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Abstract

With the recent surge of single cell RNA sequencing datasets (scRNAseq) the extent of cellular
heterogeneity has become apparent, yet it remains poorly characterized on a protein level in brain tissue
and induced pluripotent stem cell (iPSC) derived brain models. With this in mind, we developed a high-
throughput, standardized approach for the reproducible characterization of cell types in complex
neuronal tissues. We designed a flow cytometry (FC) antibody panel coupled with a computational
pipeline to quantify cellular subtypes in human iPSC derived midbrain organoids. Our pipeline, termed
CelltypeR, contains scripts to transform and align multiple datasets, optimize unsupervised clustering,
annotate cell types, quantify cell types, and compare cells across conditions. We identified the expected
brain cell types, then sorted neurons, astrocytes, and radial glia, confirming these cell types with
scRNAseq. We present an adaptable analysis framework providing a generalizable method to
reproducibly identify cell types across FC datasets.

Introduction

Investigating the molecular, cellular, and tissue properties of the human brain requires the use of cellular
models, as primary live human brains cannot be easily accessed for research. Patient-derived disease
3D tissues, such as human midbrain organoids (hMOs), derived from reprogrammed human induced
pluripotent stem cells (iPSCs), provide a promising physiologically relevant model for human brain
development and diseases, including neurodegenerative diseases such as Parkinson’s disease!=. As
new models emerge, the complexity and reproducibility of these systems needs to be captured. To
determine how faithfully organoids model the human brain and how organoids derived from individuals
with disease differ from those derived from healthy controls, new approaches towards characterization
are required. Effective and quantitative methods are needed to determine the cell types within these
complex tissues and to apply these benchmarks reproducibly across experiments. At present, individual
cells within brain or organoid tissue can be identified using single cell RNA sequencing (scRNAseq) or
labeling of protein or RNA in tissue sections. These tools are useful but limited. sScRNAseq is a powerful
tool that has been used to identify known and novel cell types, cell states, and cell fate trajectories*.
However, using scRNAseq to compare proportions or populations of cells between genotypes over
multiple time points is not practical for hMOs and may result in sampling bias, as less than 1% of the
whole tissue is sequenced. While scRNAseq provides detailed expression values to determine sub-
types of cells, only relatively few samples can be run at a given time and all the cells must be alive and
prepared in parallel, which can lead to technically challenging experiments. These experiments are also
costly for the number of replicates needed to ensure enough power for comparing multiple time points,
disease states, or pharmacological treatments’=°. Another option to quantify cell types is immunostaining
or in situ hybridization of tissue sections. This has the advantage of capturing cell morphology and
spatial resolution. However, sample preparation, image acquisition, and analysis are labour intensive
and limited in quantitative accuracy. Moreover, for 3D tissues, either only a small section can be
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analyzed or the entire tissue must be reconstructed and only a few cell types can be detected at
oncel0l,

Here, we use flow cytometry (FC) to measure the protein expression levels of a panel of cell surface
markers enriched in specific brain cell types. FC is a fast, quantitative, and robust method, used widely
in immunology and cancer research!?>** but to date only sparsely in neuroscience. Typically in
neurobiology, only two or three antibodies are used to distinguish between pairs of cell types>!¢ or to
enrich one cell typel”18, Traditional FC analysis methods using FlowJo, the commercial FC analysis
software package thatis currently the standard in the field, are time consuming and subject to user error.
Methods to standardize data preprocessing and analyze combinations of more than 3 antibodies in one
experiment are starting to emerge!®?°, However, no methods are available to automate cell type
annotation in FC from complex tissues such as brain or 3D brain organoids using a large antibody panel.
To create such an analysis framework, we produced an experimental dataset using cultured hMOs
differentiated from human iPSCs®2%22, Our workflow also provides the methods to select subtypes of
cells and gate these cells for further analysis, such as RNAseq, proteomics, or enriching cultures. We
select example cell populations, sort these cell types, and further characterize these with scRNAseq.
Here we present a complete framework for annotating cell types within complex tissue and comparing
proportions of cell types across conditions and experiments.

Results
An antibody panel to identify multiple cell types in human midbrain organoids

In Figure 1A, we provide a schematic of the CelltypeR analysis workflow (see methods) used to quantify
and compare cell types from tissues with a complex mixture of cell types such as the brain. To test our
CelltypeR pipeline, we used hMOs?22® differentiated from iPSC lines derived from three unrelated
healthy individuals (Table S1). The hMOs were grown for 9 months in culture, a time point at which
neurons are mature and myelination has been shown to occur.?* Immunofluorescence staining of
cryosections shows that these organoids contain neurons, astrocytes and oligodendrocytes (Figure
1B). In FC, combinations of the relative intensities of 2-3 antibodies are often used to distinguish
between cell types. However, in hMOs we expect approximately nine cellular types with a continuum of
stages of differentiation.}?>2¢ We first defined a panel of 13 antibodies, which includes well-
characterized antibodies previously used to define neural stem cells, neurons, astrocytes, and
oligodendrocytes or to define other cell types in cultured immortalized human cell lines, blood, or brain
tissues (Table S2). We dissociated the mature hMOs and labeled the cell suspension with these
antibodies then measured the fluorescence intensity values using FC. The single live cells were
sequentially gated using FlowJo. The FC results show that each antibody has a range of intensities
across different cells (Figure 1C and S1). We conclude that the antibody panel has the potential to be
used to define cell types by identifying combinations of antibody expression profiles unique to different
cell groups.

Validation of the antibody panel using 2D cultures and known cell type markers

To test the expression of the selected antibodies on known cell types, we separately differentiated iPSCs
into dopaminergic neuronal precursor cells (DA NPCs), dopaminergic neurons (DA neurons),
astrocytes, and oligodendrocytes (oligos) (Figure 2A and Table S3). The cultures were dissociated,
and the 13-antibodies in the FC panel were applied. We examined the staining for each antibody across
the cultured 2D cells (Figure 2B). Within each cell type there was a variation in protein levels that could
be used to define subgroups of cells. To identify subtypes of cells and visualize the markers, we applied
unsupervised clustering developed as part of the CelltypeR workflow. Some tools exist for automated
processing and formatting of FC and numerous tools exist for cluster analysis of single cell
transcriptomic data that can be applied to other FC data. Thus, we took advantage of these existing
tools and created new functions in an R package to process FC data (see methods). We combined the
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FC acquired antibody intensities from the five separate iPSC derived cultures, normalized the data,
performed dimensional reductions (PCA) and used Louvain network detection to identify groups of cells.
The UMAP visualization shows separate groups for each of the five cell types with some overlap (Figure
2C). We observe that the iPSCs are mostly separated from all the other cell types. The DA NPC culture
splits into separate groups and overlaps with different cell types. An isolated population of cells forms
DA NPCs, some of the culture has started differentiating into early neurons, a small proportion are
differentiating into astrocytes, and a small group is consistent with neural stem cells. The
oligodendrocyte culture splits into two groups: the true oligodendrocytes expressing the marker O4, and
radial glia indicated by high expression of both neuronal and glial markers. We conclude from these
findings using iPSC-derived 2D cultures that our antibody panel can distinguish different cell types and
subgroups of cell types that we expect to find in 3D hMOs and other complex neuronal tissues.

Identification of different brain cell types in human midbrain organoids

To identify cell types within hMOs using the antibody panel, we ran our R preprocessing pipeline to align
and normalize the data. To compare samples from different iPSC lines, different batches of hMOs, and
measurements run on different experiment days, we developed methods to combine and harmonize
samples, which is the first step in the computational pipeline. We combined nine hMO samples and
selected a subset of the total cells (9000 cells or the max number of cells available). The samples were
first merged, then transformed and aligned to reduce batch effects and finally retro-transformed for
better cluster visualization (Figure S2). If removing batch effects is not desired (as in the separate cell
cultures above), the preprocessing is stopped after merging. The hMOs are expected to contain a
combination of neurons, neural precursor cells (NPCs), astrocytes, oligodendrocyte precursors (OPCs),
oligodendrocytes, radial glia (RG), stem cells, pericytes, endothelial cells, and epithelial cells, all
differentiated from the starting iPSCs. The standard method of manually defining cell groups using
FlowJo or multiple scatter plots in R is time consuming and not reproducible across experiments. To
overcome this barrier, we developed tools to identify cell types described below: A) A correlation cell
type assignment model (CAM) using a custom reference matrix and B) clustering parameter exploration
functions with tools to visualize and summarize of protein expression levels.

We created a reference matrix with the predicted relative expression of each cell surface marker in
different cell types expected to be present in hMOs based on known brain cell types and previous hMO
scRNAseq. Using scRNAseq data from human brain and organoids, total mMRNA on brain cell types,
and FC (Figure 2), we calculated the relative expression levels for each marker in our antibody panel
(Figure 3A). Our CAM function calculates the correlation of protein expression levels of the 13 markers
in each hMO-derived cell to the expression levels of the same markers in the reference matrix we
created, calculating the Pearson correlation coefficient, R. The R value is calculated for each cell type
in the reference matrix and one cell type out of the nine possible cell types is assigned for a given hMO
derived cell (Figure 3B and S3). To avoid false cell type assignments, we added a correlation coefficient
threshold of 0.45, where hMO derived cells with R values below the cut-off are assigned as ‘unknown’.
Many hMO-derived cells have the highest correlation with oligodendrocytes but are labelled as
‘unknown’ because of the applied threshold. Some hMO-derived cells correlated highly with two cell
types. When this was the case, these cells were assigned a merged cell type, and may represent an
intermediated cell type (Figure 3C and S3-5). The most common cell pairs of cell types with a first and
second top correlation within 0.05 are similar cell types, the most frequent pair is neurons and NPCs,
which are the same cell type on a continuum of differentiation (Figure 3C and S5). The most frequent
assignment is ‘unknown’ cell type, indicating that these cells didn’t correlate highly with any of the
predicted cell types expression patterns (Figure S6). Clustering accounts for the problem of ‘unknown’
predictions because similar cells are grouped together. We created functions to identify the topmost
predicted cell types per cluster, so by ignoring ‘unknown’ we can conclude the second most abundantly
predicted cell type is the main cell type of a given cluster (Figure S6). We also applied the correlation
assignment to the 2D culture data and found about half of the cells are correctly predicted in each
different cell culture (Figure S7). Although correlation assignment is a useful tool to provide biologists
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with a predicted cell type, it does not deliver the accuracy needed to quantify cell types across
experiments and therefore must be used in combination with other methods.

Using the functions in our CelltypeR library we performed unsupervised clustering using Louvain
network detection and visualized the protein expression levels (Figure S8-9). Clusters were annotated
with cell types using a combination of marker expression by cluster and the output from the correlation
predicted cell types (Figure 3D). We identified astrocytes, radial glia (RG), epithelial cells, endothelial
cells, NPCs, neurons, a small proportion of oligodendrocytes, and stem cell-like cells in the hMOs. Some
cells have low relative antibody expression and form a cluster together and these cells were annotated
as ‘unknown’ (Figure 3E). Another cluster has low expression overall, but some expression of markers
indicating a mix of glial cells and neurons. This cluster was annotated as ‘Mixed’. Clustering the hMO
cells identified distinct subpopulations of RG, astrocytes, and neurons. These populations can be broken
into further subgroups (Figure S10). We conclude that our workflow can be used to annotate cell types
in hMOs.

Comparison of cell types between iPSC lines and hMO batches

After annotating a subset of 9000 cells from each of the nine hMO samples, we next analyzed the total
available cells (Table S1). We again followed the CelltypeR workflow, but now we used the labelled
subset of cells to annotate the full dataset. Using the subset of annotated cells, we trained a random
forest classifier model (RFM) (Figure S11) and then applied those labels to the complete dataset to
predict the type of each cell. We clustered the full dataset and visualized the predicted cell type
annotations using RFM, CAM and Seurat?’ label transfers (Figure S12). To annotate the cells in the full
dataset from the nine MOs, we applied the CelltypeR tools using three methods of cell type prediction
and inspection of expression levels in each cluster in UMAP and heatmap visualization (Figure S13).
We observe the same cell types in the full dataset as in the subset of data; however, we now identify a
tiny cluster of OPCs, and more stem cell-like cells (Figure 4A). Using the cell type predictions from the
RFM and the Seurat label transfers we now have an indication of the radial glia cells within the ‘unknown’
and ‘mixed’ clusters (Table S4). Based on the visualization of markers, the ‘mixed’ cluster has cells of
glial lineage, and the unknown cluster has cells with a neuronal lineage (Figure 4A). Subgroups of
neurons and glia are clearly defined by different expression patterns of the antibody panel (Figure 4B).
In the full dataset we observe more subgroups of the main cell types (Figure S14).

Visualizing the distribution of cell types in hMOs derived from each cell line, we can see there are some
differences in the proportion of cell types (Figure 4C, D). Differences are also observed for the other
variables, namely days in culture and experiment date, but no differences were observed between the
two batches. This indicates that there is low variation between batches of h(MOs (Figures S15). We next
did proportionality tests to determine if the differences in cell types between the cell lines are significant.
The proportion of neurons 1 and some of the glial populations are increased while the proportions of
neurons 2, oligodendrocytes, and stem cell-like cells are decreased in the AIW002 line compared to the
AJGO001 and 3450 cell lines (Figure 4D and S16). We created functions to compare the mean surface
marker expression between different variables within different cell type populations (Figures 4E). We
also built functions in our R package to run ANOVAS, post-hoc tests, and identify significant differences.
We tested if expression markers between groups are significantly different between cell lines, the
number of days hMOs are in culture, hMO batch, and experiment day across cell types using one-way
ANOVAs and found some significant differences (Table S5). We next performed two-way ANOVAs with
marker expression and cell line followed Tukey’s post-hoc tests. There are significant differences in
overall marker expression levels between the AIW002 and 3450 lines in epithelial cells, AJG001C and
both 3450 and AIW002 in neurons 1, 3450 and both AJG001C and AIW002 in neurons 2, and AIW002
and AJG001C in oligodendrocytes (Table S6). We ran the same statistics to compare marker expression
levels between different amounts of time spent in culture and observed significant differences in some
cell types (Table S5). However, pair-wise comparisons show that these differences likely reflect the
differences between experiment dates because hMOs at 263 and 284 days in culture measured on the
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same day do not show any significant differences (Table S7). Individual marker expression between
cell lines, days in culture, batch, or experiment date are not significant in very many cases (Figures
S17-20). Using our framework, we can reliably quantify cell types and compare proportions of cells and
levels of antibody expression across different conditions. We find significant differences in the proportion
of cell types and in marker expression levels within cell types between different healthy control iPSC
lines.

Isolating populations of interest identified by CelltypeR clustering analysis

After annotating the dataset, we could plot the proportion and mean expression of each antibody marker
in each group to try and define the relative marker expression of a given cell group and then isolate that
population by FACS. However, manually reverse engineering a gating strategy is difficult with more than
a few cell type markers. Thus, we defined cell types using CelltypeR, applied the package hypergate?®
to identify which combinations of antibody markers clearly define a given cell population, and then
manually gated these cells in FlowJo (Figure 5A). The gating accuracy for all cell types is above 95%
(Table S8 and S9). We next followed the CelltypeR workflow using the newly generated gated files to
annotate the cells in the FlowJo gated populations (Figure 5B). The most frequent CelltypeR annotated
cell type within each gated population is the intended cell type, except for NPCs, where Neurons 1 is
the most common cell type (Figure 5C and Table S10). We find that CelltypeR can define cell types
and gates and these can be used to effectively gate the desired cell types.

Analysis of FACS sorted neuronal and glia populations followed by single cell sequencing
analysis.

Our workflow can be used to enrich populations of interest by FACS sorting selected populations for
further analysis. We selected four cell types: neurons 1, neurons 2, astrocytes, and radial glia. We then
designed a gating strategy to simultaneously sort the four populations (Figure 6A). We sorted the hMO-
derived cells using the defined gates, split the samples, and then acquired FC measurements and
scRNAseq on the sorted populations. The protein expression levels in the sorted populations match the
expected levels from the gates (Figures 6B). We also obtained a single cell transcriptomic library for
each of the FACS sorted populations (see methods). We first compared the RNA expression levels of
the genes corresponding with the protein expression levels measured by FC and found they highly
correlate (Figure 6C and Table S11). The four populations were merged, clustered, and plotted on a
UMAP to visualize the overlap between the different sorted cell types (Figure 6D). The Neuronsl
population is mostly separate from the other populations with some overlap with Neurons2. Clusters
were first annotated for main groups of cell types: DA neurons, neurons, NPCs, radial glia, and
astrocytes. These main cell types were subset and annotated for subtypes of cells using differential
gene expression between clusters (Figure 6E, S21-24 and Table S12). Next, we calculated the
proportion of cellular subtypes in the FACS sorted populations (Figure 6F and Table S13). We found
that non-DA neurons in Neuronsl are excitatory and mature neurons as well as NPCs and ventral zone
(VZ) radial glia undergoing neurogenesis. The non-DA neurons in the Neurons2 population are
GABAergic, serotonergic (5HT), and neurons with potential to be reactivated as neural stem cells. As
quantification of DA neurons is of particular interest in hMO for Parkinson’s Disease, we find that
Neuronsl, Neurons2, and RadialGlia all contain DA neurons. The Neuronsl FACS population has
slightly more DA neurons overall, specifically the Substantia Nigra (SN) subtype, whereas the Neurons2
FACS population has more of the ventral mesencephalon (vm) subtype (Figure S25 and Table S14).
The two FACS sorted neuron populations contain distinctive subtypes of DA and non-DA neurons. The
astrocyte population split into three subgroups, immature, resting and reactive. The radial glia population
contains five different subtypes (Figure 6E, S24 and Table S12). We show that each FACS sorted
population is enriched in the expected cell type and there are identifiable subtypes within these groups,
confirming the effectiveness of the celltypeR framework.
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Discussion

Taken together, we present the first protein based complete workflow to identify, quantify, and compare
cell types in complex 3D tissue, specifically hMOs. We define a 13-antibody body panel that can be
used to distinguish between eight different brain cell types and identify subtypes of astrocytes, radial
glia, and neurons. The panel is modular and can be altered or expanded and will still function with the
computational workflow. In our CelltypeR library, we provide a method to preprocess and merge FC
samples, acquired from multiple samples at different dates. We created tools to optimize and visualize
clustering and to assist in consistent cell type annotation. We also created functions to quantify cell
types and compare different conditions. The same workflow with sorting can be used to isolate a more
homogenous subpopulation of a given cell type to perform other assays such as proteomics or
lipidomics, or to replate the cells in culture to grow as a purified population. Here we selected four
populations, FACS sorted the cells, and then performed scRNAseq analysis. We confirmed that each
of the populations, Neuronsl, Neurons2, RadialGlia and Astrocytes, are all highly enriched in the
expected cell types. Further analysis of the scRNAseq data identified subtypes within each cell type
group. We identified DA neurons within both neuronal populations but find different DA neuron subtypes
are more enriched in the two FACS sorted neuron populations. We also identified TPGB as a DA
subtype marker (ventral), in agreement with a recent publication proposing TPGB as a marker of ventral
DA neurons in mice.?®

In our analysis of the differences between three healthy control iPSC lines, we find a clear difference in
the proportion of cells for the two subtypes of neurons between AIW002 compared to the other two lines,
AJGO001 and 3450. AIW002 has more Neurons1 with high CD24 expression and fewer of the Neurons2
population, with lower CD24 expression than AJG001 and 3450. scRNAseq reveals the Neuronsl
population has more NPCs and DA neurons. We also find that AIW002 has more radial glia, fewer
astrocytes, and fewer oligodendrocytes than the other two lines, indicating this cell line may be less
mature. AIW002 might mature at a slower rate or given the very late age of the organoids, maintain a
less mature state perpetually. These findings also indicate that to study the role of myelination, the
AJGO001 or 3450 lines could be a better choice than AIW002.

The CelltypeR workflow we present can be applied for developmental experiments to track the
emergence of neurons and mature glia populations and the loss of stem cells over time. Furthermore,
cell types in hMO disease models derived from patient iPSCs can be compared to control hMOs by
quantifying cell types over time. In the current cell surface panel, most cells in our hMO data are easily
annotated. However, some cells are not easily identified by the FC panel. It is possible these cells are
not expressing many proteins at the cell surface or that these cells represent a cell type not well covered
by the antibody panel. Within our workflow the antibody panel can be easily changed. Our starting
antibody panel could be fine-tuned and tested in our workflow. Furthermore, new panels appropriate for
different complex tissues, for example kidney or gut, can be designed to distinguish cell types using the
CelltypeR workflow. For changes in the antibody panel, a reference matrix from experimental or public
data needs to be created to use the correlation prediction method. We have also outlined all the steps
needed for creating a reference matrix. Altogether, we have created an adaptable method to
reproducibly identify and quantify cell types in complex 3D tissues using an FC panel. We developed a
novel scalable single cell biology workflow to quantify cell types quickly and efficiently in complex neural
tissues, specifically hMOs, across multiple replicates and experimental conditions.
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Methods
1.iPSC lines used for hMOs

The three iPSC cell lines were used: AJG001C, AIW002 and 3450. All were previously reprogrammed
from peripheral blood mononuclear cells as previously described.?* All work with human iPSCs was
approved by McGill University Faculty of Medicine and Health Sciences Institutional Review Board (IRB
Internal Study Number: A03-M19-22A).%

2. Cell culturing conditions
2.1 2D cultures and differentiation.

The control cell line AIW002 was used for all 2D cell cultures. AJG0O01C, AIW002 and 3450 were used
for hMOs. Prior to differentiation, the iPSC cultures were maintained and expanded on Matrigel coated
plates and grown in either mTeSR1 or E8 media as previously described.?!:%

Dopaminergic neural precursor cell (DA-NPC) cultures were generated by dissociating iPSCs into single
cell suspensions and then culturing these cells in low attachment plates to generate embryoid bodies
(EBs).%! EBs were re-plated onto polyornithine and laminin-coated plates and differentiated into neural
rosettes, which were then differentiated into DA-NPCs. DA neurons were differentiated from DA-NPC
cultures on laminin coated culture flasks in neural basal media with supplements and inhibitors as
described.??

To derive oligodendrocyte precursor cells (OPCs) and oligodendrocytes we used a three phase protocol
as previously described.**** In phase one, iPSCs were induced towards neural progenitors while being
patterned with Retinoic Acid in order to resemble spinal cord progenitors. The Sonic Hedgehog pathway
was activated for ventral patterning to recapitulate the conditions of the oligodendrocyte fate. The
progenitors were subsequently expanded as EBs with the addition of the bFGF. In phase two, OPCs
were expanded in suspension and subsequently plated onto polyornithine/laminin-coated vessels for
adhesion. Growth medium mitogens were added for differentiation and maintenance of the OPCs.
PDGREF positive images were acquired at this phase. In phase three, mitogens are withdrawn to allow
the progenitors to exit the cell cycle and to complete differentiation into myelinating
oligodendrocytes. Imaging and FC were performed in this phase when oligodendrocytes would generate
04 positive cells.

Astrocytes were derived from NPCs cultures as previously described.®®* NPCs were seeded at low cell
density and grown in NPC expansion medium. The next day, medium was replaced with ‘Astrocyte
Differentiation Medium 1’. Cells were split 1:4 every week and were maintained under these culture
conditions for 30 days. At DIV50, cultures were switched to ‘Astrocyte Differentiation Medium 2’ and
maintained with half medium changes every 3-4 days.

2.2 Human midbrain organoids

hMOs (AJG0O01C, AIW002 and 3450) were derived from iPSCs cultures according to the established
protocols.?*3 For each healthy control iPSC line, iPSCs were seeded in separate ultra-low attachment
plates in neural induction medium for EBs to form. On day four, medium was changed to midbrain
pattering medium to promote a dopaminergic neural cell fate. On day seven, hMOs were embed in
Matrigel. On day eight, hMOs were transferred to 6-well plates with 4-6 hMOs per cell line in organoid
growth media and placed in shaking cultures. hMOs were maintained in shaking cultures with media
change every 2-3 days.*® In the hMO samples used for gating and sorting neuronal and glia populations
a newer protocol was used.? Dissociated iPSCs were seeded in eNuvio disks for EB formation and
Matrigel embedding, then transferred to bioreactors for culture maintenance. Media changes were
performed weekly and all the same growth mediums were used in both protocols.


https://doi.org/10.1101/2022.11.11.516066
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516066; this version posted November 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3. Immunofluorescence
3.1iPSC, NPCs and Dopaminergic Neurons

Cells were fixed in 4% PFA/PBS at RT for 20 minutes, permeabilized with 0.2% Triton X-100/PBS for
10 min at room temperature (RT), and then blocked in 5% donkey serum, 1% BSA and 0.05% Triton X-
100/ PBS for 2h. Cells were incubated with primary antibodies: MAP2 (1:1000, EnCor Biotech CPCA-
MAP2); Nestin (1:500, Abcam ab92391); SSEA-4 (1:200, Santa Cruz Biotechnology sc-21704); in
blocking buffer overnight at 4 °C. Secondary antibodies were applied for 2h at RT, followed by Hoechst
33342 (1/5,000, Sigma) nucleic acid counterstain for 5 minutes. Immunocytochemistry images were
acquired using Evos FL-Auto2 imaging system (ThermoFisher Scientific).

3.3 Astrocytes.

Cells were fixed 15 minutes at room temperature with 4% formaldehyde in PBS, followed by 3 washes
of 5 minutes in PBS. Cells were permeabilized for 10 min at RT in blocking solution: 5% normal donkey
serum (JacksonimmunoResearch Laboratories, West Grove, PA), 0.1% Triton-X-100, and 0.5 mg/ml
bovine serum albumin (Sigma-Aldrich) in PBS. Cells were incubated for 1h at RT before overnight
incubation at 4°C with primary antibodies: Glial Fibrillary Acidic Protein (GFAP) (1/500 Dako Cat.
Number Z0334); AQP4 (1/500, SIGMA, cat# HPA014784). Secondary antibodies were incubated 2h
at, followed by Hoechst 33258 (1/5,000, Sigma) for 5 min, mounted with Fluoromount-G, and examined
by fluorescence microscopy.

3.4 Oligodendrocytes and OPCs.

Cells were fixed in 2% PFA for 10 min and blocked in 5% BSA, 0.05% Triton for 1h. Mouse anti-O4
(R&D, MAB1326) was added in live cells before fixation for 1h at a final concentration of 1ug/mL. Rabbit
anti-PDGFRa (Cell Signaling, 3174) was added post-fixation at a dilution of 1:200 and incubated
overnight at 4°C. Secondary antibodies were added at a dilution of 1:500 and incubated for 2h at
RT. Nuclei were identified with incubation with Hoechst 33342 (1/5,000, Sigma) for 5 min.

3.5 Midbrain organoids

hMOs were washed in PBS and then fixed for 2hours in 4% PFA diluted in PBS at RT, then placed in a
sucrose gradient overnight at 4°C. hMOs were then embedded in Optimal Cutting Temperature
Compound (OTC) (Fisher Healthcare 23-730-571) and frozen. Cryosections of 20mM were cut using
Cryostat Cryostar NX70 (Thermo Scientific). The slides with the sections were washed 2 times in
ddH20 to remove the OCT, permeabilized 20min in 0.1% Triton-PBS and blocked for 1h in 5%
Normal Donkey Serum (Jackson Immuno Research Laboratories, West Grove, PA), 0.2%
Triton, 0.5mg/mL BSA (Sigma-Aldrich) in PBS. Primary antibodies: anti-O4 (1:200, R&D,
MAB1326); Glial Fibrillary Acidic Protein (GFAP) (1/500 Dako Cat. Number Z0334); and MAP2 (1:1000,
EnCor Biotech CPCA-MAP2) were diluted in blocking solution and incubated at RT for 1h.
Fluorescent-labeled secondary antibodies (Invitrogen) were added at a dilution of 1:500 and
incubated for 45min. Nuclei were identified with Hoechst 33258 (1:5000, Sigma). Cover slides
were mounted using Fluoromount mounting medium (Sigma-Aldrich) and imaged using
confocal microscopy (Leica TCS SP8 confocal).
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4. Sample preparation for flow cytometry

4.1 Tissue dissociation and processing — Main data set hMOs

hMOs were dissociated with a combination of enzymatic digestion and mechanical dissociation. First,
three individual hMOs from each of the data set of nine samples were removed from shaking cultures
and combined into one 15mL tube. Pooled hMOs were washed three times with Dulbecco’s PBS (D-
PBS) (Wisent) to completely remove remaining culture media. Then, after completely removing D-PBS,
2mL of TrypLE express (without phenol red) (ThermoFisher) was added to each sample. The hMOs
were incubated at 37°C for ten minutes then removed to be subjected to mechanical dissociation by
pipette trituration (slowly pipetting up and down ten times). The incubation and the pipette trituration are
repeated twice more. Afterwards, 8mL of D-PBS was added to the samples to stop the enzymatic
reaction. The samples were filtered through a 30um filter (Miltenyi Biotec) to remove any clumps
remaining after digestion and dissociation. Samples were washed twice more with D-PBS.

4.2 Tissue dissociation and processing — Sorting data set hMOs

hMOs were dissociated with a combination of enzymatic digestion and mechanical dissociation. First,
twenty individual hMOs were removed from a bioreactor and combined into one 50mL tube. Pooled
hMOs were washed three times with Dulbecco’s PBS (D-PBS) (Wisent) to completely remove remaining
culture media. Pooled hMOs were transferred to a gentleMACS M-Tube (Miltenyi Biotec). Then, after
completely removing D-PBS, 2mL of TrypLE express (without phenol red) (ThermoFisher) was added
to each sample. The hMOs inside the M-Tube are then next placed on an automated GentleMACS Octo
Heated dissociator. The settings for the dissociation were as follows: 37°C is ON. Spin -20rpm for 24
minutes. Spin 197rpm for 1 minute. After incubation, 8mL D-PBS was added to the samples to stop the
enzymatic reaction. The samples were filtered through a 30um filter (Miltenyi Biotec) to remove any
clumps remaining after digestion and dissociation. The samples were then washed twice more with D-
PBS.

4.3 Tissue dissociation and processing — 2D cell cultures

T-flasks containing cells were washed in PBS then incubated at 37°C in 2mL of TrypLE express (without
phenol red) (ThermoFisher) for 5-20 minutes depending on cell type. Cells were washed off the growth
surface with a pipette, then manual dissociated by trituration until no clumps were seen and transferred
to a 15ml tube. Cells were washed twice in D-PBS.

4.4 Antibody staining — All samples

After counting and isolating one million cells, single cell suspensions were incubated for 30 minutes at
room temperature in the dark with Live/Dead Fixable dye to assess viability. Single cell suspensions
were washed twice with D-PBS to remove any excess dye. After, single cell suspensions were incubated
for 15 minutes at room temperature in the dark with Human TruStain FcX (Biolegend) at a concentration
of 5uL per million cells to block unspecific Fc Receptor binding. Single cell suspensions were washed
once with FACS Buffer (5% FBS, 0.1% NaN; in D-PBS) and then incubated for 30 minutes at room
temperature in the dark with a fluorescence-conjugated antibody cocktail in FACS Buffer (Methods
Table 1). The information regarding working dilutions used in this antibody cocktail is in Methods Table
1. The optimal working dilutions were determined by titrations with similar hMOs and experimental
conditions. After incubation, single cell suspensions were washed twice with FACS Buffer and
resuspended in FACS Buffer. Samples were placed at 4°C until ready to be analyzed by flow cytometry.

In parallel, compensation control staining was performed with the same conditions as the single cell
suspensions. The compensation controls used are UltraComp eBeads™ Plus Compensation Beads
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(ThermoFisher) and ArC™ Amine Reactive Compensation Bead Kit (ThermoFisher) Samples were
placed at 4°C until ready to be acquired by flow cytometry.

Table 1: Panel of antibodies and protein targets to measure using Flow Cytometry to identify cell
types in hMOs with Fluorochrome and antibody information indicated.

. Gene/Protein Dilution
Antibody Name Fluorochrome|Ab clone Manufacturer (CAT#) used
CD44 CD44 Bv421 BJ18 Biolegend (338810) 1:192
Aquaporin-4 AQP4 AF488 Polyclonal B0SS (b5-0634R-, .og

A488)

Miltenyi Biotec (130-|1:20
GLAST GLAST APC ASCA-1 095-814)
HepaCAM HepaCAM  |AF594 Polyclonal i?gj) (0S-5840R-;.535
CD71 TNR BV650 CY1G4 Biolegend (334116) |1:333
CD184 CXCR4 BV605 12G5 BD Optibuild (334116) |1:48
CD133 PROM1 PE-Cy7 clone 7 Biolegend (372810) |1:333
CD15 FUT1/SSEA-1BV785 W6D3 Biolegend (323044) 1:48
CD29 ITGB1 APC-Cy7 TS2/16 Biolegend (303014) |1:48
CD56 NCAM PercP-Cy5.5 5.1H11 Biolegend (392420) |1:96
CD24 CD24 BV711 ML5 Biolegend (311136) [1:192

Miltenyi Biotec (130-|, .
04 04 PE REA576 117-357) 1:31

R&D Systems|, .
CD140a PDGFRalpha AF700 PRa292 (FAB1264N) 1:40

4.5 Flow Cytometry acquisition — All data sets

Single cell suspensions were acquired on an Attune NXT (ThermoFisher). The information for the
configuration of this Flow Cytometer is in Methods Table 2. Daily CS&T performance tracking was done
prior to cell acquisition by recommendation of manufacturer. PMT voltages were determined by Daily
CS&T performance tracking. Compensation controls were also acquired, creating an acquired
compensation matrix. Between 48 000 to 338 000 cells were acquired per sample.

4.6 Flow Cytometry cell sorting defined by CelltypeR workflow — Sorting data set

Single cell suspensions were sorted on a FACSAria Fusion (Becton-Dickinson Biosciences). The
information for the configuration of this Flow Cytometer is in Methods Table 2. Daily CS&T performance
tracking was done prior to cell acquisition by recommendation of manufacturer. PMT voltages were
determined by Daily CS&T performance tracking. Compensation controls were also acquired, creating
an acquired compensation matrix.
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Table 2: ThermoFisher’s Attune NxT optical path configuration.

Laser \(/X;\;elenght Detector Dichroic mirror ggge;) (Beme
VL6 740 LP 780/60 BP
VL5 680-740 710/50 BP
VL4 635-680 660/20 BP
405 VL3 555-635 610/20 BP
= VL2 495-555 525/50 BP
2 VL1 417-495 450/40 BP
BL2 555 LP 695/40 BP
o 488 BL1 503-555 530/30 BP
= ssc - 488/10 BP
. YL3 650 LP 780/60 BP
85 |561 YL2 600-650 620/15 BP
S5 YLl 577-600 585/16 BP
RL3 740 LP 780/60 BP
- 640 RL2 690-740 720/30 BP
& RL1 654-690 670/14 BP
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Methods Table 3: BD’s FACSAria Fusion optical path configuration.

Laser Wavelenght Detector Dichroic mirror | Filter (Band

(nm) (Long pass) pass)

A 750 LP 780/60 BP

B 690 LP 710/50 BP

C 630 LP 660/20 BP

405 D 595 LP 610/20 BP

% E 505 LP 525/50 BP

2 F 450/50 BP

A 655 LP 695/40 BP

o 488 B 502 LP 530/30 BP

& C 488/10 BP

A 735 LP 780/60 BP

§ B 685 LP 710/50 BP

5] 561 C 630 LP 670/14 BP

é D 600 LP 610/20 BP

o E 582/15 BP

A 755 LP 780/60 BP

- 640 B 690 LP 730/45 BP

2 C 670/30 BP

5. Single cell sequencing of FACS sorted populations

Three separate tubes of AIW002 hMO were dissociated as described above. At the antibody labelling
stage oligonucleotide tagged antibodies (Hashtags, Biolegend) were added with the other cell type
specific antibodies. The cells were sorted into FACS buffer. The same sorted populations from each of
the three samples (replicates) were combined after sorting. These four populations were sorted into four
gates and were sorted until the sample with fewest cells (Neuronsl) contained 100,000 events. The
sorted samples were centrifuged for 5minutes at 400g and resuspended in 250 ml of D-PBS + 0.1%
BSA. The cell concentrations were calculated with FACSAria Fusion (Becton-Dickinson Biosciences).
The single cell suspensions were diluted to 1000 cells/ml targeting ~15,000 cells captured for
seguencing. One sample was prepared for each FACS sorted population.

Following the creation of the cell suspension, the Chromium NextGEM Chip G (PN-1000120) was then
loaded as per manufacturer recommendation and run on the Chromium Controller (PN-1000204) for
GEM creation. All proceeding thermocycler steps in the 10X protocol were carried out on a Bio-Rad
C1000 Touch thermal cycler (1851196). Following GEM-RT incubations, samples were stored at 4°C
overnight. Post GEM-RT cleanup and cDNA amplification were carried out per manufacturer protocol.
Samples were stored at -20°C until they were processed for library generation. 3’ gene expression and
cell surface protein libraries were constructed per manufacturer protocol and stored at -20°C until
sequencing submission. 25 mL of each sample library was sent for sequencing at the McGill Genome
Centre.
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Methods Table 4: Single cell RNA sequencing reagents

Product Vendor Product number

Chromium Next GEM Single Cell 3’ kit | 10X Genomics | 1000268

v3.1

3’ Feature Barcode kit 10X Genomics | 1000262

Chromium Next GEM Chip G Single Cell | 10X Genomics | 1000120

Kit

Dual Index Kit TT Set A 10X Genomics | 1000215

Dual Index Kit NT Set A 10X Genomics | 1000242

Dynabeads MyOne SILANE 10X Genomics | 2000048

Magnetic Separator 10X Genomics | 230003

SPRIselect Reagent Beckman B23318
Coulter

Qiagen Buffer EB Qiagen 19086

Data processing
6.01 Flow Cytometry data cleanup for analysis — All data sets

The data generated was cleaned up using FlowJo (version 10.6) (Becton-Dickinson Biosciences).
Briefly, a starting gate was used to select appropriate cell size (X: FSC-A, Y: SSC-A). A second gate
was used to discriminate doublets from the analysis (X: FSC-W, Y: FSC-H). Finally, the last gate was
used to remove dead cells from the analysis (X: LiveDead Fixable Aqua, Y: FCS-A). See Methods Figure
1 for a gating example. After data cleanup, a new .fcs file was generated with FlowJo and exported for
further analysis done with R.

6.02 Data analysis and CelltypeR R library

All computations were performed in R. We created a R library of functions to perform the analysis,
CelltypeR. Our functions required functions from multiple other R libraries referenced in descriptions to
follow.

The R library can be found, along with workbooks for the complete workflow and generation of each
figure, at https://github.com/RhalenaThomas/CelltypeR_single_cell_flow_cytometry_analysis

Computational Workflow:

1. Data preprocessing:
a. Read FlowJo files into R.
b. Create a data frame with intensity measurements for each marker for all samples within
the experiment to be analyzed.
c. Harmonize data if desired.
d. Create a Seurat single cell object for further analysis.
2. Creation of cell type clusters
a. Clustering optimization to compare clustering methods and parameters and visualize
results.
b. Summarize statistics to compare clustering methods and parameters.
c. Select one method and smaller parameter space to compare cluster stability.
d. Evaluate statistics and visualization to determine the best clustering method for a given
visualization.
3. Cluster annotation
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a. For first data set: marker visualization and correlation assignment model.
b. For subsequent data sets: marker visualization and correlation assignment model,
Random Forest Model, Seurat Label Transfer.
4. Quantify cell types and measure expression levels of markers within cell types.
5. Define marker levels for cell types.
6. Statistical analysis between different groups of interest.

6.03 Data preprocessing

The .fcs files without dead cells, debris, and doublets created in FlowJo are read into R and processed.
The .fsc files contain area, width, and height of the fluorescence signal for each marker as well as the
forward and side scatter of the light. Then R using the flowCore package is used (Hahne et al., 2009).
The area values for each channel are selected to represent the expression intensity for each antibody.
All the .fsc files within one folder are read into into one R data object. A dataframe is created with the
channels and saved for further use. Individual cell cultures and hMO organoid samples for testing the
pipeline and gating were used in this raw format to create a Seurat single cell data object.

For the hMO samples, the data was aligned to remove batch effects and technical variability. Each file
represents an experimental sample, and the samples were aligned as follows: First, to enhance the
distinction between positive and negative antibody staining the raw data is transformed using the
biexponential transform function from flowCore with default parameters (a=0.5, b=1, ¢=0.5, d=1, =0,
w=0). The transformed data was visually inspected to confirm the were no errors (Methods Figure 2).
To combine the nine different MBO samples and account for batch effects, the signals were aligned
using an unbiased approach, the gaussNorm function in flowStats (Hahne et al., 2013). Local maxima
are detected above the bandwidth we set to be above 0.05, to avoid picking up noise, each peak is
given a confidence score reflecting the height and sharpness of the peak, the threshold for two peaks
to be considered too close together was set too 0.05. Landmarks are then detected and aligned, such
that each landmark is shifted to a benchmark, which corresponds to the position of the closest peaks
across all samples. After alignment the data is reverse transformed to improve visualization by UMAP
in downstream analysis.

6.04 Creation of cell type clusters

For the analysis in Figure 3, to test cluster methods and cell type annotation methods, we selected a
subset of hMO cells. From 8 of the MBO 9000 cells were randomly selected and one sample all the cells
(1578) cells were selected before transformation and alignment. We compared FlowSom(ref),
Phenograph(Ref) and the Seurat(Ref) Louvain network detection function as well as parameter space
(k neighbours, resolution, k clusters) available for the different algorithms. We calculated intrinsic
statistics and produced UMAPs and heatmaps for visualization. We found FlowSom was not suitable
for creating clusters based on a cell types, although the intrinsic statistics are best for FlowSom
clustering (Methods Figure 3). Phenograph uses the Louvain network detection method(ref) and
computes the Jaccard coefficient which considers the number of common neighbours between cells.
Phenograph functions well, however we saw little difference to the Louvain using the Seurat library and
proceeded to use the Seurat package for Louvain network detection to obtain clusters for ease of use
with the overall workflow. We then proceeded to test the cluster stability at different resolutions,
calculating the RAND Index and standard deviation of the number of clusters across 100 iterations of
clustering with different random start points. The results informed the choice of cluster numbers to
annotate.
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6.05 Cluster annotation

Cell type annotation was performed on the subset of 9000 cells using visualization and a correlation
assignment model (CAM) we created. For visualization we created functions to make UMAPs for
expression levels of each antigen targeted in the antibody panel as well as heatmaps grouped by cluster
numbers. The expended expression patterns were of the antibodies as used in combination with the
CAM predictions. For the 2D cultures in Figure 2, cell types were assigned by the visualization of
expression values, the known original cell type and the overlap in space on the UMAP. In our culture
system iPSC can be come any cell type, NPCs are precursor cells for all three other cell types included
(astrocytes, DA neurons and oligodendrocytes). The NPC cultures are multipotent but will contain cells
that are beginning lineage selection and those retaining a multi potent state.

For the full hMO dataset of nine samples and the followup hMO datasets used for gating and sorting
experiments a Random Forest Model trained on the subset hMO data and Seurat transfer labels
predictions were used in addition to the CAM and visualization methods used on the subset data. The
combined results of methods are more reliable than each method alone. Each of the four methods of
annotation are input into the cluster annotate function to automate the cluster annotation process.

6.06 Creation of the predicted expression matrix for antigen proteins in the antibody panel

Astrocytes, oligodendrocyte precursors (OPCs), oligodendrocytes (Oligo), radial glia (RG), endothelial
cells, epithelial cells and pericytes are all expected to be present in hMO tissue. Microglia are found in
brain tissue but are not expected to be present in MBOs and thus were not included in the reference
matrix. In our early tests we found that pericytes were highly overpredicted. We would expect very few
if any of these cell types based on previous scRNAseq experiments. Pericytes are not well defined by
the FC panel, and we decided to remove these from the reference matrix. We selected expression
values for the 13 antigens target by the FC antibody panel. Not all antigens were available from all cell
types or databases. Input data was taken from the following public sources: protein expression data
scored from the Human Protein Atlas (https://www.proteinatlas.org), bulk RNAseq from human®’,
scRNAseq data from human fetal midbrain and other brain tissue from the Human Cell Landscape®®
and cerebral organoids and primary human cells from the UCSC Cell Browser®. For the antibody O4,
the epitope is a glycoprotein, and the specific corresponding gene is unknown, however the gene
NKX6.2 is a marker of mature oligodendrocytes, with expression highly correlated to O4 protein
detection.*° Finally, the FC data acquired in this study from 2D cell cultures, iPSC, neural precursor
cells, neurons, astrocytes, and oligodendrocytes. For each data set the values were z-scored then
minmax normalized marker by marker to fit between 0 and 1. The mean expression values were
calculated separately for scRNAseq organoid data and scRNAseq brain data. Then the mean
expression values were then calculated between scRNAseq-hMO, scRNAseq-Brain, RNAseq. Then
the mean of that result was calculated with the FC data. The FC data was weighted more highly than
the public data sets because it is experimental data collected on protein levels with the exact antibodies
used for MBO experiments, however we didn’t not generate data on all possible cell types. The predicted
expression values were again z-scored then minmax normalized marker by marker to fit between 0 and
1 to be comparable to the transformed FC data to be used in the correlation assignment model.

6.07 Assigning cell type labels to clusters using correlation to the predicted expression matrix

Pearson correlation coefficients, R values were assigned to each cell, correlating the FC intensity
expression levels of antibody panel to the predicted expression values in the reference matrix for each
cell type expected in the MBO. The R values were calculated for each potential cell type. Then for each
hMO cell the max R value and the second max R value were selected. These values were then used to
predict the cell type for each hMO cell. A threshold was set of R > 0.45 for a cell type to be predicted,
otherwise the cell is assigned as ‘unknown’. If the Rmax1 — Rmax2 < 0.05 then a mix cell type is
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assigned. For example, Neuron-NPC. To the cluster annotations the top three most frequently predicted
cell types for each cluster were calculated. If most of cells were predicted within a cluster as one cell
type, this cell type was assigned to the cluster. If the frequencies of predicted cell types were distributed
across many cell types, the cluster was assigned as mixed or unknown.

6.08 Random Forest Model

A data frame was created from cell type from the 9000 cells per sample subset of hMO data and the
matching expression. The data was split into 50/50 into test and training data. The training data was
input into the function RFM_train which uses the randomForest and the function caret for optimization.
A range of number of variables randomly sampled in each split (mtry) from 1 to 10, the best mtry was 6.
Ranges of other parameters were tested, and the optimal values were used in to train the final model:
max nodes = 30, node size = 25 and number of trees = 1000. The trained model was then used to
predict the cell type of each cell in the full data set and the new flow sorted data. The topmost predicted
cell type for each cluster was used as the cluster annotation prediction.

6.09 Label transfer using seurat

We made a function that follows the Seurat workflow for label transfer combined into one function. The
annotated Seurat object from the 9000 cells per sample subset of h(MO data was used as the reference
data and the full dataset and FACS sorted datasets were used as the query objects. Anchors were
found between the two objects using 25 principal components to predict the cell types, the max
prediction was selected for each cell in the query data. No threshold for predictions were set. The most
frequently predicted cell types within each cluster were used as the cluster predictions.

6.10 Quantification of cell types and statistical analysis

Proportionality tests were run using the R library scProportionTest
(https://github.com/rpolicastro/scProportionTest ) using the Seurat object with all annotated cells as the
input. One-way ANOVAs, two-way ANOVAs and Tukey'’s pos hoc tests for main effects and interactions
were all run using functions in our R library. A preprocessing function is used to pull the expression
data out of the Seurat object and add the desired variables: iPSC line, data of experiment, days in
culture, hMO batch. The statistic functions use the base R functions aov and TukeyHSD. The effect of
each variable were analyzed separately. A loop is used to analyze each cell type separately. Two-way
ANOVAs were performed with one of the variables listed above and protein (13 targeted in the antibody
panel) as second variable.
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Methods Table 5: Function names in the CelltypeR library for analysis processes.

Analysis step

Function name

Processes

Data preprocessing

fsc to df

Read in fsc create R list and data frame

Harmonize

Transform, align, retro-transform,
create data frame

df to seurat

Create a Seurat single cell object

Create cell type clusters

Explore_param

Run FlowSom, Phenograph, Louvain
(Seurat) with vectors of parameters.
Create UMAPs, heatmaps, clustree
plot

Intrinsic_stats

Plot intrinsic stats run in

Clust_stability

Select one clustering method and
compare one parameter. Run cluster
stability statistics.

Annotate clusters

See features

Visualization with UMAP and heatmap

CAM

Correlation  assignment  method,
predicts cell types, creates plots and
tables of the prediction outputs.
Requires a reference matrix.

RFM_train Input annotated FC dataset to train the
Random Forest Model internally
optimizing parameters and saving the
best model.

RFM_predict Predict cell types with RFM, creates

plots and tables of the prediction
outputs.

Seurat_transfer

Requires and annotated Seurat object
as a reference, creates plots and tables
of the prediction outputs.

Cluster_annotate

Annotates clusters on the consensus of
inputs.

Compare Groups

Prep_for_stats

Selects expression data from Seurat
object organized by designated
variables

Run_stats Runs a series of ANOVAs with Tukey’s
test and outputs results tables
make_plots Creates box plots to visualize

interaction effects

6.11 Testing gates reverse engineered using hypergate

Cell types were selected in full annotated hMO dataset and input into the hypergate function.?® A table
of predictions was output. For each cell type the threshold levels for each antibody required to define
the cell type were output. These thresholds are in order from most to least important. For testing the
gates, manual gating was applied in FlowJo with the top gate for each cell type in each sample being
set as live single cells. The gates were applied in an AIW002 sample and then applied across the other
samples. For gating the two antibodies were visualized by scatter plot and a box was drawn selecting
the thresholded cells from the antibody pair. The gated cells were then selected and gated with the next
pair of antibodies until all thresholds were applied. The final gated cell types from all samples were
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exported as fsc files and read into R following the CelltypeR workflow. To apply gates to FACS four
selected samples examined each cell type gate and selected gates which mostly exclusive for different
cell types. The neurons can be separated from glia and then split into two populations and the glia can
be split into two populations.

6.12 Single cell sequencing analysis

The FASTQ files processed using 10X CellRanger 5.0.1 software are installed on the Digital Research
Alliance of Canada: Beluga computing cluster. For each of the four sorted populations, the CellRanger
output files raw expression matrix, barcode, and feature files were used to create a Seurat data object
with minimum filtering of RNA features > 100. After this point data was run locally and all details can be
found in the R notebook, ‘scRNAseq_processing’. RNA features, RNA counts, and percent mitochondria
were checked for quality control for each sample: Neuronsl, Neurons2, Glial(astrocytes) and Glia2
(radial glia). Further filters were applied.

Methods Table 6: Filters applied to each population

Sample RNA features RNA count Percent Mitochondria
Neuronsl >250 <10000 <25
Neurons2 >300 <10000 <25
Astrocytes >500 <10000 <25
Radial Glia >300 <10000 <25

For the glia samples there was a large number of cells after filtering. The Seurat function HTODemux
was used to assign Hashtag (replicate labels). For neuron samples and radial glia all cells were selected,
for glial/astrocyte sample the original count was very high. Increase selection of true cells, cells with
assigned hashtags were used for further processing. For all samples, doublets were removed using
Doublet Finder (ref https://www.cell.com/cell-systems/fulltext/S2405-4712(19)30073-0).**  The
expected percent of doublets estimation based on the number of cells present after filtering and the 10X
version 3 user guide. For each sample data was normalized, variable features selected, PCA and UMAP
dimensional reductions were performed, and clusters detected with Louvain network detection (25
dimensions and 43 neighbours selected, and a range of resolutions was run).

Clusters were annotated using a consensus between expression of known cell type markers from gene
lists, analysis of cluster markers and cell type predictions of reference data (see below) using Seurat
find anchors and label transfer. Subtypes of major cell type groups were observed, at this point these
cluster were all merged. The individually processed samples were then merged, samples were down
sampled to balance the data and ease processing time.

Methods Table 7: Cell counts after filtering and counts used in merged data object

Sorted Population Approximate Cell count after filtering | Down sample to
number of cells
loaded in 10X

Controller
Neuronsl 10000 1809 1809
Neurons? 15000 9390 2000
Astrocytes 15000 8123 3000
Radial Glia 15000 4805 2000

After the four samples were merged the standard processing and clustering was run again using the
same settings. Clusters were annotated again, retaining subtypes of each cell type and identifying the
DA neurons. Each subtype was analyzed to find subtype markers and analyze using GO biological

19


https://www.cell.com/cell-systems/fulltext/S2405-4712(19)30073-0
https://doi.org/10.1101/2022.11.11.516066
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516066; this version posted November 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

processes. Reference datasets (see below) using Seurat anchors and label transfer predictions were
used to define subtypes of cells. A threshold for assignment was set to 0.5 for brain reference data and
0.8 for hMO scRNAseq data.

Methods Table 8: Data sets used as reference data to predict cell types in scRNAseq

Data set Reference Link to data
Developing cortex Nowakowski et al, Science 20174? | https://cortex-dev.cells.ucsc.edu
Developing forebrain | Van Bruggen et al, https://human-

Developmental Cell 202243 forebraindev.cells.ucsc.edu
Developin brain Bhaduri et al, Nature 202144 https://dev-brain-regions.cells.ucsc.edu
Adult midbrain Kamath et al, Nature 20224 https://singlecell.broadinstitute.org/
DA subtypes single_cell/ study/SCP1768/
Astrocyte subtypes
Human Midbrain | Mohamed et al, BrainComm | https://www.ncbi.nlm.nih.gov/geo/query/
Organoids 20214 acc.cgi?acc=GSE186780

Developing cortex, forebrain and whole brain datasets were all reconstructed into Seurat objects from
the UCSC cell browser following the website instructions.*’ Each reference was down sampled in Seurat
to reduce the total cell number to less than 50000.

For snRNAseq data from human adult postmortem brains (Kamath et al) three separate reference sets
were created. The expression matrix, barcodes and feature files were used to create a Seurat object.
The meta for cell type and cell subtype annotations data was added from the UMAP_tsv files provided
by Kamath et al. The brain region data was added from the provided meta data file. The adult midbrain
was subset by brain region selecting only the midbrain cells. The DA subtypes and astrocyte subtypes
were separately subset by using the main cell type annotation.

1. All cell types (astrocytes, oligodendrocytes, microglia, endothelial cells, DA neurons and other
neurons). This was used in the initial cell type annotations.

2. DA neuron subtypes, used to try to identify DA subtypes. All the hMO subtypes matched only
one subtype from adult brain.

3. Astrocyte subtypes, used to identify astrocyte subtypes. All astrocytes subtypes in hMO
matched one subtype.

After annotating the main groups of cell types (DA neurons, neurons, astrocytes, radial glia, NPCs,
mixed) subtype annotations were applied. To annotated subtypes, the main cell type was subset. The
Seurat find all markers function was used allowing both up and down regulated gene markers. The top
5-10 marker genes sorted by highest Log2 Fold change with significant adjusted p-values were further
investigated by literature search to determine the cell subtypes.

7.Data availability
Flow cytometry: Raw data and FlowJo selected live gated cells are available on github and deposited

at https://flowrepository.org/
scRNAseq: The FASTQ files, CellRanger outputs will be deposited on GEO
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8.Code availability

All materials are available on github:
https://github.com/RhalenaThomas/CelltypeR

The repository includes:
1. Rlibrary CelltypeR containing all functions listed above.
2. Workbooks for each analysis step.
3. Code used to generate figures.
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Figure 1: A workflow to identify and quantify cell types in midbrain organoids (hMOs) using a panel of flow cytometry antibodies. A) Schematic of the CelltypeR work-
flow: tissue (hMO) is dissociated and labelled with an antibody panel, expression levels are measured on individual cells using flow cdytometry (FC), live single cells are gated
from the debris and doublets in FlowJO. The data is then preprocessed in R, merging files, and harmonizing the data if wanted. Unsupervised clustering is used to find groups
of cell types, methods are provided to aid In cluster annotation, annotated cells are quantified, and statistical analysis is applied. B) Example image of a cryosection from an
AJGO001C hMO, 285 days in final differentiation culture, showing total nuclei (Hoechst), oligodendrocytes (O4), astrocytes (GFAP) and neurons (MAPZ2). Top: cross section of a
whole hMO stitched together from tiled images, scale bar = 250mm. Bottom: zoomed in image cropped from the whole hMO image, scale bar = 250mm. C) Density plots show-
INng the cell size on the y-axis (FSC) and intensity of staining for each antibody in the panel, x-axis (log scale biexponential transformation).
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Figure 3: Identification of cell types in hMO using the flow cytometry antibody panel. A) Heatmap of predicted relative expression of each antibody in the FC panel for each poten-
tial cell type in hMOs. Values are calculated from 2D FC intensities, sScRNAseq from hMOs and human brain and RNAseq from human brain. B) Violin plot showing the distribution Pear-
son’s correlation coefficients R for hMO cells (y-axis) with the indicated potential brain cell type (x-axis). The R values are plotted for the cell type with the max R value. The black line
iIndicates the threshold of R=0.45 which was set as the cut-off for assigning a cell type prediction. C) Bar chart showing the number of hMO cells categorized as each cell type by the
max correlation, each cell type is indicated on the x-axis. HMO cells were assigned as a double cell type if the first and second max R values were within 0.05. Only cell assignments
with over 100 cells are included in the bar chart. D) UMAP showing unsupervised clustering by Louvain network detection. Cell types were annotated using a combination of correlation

assignment and expert analysis of expression within clusters. E) Heatmap of relative expression of each antibody grouped by the cell types identified by unsupervised clustering of
hMO cells. (n=73,578 cells from 9 hMO samples).
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annotated using CelltypeR. B) Dot plot of the expression level (colour intensity) and the proportion of cell (dot size) for each protein marker detected with the panel in each cell type
group. C) UMAP split by IPSC line (3 samples pooled per IPSC line) showing the proportion of cells in each IPSC line. Cell annotations and colours are the same as the UMAP above
from A. D) Bar chart of the proportion of hMO cells in each cell type (indicated by colour) for each IPSC line (x axis). Colours corresponding to cell types are shown in the legend on
the right. E) Dot plot with confidence interval for the proportionality test comparing the AIW002 IPSC line to the AJG001 and 3450 IPSC lines, for each cell type (y-axis). Pink dots indi-
cate a significant difference in cell type proportion (FDR < 0.05 and absolute value of Log2FD > 0.58). Negative log2FD values indicate cell proportions increased in AIW002 and posi-
tive values indicate cell proportions decreased in AIW002 compared to the other two IPSC lines. F) Heatmap of mean protein expression values grouped by cell type and split into
the three IPSC lines. Line names are indicated on the bottom x-axis and cell types are indicated on the top x-axis.


https://doi.org/10.1101/2022.11.11.516066
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cell types identified Reverse engineer gates Manually gate Run CelltypeR
Annotated clusters Apply hypergate FlowdJo Annotate Cells

8 1 ,

]
UMAP 1

B C
100% CelltypeR
cell type annotations
10 FlowJo gated o . Astrocytes 1
populations Q. /9% Astrocytes 2
= Radial Glia 1
& ést(;*o;:gt?sl @ Radial Glia 2
ndothelia o
0 Epithelial S 50% R
0 ® Neurons c Endothelial
= yesvellan :'cE) T m:lions 1
- ® NPC Q 950, . N 5
® Oligodendrocytes £ i
10 » RadialGlia al Oligodendrocytes

B Stem cell like

® StemCellLike

0%

RadialGlia |

3 & © 5, O O 3 -

£ @ © € € & o -

O L i O O Z — —

O — e - - O D

S5 8 a 3 o O

A0 0 10 2 u-'é_l w =z 2 =
UMAP_1 %

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516066; this version posted November 13, 2022. The copyright holder for this preprint
i ifi i i ted bioRxiv a license to display the preprint in perpetuity. It is made

Figure 5: CelltypeR can be used to gate populations of interest and annotate the gated cells. A) Schematic showing the method used to gate cell type populations defined
with CelltypeR. Cell types were annotated and selected in the full h(MO dataset. Then the package hypergate was applied to reverse engineer the threshold expression levels
to define each cell population. Astrocytes, radial glia, stem cell like cells, oligodendrocytes, epithelia cells, endothelial cells, neural precursor cells (NPCs), neurons 1 and neu-
rons 2 cell populations were separately gated manually in FlowdJo from the hMO dataset. B) The proportions of FlowJo gated cells is uneven across populations, to improve
visualization, the gated populations were down sampled to 10 000 cells per cell type. Some cell types have fewer cells and the total population was included. The UMAP of the
merged and clustered FlowJo gated cells is coloured by the gated populations. Labels on the UMAP are the cell types annotated using the CelltypeR workflow. C) Bar chart
with the proportion of cell types identified with CelltypeR (indicated by colour in the legend) within each FlowJo gated population (x-axis).
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Figure 6: scRNAseq analysis of four FACS sorted populations defined using CelltypeR confirms cell types and provides transcriptional pro-
files for these cell populations. A) FlowJo gating strategy applied to new hMO derived cells to isolate four cell populations by FACS: neurons1, neu-
rons2, astrocytes and radial glia. The approximate proportion of cells gated in each final sorted population is indicated in the gating box. B) Protein ex-
pression levels measured by FC antibody intensity for each FACS gated cell population. C) Correlation of RNA transcript expression of genes corre-
sponding to the 13 protein markers used for FACS sorting. Note there is a high correlation between RNA expression and protein expression for radial
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glia, neurons 1 and astrocytes. Only the astrocytes correlation has a statistically significant correlation. The neurons2 protein expression correlates more
strongly with the neurons1 RNA expression. D) UMAP of the four sorted populations merged and clustered with Louvain network detection. Neurons"
has only 1809 cells, neurons2 was down sampled to 2000, astrocytes were down sampled to 3000 and radial glia were down sampled to 2000 to improve
visualization. The original FAC sorted population is indicated by colour and in the legend. E) UMAP of the four merged populations with cell types and
cell subtypes annotated from the scRNAseq data. The UMAP is coloured by cell subtypes and the main cell types are labelled on top of the UMAP. Sub-
type markers were identified from differential RNA between clusters. F) Bar chart of the proportion of cell subtypes annotated from RNA expression within
each FACS sorted populations, cell subtypes are coloured by the same legend as the UMAP In E.
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