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Abstract6

The geographic nature of biological dispersal shapes patterns of genetic variation over landscapes, so that it7

is possible to infer properties of dispersal from genetic variation data. Here we present an inference tool that8

uses geographically-referenced genotype data in combination with a convolutional neural network to estimate9

a critical population parameter: the mean per-generation dispersal distance. Using extensive simulation,10

we show that our deep learning approach is competitive with or outperforms state-of-the-art methods,11

particularly at small sample sizes (e.g., n = 10). In addition, we evaluate varying nuisance parameters12

during training—including population density, population size changes, habitat size, and the size of the13

sampling window relative to the full habitat—and show that this strategy is effective for estimating dispersal14

distance when other model parameters are unknown. Whereas competing methods depend on information15

about local population density or accurate identification of identity-by-descent tracts as input, our method16

uses only single-nucleotide-polymorphism data and the spatial scale of sampling as input. These features17

make our method, which we call disperseNN, a potentially valuable new tool for estimating dispersal distance18

in non-model systems with whole genome data or reduced representation data. We apply disperseNN to 1219

different species with publicly available data, yielding reasonable estimates for most species. Importantly,20

our method estimated consistently larger dispersal distances than mark-recapture calculations in the same21

species, which may be due to the limited geographic sampling area covered by some mark-recapture studies.22

Thus genetic tools like ours complement direct methods for improving our understanding of dispersal.23
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Introduction24

Organisms vary greatly in their capacity to disperse across geographic space. Indeed, the movement of25

individuals or of gametes across a landscape, in part, determines the spatial scale of genetic differentiation26

and the spread of adaptive variants across natural populations (Broquet and Petit, 2009). Consequently,27

understanding dispersal is relevant for conservation biology (Driscoll et al., 2014), studying climate change28

response and adaptation (Travis et al., 2013), managing invasive and disease vector populations (Harris29

et al., 2009; Orsborne et al., 2019), phylogeography (Kadereit et al., 2005), hybrid zones and speciation30

(Barton, 1979), microbial community ecology (Evans et al., 2017), and for parameterizing models in ecology31

and evolution (Barton et al., 2002). Despite the importance of dispersal, it remains challenging to obtain32

estimates for dispersal distance in many species.33

Some methods infer dispersal distance by directly observing individual movement, using radio-tracking34

technology, or by tagging and recapturing individuals in the field. However, such measurements can be35

expensive to obtain and lead to estimates with high uncertainty. Furthermore, they do not always pro-36

vide a complete picture of the effective dispersal rate—that is, how far successfully-reproducing individuals37

travel from their birth location on average over many generations (Bradburd and Ralph, 2019). This long38

term average is often the quantity of interest as it is more relevant for understanding population structure,39

evolutionary dynamics of selected alleles, and long-term changes to a species’ range.40

Another type of method infers (effective) dispersal distance from a single temporal sample, without41

directly observing movement of individuals. Such inference is possible because population genetics theory42

predicts how demographic parameters such as the rate of gene flow across the landscape affect the genetic43

variation of a population (Barton et al., 2013). To infer dispersal distance, current population-genetics-based44

estimators (Rousset, 1997; Ringbauer et al., 2017) use geographically-referenced DNA sequences and can45

obtain useful estimates of the per-generation dispersal distance, without the need for tracking or recapturing46

individuals.47

Importantly, current population-genetics-based estimators require additional data that can be prohibitively48

expensive, especially for non-model species: either an independent estimate of population density (Rousset,49

1997), or genomic identity-by-descent blocks (Ringbauer et al., 2017). Specifically, the seminal method of50

Rousset (1997) is designed for estimating neighborhood size, Nloc, which can be thought of as the number of51

neighboring individuals or potential mates that are within a few multiples of the dispersal distance (Wright,52

1946). Wright defined neighborhood size as Nloc = 4πDσ2, where σ is the dispersal distance and D is the53

population density. Therefore the accuracy of Rousset’s method depends on having a good a priori estimate54

of population density. One way to jointly infer dispersal and density works by modeling genomic identity-55
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by-descent tracts (e.g., Barton et al., 2013; Baharian et al., 2016; Ringbauer et al., 2017). Similarly, the56

program MAPS (Al-Asadi et al., 2019) uses identity-by-descent information to infer heterogeneous dispersal57

and density across a landscape. Although powerful when applied to high quality data, these methods are58

limited by the availability of confident identity-by-descent blocks; this type of data remains unavailable or59

difficult to estimate for many species. Thus for most study species we are stopped short of quantifying60

dispersal distance from population genetic data.61

Another type of population-genetics-based method estimates relative migration rates, for example EEMS62

(Petkova et al., 2016), FEEMS (Marcus et al., 2021), and other landscape genetics tools. Although such63

methods work well for some applications, such as identifying barriers to dispersal, they don’t inform us about64

the magnitude of dispersal, e.g., meters per generation. Furthermore, these and related tools model gene65

flow using an approximate analogy to electrical resistance which can produce misleading results especially in66

the presence of biased migration (Lundgren and Ralph, 2019). In the current paper we set out to develop a67

method for estimating dispersal distance that can be applied widely, including in non-model species without68

good assemblies or knowledge of population density.69

To do this we use simulation-based inference via deep learning to infer dispersal from genotype data70

directly. Deep learning is a form of supervised machine learning that builds a complex function between input71

and output involving successive layers of transformations through a “deep” neural network. An important72

advantage of this class of methods is their ability to handle many correlated input variables without knowledge73

of the variables’ joint probability distribution. Like all supervised machine learning methods, deep neural74

networks can be trained on simulated data, which bypasses the need to obtain empirical data for training75

(Schrider and Kern, 2018). Over the past few years, deep learning has been used in a number of contexts76

in population genetics: for example, inferring demographic history in Drosophila (Sheehan and Song, 2016),77

detection of selective sweeps (Kern and Schrider, 2018), detecting adaptive introgression in humans (Gower78

et al., 2021), identifying geographic origin of an individual using their DNA (Battey et al., 2020a), and79

estimating other population genetic parameters like recombination rate (Flagel et al., 2019).80

We present the first use of deep learning for estimation of spatial population genetic parameters. Our81

method, called disperseNN, uses forward in time spatial genetic simulations (Haller and Messer, 2019; Battey82

et al., 2020b) to train a deep neural network to infer the mean, per-generation dispersal distance, from a single83

population sample of single nucleotide polymorphism (SNP) genotypes, e.g., whole genome data or RADseq84

data. We show that disperseNN is more accurate than two competing methods (Rousset, 1997; Ringbauer85

et al., 2017) at inferring dispersal distance, particularly for small to moderate sample sizes, or when identity-86

by-descent tracts cannot be reliably inferred. After exploring potential shortcomings of our method, we87

demonstrate its utility on several empirical datasets from a broad range of taxa. The disperseNN software88
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is available from https://github.com/kr-colab/disperseNN, where we have also provided a pre-trained model89

for ease of prediction in new systems.90

Results91

Dispersal estimation using deep neural networks92

We use a convolutional neural network (CNN) trained on simulated data to infer the average per-generation93

dispersal distance (Figure 1). The CNN takes two pieces of data as input: (1) a genotype matrix, and (2)94

the width of the geographic sampling area. The genotype matrix is put through the network’s convolution95

layers, while the geographic sampling width is used downstream and is important for conveying the physical96

scale of sampling. The output from the CNN is a single estimate of the dispersal parameter, σ. Our software97

package, disperseNN, has several inference-related functionalities: (i) training the CNN on simulated data,98

(ii) predicting σ using simulated or empirical data, and (iii) pre-processing steps for empirical data. In99

addition, the disperseNN package includes a network pre-trained by us that can be used to estimate dispersal100

distance from empirical data without additional training.101

The training data for disperseNN are simulated using a continuous-space SLiM model following Battey102

et al. (2020b). In this model, each offspring disperses from their maternal parent’s location an independent103

bivariate Gaussian displacement with mean zero and standard deviation σ in each direction. We refer to σ104

as “the dispersal parameter”, although the straight-line distance dispersed from the maternal parent in two105

dimensions is roughly
√
2σ. Alternatively, to convert the disperseNN estimate to the mean distance from106

both parents, the output should be multiplied by
√
3. In addition to dispersal, σ also determines the mating107

and competitive interaction distances in our simulation model. disperseNN provides an estimate of σ in the108

same units as its second input, the width of the sampling area, from training.109

Training with disperseNN consists of: deciding on training distributions for σ and other parameters,110

using a spatial model to simulate training data, and handing the simulation output and targets (true σ) to111

disperseNN for training the CNN. The analysis pipeline for predicting on simulated data is similar to that112

of training, while predicting on empirical data involves basic pre-processing of the input data before using113

disperseNN to estimate σ. Below, we present findings from several experiments using disperseNN, each with114

its own set of parameters for simulation and training. We describe each experiment briefly in the Results115

section, and reference different sets of parameters that correspond to each experiment, e.g, “Parameter Set116

1”, “Parameter Set 2”, etc. Full details about the different parameter sets are in the Materials and Methods117

section.118
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Comparison with existing methods119

We evaluated the accuracy of our method on simulated datasets with a range of σ values (Parameter Set 1),120

using the relative absolute error (RAE) to measure prediction accuracy for each estimate:121

RAE =

∣∣∣∣estimated σ − true σ

true σ

∣∣∣∣ (1)

For comparing accuracy between training runs or between methods, we calculate the mean relative absolute122

error (MRAE) averaged across all test datasets. We found disperseNN estimates dispersal rate more accu-123

rately than previous genetics-based methods (Figure 2). At small sample sizes (n = 10), disperseNN was124

dramatically more accurate than both the Rousset (1997) method and the program from Ringbauer et al.125

(2017) called IBD-Analysis (MRAE=0.11, 0.38, and 22.35, respectively). Furthermore, the Rousset method126

and IBD-Analysis produced undefined output and convergence errors for 16.4% and 4.6% of test datasets,127

respectively. For Rousset’s method, at least, this is due to a negative slope in the least squares fit of genetic128

distance versus geographic distance, which happens more frequently with a small sample size.129

disperseNN remained the most accurate method when the sample size was large (n = 100) in part due to130

a bias using IBD-Analysis (MRAE = 0.09, 0.23, and 0.11, respectively). Estimates from IBD-Analysis were131

consistently, slightly overestimated for n = 100, and estimates from the Rousset method were underestimated132

on average, likely due to model misspecification. In particular, Ringbauer et al. (2017) reported moderate133

overestimation of σ when sampling uniformly at random, instead of regularly spaced in a grid. The sample134

locations in our analysis are random and irregular (Figure S2), which likely accounts for the bias using135

IBD-Analysis. The IBD-Analysis program may perform best on data with regular spacing between sample136

locations when n = 100, however the bias in this case results from including biological realism. It is also137

important to note that we provided IBD-Analysis with true identity-by-descent tracts, when in reality138

perfectly inferred identity-by-descent tracts are not available for most species, and inferring identity-by-139

descent tracts from (perfectly phased) SNPs reduces the accuracy of IBD-Analysis (Figure S3). Larger140

numbers of SNPs further improved the accuracy of disperseNN, although with diminishing returns (Figures141

S4, S5). Larger values for σ showed correspondingly larger errors (Figure 2), however relative error was142

nearly constant across the range of true σ (Figure S6). In addition, disperseNN and the Rousset method143

slightly underestimated σ when the true value approached the maximum of the examined range. This occurs144

because there is little spatial structure when σ is large relative to the habitat width. This observation from145

simulated data suggests we might expect disperseNN to have limitations when analyzing populations with146

very little spatial structure caused by isolation-by-distance.147
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Varying individual nuisance parameters during training148

A common concern with supervised machine learning methods is that data used for prediction may fall149

outside of the training distribution. If the training set was simulated with, for example, a small population150

density, should we expect the trained network to accurately estimate σ if the test data have a large density?151

We set out to explore limitations of disperseNN using deliberately misspecified simulations, including out-152

of-sample (i) population density, (ii) ancestral population size, (iii) habitat size, and (iv) restricted sampling153

area relative to the full habitat. We individually address each scenario by augmenting the training set, which154

ultimately allows us to circumvent the problem of each nuisance parameter being unknown. This procedure155

is explained in more detail below.156

First, we obtained a baseline accuracy-level for a “naive” model by training disperseNN on data where157

all simulation parameters were fixed except for σ (Parameter Set 2). This resulted in an MRAE of 0.12 using158

test data with all parameters drawn from the same distribution as the training set. We next used the model159

trained on Parameter Set 2 to estimate σ in test data where one of the aforementioned nuisance parameters is160

misspecified to varying degrees, i.e., drawn from outside the range of the training set (Parameter Sets 3, 5, 7,161

9). Such model misspecification reduced the accuracy of σ estimation (Figure 3, column 2). This reduction162

in accuracy was most pronounced for misspecified population density and habitat width parameters (MRAE163

= 0.36 for each). The other scenarios also increased error, although more moderately. When a fixed habitat164

width was assumed, 23% of predictions were larger than the maximum σ from training; for other nuisance165

parameters all predictions fell within the range of σ used in training.166

Having observed the effect of misspecification due to assuming particular values for nuisance parameters,167

we next assessed a training strategy for dealing with each unknown parameter. For each misspecification168

scenario, we assign a distribution to the unknown model parameter and allow the parameter to vary across169

training simulations (reusing Parameter Sets 3, 5, 7, 9). Using the new training set, disperseNN learned170

to accurately estimate σ when individual nuisance parameters were unknown, with error levels approaching171

the original MRAE (Figure 3, column 3; Parameter Sets 3, 5, 7, 9). To reiterate, this procedure varied a172

single unknown parameter at a time, not in combination. Essentially by treating each unknown parameter173

as a nuisance parameter during training, the model can become agnostic to the unknown parameter—or else174

learn a representation for the parameter such that σ can be calculated conditional on the learned parameter.175

This ability is critical for applying supervised learning methods for estimating σ where model parameters176

other than σ are unknown.177

Although disperseNN was able to predict σ after including variation in each nuisance parameter in the178

training set, we next show that extrapolation is limited in some cases for unfamiliar parameter values, i.e.,179
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values outside of the distribution used for training. In the preceding trial the same distribution was used180

for both training and prediction. Next we assessed disperseNN’s ability to extrapolate at very large values181

of each nuisance parameter (Parameter Sets 4, 6, 8, 10), beyond the range used in training (Parameter Sets182

3, 5, 7, 9). Results from this experiment were varied (Figure 3, rightmost column): predictions at out-of-183

sample values of density and ancestral population size were unreliable, but we were able to predict at large,184

out-of-sample habitat sizes and sampling areas quite well. Of note, using very large habitat sizes resulted in185

only a single estimate being 1% larger than the maximum σ from training.186

Dealing with multiple nuisance parameters187

After finding a successful training strategy for dealing with individual nuisance parameters, we next sought188

to train a network for general use in estimating σ where multiple parameters are unknown. The resulting189

network is what we refer to as “the pre-trained network”. To do this, we used large ranges for parameters that190

control: (i) dispersal distance, (ii) population density, (iii) ancestral population size, (iv) timing of population191

size change, (v) habitat size, and (vi) the size of the sampling area relative to the full habitat (Parameter192

Set 11). Furthermore, we exposed disperseNN to a range of different sample sizes between 10 and 100 by193

padding the genotype matrix out to 100 columns during training. Training simulations used 5,000 SNPs194

sampled from a single 100 megabase chromosome; this approach resembles a RADseq experiment, as the loci195

are spaced out on the chromosome and may be considered mostly unlinked. Last, we collapsed the diploid196

genotypes output by SLiM into unphased genotypes; 0s, 1s, and 2s; representing the count of the minor allele197

at each variable site. Through validation with held-out, simulated data, we found that the final model was198

accurate across a wide range of nuisance parameter values, and showed roughly order-of-magnitude accuracy199

(MRAE=0.55; Figure 4).200

We provide the learned weights and biases from the above pre-trained network for download as part of201

the disperseNN package. The pre-trained network can be used to quickly estimate σ from various species202

or simulated datasets without additional training or simulations. We note that the pre-trained network203

for disperseNN could in addition be an excellent starting place for transfer learning (Weiss et al., 2016)204

for specific organisms, sampling designs, or perhaps alternative datatypes (e.g., microsatellite mutations).205

Benchmarking the pre-trained model on our system, it took 6.5 seconds to estimate σ using a dataset of206

10 individuals and 5,000 variants, with the majority of computation time spent loading software libraries207

and pre-processing the genotype matrix. While disperseNN can be trained with any number of SNPs, m,208

the pre-trained network uses m = 5, 000. Therefore, if fewer than 5,000 variants are available, as in some209

RADseq datasets, then a new network must be trained to match the empirical number.210
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The pre-trained model will be more appropriate for some datasets than others. First, the model was211

trained on 10 to 100 individuals sampled across a region of known width. Therefore, data collected from a212

single location are not expected to give accurate predictions (unless the breeding locations were known and213

spatially distributed). In fact, we strictly avoid repeated sampling localities and ensure that each location214

is represented by only one individual. The pre-trained model uses 5,000 SNPs; padding the input genotypes215

with zeros will not suffice in this case, as we did not train with zero-padding. Although we aimed to produce216

a pre-trained model that is widely applicable, there were parts of parameter space that were not represented217

during training. Specifically, many of the attempted simulations either resulted in population extinction,218

or could not be simulated due to computational constraints. These factors skewed the realized training219

distributions (Figure S7). Therefore, we expect this model to be most applicable for populations that fall220

solidly inside of the training distribution. For example, the model we provide was trained with σ, population221

densities, and sampling windows as large as 78 km, 994 individuals per km2, and 944 km, respectively.222

Additional training will be beneficial in some situations. If independent estimates for nuisance parameters223

or better-informed “prior” ranges are available, new training data may be tailored using the better-informed224

values. Species range maps with detailed geographic boundaries can be simulated with SLiM (since version225

3.5), which in most cases will be superior to the square map we used. Importantly, if empirical parameters226

fall outside of the training distributions used for the pre-trained network, e.g., very large sampling area, then227

new training data will need to be generated that reflect the real data.228

Quantifying uncertainty229

In addition to helping us generate training data, simulation also allows us to quantify uncertainty through230

validating our models on held-out test datasets. Indeed, our reported values for MRAE give a sense of231

how much error to expect when applying the method to real data, in so far as the data resemble a typical232

draw from our test simulations. For example, in the above experiments that included one or zero nuisance233

parameters, the MRAE from in-sample tests was on the order of 0.12. Therefore, using a model with MRAE234

of 0.12 we might expect future predictions to be off from the true values by about 12%. However, if the real235

data are not well represented by the simulations, for example if the density of the analyzed population does236

not resemble that of the training simulations, then predictions might be less accurate, or biased.237

Since we get distinct estimates for each subset of m SNPS, we might also assess uncertainty by looking at238

the range of variation among these estimates, i.e., through non-parametric bootstrapping. Each subsample239

of m SNPs from the same set of sampled individuals gives a different estimate of σ because of the varying240

genealogical histories that underlie different subsets of genomic loci, so the range of variation reflects the241
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uncertainty arising from this genealogical noise. However, note that the bootstrapped estimates are not242

independent, because they come from a single set of individuals. The disperseNN program provides a built-243

in functionality for performing this bootstrapping procedure, and will report the distribution of estimates244

across replicate draws of m SNPs (each draw is made without replacement from the complete set of available245

SNPs, but the replicates are drawn independently and so may overlap).246

Although the distribution of these estimates should reflect uncertainty somehow, it is not immediately247

clear how to convert this into a formal quantification of uncertainty. This distribution of estimates is not248

a sample from a well-calibrated posterior distribution (nor should we expect it to be): in the test data249

for the pre-trained model (Figure 4), the true σ was covered by the middle 95% range from the bootstrap250

distribution for only 51% of simulated datasets. However, we can inflate the interval obtained by a scalar251

value such that our bootstrap interval is better calibrated. On our validation set for the pre-trained model252

this scalar value is 3.8, which leads to intervals that cover the true value for 95% of our test simulations.253

(If σ̂ is the mean of the bootstrap estimates, and a and b are the 2.5% and 97.5% quantiles, respectively,254

then the resulting interval is from σ̂ + 3.8(a − σ̂) to σ̂ + 3.8(b − σ̂).) However, if this is to be a recipe for255

a well-calibrated credible (or, confidence) interval, then it needs to apply regardless of the situation: i.e.,256

the magnitude of the error should be a roughly constant multiple of the range of the bootstrap estimates.257

Happily, this is the case: we found the error to be roughly a constant multiple of the width of the range258

of bootstrap estimates. (Concretely, if σ is the true value, σ̂ is the estimated value, and w is the range of259

values from 100 bootstrap estimates, then |σ − σ̂|/w has no significant associations with any of the model260

parameters; see Figure S8.)261

In summary, this suggests that the middle 95% interval of bootstrap estimates, inflated by a factor of 3.8,262

can stand in for a 95% credible interval for results obtained from our pre-trained neural network. Of course,263

since this is an empirically derived result, we do not expect the same inflation value to be appropriate for264

other networks or for datasets not well-represented by the simulations in the training set for our pre-trained265

model.266

Empirical findings267

We used disperseNN to estimate σ from a diverse set of organisms using preexisting empirical datasets that268

were available in repositories online. The pre-trained disperseNN model works with either whole genome269

sequencing or RADseq data, because the model was trained on mostly-unlinked SNPs distributed throughout270

the genome and genotypes were not phased during training. For some empirical datasets we analyzed a subset271

of sample localities in order to keep the sampling area less than 1,000 km; accordingly, we report sample sizes272
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and sampling widths from the subsampled region, rather than the full dataset. For each dataset, disperseNN273

converts the SNP table to a genotype matrix, finds the width of the sampling area from the sample locations,274

and hands the two inputs to the pre-trained CNN described above. Additionally, we bootstrapped each SNP275

table to obtain 1,000 replicates of 5,000 random SNPs and predicted σ in each to obtain a distribution of276

estimates. Table 1 shows the mean and approximate 95% credible interval of σ estimates for each empirical277

dataset.278

Species Common name Region σ 95% CI Previous Nloc n S M. dist.

Zosterops borbonicus Réunion grey white-eye Réunion 4.06 (1.44, 11.29) NA 295 41 62 4.59
Peromyscus leucopus white-footed mouse New York 0.63 (0.26, 1.36) 0.03-0.11 -231 12 38 8.15
Anopheles gambiae African malaria mosquito Cameroon 8.40 (1.63, 39.22) 0.04-0.5 52 29 278 9.62
Bombus bifarius two-form bumble bee Washington 12.04 (4.57, 30.44) 1.2-5 1,147 14 273 10.47

Bombus vosnesenskii yellow-faced bumble bee California 6.29 (0.99, 31.11) 1.2-5 3,944 18 169 11.83
Hippoglossus hippoglossus Atlantic halibut Canada 3.50 (0.58, 27.64) NA -5,546 11 193 14.59

Crassostrea virginica eastern oyster Canada 1.24 (0.59, 3.52) 21.9 1,435 13 187 19.69
Canis lupus grey wolf N. America 12.80 (1.93, 87.63) 98-147 35 13 721 25.42

Helianthus petiolaris prairie sunflower Kansas 0.82 (0.32, 2.87) 0.156 9 11 204 45.28
Zosterops olivaceus Réunion olive white-eye Réunion 0.86 (0.22, 3.56) NA 2,392 10 50 45.97

Helianthus argophyllus silverleaf sunflower Texas 0.85 (0.31, 3.33) 0.156 57 30 307 86.49
Arabidopsis thaliana thale cress Spain 1.11 (0.23, 4.12) 0.001 84 84 80 198.25
Arabidopsis thaliana thale cress Sweden 0.36 (0.16, 0.76) 0.001 84 35 325 428.17

Table 1: Empirical results. The σ column is the mean from 1000 subsamples of 5,000 SNPs. “95% CI” is the
credible interval obtained from bootstrapping. The “Previous” column shows previously published estimates
for dispersal distance. Nloc is the neighborhood size using the Rousset calculation. In other columns, n is
sample size, S is the width of the sampling area in kilometers, and “M. dist.” is the Mahalonobis distance
from the center of the training distribution with respect to five summary statistics: nucleotide diversity,
Tajima’s D, inbreeding coefficient, observed heterozygosity, and expected heterozygosity.

When available, we report previous dispersal estimates from the literature. Independent estimates came279

from a variety of methods including mark-recapture, tracking devices, and the Rousset method. Overall280

we find a correlation (r2 = 0.39; p = 0.03) between our estimates and previous estimates using different281

methods. We might expect each of the analyzed empirical datasets to deviate from our training set in282

some way. To get a rough estimate of the “distance” between an empirical dataset and our training set283

we calculated five summary statistics—nucleotide diversity, Tajima’s D, FIS (an estimate of inbreeding),284

observed heterozygosity, and expected heterozygosity—and calculated the Mahalanobis distance between285

the centroid of the training distribution and each dataset, according to: D2 = (x − m)T · C−1 · (x − m),286

where D2 is the Mahalanobis distance squared, x is a vector of summary statistics from an empirical dataset,287

m are the means of each summary statistic in the training data, and C−1 is the inverse covariance matrix288

of the summary statistics calculated on the training data. Thus, smaller distances have summary statistics289

more similar to the training distribution, and distances larger than 40 fall outside of the training distribution290

(Figure S9).291

Zosterops: Réunion grey white-eye and Réunion olive white-eye are endemic to the island of Réunion with292
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approximate land area of 2500 km2. These populations’ restricted range make them ideal for analyzing with293

our pre-trained model. We analyzed the RADseq data from Gabrielli et al. (2020) including 41 individuals294

and 7,657 SNPs from Z. borbonicus and 10 individuals and 6,103 SNPs from Z. olivaceus. Our estimate for295

Z. borbonicus was 4.1 km, however the estimate in Z. olivaceus was smaller, 0.9 km. Although we are not296

aware of other dispersal estimates in these species, the data curated by Paradis et al. (1998) include natal297

dispersal estimates for 75 birds, and the smaller species, comparable in size to Zosterops, have dispersal298

distances in the range of 1-20 km. The mean estimate for Z. borbonicus falls within the range from Paradis299

et al., and the estimates for Z. olivaceus are close. While the data for both Zosterops species are similar,300

summary statistics in Z. olivaceus were further from the centroid of the training distribution.301

Peromyscus leucopus: From the white footed mouse RADseq dataset of Munshi-South et al. (2016) we302

analyzed 12 individuals collected from the New York City metropolitan area, with 5,536 SNPs. We estimated303

dispersal distance to be 630 m. For comparison, Keane (1990) and Jacquot and Vessey (1995) measured304

natal dispersal in white footed mice in rural locations. They reported mean dispersal of 85-109 m in males305

and 25-88 m in females, which is smaller than our estimate. However, their estimates are likely constrained306

to some degree by the small study areas used for recapture. Indeed not all mice were recaptured in Jacquot307

and Vessey (1995), leaving open the possibility of long distance movements outside of the study area. For308

example, Murie and Murie (1931) documented travel distances greater than 1 km in Peromyscus maniculatus.309

Occasional long distance dispersal may help reconcile the difference between previous estimates and ours.310

Anopheles gambiae: From the whole genome resequencing dataset from the Anopheles gambiae 1000311

Genome Consortium (2021) we analyzed 29 individuals with 11 million SNPs. Our estimate in A. gambiae of312

8.4 km is substantially larger than mark-recapture estimates. For comparison, Epopa et al. (2017) measured313

individual A. coluzzii dispersal distances between 40 to 549 m over seven days; however the geographic study314

region was restricted to a single village. It is unclear to what degree long-distance dispersal in mosquitos315

contributes to effective dispersal and gene flow. Remarkably, the recent study of Huestis et al. (2019) captured316

A. gambiae and other mosquito species 40 m to 290 m above the ground, suggesting a wind-borne dispersal317

mechanism. Assuming average wind speeds, Huestes et al. estimated that each year tens of thousands of318

A. gambiae individuals migrate 10s or 100s of km in the atmosphere of the studied region. These findings319

suggest that dispersal potential in this species is considerably larger than once thought. Significant long-320

range dispersal in A. gambiae is consistent with some predictions in the species, as there is little genetic321

differentiation across portions of the species range (e.g., West Africa), while at broader scales structure is322

appreciable (Anopheles gambiae 1000 Genome Consortium, 2017)323

Bombus: From the dataset of Jackson et al. (2018) we examined RADseq data from two bumble bee324

species, B. bifarius and B. vosnesenskii with samples sizes of 14 and 18, and 8,073 and 6,725 SNPs, re-325
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spectively. Our estimated dispersal distances were 12.0 km and 6.3 km for them in turn. These species are326

eusocial, thus our dispersal estimate should reflect the distance traveled by queens that start successful nests.327

Mark-recapture analyses have found a minimum distance traveled by queens in other Bombus species of 1.2328

km (Carvell et al., 2017), and using genetic full-sib reconstruction resulted in 3-5 km (Lepais et al., 2010).329

These estimates are particularly relevant, as they measure natal dispersal from the birth location of the330

queen. Even so, these values represent a lower bound distance that queens disperse, as their was potential331

for longer-distance dispersal events that fall outside of the study area. Our results may offer a glimpse into332

bumble bee dispersal including longer distances that would be difficult to measure directly.333

Hippoglossus hippoglossus: From the RADseq data of Kess et al. (2021) we analyzed 11 individuals334

with 69,000 SNPs. Tagging studies find mean halibut movements greater than 100 km (Liu et al., 2019).335

However, the distance traveled by adults in search of food may be considerably larger than the quantity336

we wish to estimate which is proportional to the mean distance between birth location and parental birth337

location. Indeed, there is spatial structure distinguishing Atlantic halibut stocks due to spawning site fidelity338

(Shackell et al., 2021). Although in the case of halibut, the geographic area where the analyzed samples were339

collected may does not represent the spawning grounds, because of the long distances traveled by adults.340

Therefore, the observed sample locations—used to calculate the second input to disperseNN—are likely341

foraging locations that may differ significantly from the breeding locations. However, if assumptions about342

the size of the spawning area can be made, disperseNN provides a novel approach for inferring effective σ in343

foraging or migrating individuals for whom “home” locations are not known. Our estimate of 3.5 km (using344

the sampling width as the second input) could be close to the true dispersal distance if birth site fidelity is345

quite high. In another large marine species, Diplodus sargus sargus, natal dispersal distance was measured346

to be 11 km using otolith chemistry (Di Franco et al., 2012).347

Crassostrea virginica: From the RADseq data of Bernatchez et al. (2019) we analyzed 13 individual348

eastern oysters with 7,097 SNPs. This species has larval dispersal (Vercaemer et al., 2010) and occasional349

adult translocations (Bernatchez et al., 2019). Our estimate of 1.2 km is much smaller than the previous350

estimate of 21.9 km (Rose et al., 2006). We offer several possible explanations for this discrepancy. We351

expect that oyster dispersal depends more on the strength and direction of local currents, rather than352

locomotion, and our training data did not include a mean “drift” component to dispersal. The previous353

estimate was from a different sample region, Chesapeake Bay, which likely has different local conditions than354

the coast of Canada where the samples that we analyzed were collected. Second, the previous estimate used355

microsatellite loci to estimate density in order to implement the Rousset method. Density is notoriously356

difficult to estimate from genetic data, so it would not be surprising if this step contributed to error. In357

contrast, disperseNN is designed to work around the unknown density parameter. However, we note that358
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the marine species analyzed here potentially violate the two-dimensional habitat assumption of our model.359

Canis lupus: From the RADseq dataset of Schweizer et al. (2016) we analyzed data from 13 individual360

wolves genotyped at 22,000 SNPs. Exceptionally good data exist on wolf dispersal from radio collars. A361

commonly reported value for this species is the distance traveled by adults that disperse between territories.362

For example, some estimates for this value include 98.1 km (Jimenez et al., 2017), 98.5 km (Kojola et al.,363

2006), and 147.0 km (Barry et al., 2020). However, not all individuals disperse from their natal territory. For364

example 50% and 47% of individuals dispersed between territories in Kojola et al. (2006) and Barry et al.365

(2020), respectively. Jimenez et al. (2017) reported more nuanced statistics: 18% of collared individuals366

had documented dispersal, survival was lower in dispersers, and not all dispersers reproduced. It is unclear367

how frequent breeding occurs within the natal pack; if 85-90% of reproduction occurred without movement368

between territories, then our estimate of 12.8 km might be reasonably close to the true, effective dispersal369

distance.370

Helianthus: We analyzed two wild sunflower species from Todesco et al. (2020): Helianthus petiolarus371

(n = 11; 61,000 SNPs) and H. argophyllus (n = 30; 60,000 SNPs), with whole genome resequencing data.372

Wild sunflowers regularly outcross, therefore the estimated σ in part reflects pollinator distance, in addition373

to transport of seeds, e.g., by animals. Previously, Arias and Rieseberg (1994) reported the frequency of374

hybridization between cultivated and wild sunflowers at distances between 3 m and 1000 m; if we convert375

these hybridization-frequencies to counts of hybridization events, the mean distance of these pollination376

events was 156 m. The estimates from disperseNN were larger: 820m and 850m in H. petiolaris and H.377

argophyllus, respectively. These estimates may be reasonable if pollination occurs via bees, which can have378

foraging ranges greater than 1 km (Osborne et al., 2008; Visscher and Seeley, 1982). Studying foraging379

distance in pollinators is an active area of research, however Pasquet et al. (2008) used an exceptionally380

large study area and radio trackers to find a median flight distance of 720m in carpenter bees. Our estimates381

for the two analyzed Helianthus species were similar to each other.382

Arabidopsis thaliana: From the whole genome resequencing dataset of the The 1001 Genomes Consortium383

(2016) we were able to analyze two sampling clusters from different geographic regions: Spain (142,000 SNPs,384

n=35) and Sweden (124,000 SNPs, n=84). Our σ estimates in these populations were 1,110 m and 360 m,385

which are considerably larger than the average distance that seeds fall from the parent plant; Wender386

et al. (2005) estimated that the average distance traveled by A. thaliana seeds with wind is less than 2387

m. However, occasional long distance seed dispersal, e.g., via water or animals, and infrequent outcrossing388

via insect pollination may inflate the effective dispersal distance in this species. Outcrossing in A. thaliana389

has been estimated to be 3 × 10−3 (Abbott and Gomes, 1989). Importantly, A. thaliana is predominantly390

selfing and the analyzed samples are (naturally) inbred, which is misspecified by the current training set391
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which did not include selfing. A. thaliana has experienced a known population expansion (Tyagi et al.,392

2016), and although we attempted to account for demographic history during training the true history393

of A. thaliana may not be well-represented by our simplistic range of population histories. There was a394

three-fold difference in estimated dispersal distance between the analyzed populations, perhaps due to local395

environmental differences between Spain and Sweden or different pollinator species.396

Discussion397

Dispersal estimation using deep learning398

Understanding how organisms move across land or seascapes is critical for gaining a full picture of the399

forces shaping genetic variation (Wright, 1943; Kimura and Weiss, 1964; Barton et al., 2002). However,400

it remains difficult to confidently infer spatial population genetic parameters. Here we present a deep401

learning framework, disperseNN, for estimating the mean per-generation dispersal distance from population402

genetic data. There are several advantages of our method over existing population-genetics-based estimators,403

including improved accuracy for small to moderate sample sizes, accessible input data (unphased SNPs),404

and the ability to infer dispersal distance in the face of unknown model parameters, e.g., population density.405

These improvements open the door for using DNA to infer dispersal distance in non-model organisms where406

population density is unknown or identity-by-descent tracts are out of reach. Because disperseNN uses a407

form of simulation-based inference, analyses can be tailored for the particular study system, for instance408

detailed habitat maps and independent estimates for key model parameters can be readily incorporated.409

Unlike previous genetics-based estimators that use geographic distances between individuals, our neural410

network does not see the relative spatial locations of individuals. This means that our neural network could in411

theory be applied to genetic data for which sampling locations are unavailable, or applied to adult individuals412

that have ranged far from their nesting or spawning area. However, to do so an estimate of the sampling413

width is required as input by disperseNN. Further, competing methods summarize the genotypes as genetic414

distances or identity-by-descent blocks between pairs of individuals. While these measurements are natural415

choices to focus on for analyzing dispersal, they inherently miss other information potentially available in416

the genotypes. The rate of dispersal affects not only pairwise genetic distances between individuals, but417

also population genetic variation more generally, such as nucleotide diversity, the site frequency spectrum,418

etc. (Battey et al., 2020b). disperseNN, by using a convolutional neural network with a complete genotype419

matrix as its input, is able to capture population genetic information from raw data as has been seen in a420

few prior contexts (e.g., Flagel et al., 2019; Sanchez et al., 2021; Gower et al., 2021). This in principle allows421
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the network to see additional aspects of genetic variation—the distribution of allele frequencies, linkage422

disequilibrium if present, etc.—which has the potential to improve dispersal estimates. Indeed, disperseNN423

outperforms other, state-of-the-art tools, particularly when the sample size is small (n = 10).424

Another strength of the deep learning approach is its versatility. In particular, disperseNN can be used425

with unphased SNPs and small sample sizes, which makes it applicable for a variety of genomic dataset426

types. In contrast, recently developed tools for dispersal estimation require identity-by-descent blocks as427

input (Ringbauer et al., 2017; Al-Asadi et al., 2019). Although these methods perform well when high428

quality data is available, phasing and identity-by-descent inference in non-human genomes is a considerable429

challenge, especially for RADseq. Unphased SNPs, on the other hand, are more widely available. Our430

approach addresses this gap in available methods by facilitating unphased data.431

Next, our inference framework allows dispersal inference without a priori knowledge of important nuisance432

parameters, namely population density and the habitat size. In contrast, the commonly used Rousset method433

requires an independent estimate for population density in order to infer dispersal distance. Our supervised434

learning approach can learn to predict σ in the face of unknown density, which is achieved by exposing the435

network to training datasets with various densities. Through this procedure, disperseNN successfully learned436

to estimate σ in test datasets regardless of density, conditioned on true density being within the training437

distribution. While that is so, we still observed misspecification for large, out-of-distribution densities, which438

caused the network to overestimate σ. The same approach can be used if other parameters are uncertain,439

for example the size of the habitat. On the other hand, if independent estimates for some parameters or440

better-informed “priors” are available, then training can be customized to reflect the known parameters.441

Thus far we have focused on indirect estimation of dispersal distance, without measurements of how442

far individuals move. For a review of other genetic techniques for estimating dispersal distance, including443

direct and indirect methods, see Broquet and Petit (2009). Recently, two studies have used close-kin mark-444

recapture approaches for estimating dispersal distance, which were applied to mosquito species (Jasper et al.,445

2019; Filipović et al., 2020). Close kin mark recapture uses the genome of a close relative to represent a446

“recapture”, thereby skipping the need to physically recapture individuals. These promising new methods447

estimate dispersal distance by modeling the spatial distribution of close kin. In theory, our approach may448

offer advantages over close kin mark recapture: disperseNN aims to estimate effective dispersal, has no449

requirement for close kin to be captured together, and works with small sample sizes (n = 10). The ability450

to capture kin relies on a sample size that is a sufficiently large proportion of the local population size, which451

is not always feasible.452

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.08.25.505329doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505329
http://creativecommons.org/licenses/by/4.0/


Limitations453

Although training on simulated data allows great flexibility, the simulation step was also a limitation for454

the current study. In particular, generating the training data for our pre-trained network involved very long455

computational run times and large memory requirements: up to 175 gigabytes of RAM and two weeks of run456

time for the largest parameterizations of individual simulations. Shortcuts were used to reduce simulation457

time, including: only 100 generations of spatial simulation, and sampling multiple times from each simulated458

population (see Materials and Methods). Of course, if new training data are generated for a population that459

is comparatively small, then the simulation burden will be smaller.460

As with many statistical approaches, disperseNN has limited ability to generalize outside of the range461

of parameter values on which it was trained. Although we successfully dealt with individual nuisance462

parameters, for example by exposing the model to training datasets with varying density, it was unable463

to extrapolate to out-of-sample data. If the test data had very large population density—higher than the464

network had seen during training—σ was overestimated. Likewise, prediction error increased if the test465

data had a larger spatial sampling area than the network saw during training. Therefore we expect the466

pre-trained model from our empirical analysis to be most accurate for smaller spatial samples from smaller467

populations—parameters that fall inside the training range—while applications to larger populations may468

be more questionable. In fact, it is generally recommended to restrict the sampling area to a small region469

when estimating σ to avoid issues with environmental heterogeneity and patchy habitats (Broquet and Petit,470

2009; Shipham et al., 2013). However, a sufficiently large sampling area is required to infer large σ.471

Another potential issue with our approach is complex demographic history. As demographic perturbations472

leave a footprint in contemporary genetic variation, demography may bias estimates of σ for a neural network473

trained with a particular history, e.g., constant N . This issue is by no means unique to our analysis. Leblois474

et al. (2004) showed that estimates using Rousset’s technique mostly reflected past demographic values475

rather than recent population density. We attempted to address this in our analysis, by simulating under476

random two-epoch models. This approach was accurate for test data with a similar two-epoch history.477

However it also suggests that different, more complex demography may reduce accuracy, for example a more478

extreme bottleneck than was simulated in training, fluctuating N , pulse admixture, or perhaps population479

structure not captured in our simulations (e.g., barriers to dispersal or range expansion). Identity-by-descent480

based methods may alleviate the effect of ancestral population structure because long identity-by-descent481

tracts originate from the recent past (Barton et al., 2013). Similar to demographic history, other model482

misspecifications such as complex habitats and environmental heterogeneity could also be sources of error483

for estimation using our method.484
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Likewise, in our model dispersal is uniform across space. This assumption may be nearly true—or, at485

least useful—for certain applications, particularly if the sampling area is small. However, in reality we486

expect dispersal to vary across space due to ecology: for example, mountain ranges will prohibit dispersal for487

many species. Alternatively, suitable habitat is often discontinuous, and dispersal between patches may be488

different than within patches. Likewise, heterogeneous habitat can generate source-sink dynamics between489

patches. Existing methods that infer heterogeneous dispersal surfaces across space (Petkova et al., 2016;490

Al-Asadi et al., 2019) have limitations including (i) estimating relative differences in dispersal as opposed to491

the magnitude of dispersal, or (ii) requiring identity-by-descent data as input.492

When we included multiple nuisance parameters (Figure 4; Parameter Set 11), the MRAE was larger493

than that of experiments with only one or zero nuisance parameters (Figure 3; e.g., Parameter Set 3).494

This difference can be partly explained by the larger number of parameters with potential to confound. In495

addition, the range of values explored for σ, as well as for nuisance parameters, were orders of magnitude496

larger than those of the other experiments.497

Interpretation of empirical findings498

We estimated σ in a diverse set of organisms using publicly available datasets. These included both whole499

genome shotgun and RADseq—i.e., variations on standard RADseq (Baird et al., 2008) or genotyping-by-500

sequencing protocols (Elshire et al., 2011). Rather than simulate scenarios that would be appropriate to501

each species independently, we trained a single disperseNN model designed to estimate σ without a priori502

knowledge of density, ancestral population size, or species range.503

The majority of empirical results from disperseNN were sensible, however our estimates for A. thaliana—504

particularly in the population located in Spain—are likely overestimates, in part due to the lack of selfing in505

our training simulations. A. thaliana had levels of heterozygosity and inbreeding that were outside the range506

of values observed in the training set, a feature reflected in the Mahalanobis distances between training and507

prediction sets. In the future, disperseNN might be better tuned to analyze selfing species, but this would508

require simulating additional training data and subsequent validation steps.509

Our approach led to consistently larger dispersal estimates than mark-recapture experiments. Mark-510

recapture data was available for three of the analyzed taxa—white footed mouse, Bombus, and Anopheles.511

However the mark-recapture estimates for Anopheles are not ideal, as they represent only adult-travel dis-512

tances, i.e., foraging distance. In contrast, the measurements from bumble bees (Carvell et al., 2017) and513

mice (Keane, 1990; Jacquot and Vessey, 1995) are particularly relevant, as they measure the distance traveled514

by queen bees from the original hive or individual mice between birth location and adult territory. In all515
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three cases our estimate was larger than the mark-recapture calculation, which suggests either an upward516

bias in the disperseNN output or underestimation in the mark-recapture estimates. In each mark-recapture517

study the geographic recapture area was smaller than the sampling area we provided to disperseNN. It is518

likely that long-distance dispersers, even if less common, are missed during the recapture step, which would519

bias the inferred dispersal distance downward in direct, mark-recapture studies.520

Population genetics for spatial ecology521

An understanding of dispersal is critical for preserving biodiversity (Driscoll et al., 2014). Dispersal is522

one of the main factors controlling metapopulation dynamics (Leibold et al., 2004), as well as the total523

population size and whether a population persists (Gadgil, 1971). Therefore, dispersal estimates are critical524

for choosing appropriate settings in population viability analyses (Akçakaya and Brook, 2008). Likewise,525

geographic habitat shifts are ongoing for many species, and species’ survival may thus depend on their ability526

to disperse fast enough to follow rapidly changing local conditions (Wiens, 2016). Thus, obtaining values527

for dispersal distance are important for species distribution modeling which is used to project future species528

ranges (Wiens et al., 2009). In the comprehensive review of Driscoll et al. (2014), the authors present a list529

of 28 applications for which dispersal values were needed in conservation management, and report several530

independent calls for improved dispersal information and dispersal inference methods (Broquet and Petit,531

2009; Hadley and Betts, 2012; Ceballos et al., 2009; Kingsford et al., 2009; Sutherland et al., 2006; Noss532

et al., 2009; Pullin et al., 2009).533

Characterizing dispersal is also important for managing animal populations relevant to human health.534

For example, in the fight against malaria we must identify migration corridors and source-sink dynamics535

in mosquito vector species to allocate pesticide treatment and to predict the spread of genetic variants536

conveying insecticide resistance (Clarkson et al., 2020). Understanding dispersal is particularly important537

for modeling and implementing gene-drive strategies (Champer et al., 2021; Beaghton and Burt, 2022; North538

et al., 2013, 2019, 2020; Beaghton et al., 2016, 2017) for controlling the spread of mosquito-borne diseases539

including malaria.540

Direct methods such as radio tracking or genetic identification may provide near-perfect measurements541

of dispersal within the generation or generations analyzed. However it is often more valuable to know the542

expected dispersal distance over many generations, conditional on survival and successful reproduction of543

the dispersing individuals. For example, the day-to-day foraging distance or seasonal migration distances544

traveled by adults may differ from the effective dispersal distance. Direct methods such as mark-recapture545

are often expensive and as a result are limited to relatively small geographic areas, which may ignore long546
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distance movement and bias the resulting estimate. Population genetic tools therefore complement direct547

methods for improving our understanding of dispersal.548

Materials and Methods549

Simulations550

Training datasets were simulated using an individual-based, continuous-space model based on that of Battey551

et al. (2020b). The simulation is initialized with hermaphroditic, diploid individuals distributed randomly on552

a square habitat. The life cycle of an individual consists of stages for dispersal, reproduction, and mortality.553

Each offspring disperses from the maternal parent’s location by an independent random displacement in each554

dimension that is Gaussian distributed with mean zero and standard deviation σ. The mate of each individual555

in each time step is selected randomly, with probability proportional to the Gaussian density with mean zero556

and standard deviation σ, up to a maximum of 3σ units in space. The number of offspring per mating is557

Poisson distributed with mean 1
4 . Competitive interactions with neighboring individuals affect the probability558

of survival, allowing the total population size to fluctuate around an equilibrium. Specifically, individuals559

at distance d compete with strength g(d), leading to a cumulative interaction strength for individual i of560

ni =
∑
j

g(dij), where dij is the distance between individuals i and j. These competitive interactions extend561

to a distance of 3σ. The probability of survival for individual i, is pi = min
(
0.95, 1

1+ni/(K(1+L))

)
, where K562

and L are parameters that are approximately equal to the the carrying capacity per unit area and the average563

lifetime at equilibrium, respectively. Thus, a single parameter, σ, is used to control three different processes564

simultaneously: dispersal, mating, and competition. Edge effects are avoided by decreasing individual fitness565

proportional to the square root of distance from the habitat edges in units of σ. Offspring whose proposed566

location falls outside of the bounds of the habitat are not generated. This model was implemented in SLiM567

3.7 (Haller and Messer, 2019). We used a genome length of 108 bp and recombination rate 10−8 crossovers568

per bp.569

After the completion of the spatial, forward-in-time SLiM simulation, initial genetic diversity was pro-570

duced using a coalescent simulation in msprime, known as “recapitation” (Kelleher and Lohse, 2020). This571

strategy was necessary to reduce computation time to manageable levels, as the coalescent stage of the572

simulation is much faster than the spatially-explicit portion. The ancestral Ne was set to the “present day”573

census population size for recapitation. This portion of the simulation proceeded until all genealogical trees574

had coalesced. Thus, the complete simulation involves random mating for older generations equivalent to575

a Wright Fisher model, with a number of recent generations that are spatially explicit (Table 2). Most of576
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our experiments used 100,000 spatial-SLiM generations. However, to facilitate larger simulations for the577

multiple nuisance parameters experiment (Parameter Set 11), we ran only 100 generations of spatial SLiM578

due to computational limitations. We found that disperseNN can predict σ from full-spatial test data after579

training on simulations with only 100 spatial generations, although σ was moderately underestimated when580

testing with larger numbers of spatial generations (Figure S10). To simulate population size changes, we581

recapitated with msprime as before, but included an instantaneous decline or expansion between 100 and582

100,000 generations in the past.583

Other model parameters varied between experiments and the relevant parameter ranges are described584

in Table 3. Population density is one quantity that is focused on in our study, however density is an585

emergent property of our simulation rather than a model setting. To control population density we vary586

the carrying capacity per unit area, K, in the simulation which is the main determinant of density. In587

practice, mean density fluctuates moderately. When the specified size of the spatial sampling window was588

smaller than the full habitat, the position of the sampling window was chosen randomly, with x and y each589

distributed uniformly (Figure 5), excluding edges. The amount of edge cropped was either set to (i) σ for590

each simulation, or (ii) the maximum of the simulated σ range for the whole training set, depending on591

which simulation parameters were free to vary; the latter was necessary to avoid information leakage during592

training. Individuals were sampled randomly from within the sampling window.593

Params. Description Sims. Training Spatial gen. n SNPs Phased

1 Comparing estimators 1,000 50,000 100,000 10 and 100 2.5× 105, 5× 105 Y
2 Baseline 1,000 50,000 100,000 100 5,000 Y
3 Variable density 1,000 50,000 100,000 100 5,000 Y
4 Large density 1,000 50,000 100,000 100 5,000 Y
5 Demographic history 1,000 50,000 1,000 100 5,000 Y
6 Extreme ∆N change 1,000 50,000 1,000 100 5,000 Y
7 Variable habitat size 1,000 50,000 100,000 50 5,000 Y
8 Large habitat size 1,000 50,000 100,000 50 5,000 Y
9 Variable sampling width 1,000 50,000 100,000 100 5,000 Y
10 Large sampling width 1,000 50,000 100,000 100 5,000 Y
11 Multiple nuisance par. 2,300 100,000 100 U-int(10,100) 5,000 N

Table 2: Analysis parameters. The “Params.” column lists the identifier for the parameter set, which is
referenced in the main text. “Description” is a brief description of the parameter set. “Sims.” is the number
of true replicates, i.e., SLiM simulations, represented in training. “Training” is the size of the total training
set after drawing multiple samples from each simulation. “Spatial gen.” is the number of spatial generations
simulated in SLiM. “n” is the sample size. “SNPs” is the number of SNPs used in training. “Phased”
describes whether the data were phased or not for training.

To obtain genetic data, neutral mutations were superimposed on the tree sequences using msprime v1.0594

(Baumdicker et al., 2022) until a predetermined number of SNPs, m, were obtained (Table 2). Specifically,595

we started by simulating mutations with a very small mutation rate, 10−15. Next, we increased the mutation596

rate by 10x, and threw on additional mutations with the updated mutation rate. The latter two steps were597
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Params. Description σ K ∆N Habitat width Samp. width Edge

1 Comparing estimators U(0.2, 3.0) 5 constant 50 1 3
2 Baseline U(0.2, 3.0) 5 constant 50 1 3
3 Variable density U(0.2, 3.0) log-U(0.1, 20.0) constant 50 1 3
4 Large density U(0.2, 3.0) U(20.0, 40.0) constant 50 1 3

5 Demographic history U(0.2, 3.0) 5

{
U( 15 , 1)

U(1, 5)
50 1 3

6 Extreme ∆N change U(0.2, 3.0) 5

{
U( 1

10 ,
1
5 )

U(5, 10)
50 1 3

7 Variable habitat size U(0.2, 3.0) 2 constant U(15, 150) 1 σ
8 Large habitat size U(0.2, 3.0) 2 constant U(150, 300) 1 σ
9 Variable sampling width U(0.2, 3.0) 5 constant 50 U(0.2, 0.8) σ
10 Large sampling width U(0.2, 3.0) 5 constant 50 U(0.8, 1.0) σ

11 Multiple nuisance par. log-U(10−3, 102) log-U(10−3, 104)

{
U( 15 , 1)

U(1, 5)
log-U(2, 103) U(0.0, 1.0) σ

Table 3: Parameter distributions used for simulation. The “Params.” column lists the identifier for the
parameter set, which is referenced in the main text. “Description” is a brief description of the parameter
set. “σ” is the distribution of the dispersal parameter. “K” is the major determinant of population density.
“∆N” describes the history of population size change: for rows with braces, a random multiplier was chosen
from one of two uniform distributions, each with probability 0.5. The ancestral Ne was set to the multiplier
× present day N . “Habitat width” is for the full habitat. “Samp. width” is the width of the sampling
area as a proportion of the full habitat width. “Edge” is a distance from each side of the habitat that was
excluded from sampling to avoid edge effects .

iterated several times until at least m mutations had been obtained. When at least m SNPs had been added,598

m SNPs were sampled to represent the genotype matrix input to disperseNN. The result of this procedure599

is that the genotype matrix for each simulated dataset contains the same number of SNPs, m, regardless of600

the actual number of variable sites in the sampled individuals, and irrespective of mutation rate, and thanks601

to the Poisson nature of neutral mutations is equivalent to having simulated with a higher mutation rate602

and randomly selected m variable sites. For some analyses, multiple samples were drawn from the same603

simulated tree sequence to save computation time; these cases are noted in Table 2. This strategy allows for604

large training sets to be generated from a smaller number of starting simulations.605

The input for disperseNN consists of two things: the width of the spatial sampling area, and a genotype606

matrix, having one row for each SNP and one or two columns per individual depending on the phasing607

designation. If phased, the genotype matrix contained two columns per individual, randomly ordered, with608

0s and 1s encoding minor and major alleles, respectively. If unphased, the genotype matrix contained one609

column per individual with genotypes encoded as 0s, 1s, and 2s, representing the count of the minor allele.610

In order to facilitate various sample sizes in real applications, our pre-trained model used a random sample611

size during training, 10 ≤ n ≤ 100, with zero padding out to 100 columns. To obtain the second input, we612

used the furthest distance between pairs of samples as the sampling width. The training targets are the true613

σ’s, log-transformed. Thus, the output from the CNN is in log space (disperseNN exponentiates the result614

before writing the predictions).615
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In generating training data for the pre-trained network, we sought to explore a large parameter range:616

each parameter varied over several orders of magnitude (Parameter Set 11). However, swaths of parameter617

space described by the ranges in Table 3 were not represented in the training data, due to the following618

logistical hurdles. First, simulations where the population died were not included in the training set. The619

excluded simulations had small carrying capacity and small habitat size, or small habitat size and large σ,620

for example. Next, some simulations could not be run due to computational constraints: maximum RAM of621

175 gigabytes and two-week wall time on our computing cluster. For example, combinations of large carrying622

capacity and large habitat size were not simulated. As a result, only 12% of attempted simulations were623

included in training, and for each parameter the realized distribution—representing successful simulations—624

differed from the distribution from which the model settings were drawn (Figure S7), which had been uniform625

in log space.626

CNN architecture and training627

Tensorflow (Abadi et al., 2016) and Keras (https://github.com/keras-team/keras) libraries were used to628

develop disperseNN. The first input tensor, the genotype matrix, goes through successive convolution and629

pooling layers, a strategy that is characteristic of CNNs (Figure 1). We adjusted the number of convolution630

and pooling layers based on the size of the genotype matrix: the number of convolution layers assigned631

was equal to floor(log10(number of SNPs))−1. The filter size of successive convolution layers was 64 for632

the first layer, and 44 larger for each successive layer. The convolution layers are one-dimensional, such633

that the convolution kernel spans all individuals (columns) and two SNPs (rows), with stride size equal to634

one. Average pooling layers were also one dimensional, spanning all individuals and 10 SNPs. After the635

convolutional portion of the network, the intermediate tensor was flattened and put through three fully636

connected layers each with 128 units and rectified linear unit (ReLU) activation. A second input branch was637

used for the sampling area. This input tensor with size = 1 was concatenated with the preceding branch,638

then subjected to a 128-unit dense layer with ReLu. Finally, a dense layer with linear activation was applied639

which outputs a single value, the estimate for σ.640

During training we held out 20% of the training set for computing a validation-loss between epochs. We641

used a batch size of 40, mean squared error loss, and the Adam optimizer. The learning rate was initialized as642

10−3. The “patience” hyperparameter determines both the length of training, and learning rate adaptations643

during training: after a number of epochs equal to patience/10 without improvement in validation loss644

the learning rate is halved, and training proceeds until a number of epochs equal to patience pass without645

improvement in validation loss. Patience was set to 100 for all training runs excluding the pre-trained model.646
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For the pre-trained model, we explored a grid of different hyperparameter settings: patience values of 10,647

20, 30, 40, and 50; initial learning rates of 10−4, 10−3, and 10−2; and dropout proportions of 0, 0.1, 0.2, and648

0.3. We landed on settings that consistently gave the lowest MRAE: patience = 10, initial learning rate of649

10−3, and 0 dropout.650

Comparison with other estimators651

The Rousset method uses the observation that under certain assumptions, then b = 1/4πDσ2 (and recall D652

is the effective density). b is the slope of the least squares linear fit of ar/(1 − ar) to geographic distance,653

where ar is a measure of genetic differentiation between two individuals analogous to Fst, where from Rousset654

(2000), ar for a pair of individuals, P, can be estimated as â∗ =
(2SSb(P)−SSW (P))P

2
P∑

k=1

SSW (k)

, where SSb(P) is the655

sum of squared differences between the two individuals’ genotypes, SSW (P) is the sum of squared differences656

between genomes within the individuals, P is the total number of pairs of individuals in the sample, and657

P∑
k

SSW (k) are within individual differences summed over the P different pairs of individuals. We applied658

Rousset’s method to the same genotypes and sample locations as for disperseNN. The values for D used659

with this method were calculated after excluding the edges of the habitat which have reduced density: the660

census size, N , was counted after excluding individuals within an edge width, E, from any side of the habitat661

of width W , thus D = N/(W − 2E)2.662

A second comparison was made with IBD-Analysis (Ringbauer et al., 2017). The authors used the663

distribution of identity-by-descent tract lengths shared between individuals to estimate σ. They derived664

analytical formulas describing how isolation-by-distance shapes identity-by-descent tracts and provided an665

inference scheme that uses maximum likelihood to fit these formulas. For our comparison, we extracted666

perfect identity-by-descent tracts directly from the tree sequences output from SLiM. Specifically, for each667

pair of individuals, for each combination of chromosomes between the individuals, we simplified the tree668

sequence to represent only the recombination history between the two chromosomes, and extracted segments669

that were inherited from a common ancestor without recombination. These were the identity-by-descent670

tracts used as input for the Analyze-IBD program, which was obtained from https://git.ist.ac.at/671

harald.ringbauer/IBD-Analysis. Separately, we inferred identity-by-descent tracts in the simulated data672

using an empirical tool, Refined IBD (Browning and Browning, 2013), and used the inferred identity-by-673

descent as input IBD-Analysis. For the latter analysis a mutation rate of 10−8 was applied and all variant674

sites were included in the identity-by-descent inference step, with other parameters the same as in Parameter675

Set 1.676
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Empirical data677

To demonstrate the utility of disperseNN, we applied it to preexisting publicly available empirical datasets678

that have the following criteria: spatially distributed genetic data, latitude and longitude metadata available,679

ten or more sampling locations, sampling area less than 1000 km, at least 5,000 biallelic SNPs, and a ready-680

to-plug-in SNP table that had been processed and filtered by the original authors. For some datasets with681

overall sampling width more than 1000 km, we were able to subset for a smaller cluster of sample locations682

(see details specific to each dataset below). When multiple individuals were sampled from the same location683

we chose one random individual from each location, in order to better match the sampling scheme used in684

generating training data. SNP tables were converted to genotype matrices after minimal processing: we685

removed indels and sites with only one, or more than two, alleles represented in the sampled subset. We686

required all sampled individuals to be genotyped to retain a SNP, except when we note otherwise—see details687

specific to each dataset below.688

Mosquito data were downloaded following instructions from https://malariagen.github.io/vector-data/689

ag3/download.html. We used a dense cluster of sampling localities in Cameroon that had been identified as690

Anopheles gambiae. Individual VCFs were merged using bcftools (v1.14). Chromosomes 3L and 3R were691

analyzed; 2L and 2R were excluded due to previously reported large inversions (Lobo et al., 2010; Riehle692

et al., 2017).693

Arabidopsis data was downloaded from https://1001genomes.org/data/GMI-MPI/releases/v3.1/ as694

a single VCF. Two conspicuous geographic clusters were chosen from Sweden and Spain to minimize the695

geographic sampling area. All five chromosomes were analyzed.696

Sunflower data was downloaded from cloud storage following instructions from https://rieseberglab.697

github.io/ubc-sunflower-genome/documentation/. Geographic clusters of sampling localities were iden-698

tified in Texas (Helianthus argophyllus) and on the border of Kansas and Oklahoma (H. petiolaris). Indi-699

vidual VCFs were merged into multi-sample VCFs for each of the two species. Chromosomes 1-17 were700

analyzed, excluding a number of unplaced scaffolds.701

VCFs for oyster (Crassostrea virginica; Bernatchez et al. (2019)), bumble bee (Bombus; Jackson et al.702

(2018)), Atlantic halibut (Hippoglossus hippoglossus; Kess et al. (2021)), white-footed mouse (Peromyscus703

leucopus; Munshi-South et al. (2016)), Réunion grey white-eye (Zosterops borbonicus) and Réunion olive704

white-eye (Zosterops olivaceus; Gabrielli et al. (2020)), and wolf (Canis lupus; Schweizer et al. (2016)) were705

downloaded directly from The Dryad Digital Repository. Clusters of sample locations were chosen in each706

dataset to maximize sampling density. In the datasets from Bombus vosnesenskii, Peromyscus leucopus,707

Zosterops borbonicus, and Zosterops olivaceus, we allowed as few as 85%, 60%, 90%, and 90% of individuals708
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to be genotyped to retain a SNP, respectively, and missing genotypes were filled in with the major variant.709

To calculate the width of the sampling window for empirical data, we calculated the geodesic distance710

between each pair of individuals using the package geopy with the WGS84 ellipsoid. This distance represents711

the shortest path on the surface of the Earth between points. The longest distance between pairs of sample712

locations was used as the sampling width, which we provided in kilometers to disperseNN.713
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Figure 1: Diagram of the analysis workflow. Blue points are hypothetical sample locations on a geographic
map. Rectangular neural network layers are 1D-convolution and average-pooling layers; columnar layers are
fully connected layers. The two input branches are concatenated into a single, intermediate tensor. Neural
network schematic generated using PlotNeuralNet (https://github.com/HarisIqbal88/PlotNeuralNet).
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Figure 2: Comparison with existing methods (Parameter Set 1). Here, disperseNN is compared with the
Rousset method and IBD-Analysis, using two different numbers of sampled genomes, n = 10 (top row)
and n = 100 (bottom row). The dashed lines are y = x. Green lines signify mean dispersal distance
from both parents divided by

√
2, and the MRAE calculations for the Rousset method and IBD-Analysis

are calculated using this line as ground truth. Estimates greater than 5.5 are excluded from plots but are
included in the MRAE calculation. Moreover, the Rousset method produced undefined output for 16.4% and
1.8% of n = 10 and n = 100 datasets, respectively; these data are not reflected in the MRAE calculation.
Likewise IBD-Analysis did not converge for 4.6% of the n = 10 datasets.
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Figure 3: Column 1. Cartoons of unknown parameters that may lead to model misspecification. Column 2.
The unknown parameter was fixed during training, but testing was performed on data with different values
of the parameter. Column 3. The unknown parameter was varied during training, and testing was performed
on data from the same distribution. Column 4. The unknown parameter was varied during training, but
testing was performed on out-of-sample values, i.e., larger values than were seen during training. The dashed
lines are y = x. Outliers greater than 3 are excluded from the fixed-habitat-size plot. “Train: P” and “Pred:
P” refer to the Parameter Sets used for training and testing, respectively. The third row, third column plot
has lower MRAE than the baseline model due to using a smaller carrying capacity, which was chosen to
alleviate computation time.
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Figure 4: Validation of the pre-trained model (Parameter Set 11). Shown are 100 test datasets, each
generated from an independent simulation. Open points indicate the mean estimate from 1000 subsamples
of 5,000 SNPs drawn from each dataset. Also depicted is the range of estimates from the middle 95% of
subsamples. The dashed line is y = x. Note the log scale.

Figure 5: Cartoon showing different sampling strategies. The black box represents the full simulated habitat.
For some experiments, we both (i) varied the width of the square sampling window—blue boxes show
examples of differing sampling widths—, and (ii) assigned a uniform-random position for the sampling
window—red boxes show different positions for the sampling window.
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Supplementary material965

Figure S1: Tracking the realized dispersal distance in our simulation. “Tag” and “alt” both measure the
mean distance dispersed from both parents, while “tag” is weighted by the number of offspring produced by
an individual. The dotted line is the expected maternal straight-line dispersal distance.
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Figure S2: Screenshot of an example simulation in SLiM’s graphical user interface. The square habitat is
depicted with individuals as point. Parameter Set 1 with σ = 1.0.
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Figure S3: Predictions on simulated data using IBD-Analysis with identity-by-descent blocks empirically
derived from the Refined IBD program (Browning and Browning, 2013). With n = 10, zero identity-by-
descent blocks were detected in 4% of datasets, and IBD-Analysis did not converge for an additional 63% of
datasets. The mean RAE from n = 10 using inferred identity-by-descent blocks was lower than using perfect
identity-by-descent blocks due to fewer extreme outliers; the median RAE was 0.4 with perfect identity-by-
descent blocks, and 0.58 with inferred identity-by-descent blocks.
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Figure S4: Comparison with other methods, n = 10, and varying SNP number (other parameters as in
Parameter Set 1). The IBD-Analysis plot used perfect identity-by-descent tracts rather than SNPs.
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Figure S5: Comparison with with other methods, n = 100, and varying SNP number (other parameters as
in Parameter Set 1). The IBD-Analysis plot used perfect identity-by-descent tracts rather than SNPs.
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Figure S6: Predictions with log-transformation to show relative error, n = 10 (Parameter Set 1). Data points
in the larger half of the log(σ) range were down-sampled to one-half the number of points in the smaller
half of the range to obtain roughly even density of points across the range of log(σ). Before down-sampling,
points were more dense towards the right-hand side.
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Figure S7: Realized training distributions for empirical analysis (Parameter Set 11). “W” is habitat width.
Some areas of parameter space could not be simulated due to population extinction or computational limi-
tations.

44

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.08.25.505329doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505329
http://creativecommons.org/licenses/by/4.0/


Supplemental Material REFERENCES

-4 -2 0 2 4

-4
-2

0
2

4

sigma

lo
g 

er
ro

r

r^2=0.101

20 40 60 80 100

-4
-2

0
2

4

n

r^2=0

-2 0 2 4 6

-4
-2

0
2

4

sampling area (S)

r^2=0.001

1 2 3 4 5 6 7

-4
-2

0
2

4

map width (W)

r^2=0.036

-5 0 5

-4
-2

0
2

4

carrying capacity (K)

r^2=0.056

-4 -2 0 2 4

0.
5

1.
0

1.
5

in
te

rv
al

 w
id

th
 (l

og
 q

ua
nt

ile
s)

r^2=0.002

20 40 60 80 100

0.
5

1.
0

1.
5 r^2=0.043

-2 0 2 4 6
0.
5

1.
0

1.
5 r^2=0.01

1 2 3 4 5 6 7

0.
5

1.
0

1.
5 r^2=0.004

-5 0 5

0.
5

1.
0

1.
5 r^2=0.074

-4 -2 0 2 4

0
2

4
6

8
10

ab
so

lu
te

 lo
g-

er
ro

r /
 in

te
rv

al
 w

id
th r^2=0.003

20 40 60 80 100

0
2

4
6

8
10

r^2=0.053

-2 0 2 4 6

0
2

4
6

8
10

r^2=0.002

1 2 3 4 5 6 7

0
2

4
6

8
10

r^2=0.004

-5 0 5

0
2

4
6

8
10

r^2=0.004

Figure S8: Exploring the effects of five different predictor variables—(1) σ, (2) n, (3) sampling area, (4) map
width, (5) carrying capacity—on three different response variables (A) log error, (B) the interval width of
the log-transformed middle 95% range of the bootstrap distribution, and (C) absolute log-error divided by
the interval width (Parameter Set 11). Shown are 2400 datasets including both held-out test data (blue; 100
datasets) and training data (grey; 2,300 datasets). The line of best fit and r2 include all 2400 data points.
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Figure S9: Mahalonobis distance from the center of the training distribution with respect to five summary
statistics: nucleotide diversity, Tajima’s D, inbreeding coefficient, observed heterozygosity, and expected
heterozygosity (Parameter Set 11). “test data” are the empirical datasets.
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Figure S10: CNN trained with only 100 generations in spatial SLiM before recapitation with msprime (other
parameters as in Parameter Set 2). The depicted results are from testing on simulations with 100,000
generations spatial, which is nearly full-spatial.

.

46

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.08.25.505329doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505329
http://creativecommons.org/licenses/by/4.0/


Supplemental Material REFERENCES

Appendix: stuff we tried that did not work966

This Appendix describes analyses not included in the main document, including strategies that didn’t work.967

A1. Attempts to use sampling localities968

It is intuitive that signal about dispersal might be gleaned from the individual sample locations, as previous969

population-genetics-based inference methods use sample locations as input. We tried the following strategies970

for showing the sample locations to the CNN. In each experiment, we modified the neural network architecture971

to accommodate the sample locations in various ways. Otherwise, the neural network in each experiment972

closely resembled the architecture described in the main text.973

• Table of locations. An n × 2 array containing the x and y coordinates was shown to the CNN in a974

separate input branch (in place of the sampling width input). This input went through a single 128-unit975

dense layer with ReLu activation before flattening and concatenating with the previous branch.976

• Stored in genotype matrix Additional rows in the genotype matrix were used to store the x and y977

coordinates for each individual.978

• 3-channel array. A 3-dimensional array was used to store (1) the genotypes, (2) x coordinates, and979

(3) y coordinates. In the second and third channels, the spatial coordinates were repeated for m rows980

equal to the number of SNPs. Here, the neural network used 1D-convolution and pooling layers, as981

described in the main text, however the convolution and pooling layers spanned all three channels982

simultaneously.983

• 2D CNN. We also tried a variation of the the 3-channel-array strategy using 2D-convolution and pooling984

layers with a 2x2 window.985

For each of the above strategies, we trained the neural network in the same manner as the “baseline”986

model from the misspecification analysis in the main text. The outcome for each was the same: the mean987

RAE was indistinguishable from the baseline model that does not include sample locations. Moreover, we988

shuffled the sample locations input, such that each individual has a randomly assigned location, and the989

output was unchanged. Our interpretation is that the CNN ignores the location data in the experiments990

attempted thus far, either because the locations are not necessary for estimating σ, or because we failed to991

effectively show the network the locations.992
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A2. Including isolation-by-distance summary statistics993

We tested whether isolation by distance information in the form of summary statistics would improve infer-994

ence of σ. Specifically, we summarized isolation-by-distance as:995

• b, the slope of the line of best fit to genetic distances versus geographic distances.996

• r2, the coefficient of correlation between genetic distance and geographic distance.997

Including either (or both) of these statistics as a separate input branch of size one (or two) marginally998

improved validation accuracy. The new input branch went through a 128-unit dense layer with ReLu ac-999

tivation before concatenating with the previous branch. Thus, future empirical applications might explore1000

using the above or different summary statistics alongside the genotype matrix for estimating σ, or other1001

population genetic parameters. We did not present these results in the main text because (1) the benefit1002

was negligible, and (2) it is beyond the scope of our study to decide on the most relevant and appropriate1003

summary statistics, as countless other statistics might be evaluated for use with, or without, the genotype1004

matrix that we used.1005
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