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Abstract 

A key step for comparative genomics is to group open reading frames into functionally and 

evolutionarily meaningful gene clusters. Gene clustering is complicated by intraspecific duplications 

and horizontal gene transfers, that are frequent in prokaryotes. In consequence, gene clustering 

methods must deal with a trade-off between identifying vertically transmitted representatives of 

multi-copy gene families (recognizable by synteny conservation) and retrieving complete sets of 

species-level orthologs. We studied the conceptual and practical implications of adopting homology, 

orthology, or synteny conservation as formal criteria for gene clustering by performing comparative 

analyses of 125 prokaryotic pangenomes. We found that clustering criteria affect pangenome 

functional characterization, core genome inference, and reconstruction of ancestral gene content 

to different extents. Species-wise estimates of pangenome and core genome sizes change by the 

same factor when using different clustering criteria, which allows for robust cross-species 

comparisons regardless of the clustering criterion. However, cross-species comparisons of genome 

plasticity and functional profiles are substantially affected by inconsistencies among clustering 

criteria. Such inconsistencies are driven not only by mobile genetic elements, but also by genes 

involved in defense, secondary metabolism, and other functions overrepresented in the accessory 

genome. In some pangenome features, the variability attributed to methodological inconsistencies 

can even exceed the effect sizes of ecological and phylogenetic variables. We provide some practical 

guidelines to minimize biases in pangenome analyses and a benchmarking dataset to assess the 

robustness and reproducibility of future comparative studies. 

 

Introduction   

Recent advances in sequencing have revolutionized the study of microbial ecology and evolution by 

providing access to thousands of high-quality genomic sequences. A major consequence of the surge 

in microbial genomic data has been the introduction of the concept of pangenome, that is, the set 

of all genes found in the genomes of a taxonomic group (1,2). Pangenomes have quickly gained 

importance in eco-evolutionary research because they provide valuable information about the 

functional capabilities accessible to the strains of the same species and their propensity to gain and 

lose genes (3) Therefore, the study of pangenomes can shed light on the interactions among genome 

plasticity, niche diversity, and adaptability to environmental changes (4–7). Moreover, identifying 
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the set of genes present in all the genomes of a species (the core genes) has proved helpful to define 

core functions and build high-resolution species trees (8–10). 

To study the pangenome of a species, researchers first collect all available high-quality genomes and 

run gene prediction tools to identify open reading frames (ORF). The ORF are then clustered into 

groups of “equivalent” genes, that serve as the basis for subsequent cross-genome comparisons. To 

obtain meaningful results, it is critical that gene clusters represent coherent units, both from 

functional and evolutionary perspectives. The simplest conceptual approach to gene clustering is 

based on homology. Two sequences are homologous if they derive from a common ancestral 

sequence. Beyond this qualitative definition, different types of homology can be established based 

on the evolutionary history of each gene. Because most gene families have experienced duplications 

throughout evolution, it is usual to find homologous genes with multiple representatives per 

genome, termed paralogs. Paralogs often display functional divergence and accelerated 

evolutionary rates (11,12). As a result, homology alone does not guarantee functional and 

evolutionary homogeneity of gene clusters. Instead, for most purposes, it is desirable to subdivide 

homologs into higher-resolution and more homogeneous clusters encompassing orthologous 

sequences (13,14). Orthologs are genes that share a single common ancestor at the time of 

speciation (13,15). As a result, the orthology criterion discriminates paralogs that duplicated before 

the last speciation event (Fig. 1). Because of the connection between orthology and speciation, 

orthology is the most natural grouping criterion for cross-strain comparative genomics and 

phylogenomic analyses. In practice, it is challenging to apply a strict orthology criterion to 

pangenome studies due to the lack of accurate reference species trees and the high computational 

burden of building thousands of single-gene trees, one for each group of homologs. To circumvent 

these difficulties, heuristic algorithms and reference databases of orthologous genes have been 

developed over the last decade (16–18). Together with homology and orthology, a third criterion to 

further refine equivalence among genes is synteny conservation. According to the synteny criterion, 

two genes (typically orthologs) are grouped together if they share the same gene neighborhood in 

different genomes. Notably, synteny conservation can help discriminate between vertically and 

horizontally transmitted copies of a gene, or between multiple orthologs resulting from within-

species duplication (Fig. 1). 

It is widely accepted that the quantitative results of single-species pangenome analyses depend on 

the method (and parameters) used to build the pangenome. Such dependency can be traced back 
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to the strategy adopted to identify gene clusters. As intuitively expected, the size of the pangenome 

(that is, the number of clusters) increases and the size of the core genome decreases as the 

sequence similarity threshold used to define homology becomes more and more stringent (19–21). 

However, comparative studies implicitly assume that qualitative trends and order relationships are 

robust with respect to the choice of a particular criterion. The existence of such qualitative 

robustness merits a critical evaluation, given the deep conceptual differences among homology, 

orthology, and synteny conservation, the heterogeneity of evolutionary rates across genes and 

species, and the high rates of horizontal gene transfer (HGT) observed in some genomes (22–24). 

The possibility that homology, orthology, and synteny-based gene clustering produce incongruent 

results in comparative pangenome studies is not just a technical caveat. Instead, intraspecific HGT 

and gene duplications raise the fundamental question of what equivalence class (homology, 

orthology, synteny, or something else) best captures the essentially dynamic nature of pangenome 

evolution (25). This conceptual conundrum is especially clear in what concerns the splitting of 

multicopy orthologs based on their gene neighborhoods. Let us consider, for example, a gene that 

has experienced recent duplications or intraspecific HGT. For what purposes should all copies be 

included in the same group, following the standard orthology criterion? For what other purposes 

should the duplicated or horizontally transferred copy be assigned to a new cluster, based on 

synteny considerations? The orthology criterion appears better to assess pangenome diversity, for 

which it is not desirable to count a recently duplicated gene twice (26), or to study gene duplication 

and intraspecific HGT, which first requires classifying multicopy genes as members of the same 

group (27). In contrast, the synteny criterion would be more appropriate to select marker genes for 

phylogenomic analyses or identify vertically transmitted members of mobile gene families.  

In this study, we show that the choice of a particular clustering criterion can have notable 

consequences on downstream comparative analyses. To stress the fact that the optimal criterion is 

somewhat arbitrary and dependent on the main research goal, we adopt the method-agnostic term 

Operational Gene Cluster (OGC) as an umbrella that includes homologs, classical orthologs (possibly 

inferred through different methods), and vertically transmitted subsets of orthologs with conserved 

synteny. Depending on the particular choice, OGC may imply different degrees of functional 

equivalence and shared ancestry. 

State-of-the-art methods for OGC construction implement different strategies to deal with 

sensitivity-vs-specificity trade-offs at manageable computational cost. The simplest approaches 
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(e.g., CD-HIT (28) and MMseqs2 (29)), build groups of homologous genes by applying a pre-defined 

similarity threshold to the amino acid sequences encoded by a set of ORF. More sophisticated tools 

include additional steps to discriminate true orthology from other ways of homology. Such 

discrimination can be attained through two major strategies: (a) by building gene-level phylogenetic 

trees or sequence similarity networks, on which some heuristic rules are applied to resolve subsets 

of genes with shared ancestry (31); and (b) by subclustering homologous groups based on their gene 

neighborhoods, under the assumption that synteny is locally conserved at the evolutionary 

timescales that are relevant to within-species diversification.  By design, the former approach, which 

is adopted by reference databases like COG (16) and eggNOG (18), the orthology detection tool 

OrthoFinder (32) and the pangenome analysis suite panX (33), is better suited to assess true 

orthology in gene families affected by intraspecific duplications and HGT. However, its high 

computational burden makes it inefficient to deal with large genomic datasets. On the other side, 

synteny-based approaches (such as the one implemented by the popular pangenome analysis tools 

Roary (34) and PanOCT (35)) are faster and less resource intensive, although their results may 

deviate from the classical concept of orthology (by missing true orthologs) when applied to highly 

dynamical genomes or regions of the genome with poor synteny conservation. Phylogeny-aware 

and synteny-based methods are not mutually exclusive (36) , although they are rarely performed 

together due to computational constraints. 

Despite their distinct conceptual underpinnings, different types of OGC are sometimes just viewed 

as exchangeable heuristic approaches that approximate the concept of orthology in a 

computationally tractable manner. We tested to what extent such an assumption is true and found 

that some properties of the pangenome, mostly concerning its size and the identity of the core 

genome, are indeed robust. However, pangenome properties that are related to its fluidity (that is, 

the genomic variability among strains) can be greatly affected, leading to relatively poor correlation 

in the results of comparative genomic analyses conducted with different methods. Interestingly, this 

does not only affect mobile genetic elements, but also genes involved in non-selfish functions.  

 

Results 

Method-dependent variation and intrinsic uncertainty in pangenome size and diversity 
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We investigated 5 major methods for de novo species-wise OGC construction that qualitatively differ 

in the strategies for gene clustering and paralog discrimination (Table 1). All de novo methods start 

from a collection of open reading frames (ORF) and cluster them according to a predefined identity 

threshold that can be set to include more or less distant homologs. The resulting clusters are then 

processed to split paralogs into separate OGC. The methods included in this study represent three 

alternative approaches implemented by some of the most popular tools for pangenome analysis: 

orthology-based clustering (implemented by panX and OrthoFinder), synteny-based clustering 

(implemented by Roary), and homology-based clustering (implemented by CD-HIT and MMseqs2, 

which is the OGC construction module used by PanACoTA (30)). In the case of Roary, CD-HIT, and 

MMseqs2, we also explored the effect of introducing two different identity thresholds for the initial 

clustering step (by design, panX and OrthoFinder do not filter gene clusters based on sequence 

identity but on their e-value). 

In addition, we considered a fast orthology prediction method (eggNOG-mapper) that maps ORF to 

a reference database of orthologous groups. This reference-based method was not originally 

intended for pangenome analysis and has some important limitations. First, because the eggNOG 

database was built using only one representative genome per species, it does not account for 

variability across strains. Second, because orthologous groups in the eggNOG database were 

required to contain sequences from at least 3 species, mapping ORF to eggNOG automatically 

excludes sequences without known homologs and sets a hard limit for OGC taxonomic resolution at 

the genus level. Still, reference-based orthology assignments are nowadays highly efficient and 

scalable to large (meta)genomic datasets. Therefore, we included eggNOG-mapper in this study to 

assess its performance compared to sensu stricto pangenome reconstruction methods.  

By applying these methods, we obtained 9 alternative sets of species-wise OGC for 124 bacterial 

and 1 archaeal species (DOI:10.5281/zenodo.7387758). These species, defined according to the 

phylogenetically consistent classification scheme established by the Genome Taxonomy Database 

(GTDB) (37), were selected to cover every genus in the GTDB, with the condition that there were at 

least 15 high-quality genomes available per species. We quantified the discordance between the 

OGC produced by each pair of methods by means of the normalized variation of information, a 

measure that takes values between 0, if the two sets of OGC display a one-to-one correspondence, 

and 1, if they are completely independent. The hierarchical clustering of methods based on this 

measure reveals that the discordances, although small, are reproducible across species (Fig. 2a). The 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.09.25.509376doi: bioRxiv preprint 

https://paperpile.com/c/TKPmvZ/TvoN
https://paperpile.com/c/TKPmvZ/BgUOs
https://doi.org/10.1101/2022.09.25.509376
http://creativecommons.org/licenses/by/4.0/


7 
 

most notable differences arise between reference-based and de novo OGC. Among the latter, the 

strategy for paralog discrimination determines the resulting OGC to a greater extent than the 

particular tools and identity thresholds, at least for the relatively permissive thresholds 

implemented in the study. 

Based on the previous finding, we restricted our analysis to a single identity threshold (80%) and 

one tool of each class. We chose MMseqs2, panX, and Roary because they were primarily designed 

to study pangenomes or are at the core of popular workflows for pangenome analysis. Then, we 

investigated how paralog discrimination affects the properties of the inferred prokaryotic 

pangenomes. To that end, we selected 10 non-redundant quantitative features that represent 

different aspects of pangenome size and diversity. All de novo methods supported clustering these 

features in 4 groups (Fig. 2b) that can be interpreted in terms of (i) pangenome size, (ii) genome 

(and core genome) size, (iii) gene content diversity, and (iv) nucleotide diversity (evaluated in the 

core genes). As expected, reference-based OGC systematically produced the smallest estimates of 

pangenome size and gene content diversity (around 30% lower than orthology-based OGC), 

whereas de novo synteny- and homology-based OGC produced the largest estimates for those traits 

(20-35% higher than orthology-based OGC, see Fig. 2c). 

Although the differences in some estimates (especially those involving singletons) are substantial, 

their practical impact on comparative analyses does not so much depend on their median 

magnitude, but on the extent to which they generate unexplained variation across species. More 

precisely, method-dependent variation appears if the choice of a particular set of OGC over another 

does not affect all species by the same factor. Because there is no ground truth for the “correct” set 

of OGC, method-dependent between-species variation constitutes an unavoidable source of 

uncertainty in comparative pangenome analyses that only becomes visible when considering 

multiple OGC construction methods. We assessed such uncertainty for 10 selected pangenome 

features by pairing sets of OGC (corresponding to different strategies for paralog discrimination) 

and quantifying the fraction of the total variance obtained with one set that remains unexplained 

after controlling for the values obtained with the other set. This measure also serves as a proxy for 

the methodological inconsistency in the estimation of pangenome properties. As shown in Fig. 2c-d 

(see also Suppl. Fig S1 and S2), core genome and pangenome sizes are generally consistent across 

methods; that is, using one method or another affects all species by the same factor. In 

consequence, methodological choices do not affect relative comparisons of core genome and 
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pangenome sizes across species. In contrast, estimates of gene content diversity display higher 

levels of inconsistency, with method-dependent uncertainty accounting for roughly 20% of the total 

between-species variance (and up to 40% if using reference-based OGC). The inconsistencies in 

genome fluidity are especially high in the case of Proteobacteria, reaching around 50% of the total 

between-species variance. 

A major limitation of reference-based approaches to OGC construction is that they are constrained 

by the limited diversity of the reference database. Indeed, in most species, 5-10% of the ORF could 

not be mapped to the eggNOG database and therefore were not assigned to any reference-based 

OGC (Suppl Fig. S3). The fraction of missing ORF is larger in some taxa that are underrepresented or 

absent from the reference database. The most extreme case, with >30% unmapped genes, 

corresponds to B. burgdorferi, the causal agent of Lyme’s disease. The poor performance of 

reference database mapping in B. burgdorferi is explained by the unique structure of its genome, 

which consists of a linear chromosome and >20 linear and circular plasmids without homologs in 

other species (38,39). Despite these limitations, reference-based OGC provide reasonably good 

estimates for the number of core genes per genome and allow retrieving 85-90% of the single-copy 

core gene families identified by de novo approaches. 

Within-species paralogy and inference of core genomes 

Among the pangenome features considered in this work, the size of the core genome is the least 

affected by the gene clustering criterion. However, a closer inspection of core gene families (defined 

in a strict sense, given the high completeness of the genomes included in the study) reveals 

differences in the mean copy number across methods (Fig. 3a). The fraction of core gene families 

that appear as single-copy ranges from 80% in reference-based to >99% in synteny-based OGC.  In 

the case of reference-based and de novo homology-based OGC, the distribution of the mean copy 

number per core gene family per genome displays clear peaks at integer values, indicating the 

existence of complete sets of duplicated paralogs that were not resolved by these methods.  

We next focused on single-copy core (s.c.c.) genes, which are of greater practical interest as they 

are often used to infer high-resolution phylogenies. Synteny-based methods systematically produce 

5-10% more s.c.c. OGC than orthology-based methods (Fig. 3b). Typically, synteny-supported s.c.c. 

genes belong to orthologous OGC that are core but not necessarily single-copy (Fig 3c). Therefore, 

it appears that synteny criteria are effective in resolving single-copy representatives of core gene 

families affected by within-species duplications or HGT. On the other side, s.c.c. OGC that are 
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orthologous but not supported by synteny tend to either contain incomplete ORFs (that could not 

be processed by the synteny-based workflow) or split among 2 or more synteny-supported 

accessory OGC (Fig. 3d). Such lack of synteny conservation could be a sign of non-vertical 

transmission in s.c.c. genes exclusively detected through orthology criteria. However, given the 

small fraction of these OGC in most species (<1% of all orthology-based s.c.c. OGC), the overall effect 

of such potential non-vertical contamination in downstream analyses is possibly modest. The only 

exception occurs in Mycoplasmatales, in which the relative contribution of non-synteny-supported 

OGC is amplified by their small genome sizes. 

Single-copy core genes supported by a single criterion (either synteny or orthology) are significantly 

less conserved in terms of their average identity than those detected by both criteria (Fig. 3e); 

Kruskal-Wallis omnibus test p < 10-20). Among the s.c.c. genes that are method-exclusive, those 

based on orthology are significantly less conserved than those based on synteny (p < 10-8 for all 

Mann-Whitney post-hoc tests with Tuckey’s HSD correction). There are also significant differences 

in the functional profiles of s.c.c. genes that are supported by only one or both criteria (Fig. 3f), with 

overrepresentation of genes associated with mobile genetic elements, cell motility, and secondary 

metabolism, and underrepresentation of genes involved in translation among method-exclusive 

single-copy core genes (linear mixed effects model for isometric log-ratios; F(2,248) > 190, q < 10-20 

in all cases). 

Systematic and species-specific biases in functional profiles 

Estimates of genome content diversity are strongly affected by the choice of orthology- or synteny-

based strategies to discriminate paralogs when building de novo OGC. To better understand the 

causes and implications of these differences, we classified ORF and OGC into 21 coarse-grained 

functional categories that are representative of the main molecular and cellular processes that take 

place in prokaryotic cells. For each functional category, we studied the agreement between 

orthology- and synteny-based OGC by calculating the normalized variation of information, the 

fraction of fully equivalent OGC (that is, OGC that contain exactly the same ORF regardless of the 

strategy for paralog discrimination), and the fraction of ORF assigned to fully equivalent OGC (Fig. 

4a and Suppl. Fig. S4). By far, the highest inconsistency occurs for mobile genetic elements, for which 

only 25% of the OGC (encompassing 25% of the ORF) are equivalent. Besides mobile genetic 

elements, moderate degrees of inconsistency are observed for defense systems, intracellular 

trafficking/secretion, and replication/recombination/repair. On the other end, central cellular 
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functions, such as translation, transcription, nucleotide metabolism, and coenzyme metabolism 

show the highest agreement, with 64-70% of the OGC (encompassing 77-84% of the ORF) being fully 

equivalent. These trends are also manifested when looking at the absolute and relative numbers of 

OGC per category (Fig. 4b), with synteny-based paralog discrimination producing a disproportional 

excess of OGC associated with the mobilome. The fraction of OGC that contain ORF from more than 

one functional category is consistently larger in the case of orthology-based OGC, although the 

absolute differences are modest (around 0.5-1% in most categories; Suppl. Fig S4). Functionally 

heterogeneous OGC are most often associated with signal transduction, cell cycle control/cell 

division, mobile genetic elements, and unknown or poorly characterized functions.   

Compositional analysis of functional profiles controlling for between-species variability confirms 

that synteny-based paralog discrimination leads to a significant increase in the fraction of OGC 

associated with mobile genetic elements (Fig. 4c; linear mixed effects model for isometric log-ratios; 

ILR-balance difference = 0.49, F(2,124) = 189, q < 10-20). Functional profiles derived from synteny 

and orthology-based OGC also differ in the balance between central cellular functions (transcription, 

translation, cell cycle, nucleotide and coenzyme metabolism) and other functional categories (ILR-

balance difference = -0.11, F(2,124) = 132, q < 10-20); and between a set of functions including 

secondary metabolism, carbohydrate metabolism, secretion, defense and recombination, and the 

remaining functional categories (ILR-balance difference = 0.08, F(2,124) = 62, q < 10-10). Apart from 

these general trends, other significant differences between synteny- and orthology-based functional 

profiles are restricted to specific categories in one or a few particular species (Fig. 4d), such as 

defense in Legionella pneumophila (Z = 5.9, q < 10-5), Borreliella burgdorferi (Z = 5.4, q = 5×10-5) and 

Bordetella pertussis (Z = 4.4, q = 0.002), secondary metabolism in Bacillus anthracis (Z = 4.0, q = 

0.008), and signal transduction in Brachyspira hyodysenteriae (Z = 3.8, q = 0.019).  

Variability of gene flux estimates 

To assess whether method-dependent variation in pangenome composition propagates to 

downstream analyses, we investigated the effect of synteny- and orthology-based paralog 

discrimination on a quantitative study of genome dynamics. To that purpose, we used the software 

Gloome, that infers events of gene gain and loss along a lineage taking as inputs the strain-level 

phylogenetic tree and a binary matrix with the presence and absence profiles of each OGC. As shown 

in Fig. 5a, using synteny-based instead of orthology-based OGC leads to a 60% increase in the 

estimated number of gene gains and losses per lineage. Genome vs gene change ratios, measured 
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as the number of expected gains and losses per gene per core nucleotide substitution are also higher 

(40% increase) when using synteny-based OGC. In contrast, the ratio between gene gains and losses, 

that determines the short-term dynamics of genome size (40), displays a more complex response, 

with synteny-based OGC producing lower or higher estimates than those obtained with orthology-

based OGC depending on whether a species is dominated by gains or losses. Method-dependent 

uncertainties account for 15%, 18%, and 30% of the between-species variability in the total flux, the 

genome vs gene change ratio, and the gain vs loss ratio, respectively. These results indicate that 

comparative analyses of short-term genome dynamics are highly sensitive to methodological 

choices for paralog discrimination, especially when it comes to evaluate the balance between gene 

gain and loss. 

A deeper analysis of gene flux by functional categories reveals that inconsistencies between gene 

clustering criteria (quantified as one minus the squared rank correlation of species-wise estimates 

to account for the numerous outliers) are stronger among mobile genetic elements and genes 

involved in secondary metabolism and inorganic ion transport (Fig. 4b). Although high 

inconsistencies are also observed in central functional categories, such as translation, the practical 

relevance of those is lesser due to the relatively low fluxes associated with those categories. If all 

species are jointly considered by calculating their median, flux estimates obtained from synteny 

OGC display a systematic deviation of >1 additional event per gene in all functional categories, which 

is evenly distributed between gains and losses (Fig. 4c). 

 

Discussion 

Orthology is generally considered the optimal criterion for clustering gene sequences for 

comparative genomics (14). Because orthologs tend to conserve their function and evolve 

consistently with speciation patterns, they are, at least in theory, the most fitting choice for 

functional and phylogenomic studies. In practice, however, the use of orthology as a gold standard 

for pangenome analysis faces technical and conceptual challenges. On the technical side, 

distinguishing orthologs from paralogs is computationally costly. Therefore, to deal with large 

(meta)genomic datasets, orthology prediction tools often resort to heuristic algorithms that risk 

missing true orthologs or including out-paralogs (paralogs that duplicated before the last common 

ancestor of the clade of interest). On the conceptual side, intra-species gene duplication and 

horizontal gene transfer generate multi-copy gene lineages that, despite not violating the orthology 
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criterion at the species level, may confound downstream analyses that assume vertical transmission. 

In those cases, a stricter criterion that only clusters together vertically transmitted members of a 

gene family may be more desirable. 

Motivated by these caveats, we assessed how three major clustering criteria (homology, orthology, 

and synteny) implemented by five popular pangenome analysis tools affect pangenome 

reconstructions and downstream phylogenomic analyses. Although we only tested a limited number 

of tools and parameter settings, our results suggest that the underlying formal criterion for paralog 

discrimination (shared ancestry at speciation for orthology, conserved gene neighborhood for 

synteny), rather than the actual implementation, is what drives qualitative differences across 

methods. 

Previous works had pointed out that single-species estimates of pangenome size and diversity 

strongly depend on the method used to cluster genes (19–21). We confirmed such observations and 

expanded on the implications for comparative pangenome analyses. When conducting comparative 

studies, inconsistencies in relative differences and cross-species trends are of much greater concern 

than absolute differences in single-species estimates. In that regard, trends involving pangenome 

and core genome sizes are generally robust across methods. More precisely, choosing one or 

another method affects all species-wise size estimates by the same constant multiplicative factor. 

In contrast, cross-species comparisons of genome plasticity and pangenome diversity are highly 

sensitive with respect to the clustering criterion, in a way that cannot be explained by any linear or 

nonlinear data transformation. Such inconsistencies in pangenome diversity, that reach up to 50% 

of the total between-species variance in Proteobacteria, should be a major source of concern for 

studies aimed at understanding the forces that shape microbial pangenomes. For comparison, it has 

been estimated that habitat and phylogeny contribute to explain approximately 20% of the 

between-species variance in pangenome diversity  (6). That said, regardless of the method used to 

discriminate paralogs, the lowest rates of gain and loss are always observed in genes associated with 

central cell functions, whereas the highest rates correspond to mobile genetic elements and defense 

systems. Therefore, the inverse association between gene flux and essentiality described by 

previous studies (41–44) appears as a robust feature of genome plasticity. 

The contribution of a particular gene clustering method to pangenome variability can only be 

assessed by comparison with other methods, which is often unfeasible in large datasets. As a result, 
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methodological “noise” remains unnoticed, potentially contributing a relevant fraction of the 

unexplained variance or, in the worst-case scenario, acting as a confounding factor if methodological 

biases correlate with the biological variables of interest. Although not considered in this study, it is 

also conceivable that technical choices during genome assembly and ORF prediction could introduce 

biases in pangenome features (36)  affecting the fraction of core genes and genes with no homologs. 

Our findings stress that, as long as choosing an operational definition of gene cluster remains 

arbitrary, pangenome properties affected by method-dependent variability will be subject to 

intrinsic uncertainty. To minimize such uncertainty, the selection of tools for gene clustering should 

be primarily guided by the nature of the research goals, rather than by computational 

considerations such as runtime and memory usage. 

Practical guidelines 

 The identification of single-copy core genes is one of the main outcomes of pangenome 

reconstruction (45). Single-copy core genes allow building high-resolution strain trees that can be 

very robust to the effects of unbiased homologous recombination (46) . However, to obtain accurate 

trees, it is fundamental that the OGC that correspond to single-copy core genes are not 

contaminated by HGT  (10). As expected, synteny is the most sensitive criterion to discriminate 

single-copy representatives among gene families affected by paralogy and intra-species 

duplications. Nevertheless, de novo homology- and orthology-based methods retrieve most (90-

95%) synteny-supported single-copy core OGC with low (<1%) potential contamination, which 

makes them good alternatives for many practical applications. 

Synteny-based gene clusters display substantial fragmentation of non-core gene families, that 

affects not only mobile genetic elements but also genes involved in defense, secondary metabolism, 

signal transduction, and secretion, among others. The fact that gene family fragmentation is not 

homogeneous across taxa and functional categories implies that the choice of an inadequate 

criterion can bias comparative studies of pangenome function and dynamics. Therefore, a careful 

selection of clustering criteria is critical in those cases. Functional profiles based on orthology (rather 

than synteny) appear more robust with respect to the amplification of mobile genetic elements and 

other accessory gene families that are characteristic of some species (22,47,48)   . Likewise, 

inference of gene fluxes within and across pangenomes with tools that account for gene copy 

number (e.g., the phylogenomic software COUNT (27) ) should be performed with orthology-based 
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gene clusters. In turn, analyses of genome plasticity based on binary (presence or absence) phyletic 

profiles may be more accurate if using synteny-based gene clusters, because they better capture 

the contribution of intra-species paralogs to the total gene flux. Future studies aimed at exploring 

the role of adaptive and non-adaptive processes in pangenome evolution should explicitly discuss 

how methodological choices affect the interpretation of their results. For example, choosing synteny 

over classical orthology as the clustering criterion may inflate the proportion of mobile genetic 

elements in the pangenome, altering the balance between selfish and potentially beneficial 

accessory genes.  

As a fast alternative to de novo clustering methods, we evaluated the performance of OGC built by 

annotating gene sequences with the eggNOG reference database. Although reference-based OGC 

deviate from de novo OGC in many aspects, they are a reasonable option to identify single-copy core 

genes and generate functional profiles in well-studied genera, especially if paralogs and rare genes 

can be disregarded. In contrast, eggNOG-based OGC can miss a significant portion of species-specific 

core genes in poorly sampled taxa, do not discriminate paralogs below the genus level, and filter 

out gene families with narrow taxonomic distribution. Accordingly, pangenome analyses using 

reference-based OGC should justify their conclusions accounting for these limitations. Possibly, the 

most interesting application of reference-based OGC is found in large-scale comparative studies that 

require tracking OGC across species. That can be achieved thanks to the hierarchical structure of the 

eggNOG database, that allows annotating orthologs at multiple taxonomic levels without additional 

computational cost. 

Reusability and meta-analysis of pangenome datasets is currently hindered by the incompatibility 

of OGC obtained by different methods. To address that limitation and foster future research, it is 

critical to come to a consensus on a set of methods that cover the most relevant criteria for paralog 

discrimination. A first step in that direction would be to establish multi-method databases that 

facilitate assessing the robustness of pangenome analyses with respect to methodological choices. 

We expect that the datasets generated in this study (publicly available in 

https://dx.doi.org/10.5281/zenodo.7387758), though relatively limited in the number of species, 

will contribute to achieving such a goal.  
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Materials and Methods 

Genomic sequences 

We parsed the metadata files of the Genome Taxonomy Database (GTDB) release 95 (49) to identify 

all the species (sensu GTDB) for which there were at least 15 high-quality available genomes. High-

quality genomes were defined according to the MIMAG criteria (50) plus the following more 

stringent filters: completeness >99% and contamination <1%, both assessed through CheckM (51), 

mean contig length >5kb, and contig count <500. Metagenome-assembled genomes (MAG) and 

single-amplified genomes (SAG) were not included in the analysis. After applying these filters, we 

recovered 321 bacterial and 1 archaeal species, belonging to 125 different genera (sensu GTDB). To 

minimize possible taxonomical biases, only one representative species per genus was selected for 

subsequent analyses. For those genera with >1 suitable species, we kept the species with the highest 

number of high-quality genomes, as they presumably were the most informative for pangenome 

studies. 

To keep our analyses within a manageable computational cost, species with >100 high-quality 

genomes were subsampled to keep at most 100 genomes per species. To that end, we separately 

aligned the amino acid sequences of 120 nearly universal marker genes employed by the GTDB with 

MAFFT (52), concatenated the alignments, and ran IQ-Tree  (53) to obtain phylogenetic trees 

including all the strains of the same species. Then, we applied a heuristic subsampling strategy that 

maximized the diversity of the subsampled genomes whilst accurately reflecting the topology of the 

strain trees. 

The final dataset comprised 6,796 bacterial genomes belonging to 124 species and 55 archaeal 

genomes belonging to 1 species. The genomes were downloaded from the NCBI FTP site. Open 

reading frames (ORF) were predicted with Prodigal v2.6.3 (54),  using the “single” mode that is 

recommended for finished genomes and quality draft genomes. All runs used the bacterial, archaeal 

and plant plastid code 11 (https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi), which 

maps UAA, UGA, and UAG to stop codons, except for Mycoplasmopsis bovis PG45 

(GCF_000183385.1) and Mycoplasma pneumoniae FH (GCF_001272835.1), which used code 4 and 

translate UGA to tryptophan.  

De novo OGC construction 
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We generated eight sets of de novo species-level OGC, each one representing an alternative 

approach to identify homologous genes and discriminate within-species paralogs (Table 1). To 

facilitate comparison among methods, we started in all cases from the same predicted ORF 

previously obtained with Prodigal, overriding any optional ORF prediction step provided by the OGC 

construction software.  

Four sets of homology-based OGC were built with the sequence clustering tools MMseqs2 (29) and 

CD-HIT (28), setting the minimum identity threshold to 50% and 80%. MMseqs2 was run with the 

options ‘easy-cluster’ for cascaded clustering and ‘cluster-mode 1’ to define clusters based on 

connected components. The options for CD-HIT were set so that sequence homology was calculated 

locally, the alignments covered >80% of the longest sequence, and sequences were assigned to the 

best-matching cluster (-G 0 -aL 0.8 -g 1 -M 8000). The word size for CD-HIT (option -n) was set to 5 

for minimum identity 80% and 3 for minimum identity 50%, as recommended by the developers. 

MMseqs2 and CD-HIT do not perform any kind of paralog splitting; therefore, the resolution of the 

resulting OGC only depends on the similarity threshold used for clustering. 

Two sets of synteny-based OGC were built with the software Roary (34) , setting the minimum 

identity threshold to 80% and 95%. The Roary algorithm starts by pre-clustering highly-similar 

protein sequences with CD-HIT (28) to obtain a smaller set of representative sequences. Roary then 

conducts an all-against-all comparison with BLAST and filters the hits based on the user-provided 

identity threshold. Based on the network of hits, representative sequences are clustered with MCL 

(55) and the resulting clusters are merged with the pre-clusters. As a final step, Roary uses conserved 

gene neighborhood information to split homologous groups containing paralogs into groups of 

synteny-supported OGC. 

Two sets of orthology-based OGC were built with the software panX (33) and OrthoFinder (32). Both 

algorithms initially cluster sequences in orthologous groups by performing an all-against-all 

similarity search with DIAMOND (56) and posterior clustering with MCL. The hits retrieved by 

DIAMOND are filtered only in terms of statistical significance, regardless of sequence identity, which 

allows recovering relatively divergent homologs. In the panX algorithm, the sequences of these 

initial clusters are aligned with MAFFT (52) and cluster-level phylogenetic trees are built with 

FastTree (57).  Finally, panX obtains orthology-supported OGC by examining the resulting trees and 

applying a set of heuristic rules to split paralogs from true species-level orthologs. OrthoFinder 
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directly builds phylogenetic trees from the DIAMOND scores, infers the root based on gene 

duplication patterns, and generates OGC that are compatible with the rooted trees. 

OGC construction by reference database mapping 

Reference-based OGC were built by mapping translated ORF to the eggNOG (evolutionary genealogy 

of genes: Non-supervised Orthologous Groups) database version 5.0 (58). For that purpose, we ran 

eggNOG-mapper v2 (59) with command line options “-m diamond --tax_scope_mode narrowest” to 

search queries against eggNOG sequences with DIAMOND and transfer orthologous group 

annotations at the highest possible taxonomic resolution (which typically corresponds to the genus 

level). 

Pangenome features 

OGC presence-absence matrices (sometimes known as phyletic profiles) and gene-to-OCG 

relationships were used to estimate a set of pangenome features that intend to capture both the 

size and the diversity of the pangenome. 

Pangenome size was calculated as the total number of OGC retrieved for each species. Because this 

measure is positively correlated with the number of genomes sampled, an unbiased estimate was 

obtained by randomly subsampling sets of 14 genomes and taking the average over 100 realizations 

(we refer to this and other pangenome features obtained with the same procedure as “14-mean”). 

To ensure that the results obtained with these two measures were sufficiently representative, we 

calculated three additional measures of pangenome size: Chao’s lower bound (60); the normalized 

pangenome size, obtained by dividing the pangenome size (𝑃𝑡𝑜𝑡) by the sum of the harmonic series 

of the number of genomes (𝑛), such that 𝑃𝑛𝑜𝑟𝑚 =
𝑃𝑡𝑜𝑡

∑𝑛−1
𝑖=1 1/𝑖

 (61); and the pangenome size of the 15 

most dissimilar genomes in terms of genome content. After verifying that all those metrics were 

highly correlated across species (R>0.95), we proceeded with the uncorrected and 14-mean 

pangenome sizes, which are simpler and more easily interpretable. 

We defined the core genome as the set of OGC contained in all the genomes of a species. This strict 

definition is appropriate given the almost full (>99%) completeness filter imposed on high-quality 

genomes. Pangenomes were also characterized in terms of the absolute number of single-copy core 

OGC, accessory OGC (those that are not core), and singleton OGC (those encompassing a single 

ORF). As measures of genome content diversity, we computed the fraction of a genome’s OGC that 
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are accessory and singleton, averaged over 100 random subsamples of 14 genomes per species. In 

addition, a measure of genomic fluidity that quantifies the average dissimilarity in gene content of 

randomly sampled pairs of genomes (62) was obtained with the ‘fluidity’ function of the R package 

micropan, setting the option ‘n.sim = 500’ (63). 

The species-wise core gene alignment similarity (CGAS) was calculated using ORFs that belong to 

single-copy core OGC. Pairwise global alignments of all the ORFs assigned to the same OGC were 

performed with the Needleman-Wunsch algorithm as implemented by the needleall program of the 

EMBOSS suite (64). After removing all self-alignments (alignments of ORFs with themselves), the 

average identity of each pair of genomes was calculated as (∑ 𝑚𝑖)/(∑ 𝐿𝑖), where 𝑚𝑖  and 𝐿𝑖  

represent the number of matches and total alignment length for the pair of sequences from the i-

th OGC and the sum extends over all single-copy core OGC. The species-wise CGAS was obtained as 

the average over all pairs of genomes of the same species. The nucleotide sequence divergence in 

single-copy core genes was defined as one minus the species-wise CGAS. Given the high 

computational cost of this procedure, calculation of CGAS and core gene divergences was restricted 

to reference-, synteny-, and orthology-based OGC. 

High-resolution species trees and inference of gene gains and losses 

High resolution trees were obtained for each species using concatenated alignments of all single-

copy core OGC obtained by Roary. Amino acid sequences for each single-copy core OGC were 

aligned with mafft-linsi (L-INS-I Algorithm, default options) (52) and back-translated to nucleotide 

alignments with the program pal2nal.pl using codon table 11 (except for species of the order 

Mycoplasmatales, which use codon table 4) (65). The nucleotide alignments were concatenated and 

used as input for the tree construction program FastTree (command line options -gtr -nt -gamma -

nosupport -mlacc 2 -slownni) (57). The preliminary tree produced by FastTree was subsequently 

provided to RAxML for branch length optimization (options -f e -c 25 -m GTRGAMMA) (66). The 

package ETE3 (67) was used for mid-point rooting and visualization. 

Gene gains and losses along each species tree were inferred with the phylogenomic reconstruction 

software Gloome (68). As the input for Gloome, we used the phyletic profiles for the presence or 

absence of each OGC and the high-resolution species trees; options were set to optimize the tree 

branch lengths under a genome evolution model with 4 categories of gamma-distributed gain and 

loss rates and stationary frequencies at the root. To compare among OGC generation methods, we 

varied the input phyletic profiles according to the desired method while keeping the species trees 
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unchanged. The Gloome optimization algorithm did not converge for Enterobacter himalayensis and 

Chlamydia muridarum; therefore, those species were excluded from all the analyses involving gene 

gains and losses. 

 

Functional annotation and statistical analysis of functional profiles 

Functional annotation at the gene level was done by mapping individual genes to custom-made 

HMM profiles of the 2020 release of the COG database (69). Functional annotation at the OGC level 

was done by applying the majority rule to gene-level annotations. Coarse-grained pangenome 

functional profiles were built by counting the number of OGC assigned to each of the 21 major 

prokaryotic functional categories defined in the COG database. 

The statistical analysis of functional profiles was conducted by applying the phylofactorization 

framework (70). First, to account for the constant-sum constraint that complicates the statistical 

analysis of compositional data, we applied the isometric log-ratio (ILR) transform to the species-wise 

functional profiles. Informative ILR balances were defined following a guide tree that was obtained 

by calculating the mean differences between synteny and orthology OGC for each functional 

category and performing hierarchical clustering of the functional categories based on such 

differences. Then, linear mixed effects models were set out for each of the 20 ILR balances, with 

OGC clustering criteria as fixed effects and species as random effects. Model fitting was performed 

with the R package lmerTest (71) and contrasts among balances were conducted with the R package 

phylofactor (https://github.com/reptalex/phylofactor) , which ranks the balances based on the 

fraction of the total variance that is explained by the model. Statistical significance was calculated 

by using Satterthwaite's approach to estimate the degrees of freedom of the F-statistic and applying 

Bonferroni correction to account for multiple comparisons.  
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Figure legends 

Figure 1: Homology, species-level orthology, and synteny conservation. The phylogeny of a gene 

family that has experienced intra-species HGT (*) and inter-species HGT (**) is superimposed on a 

species tree (colored ribbons). In the species tree, speciation is followed by diversification into two 

strains (blue), and a sister species is represented in green. Gene neighborhoods are displayed at the 

leaves of the gene tree, with the gene of interest in the middle (labeled A-D, larger size, and red 

border). Whereas all sequences (A-D) are homologs, only A, B, and C are species-level orthologs, 

because they descend from the same ancestral sequence at the time of speciation. Of those, A and 

C were vertically transmitted and share conserved gene neighborhoods (synteny).  

Figure 2: Method-dependent variation and uncertainty in pangenome features. (a) Consensus 

similarity tree of OGC building methods based on the species-wise normalized variation of 

information for the assignation of ORF to OGC. Labels indicate the number of species (out of 125) 

that support each branch. (b) Consensus similarity tree of different pangenome features based on 

pairwise, unsigned correlations. Labels indicate the number of OGC building methods (out of 4) that 

support each branch (values <3 are not shown). In all cases when the support is not complete, 

reference database mapping is the method that disagrees. (c) Quantitative comparison of 

pangenome estimates among methods. Left: relative differences in pangenome estimates; right: 

relative contribution of methodological choices to between-species variance. Note the different 

color scale for Proteobacteria. Highlighted cells correspond to the features shown in (d). (d) Species-

wise comparison of selected pangenome features (pangenome size, number of single-copy core 

OGC, fluidity, and nucleotide sequence diversity in core genes) inferred from orthology- and 

synteny-based OGC. Black lines show the orthogonal least squares fit; gray lines indicate the 1:1 

trend. Each point corresponds to the pangenome of one species, colored according to its phylum. 

Figure 3: Comparison of core gene sets obtained from different OGC building methods. (a) 

Distribution of the mean copy number per core OGC per genome. (b) Fraction of all single-copy core 

(scc) gene families that are exclusively recovered through orthology- or synteny-based paralog 

splitting. (c) Distribution of synteny-exclusive, single-copy core OGC among orthology-based OGC. 

The large bar at “1” implies that most synteny-exclusive single-copy core OGC are subsets of larger 

orthology-based OGC that are core but not single-copy. (d) Distribution of orthology-exclusive, 

single-core OGC among synteny-based OGC. Most of the single-copy core OGC exclusively supported 

by orthology combine 2 accessory synteny-based OGC. In (c) and (d), gray bars denote method-
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exclusive single-copy core OGC that include sequences that could not be processed by the other 

method. (e) Nucleotide sequence divergence in single-copy core OGC exclusively supported by 

orthology, synteny, or both criteria. To account for between-species differences in evolutionary 

rates and phylogenetic tree spans, values were normalized by the species-level mean divergence 

(calculated from all single-copy core OGC that were supported by both synteny and orthology). 

Vertical lines indicate the distribution means for each group of single-copy core OGC. (f) Functional 

differences among single-copy core OGC supported by different criteria. Each set of box plots 

represents the balance (measured as the isometric log-ratio) between the relative frequencies of a 

given functional category (x-axis) and the remaining categories not considered in previous sets (e.g., 

the second set of box plots corresponds to the balance between functional category N and all the 

rest except X). The figure shows the 4 ILR balances with the greatest variation across methods. 

Abbreviations of functional categories, X: mobilome; N: cell motility; Q: 2º metabolites biosynthesis, 

transport and catabolism; J: translation, ribosomal structure and biogenesis. In (b) and (f), each data 

point corresponds to one species; boxes span the 25-75 percentiles; the central line indicates the 

median; whiskers extend to the most extreme data points that are not outliers; isolated points 

denote outliers; notches (only in f) show the 95% confidence interval of the median. 

Figure 4: Systematic and specific biases in functional profiles associated with paralog splitting 

criteria. (a) Inconsistency of ORF assignations into OGC (normalized variation of information, top), 

and fraction of OGC that exactly contain the same ORFs (bottom) under synteny and orthology 

splitting criteria, stratified by functional category. (b) Absolute number (top) and relative fraction 

(bottom) of synteny- and orthology-based OGC associated with each functional category. (c) 

Balances (quantified as isometric log-ratios) for the functional categories that show the greatest 

systematic variation between paralog splitting criteria. Each set of boxplots represents the balance 

between the relative abundances of a group of functional categories (shown below) and all the 

remaining categories not considered in previous sets. Each data point corresponds to the 

pangenome of one species; boxes span the 25-75 percentiles; the central line indicates the median; 

whiskers extend to the most extreme data points that are not outliers; isolated points denote 

outliers. (d) Standardized residuals (Z-scores) of the linear mixed effects model used to infer the 

systematic differences shown in (c). Each row corresponds to the pangenome of one species, sorted 

according to the GDTB species tree (72) (phyla colored as in Fig 1). Colored cells indicate a significant 

excess of synteny- (green) or orthology-based (purple) OGC from a given category in a specific 

pangenome that is not explained by the general trends in (c). Abbreviations of functional categories, 
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C: energy production and conversion; D: cell cycle control, cell division, chromosome partitioning; 

E: amino acid transport and metabolism; F: nucleotide transport and metabolism; G: carbohydrate 

transport and metabolism; H: coenzyme transport and metabolism; I: lipid transport and 

metabolism; J: translation, ribosomal structure and biogenesis; K: transcription; L: replication, 

recombination and repair; M: cell wall/membrane/envelope biogenesis; N: cell motility; O: 

posttranslational modification, protein turnover, chaperones; P: inorganic ion transport and 

metabolism; Q: secondary metabolites biosynthesis, transport and catabolism; R: general function 

prediction only; S: function unknown; T: signal transduction mechanisms; U: intracellular trafficking, 

secretion, and vesicular transport; V: defense mechanisms; X: mobilome: prophages, transposons. 

Figure 5: Effect of paralog splitting criteria on the inference of gene flux. (a) Species-wise 

comparison of the total gene flux (gains and losses along the species tree, left), genomic content vs 

gene sequence evolution ratio (middle), and total gain vs loss ratio (right) inferred from synteny- 

and orthology-based OGC. The method-dependent uncertainty is equal to 1 – R2. (b) Flux per gene 

per functional category inferred from orthology- (top) and synteny-based (middle) OGC. Each data 

point corresponds to one species; boxes span the 25-75 percentiles; the central line indicates the 

median; whiskers extend to the most extreme data points that are not outliers; isolated points 

denote outliers. The bar plot at the bottom shows the inconsistency between methods, quantified 

as one minus the squared rank correlation. Abbreviations of functional categories as in Fig. 2. (c) 

Median flux per gene per category, calculated over all the species, for orthology-based (x-axis) and 

synteny-based (y-axis) OGC. Similar trends are observed for gains, losses, and the combination of 

both.  
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Table 1: OGC generation strategies and tools used in this study. 

Clustering Paralog splitting Identity threshold Software Ref. 

de novo orthology-based none (e-val < 0.001) panX (33) 

de novo orthology-based none (e-val < 0.001) OrthoFinder (32) 

de novo synteny-based 80%, 95% roary (34) 

de novo none 50%, 80% MMseqs2, PanACoTA (29,30) 

de novo none 50%, 80% CD-HIT (28) 
 

reference db n.a. none (e-val < 0.001) eggNOG-mapper (59) 
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