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Abstract 
 
With the recent surge of single cell RNA sequencing datasets (scRNAseq) the extent of cellular 
heterogeneity has become apparent, yet it remains poorly characterized on a protein level in brain tissue 
and induced pluripotent stem cell (iPSC) derived brain models. With this in mind, we developed a high-
throughput, standardized approach for the reproducible characterization of cell types in complex 
neuronal tissues. We designed a flow cytometry (FC) antibody panel coupled with a computational 
pipeline to quantify cellular subtypes in human iPSC derived midbrain organoids. Our pipeline, termed 
CelltypeR, contains scripts to transform and align multiple datasets, optimize unsupervised clustering, 
annotate cell types, quantify cell types, and compare cells across conditions. We identified the expected 
brain cell types, then sorted neurons, astrocytes, and radial glia, confirming these cell types with 
scRNAseq. We present an adaptable analysis framework providing a generalizable method to 
reproducibly identify cell types across FC datasets.   
 
 
Introduction 
 
Investigating the molecular, cellular, and tissue properties of the human brain requires the use of cellular 
models, as primary live human brains cannot be easily accessed for research. Patient-derived disease 
3D tissues, such as human midbrain organoids (hMOs), derived from reprogrammed human induced 
pluripotent stem cells (iPSCs), provide a promising physiologically relevant model for human brain 
development and diseases, including neurodegenerative diseases such as Parkinson’s disease1–3. As 
new models emerge, the complexity and reproducibility of these systems needs to be captured. To 
determine how faithfully organoids model the human brain and how organoids derived from individuals 
with disease differ from those derived from healthy controls, new approaches towards characterization 
are required. Effective and quantitative methods are needed to determine the cell types within these 
complex tissues and to apply these benchmarks reproducibly across experiments. At present, individual 
cells within brain or organoid tissue can be identified using single cell RNA sequencing (scRNAseq) or 
labeling of protein or RNA in tissue sections. These tools are useful but limited. scRNAseq is a powerful 
tool that has been used to identify known and novel cell types, cell states, and cell fate trajectories4–6. 
However, using scRNAseq to compare proportions or populations of cells between genotypes over 
multiple time points is not practical for hMOs and may result in sampling bias, as less than 1% of the 
whole tissue is sequenced. While scRNAseq provides detailed expression values to determine sub-
types of cells, only relatively few samples can be run at a given time and all the cells must be alive and 
prepared in parallel, which can lead to technically challenging experiments. These experiments are also 
costly for the number of replicates needed to ensure enough power for comparing multiple time points, 
disease states, or pharmacological treatments7–9. Another option to quantify cell types is immunostaining 
or in situ hybridization of tissue sections. This has the advantage of capturing cell morphology and 
spatial resolution. However, sample preparation, image acquisition, and analysis are labour intensive 
and limited in quantitative accuracy. Moreover, for 3D tissues, either only a small section can be 
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analyzed or the entire tissue must be reconstructed and only a few cell types can be detected at 
once10,11.  
 
Here, we use flow cytometry (FC) to measure the protein expression levels of a panel of cell surface 
markers enriched in specific brain cell types. FC is a fast, quantitative, and robust method, used widely 
in immunology and cancer research12–14 but to date only sparsely in neuroscience. Typically in 
neurobiology, only two or three antibodies are used to distinguish between pairs of cell types15,16 or to 
enrich one cell type17,18. Traditional FC analysis methods using FlowJo, the commercial FC analysis 
software package that is currently the standard in the field, are time consuming and subject to user error. 
Methods to standardize data preprocessing and analyze combinations of more than 3 antibodies in one 
experiment are starting to emerge19,20. However, no methods are available to automate cell type 
annotation in FC from complex tissues such as brain or 3D brain organoids using a large antibody panel. 
To create such an analysis framework, we produced an experimental dataset using cultured hMOs 
differentiated from human iPSCs1,21,22. Our workflow also provides the methods to select subtypes of 
cells and gate these cells for further analysis, such as RNAseq, proteomics, or enriching cultures. We 
select example cell populations, sort these cell types, and further characterize these with scRNAseq. 
Here we present a complete framework for annotating cell types within complex tissue and comparing 
proportions of cell types across conditions and experiments. 
 
Results 
 
An antibody panel to identify multiple cell types in human midbrain organoids 
 
In Figure 1A, we provide a schematic of the CelltypeR analysis workflow (see methods) used to quantify 
and compare cell types from tissues with a complex mixture of cell types such as the brain. To test our 
CelltypeR pipeline, we used hMOs22,23 differentiated from iPSC lines derived from three unrelated 
healthy individuals (Table S1). The hMOs were grown for 9 months in culture, a time point at which 
neurons are mature and myelination has been shown to occur.1,24 Immunofluorescence staining of 
cryosections shows that these organoids contain neurons, astrocytes and oligodendrocytes (Figure 
1B). In FC, combinations of the relative intensities of 2-3 antibodies are often used to distinguish 
between cell types. However, in hMOs we expect approximately nine cellular types with a continuum of 
stages of differentiation.1,25,26 We first defined a panel of 13 antibodies, which includes well-
characterized antibodies previously used to define neural stem cells, neurons, astrocytes, and 
oligodendrocytes or to define other cell types in cultured immortalized human cell lines, blood, or brain 
tissues (Table S2). We dissociated the mature hMOs and labeled the cell suspension with these 
antibodies then measured the fluorescence intensity values using FC. The single live cells were 
sequentially gated using FlowJo. The FC results show that each antibody has a range of intensities 
across different cells (Figure 1C and S1). We conclude that the antibody panel has the potential to be 
used to define cell types by identifying combinations of antibody expression profiles unique to different 
cell groups.  
 
Validation of the antibody panel using 2D cultures and known cell type markers 
 
To test the expression of the selected antibodies on known cell types, we separately differentiated iPSCs 
into dopaminergic neuronal precursor cells (DA NPCs), dopaminergic neurons (DA neurons), 
astrocytes, and oligodendrocytes (oligos) (Figure 2A and Table S3). The cultures were dissociated, 
and the 13-antibodies in the FC panel were applied. We examined the staining for each antibody across 
the cultured 2D cells (Figure 2B). Within each cell type there was a variation in protein levels that could 
be used to define subgroups of cells. To identify subtypes of cells and visualize the markers, we applied 
unsupervised clustering developed as part of the CelltypeR workflow. Some tools exist for automated 
processing and formatting of FC and numerous tools exist for cluster analysis of single cell 
transcriptomic data that can be applied to other FC data. Thus, we took advantage of these existing 
tools and created new functions in an R package to process FC data (see methods). We combined the 
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FC acquired antibody intensities from the five separate iPSC derived cultures, normalized the data, 
performed dimensional reductions (PCA) and used Louvain network detection to identify groups of cells. 
The UMAP visualization shows separate groups for each of the five cell types with some overlap (Figure 
2C). We observe that the iPSCs are mostly separated from all the other cell types. The DA NPC culture 
splits into separate groups and overlaps with different cell types. An isolated population of cells forms 
DA NPCs, some of the culture has started differentiating into early neurons, a small proportion are 
differentiating into astrocytes, and a small group is consistent with neural stem cells. The 
oligodendrocyte culture splits into two groups: the true oligodendrocytes expressing the marker O4, and 
radial glia indicated by high expression of both neuronal and glial markers. We conclude from these 
findings using iPSC-derived 2D cultures that our antibody panel can distinguish different cell types and 
subgroups of cell types that we expect to find in 3D hMOs and other complex neuronal tissues.  
 
Identification of different brain cell types in human midbrain organoids 
 
To identify cell types within hMOs using the antibody panel, we ran our R preprocessing pipeline to align 
and normalize the data. To compare samples from different iPSC lines, different batches of hMOs, and 
measurements run on different experiment days, we developed methods to combine and harmonize 
samples, which is the first step in the computational pipeline. We combined nine hMO samples and 
selected a subset of the total cells (9000 cells or the max number of cells available). The samples were 
first merged, then transformed and aligned to reduce batch effects and finally retro-transformed for 
better cluster visualization (Figure S2). If removing batch effects is not desired (as in the separate cell 
cultures above), the preprocessing is stopped after merging. The hMOs are expected to contain a 
combination of neurons, neural precursor cells (NPCs), astrocytes, oligodendrocyte precursors (OPCs), 
oligodendrocytes, radial glia (RG), stem cells, pericytes, endothelial cells, and epithelial cells, all 
differentiated from the starting iPSCs. The standard method of manually defining cell groups using 
FlowJo or multiple scatter plots in R is time consuming and not reproducible across experiments. To 
overcome this barrier, we developed tools to identify cell types described below: A) A correlation cell 
type assignment model (CAM) using a custom reference matrix and B) clustering parameter exploration 
functions with tools to visualize and summarize of protein expression levels. 
 
We created a reference matrix with the predicted relative expression of each cell surface marker in 
different cell types expected to be present in hMOs based on known brain cell types and previous hMO 
scRNAseq. Using scRNAseq data from human brain and organoids, total mRNA on brain cell types, 
and FC (Figure 2), we calculated the relative expression levels for each marker in our antibody panel 
(Figure 3A). Our CAM function calculates the correlation of protein expression levels of the 13 markers 
in each hMO-derived cell to the expression levels of the same markers in the reference matrix we 
created, calculating the Pearson correlation coefficient, R. The R value is calculated for each cell type 
in the reference matrix and one cell type out of the nine possible cell types is assigned for a given hMO 
derived cell (Figure 3B and S3). To avoid false cell type assignments, we added a correlation coefficient 
threshold of 0.45, where hMO derived cells with R values below the cut-off are assigned as ‘unknown’. 
Many hMO-derived cells have the highest correlation with oligodendrocytes but are labelled as 
‘unknown’ because of the applied threshold. Some hMO-derived cells correlated highly with two cell 
types. When this was the case, these cells were assigned a merged cell type, and may represent an 
intermediated cell type (Figure 3C and S3-5). The most common cell pairs of cell types with a first and 
second top correlation within 0.05 are similar cell types, the most frequent pair is neurons and NPCs, 
which are the same cell type on a continuum of differentiation (Figure 3C and S5). The most frequent 
assignment is ‘unknown’ cell type, indicating that these cells didn’t correlate highly with any of the 
predicted cell types expression patterns (Figure S6). Clustering accounts for the problem of ‘unknown’ 
predictions because similar cells are grouped together.  We created functions to identify the topmost 
predicted cell types per cluster, so by ignoring ‘unknown’ we can conclude the second most abundantly 
predicted cell type is the main cell type of a given cluster (Figure S6). We also applied the correlation 
assignment to the 2D culture data and found about half of the cells are correctly predicted in each 
different cell culture (Figure S7). Although correlation assignment is a useful tool to provide biologists 
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with a predicted cell type, it does not deliver the accuracy needed to quantify cell types across 
experiments and therefore must be used in combination with other methods.  
 
Using the functions in our CelltypeR library we performed unsupervised clustering using Louvain 
network detection and visualized the protein expression levels (Figure S8-9). Clusters were annotated 
with cell types using a combination of marker expression by cluster and the output from the correlation 
predicted cell types (Figure 3D). We identified astrocytes, radial glia (RG), epithelial cells, endothelial 
cells, NPCs, neurons, a small proportion of oligodendrocytes, and stem cell-like cells in the hMOs. Some 
cells have low relative antibody expression and form a cluster together and these cells were annotated 
as ‘unknown’ (Figure 3E). Another cluster has low expression overall, but some expression of markers 
indicating a mix of glial cells and neurons. This cluster was annotated as ‘Mixed’. Clustering the hMO 
cells identified distinct subpopulations of RG, astrocytes, and neurons. These populations can be broken 
into further subgroups (Figure S10). We conclude that our workflow can be used to annotate cell types 
in hMOs.  
 
Comparison of cell types between iPSC lines and hMO batches 
 
After annotating a subset of 9000 cells from each of the nine hMO samples, we next analyzed the total 
available cells (Table S1). We again followed the CelltypeR workflow, but now we used the labelled 
subset of cells to annotate the full dataset. Using the subset of annotated cells, we trained a random 
forest classifier model (RFM) (Figure S11) and then applied those labels to the complete dataset to 
predict the type of each cell. We clustered the full dataset and visualized the predicted cell type 
annotations using RFM, CAM and Seurat27 label transfers (Figure S12). To annotate the cells in the full 
dataset from the nine MOs, we applied the CelltypeR tools using three methods of cell type prediction 
and inspection of expression levels in each cluster in UMAP and heatmap visualization (Figure S13). 
We observe the same cell types in the full dataset as in the subset of data; however, we now identify a 
tiny cluster of OPCs, and more stem cell-like cells (Figure 4A). Using the cell type predictions from the 
RFM and the Seurat label transfers we now have an indication of the radial glia cells within the ‘unknown’ 
and ‘mixed’ clusters (Table S4). Based on the visualization of markers, the ‘mixed’ cluster has cells of 
glial lineage, and the unknown cluster has cells with a neuronal lineage (Figure 4A). Subgroups of 
neurons and glia are clearly defined by different expression patterns of the antibody panel (Figure 4B). 
In the full dataset we observe more subgroups of the main cell types (Figure S14).  
 
Visualizing the distribution of cell types in hMOs derived from each cell line, we can see there are some 
differences in the proportion of cell types (Figure 4C, D). Differences are also observed for the other 
variables, namely days in culture and experiment date, but no differences were observed between the 
two batches. This indicates that there is low variation between batches of hMOs (Figures S15). We next 
did proportionality tests to determine if the differences in cell types between the cell lines are significant. 
The proportion of neurons 1 and some of the glial populations are increased while the proportions of 
neurons 2, oligodendrocytes, and stem cell-like cells are decreased in the AIW002 line compared to the 
AJG001 and 3450 cell lines (Figure 4D and S16). We created functions to compare the mean surface 
marker expression between different variables within different cell type populations (Figures 4E). We 
also built functions in our R package to run ANOVAs, post-hoc tests, and identify significant differences. 
We tested if expression markers between groups are significantly different between cell lines, the 
number of days hMOs are in culture, hMO batch, and experiment day across cell types using one-way 
ANOVAs and found some significant differences (Table S5). We next performed two-way ANOVAs with 
marker expression and cell line followed Tukey’s post-hoc tests. There are significant differences in 
overall marker expression levels between the AIW002 and 3450 lines in epithelial cells, AJG001C and 
both 3450 and AIW002 in neurons 1, 3450 and both AJG001C and AIW002 in neurons 2, and AIW002 
and AJG001C in oligodendrocytes (Table S6). We ran the same statistics to compare marker expression 
levels between different amounts of time spent in culture and observed significant differences in some 
cell types (Table S5). However, pair-wise comparisons show that these differences likely reflect the 
differences between experiment dates because hMOs at 263 and 284 days in culture measured on the 
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same day do not show any significant differences (Table S7). Individual marker expression between 
cell lines, days in culture, batch, or experiment date are not significant in very many cases (Figures 
S17-20). Using our framework, we can reliably quantify cell types and compare proportions of cells and 
levels of antibody expression across different conditions. We find significant differences in the proportion 
of cell types and in marker expression levels within cell types between different healthy control iPSC 
lines.  
 
Isolating populations of interest identified by CelltypeR clustering analysis 
 
After annotating the dataset, we could plot the proportion and mean expression of each antibody marker 
in each group to try and define the relative marker expression of a given cell group and then isolate that 
population by FACS. However, manually reverse engineering a gating strategy is difficult with more than 
a few cell type markers. Thus, we defined cell types using CelltypeR, applied the package hypergate28 
to identify which combinations of antibody markers clearly define a given cell population, and then 
manually gated these cells in FlowJo (Figure 5A). The gating accuracy for all cell types is above 95% 
(Table S8 and S9). We next followed the CelltypeR workflow using the newly generated gated files to 
annotate the cells in the FlowJo gated populations (Figure 5B). The most frequent CelltypeR annotated 
cell type within each gated population is the intended cell type, except for NPCs, where Neurons 1 is 
the most common cell type (Figure 5C and Table S10). We find that CelltypeR can define cell types 
and gates and these can be used to effectively gate the desired cell types.  
 
 
Analysis of FACS sorted neuronal and glia populations followed by single cell sequencing 
analysis.  
 
Our workflow can be used to enrich populations of interest by FACS sorting selected populations for 
further analysis. We selected four cell types: neurons 1, neurons 2, astrocytes, and radial glia. We then 
designed a gating strategy to simultaneously sort the four populations (Figure 6A). We sorted the hMO-
derived cells using the defined gates, split the samples, and then acquired FC measurements and 
scRNAseq on the sorted populations. The protein expression levels in the sorted populations match the 
expected levels from the gates (Figures 6B).  We also obtained a single cell transcriptomic library for 
each of the FACS sorted populations (see methods). We first compared the RNA expression levels of 
the genes corresponding with the protein expression levels measured by FC and found they highly 
correlate (Figure 6C and Table S11). The four populations were merged, clustered, and plotted on a 
UMAP to visualize the overlap between the different sorted cell types (Figure 6D). The Neurons1 
population is mostly separate from the other populations with some overlap with Neurons2.  Clusters 
were first annotated for main groups of cell types: DA neurons, neurons, NPCs, radial glia, and 
astrocytes. These main cell types were subset and annotated for subtypes of cells using differential 
gene expression between clusters (Figure 6E, S21-24 and Table S12).  Next, we calculated the 
proportion of cellular subtypes in the FACS sorted populations (Figure 6F and Table S13). We found 
that non-DA neurons in Neurons1 are excitatory and mature neurons as well as NPCs and ventral zone 
(VZ) radial glia undergoing neurogenesis.  The non-DA neurons in the Neurons2 population are 
GABAergic, serotonergic (5HT), and neurons with potential to be reactivated as neural stem cells. As 
quantification of DA neurons is of particular interest in hMO for Parkinson’s Disease, we find that 
Neurons1, Neurons2, and RadialGlia all contain DA neurons. The Neurons1 FACS population has 
slightly more DA neurons overall, specifically the Substantia Nigra (SN) subtype, whereas the Neurons2 
FACS population has more of the ventral mesencephalon (vm) subtype (Figure S25 and Table S14). 
The two FACS sorted neuron populations contain distinctive subtypes of DA and non-DA neurons. The 
astrocyte population split into three subgroups, immature, resting and reactive. The radial glia population 
contains five different subtypes (Figure 6E, S24 and Table S12). We show that each FACS sorted 
population is enriched in the expected cell type and there are identifiable subtypes within these groups, 
confirming the effectiveness of the celltypeR framework. 
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Discussion 
 
Taken together, we present the first protein based complete workflow to identify, quantify, and compare 
cell types in complex 3D tissue, specifically hMOs. We define a 13-antibody body panel that can be 
used to distinguish between eight different brain cell types and identify subtypes of astrocytes, radial 
glia, and neurons. The panel is modular and can be altered or expanded and will still function with the 
computational workflow. In our CelltypeR library, we provide a method to preprocess and merge FC 
samples, acquired from multiple samples at different dates. We created tools to optimize and visualize 
clustering and to assist in consistent cell type annotation. We also created functions to quantify cell 
types and compare different conditions. The same workflow with sorting can be used to isolate a more 
homogenous subpopulation of a given cell type to perform other assays such as proteomics or 
lipidomics, or to replate the cells in culture to grow as a purified population.  Here we selected four 
populations, FACS sorted the cells, and then performed scRNAseq analysis.  We confirmed that each 
of the populations, Neurons1, Neurons2, RadialGlia and Astrocytes, are all highly enriched in the 
expected cell types.  Further analysis of the scRNAseq data identified subtypes within each cell type 
group. We identified DA neurons within both neuronal populations but find different DA neuron subtypes 
are more enriched in the two FACS sorted neuron populations. We also identified TPGB as a DA 
subtype marker (ventral), in agreement with a recent publication proposing TPGB as a marker of ventral 
DA neurons in mice.29 
  
In our analysis of the differences between three healthy control iPSC lines, we find a clear difference in 
the proportion of cells for the two subtypes of neurons between AIW002 compared to the other two lines, 
AJG001 and 3450. AIW002 has more Neurons1 with high CD24 expression and fewer of the Neurons2 
population, with lower CD24 expression than AJG001 and 3450. scRNAseq reveals the Neurons1 
population has more NPCs and DA neurons. We also find that AIW002 has more radial glia, fewer 
astrocytes, and fewer oligodendrocytes than the other two lines, indicating this cell line may be less 
mature.  AIW002 might mature at a slower rate or given the very late age of the organoids, maintain a 
less mature state perpetually. These findings also indicate that to study the role of myelination, the 
AJG001 or 3450 lines could be a better choice than AIW002.  
 
The CelltypeR workflow we present can be applied for developmental experiments to track the 
emergence of neurons and mature glia populations and the loss of stem cells over time. Furthermore, 
cell types in hMO disease models derived from patient iPSCs can be compared to control hMOs by 
quantifying cell types over time. In the current cell surface panel, most cells in our hMO data are easily 
annotated. However, some cells are not easily identified by the FC panel. It is possible these cells are 
not expressing many proteins at the cell surface or that these cells represent a cell type not well covered 
by the antibody panel. Within our workflow the antibody panel can be easily changed.  Our starting 
antibody panel could be fine-tuned and tested in our workflow. Furthermore, new panels appropriate for 
different complex tissues, for example kidney or gut, can be designed to distinguish cell types using the 
CelltypeR workflow.  For changes in the antibody panel, a reference matrix from experimental or public 
data needs to be created to use the correlation prediction method. We have also outlined all the steps 
needed for creating a reference matrix. Altogether, we have created an adaptable method to 
reproducibly identify and quantify cell types in complex 3D tissues using an FC panel. We developed a 
novel scalable single cell biology workflow to quantify cell types quickly and efficiently in complex neural 
tissues, specifically hMOs, across multiple replicates and experimental conditions.  
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Methods 
 
1. iPSC lines used for hMOs  
 
The three iPSC cell lines were used: AJG001C, AIW002 and 3450. All were previously reprogrammed 
from peripheral blood mononuclear cells as previously described.21 All work with human iPSCs was 
approved by McGill University Faculty of Medicine and Health Sciences Institutional Review Board (IRB 
Internal Study Number: A03-M19-22A).21 

2. Cell culturing conditions 

2.1 2D cultures and differentiation.  

The control cell line AIW002 was used for all 2D cell cultures. AJG001C, AIW002 and 3450 were used 
for hMOs. Prior to differentiation, the iPSC cultures were maintained and expanded on Matrigel coated 
plates and grown in either mTeSR1 or E8 media as previously described.21,30  
 
Dopaminergic neural precursor cell (DA-NPC) cultures were generated by dissociating iPSCs into single 
cell suspensions  and then culturing these cells in low attachment plates to generate embryoid bodies 
(EBs).31 EBs were re-plated onto polyornithine and laminin-coated plates and differentiated into neural 
rosettes, which were then differentiated into DA-NPCs. DA neurons were differentiated from DA-NPC 
cultures on laminin coated culture flasks in neural basal media with supplements and inhibitors as 
described.32  
 
To derive oligodendrocyte precursor cells (OPCs) and oligodendrocytes we used a three phase protocol 
as previously described.33,34 In phase one, iPSCs were induced towards neural progenitors while being 
patterned with Retinoic Acid in order to resemble spinal cord progenitors. The Sonic Hedgehog pathway 
was activated for ventral patterning to recapitulate the conditions of the oligodendrocyte fate. The 
progenitors were subsequently expanded as EBs with the addition of the bFGF.  In phase two, OPCs 
were expanded in suspension and subsequently plated onto polyornithine/laminin-coated vessels for 
adhesion. Growth medium mitogens were added for differentiation and maintenance of the OPCs. 
PDGRF positive images were acquired at this phase. In phase three, mitogens are withdrawn to allow 
the progenitors to exit the cell cycle and to complete differentiation into myelinating 
oligodendrocytes. Imaging and FC were performed in this phase when oligodendrocytes would generate 
O4 positive cells.   
 
Astrocytes were derived from NPCs cultures as previously described.35  NPCs were seeded at low cell 
density and grown in NPC expansion medium. The next day, medium was replaced with ‘Astrocyte 
Differentiation Medium 1’. Cells were split 1:4 every week and were maintained under these culture 
conditions for 30 days. At DIV50, cultures were switched to ‘Astrocyte Differentiation Medium 2’ and 
maintained with half medium changes every 3-4 days.  
 
2.2 Human midbrain organoids 
 
hMOs (AJG001C, AIW002 and 3450) were derived from iPSCs cultures according to the established 
protocols.23,36 For each healthy control iPSC line, iPSCs were seeded in separate ultra-low attachment 
plates in neural induction medium for EBs to form.  On day four, medium was changed to midbrain 
pattering medium to promote a dopaminergic neural cell fate. On day seven, hMOs were embed in 
Matrigel. On day eight, hMOs were transferred to 6-well plates with 4-6 hMOs per cell line in organoid 
growth media and placed in shaking cultures. hMOs were maintained in shaking cultures with media 
change every 2-3 days.36 In the hMO samples used for gating and sorting neuronal and glia populations 
a newer protocol was used.23 Dissociated iPSCs were seeded in eNuvio disks for EB formation and 
Matrigel embedding, then transferred to bioreactors for culture maintenance. Media changes were 
performed weekly and all the same growth mediums were used in both protocols.   
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3. Immunofluorescence  
 
3.1 iPSC, NPCs and Dopaminergic Neurons 
 
Cells were fixed in 4% PFA/PBS at RT for 20 minutes, permeabilized with 0.2% Triton X-100/PBS for 
10 min at room temperature (RT), and then blocked in 5% donkey serum, 1% BSA and 0.05% Triton X-
100/ PBS for 2h. Cells were incubated with primary antibodies: MAP2 (1:1000, EnCor Biotech CPCA-
MAP2); Nestin (1:500, Abcam ab92391); SSEA-4 (1:200, Santa Cruz Biotechnology sc-21704); in 
blocking buffer overnight at 4 °C. Secondary antibodies were applied for 2h at RT, followed by Hoechst 
33342 (1/5,000, Sigma)  nucleic acid counterstain for 5 minutes. Immunocytochemistry images were 
acquired using Evos FL-Auto2 imaging system (ThermoFisher Scientific). 
 
3.3 Astrocytes. 

Cells were fixed 15 minutes at room temperature with 4% formaldehyde in PBS, followed by 3 washes 
of 5 minutes in PBS. Cells were permeabilized for 10 min at RT in blocking solution: 5% normal donkey 
serum (JacksonImmunoResearch Laboratories, West Grove, PA), 0.1% Triton-X-100, and 0.5 mg/ml 
bovine serum albumin (Sigma-Aldrich) in PBS. Cells were incubated for 1h at RT before overnight 
incubation at 4°C with primary antibodies: Glial Fibrillary Acidic Protein (GFAP) (1/500 Dako Cat. 
Number Z0334); AQP4 (1/500, SIGMA, cat#  HPA014784). Secondary antibodies were incubated 2h 
at, followed by Hoechst 33258 (1/5,000, Sigma) for 5 min, mounted with Fluoromount-G, and examined 
by fluorescence microscopy.  

 
3.4 Oligodendrocytes and OPCs.  
 
Cells were fixed in 2% PFA for 10 min and blocked in 5% BSA, 0.05% Triton for 1h.  Mouse anti-O4 
(R&D, MAB1326) was added in live cells before fixation for 1h at a final concentration of 1μg/mL. Rabbit 
anti-PDGFRa (Cell Signaling, 3174) was added post-fixation at a dilution of 1:200 and incubated 
overnight at 4°C. Secondary antibodies were added at a dilution of 1:500 and incubated for 2h at 
RT.  Nuclei were identified with incubation with Hoechst 33342 (1/5,000, Sigma) for 5 min. 
 

3.5 Midbrain organoids 

hMOs were washed in PBS and then fixed for 2hours in 4% PFA diluted in PBS at RT, then placed in a 
sucrose gradient overnight at 4°C. hMOs were then embedded in Optimal Cutting Temperature 
Compound (OTC) (Fisher Healthcare 23-730-571) and frozen. Cryosections of 20mM were cut using 

Cryostat Cryostar NX70 (Thermo Scientific). The slides with the sections were washed 2 times in 
ddH2O to remove the OCT, permeabilized 20min in 0.1% Triton-PBS and blocked for 1h in 5% 
Normal Donkey Serum (Jackson Immuno Research Laboratories, West Grove, PA), 0.2% 
Triton, 0.5mg/mL BSA (Sigma-Aldrich) in PBS. Primary antibodies: anti-O4 (1:200, R&D, 
MAB1326); Glial Fibrillary Acidic Protein (GFAP) (1/500 Dako Cat. Number Z0334); and MAP2 (1:1000, 

EnCor Biotech CPCA-MAP2) were diluted in blocking solution and incubated at RT for 1h. 
Fluorescent-labeled secondary antibodies (Invitrogen) were added at a dilution of 1:500 and 
incubated for 45min. Nuclei were identified with Hoechst 33258 (1:5000, Sigma). Cover slides 
were mounted using Fluoromount mounting medium (Sigma-Aldrich) and imaged using 
confocal microscopy (Leica TCS SP8 confocal).   
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4. Sample preparation for flow cytometry 

4.1 Tissue dissociation and processing – Main data set hMOs 
 
hMOs were dissociated with a combination of enzymatic digestion and mechanical dissociation. First, 
three individual hMOs from each of the data set of nine samples were removed from shaking cultures 
and combined into one 15mL tube. Pooled hMOs were washed three times with Dulbecco’s PBS (D-
PBS) (Wisent) to completely remove remaining culture media. Then, after completely removing D-PBS, 
2mL of TrypLE express (without phenol red) (ThermoFisher) was added to each sample. The hMOs 
were incubated at 37°C for ten minutes then removed to be subjected to mechanical dissociation by 
pipette trituration (slowly pipetting up and down ten times). The incubation and the pipette trituration are 
repeated twice more. Afterwards, 8mL of D-PBS was added to the samples to stop the enzymatic 
reaction. The samples were filtered through a 30µm filter (Miltenyi Biotec) to remove any clumps 
remaining after digestion and dissociation. Samples were washed twice more with D-PBS.  
 
4.2 Tissue dissociation and processing – Sorting data set hMOs 
 
hMOs were dissociated with a combination of enzymatic digestion and mechanical dissociation. First, 
twenty individual hMOs were removed from a bioreactor and combined into one 50mL tube. Pooled 
hMOs were washed three times with Dulbecco’s PBS (D-PBS) (Wisent) to completely remove remaining 
culture media. Pooled hMOs were transferred to a gentleMACS M-Tube (Miltenyi Biotec). Then, after 
completely removing D-PBS, 2mL of TrypLE express (without phenol red) (ThermoFisher) was added 
to each sample. The hMOs inside the M-Tube are then next placed on an automated GentleMACS Octo 
Heated dissociator. The settings for the dissociation were as follows: 37°C is ON. Spin -20rpm for 24 
minutes. Spin 197rpm for 1 minute. After incubation, 8mL D-PBS was added to the samples to stop the 
enzymatic reaction. The samples were filtered through a 30µm filter (Miltenyi Biotec) to remove any 
clumps remaining after digestion and dissociation. The samples were then washed twice more with D-
PBS.  
 
4.3 Tissue dissociation and processing – 2D cell cultures  
 
T-flasks containing cells were washed in PBS then incubated at 37°C in 2mL of TrypLE express (without 
phenol red) (ThermoFisher) for 5-20 minutes depending on cell type. Cells were washed off the growth 
surface with a pipette, then manual dissociated by trituration until no clumps were seen and transferred 
to a 15ml tube.  Cells were washed twice in D-PBS.  

 
4.4 Antibody staining – All samples 
 
After counting and isolating one million cells, single cell suspensions were incubated for 30 minutes at 
room temperature in the dark with Live/Dead Fixable dye to assess viability. Single cell suspensions 
were washed twice with D-PBS to remove any excess dye. After, single cell suspensions were incubated 
for 15 minutes at room temperature in the dark with Human TruStain FcX (Biolegend) at a concentration 
of 5µL per million cells to block unspecific Fc Receptor binding. Single cell suspensions were washed 
once with FACS Buffer (5% FBS, 0.1% NaN3 in D-PBS) and then incubated for 30 minutes at room 
temperature in the dark with a fluorescence-conjugated antibody cocktail in FACS Buffer (Methods 
Table 1). The information regarding working dilutions used in this antibody cocktail is in Methods Table 
1. The optimal working dilutions were determined by titrations with similar hMOs and experimental 
conditions. After incubation, single cell suspensions were washed twice with FACS Buffer and 
resuspended in FACS Buffer. Samples were placed at 4°C until ready to be analyzed by flow cytometry. 
 
In parallel, compensation control staining was performed with the same conditions as the single cell 
suspensions. The compensation controls used are UltraComp eBeads™ Plus Compensation Beads 
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(ThermoFisher) and ArC™ Amine Reactive Compensation Bead Kit (ThermoFisher) Samples were 
placed at 4°C until ready to be acquired by flow cytometry. 
 
Table 1: Panel of antibodies and protein targets to measure using Flow Cytometry to identify cell 
types in hMOs with Fluorochrome and antibody information indicated.  
 

Antibody 
Gene/Protein 
Name 

Fluorochrome Ab clone Manufacturer (CAT#) 
Dilution 
used 

CD44 CD44 BV421 BJ18 Biolegend (338810) 1:192 

Aquaporin-4 AQP4 AF488 Polyclonal 
Bioss (bs-0634R-
A488) 

1:28 

GLAST GLAST APC ASCA-1 
Miltenyi Biotec (130-
095-814) 

1:20 
 

HepaCAM HepaCAM AF594 Polyclonal 
Bioss (bs-5840R-
A594) 

1:333 

CD71 TNR BV650 CY1G4 Biolegend (334116) 1:333 

CD184 CXCR4 BV605 12G5 BD Optibuild (334116) 1:48 

CD133 PROM1 PE-Cy7 clone 7 Biolegend (372810) 1:333 

CD15 FUT1/SSEA-1 BV785 W6D3 Biolegend (323044) 1:48 

CD29 ITGB1 APC-Cy7 TS2/16 Biolegend (303014) 1:48 

CD56 NCAM PercP-Cy5.5 5.1H11 Biolegend (392420) 1:96 

CD24 CD24 BV711 ML5 Biolegend (311136) 1:192 

O4 O4 PE REA576 
Miltenyi Biotec (130-
117-357) 

1:31 

CD140α PDGFRalpha AF700 PRa292 
R&D Systems 
(FAB1264N) 

1:40 

 
 
4.5 Flow Cytometry acquisition – All data sets 
 
Single cell suspensions were acquired on an Attune NxT (ThermoFisher). The information for the 
configuration of this Flow Cytometer is in Methods Table 2. Daily CS&T performance tracking was done 
prior to cell acquisition by recommendation of manufacturer. PMT voltages were determined by Daily 
CS&T performance tracking. Compensation controls were also acquired, creating an acquired 
compensation matrix. Between 48 000 to 338 000 cells were acquired per sample. 
 
4.6 Flow Cytometry cell sorting defined by CelltypeR workflow – Sorting data set 
 
Single cell suspensions were sorted on a FACSAria Fusion (Becton-Dickinson Biosciences). The 
information for the configuration of this Flow Cytometer is in Methods Table 2. Daily CS&T performance 
tracking was done prior to cell acquisition by recommendation of manufacturer. PMT voltages were 
determined by Daily CS&T performance tracking. Compensation controls were also acquired, creating 
an acquired compensation matrix.   
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Table 2: ThermoFisher’s Attune NxT optical path configuration. 
 

Laser 
Wavelenght 
(nm) 

Detector Dichroic mirror  
Filter (Band 
pass) 

V
io

le
t 

405 

VL6 740 LP 780/60 BP 

VL5 680-740 710/50 BP 

VL4 635-680 660/20 BP 

VL3 555-635 610/20 BP 

VL2 495-555 525/50 BP 

VL1  417-495 450/40 BP 

B
lu

e
  488 

BL2 555 LP 695/40 BP 

BL1 503-555 530/30 BP 

SSC  - 488/10 BP 

Y
e
llo

w
-

G
re

e
n

 

561 

YL3 650 LP 780/60 BP 

YL2 600-650 620/15 BP 

YL1 577-600 585/16 BP 

R
e
d

 640 

RL3 740 LP 780/60 BP 

RL2 690-740 720/30 BP 

RL1  654-690 670/14 BP 
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Methods Table 3: BD’s FACSAria Fusion optical path configuration. 
 

Laser 
Wavelenght 
(nm) 

Detector 
Dichroic mirror 
(Long pass) 

Filter (Band 
pass) 

V
io

le
t 

405 

A 750 LP 780/60 BP 

B 690 LP 710/50 BP 

C 630 LP 660/20 BP 

D 595 LP 610/20 BP 

E 505 LP 525/50 BP 

F   450/50 BP 

B
lu

e
  488 

A 655 LP 695/40 BP 

B 502 LP 530/30 BP 

C   488/10 BP 

Y
e
llo

w
-G

re
e

n
 

561 

A 735 LP 780/60 BP 

B 685 LP 710/50 BP 

C 630 LP 670/14 BP 

D 600 LP 610/20 BP 

E   582/15 BP 

R
e
d

 640 

A 755 LP 780/60 BP 

B 690 LP 730/45 BP 

C   670/30 BP 

 
 
5. Single cell sequencing of FACS sorted populations 
 
Three separate tubes of AIW002 hMO were dissociated as described above. At the antibody labelling 
stage oligonucleotide tagged antibodies (Hashtags, Biolegend) were added with the other cell type 
specific antibodies. The cells were sorted into FACS buffer. The same sorted populations from each of 
the three samples (replicates) were combined after sorting. These four populations were sorted into four 
gates and were sorted until the sample with fewest cells (Neurons1) contained 100,000 events. The 
sorted samples were centrifuged for 5minutes at 400g and resuspended in 250 ml of D-PBS + 0.1% 
BSA. The cell concentrations were calculated with FACSAria Fusion (Becton-Dickinson Biosciences). 
The single cell suspensions were diluted to 1000 cells/ml targeting ~15,000 cells captured for 
sequencing. One sample was prepared for each FACS sorted population.  

Following the creation of the cell suspension, the Chromium NextGEM Chip G (PN-1000120) was then 
loaded as per manufacturer recommendation and run on the Chromium Controller (PN-1000204) for 
GEM creation. All proceeding thermocycler steps in the 10X protocol were carried out on a Bio-Rad 
C1000 Touch thermal cycler (1851196). Following GEM-RT incubations, samples were stored at 4°C 
overnight. Post GEM-RT cleanup and cDNA amplification were carried out per manufacturer protocol. 
Samples were stored at -20°C until they were processed for library generation. 3’ gene expression and 
cell surface protein libraries were constructed per manufacturer protocol and stored at -20°C until 
sequencing submission. 25 mL of each sample library was sent for sequencing at the McGill Genome 
Centre. 
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Methods Table 4: Single cell RNA sequencing reagents 
 

Product Vendor Product number 

Chromium Next GEM Single Cell 3’ kit 
v3.1 

10X Genomics 1000268 

3’ Feature Barcode kit 10X Genomics 1000262 

Chromium Next GEM Chip G Single Cell 
Kit 

10X Genomics 1000120 

Dual Index Kit TT Set A  10X Genomics 1000215 

Dual Index Kit NT Set A  10X Genomics 1000242 

Dynabeads MyOne SILANE  10X Genomics 2000048 

Magnetic Separator  10X Genomics 230003 

SPRIselect Reagent Beckman 
Coulter 

B23318 

 

Qiagen Buffer EB  Qiagen 19086 

 
 
Data processing 
 
6.01 Flow Cytometry data cleanup for analysis – All data sets 
 
The data generated was cleaned up using FlowJo (version 10.6) (Becton-Dickinson Biosciences). 
Briefly, a starting gate was used to select appropriate cell size (X: FSC-A, Y: SSC-A). A second gate 
was used to discriminate doublets from the analysis (X: FSC-W, Y: FSC-H). Finally, the last gate was 
used to remove dead cells from the analysis (X: LiveDead Fixable Aqua, Y: FCS-A). See Methods Figure 
1 for a gating example. After data cleanup, a new .fcs file was generated with FlowJo and exported for 
further analysis done with R. 
 
6.02 Data analysis and CelltypeR R library 
 
All computations were performed in R. We created a R library of functions to perform the analysis, 
CelltypeR. Our functions required functions from multiple other R libraries referenced in descriptions to 
follow.  
The R library can be found, along with workbooks for the complete workflow and generation of each 
figure, at https://github.com/RhalenaThomas/CelltypeR_single_cell_flow_cytometry_analysis 
 
Computational Workflow: 
 

1. Data preprocessing:  
a. Read FlowJo files into R. 
b. Create a data frame with intensity measurements for each marker for all samples within 

the experiment to be analyzed.   
c. Harmonize data if desired.  
d. Create a Seurat single cell object for further analysis.  

2. Creation of cell type clusters 
a. Clustering optimization to compare clustering methods and parameters and visualize 

results. 
b. Summarize statistics to compare clustering methods and parameters. 
c. Select one method and smaller parameter space to compare cluster stability. 
d. Evaluate statistics and visualization to determine the best clustering method for a given 

visualization. 
3. Cluster annotation 
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a. For first data set: marker visualization and correlation assignment model. 
b. For subsequent data sets: marker visualization and correlation assignment model, 

Random Forest Model, Seurat Label Transfer. 
4. Quantify cell types and measure expression levels of markers within cell types.  
5. Define marker levels for cell types. 
6. Statistical analysis between different groups of interest. 

 
 
6.03 Data preprocessing 
 

The .fcs files without dead cells, debris, and doublets created in FlowJo are read into R and processed. 
The .fsc files contain area, width, and height of the fluorescence signal for each marker as well as the 
forward and side scatter of the light. Then R using the flowCore package is used (Hahne et al., 2009). 
The area values for each channel are selected to represent the expression intensity for each antibody. 
All the .fsc files within one folder are read into into one R data object. A dataframe is created with the 
channels and saved for further use. Individual cell cultures and hMO organoid samples for testing the 
pipeline and gating were used in this raw format to create a Seurat single cell data object.  

For the hMO samples, the data was aligned to remove batch effects and technical variability. Each file 
represents an experimental sample, and the samples were aligned as follows: First, to enhance the 
distinction between positive and negative antibody staining the raw data is transformed using the 
biexponential transform function from flowCore with default parameters (a=0.5, b=1, c=0.5, d=1, f=0, 
w=0). The transformed data was visually inspected to confirm the were no errors (Methods Figure 2). 
To combine the nine different MBO samples and account for batch effects, the signals were aligned 
using an unbiased approach, the gaussNorm function in flowStats (Hahne et al., 2013). Local maxima 
are detected above the bandwidth we set to be above 0.05, to avoid picking up noise, each peak is 
given a confidence score reflecting the height and sharpness of the peak, the threshold for two peaks 
to be considered too close together was set too 0.05.  Landmarks are then detected and aligned, such 
that each landmark is shifted to a benchmark, which corresponds to the position of the closest peaks 
across all samples. After alignment the data is reverse transformed to improve visualization by UMAP 
in downstream analysis.  

 
6.04 Creation of cell type clusters 
 
For the analysis in Figure 3, to test cluster methods and cell type annotation methods, we selected a 
subset of hMO cells. From 8 of the MBO 9000 cells were randomly selected and one sample all the cells 
(1578) cells were selected before transformation and alignment. We compared FlowSom(ref), 
Phenograph(Ref) and the Seurat(Ref) Louvain network detection function as well as parameter space 
(k neighbours, resolution, k clusters) available for the different algorithms. We calculated intrinsic 
statistics and produced UMAPs and heatmaps for visualization.  We found FlowSom was not suitable 
for creating clusters based on a cell types, although the intrinsic statistics are best for FlowSom 
clustering (Methods Figure 3). Phenograph uses the Louvain network detection method(ref) and 
computes the Jaccard coefficient which considers the number of common neighbours between cells. 
Phenograph functions well, however we saw little difference to the Louvain using the Seurat library and 
proceeded to use the Seurat package for Louvain network detection to obtain clusters for ease of use 
with the overall workflow. We then proceeded to test the cluster stability at different resolutions, 
calculating the RAND Index and standard deviation of the number of clusters across 100 iterations of 
clustering with different random start points.  The results informed the choice of cluster numbers to 
annotate.  
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6.05 Cluster annotation 
 
Cell type annotation was performed on the subset of 9000 cells using visualization and a correlation 
assignment model (CAM) we created. For visualization we created functions to make UMAPs for 
expression levels of each antigen targeted in the antibody panel as well as heatmaps grouped by cluster 
numbers.  The expended expression patterns were of the antibodies as used in combination with the 
CAM predictions. For the 2D cultures in Figure 2, cell types were assigned by the visualization of 
expression values, the known original cell type and the overlap in space on the UMAP.  In our culture 
system iPSC can be come any cell type, NPCs are precursor cells for all three other cell types included 
(astrocytes, DA neurons and oligodendrocytes).  The NPC cultures are multipotent but will contain cells 
that are beginning lineage selection and those retaining a multi potent state.  
 
For the full hMO dataset of nine samples and the followup hMO datasets used for gating and sorting 
experiments a Random Forest Model trained on the subset hMO data and Seurat transfer labels 
predictions were used in addition to the CAM and visualization methods used on the subset data.  The 
combined results of methods are more reliable than each method alone.  Each of the four methods of 
annotation are input into the cluster annotate function to automate the cluster annotation process.   
 
6.06 Creation of the predicted expression matrix for antigen proteins in the antibody panel 
 
Astrocytes, oligodendrocyte precursors (OPCs), oligodendrocytes (Oligo), radial glia (RG), endothelial 
cells, epithelial cells and pericytes are all expected to be present in hMO tissue. Microglia are found in 
brain tissue but are not expected to be present in MBOs and thus were not included in the reference 
matrix. In our early tests we found that pericytes were highly overpredicted.  We would expect very few 
if any of these cell types based on previous scRNAseq experiments.  Pericytes are not well defined by 
the FC panel, and we decided to remove these from the reference matrix. We selected expression 
values for the 13 antigens target by the FC antibody panel. Not all antigens were available from all cell 
types or databases. Input data was taken from the following public sources: protein expression data 
scored from the Human Protein Atlas (https://www.proteinatlas.org), bulk RNAseq from human37, 
scRNAseq data from human fetal midbrain and other brain tissue from the Human Cell Landscape38 
and cerebral organoids and primary human cells from the UCSC Cell Browser39. For the antibody O4, 
the epitope is a glycoprotein, and the specific corresponding gene is unknown, however the gene 
NKX6.2 is a marker of mature oligodendrocytes, with expression highly correlated to O4 protein 
detection.40 Finally, the FC data acquired in this study from 2D cell cultures, iPSC, neural precursor 
cells, neurons, astrocytes, and oligodendrocytes. For each data set the values were z-scored then 
minmax normalized marker by marker to fit between 0 and 1.  The mean expression values were 
calculated separately for scRNAseq organoid data and scRNAseq brain data. Then the mean 
expression values were then calculated between scRNAseq-hMO, scRNAseq-Brain, RNAseq.  Then 
the mean of that result was calculated with the FC data. The FC data was weighted more highly than 
the public data sets because it is experimental data collected on protein levels with the exact antibodies 
used for MBO experiments, however we didn’t not generate data on all possible cell types. The predicted 
expression values were again z-scored then minmax normalized marker by marker to fit between 0 and 
1 to be comparable to the transformed FC data to be used in the correlation assignment model.  

 
6.07 Assigning cell type labels to clusters using correlation to the predicted expression matrix 
 
Pearson correlation coefficients, R values were assigned to each cell, correlating the FC intensity 
expression levels of antibody panel to the predicted expression values in the reference matrix for each 
cell type expected in the MBO. The R values were calculated for each potential cell type.  Then for each 
hMO cell the max R value and the second max R value were selected. These values were then used to 
predict the cell type for each hMO cell. A threshold was set of R > 0.45 for a cell type to be predicted, 
otherwise the cell is assigned as ‘unknown’.  If the Rmax1 – Rmax2 < 0.05 then a mix cell type is 
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assigned.  For example, Neuron-NPC. To the cluster annotations the top three most frequently predicted 
cell types for each cluster were calculated.  If most of cells were predicted within a cluster as one cell 
type, this cell type was assigned to the cluster. If the frequencies of predicted cell types were distributed 
across many cell types, the cluster was assigned as mixed or unknown.   
 
6.08 Random Forest Model 
 
A data frame was created from cell type from the 9000 cells per sample subset of hMO data and the 
matching expression. The data was split into 50/50 into test and training data.  The training data was 
input into the function RFM_train which uses the randomForest and the function caret for optimization. 
A range of number of variables randomly sampled in each split (mtry) from 1 to 10, the best mtry was 6. 
Ranges of other parameters were tested, and the optimal values were used in to train the final model: 
max nodes = 30, node size = 25 and number of trees = 1000.  The trained model was then used to 
predict the cell type of each cell in the full data set and the new flow sorted data. The topmost predicted 
cell type for each cluster was used as the cluster annotation prediction. 
 
6.09 Label transfer using seurat 
 
We made a function that follows the Seurat workflow for label transfer combined into one function. The 
annotated Seurat object from the 9000 cells per sample subset of hMO data was used as the reference 
data and the full dataset and FACS sorted datasets were used as the query objects.  Anchors were 
found between the two objects using 25 principal components to predict the cell types, the max 
prediction was selected for each cell in the query data.  No threshold for predictions were set.  The most 
frequently predicted cell types within each cluster were used as the cluster predictions.  
 
6.10 Quantification of cell types and statistical analysis 
 
Proportionality tests were run using the R library scProportionTest  
(https://github.com/rpolicastro/scProportionTest ) using the Seurat object with all annotated cells as the 
input.  One-way ANOVAs, two-way ANOVAs and Tukey’s pos hoc tests for main effects and interactions 
were all run using functions in our R library.  A preprocessing function is used to pull the expression 
data out of the Seurat object and add the desired variables: iPSC line, data of experiment, days in 
culture, hMO batch. The statistic functions use the base R functions aov and TukeyHSD. The effect of 
each variable were analyzed separately.  A loop is used to analyze each cell type separately.  Two-way 
ANOVAs were performed with one of the variables listed above and protein (13 targeted in the antibody 
panel) as second variable.  
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Methods Table 5: Function names in the CelltypeR library for analysis processes.  
 

Analysis step Function name Processes 

Data preprocessing fsc_to_df Read in fsc create R list and data frame 

 Harmonize Transform, align, retro-transform, 
create data frame 

 df_to_seurat Create a Seurat single cell object 

Create cell type clusters 
 

Explore_param Run FlowSom, Phenograph, Louvain 
(Seurat) with vectors of parameters. 
Create UMAPs, heatmaps, clustree 
plot 

 Intrinsic_stats Plot intrinsic stats run in  

 Clust_stability Select one clustering method and 
compare one parameter. Run cluster 
stability statistics. 

Annotate clusters See_features Visualization with UMAP and heatmap 

 CAM Correlation assignment method, 
predicts cell types, creates plots and 
tables of the prediction outputs. 
Requires a reference matrix. 

 RFM_train Input annotated FC dataset to train the 
Random Forest Model internally 
optimizing parameters and saving the 
best model. 

 RFM_predict Predict cell types with RFM, creates 
plots and tables of the prediction 
outputs. 

 Seurat_transfer Requires and annotated Seurat object 
as a reference, creates plots and tables 
of the prediction outputs.  

 Cluster_annotate Annotates clusters on the consensus of 
inputs.   

Compare Groups Prep_for_stats Selects expression data from Seurat 
object organized by designated 
variables 

 Run_stats Runs a series of ANOVAs with Tukey’s 
test and outputs results tables 

 make_plots Creates box plots to visualize 
interaction effects 

 
 
6.11 Testing gates reverse engineered using hypergate 
 
Cell types were selected in full annotated hMO dataset and input into the hypergate function.28 A table 
of predictions was output.  For each cell type the threshold levels for each antibody required to define 
the cell type were output.  These thresholds are in order from most to least important.  For testing the 
gates, manual gating was applied in FlowJo with the top gate for each cell type in each sample being 
set as live single cells.  The gates were applied in an AIW002 sample and then applied across the other 
samples. For gating the two antibodies were visualized by scatter plot and a box was drawn selecting 
the thresholded cells from the antibody pair.  The gated cells were then selected and gated with the next 
pair of antibodies until all thresholds were applied. The final gated cell types from all samples were 
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exported as fsc files and read into R following the CelltypeR workflow.  To apply gates to FACS four 
selected samples examined each cell type gate and selected gates which mostly exclusive for different 
cell types. The neurons can be separated from glia and then split into two populations and the glia can 
be split into two populations.  
 
6.12 Single cell sequencing analysis 
 
The FASTQ files processed using 10X CellRanger 5.0.1 software are installed on the Digital Research 
Alliance of Canada: Beluga computing cluster. For each of the four sorted populations, the CellRanger 
output files raw expression matrix, barcode, and feature files were used to create a Seurat data object 
with minimum filtering of RNA features > 100.  After this point data was run locally and all details can be 
found in the R notebook, ‘scRNAseq_processing’. RNA features, RNA counts, and percent mitochondria 
were checked for quality control for each sample: Neurons1, Neurons2, Glia1(astrocytes) and Glia2 
(radial glia).  Further filters were applied. 
 
Methods Table 6: Filters applied to each population 
 

Sample RNA features RNA count Percent Mitochondria 

Neurons1 >250 <10000 <25 

Neurons2 >300 <10000 <25 

Astrocytes >500 <10000 <25 

Radial Glia >300 <10000 <25 

 
For the glia samples there was a large number of cells after filtering.  The Seurat function HTODemux 
was used to assign Hashtag (replicate labels). For neuron samples and radial glia all cells were selected, 
for glia1/astrocyte sample the original count was very high. Increase selection of true cells, cells with 
assigned hashtags were used for further processing. For all samples, doublets were removed using 
Doublet Finder (ref  https://www.cell.com/cell-systems/fulltext/S2405-4712(19)30073-0).41 The 
expected percent of doublets estimation based on the number of cells present after filtering and the 10X 
version 3 user guide. For each sample data was normalized, variable features selected, PCA and UMAP 
dimensional reductions were performed, and clusters detected with Louvain network detection (25 
dimensions and 43 neighbours selected, and a range of resolutions was run).   
 
Clusters were annotated using a consensus between expression of known cell type markers from gene 
lists, analysis of cluster markers and cell type predictions of reference data (see below) using Seurat 
find anchors and label transfer. Subtypes of major cell type groups were observed, at this point these 
cluster were all merged.  The individually processed samples were then merged, samples were down 
sampled to balance the data and ease processing time.  
 
Methods Table 7: Cell counts after filtering and counts used in merged data object 
 

Sorted Population Approximate 
number of cells 
loaded in 10X 
Controller 

Cell count after filtering Down sample to 

Neurons1 10000 1809 1809 

Neurons2 15000 9390 2000 

Astrocytes 15000 8123 3000 

Radial Glia 15000 4805 2000 

 
After the four samples were merged the standard processing and clustering was run again using the 
same settings. Clusters were annotated again, retaining subtypes of each cell type and identifying the 
DA neurons.  Each subtype was analyzed to find subtype markers and analyze using GO biological 
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processes.  Reference datasets (see below) using Seurat anchors and label transfer predictions were 
used to define subtypes of cells. A threshold for assignment was set to 0.5 for brain reference data and 
0.8 for hMO scRNAseq data.  
 
Methods Table 8: Data sets used as reference data to predict cell types in scRNAseq 
 

Data set Reference Link to data 

Developing cortex Nowakowski et al, Science 201742 https://cortex-dev.cells.ucsc.edu 

Developing forebrain Van Bruggen et al, 
Developmental Cell 202243 

https://human-
forebraindev.cells.ucsc.edu 

Developin brain Bhaduri et al, Nature 202144 https://dev-brain-regions.cells.ucsc.edu 

Adult midbrain 
DA subtypes 
Astrocyte subtypes 

Kamath et al, Nature 202245 https://singlecell.broadinstitute.org/ 
single_cell/ study/SCP1768/ 

Human Midbrain 
Organoids 

Mohamed et al, BrainComm 
202146 

https://www.ncbi.nlm.nih.gov/geo/query/ 
acc.cgi?acc=GSE186780 

 
Developing cortex, forebrain and whole brain datasets were all reconstructed into Seurat objects from 
the UCSC cell browser following the website instructions.47 Each reference was down sampled in Seurat 
to reduce the total cell number to less than 50000.  
 
For snRNAseq data from human adult postmortem brains (Kamath et al) three separate reference sets 
were created. The expression matrix, barcodes and feature files were used to create a Seurat object.  
The meta for cell type and cell subtype annotations data was added from the UMAP_tsv files provided 
by Kamath et al. The brain region data was added from the provided meta data file. The adult midbrain 
was subset by brain region selecting only the midbrain cells. The DA subtypes and astrocyte subtypes 
were separately subset by using the main cell type annotation. 
 

1. All cell types (astrocytes, oligodendrocytes, microglia, endothelial cells, DA neurons and other 
neurons).  This was used in the initial cell type annotations. 

2. DA neuron subtypes, used to try to identify DA subtypes.  All the hMO subtypes matched only 
one subtype from adult brain.  

3. Astrocyte subtypes, used to identify astrocyte subtypes.  All astrocytes subtypes in hMO 
matched one subtype.  

 
After annotating the main groups of cell types (DA neurons, neurons, astrocytes, radial glia, NPCs, 
mixed) subtype annotations were applied.  To annotated subtypes, the main cell type was subset.  The 
Seurat find all markers function was used allowing both up and down regulated gene markers.  The top 
5-10 marker genes sorted by highest Log2 Fold change with significant adjusted p-values were further 
investigated by literature search to determine the cell subtypes.   
 
7.Data availability 
 
Flow cytometry: Raw data and FlowJo selected live gated cells are available on github and deposited 
at https://flowrepository.org/ 
scRNAseq: The FASTQ files, CellRanger outputs will be deposited on GEO  
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8.Code availability 
 
All materials are available on github: 
https://github.com/RhalenaThomas/CelltypeR  
 
The repository includes: 

1. R library CelltypeR containing all functions listed above. 
2. Workbooks for each analysis step.  
3. Code used to generate figures. 
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