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Abstract

Machine Learning is increasingly applied to improve the efficiency and accuracy of
Molecular Dynamics (MD) simulations. Although the growth of distributed computer
clusters has allowed researchers to obtain higher amounts of data, unbiased MD sim-
ulations have difficulty sampling rare states, even under massively parallel adaptive
sampling schemes. To address this issue, several algorithms inspired by reinforcement
learning (RL) have arisen to promote exploration of the slow collective variables (CVs)
of complex systems. Nonetheless, most of these algorithms are not well-suited to lever-

age the information gained by simultaneously sampling a system from different initial
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states (e.g., a protein in different conformations associated with distinct functional
states). To fill this gap, we propose two algorithms inspired by multi-agent RL that
extend the functionality of closely-related techniques (REAP and TSLC) to situations
where the sampling can be accelerated by learning from different regions of the energy
landscape through coordinated agents. Essentially, the algorithms work by remem-
bering which agent discovered each conformation and sharing this information with
others at the action-space discretization step. A stakes function is introduced to mod-
ulate how different agents sense rewards from discovered states of the system. The
consequences are threefold: (i) agents learn to prioritize CVs using only relevant data,
(ii) redundant exploration is reduced, and (iii) agents that obtain higher stakes are
assigned more actions. We compare our algorithm with other adaptive sampling tech-
niques (Least Counts, REAP, TSLC, and AdaptiveBandit) to show and rationalize the

gain in performance.

1 Introduction

Molecular dynamics (MD) simulations are a well-established computational method in chem-
istry, condensed matter physics, materials science, and biology. They are useful to probe
properties of atomic-scale systems at time scales and levels of resolution rarely accessible
by experimental techniques.! Despite the significant improvements in the performance of
hardware and software utilized to run MD simulations, sampling conformational changes in
large systems remains challenging in common practice.? This is due to the onerous computa-
tional cost of running MD simulations. In biological applications, most modern studies are
restricted to sampling systems for a few microseconds only. However, cellular processes of in-
terest occur at slower time scales, such as protein folding,? activation of signalling proteins,*®
transport across transmembrane proteins,®® and ligand binding. %1°

To alleviate this problem, numerous enhanced sampling methods have been proposed. !

The shared goal of these techniques is to reduce the required run time to obtain adequate
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sampling of the system at hand. Nonetheless, different techniques are usually developed with
different applications in mind, and thus the best choice of method may vary depending on
the goal of a study. Enhanced sampling methods can be roughly divided into two categories
depending on their requirement of collective variables (CVs). CVs are functions of one or
more degrees of freedom of the system and they are useful because they can describe state
transitions in a reduced dimensional space.'? Methods that require the user to define appro-
priate CVs use this information to bias the sampling along these coordinates to accelerate
the exploration of states of interest. A subset of this class of methods (e.g., metadynamics,
umbrella sampling) achieve this by biasing the underlying potential along the CVs.13 A
different subset of CV-based methods, which are the focus of this study, statistically bias
the sampling along user-defined coordinates or bins by adaptively selecting new simulation
starting points (e.g., Least Counts adaptive sampling, weighted ensemble MD).'>7 These
methods are particularly well-suited to exploit the power of large clusters through parallel
simulations.?!"!® It must be noted that some adaptive sampling methods are not depen-
dent on reaction coordinates.!®?° The second class of enhanced sampling methods alter the
systems Hamiltonian to enhance exploration across all degrees of freedom (e.g., accelerated
MD, REMD-SSA). 2122

Since MD simulations typically seek to explore relevant regions of the systems phase
space, a natural trade off that often occurs is termed the exploration-exploitation dilemma.?3
The dilemma is whether we should devote computational resources to sample already ex-
plored areas of the phase space to improve the estimate of a metric of interest (e.g., the free
energy of a proteins metastable state) or explore new areas of the space to find new relevant
regions (e.g., a rare state transition). Diverse forms of this dilemma occur in many areas
of science and have been addressed particularly by a branch of machine learning (ML) de-
nominated reinforcement learning (RL).?* In RL, the optimization problem is formulated in
terms of reward maximization rather than loss minimization.? Developments in ML meth-

ods have informed the workflows used by MD simulation practitioners. ML-based techniques
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are now used to both conduct MD simulations and analyze the resulting data.26%?7 In this
way, several enhanced sampling techniques based on RL principles or algorithms have arisen
(e.g., FAST,? REAP,?® TSMD,? AdaptiveBandit® and TALOS?!).

Since the thermodynamic ensembles sampled by MD simulations usually follow a Boltz-
mann distribution, the probability of sampling a state decays exponentially with its energy.
For this reason, exploration of the rare transitions is often more computationally challeng-
ing than the sampling of known metastable states. Therefore, RL-based enhanced sampling
methods tend to focus on encouraging the exploration of the energy landscape under the
assumption that researchers can later extend sampling of discovered states to reduce the
uncertainty of their measurements.

RL-based adaptive sampling (REAP) is a technique that enhances the exploration of the
energy landscape along user-defined CVs. Unlike other similar techniques, it utilizes a reward
function where each CV is weighted based on knowledge from the data collected so far. These
weights are iteratively updated, so that the user can interpret which CV is more relevant
at a given point of the simulation. In general the REAP algorithm can be summarized as
follows: a set of MD trajectories is first clustered to discretize and reduce the size of the
set of conformations from which new simulations can be run (action space discretization).
Clusters with the lowest number of members are selected as candidates. Then, the weights
of the CVs are updated such that the cumulative rewards from the candidates is maximized.
Finally, new simulations are spawned from the conformations with highest rewards. This
cycle is repeated until the system reaches a desired final state.?

REAP was intended to explore free energy landscapes where a few orthogonal CVs can
describe the relevant transitions. Biologically relevant examples of such landscapes include
kinase activation,*3%33 transmembrane transport,3* and protein folding.® In those cases,
the system has to diffuse across orthogonal CVs to reach the final state. Here, REAP
can effectively push the system from one state to another by learning which CV must be

prioritized. 28
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However, the functionality of REAP is limited by the assumption that new regions of the
landscape will tend to show new extrema along the prioritized CVs. A simple example where
such assumption is violated is when MD practitioners start sampling a system from different
states. For example, a transporter may be studied via MD simulations through parallel runs
from its inward facing and outward facing states. The REAP algorithm would not be suitable
in this situation because it preferentially selects conformations that show extreme values of
the CVs. However, it is possible that unexplored regions of the conformational landscape
that are crucial for the transition between states are contained within the range of the CVs
(Figure 1c). In such cases, even the simpler Least Counts (LC) sampling scheme might show
better performance at capturing this transition (Figure 1a). 65 Moreover, we can imagine a
case where a researcher starts independent simulations from different states of a system but
does not combine the resulting data until sampling is deemed appropriate. In this case, the
risk is that regions of the landscape that were already discovered are redundantly sampled,
thus wasting computational resources.

In order to provide a sampling scheme that incorporates the benefits of REAP and is bet-
ter suited to simultaneously harness data from different regions of a free energy landscape, we
turned to multi-agent reinforcement learning (MARL) to develop multi-agent (MA) REAP.
For the remainder of the paper, the terms REAP and single-agent (SA) REAP will be used
interchangeably and in contrast to the multi-agent implementation. An agent is defined as a
learning system that must find an optimal function (the policy) to map agent states (e.g., set
of discovered conformations) into actions (e.g., which conformations to use to launch new
trajectories). In most MD literature drawing on MARL terminology, there is a tendency
to equate an agent with a single trajectory (multiple walker metadynamics,®® TALOS3!).
However, such correspondence is not theoretically required and in this study we think of an
agent as a mathematical model that manages a set of simulations on behalf of the researcher.

In comparison to the baseline REAP algorithm, the value added by this multi-agent

formulation comes from two features that were absent in the single-agent implementation:
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Figure 1: Diagrams showing the different behavior of adaptive sampling algorithms in a
hypothetical landscape. The red and green X’s mark the starting structures for the sampling.
The states are divided by a grid, rather than clusters. Green grid cells represent states that
would be rewarding for each algorithm. The star in (c) represents the approximate location
of the mean of the data distribution. (a) Least Counts selects restarting states that contain
the fewest observed frames. (b) FAST employs a binomial reward function that biases the
choice of restarting states towards the states with maximum (or minimum) values of a single
CV. The undirected term favors exploration by rewarding states with low frame counts.
(¢c) REAP assigns rewards based on the distance of conformations to the average of the
population. If sampling is started in two different states, pooling all the data together may
result in a reward function that only favors conformations that exhibit extreme values of
the CVs, rather than conformations that approach a rare or intermediate state. (d) Multi-
agent REAP incorporates multiple agents that compartmentalize their data, allowing them
to independently sample along high-variance CVs and sharing data only when in proximity
to another agent’s discovered states.

data compartmentalization and information sharing. Data compartmentalization arises from
the fact that conformations are labeled and utilized by the agent who discovers them, so each
agent learns the parameters to compute the rewards from different data points. This is done
with the intention to constrain what information will be used to score the conformations
in a region of the landscape. Moreover, the agents share information at the action-space

discretization step to signal to others what conformations should be deprioritized based on
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the structures they have already observed.

The idea of utilizing prior known states of a system to accelerate MD simulations has
been explored in the past. For instance, FAST and TSMD use scoring functions that can
be set to the RMSD between the current conformation and the desired final state to guide
simulations. Nonetheless, the goal of Multi-agent REAP is not to observe transitions between
predetermined conformations; if two agents start exploring a landscape from different initial
states, their exploration efficiency may improve by interacting with each other to avoid
resampling observed regions, but no assumptions are made about the new states that may
be discovered.

Tangent Space Least Adaptive Clustering (TSLC) is an algorithm tightly related to
REAP but whose clustering and reward schemes are better suited to handle nonlinear CVs.3”
Given that this algorithm belongs to the family of adaptive sampling regimes that perform a
discretization of the action space, our multi-agent formulation can be easily extended to this
algorithm. To show the flexibility of the main idea behind our multi-agent formulation, we
also introduce a multi-agent version of TSLC (Multi-agent TSLC) and compare it against
its single-agent baseline.

The rest of this paper is organized as follows: the method section describes the modified
versions of REAP and TSLC. Then, performance comparisons are made on artificial toy
potentials to illustrate the behavior of the multi-agent algorithms. Following, a comparison
between Multi-agent REAP and AdaptiveBandit is done using MD simulations of alanine
dipeptide. Lastly, we compare the original and multi-agent REAP algorithms on realistic
systems (Src kinase,* OsSWEET2b3®) using kinetic Monte Carlo (KMC) sampling based on
data from previous studies. We found that in all cases the multi-agent algorithms were able
to more quickly explore the free energy landscape compared to their single-agent counterparts

and AdaptiveBandit.
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2 Methods

2.1 Multi-agent REAP algorithm

Algorithm 1 shows the outline for Multi-agent REAP. Since this method shares most of its
logic with the original REAP algorithm,?® we will focus on describing the changes in the

multi-agent formulation.

Algorithm 1 Multi-agent REAP

Input: potential V (%), CVs {0,(Z),...,0x(%)}, clustering function C, reward function 7,
stakes function S, number of agents N, initial weights W, ,, learning threshold ,
number of candidates P, number of epochs F, trajectory length L, number of trajectories
per epoch M, reward combination regime R

1: Sample initial data X° from V
2: forein1... F do
3:  Project data onto CVs:
O° = [0 (XY .. O (X
4:  Set agent labels I for each conformation in ©°¢
5. Cluster data, select P least-count candidates (Cp), and obtain their cluster centers
(@p):
CP> QP = 6(667 P)
6:  Compute agents’ stakes:
Snxp = S(Cp, 1)
7. forainl...N do
8: Optimize reward and return agent’s weights:
we = arg max >y Sap - T (Wa, Gp) subject to wgy, >0, Yo, why, =1, Jwgy, —wip'| <6

9: end for

10:  Combine agents’ rewards to obtain R(q,) Vg, € Qp

11:  Let Qu C Qp be the set of M configurations that maximize R(q,) and X the set of
full dimensional vectors that were mapped to those in @, in step 3

12:  for all 7, € X,; do

13: Sample L new data points from V' starting from z,,

14:  end for

15:  Concatenate new data to X ! to obtain X®

16: end for

The first notion to discuss is the definition of an agent. In general, an agent is an object
that can collect observations from an environment. Based on its observations, the agent falls

into a specific state from a potentially infinite state set. The policy function will then map
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the agent’s state into the next set of actions. The environment will return new observations
dependent on the actions taken. To guide the behavior of the agent, a reward function is
defined such that it dictates the development of the agent’s policy.?® Namely, the policy will
select actions that optimize the current or future rewards.

For Multi-agent REAP, the definitions of environment, state, and action remain un-
changed in comparison to the original REAP algorithm. The environment is usually the
Hamiltonian of a many-body system. An important feature of such a Hamiltonian is that its
free energy landscape lies near a low-dimensional manifold. This low-dimensional space is
spanned by a set of CVs. Each REAP agent can rank user-given CVs to prioritize a direction
of exploration, but no new variables can be discovered. The agents can make observations
by sampling a thermodynamic ensemble of the system using standard MD methods. The
state of an agent is defined as the set of conformations that the agent has discovered. An
action is defined as a conformation from which the agent can launch an MD trajectory.

The reward function of Multi-agent REAP differs from that of the original implemen-
tation. To explain the difference between the single- and multi-agent reward functions we
introduce the concept of an agent’s stake in an action. REAP relies on a clustering step where
the action space is reduced and discretized. In other words, the large amount of possible
conformations from which to launch new simulations is reduced to a relatively small number
of representative clusters. Usually, the centroids of the clusters conform the reduced action
space. In Multi-agent REAP, the data from all agents is pooled together during action-space
discretization (step 5 in algorithm 1), so agents are effectively sharing information. More-
over, each agent possesses a “stake” in each cluster. The stake s7 that agent a has on action
¢ is computed as a function of the number of conformations discovered by agent a classified
into the cluster corresponding to action ¢. A simple example of a stake function is one that
returns the fraction of frames in the cluster of action ¢ that belong to agent a. We propose
other alternatives (see equations 3-6), but note that the choice among these functions does

not dramatically alter the results (see Supporting results). Stakes are intended to fulfill the
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condition ), s? = 1 for any action ¢. In essence, Multi-agent REAP uses each agent’s stake
to weight the reward that it feels from a given cluster. Since the REAP algorithm is intended
to encourage exploration, the reward is proportional to the standardized Euclidean distance
between the action and the mean of the discovered conformations in CV space. Although
the use of different distance functions is possible, this metric is retained by our multi-agent
formulation.

The single-agent reward function is defined as

K
, |gi — puil
Tsjfngle(wv 67) - sz (].)

oy
where K is the number of CVs, w; is the weight assigned to CV 4, ¢'is a cluster center (in CV

space), [ is the mean of all the discovered conformations, and & is the standard deviation.

Building from equation 1, the reward an agent assigns to an action is simply expressed as

K

- 7 4i — Mai

) = s D B L 2
i Oai

where s? is the stake that agent a has on cluster center §, W, are agent’s a weights, and ji,

and 7, are the mean and standard deviation of all the conformations discovered by agent a.

The stake is computed using a function §. The proposed forms of S are

Jaa
Zi fqi

Sg — Sfraction(fq7 a) =

SZ = Smax(f:(;, a) = I{maxﬁ}(fqa) (4)
g = I quil qi 0 (,f a)
Sq = Sequal (fq, @) = {fzf 70 (5)
1 fqi7#0

10


https://doi.org/10.1101/2022.05.31.494208
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494208; this version posted May 31, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

- . 0, if fga =0
Sg = Slogistic(fQ7 a, /{) = (6)
( 1 ) N, otherwise

1+e_'i(sfraction(fq7a) —1/2)

where the length of ﬁ] is the number of agents and each entry contains the number of
frames classified as action ¢ that each agent discovered, I is the indicator function, s is a
tunable parameter, and A is a normalization factor. In simple terms, Spaction returns the
fraction of conformations that agent a possesses in action ¢, Snax assigns a stake of 1 to
the agent with the largest number of conformations in the action (and 0 to the rest), Sequal
assigns equal stakes to all agents with at least one frame in the cluster, and Sjogistic provides
the option of a tunable function that can produce intermediate behaviors according to the
value of k (for large r, it approximates Spyax and for small &, it approximates Sequal)-

Once the agents’ stakes have been assigned, the CV weights are updated by optimizing
the reward. It is important to highlight that the agents only share information during
action-space discretization. For this reason, all other parameters remain constant when
updating the weights. Since the reward function only depends on the weights from the
given agent, we can carry out agent-wise optimization at step 8 of algorithm 1. S affects the
reward optimization by determining how much weight each cluster will carry according to the
relative representation of each agent. Employing S,,., would result in agents only optimizing
the reward with respect to the clusters where they are highly represented, whereas utilizing
Sequal Would allow the agents to equally weight all the clusters they have observed at least
once. Sgaction Tesults in the clusters being weighted in direct proportion to the representation
of the agent in the cluster. Results of Siygistic Will depend on the value of k. For a comparison
among these functions see the Supporting results. Sgaction Was used in all the tests unless
otherwise noted.

In regards to the policy followed to choose the actions, the single-agent implementation
simply selects the top M actions when ranked by their reward. However, the multi-agent

implementation must deal with the nontrivial question about how to combine the rewards

11
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from different agents. We propose three ways in which the actions can be selected. The

proposed schemes to combine the rewards are

7acollabora‘cive(q_j - Z Tﬁ( (wzu (j) (7)

7znon—collaborative((j) - mélX TCLK(UZL? (7) (8)

7zcompetitive ((jj = 27znon—collaborative ((ﬂ - Rcollaborative ((D (9)

In equation 7, the rewards from all agents are added together. In the RL literature,
such schemes where rewards are added to select the most optimal global actions are termed
collaborative regimes.®® On the other hand, equation 8 sets the reward of the action as the
maximum reward assigned by a single agent. We term this regime non-collaborative. Finally,
we proposed a competitive regime where the global reward of an action is the maximum
reward set by an agent minus the reward assigned by all others. Intuitively, the exploration
of a free energy landscape can be framed as a collaborative task; if an action is deemed to
be highly rewarding by all agents, then it should be selected. We cannot discard the (albeit
counterintuitive) possibility that a competitive regime may lead to better performance in
settings where actions that are deemed rewarding by multiple agents should be discouraged.
Nonetheless, we did not detect a significant difference between reward combination regimes
in our tests (see Results and discussion).

The new data generated after selecting action ¢ is assigned to the agent that possesses the
highest stake in that action. In other words, the agent whose stake is maximal for a selected
action is the one that “executes” it. A consequence of this decision is that the agents that
are the most “proficient” at exploring the landscape will continue receiving higher rewards
and executing new actions. Therefore, computational resources are distributed unequally

across agents.

12
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2.2 Multi-agent TSLC algorithm

The multi-agent REAP algorithm shows improved performance in systems with linear and
orthogonal CVs (see Results and discussion). However, when the relevant CVs that describe
the slow dynamics of the system are not linear, a different method to derive the weights may
be better suited. Tangent Space Least Adaptive Clustering (TSLC) was introduced as an
extension of REAP precisely to handle these cases.?” However, despite its ability to capture
non-linear CVs, TSLC shows limitations similar to those of single-agent REAP, and for this
reason we introduce Algorithm 2. This extension of TSLC is analogous to that presented in
Algorithm 1 for REAP.

TSLC utilizes a distinct clustering function termed CLUST.3" The clustering of the data
is independent of which agent discovered each conformation (i.e., the data is shared among
agents during this step as in Multi-agent REAP). The distribution parameters that the agents
use to obtain their rewards are replaced by a matrix A, that is computed in the same way

1.37 except for the fact that the stake modulates how the cluster is weighted

as in Buenfil et a
by the agent (step 10 in Algorithm 2). The matrix A, is constructed by first approximating
the local tangent space of each cluster (using PCA, step 7), finding the gradients of the
CVs at each cluster center (step 8), and then adding the contribution of each cluster in step
10. In step 11, we find the linear combination of the gradients of the CVs that maximize
the projection onto the tangent spaces. This maximization is expressed as an eigenvalue
problem and the final weights are the squared entries of the eigenvector associated with the

largest eigenvalue. The last steps are identical to those in Algorithm 1, noting that the

values r% (i, ¢,) are computed to select the actions but not to optimize the CV weights.

13
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Algorithm 2 Multi-agent TSLC

Input: potential V (&), CVs {61(Z),...,0k(Z)}, clustering function C, reward function r*,
stakes function &, number of agents N, initial weights W3 x, intrinsic dimensionality d,
number of candidates P, number of epochs E, trajectory length L, number of trajectories
per epoch M, reward combination regime R

K

1: Sample initial data X° from V
2: foreinl... E do

3:  Project data onto CVs:
O° = [ (X1 .. O (X
4:  Set agent labels I for each conformation in ©°¢
5. Cluster data, obtain cluster centers (Q), select least-count candidates (Cp C C') and
their cluster centers (Qp C Q):
C,Q,Cp,Qp = C(6°, P)
6: Compute agents’ stakes:
S=8(C,1I)
7. Compute d principal components per cluster:
B, =PCA(X¢(c),d)) Ve e C
8:  Compute normalized gradients:
Ge = V(@) (5 2. IVO(@)) ! Ve e C, VE € {L,..., K}
9: forainl...N do
10: Compute agent’s A matrix:
Aa = ZC Sac(GZ‘/c‘/cTGc)
11: Compute weights w, as the squared entries of the first eigenvector of A,
122 end for
13:  Compute rewards r(u,, ¢,) and combine agents’ rewards to obtain R(q,) Vg, € Qp
14:  Let Qu C Qp be the set of M configurations that maximize R(g,) and X, the full
dimensional vectors that were mapped to those in Q) in step 3
15:  for all %, € X, do
16: Sample L new data points from V starting from %,
17. end for
18:  Concatenate new data to X! to obtain X®
19: end for

3 Results and discussion

3.1 Cross potentials

We begin by showing the behavior of Multi-agent REAP in two idealized potentials where a

single particle diffuses following a Langevin dynamic.?® These examples represent “adversar-

ial” landscapes for Single agent REAP because they showcase its shortcomings in comparison

to the multi-agent implementation. LC runs were also performed and are used as baselines
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to compare the algorithms. Details of the simulations are described in Supporting methods.
Figure 2 shows the results of comparing the algorithms in a symmetric cross potential.
The potential is shaped like a cross; diffusion along the = variable is more relevant for the
exploration of the horizontal arms, while the y variable is more relevant for the exploration
of the vertical arms. The agents are initially placed on the horizontal arms (see Figure 2a).
Figure 2c¢ shows the difference in area explored (defined as difference in normalized number
of grid points discovered) between Multi-agent REAP and LC. The difference between Single
agent REAP and LC is also plotted. The error bars show the 95% confidence intervals after
500 repetitions of the simulations. There are statistically significant differences among all
methods; while Multi-agent REAP is able to explore a larger area compared to LC, the single-
agent implementation performs worse after roughly 10 epochs. The curves show that around
epoch 10, Multi-agent REAP reaches the maximum difference in area explored with respect to
LC (approximately 10%) and after that both methods start to converge (as expected for long
enough simulation times). However, the Single agent REAP implementation continuously
selects actions at the edge of the horizontal arms (Figure 2b), which results on the lack of
exploration of the vertical arms. On the other hand, the snapshot of the Multi-agent REAP
run shows that the agent starting on the left arm reached the extremes of the vertical arms
(and therefore, the other agent does not have the need to launch trajectories in those areas).
One may argue that a user of the original REAP algorithm would simply start two inde-
pendent REAP runs that do not share any information at each starting conformation (i.e.,
incommunicado agents), so that exploration would not become hampered by the greedy
selection of actions at the extremes of the x variable. But in this case, the agents redun-
dantly explore the same areas of the landscape (see Figure 2d), thus wasting computational
resources.
Employing different reward combination regimes did not yield differences (see Figure S2).
Figure 3 shows the comparison results on an asymmetric cross potential. This potential

is similar to the symmetric one but the minimum at the left extreme of the horizontal arm
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Figure 2: Results on the symmetric cross potential. (a) Plot of the free energy landscape.
The white and pink stars mark the initial positions of the agents (both positions are observed
by the unique agent in Single agent REAP). (b) Snapshots of the trajectories generated by
Single agent REAP (left) and Multi-agent REAP (right) after a full run. Trajectories are
colored according to the agent who executed the simulation. Black dots indicate the last
set of selected actions. (c¢) Comparison of normalized area explored. The blue and orange
curves show the differences (mean + 95% confidence interval) between the areas explored by
Multi-agent REAP or Single agent REAP and LC. (d) Comparison in overlap area between
agents. Overlap is defined as the fraction of grid points that both agents have observed
over the total number of explored grid points. The curve shows the difference (mean + 95%
confidence interval) between Multi-agent REAP and two incommunicado agents.

is deeper than the one on the right. The initial positions of the agents is set to the extremes
of the horizontal arms. In this comparison, it is noticeable once again that the Multi-agent
REAP algorithm is more efficient at exploring the landscape than the LC adaptive sampling
scheme (Figure 3c), while the Single agent REAP implementation suffers from similar non-
optimal behavior as in the previous example. However, in this case, the reason for this
difference in performance stems from the ability of Multi-agent REAP to allocate more
actions to agents that discover new states and earn higher rewards. As the snapshots in

Figure 3b show, the agent starting at the right arm is better-poised to explore the landscape
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in comparison to the left agent, which starts in a deep free energy minimum (e.g., a kinetic
trap or absorbing state). Given that the agent starting on the right explores a wider area,
it possesses all the stakes in the newly discovered sates, it receives higher rewards, and it is

assigned more actions as the run continues (Figure 3d).

(a ) Asymmetric cross potential ( b) SA REAP run snapshot MA REAP run snapshot
2.00 2.00

175 175
1.50 -40 1.50

125

<
-
°
3
>4
spun ABisug
<
I
o
S

0.75
0.50 0.50

0.25 -100 0.25

0.00 0.00
0.0 0.5 1.0 15 2.0
X
(C ) Area explored difference (Least Counts baseline) (d ) Workload distribution
0.15 100
—— MA REAP N
010 —— SAREAP AN Agent 2¥¢

80 A
A /_/‘/
\/
0.05 E A\ /
\
60 -/
0.00 ¥~ EN
N,
\
\. 40
-0.051 \_
~0.10 — Agent 17¢

-0.15 . . . 0
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Cumulative % of actions
assigned to agent

N
=3

Normalized area explored (difference)

Figure 3: Results on the asymmetric cross potential. (a) Plot of the free energy landscape.
The white and pink stars mark the initial positions of the agents (both positions are observed
by the unique agent in Single agent REAP). (b) Snapshots of the trajectories generated by
Single agent REAP (left) and Multi-agent REAP (right) after a full run. Trajectories are
colored according to the agent who executed the simulation. Black dots indicate the last
set of selected actions. In the multi-agent snapshot, the agent that starts at the right arm
explores most of the landscape because it is assigned more actions. (c¢) Comparison of
normalized area explored. The blue and orange curves show the differences (mean + 95%
confidence interval) between the areas explored by Multi-agent REAP or Single agent REAP
and LC. (d) Cumulative percentage of actions assigned to each agent after the given epoch
for the run plotted in part (b).

In summary, our multi-agent implementation retains the ability of REAP to sample
landscapes where there is a clear advantage to preferentially sample along a relevant variable.
This is demonstrated by the better higher exploration area of Multi-agent REAP when

compared to LC adaptive sampling. Moreover, our algorithm addresses the shortcomings
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that Single agent REAP presented when attempting to utilize information from distinct
regions of the landscape simultaneously. This is evidenced by the ability of Multi-agent
REAP to compartmentalize information (the agents only learn from data that comes from
their explored region), reduce redundant sampling (area overlap between agents is diminished
in comparison to independent agents), and distribute the workload unequally (the agent that

explores more is assigned more actions).

3.2 Alanine dipeptide

In this section, we simulate alanine dipeptide, a usual example of an all-atom system typically
employed to compare MD simulation methods. We compare the performance of Multi-agent
REAP against continuous MD and another adaptive sampling regime based on the classical
multi-armed bandit algorithm (AdaptiveBandit).?? For details on the simulations, see the
Supporting methods.

Figure 4 shows the results of the comparison among the three simulation methods. The
CVs used for exploration were the ¢ and ¢ dihedral angles (for both Multi-agent REAP
and AdaptiveBandit). We observed that, for a total simulation time of 16 ns, Multi-agent
REAP was able to reach and thoroughly explore the state with ¢ > 0 (Figure 4, bottom
panels). This state was not reached by a continuous MD simulation of the same length
(Figure 4, top panels). Although AdaptiveBandit sampled a low number of frames in this
state, the algorithm did not readily select such structures to restart simulations (Figure 4
middle panels). The result was a largely unexplored area of the landscape.

The result is likely due to the fact that the reward function for AdaptiveBandit balances
the exploration of new regions of the landscape with the exploitation of known metastable
states, as reflected by its binomial reward function.?® In this case, the presence of highly
stable states with ¢ < 0 favors the exploitation of the well-characterized actions over the
exploration of the states with uncertain rewards. Since AdaptiveBandit is grounded on the

basis of the upper confidence bound (UCB1) algorithm, this sampling scheme presumably
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obeys the optimal theoretical bound on its regret L;, O(kT log L;).>° However, optimally
bounding this definition of regret is not necessarily the reason an adaptive sampling tech-
nique is utilized. Given that the reward function from AdaptiveBandit is defined as the
expected value of the negative free energy, actions that do not achieve the absolute free
energy minimum (i.e., the optimal action) will be assigned lower action-values. Nonetheless,
MD practitioners often desire to enhance the sampling of rare transitions, excited states, or
off-equilibrium processes which are associated with high energies. Therefore, it is favorable
for a wide variety of applications to sacrifice the theoretical upper boundary on the regret

to accelerate the sampling of such high-energy states.

Alanine dipeptide ¢ dihedral distribution Ramachandran plot
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Figure 4: Alanine dipeptide simulation results. (Left panels) Probability density distribution
along the ¢ dihedral angle for a single run (top), AdaptiveBandit (middle), and Multi-agent
REAP (bottom). Curves show mean + standard error across replicates. (Right panels) Snap-
shots after a total of 16 ns of MD simulation. The stars represent the starting configurations
for the Multi-agent REAP agents and the AdaptiveBandit run. For Multi-agent REAP
(bottom), the frames obtained by different agents are colored differently. Multi-agent REAP
thoroughly explores the highlighted region, while a continuous MD and AdaptiveBandit fail
to sample this area.

A user of Multi-agent REAP would hypothetically harness the ability of our algorithm
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to quickly explore the landscape of the system to later execute an “exploitation” step, where
longer, continuous simulations are launched from the observed states to improve the sampling
statistics. Similar workflows have been employed in studies such as Zimmerman et al.?

We can also observe that the probability density distribution along the ¢ CV in both
AdaptiveBandit and Multi-agent REAP deviates from the equilibrium value (computed from

4041)  Nonetheless, after

three 250 ns continuous MD simulations retrieved from mdshare
employing an adaptive sampling scheme, the probability density of an observable would be
reweighted through a Markov state model (MSM) to eliminate the statistical bias caused by

the repeated restart of simulations from selected states.*?

3.3 Src kinase

In this section, we compare the performance of Single agent REAP and Multi-agent REAP
employing Src kinase, a realistic system involved in critical signalling pathways whose mal-
function is associated with cancer.*® We utilize a previously constructed MSM* to carry out
KMC simulations. For details about the simulations, see Supporting methods. The discov-
ery of intermediate states in this system is particularly relevant because they may exhibit
allosteric sites that can be targeted by drug design but that are absent in the active or
inactive conformations.*

Figure 5 shows the results of the KMC simulations. Simulations were started from
the active and inactive conformations of the kinase (Figure 5a,b), mimicking the initial
information that a researcher would possess from resolved crystal structures.***® The two
CVs that are utilized to project the MSM states are the RMSD of the A-loop and the distance
between K295 and E310.*

Figure 5¢ shows the difference in the number of states discovered between Multi-agent
REAP (blue curve) or Single agent REAP (orange curve) and LC adaptive sampling. Both

SA and Multi-agent REAP discover more intermediate states than LC for the same sim-

ulation time, but Multi-agent REAP outperforms Single agent REAP until both methods
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converge around 6 us (all methods should converge for long enough simulation times).

Figure 5d shows the distribution of number of states explored (normalized to the max-
imum achieved) for the 500 trials after 2 us. The vertical dashed lines show the means of
the distributions. We can observe that Multi-agent REAP achieves a higher average perfor-
mance than Single agent REAP and LC. Unsurprisingly, both single- and multi-agent REAP
improve upon the continuous MD run performance.

Unlike the results in Figure 2c and Figure 3¢, Single agent REAP performs better than
LC (Figure 5¢,d). There are two reasons for this. Firstly, the cross potentials were specifically
crafted as adversarial examples for Single agent REAP, so it is expected that the single-agent
algorithm will perform particularly poorly. Secondly, KMC simulations allow the system
to change states discretely rather than simulating Langevin diffusion. Therefore, selecting
actions that present extreme values of the CVs may still result in transitions that uncover
intermediate states, avoiding continuously launching unproductive trajectories.

We can also observe that it takes roughly 1 ps for Multi-agent REAP to display its full
advantage with respect to other methods (Figure 5¢). This is likely due to the time it takes
agent 2 (initially in the inactive conformation) to learn advantageous weights (Figure S5).
For this agent, moving along the K-E distance CV leads to the discovery of more intermediate
states.

In summary, we have shown that Multi-agent REAP discovers intermediate states more

efficiently compared to REAP and LC in a KMC simulation of a realistic system.

3.4 OsSWEET2b

OsSWEET2b is a vacuolar glucose transporter in rice. *4"” The study of this system is relevant
to the improvement of crop yields.*® Similarly to our Src kinase comparison, we perform
KMC on an MSM previously built on the glucose-bound transporter.3® Unlike the previous
example, the landscape does not present the typical L-shape where REAP is expected to carry

a clear advantage.?® This is due to the existence of hourglass-like intermediate states.3%4%50
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Figure 5: KMC simulation results on Src kinase. (a) Projection of the MSM states on two
collective variables (z-axis: RMSD of A-loop, y-axis: distance between K295 and E310). The
stars represent the starting conformations for the simulation. (b) Representative structures
of the active (A) and inactive (I) states. The A-loop is colored in red. K295 and E310
are labelled. (c¢) Performance difference between adaptive sampling schemes. The y-axis
corresponds to the difference in number of states discovered between MA or Single agent
REAP and LC. The plotted curve is the mean £+ 95% confidence interval for 500 repeats.
(d) Histogram of the normalized number of states discovered by single MD simulation runs,
LC, Single agent REAP, and Multi-agent REAP after 2 us of simulation. Normalization is
with respect to the maximum number of discovered states.

We start our simulations from the inward facing (IF) and outward facing (OF) states (Figure
6a,b). Details of the simulations are described in Supporting methods.

As a consequence of the characteristics of this system, the advantage of REAP and
Multi-agent REAP compared to single runs is less accentuated (Figure 6d). Nonetheless,
both SA and Multi-agent REAP still show better performance than continuous MD (defined
as number of states discovered). Single agent REAP performs worse or no better than LC

after approximately 1.5 us, while Multi-agent REAP maintains a modest advantage (Figure
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6¢).

Although Multi-agent REAP shows generally better performance than LC and its single-
agent counterpart, it shows a small disadvantage at t < 0.5 ps. Such initial setback can be
attributed to the time that it takes the agents to learn advantageous weights to facilitate
exploration (see Figure S6b). Namely, agent 2 (which starts at the outward facing state)
only starts prioritizing state transitions along the cytoplasmic distance CV after roughly 0.5
us. Before that, the agent observes mostly transitions along the periplasmic distance CV.
Conversely, agent 1 (initially at the inward facing state), only begins prioritizing exploration
along the periplasmic distance CV after roughly 1 ps. Before that time, this agent observes
mostly transitions involving changes in the cytoplasmic distance CV. On the other hand, the
weights for the single agent (Figure S6a) show a fluctuating behavior until ¢ = 1.5 us, after
which the periplasmic distance CV is prioritized. Rather than improving the performance
of the agent, these weights harm its ability to explore new states as shown by the drop in
performance after 1.5 ps. This is likely due to the over-selection of actions at the extremes
of the periplasmic distance variable, which results in unproductive trajectories in a similar
way to what was shown in Figure 2 and Figure 3.

In this section, we have shown that Multi-agent REAP is more favorable compared to
LC, even in energy landscapes where we would not expect our algorithm to perform better.
Moreover, the multi-agent implementation explored more states than the original, single-

agent one.

3.5 Toroidal potential

In this section, we show that the main idea behind the Multi-agent REAP algorithm can be
applied to other adaptive sampling schemes. More specifically, we show that a multi-agent
version of TSLC explores a model potential more efficiently than the original algorithm when
we allow for multiple starting points in a Langevin diffusion simulation. For details about

the simulation, see the Supporting methods.
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Figure 6: KMC simulation results on OsSWEET2b Markov state model (MSM). (a) Projec-
tion of the MSM states on two collective variables: z-axis: periplasmic distance (distance
between residues D190 and R70), y-axis: cytoplasmic distance (distance between F165 and
F43). The stars represent the starting conformations for the simulation. (b) Representative
structures for inward-facing (IF) and outward-facing (OF) states. (c) Performance difference
between adaptive sampling schemes. The y-axis corresponds to the difference in number of
states discovered between MA or Single agent REAP and LC. The plotted curve is the mean
+ 95% confidence interval for 200 repeats. (d) Histogram of the normalized number of states
discovered by single MD simulation runs, LC, Single agent REAP, and Multi-agent REAP
after 2 us of simulation. Normalization is with respect to the maximum number of discovered
states. The x-axis starts at 0.5 for clarity.

Unlike the idealized potentials from Figure 2a and Figure 3a, the potential in Figure 7a,
termed toroidal or circular®” potential, possesses a slow variable that cannot be expressed
as a linear combination of the particle coordinates. The appropriate CV is the angle, 6 =
arctan(y/x) (with its quadrant-dependent sign), but the weight derivation method employed
in algorithm 1 cannot consistently assign the highest weight to this variable.?” However,

the weight derivation employed in algorithm 2 is better suited to learn the weights for this
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system thanks to its ability to capture global geometric information from locally estimated
tangent spaces.

Figure 7 shows the result of comparing the original TSLC algorithm to the multi-agent
implementation when sampling is started from two initial points, 6; = 3/47 and 0y = 1 /4w
(white and pink stars in Figure 7a respectively). After the single-agent has explored enough of
the circle to reach the supplementary angle to either 8; or 65, TSLC falls into an unproductive
loop where actions that are either diametrically opposite in the circle or maximally distant
along the z- or y-coordinate keep getting selected, even though they do not lead to further
exploration along the angle CV (Figure 7c, left). On the other hand, Multi-agent TSLC
continues selecting actions along the unexplored edge of the circle (Figure 7c, right). Due
to this difference in behavior, we observe a clear difference in performance between the two
algorithms (Figure 7b). The difference continues to increase as the number of epochs grows
because the single-agent implementation does not continue exploring the circle after falling
in the unproductive loop. The multi-agent formulation of TSLC preserves the ability to
estimate the CV weights like the original algorithm (Figure S7). Employing different reward

combination regimes did not yield differences (see Figure S8).

4 Conclusion

In this study, we developed adversarial examples where REAP performs worse than LC
adaptive sampling and empirically demonstrated that Multi-agent REAP overcomes the
limitations of its predecessor. Moreover, we showed that Multi-agent TSLC explores an
idealized energy potential more effectively than TSLC. We additionally demonstrate the
advantage of Multi-agent REAP in three test systems: alanine dipeptide, an Src kinase, and
the transporter OsSWEET2b. We provide evidence to show that Multi-agent REAP more
effectively samples the rare state transitions of alanine dipeptide compared to traditional

MD simulations or AdaptiveBandit. For Src kinase and OsSWEET2b, we demonstrate
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Figure 7: Results on the toroidal potential. (a) Plot of the free energy landscape. The
white and pink stars mark the initial positions of the agents (both positions are observed by
the unique agent in Single agent REAP). (b) Comparison of normalized area explored. The
curve shows the difference (mean + 95% confidence interval) between the areas explored by
Multi-agent TSLC and Single agent TSLC. (¢) Snapshots of the trajectories generated by
Single agent TSLC (left) and Multi-agent TSLC (right) after a full run. Trajectories are
colored according to the agent who executed the trajectory. Black dots indicate the last set
of selected actions.

that Multi-agent REAP explores more states than LC or Single agent REAP for the same
simulation time. Interestingly, for all the cases we tested, the combination regime for the
rewards did not affect the results (see Figure S2 and Figure S8). However, there might be

landscapes for which the choice of reward combination regime does affect the performance.

Optimal selection of R remains a point of investigation.
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The number of agents to be used in our algorithms is limited by the number of known
distinct states of the system that the researcher can employ as initial coordinates. There
are no reasons to expect a better performance from the multi-agent formulations when all
agents observe the same initial state. This bears similarity to a limitation present in multi-
walker metadynamics, where placing the walkers in the same energy minimum results in
suboptimal sampling because the trajectories must become uncorrelated before the landscape
converges. 36

Since we compared intrinsically parallel algorithms, computational power was held con-
stant in the simulations (i.e., the same number of trajectories were launched per epoch
regardless of the adaptive sampling method used). The number of trajectories launched in
Multi-agent REAP/TSLC is independent of the number of agents N, so there is no direct
scaling relationship between N and the explored area. The benefit of employing the multi-
agent algorithms will depend on the prior information on the system (known states) and
the nature of its free energy landscape. In this way, the differences in performance that we
observed are purely due to algorithmic differences; Multi-agent REAP/TSLC accelerate the
exploration due to their ability to compartmentalize and share information, not due to a
trivial increase in computational resources.

In comparison to FAST, our methods have the advantage of ranking the CVs according to
their relative importance for sampling. Since FAST is not intended to combine information
from different CVs, we do not directly compare against this algorithm. A comparison between
FAST and AdaptiveBandit is available in the literature.?® On the other hand, other unbiased
enhanced sampling methods such as PaCS-MD?%! and TS-MD? are too distant in scope for
a comparison to be warranted.

Additionally, we did not compare Multi-agent TSLC with Multi-agent REAP. A compar-
ison between the single-agent versions exists in the literature.3” The choice between TSLC
or REAP (single- or multi-agent versions) will largely depend on the characteristics of the

free energy landscape. TSLC-derived weights will offer an advantage when the CVs are not
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orthogonal and linear. It is unlikely that this information will be available to a researcher
prior to simulating a system. In this regard, the biggest limitation of all CV-based methods is
that the important reaction coordinates may be unknown prior to executing the simulations.
However, past works explore the possibility of extracting relevant CVs from evolutionary
information and applying them in adaptive sampling regimes for proteins.?®?

In terms of future improvements for Multi-agent REAP/TSLC, the reward function for
Multi-agent REAP is purely geometrically motivated; rewards are directly proportional to
the deviation of conformations from the mean populations. In Multi-agent TSLC, more
information about the local topology of the landscape is utilized, but we must make stronger
assumptions about the characteristics of the landscape. In both cases, no thermodynamic
information is used. In AdaptiveBandit, the free energy is estimated in the reward function
to represent the exploitation term, but we observed that this choice hindered exploration
(Figure 4). The question of how to encourage exploration has been pondered in the RL
literature; perhaps, reformulating the reward function in the form of an entropy-regularized

d?+53 might result in a theoretically grounded formulation that guides exploration.

rewar
Moreover, recent works in multiple-agent coordination® may inspire new formulations of
the reward function with improved performance.

In conclusion, we imported the concept of multi-agent RL into the development of adap-
tive sampling algorithms for MD simulations. We introduced modifications that yielded new
algorithms which extend the functionality and improve the performance of REAP and TSLC.
More specifically, our multi-agent formulations record which agent discovered each confor-
mation and share this information at the action-discretization step. Moreover, the stakes
function modulates how different agents sense the rewards originating from discovered states
of the system. These modifications improved exploration performance in all tested cases.
Beyond the algorithms proposed here, a key takeaway from this work is that agent coordina-

tion can be incorporated into most adaptive sampling strategies, thus opening new avenues

to develop methods that are better suited to harness information from different regions of
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the energy landscape.
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