC. The plotted curve is the mean ± 95% confidence interval for 500 repeats.
(d) Histogram of the normalized number of states discovered by single MD simulation runs,
LC, Single agent REAP, and Multi-agent REAP after 2 µs of simulation. Normalization is
with respect to the maximum number of discovered states.

We start our simulations from the inward facing (IF) and outward facing (OF) states (Figure

6a,b). Details of the simulations are described in Supporting methods.

As a consequence of the characteristics of this system, the advantage of REAP and

Multi-agent REAP compared to single runs is less accentuated (Figure 6d). Nonetheless,

both SA and Multi-agent REAP still show better performance than continuous MD (defined

as number of states discovered). Single agent REAP performs worse or no better than LC

after approximately 1.5 µs, while Multi-agent REAP maintains a modest advantage (Figure
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6c).

Although Multi-agent REAP shows generally better performance than LC and its single-

agent counterpart, it shows a small disadvantage at t < 0.5 µs. Such initial setback can be

attributed to the time that it takes the agents to learn advantageous weights to facilitate

exploration (see Figure S6b). Namely, agent 2 (which starts at the outward facing state)

only starts prioritizing state transitions along the cytoplasmic distance CV after roughly 0.5

µs. Before that, the agent observes mostly transitions along the periplasmic distance CV.

Conversely, agent 1 (initially at the inward facing state), only begins prioritizing exploration

along the periplasmic distance CV after roughly 1 µs. Before that time, this agent observes

mostly transitions involving changes in the cytoplasmic distance CV. On the other hand, the

weights for the single agent (Figure S6a) show a fluctuating behavior until t = 1.5 µs, after

which the periplasmic distance CV is prioritized. Rather than improving the performance

of the agent, these weights harm its ability to explore new states as shown by the drop in

performance after 1.5 µs. This is likely due to the over-selection of actions at the extremes

of the periplasmic distance variable, which results in unproductive trajectories in a similar

way to what was shown in Figure 2 and Figure 3.

In this section, we have shown that Multi-agent REAP is more favorable compared to

LC, even in energy landscapes where we would not expect our algorithm to perform better.

Moreover, the multi-agent implementation explored more states than the original, single-

agent one.

3.5 Toroidal potential

In this section, we show that the main idea behind the Multi-agent REAP algorithm can be

applied to other adaptive sampling schemes. More specifically, we show that a multi-agent

version of TSLC explores a model potential more efficiently than the original algorithm when

we allow for multiple starting points in a Langevin diffusion simulation. For details about

the simulation, see the Supporting methods.
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Figure 6: KMC simulation results on OsSWEET2b Markov state model (MSM). (a) Projec-
tion of the MSM states on two collective variables: x-axis: periplasmic distance (distance
between residues D190 and R70), y-axis: cytoplasmic distance (distance between F165 and
F43). The stars represent the starting conformations for the simulation. (b) Representative
structures for inward-facing (IF) and outward-facing (OF) states. (c) Performance difference
between adaptive sampling schemes. The y-axis corresponds to the difference in number of
states discovered between MA or Single agent REAP and LC. The plotted curve is the mean
± 95% confidence interval for 200 repeats. (d) Histogram of the normalized number of states
discovered by single MD simulation runs, LC, Single agent REAP, and Multi-agent REAP
after 2 µs of simulation. Normalization is with respect to the maximum number of discovered
states. The x-axis starts at 0.5 for clarity.

Unlike the idealized potentials from Figure 2a and Figure 3a, the potential in Figure 7a,

termed toroidal or circular37 potential, possesses a slow variable that cannot be expressed

as a linear combination of the particle coordinates. The appropriate CV is the angle, θ =

arctan(y/x) (with its quadrant-dependent sign), but the weight derivation method employed

in algorithm 1 cannot consistently assign the highest weight to this variable.37 However,

the weight derivation employed in algorithm 2 is better suited to learn the weights for this
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system thanks to its ability to capture global geometric information from locally estimated

tangent spaces.

Figure 7 shows the result of comparing the original TSLC algorithm to the multi-agent

implementation when sampling is started from two initial points, θ1 = 3/4π and θ2 = 1/4π

(white and pink stars in Figure 7a respectively). After the single-agent has explored enough of

the circle to reach the supplementary angle to either θ1 or θ2, TSLC falls into an unproductive

loop where actions that are either diametrically opposite in the circle or maximally distant

along the x- or y-coordinate keep getting selected, even though they do not lead to further

exploration along the angle CV (Figure 7c, left). On the other hand, Multi-agent TSLC

continues selecting actions along the unexplored edge of the circle (Figure 7c, right). Due

to this difference in behavior, we observe a clear difference in performance between the two

algorithms (Figure 7b). The difference continues to increase as the number of epochs grows

because the single-agent implementation does not continue exploring the circle after falling

in the unproductive loop. The multi-agent formulation of TSLC preserves the ability to

estimate the CV weights like the original algorithm (Figure S7). Employing different reward

combination regimes did not yield differences (see Figure S8).

4 Conclusion

In this study, we developed adversarial examples where REAP performs worse than LC

adaptive sampling and empirically demonstrated that Multi-agent REAP overcomes the

limitations of its predecessor. Moreover, we showed that Multi-agent TSLC explores an

idealized energy potential more effectively than TSLC. We additionally demonstrate the

advantage of Multi-agent REAP in three test systems: alanine dipeptide, an Src kinase, and

the transporter OsSWEET2b. We provide evidence to show that Multi-agent REAP more

effectively samples the rare state transitions of alanine dipeptide compared to traditional

MD simulations or AdaptiveBandit. For Src kinase and OsSWEET2b, we demonstrate
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Figure 7: Results on the toroidal potential. (a) Plot of the free energy landscape. The
white and pink stars mark the initial positions of the agents (both positions are observed by
the unique agent in Single agent REAP). (b) Comparison of normalized area explored. The
curve shows the difference (mean ± 95% confidence interval) between the areas explored by
Multi-agent TSLC and Single agent TSLC. (c) Snapshots of the trajectories generated by
Single agent TSLC (left) and Multi-agent TSLC (right) after a full run. Trajectories are
colored according to the agent who executed the trajectory. Black dots indicate the last set
of selected actions.

that Multi-agent REAP explores more states than LC or Single agent REAP for the same

simulation time. Interestingly, for all the cases we tested, the combination regime for the

rewards did not affect the results (see Figure S2 and Figure S8). However, there might be

landscapes for which the choice of reward combination regime does affect the performance.

Optimal selection of R remains a point of investigation.
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The number of agents to be used in our algorithms is limited by the number of known

distinct states of the system that the researcher can employ as initial coordinates. There

are no reasons to expect a better performance from the multi-agent formulations when all

agents observe the same initial state. This bears similarity to a limitation present in multi-

walker metadynamics, where placing the walkers in the same energy minimum results in

suboptimal sampling because the trajectories must become uncorrelated before the landscape

converges.36

Since we compared intrinsically parallel algorithms, computational power was held con-

stant in the simulations (i.e., the same number of trajectories were launched per epoch

regardless of the adaptive sampling method used). The number of trajectories launched in

Multi-agent REAP/TSLC is independent of the number of agents N , so there is no direct

scaling relationship between N and the explored area. The benefit of employing the multi-

agent algorithms will depend on the prior information on the system (known states) and

the nature of its free energy landscape. In this way, the differences in performance that we

observed are purely due to algorithmic differences; Multi-agent REAP/TSLC accelerate the

exploration due to their ability to compartmentalize and share information, not due to a

trivial increase in computational resources.

In comparison to FAST, our methods have the advantage of ranking the CVs according to

their relative importance for sampling. Since FAST is not intended to combine information

from different CVs, we do not directly compare against this algorithm. A comparison between

FAST and AdaptiveBandit is available in the literature.30 On the other hand, other unbiased

enhanced sampling methods such as PaCS-MD51 and TS-MD29 are too distant in scope for

a comparison to be warranted.

Additionally, we did not compare Multi-agent TSLC with Multi-agent REAP. A compar-

ison between the single-agent versions exists in the literature.37 The choice between TSLC

or REAP (single- or multi-agent versions) will largely depend on the characteristics of the

free energy landscape. TSLC-derived weights will offer an advantage when the CVs are not
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orthogonal and linear. It is unlikely that this information will be available to a researcher

prior to simulating a system. In this regard, the biggest limitation of all CV-based methods is

that the important reaction coordinates may be unknown prior to executing the simulations.

However, past works explore the possibility of extracting relevant CVs from evolutionary

information and applying them in adaptive sampling regimes for proteins.52

In terms of future improvements for Multi-agent REAP/TSLC, the reward function for

Multi-agent REAP is purely geometrically motivated; rewards are directly proportional to

the deviation of conformations from the mean populations. In Multi-agent TSLC, more

information about the local topology of the landscape is utilized, but we must make stronger

assumptions about the characteristics of the landscape. In both cases, no thermodynamic

information is used. In AdaptiveBandit, the free energy is estimated in the reward function

to represent the exploitation term, but we observed that this choice hindered exploration

(Figure 4). The question of how to encourage exploration has been pondered in the RL

literature; perhaps, reformulating the reward function in the form of an entropy-regularized

reward24,53 might result in a theoretically grounded formulation that guides exploration.

Moreover, recent works in multiple-agent coordination54 may inspire new formulations of

the reward function with improved performance.

In conclusion, we imported the concept of multi-agent RL into the development of adap-

tive sampling algorithms for MD simulations. We introduced modifications that yielded new

algorithms which extend the functionality and improve the performance of REAP and TSLC.

More specifically, our multi-agent formulations record which agent discovered each confor-

mation and share this information at the action-discretization step. Moreover, the stakes

function modulates how different agents sense the rewards originating from discovered states

of the system. These modifications improved exploration performance in all tested cases.

Beyond the algorithms proposed here, a key takeaway from this work is that agent coordina-

tion can be incorporated into most adaptive sampling strategies, thus opening new avenues

to develop methods that are better suited to harness information from different regions of
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the energy landscape.
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