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s Abstract

7 The geographic nature of biological dispersal shapes patterns of genetic variation over landscapes, so that it
s is possible to infer properties of dispersal from genetic variation data. Here we present an inference tool that
o uses geographically-referenced genotype data in combination with a convolutional neural network to estimate
10 a critical population parameter: the mean per-generation dispersal distance. Using extensive simulation,
1n  we show that our deep learning approach is competitive with or outperforms state-of-the-art methods,
1 particularly at small sample sizes (e.g., n = 10). In addition, we evaluate varying nuisance parameters
13 during training—including population density, population size changes, habitat size, and the size of the
1 sampling window relative to the full habitat—and show that this strategy is effective for estimating dispersal
15 distance when other model parameters are unknown. Whereas competing methods depend on information
16 about local population density or accurate identification of identity-by-descent tracts as input, our method
17 uses only single-nucleotide-polymorphism data and the spatial scale of sampling as input. These features
18 make our method, which we call disperseNN, a potentially valuable new tool for estimating dispersal distance
19 in non-model systems with whole genome data or reduced representation data. We apply disperselNN to 12
» different species with publicly available data, yielding reasonable estimates for most species. Importantly,
a1 our method estimated consistently larger dispersal distances than mark-recapture calculations in the same
» species, which may be due to the limited geographic sampling area covered by some mark-recapture studies.

23 Thus genetic tools like ours complement direct methods for improving our understanding of dispersal.
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» Introduction

»  Organisms vary greatly in their capacity to disperse across geographic space. Indeed, the movement of
% individuals or of gametes across a landscape, in part, determines the spatial scale of genetic differentiation
» and the spread of adaptive variants across natural populations (Broquet and Petit, 2009). Consequently,
s understanding dispersal is relevant for conservation biology (Driscoll et al., 2014), studying climate change
» response and adaptation (Travis et al., 2013), managing invasive and disease vector populations (Harris
et al., 2009; Orsborne et al., 2019), phylogeography (Kadereit et al., 2005), hybrid zones and speciation
a (Barton, 1979), microbial community ecology (Evans et al., 2017), and for parameterizing models in ecology
» and evolution (Barton et al., 2002). Despite the importance of dispersal, it remains challenging to obtain
;3 estimates for dispersal distance in many species.

34 Some methods infer dispersal distance by directly observing individual movement, using radio-tracking
3 technology, or by tagging and recapturing individuals in the field. However, such measurements can be
3% expensive to obtain and lead to estimates with high uncertainty. Furthermore, they do not always pro-
s vide a complete picture of the effective dispersal rate—that is, how far successfully-reproducing individuals
s travel from their birth location on average over many generations (Bradburd and Ralph, 2019). This long
3 term average is often the quantity of interest as it is more relevant for understanding population structure,
w0 evolutionary dynamics of selected alleles, and long-term changes to a species’ range.

a Another type of method infers (effective) dispersal distance from a single temporal sample, without
» directly observing movement of individuals. Such inference is possible because population genetics theory
s predicts how demographic parameters such as the rate of gene flow across the landscape affect the genetic
« variation of a population (Barton et al., 2013). To infer dispersal distance, current population-genetics-based
s estimators (Rousset, 1997; Ringbauer et al., 2017) use geographically-referenced DNA sequences and can
s obtain useful estimates of the per-generation dispersal distance, without the need for tracking or recapturing
a7 individuals.

a8 Importantly, current population-genetics-based estimators require additional data that can be prohibitively
» expensive, especially for non-model species: either an independent estimate of population density (Rousset,
5o 1997), or genomic identity-by-descent blocks (Ringbauer et al., 2017). Specifically, the seminal method of
s Rousset (1997) is designed for estimating neighborhood size, Nj,., which can be thought of as the number of
2 neighboring individuals or potential mates that are within a few multiples of the dispersal distance (Wright,
s 1946). Wright defined neighborhood size as Nj,. = 47 Do?, where o is the dispersal distance and D is the
s« population density. Therefore the accuracy of Rousset’s method depends on having a good a priori estimate

s of population density. One way to jointly infer dispersal and density works by modeling genomic identity-
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ss  by-descent tracts (e.g., Barton et al., 2013; Baharian et al., 2016; Ringbauer et al., 2017). Similarly, the
57 program MAPS (Al-Asadi et al., 2019) uses identity-by-descent information to infer heterogeneous dispersal
ss and density across a landscape. Although powerful when applied to high quality data, these methods are
so limited by the availability of confident identity-by-descent blocks; this type of data remains unavailable or
e difficult to estimate for many species. Thus for most study species we are stopped short of quantifying
o1 dispersal distance from population genetic data.

62 Another type of population-genetics-based method estimates relative migration rates, for example EEMS
63 (Petkova et al., 2016), FEEMS (Marcus et al., 2021), and other landscape genetics tools. Although such
e methods work well for some applications, such as identifying barriers to dispersal, they don’t inform us about
6 the magnitude of dispersal, e.g., meters per generation. Furthermore, these and related tools model gene
e flow using an approximate analogy to electrical resistance which can produce misleading results especially in
e the presence of biased migration (Lundgren and Ralph, 2019). In the current paper we set out to develop a
e method for estimating dispersal distance that can be applied widely, including in non-model species without
6 good assemblies or knowledge of population density.

70 To do this we use simulation-based inference via deep learning to infer dispersal from genotype data
7 directly. Deep learning is a form of supervised machine learning that builds a complex function between input
7 and output involving successive layers of transformations through a “deep” neural network. An important
7z advantage of this class of methods is their ability to handle many correlated input variables without knowledge
7 of the variables’ joint probability distribution. Like all supervised machine learning methods, deep neural
7 networks can be trained on simulated data, which bypasses the need to obtain empirical data for training
7 (Schrider and Kern, 2018). Over the past few years, deep learning has been used in a number of contexts
7 in population genetics: for example, inferring demographic history in Drosophila (Sheehan and Song, 2016),
s detection of selective sweeps (Kern and Schrider, 2018), detecting adaptive introgression in humans (Gower
et al., 2021), identifying geographic origin of an individual using their DNA (Battey et al., 2020a), and
w0 estimating other population genetic parameters like recombination rate (Flagel et al., 2019).

81 We present the first use of deep learning for estimation of spatial population genetic parameters. Our
2 method, called disperseNN, uses forward in time spatial genetic simulations (Haller and Messer, 2019; Battey
s etal., 2020b) to train a deep neural network to infer the mean, per-generation dispersal distance, from a single
w population sample of single nucleotide polymorphism (SNP) genotypes, e.g., whole genome data or RADseq
s data. We show that disperseNN is more accurate than two competing methods (Rousset, 1997; Ringbauer
s et al., 2017) at inferring dispersal distance, particularly for small to moderate sample sizes, or when identity-
e by-descent tracts cannot be reliably inferred. After exploring potential shortcomings of our method, we

s demonstrate its utility on several empirical datasets from a broad range of taxa. The disperseNN software
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s is available from https://github.com/kr-colab/disperseNN, where we have also provided a pre-trained model

o for ease of prediction in new systems.

« Results

» Dispersal estimation using deep neural networks

s We use a convolutional neural network (CNN) trained on simulated data to infer the average per-generation
w dispersal distance (Figure 1). The CNN takes two pieces of data as input: (1) a genotype matrix, and (2)
os the width of the geographic sampling area. The genotype matrix is put through the network’s convolution
o layers, while the geographic sampling width is used downstream and is important for conveying the physical
or  scale of sampling. The output from the CNN is a single estimate of the dispersal parameter, o. Our software
s package, disperselNN, has several inference-related functionalities: (i) training the CNN on simulated data,
o (ii) predicting o using simulated or empirical data, and (iii) pre-processing steps for empirical data. In
1o addition, the disperseNN package includes a network pre-trained by us that can be used to estimate dispersal
11 distance from empirical data without additional training.

102 The training data for disperseNN are simulated using a continuous-space SLiM model following Battey
03 et al. (2020b). In this model, each offspring disperses from their maternal parent’s location an independent
14 bivariate Gaussian displacement with mean zero and standard deviation ¢ in each direction. We refer to o
w05 as “the dispersal parameter”, although the straight-line distance dispersed from the maternal parent in two
ws dimensions is roughly v/20. Alternatively, to convert the disperselNN estimate to the mean distance from
w  both parents, the output should be multiplied by v/3. In addition to dispersal, ¢ also determines the mating
108 and competitive interaction distances in our simulation model. disperseNN provides an estimate of ¢ in the
109 same units as its second input, the width of the sampling area, from training.

110 Training with disperseNN consists of: deciding on training distributions for ¢ and other parameters,
w using a spatial model to simulate training data, and handing the simulation output and targets (true o) to
2 disperselNN for training the CNN. The analysis pipeline for predicting on simulated data is similar to that
u3  of training, while predicting on empirical data involves basic pre-processing of the input data before using
s disperselN to estimate o. Below, we present findings from several experiments using disperseNN, each with
us its own set of parameters for simulation and training. We describe each experiment briefly in the Results
ue  section, and reference different sets of parameters that correspond to each experiment, e.g, “Parameter Set
ur 17, “Parameter Set 2”7, etc. Full details about the different parameter sets are in the Materials and Methods

us  section.
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e Comparison with existing methods

o We evaluated the accuracy of our method on simulated datasets with a range of o values (Parameter Set 1),

=1 using the relative absolute error (RAE) to measure prediction accuracy for each estimate:

RAE — estimated o — true o (1)
true o

122 For comparing accuracy between training runs or between methods, we calculate the mean relative absolute
s error (MRAE) averaged across all test datasets. We found disperseNN estimates dispersal rate more accu-
e rately than previous genetics-based methods (Figure 2). At small sample sizes (n = 10), disperseNN was
s dramatically more accurate than both the Rousset (1997) method and the program from Ringbauer et al.
s (2017) called IBD-Analysis (MRAE=0.11, 0.38, and 22.35, respectively). Furthermore, the Rousset method
17 and IBD-Analysis produced undefined output and convergence errors for 16.4% and 4.6% of test datasets,
18 respectively. For Rousset’s method, at least, this is due to a negative slope in the least squares fit of genetic
129 distance versus geographic distance, which happens more frequently with a small sample size.

130 disperseNN remained the most accurate method when the sample size was large (n = 100) in part due to
w  a bias using IBD-Analysis (MRAE = 0.09, 0.23, and 0.11, respectively). Estimates from IBD-Analysis were
12 consistently, slightly overestimated for n = 100, and estimates from the Rousset method were underestimated
133 on average, likely due to model misspecification. In particular, Ringbauer et al. (2017) reported moderate
13+ overestimation of ¢ when sampling uniformly at random, instead of regularly spaced in a grid. The sample
s locations in our analysis are random and irregular (Figure S2), which likely accounts for the bias using
136 IBD-Analysis. The IBD-Analysis program may perform best on data with regular spacing between sample
137 locations when n = 100, however the bias in this case results from including biological realism. It is also
s important to note that we provided IBD-Analysis with true identity-by-descent tracts, when in reality
139 perfectly inferred identity-by-descent tracts are not available for most species, and inferring identity-by-
1o descent tracts from (perfectly phased) SNPs reduces the accuracy of IBD-Analysis (Figure S3). Larger
w1 numbers of SNPs further improved the accuracy of disperseNN, although with diminishing returns (Figures
w2 5S4, S5). Larger values for o showed correspondingly larger errors (Figure 2), however relative error was
13 nearly constant across the range of true o (Figure S6). In addition, disperseNN and the Rousset method
s slightly underestimated o when the true value approached the maximum of the examined range. This occurs
us  because there is little spatial structure when o is large relative to the habitat width. This observation from
us simulated data suggests we might expect disperseNN to have limitations when analyzing populations with

w7 very little spatial structure caused by isolation-by-distance.
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ws Varying individual nuisance parameters during training

1 A common concern with supervised machine learning methods is that data used for prediction may fall
150 outside of the training distribution. If the training set was simulated with, for example, a small population
11 density, should we expect the trained network to accurately estimate o if the test data have a large density?
12 We set out to explore limitations of disperseNN using deliberately misspecified simulations, including out-
153 of-sample (i) population density, (ii) ancestral population size, (iii) habitat size, and (iv) restricted sampling
1« area relative to the full habitat. We individually address each scenario by augmenting the training set, which
155 ultimately allows us to circumvent the problem of each nuisance parameter being unknown. This procedure
16 is explained in more detail below.

157 First, we obtained a baseline accuracy-level for a “naive” model by training disperseNN on data where
155 all simulation parameters were fixed except for o (Parameter Set 2). This resulted in an MRAE of 0.12 using
10 test data with all parameters drawn from the same distribution as the training set. We next used the model
1o trained on Parameter Set 2 to estimate o in test data where one of the aforementioned nuisance parameters is
11 misspecified to varying degrees, i.e., drawn from outside the range of the training set (Parameter Sets 3, 5, 7,
12 9). Such model misspecification reduced the accuracy of o estimation (Figure 3, column 2). This reduction
163 in accuracy was most pronounced for misspecified population density and habitat width parameters (MRAE
e = 0.36 for each). The other scenarios also increased error, although more moderately. When a fixed habitat
15 width was assumed, 23% of predictions were larger than the maximum o from training; for other nuisance
16 parameters all predictions fell within the range of ¢ used in training.

167 Having observed the effect of misspecification due to assuming particular values for nuisance parameters,
18 we next assessed a training strategy for dealing with each unknown parameter. For each misspecification
169 scenario, we assign a distribution to the unknown model parameter and allow the parameter to vary across
wo training simulations (reusing Parameter Sets 3, 5, 7, 9). Using the new training set, disperseNN learned
i to accurately estimate o when individual nuisance parameters were unknown, with error levels approaching
w2 the original MRAE (Figure 3, column 3; Parameter Sets 3, 5, 7, 9). To reiterate, this procedure varied a
173 single unknown parameter at a time, not in combination. Essentially by treating each unknown parameter
s as a nuisance parameter during training, the model can become agnostic to the unknown parameter—or else
s learn a representation for the parameter such that o can be calculated conditional on the learned parameter.
e This ability is critical for applying supervised learning methods for estimating ¢ where model parameters
177 other than ¢ are unknown.

178 Although disperseNN was able to predict o after including variation in each nuisance parameter in the

179 training set, we next show that extrapolation is limited in some cases for unfamiliar parameter values, i.e.,
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10 values outside of the distribution used for training. In the preceding trial the same distribution was used
w1 for both training and prediction. Next we assessed disperseNN’s ability to extrapolate at very large values
12 of each nuisance parameter (Parameter Sets 4, 6, 8, 10), beyond the range used in training (Parameter Sets
w3 3, 5, 7, 9). Results from this experiment were varied (Figure 3, rightmost column): predictions at out-of-
18« sample values of density and ancestral population size were unreliable, but we were able to predict at large,
15 out-of-sample habitat sizes and sampling areas quite well. Of note, using very large habitat sizes resulted in

185 only a single estimate being 1% larger than the maximum o from training.

w  Dealing with multiple nuisance parameters

188 After finding a successful training strategy for dealing with individual nuisance parameters, we next sought
189 to train a network for general use in estimating o where multiple parameters are unknown. The resulting
10 network is what we refer to as “the pre-trained network”. To do this, we used large ranges for parameters that
w1 control: (i) dispersal distance, (ii) population density, (iii) ancestral population size, (iv) timing of population
102 size change, (v) habitat size, and (vi) the size of the sampling area relative to the full habitat (Parameter
103 Set 11). Furthermore, we exposed disperseNN to a range of different sample sizes between 10 and 100 by
s padding the genotype matrix out to 100 columns during training. Training simulations used 5,000 SNPs
15 sampled from a single 100 megabase chromosome; this approach resembles a RADseq experiment, as the loci
16 are spaced out on the chromosome and may be considered mostly unlinked. Last, we collapsed the diploid
17 genotypes output by SLiM into unphased genotypes; Os, 1s, and 2s; representing the count of the minor allele
108 at each variable site. Through validation with held-out, simulated data, we found that the final model was
199 accurate across a wide range of nuisance parameter values, and showed roughly order-of-magnitude accuracy
20 (MRAE=0.55; Figure 4).

201 We provide the learned weights and biases from the above pre-trained network for download as part of
22 the disperseNN package. The pre-trained network can be used to quickly estimate o from various species
203 or simulated datasets without additional training or simulations. We note that the pre-trained network
24 for disperseNN could in addition be an excellent starting place for transfer learning (Weiss et al., 2016)
25 for specific organisms, sampling designs, or perhaps alternative datatypes (e.g., microsatellite mutations).
206 Benchmarking the pre-trained model on our system, it took 6.5 seconds to estimate o using a dataset of
207 10 individuals and 5,000 variants, with the majority of computation time spent loading software libraries
28 and pre-processing the genotype matrix. While disperseNN can be trained with any number of SNPs; m,
200 the pre-trained network uses m = 5,000. Therefore, if fewer than 5,000 variants are available, as in some

20 RADseq datasets, then a new network must be trained to match the empirical number.
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an The pre-trained model will be more appropriate for some datasets than others. First, the model was
a2 trained on 10 to 100 individuals sampled across a region of known width. Therefore, data collected from a
a3 single location are not expected to give accurate predictions (unless the breeding locations were known and
24 spatially distributed). In fact, we strictly avoid repeated sampling localities and ensure that each location
215 is represented by only one individual. The pre-trained model uses 5,000 SNPs; padding the input genotypes
a6 with zeros will not suffice in this case, as we did not train with zero-padding. Although we aimed to produce
a7 a pre-trained model that is widely applicable, there were parts of parameter space that were not represented
zs  during training. Specifically, many of the attempted simulations either resulted in population extinction,
a0 or could not be simulated due to computational constraints. These factors skewed the realized training
20 distributions (Figure S7). Therefore, we expect this model to be most applicable for populations that fall
a1 solidly inside of the training distribution. For example, the model we provide was trained with ¢, population
22 densities, and sampling windows as large as 78 km, 994 individuals per km?, and 944 km, respectively.

23 Additional training will be beneficial in some situations. If independent estimates for nuisance parameters
24 or better-informed “prior” ranges are available, new training data may be tailored using the better-informed
25 values. Species range maps with detailed geographic boundaries can be simulated with SLiM (since version
26 3.5), which in most cases will be superior to the square map we used. Importantly, if empirical parameters
27 fall outside of the training distributions used for the pre-trained network, e.g., very large sampling area, then

»s  new training data will need to be generated that reflect the real data.

» Quantifying uncertainty

20 In addition to helping us generate training data, simulation also allows us to quantify uncertainty through
2 validating our models on held-out test datasets. Indeed, our reported values for MRAE give a sense of
22 how much error to expect when applying the method to real data, in so far as the data resemble a typical
233 draw from our test simulations. For example, in the above experiments that included one or zero nuisance
24 parameters, the MRAE from in-sample tests was on the order of 0.12. Therefore, using a model with MRAE
25 of 0.12 we might expect future predictions to be off from the true values by about 12%. However, if the real
26 data are not well represented by the simulations, for example if the density of the analyzed population does
237 not resemble that of the training simulations, then predictions might be less accurate, or biased.

238 Since we get distinct estimates for each subset of m SNPS, we might also assess uncertainty by looking at
20 the range of variation among these estimates, i.e., through non-parametric bootstrapping. Each subsample
20 of m SNPs from the same set of sampled individuals gives a different estimate of o because of the varying

an - genealogical histories that underlie different subsets of genomic loci, so the range of variation reflects the
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22 uncertainty arising from this genealogical noise. However, note that the bootstrapped estimates are not
23 independent, because they come from a single set of individuals. The disperseNN program provides a built-
2s in functionality for performing this bootstrapping procedure, and will report the distribution of estimates
25 across replicate draws of m SNPs (each draw is made without replacement from the complete set of available
26 SNPs, but the replicates are drawn independently and so may overlap).

207 Although the distribution of these estimates should reflect uncertainty somehow, it is not immediately
xus clear how to convert this into a formal quantification of uncertainty. This distribution of estimates is not
20 a sample from a well-calibrated posterior distribution (nor should we expect it to be): in the test data
»0 for the pre-trained model (Figure 4), the true o was covered by the middle 95% range from the bootstrap
s distribution for only 51% of simulated datasets. However, we can inflate the interval obtained by a scalar
»2  value such that our bootstrap interval is better calibrated. On our validation set for the pre-trained model
»3  this scalar value is 3.8, which leads to intervals that cover the true value for 95% of our test simulations.
¢ (If 6 is the mean of the bootstrap estimates, and a and b are the 2.5% and 97.5% quantiles, respectively,
55 then the resulting interval is from & + 3.8(a — ) to & + 3.8(b — ).) However, if this is to be a recipe for
»6  a well-calibrated credible (or, confidence) interval, then it needs to apply regardless of the situation: i.e.,
»7  the magnitude of the error should be a roughly constant multiple of the range of the bootstrap estimates.
s Happily, this is the case: we found the error to be roughly a constant multiple of the width of the range
0 of bootstrap estimates. (Concretely, if o is the true value, & is the estimated value, and w is the range of
x0  values from 100 bootstrap estimates, then |0 — &|/w has no significant associations with any of the model
1 parameters; see Figure S8.)

262 In summary, this suggests that the middle 95% interval of bootstrap estimates, inflated by a factor of 3.8,
%3 can stand in for a 95% credible interval for results obtained from our pre-trained neural network. Of course,
s since this is an empirically derived result, we do not expect the same inflation value to be appropriate for
25 other networks or for datasets not well-represented by the simulations in the training set for our pre-trained

66 model.

» Empirical findings

%8 We used disperselNN to estimate o from a diverse set of organisms using preexisting empirical datasets that
20 were available in repositories online. The pre-trained disperseNN model works with either whole genome
a0 sequencing or RADseq data, because the model was trained on mostly-unlinked SNPs distributed throughout
on the genome and genotypes were not phased during training. For some empirical datasets we analyzed a subset

o of sample localities in order to keep the sampling area less than 1,000 km; accordingly, we report sample sizes


https://doi.org/10.1101/2022.08.25.505329
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.25.505329; this version posted September 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a3 and sampling widths from the subsampled region, rather than the full dataset. For each dataset, disperseNN
o converts the SNP table to a genotype matrix, finds the width of the sampling area from the sample locations,
a5 and hands the two inputs to the pre-trained CNN described above. Additionally, we bootstrapped each SNP
o table to obtain 1,000 replicates of 5,000 random SNPs and predicted o in each to obtain a distribution of
a7 estimates. Table 1 shows the mean and approximate 95% credible interval of o estimates for each empirical

s dataset.

H Species Common name Region o 95% CI Previous Ny n S M. dist. H
Zosterops borbonicus Réunion grey white-eye Réunion 4.06 (1.44, 11.29) NA 295 41 62 4.59
Peromyscus leucopus white-footed mouse New York 0.63 (0.26, 1.36) 0.03-0.11 -231 12 38 8.15

Anopheles gambiae African malaria mosquito Cameroon  8.40 (1.63, 39.22) 0.04-0.5 52 29 278 9.62
Bombus bifarius two-form bumble bee Washington 12.04 (4.57, 30.44) 1.2-5 1,147 14 273  10.47
Bombus vosnesenskii yellow-faced bumble bee  California  6.29 (0.99, 31.11)  1.2-5 3,044 18 169 11.83
Hippoglossus hippoglossus Atlantic halibut Canada 3.50 (0.58, 27.64) NA -5,546 11 193 14.59
Crassostrea virginica eastern oyster Canada 1.24  (0.59, 3.52) 21.9 1,435 13 187 19.69
Canis lupus grey wolf N. America 12.80 (1.93, 87.63)  98-147 35 13 721  25.42
Helianthus petiolaris prairie sunflower Kansas 0.82 (0.32, 2.87) 0.156 9 11 204 45.28
Zosterops olivaceus Réunion olive white-eye Réunion 0.86  (0.22, 3.56) NA 2,392 10 50  45.97
Helianthus argophyllus silverleaf sunflower Texas 0.85 (0.31, 3.33) 0.156 57 30 307 86.49
Arabidopsis thaliana thale cress Spain 1.11  (0.23, 4.12) 0.001 84 84 80 198.25
Arabidopsis thaliana thale cress Sweden 0.36  (0.16, 0.76) 0.001 84 35 325 428.17

Table 1: Empirical results. The o column is the mean from 1000 subsamples of 5,000 SNPs. “95% CI” is the
credible interval obtained from bootstrapping. The “Previous” column shows previously published estimates
for dispersal distance. N, is the neighborhood size using the Rousset calculation. In other columns, n is
sample size, S is the width of the sampling area in kilometers, and “M. dist.” is the Mahalonobis distance
from the center of the training distribution with respect to five summary statistics: nucleotide diversity,
Tajima’s D, inbreeding coefficient, observed heterozygosity, and expected heterozygosity.

279 When available, we report previous dispersal estimates from the literature. Independent estimates came
20 from a variety of methods including mark-recapture, tracking devices, and the Rousset method. Overall
2 we find a correlation (r? = 0.39; p = 0.03) between our estimates and previous estimates using different
22 methods. We might expect each of the analyzed empirical datasets to deviate from our training set in
23 some way. To get a rough estimate of the “distance” between an empirical dataset and our training set
¢ we calculated five summary statistics—nucleotide diversity, Tajima’s D, Fjs (an estimate of inbreeding),
25 observed heterozygosity, and expected heterozygosity—and calculated the Mahalanobis distance between
s the centroid of the training distribution and each dataset, according to: D? = (z —m)T - C~1 . (z —m),
27 where D? is the Mahalanobis distance squared, z is a vector of summary statistics from an empirical dataset,
2 m are the means of each summary statistic in the training data, and C~! is the inverse covariance matrix
20 of the summary statistics calculated on the training data. Thus, smaller distances have summary statistics
200 more similar to the training distribution, and distances larger than 40 fall outside of the training distribution
2 (Figure S9).

202 Zosterops: Réunion grey white-eye and Réunion olive white-eye are endemic to the island of Réunion with
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23 approximate land area of 2500 km?. These populations’ restricted range make them ideal for analyzing with
204 our pre-trained model. We analyzed the RADseq data from Gabrielli et al. (2020) including 41 individuals
25 and 7,657 SNPs from Z. borbonicus and 10 individuals and 6,103 SNPs from Z. olivaceus. Our estimate for
26 Z. borbonicus was 4.1 km, however the estimate in Z. olivaceus was smaller, 0.9 km. Although we are not
27 aware of other dispersal estimates in these species, the data curated by Paradis et al. (1998) include natal
28 dispersal estimates for 75 birds, and the smaller species, comparable in size to Zosterops, have dispersal
200 distances in the range of 1-20 km. The mean estimate for Z. borbonicus falls within the range from Paradis
oo et al., and the estimates for Z. olivaceus are close. While the data for both Zosterops species are similar,
sn  summary statistics in Z. olivaceus were further from the centroid of the training distribution.

302 Peromyscus leucopus: From the white footed mouse RADseq dataset of Munshi-South et al. (2016) we
a3 analyzed 12 individuals collected from the New York City metropolitan area, with 5,536 SNPs. We estimated
s0¢  dispersal distance to be 630 m. For comparison, Keane (1990) and Jacquot and Vessey (1995) measured
s natal dispersal in white footed mice in rural locations. They reported mean dispersal of 85-109 m in males
s and 25-88 m in females, which is smaller than our estimate. However, their estimates are likely constrained
w7 to some degree by the small study areas used for recapture. Indeed not all mice were recaptured in Jacquot
w8 and Vessey (1995), leaving open the possibility of long distance movements outside of the study area. For
w0 example, Murie and Murie (1931) documented travel distances greater than 1 km in Peromyscus maniculatus.
a0 Occasional long distance dispersal may help reconcile the difference between previous estimates and ours.
311 Anopheles gambiae: From the whole genome resequencing dataset from the Anopheles gambiae 1000
sz Genome Consortium (2021) we analyzed 29 individuals with 11 million SNPs. Our estimate in A. gambiae of
a3 8.4 km is substantially larger than mark-recapture estimates. For comparison, Epopa et al. (2017) measured
s individual A. coluzzii dispersal distances between 40 to 549 m over seven days; however the geographic study
a5 region was restricted to a single village. It is unclear to what degree long-distance dispersal in mosquitos
s contributes to effective dispersal and gene flow. Remarkably, the recent study of Huestis et al. (2019) captured
sz A. gambiae and other mosquito species 40 m to 290 m above the ground, suggesting a wind-borne dispersal
ss  mechanism. Assuming average wind speeds, Huestes et al. estimated that each year tens of thousands of
a0 A. gambiae individuals migrate 10s or 100s of km in the atmosphere of the studied region. These findings
20 suggest that dispersal potential in this species is considerably larger than once thought. Significant long-
s range dispersal in A. gambiae is consistent with some predictions in the species, as there is little genetic
a2 differentiation across portions of the species range (e.g., West Africa), while at broader scales structure is
23 appreciable (Anopheles gambiae 1000 Genome Consortium, 2017)

324 Bombus: From the dataset of Jackson et al. (2018) we examined RADseq data from two bumble bee

s species, B. bifarius and B. vosnesenskii with samples sizes of 14 and 18, and 8,073 and 6,725 SNPs, re-
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36 spectively. Our estimated dispersal distances were 12.0 km and 6.3 km for them in turn. These species are
37 eusocial, thus our dispersal estimate should reflect the distance traveled by queens that start successful nests.
s Mark-recapture analyses have found a minimum distance traveled by queens in other Bombus species of 1.2
20 km (Carvell et al., 2017), and using genetic full-sib reconstruction resulted in 3-5 km (Lepais et al., 2010).
30 These estimates are particularly relevant, as they measure natal dispersal from the birth location of the
s queen. Even so, these values represent a lower bound distance that queens disperse, as their was potential
s for longer-distance dispersal events that fall outside of the study area. Our results may offer a glimpse into
33 bumble bee dispersal including longer distances that would be difficult to measure directly.

334 Hippoglossus hippoglossus: From the RADseq data of Kess et al. (2021) we analyzed 11 individuals
a5 with 69,000 SNPs. Tagging studies find mean halibut movements greater than 100 km (Liu et al., 2019).
s However, the distance traveled by adults in search of food may be considerably larger than the quantity
337 we wish to estimate which is proportional to the mean distance between birth location and parental birth
18 location. Indeed, there is spatial structure distinguishing Atlantic halibut stocks due to spawning site fidelity
a0 (Shackell et al., 2021). Although in the case of halibut, the geographic area where the analyzed samples were
a0 collected may does not represent the spawning grounds, because of the long distances traveled by adults.
sn Therefore, the observed sample locations—used to calculate the second input to disperseNN—are likely
a2 foraging locations that may differ significantly from the breeding locations. However, if assumptions about
us  the size of the spawning area can be made, disperseNN provides a novel approach for inferring effective o in
us  foraging or migrating individuals for whom “home” locations are not known. Our estimate of 3.5 km (using
us  the sampling width as the second input) could be close to the true dispersal distance if birth site fidelity is
us quite high. In another large marine species, Diplodus sargus sargus, natal dispersal distance was measured
s to be 11 km using otolith chemistry (Di Franco et al., 2012).

a8 Crassostrea virginica: From the RADseq data of Bernatchez et al. (2019) we analyzed 13 individual
s eastern oysters with 7,097 SNPs. This species has larval dispersal (Vercaemer et al., 2010) and occasional
30 adult translocations (Bernatchez et al., 2019). Our estimate of 1.2 km is much smaller than the previous
s estimate of 21.9 km (Rose et al., 2006). We offer several possible explanations for this discrepancy. We
32 expect that oyster dispersal depends more on the strength and direction of local currents, rather than
33 locomotion, and our training data did not include a mean “drift” component to dispersal. The previous
4 estimate was from a different sample region, Chesapeake Bay, which likely has different local conditions than
35 the coast of Canada where the samples that we analyzed were collected. Second, the previous estimate used
36 microsatellite loci to estimate density in order to implement the Rousset method. Density is notoriously
7 difficult to estimate from genetic data, so it would not be surprising if this step contributed to error. In

s contrast, disperselNN is designed to work around the unknown density parameter. However, we note that
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0 the marine species analyzed here potentially violate the two-dimensional habitat assumption of our model.
360 Canis lupus: From the RADseq dataset of Schweizer et al. (2016) we analyzed data from 13 individual
s wolves genotyped at 22,000 SNPs. Exceptionally good data exist on wolf dispersal from radio collars. A
2 commonly reported value for this species is the distance traveled by adults that disperse between territories.
w3 For example, some estimates for this value include 98.1 km (Jimenez et al., 2017), 98.5 km (Kojola et al.,
e 2006), and 147.0 km (Barry et al., 2020). However, not all individuals disperse from their natal territory. For
s example 50% and 47% of individuals dispersed between territories in Kojola et al. (2006) and Barry et al.
sss (2020), respectively. Jimenez et al. (2017) reported more nuanced statistics: 18% of collared individuals
7 had documented dispersal, survival was lower in dispersers, and not all dispersers reproduced. It is unclear
s how frequent breeding occurs within the natal pack; if 85-90% of reproduction occurred without movement
w0 between territories, then our estimate of 12.8 km might be reasonably close to the true, effective dispersal
s distance.

3 Helianthus: We analyzed two wild sunflower species from Todesco et al. (2020): Helianthus petiolarus
sz (n = 11; 61,000 SNPs) and H. argophyllus (n = 30; 60,000 SNPs), with whole genome resequencing data.
sz Wild sunflowers regularly outcross, therefore the estimated o in part reflects pollinator distance, in addition
s to transport of seeds, e.g., by animals. Previously, Arias and Rieseberg (1994) reported the frequency of
srs hybridization between cultivated and wild sunflowers at distances between 3 m and 1000 m; if we convert
s these hybridization-frequencies to counts of hybridization events, the mean distance of these pollination
a7 events was 156 m. The estimates from disperseNN were larger: 820m and 850m in H. petiolaris and H.
s argophyllus, respectively. These estimates may be reasonable if pollination occurs via bees, which can have
s foraging ranges greater than 1 km (Osborne et al., 2008; Visscher and Seeley, 1982). Studying foraging
s0 distance in pollinators is an active area of research, however Pasquet et al. (2008) used an exceptionally
s large study area and radio trackers to find a median flight distance of 720m in carpenter bees. Our estimates
s for the two analyzed Helianthus species were similar to each other.

383 Arabidopsis thaliana: From the whole genome resequencing dataset of the The 1001 Genomes Consortium
s (2016) we were able to analyze two sampling clusters from different geographic regions: Spain (142,000 SNPs,
s 1=35) and Sweden (124,000 SNPs, n=84). Our o estimates in these populations were 1,110 m and 360 m,
s which are considerably larger than the average distance that seeds fall from the parent plant; Wender
s et al. (2005) estimated that the average distance traveled by A. thaliana seeds with wind is less than 2
s m. However, occasional long distance seed dispersal, e.g., via water or animals, and infrequent outcrossing
0 via insect pollination may inflate the effective dispersal distance in this species. Outcrossing in A. thaliana
w0 has been estimated to be 3 x 1072 (Abbott and Gomes, 1989). Importantly, A. thaliana is predominantly

s selfing and the analyzed samples are (naturally) inbred, which is misspecified by the current training set
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s which did not include selfing. A. thaliana has experienced a known population expansion (Tyagi et al.,
3 2016), and although we attempted to account for demographic history during training the true history
s of A. thaliana may not be well-represented by our simplistic range of population histories. There was a
35 three-fold difference in estimated dispersal distance between the analyzed populations, perhaps due to local

w6 environmental differences between Spain and Sweden or different pollinator species.

w Discussion

xs  Dispersal estimation using deep learning

s Understanding how organisms move across land or seascapes is critical for gaining a full picture of the
wo forces shaping genetic variation (Wright, 1943; Kimura and Weiss, 1964; Barton et al., 2002). However,
w1 it remains difficult to confidently infer spatial population genetic parameters. Here we present a deep
w2 learning framework, disperselNN, for estimating the mean per-generation dispersal distance from population
w3 genetic data. There are several advantages of our method over existing population-genetics-based estimators,
w¢ including improved accuracy for small to moderate sample sizes, accessible input data (unphased SNPs),
w5 and the ability to infer dispersal distance in the face of unknown model parameters, e.g., population density.
ws These improvements open the door for using DNA to infer dispersal distance in non-model organisms where
w7 population density is unknown or identity-by-descent tracts are out of reach. Because disperseNN uses a
w8 form of simulation-based inference, analyses can be tailored for the particular study system, for instance
w0 detailed habitat maps and independent estimates for key model parameters can be readily incorporated.

a10 Unlike previous genetics-based estimators that use geographic distances between individuals, our neural
a1 network does not see the relative spatial locations of individuals. This means that our neural network could in
a2 theory be applied to genetic data for which sampling locations are unavailable, or applied to adult individuals
a3 that have ranged far from their nesting or spawning area. However, to do so an estimate of the sampling
s width is required as input by disperselNN. Further, competing methods summarize the genotypes as genetic
a5 distances or identity-by-descent blocks between pairs of individuals. While these measurements are natural
as  choices to focus on for analyzing dispersal, they inherently miss other information potentially available in
a7 the genotypes. The rate of dispersal affects not only pairwise genetic distances between individuals, but
as  also population genetic variation more generally, such as nucleotide diversity, the site frequency spectrum,
a0 etc. (Battey et al., 2020b). disperseNN, by using a convolutional neural network with a complete genotype
w20 matrix as its input, is able to capture population genetic information from raw data as has been seen in a

= few prior contexts (e.g., Flagel et al., 2019; Sanchez et al., 2021; Gower et al., 2021). This in principle allows
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w22 the network to see additional aspects of genetic variation—the distribution of allele frequencies, linkage
w23 disequilibrium if present, etc.—which has the potential to improve dispersal estimates. Indeed, disperseNN
«2¢ outperforms other, state-of-the-art tools, particularly when the sample size is small (n = 10).

a5 Another strength of the deep learning approach is its versatility. In particular, disperseNN can be used
w6 with unphased SNPs and small sample sizes, which makes it applicable for a variety of genomic dataset
w27 types. In contrast, recently developed tools for dispersal estimation require identity-by-descent blocks as
«2s input (Ringbauer et al., 2017; Al-Asadi et al., 2019). Although these methods perform well when high
w0 quality data is available, phasing and identity-by-descent inference in non-human genomes is a considerable
a0 challenge, especially for RADseq. Unphased SNPs, on the other hand, are more widely available. Our
a1 approach addresses this gap in available methods by facilitating unphased data.

3 Next, our inference framework allows dispersal inference without a priori knowledge of important nuisance
.3 parameters, namely population density and the habitat size. In contrast, the commonly used Rousset method
sa requires an independent estimate for population density in order to infer dispersal distance. Our supervised
a5 learning approach can learn to predict ¢ in the face of unknown density, which is achieved by exposing the
a6 network to training datasets with various densities. Through this procedure, disperseNN successfully learned
s to estimate o in test datasets regardless of density, conditioned on true density being within the training
s distribution. While that is so, we still observed misspecification for large, out-of-distribution densities, which
a0 caused the network to overestimate o. The same approach can be used if other parameters are uncertain,
wo  for example the size of the habitat. On the other hand, if independent estimates for some parameters or
a1 better-informed “priors” are available, then training can be customized to reflect the known parameters.

a2 Thus far we have focused on indirect estimation of dispersal distance, without measurements of how
a3 far individuals move. For a review of other genetic techniques for estimating dispersal distance, including
ue  direct and indirect methods, see Broquet and Petit (2009). Recently, two studies have used close-kin mark-
ws recapture approaches for estimating dispersal distance, which were applied to mosquito species (Jasper et al.,
ws  2019; Filipovié et al., 2020). Close kin mark recapture uses the genome of a close relative to represent a
wr “recapture”, thereby skipping the need to physically recapture individuals. These promising new methods
us  estimate dispersal distance by modeling the spatial distribution of close kin. In theory, our approach may
uo  offer advantages over close kin mark recapture: disperseNN aims to estimate effective dispersal, has no
0 requirement for close kin to be captured together, and works with small sample sizes (n = 10). The ability
1 to capture kin relies on a sample size that is a sufficiently large proportion of the local population size, which

2 is not always feasible.

15


https://doi.org/10.1101/2022.08.25.505329
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.25.505329; this version posted September 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

53 Limitations

sa Although training on simulated data allows great flexibility, the simulation step was also a limitation for
ss  the current study. In particular, generating the training data for our pre-trained network involved very long
w6 computational run times and large memory requirements: up to 175 gigabytes of RAM and two weeks of run
7 time for the largest parameterizations of individual simulations. Shortcuts were used to reduce simulation
ss  time, including: only 100 generations of spatial simulation, and sampling multiple times from each simulated
0 population (see Materials and Methods). Of course, if new training data are generated for a population that
w0 1S comparatively small, then the simulation burden will be smaller.

461 As with many statistical approaches, disperseNN has limited ability to generalize outside of the range
w2 of parameter values on which it was trained. Although we successfully dealt with individual nuisance
w3 parameters, for example by exposing the model to training datasets with varying density, it was unable
s to extrapolate to out-of-sample data. If the test data had very large population density—higher than the
w5 network had seen during training—o was overestimated. Likewise, prediction error increased if the test
ws data had a larger spatial sampling area than the network saw during training. Therefore we expect the
w7 pre-trained model from our empirical analysis to be most accurate for smaller spatial samples from smaller
s populations—parameters that fall inside the training range—while applications to larger populations may
w9 be more questionable. In fact, it is generally recommended to restrict the sampling area to a small region
w0 when estimating o to avoid issues with environmental heterogeneity and patchy habitats (Broquet and Petit,
a1 2009; Shipham et al., 2013). However, a sufficiently large sampling area is required to infer large o.

an Another potential issue with our approach is complex demographic history. As demographic perturbations
a3 leave a footprint in contemporary genetic variation, demography may bias estimates of o for a neural network
aa trained with a particular history, e.g., constant N. This issue is by no means unique to our analysis. Leblois
as et al. (2004) showed that estimates using Rousset’s technique mostly reflected past demographic values
as  rather than recent population density. We attempted to address this in our analysis, by simulating under
a7 random two-epoch models. This approach was accurate for test data with a similar two-epoch history.
as However it also suggests that different, more complex demography may reduce accuracy, for example a more
ao  extreme bottleneck than was simulated in training, fluctuating N, pulse admixture, or perhaps population
0 structure not captured in our simulations (e.g., barriers to dispersal or range expansion). Identity-by-descent
s based methods may alleviate the effect of ancestral population structure because long identity-by-descent
s tracts originate from the recent past (Barton et al., 2013). Similar to demographic history, other model
w3 misspecifications such as complex habitats and environmental heterogeneity could also be sources of error

s for estimation using our method.
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285 Likewise, in our model dispersal is uniform across space. This assumption may be nearly true—or, at
s least useful—for certain applications, particularly if the sampling area is small. However, in reality we
w7 expect dispersal to vary across space due to ecology: for example, mountain ranges will prohibit dispersal for
w8 many species. Alternatively, suitable habitat is often discontinuous, and dispersal between patches may be
w0 different than within patches. Likewise, heterogeneous habitat can generate source-sink dynamics between
w0 patches. Existing methods that infer heterogeneous dispersal surfaces across space (Petkova et al., 2016;
s Al-Asadi et al., 2019) have limitations including (i) estimating relative differences in dispersal as opposed to
w2 the magnitude of dispersal, or (ii) requiring identity-by-descent data as input.

493 When we included multiple nuisance parameters (Figure 4; Parameter Set 11), the MRAE was larger
w0¢ than that of experiments with only one or zero nuisance parameters (Figure 3; e.g., Parameter Set 3).
ws This difference can be partly explained by the larger number of parameters with potential to confound. In
ws addition, the range of values explored for o, as well as for nuisance parameters, were orders of magnitude

w7 larger than those of the other experiments.

«s Interpretation of empirical findings

o We estimated o in a diverse set of organisms using publicly available datasets. These included both whole
so  genome shotgun and RADseq—i.e., variations on standard RADseq (Baird et al., 2008) or genotyping-by-
su  sequencing protocols (Elshire et al., 2011). Rather than simulate scenarios that would be appropriate to
s2  each species independently, we trained a single disperseNN model designed to estimate o without a priori
s knowledge of density, ancestral population size, or species range.

504 The majority of empirical results from disperseNN were sensible, however our estimates for A. thaliana—
ss  particularly in the population located in Spain—are likely overestimates, in part due to the lack of selfing in
so6  our training simulations. A. thaliana had levels of heterozygosity and inbreeding that were outside the range
sor  of values observed in the training set, a feature reflected in the Mahalanobis distances between training and
ss  prediction sets. In the future, disperseNN might be better tuned to analyze selfing species, but this would
s0  require simulating additional training data and subsequent validation steps.

510 Our approach led to consistently larger dispersal estimates than mark-recapture experiments. Mark-
su recapture data was available for three of the analyzed taxa—white footed mouse, Bombus, and Anopheles.
si2 However the mark-recapture estimates for Anopheles are not ideal, as they represent only adult-travel dis-
si3 tances, i.e., foraging distance. In contrast, the measurements from bumble bees (Carvell et al., 2017) and
s mice (Keane, 1990; Jacquot and Vessey, 1995) are particularly relevant, as they measure the distance traveled

si5 by queen bees from the original hive or individual mice between birth location and adult territory. In all
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si6  three cases our estimate was larger than the mark-recapture calculation, which suggests either an upward
si7 bias in the disperseNN output or underestimation in the mark-recapture estimates. In each mark-recapture
s study the geographic recapture area was smaller than the sampling area we provided to disperseNN. It is
si9  likely that long-distance dispersers, even if less common, are missed during the recapture step, which would

s0 bias the inferred dispersal distance downward in direct, mark-recapture studies.

=1 Population genetics for spatial ecology

52 An understanding of dispersal is critical for preserving biodiversity (Driscoll et al., 2014). Dispersal is
s one of the main factors controlling metapopulation dynamics (Leibold et al., 2004), as well as the total
s« population size and whether a population persists (Gadgil, 1971). Therefore, dispersal estimates are critical
s for choosing appropriate settings in population viability analyses (Akcakaya and Brook, 2008). Likewise,
s geographic habitat shifts are ongoing for many species, and species’ survival may thus depend on their ability
27 to disperse fast enough to follow rapidly changing local conditions (Wiens, 2016). Thus, obtaining values
s for dispersal distance are important for species distribution modeling which is used to project future species
s0 ranges (Wiens et al., 2009). In the comprehensive review of Driscoll et al. (2014), the authors present a list
s of 28 applications for which dispersal values were needed in conservation management, and report several
sn  independent calls for improved dispersal information and dispersal inference methods (Broquet and Petit,
s 2009; Hadley and Betts, 2012; Ceballos et al., 2009; Kingsford et al., 2009; Sutherland et al., 2006; Noss
s et al., 2009; Pullin et al., 2009).

534 Characterizing dispersal is also important for managing animal populations relevant to human health.
s For example, in the fight against malaria we must identify migration corridors and source-sink dynamics
s 1 mosquito vector species to allocate pesticide treatment and to predict the spread of genetic variants
s conveying insecticide resistance (Clarkson et al., 2020). Understanding dispersal is particularly important
s38 for modeling and implementing gene-drive strategies (Champer et al., 2021; Beaghton and Burt, 2022; North
s0 et al., 2013, 2019, 2020; Beaghton et al., 2016, 2017) for controlling the spread of mosquito-borne diseases
s including malaria.

sa1 Direct methods such as radio tracking or genetic identification may provide near-perfect measurements
sz of dispersal within the generation or generations analyzed. However it is often more valuable to know the
se3 expected dispersal distance over many generations, conditional on survival and successful reproduction of
s the dispersing individuals. For example, the day-to-day foraging distance or seasonal migration distances
ss  traveled by adults may differ from the effective dispersal distance. Direct methods such as mark-recapture

sis  are often expensive and as a result are limited to relatively small geographic areas, which may ignore long
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sz distance movement and bias the resulting estimate. Population genetic tools therefore complement direct

ss methods for improving our understanding of dispersal.

« Vaterials and Methods

0 Simulations

ss1 Training datasets were simulated using an individual-based, continuous-space model based on that of Battey
s et al. (2020b). The simulation is initialized with hermaphroditic, diploid individuals distributed randomly on
53 a square habitat. The life cycle of an individual consists of stages for dispersal, reproduction, and mortality.
ssa  Each offspring disperses from the maternal parent’s location by an independent random displacement in each
55 dimension that is Gaussian distributed with mean zero and standard deviation o. The mate of each individual
56 in each time step is selected randomly, with probability proportional to the Gaussian density with mean zero
ss» and standard deviation o, up to a maximum of 3¢ units in space. The number of offspring per mating is
58 Poisson distributed with mean i. Competitive interactions with neighboring individuals affect the probability
sso  of survival, allowing the total population size to fluctuate around an equilibrium. Specifically, individuals
s0 at distance d compete with strength g(d), leading to a cumulative interaction strength for individual ¢ of

so m; =y g(d;j), where d;; is the distance between individuals ¢ and j. These competitive interactions extend
J

ss2  to a distance of 30. The probability of survival for individual 7, is p; = min (0.95, m), where K
ss  and L are parameters that are approximately equal to the the carrying capacity per unit area and the average
s lifetime at equilibrium, respectively. Thus, a single parameter, o, is used to control three different processes
ss  simultaneously: dispersal, mating, and competition. Edge effects are avoided by decreasing individual fitness
sss  proportional to the square root of distance from the habitat edges in units of o. Offspring whose proposed
ss7  location falls outside of the bounds of the habitat are not generated. This model was implemented in SLiM
ss 3.7 (Haller and Messer, 2019). We used a genome length of 108 bp and recombination rate 10~% crossovers
s per bp.

570 After the completion of the spatial, forward-in-time SLiM simulation, initial genetic diversity was pro-
sn - duced using a coalescent simulation in msprime, known as “recapitation” (Kelleher and Lohse, 2020). This
sz strategy was necessary to reduce computation time to manageable levels, as the coalescent stage of the
s3 simulation is much faster than the spatially-explicit portion. The ancestral N, was set to the “present day”
s census population size for recapitation. This portion of the simulation proceeded until all genealogical trees
s had coalesced. Thus, the complete simulation involves random mating for older generations equivalent to

s a Wright Fisher model, with a number of recent generations that are spatially explicit (Table 2). Most of
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sz our experiments used 100,000 spatial-SLiM generations. However, to facilitate larger simulations for the
ss multiple nuisance parameters experiment (Parameter Set 11), we ran only 100 generations of spatial SLiM
s due to computational limitations. We found that disperseNN can predict ¢ from full-spatial test data after
0 training on simulations with only 100 spatial generations, although o was moderately underestimated when
s testing with larger numbers of spatial generations (Figure S10). To simulate population size changes, we
s2  recapitated with msprime as before, but included an instantaneous decline or expansion between 100 and
ss3 100,000 generations in the past.

584 Other model parameters varied between experiments and the relevant parameter ranges are described
sss in Table 3. Population density is one quantity that is focused on in our study, however density is an
s emergent property of our simulation rather than a model setting. To control population density we vary
sz the carrying capacity per unit area, K, in the simulation which is the main determinant of density. In
sss  practice, mean density fluctuates moderately. When the specified size of the spatial sampling window was
s smaller than the full habitat, the position of the sampling window was chosen randomly, with z and y each
s distributed uniformly (Figure 5), excluding edges. The amount of edge cropped was either set to (i) o for
sn each simulation, or (ii) the maximum of the simulated o range for the whole training set, depending on
se2  which simulation parameters were free to vary; the latter was necessary to avoid information leakage during

s3  training. Individuals were sampled randomly from within the sampling window.

H Params. Description Sims. Training Spatial gen. n SNPs Phased H
1 Comparing estimators 1,000 50,000 100,000 10 and 100 2.5 x 10°,5 x 10° Y
2 Baseline 1,000 50,000 100,000 100 5,000 Y
3 Variable density 1,000 50,000 100,000 100 5,000 Y
4 Large density 1,000 50,000 100,000 100 5,000 Y
5 Demographic history 1,000 50,000 1,000 100 5,000 Y
6 Extreme AN change 1,000 50,000 1,000 100 5,000 Y
7 Variable habitat size 1,000 50,000 100,000 50 5,000 Y
8 Large habitat size 1,000 50,000 100,000 50 5,000 Y
9 Variable sampling width 1,000 50,000 100,000 100 5,000 Y
10 Large sampling width 1,000 50,000 100,000 100 5,000 Y
11 Multiple nuisance par. 2,300 100,000 100 U-int(10,100) 5,000 N

Table 2: Analysis parameters. The “Params.” column lists the identifier for the parameter set, which is
referenced in the main text. “Description” is a brief description of the parameter set. “Sims.” is the number
of true replicates, i.e., SLiM simulations, represented in training. “Training” is the size of the total training
set after drawing multiple samples from each simulation. “Spatial gen.” is the number of spatial generations
simulated in SLiM. “n” is the sample size. “SNPs” is the number of SNPs used in training. “Phased”
describes whether the data were phased or not for training.

504 To obtain genetic data, neutral mutations were superimposed on the tree sequences using msprime v1.0
ss  (Baumdicker et al., 2022) until a predetermined number of SNPs, m, were obtained (Table 2). Specifically,
s we started by simulating mutations with a very small mutation rate, 107'°. Next, we increased the mutation

so7  rate by 10x, and threw on additional mutations with the updated mutation rate. The latter two steps were
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H Params. Description o K AN Habitat width ~ Samp. width Edge H
1 Comparing estimators U(0.2, 3.0) 5 constant 50 1 3
2 Baseline U(0.2, 3.0) 5 constant 50 1 3
3 Variable density U(0.2, 3.0) log-U(0.1, 20.0) constant 50 1 3
4 Large density U(0.2, 3.0) U(20.0, 40.0) constant 50 1 3

U(3,1)
5 D raphic hist U(0.2, 3.0 5 ° 50 1 3
5 emographic history (0.2, 3.0) 5 {U(LS) 5

U(:3)
6 Extreme AN change U(0.2, 3.0) 5 50 1 3

U(5,10)
7 Variable habitat size U(0.2, 3.0) 2 constant U(15, 150) 1 o
8 Large habitat size U(0.2, 3.0) 2 constant U(150, 300) 1 o
9 Variable sampling width U(0.2, 3.0) 5 constant 50 U(0.2, 0.8) o
10 Large sampling width U(0.2, 3.0) 5 constant 50 U(0.8, 1.0) o

1
. . =, 1 .

11 Multiple nuisance par.  log-U(1073, 102) log-U(1073, 10%) {ZE155)> log-U(2, 103)  U(0.0, 1.0) o

Table 3: Parameter distributions used for simulation. The “Params.” column lists the identifier for the
parameter set, which is referenced in the main text. “Description” is a brief description of the parameter

w7

set. “o” is the distribution of the dispersal parameter. “K” is the major determinant of population density.
“AN” describes the history of population size change: for rows with braces, a random multiplier was chosen
from one of two uniform distributions, each with probability 0.5. The ancestral N, was set to the multiplier
X present day N. “Habitat width” is for the full habitat. “Samp. width” is the width of the sampling
area as a proportion of the full habitat width. “Edge” is a distance from each side of the habitat that was
excluded from sampling to avoid edge effects .

ss  iterated several times until at least m mutations had been obtained. When at least m SNPs had been added,
s0  m SNPs were sampled to represent the genotype matrix input to disperseNN. The result of this procedure
eo 1s that the genotype matrix for each simulated dataset contains the same number of SNPs, m, regardless of
e1 the actual number of variable sites in the sampled individuals, and irrespective of mutation rate, and thanks
ez to the Poisson nature of neutral mutations is equivalent to having simulated with a higher mutation rate
o3 and randomly selected m variable sites. For some analyses, multiple samples were drawn from the same
ea simulated tree sequence to save computation time; these cases are noted in Table 2. This strategy allows for
es large training sets to be generated from a smaller number of starting simulations.

606 The input for disperseNN consists of two things: the width of the spatial sampling area, and a genotype
s7 matrix, having one row for each SNP and one or two columns per individual depending on the phasing
es designation. If phased, the genotype matrix contained two columns per individual, randomly ordered, with
s Os and 1s encoding minor and major alleles, respectively. If unphased, the genotype matrix contained one
60 column per individual with genotypes encoded as 0s, 1s, and 2s, representing the count of the minor allele.
en  In order to facilitate various sample sizes in real applications, our pre-trained model used a random sample
612 size during training, 10 < n < 100, with zero padding out to 100 columns. To obtain the second input, we
ez used the furthest distance between pairs of samples as the sampling width. The training targets are the true
se  0’s, log-transformed. Thus, the output from the CNN is in log space (disperseNN exponentiates the result

a5 before writing the predictions).
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616 In generating training data for the pre-trained network, we sought to explore a large parameter range:
sv  each parameter varied over several orders of magnitude (Parameter Set 11). However, swaths of parameter
ss  space described by the ranges in Table 3 were not represented in the training data, due to the following
s10 logistical hurdles. First, simulations where the population died were not included in the training set. The
60 excluded simulations had small carrying capacity and small habitat size, or small habitat size and large o,
e for example. Next, some simulations could not be run due to computational constraints: maximum RAM of
e2 175 gigabytes and two-week wall time on our computing cluster. For example, combinations of large carrying
&3 capacity and large habitat size were not simulated. As a result, only 12% of attempted simulations were
6« included in training, and for each parameter the realized distribution—representing successful simulations—
o5 differed from the distribution from which the model settings were drawn (Figure S7), which had been uniform

66 1n log space.

«r CNN architecture and training

e2s  Tensorflow (Abadi et al., 2016) and Keras (https://github. com/keras-team/keras) libraries were used to
o9 develop disperseNN. The first input tensor, the genotype matrix, goes through successive convolution and
s0 pooling layers, a strategy that is characteristic of CNNs (Figure 1). We adjusted the number of convolution
e and pooling layers based on the size of the genotype matrix: the number of convolution layers assigned
s was equal to floor(logig(number of SNPs))—1. The filter size of successive convolution layers was 64 for
633 the first layer, and 44 larger for each successive layer. The convolution layers are one-dimensional, such
1 that the convolution kernel spans all individuals (columns) and two SNPs (rows), with stride size equal to
¢ one. Average pooling layers were also one dimensional, spanning all individuals and 10 SNPs. After the
63 convolutional portion of the network, the intermediate tensor was flattened and put through three fully
s connected layers each with 128 units and rectified linear unit (ReLU) activation. A second input branch was
ss used for the sampling area. This input tensor with size = 1 was concatenated with the preceding branch,
69 then subjected to a 128-unit dense layer with ReLu. Finally, a dense layer with linear activation was applied
s0 which outputs a single value, the estimate for o.

641 During training we held out 20% of the training set for computing a validation-loss between epochs. We
sz used a batch size of 40, mean squared error loss, and the Adam optimizer. The learning rate was initialized as
ss 1073, The “patience” hyperparameter determines both the length of training, and learning rate adaptations
s during training: after a number of epochs equal to patience/10 without improvement in validation loss
es the learning rate is halved, and training proceeds until a number of epochs equal to patience pass without

&6 improvement in validation loss. Patience was set to 100 for all training runs excluding the pre-trained model.
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er For the pre-trained model, we explored a grid of different hyperparameter settings: patience values of 10,
s 20, 30, 40, and 50; initial learning rates of 10~4, 1073, and 10~2; and dropout proportions of 0, 0.1, 0.2, and
a9 0.3. We landed on settings that consistently gave the lowest MRAE: patience = 10, initial learning rate of

e 1073, and 0 dropout.

s Comparison with other estimators

2 The Rousset method uses the observation that under certain assumptions, then b = 1/47Do? (and recall D
o3 is the effective density). b is the slope of the least squares linear fit of a,./(1 — a,) to geographic distance,

esa  Where a, is a measure of genetic differentiation between two individuals analogous to Fy;, where from Rousset
_ (28Sy(»)—SSw(2))P
- P

k=1

ess  sum of squared differences between the two individuals’ genotypes, SSyy () is the sum of squared differences

5 (2000), a, for a pair of individuals, &2, can be estimated as a*

, where SSy () is the

67 between genomes within the individuals, P is the total number of pairs of individuals in the sample, and
658 i SSw (k) are within individual differences summed over the P different pairs of individuals. We applied
659 Isousset’s method to the same genotypes and sample locations as for disperseNN. The values for D used
o0 with this method were calculated after excluding the edges of the habitat which have reduced density: the
61 census size, N, was counted after excluding individuals within an edge width, F, from any side of the habitat
o2 of width W, thus D = N/(W — 2E)2.

663 A second comparison was made with IBD-Analysis (Ringbauer et al., 2017). The authors used the
ess distribution of identity-by-descent tract lengths shared between individuals to estimate o. They derived
es analytical formulas describing how isolation-by-distance shapes identity-by-descent tracts and provided an
es inference scheme that uses maximum likelihood to fit these formulas. For our comparison, we extracted
e7 perfect identity-by-descent tracts directly from the tree sequences output from SLiM. Specifically, for each
es pair of individuals, for each combination of chromosomes between the individuals, we simplified the tree
60 Sequence to represent only the recombination history between the two chromosomes, and extracted segments
o0 that were inherited from a common ancestor without recombination. These were the identity-by-descent
en  tracts used as input for the Analyze-IBD program, which was obtained from https://git.ist.ac.at/
ez harald.ringbauer/IBD-Analysis. Separately, we inferred identity-by-descent tracts in the simulated data
o3 using an empirical tool, Refined IBD (Browning and Browning, 2013), and used the inferred identity-by-
s descent as input IBD-Analysis. For the latter analysis a mutation rate of 1078 was applied and all variant
o5 sites were included in the identity-by-descent inference step, with other parameters the same as in Parameter

oe  Set 1.
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« Empirical data

es 1o demonstrate the utility of disperselNN, we applied it to preexisting publicly available empirical datasets
oo that have the following criteria: spatially distributed genetic data, latitude and longitude metadata available,
60 ten or more sampling locations, sampling area less than 1000 km, at least 5,000 biallelic SNPs, and a ready-
61 to-plug-in SNP table that had been processed and filtered by the original authors. For some datasets with
ez overall sampling width more than 1000 km, we were able to subset for a smaller cluster of sample locations
3 (see details specific to each dataset below). When multiple individuals were sampled from the same location
esa we chose one random individual from each location, in order to better match the sampling scheme used in
es generating training data. SNP tables were converted to genotype matrices after minimal processing: we
ess removed indels and sites with only one, or more than two, alleles represented in the sampled subset. We
er  required all sampled individuals to be genotyped to retain a SNP, except when we note otherwise—see details
es  specific to each dataset below.

689 Mosquito data were downloaded following instructions from https://malariagen.github.io/vector-data/
s0 ag3/download.html. We used a dense cluster of sampling localities in Cameroon that had been identified as
s Anopheles gambiae. Individual VCFs were merged using bcftools (v1.14). Chromosomes 3L and 3R were
s2 analyzed; 2L and 2R were excluded due to previously reported large inversions (Lobo et al., 2010; Riehle
o3 et al., 2017).

694 Arabidopsis data was downloaded from https://1001genomes.org/data/GMI-MPI/releases/v3.1/ as
es a single VCF. Two conspicuous geographic clusters were chosen from Sweden and Spain to minimize the
es geographic sampling area. All five chromosomes were analyzed.

697 Sunflower data was downloaded from cloud storage following instructions from https://rieseberglab.
o8 github.io/ubc-sunflower-genome/documentation/. Geographic clusters of sampling localities were iden-
oo tified in Texas (Helianthus argophyllus) and on the border of Kansas and Oklahoma (H. petiolaris). Indi-
0 vidual VCFs were merged into multi-sample VCF's for each of the two species. Chromosomes 1-17 were
o1 analyzed, excluding a number of unplaced scaffolds.

702 VCFs for oyster (Crassostrea virginica; Bernatchez et al. (2019)), bumble bee (Bombus; Jackson et al.
w3 (2018)), Atlantic halibut (Hippoglossus hippoglossus; Kess et al. (2021)), white-footed mouse (Peromyscus
e leucopus; Munshi-South et al. (2016)), Réunion grey white-eye (Zosterops borbonicus) and Réunion olive
s white-eye (Zosterops olivaceus; Gabrielli et al. (2020)), and wolf (Canis lupus; Schweizer et al. (2016)) were
06 downloaded directly from The Dryad Digital Repository. Clusters of sample locations were chosen in each
o7 dataset to maximize sampling density. In the datasets from Bombus vosnesenskii, Peromyscus leucopus,

w8 Zosterops borbonicus, and Zosterops olivaceus, we allowed as few as 85%, 60%, 90%, and 90% of individuals
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to be genotyped to retain a SNP, respectively, and missing genotypes were filled in with the major variant.

To calculate the width of the sampling window for empirical data, we calculated the geodesic distance
between each pair of individuals using the package geopy with the WGS84 ellipsoid. This distance represents
the shortest path on the surface of the Earth between points. The longest distance between pairs of sample

locations was used as the sampling width, which we provided in kilometers to disperseNN.
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Figure 1: Diagram of the analysis workflow. Blue points are hypothetical sample locations on a geographic
map. Rectangular neural network layers are 1D-convolution and average-pooling layers; columnar layers are

fully connected layers. The two input branches are concatenated into a single, intermediate tensor. Neural

(https://github.com/HarisIqbal88/PlotNeuralNet).

network schematic generated using PlotNeuralNet
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Figure 2: Comparison with existing methods (Parameter Set 1). Here, disperseNN is compared with the
Rousset method and IBD-Analysis, using two different numbers of sampled genomes, n = 10 (top row)
and n = 100 (bottom row). The dashed lines are y = x. Green lines signify mean dispersal distance
from both parents divided by v/2, and the MRAE calculations for the Rousset method and IBD-Analysis
are calculated using this line as ground truth. Estimates greater than 5.5 are excluded from plots but are
included in the MRAE calculation. Moreover, the Rousset method produced undefined output for 16.4% and
1.8% of n = 10 and n = 100 datasets, respectively; these data are not reflected in the MRAE calculation.

Likewise IBD-Analysis did not converge for 4.6% of the n = 10 datasets.
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Figure 3: Column 1. Cartoons of unknown parameters that may lead to model misspecification. Column 2.
The unknown parameter was fixed during training, but testing was performed on data with different values
of the parameter. Column 3. The unknown parameter was varied during training, and testing was performed
on data from the same distribution. Column 4. The unknown parameter was varied during training, but
testing was performed on out-of-sample values, i.e., larger values than were seen during training. The dashed
lines are y = . Outliers greater than 3 are excluded from the fixed-habitat-size plot. “Train: P” and “Pred:

” refer to the Parameter Sets used for training and testing, respectively. The third row, third column plot
has lower MRAE than the baseline model due to using a smaller carrying capacity, which was chosen to
alleviate computation time.
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Figure 4: Validation of the pre-trained model (Parameter Set 11). Shown are 100 test datasets, each
generated from an independent simulation. Open points indicate the mean estimate from 1000 subsamples
of 5,000 SNPs drawn from each dataset. Also depicted is the range of estimates from the middle 95% of
subsamples. The dashed line is y = x. Note the log scale.
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Figure 5: Cartoon showing different sampling strategies. The black box represents the full simulated habitat.
For some experiments, we both (i) varied the width of the square sampling window—blue boxes show
examples of differing sampling widths—, and (ii) assigned a uniform-random position for the sampling
window—red boxes show different positions for the sampling window.
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Figure S1: Tracking the realized dispersal distance in our simulation. “Tag” and “alt” both measure the
mean distance dispersed from both parents, while “tag” is weighted by the number of offspring produced by
an individual. The dotted line is the expected maternal straight-line dispersal distance.
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Figure S2: Screenshot of an example simulation in SLiM’s graphical user interface. The square habitat is
depicted with individuals as point. Parameter Set 1 with ¢ = 1.0.
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Figure S3: Predictions on simulated data using IBD-Analysis with identity-by-descent blocks empirically
derived from the Refined IBD program (Browning and Browning, 2013). With n = 10, zero identity-by-
descent blocks were detected in 4% of datasets, and IBD-Analysis did not converge for an additional 63% of
datasets. The mean RAE from n = 10 using inferred identity-by-descent blocks was lower than using perfect
identity-by-descent blocks due to fewer extreme outliers; the median RAE was 0.4 with perfect identity-by-
descent blocks, and 0.58 with inferred identity-by-descent blocks.
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Figure S4: Comparison with other methods, n = 10, and varying SNP number (other parameters as in
Parameter Set 1). The IBD-Analysis plot used perfect identity-by-descent tracts rather than SNPs.
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Figure S5: Comparison with with other methods, n = 100, and varying SNP number (other parameters as
in Parameter Set 1). The IBD-Analysis plot used perfect identity-by-descent tracts rather than SNPs.
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Figure S6: Predictions with log-transformation to show relative error, n = 10 (Parameter Set 1). Data points
in the larger half of the log(c) range were down-sampled to one-half the number of points in the smaller
half of the range to obtain roughly even density of points across the range of log(o). Before down-sampling,
points were more dense towards the right-hand side.
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Figure S7: Realized training distributions for empirical analysis (Parameter Set 11). “W” is habitat width.
Some areas of parameter space could not be simulated due to population extinction or computational limi-
tations.
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Figure S8: Exploring the effects of five different predictor variables—(1) o, (2) n, (3) sampling area, (4) map
width, (5) carrying capacity—on three different response variables (A) log error, (B) the interval width of
the log-transformed middle 95% range of the bootstrap distribution, and (C) absolute log-error divided by
the interval width (Parameter Set 11). Shown are 2400 datasets including both held-out test data (blue; 100
datasets) and training data (grey; 2,300 datasets). The line of best fit and 72 include all 2400 data points.
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Figure S9: Mahalonobis distance from the center of the training distribution with respect to five summary

statistics: nucleotide diversity, Tajima’s D, inbreeding coefficient, observed heterozygosity, and expected
heterozygosity (Parameter Set 11). “test data” are the empirical datasets.
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Figure S10: CNN trained with only 100 generations in spatial SLiM before recapitation with msprime (other

parameters as in Parameter Set 2). The depicted results are from testing on simulations with 100,000
generations spatial, which is nearly full-spatial.
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« Appendix: stuff we tried that did not work

o7 This Appendix describes analyses not included in the main document, including strategies that didn’t work.

w Al. Attempts to use sampling localities

oo It is intuitive that signal about dispersal might be gleaned from the individual sample locations, as previous
o0 population-genetics-based inference methods use sample locations as input. We tried the following strategies
on for showing the sample locations to the CNN. In each experiment, we modified the neural network architecture
o2 to accommodate the sample locations in various ways. Otherwise, the neural network in each experiment

o3 closely resembled the architecture described in the main text.

o7a e Tuable of locations. An n x 2 array containing the x and y coordinates was shown to the CNN in a
o75 separate input branch (in place of the sampling width input). This input went through a single 128-unit
o76 dense layer with ReLu activation before flattening and concatenating with the previous branch.

o77 e Stored in genotype matriz Additional rows in the genotype matrix were used to store the z and y
o78 coordinates for each individual.

079 e 3-channel array. A 3-dimensional array was used to store (1) the genotypes, (2) = coordinates, and
980 (3) y coordinates. In the second and third channels, the spatial coordinates were repeated for m rows
981 equal to the number of SNPs. Here, the neural network used 1D-convolution and pooling layers, as
082 described in the main text, however the convolution and pooling layers spanned all three channels
083 simultaneously.

o84 e 2D CNN. We also tried a variation of the the 3-channel-array strategy using 2D-convolution and pooling
085 layers with a 2x2 window.

086 For each of the above strategies, we trained the neural network in the same manner as the “baseline”

os7  model from the misspecification analysis in the main text. The outcome for each was the same: the mean
ws RAE was indistinguishable from the baseline model that does not include sample locations. Moreover, we
os0 shuffled the sample locations input, such that each individual has a randomly assigned location, and the
oo output was unchanged. Our interpretation is that the CNN ignores the location data in the experiments
o1 attempted thus far, either because the locations are not necessary for estimating o, or because we failed to

w2 effectively show the network the locations.
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A2. Including isolation-by-distance summary statistics

We tested whether isolation by distance information in the form of summary statistics would improve infer-

ence of o. Specifically, we summarized isolation-by-distance as:

e b, the slope of the line of best fit to genetic distances versus geographic distances.

e 2, the coefficient of correlation between genetic distance and geographic distance.

Including either (or both) of these statistics as a separate input branch of size one (or two) marginally
improved validation accuracy. The new input branch went through a 128-unit dense layer with ReLu ac-
tivation before concatenating with the previous branch. Thus, future empirical applications might explore
using the above or different summary statistics alongside the genotype matrix for estimating o, or other
population genetic parameters. We did not present these results in the main text because (1) the benefit
was negligible, and (2) it is beyond the scope of our study to decide on the most relevant and appropriate
summary statistics, as countless other statistics might be evaluated for use with, or without, the genotype

matrix that we used.
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