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Abstract

Brain functional dynamics have been linked to emotion and cognition in mature individuals,
where alterations are associated with mental ill-health and neurodevelopmental conditions
(such as autism spectrum disorder). Although reliable resting-state networks have been
consistently identified in neonates, little is known about the early development of dynamic
brain functional connectivity and whether it is linked to later neurodevelopmental outcomes in
childhood. In this study we characterised dynamic functional connectivity in the first few
weeks of postnatal life and evaluated whether early dynamic functional connectivity: i) changes
with age in the neonatal period ii) is altered by preterm birth and iii) is associated with
neurodevelopmental and behavioural outcomes at 18 months.

We used the Kuramoto Order Parameter as a metric of global brain synchrony and defined
transient brain states (modules) using Leading Eigenvector Analysis (LEIiDA) in a cohort of
term-born (n=324) and preterm-born babies (n=66) scanned at term equivalent age from the
developing Human Connectome Project. We assessed whether neonatal brain state features
(mean synchrony, metastability, entropy, fractional occupancy, dwelling times) and state
transition probabilities were associated with postmenstrual age at scan , postnatal days at scan
and preterm-birth; and correlate with neurodevelopmental outcomes at 18 months measured
using the Bayley Scales of Infant and Toddler Development, and atypical social, sensory and
repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-
CHAT).

On aglobal scale, preterm-born infants had lower mean synchronisation and metastability, with
reduced mean synchronisation associated with higher Q-CHAT scores at 18 months of age. On
a modular scale, we identified six transient states of neonatal dynamic functional connectivity:
three whole-brain synchronisation states and three regional synchrony states occupying
occipital, sensory-motor, and frontal regions. Mean synchrony, metastability, fractional
occupancy and dwelling times of these brain states were correlated with postmenstrual age and
postnatal days at scan. Preterm-born infants had increased fractional occupancy of frontal and
occipital states. Higher neonatal sensory-motor synchronisation was associated with lower
motor and language outcome scores at 18 months. Lower frequency of occurrence of whole-
brain synchronisation states and higher frequency of occurrence of the sensory-motor state
were associated with higher Q-CHAT scores at 18 months.

Thus, we have shown for the first time that a dynamic landscape of brain connectivity is already
established by the time of birth in the human brain. This landscape is altered by preterm birth
and its profile is linked to neurodevelopmental outcomes in toddlerhood.
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1. Introduction

A fundamental feature of the brain’s activity is the dynamic properties of its functional
connectivity, with continuous shifting between different connectivity profiles or ‘states’. These
dynamic properties are linked to processes such as language (Chyl et al., 2021; Erb et al., 2013),
cognition (Allen et al., 2014; Calhoun et al., 2014; Diez-Cirarda et al., 2018; Gonzalez-Castillo
and Bandettini, 2018; Hellyer et al., 2015, 2014; Hutchison et al., 2013; Lurie et al., 2020;
Ponce-Alvarez et al., 2015, p.; Schaefer et al., 2014; Tagliazucchi and Laufs, 2014), and motor
function (Engels et al., 2018; Wang et al., 2010). Importantly, altered brain dynamics have also
been linked to the clinical features and/or cognitive dysfunction in neurodevelopmental
conditions such as schizophrenia (Sakoglu et al., 2010), attention deficit hyperactivity disorder
(ADHD)(de Lacy and Calhoun, 2019) and autism spectrum disorder (ASD) (de Lacy et al.,
2017; Watanabe and Rees, 2017). Individuals with ASD, for example, have been reported to
switch between different connectivity profiles more directly, whereas typically developing
individuals switch between those same brain states via an intermediate connectivity profile
(Watanabe and Rees, 2017). However, although it is increasingly appreciated that
neurodevelopmental conditions likely have their origins in the perinatal period, little is known
about the brain’s dynamic properties at this critical juncture. Moreover, it is also not clear
whether its dynamic characteristics are associated with later childhood neurodevelopment, and
in particular, which of these characteristics signal a higher likelihood of later
neurodevelopmental difficulties.

Conventional studies of “static” functional brain connectivity in early life have shown that the
spatial representation of resting state networks (RSNs) appears to be relatively mature and
adult-like even soon after birth (Doria et al., 2010; Fransson et al., 2009, 2007; Smyser et al.,
2016, 2010). It has also been confirmed that these RSNs may be disrupted by perinatal
exposures, such as preterm birth (Doria et al., 2010; Eyre et al., 2021; Gao et al., 2015a, 2015b;
Smyser et al., 2016, 2010), which increase the likelihood of neurodevelopmental impairments
(Boardman and Counsell, 2020). However, despite the evidence for the importance of
dynamics in older groups, the dynamics of these networks in early life remain unexplored.

In this study we applied state-of-the-art techniques to evaluate functional Magnetic Resonance
Imaging (fMRI) acquired as part of the developing Human Connectome Project (dHCP), the
largest publicly available population-based dataset of the healthy new-born brain (Edwards et
al., 2022). We used two methods that tap into dynamic brain function. First, we characterised
global dynamics - which are aggregates of the level of synchronisation across different areas
of the brain — using Kuramoto Order Parameter (KOP) based measures, namely mean
synchronisation and metastability. Second, we characterised modular dynamics. That is, we
identified networks and sub-networks involved in temporal ‘states’, i.e., paroxysmal modes
representing synchronisation of the brain, using Leading Eigenvector Analysis (LEIDA)
(Cabral et al., 2017; Figueroa et al., 2019; Lord et al., 2019; Vohryzek et al., 2020). This
allowed us to test three hypotheses: 1) That neonatal brain dynamics quickly develop with age
at scan; 2) That preterm birth alters the typical pattern of functional brain dynamics; and 3)
That neonatal brain dynamics are linked to neurodevelopmental and behavioural outcome
measures at age 18 months.
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2. Methods

2.1. Participants

We analysed a total of 390 (out of 809) datasets from the dHCP (release 3) (Edwards et al.,
2022) acquired from both term (n = 324) and preterm born (gestational age (GA) at birth < 37
weeks; n = 66) babies. Full inclusion and exclusion criteria and numbers excluded at each step
are detailed in Supplementary Figure S1. Term-born babies were born at median GA at birth
of 40.14 weeks (IQR = 1.86 weeks) and scanned soon after birth (median postmenstrual age
(PMA) at scan = 41.57, IQR = 2.43 weeks). Preterm-born babies were born at a median GA at
birth of 33.36 weeks (IQR = 5.86 weeks) and scanned at term-equivalent age (median PMA at
scan = 40.5 (IQR = 2.71)). Table 1 shows demographic data of the sample. The distribution of
PMA at scan and GA at birth for the individuals included in this study is shown in
Supplementary Figure S2. All children were invited to the Centre for the Developing Brain, St
Thomas’ Hospital, London, for neurodevelopmental evaluation by experienced paediatricians
or psychologists at 18 months after expected delivery date. The Bayley Scales of Infant and
Toddler Development, Third Edition (BSID-111) (Bayley, 2006) were used to assess general
developmental outcomes across motor, language and cognitive domains in 305 individuals
from the total population, comprising 257 infants born at term and 48 born preterm (higher
scores indicate greater skills). Of these, the Quantitative Checklist for Autism in Toddlers (Q-
CHAT) (Allison et al., 2008) at 18 months corrected age was available in 300 individuals (254
born at term and 46 born preterm), as a measure of atypical social, sensory and repetitive
behaviours which occur as a continuum in the population (Allison et al., 2008). Although
higher Q-CHAT scores may indicate more threshold or subthreshold autistic traits, we
emphasize our use of this instrument was to capture behaviours not tapped by the BSID-III,
rather than to screen for ASD. The index of multiple deprivation (IMD) rank — a composite
measure of geographical deprivation estimated from the address of the mother at the time of
birth (Abel et al., 2016) — was obtained for every subject and included as a covariate for models
aimed at assessing the relationship between neonatal brain dynamics and subsequent
neurodevelopmental and behavioural outcomes.

2.2. MRI data acquisition

We evaluated fMRI acquisitions obtained as part of the dHCP at the Evelina Newborn Imaging
Centre, Evelina London Children’s Hospital, using a 3 Tesla Philips Achieva system (Philips
Medical Systems). Ethical approval was given by the UK National Research Ethics Authority
(14/L0O/1169), and written consent was obtained from all participating families prior to data
collection. Scans were performed without sedation in a dedicated neonatal set-up with
optimised transport system, positioning devices, hearing protection, and custom-built 32-
channel receive head coil and acoustic hood (Hughes et al., 2017). Scans were supervised by a
neonatal nurse or paediatrician who monitored heart rate, oxygen saturation and temperature
throughout the duration of the scan. Blood-oxygen-level-dependent (BOLD) fMRI was
acquired using a multi-slice echo planar imaging sequence with multiband excitation (factor 9)
(repetition time (TR) = 392 ms, echo time (TE) = 38 ms, voxel size = 2.15 x 2.15 x 2.15 mm,
flip angle = 34°, 45 slices, total time = 15 m 3 s, number of volumes = 2300) (Edwards et al.,
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2022). Anatomical images were acquired for brain morphometry and clinical reporting
(Edwards et al., 2022). T1-weighted images had a reconstructed spatial resolution = 0.8 x 0.8
x 0.8 mm, field of view = 145 x 122 x 100 mm, TR = 4795 ms. T2-weighted images had a
reconstructed spatial resolution = 0.8 x 0.8 x 0.8 mm, field of view = 145 x 145 x 108 mm, TR
=12 s, TE = 156 ms. fMRI datasets with excessive motion (more than 10% of motion outliers
(Eyre et al., 2021)), or incidental MRI findings of clinical significance (radiology scores 4 or
5 which indicate major lesions within white matter, cortex, basal ganglia or cerebellum — as
described in dHCP database (Edwards et al., 2022)) were excluded. In cases of twin/triplet
scans only one infant was included (the one with least motion outliers during acquisition).

Table 1 Demographic details of the term- and preterm-born groups.

Term (n=324) Preterm (n =66) Statistic  p-value

Demographics & Clinical Details

GA at birth [in weeks] (S.D.) 40.04 (1.26) 32.79 (3.40) 12.814* p<0.001
PMA at scan [in weeks] (S.D.) 41.60 (1.67) 40.60 (2.13) 3.6152 p<0.001
Sex [female count] (%) 149 (45.99) 26 (39.39) 0.716° p=0.398
% FD outliers (S.D.) 5.38 (2.62) 4.52 (2.49) 2.451* p=0.014
Follow-up

Corrected age at follow-up® [months] (S.D.) 18.83 (1.30) 18.71 (1.35) 0.6722  p=0.503
Uncorrected age at follow-up® [months] (S.D.) 18.82 (1.34) 20.40 (1.45) -7.060* p<0.001
Bayley IIT - cognitive (S.D.) 101.56 (10.70) 99.90 (13.11) 0.618* p=0.538
Bayley I1IT - motor (S.D.) 102.25 (9.72) 99.65 (10.26) 1.733*  p=0.083
Bayley IIT - language (S.D.) 99.33 (15.72) 95.69 (15.85) 1.155* p=0.249
Q-CHAT'"(S.D.) 29.90 (8.51) 31.63 (11.81) -0.682¢  p=0.497

fBayley Scales of Infant Development: Third Edition - # of complete assessments: 257 term, 48 preterm
fTQuantitative Checklist for Autism in Toddlers - # of complete assessments: 254 term, 46 preterm

3Z (Mann-Whitney U-test), Py 2-test

FD — Framewise Displacement

2.3. Data processing

Individual fMRI datasets were pre-processed according to the dHCP dedicated neonatal
pipeline (Fitzgibbon et al., 2020). Briefly, local distortion due to field inhomogeneity was
corrected using topup (Andersson et al., 2003); intra- and inter-volume motion correction; and
associated dynamic distortions correction using rigid-body realignment and slice-to-volume
eddy (Andersson et al., 2017; Andersson and Sotiropoulos, 2016). Residual motion, multiband
acquisition, and cardiorespiratory artefacts were regressed out using FSL FIX (Griffanti et al.,
2014; Salimi-Khorshidi et al., 2014).

Head motion has been shown to produce spurious and systematic correlations in resting state
fMRI (Power et al., 2012). In addition to specific processing steps within the dHCP pipeline
implemented to minimise motion artifact on the BOLD signal (Fitzgibbon et al., 2020), we also
evaluated motion magnitude for each dataset using framewise displacement (FD) (Power et al.,


https://doi.org/10.1101/2022.11.16.516610
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516610; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

2014, 2012). To minimise the effects of motion (and/or any likely associated differences) on
the determination of brain states, only participants with less than 10% motion outliers (defined
as FD > 75" centile + 1.5*IQR) were selected for the final analysed subsample. The total
number of motion outliers was additionally used as a covariate of control in the analysis models
described in the statistics section.

We performed a segmentation of the T2-weighted volumes with a dedicated neonatal tissue
segmentation pipeline (Makropoulos et al., 2014). We parcellated each subject’s T2-weighted
volume in 90 cortical and subcortical parcels using the Anatomical Automated Labels (AAL)
atlas (Tzourio-Mazoyer et al., 2002), mapped to the neonatal brain (Shi et al., 2011), adapted
and manually corrected into the dHCP high-resolution template (Schuh et al., 2018). We
transformed the AAL atlas into each subject’s native space with a non-linear registration based
on a diffeomorphic symmetric image normalisation method (SyN) (Avants et al., 2011) using
T2-weighted contrast and the segmentation obtained previously. Grey matter segmentation and
parcels were propagated from T2 native space into each subject’s fMRI space with a boundary-
based linear registration available as part of the functional dHCP processing pipeline
(Fitzgibbon et al., 2020). Average BOLD timeseries were then calculated for each of the 90
AAL parcels in their intersection with grey matter, deep grey matter, and basal ganglia
segmentation masks.

2.4. Analysing BOLD timeseries

We filtered the BOLD timeseries with a bandpass Butterworth second order filter in the range
of 0.02-0.10 Hz (Lord et al., 2019) and obtained the phases ¢j(t) for each parcel in time with
the Hilbert transform. For a given real signal s(t), we built a complex signal z(t) (Boashash,
1992; Glerean et al., 2012) given by:

z(t) = s(t) + iH[s(t)] )

In which H[s(t)] represented a Hilbert transform applied to the real signal s(t) and is defined
below, with p.v. consisting of Cauchy principle value (Boashash, 1992):

H[s(®)] = p.v. ffoms(;—_tr)dt )

The phases ¢j(t) for each parcel can be calculated directly from z(t):

@(t) = arctan (Hzg)]) (3)

2.5. Kuramoto Order Parameter

The Kuramoto Order Parameter (KOP) measures the global level of synchronicity of multiple
oscillators and is defined in equation below, where ¢;(t) is the signal phase of an oscillator j at
a given time. In our study, each brain parcel (AAL region) is treated as an independent
oscillator.
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1 io:
KOP() = |5V j=1 €'/ @

Once KOP was obtained for every time point, we obtained the mean KOP (synchrony aggregate
over time, hereafter referred to as “mean synchronisation”), KOP standard deviation (hereafter
referred to as “metastability”’) (Deco et al., 2017; Wildie and Shanahan, 2012). Mean KOP
provides a broad measure of whole brain synchronicity, whereas metastability provides a
measure of how synchronisation between different oscillators fluctuates over time, i.e., brain
flexibility (Deco et al., 2017; Hellyer et al., 2015, 2014).

2.6. The Leading Eigenvector Analysis

KOP analyses can provide insight on global dynamic properties over all oscillators (brain
parcels); but cannot inform which specific brain structures might be involved in those changes.
To evaluate such modular (local) properties we applied the LEIDA approach — which allowed
us to investigate phase coherence in different sets of parcels. To do so we first calculated the
phase difference between a parcel i and a parcel j at every instant (TR), using the cosine
distance:

A, @)=cos (p,(£)-9,1) 5)

This results in a symmetric dynamic functional connectivity matrix for each fMRI volume. We
then obtain a lower-dimensional representation with the LEiDA approach (Cabral et al., 2017
Gomes et al., 2020; Lord et al., 2019; Vohryzek et al., 2020), whereby the LEIDA vector
corresponds to the first eigenvector of the decomposition of the matrix A¢g;(t). This method
has been previously shown to reveal information on the community structure of networks and
graphs (Newman, 2006a, 2006b). Once the LEIDA vectors were obtained, we clustered them
using K-Means (Cabral et al., 2017; Lord et al., 2019) with the optimal K (six) determined
heuristically with the Calinski-Harabasz (Calinski and Harabasz, 1974) and Davies-Bouldin
(Davies and Bouldin, 1979) methods (Supplementary Figure S3).

Each cluster represents a set of LEIDAs, and we refer to each of these as a brain state. The
dynamics of such states can be studied with three main metrics: fractional occupancy — which
refers to the total proportion of time spent in a given state or probability of that state; dwelling
time — which consists of the average continuous time spent on each state; and Markovian
probabilities of transitions between each state (Cabral et al., 2017; Lord et al., 2019). In
addition, we also calculated values for mean synchronisation and metastability for each state
by averaging those for the volumes belonging to each cluster.

2.7. Statistics

Firstly, we restricted our sample to the term-born individuals only (n = 324) and evaluated the
effect of normative brain maturation and ex-utero experience (with PMA and PND at scan,
respectively) in global and modular brain dynamics. Secondly, we evaluated the effects of
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prematurity in brain dynamics by studying the entire sample of 390 individuals. Finally, we
evaluated the association of global and modular dynamic features with later
neurodevelopmental outcomes at 18 months corrected age (n = 305 — Bayley-I11; n = 300 — Q-
CHAT).

2.7.1. Global dynamics

We characterised the effect of age and postnatal experience (PMA and PND at scan) by fitting
the linear model GLM1 (324 term-born babies): y ~ f + A/APMA + APND + A5Sex +
Ls[Motion outliers (FD)]. To characterise the effect of preterm birth on brain dynamics, we
fitted the linear model GLM2 (324 term-born and 66 preterm-born babies): y ~ s +
LSPreterm-born + /APMA + £#3Sex + ga[Motion outliers (FD)]. We assessed the association
of brain global dynamics with cognitive and behavioural outcome measures, i.e., Bayley and
Q-CHAT, at 18 months in a model given by GLM3 (257 term-born and 48 preterm-born babies
for Bayley’s scores; and 254 term-born and 46 preterm-born babies for Q-CHAT): v ~ 6 +
LPGA + fPMA + fSex + g[Motion outliers (FD)] + g5[Corrected age at assessment] +
s[Assessed Component] + A7[Index of Multiple Deprivation] (with Assessed Component
consisting of Bayley’s cognitive, Bayley’s language, Bayley’s motor, or Q-CHAT total scores).

2.7.2. Modular dynamics: brain states

Firstly, we tested differences between the brain states defined in this study in terms of their
mean synchronisation, metastability, fractional occupancy, and dwelling times per subject via
a type Il ANOVA with Satterthwaite’s method (Giesbrecht and Burns, 1985; Hrong-Tai Fai
and Cornelius, 1996; Kuznetsova et al., 2017) and the linear mixed effects model GLME1
(including 324 term-born): y ~ b + piState + (1 | Subject ID) — with Subject ID accounting
for the random effect. By fitting GLM1 (324 term-born babies): y ~ s + /APMA + £PND +
/3Sex + gu[Motion outliers (FD)], we characterised the effect of age (PMA at scan) and
postnatal experience (PND at scan) on fractional occupancy, dwelling times, mean
synchronisation, and metastability for each of the six brain states.

Secondly, to characterise the effect of preterm birth on brain states and state-change
probabilities, we fitted GLM2 (324 term-born and 66 preterm-born babies): y ~ fb +
LSiPreterm-born + £2PMA + £3Sex + gx[Motion outliers (FD)] and GLM3 (324 term-born and
66 preterm-born babies): y ~ s + AGA + /LPMA + £3Sex + g[Motion outliers (FD)].

Thirdly, we assessed the association of brain dynamics with neurodevelopmental outcome
measures (i.e., Bayley and Q-CHAT at 18 months) in a model given by GLM4 (257 term-born
and 48 preterm-born babies for Bayley; and 254 term-born and 46 preterm-born babies for Q-
CHAT): v ~ o + SAGA + fPMA + £5Sex + g[Motion outliers (FD)] + 5[Corrected age
at assessment] + gs[Assessed component] + 47[Index of Multiple Deprivation] (with Assessed
Component consisting of Bayley’s cognitive, Bayley’s language, Bayley’s motor, or Q-CHAT
total scores).
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2.7.3. Statistical significance and repeated measures

We evaluated the statistical significance of each variable of interest with permutation tests with
10,000 repetitions for all GLMs. P-values are reported uncorrected, highlighting those
surviving multiple comparison correction using the False Discovery Rate method with o at 5%
(Benjamini and Hochberg, 1995).

2.7.4. Data and software availability

The fMRI datasets and clinical data analysed in this study are available as part of the dHCP’s
third data release, which can be obtained from https://data.developingconnectome.org. Pre-
processed BOLD timeseries data used in this study are available in https://dx.doi.org/
10.5281/zen0do.7053984. Dynamic properties of the BOLD signal fluctuations were then
assessed with dynFC: CoDe-Neuro's Dynamic Functional Connectivity Tools (Franga and
Batalle, 2022a), a set of scripts written in Python v3.7 (Van Rossum, 2020), and supporting
libraries Numpy (Harris et al., 2020), SciPy (Virtanen et al., 2020), Scikit-learn (Pedregosa et
al., 2011), pickle, h5py, pandas (McKinney, 2010; The pandas development team, 2020), os,
sys, and feather.

Statistics and figures were produced in R programming language (R Core Team, 2021) and
auxiliary packages ggplot2 (Wickham, 2016, p. 2), tidyr (Wickham, 2021a), dplyr (Wickham
et al., 2021), cowplot (Wilke, 2020a), purrr (Henry and Wickham, 2020), RColorBrewer
(Neuwirth, 2014), knitr (Xie, 2021, 2015, 2014), janitor (Firke, 2021), ggExtra (Attali and
Baker, 2019), stringr (Wickham, 2019), rjson (Couture-Beil, 2018), broom (Robinson et al.,
2021), Tidymodels (Kuhn and Wickham, 2020), shadowtext (Yu, 2021a), effsize (Torchiano,
2020), modelr (Wickham, 2020), ggimage (Yu, 2021b), ggpubr (Kassambara, 2020),
patchwork (Pedersen, 2020), ggbeeswarm (Clarke and Sherrill-Mix, 2017), ggrepel
(Slowikowski, 2022), ggtext (Wilke, 2020b), MetBrewer (Mills, 2022), ImerTest (Kuznetsova
etal., 2017), forcats (Wickham, 2021b), stateR (Franc¢a and Batalle, 2022b), p-testR (Franca et
al., 2022), broom.mixed (Bolker and Robinson, 2021), Ime4 (Bates et al., 2015, p. 4), and
DiagrammeR (lannone, 2020).

Brain volume images were produced with BrainNet Viewer (Xia et al., 2013) and Tools for
NIfTI and ANALYZE images (Shen, 2014). All scripts used in this article’s statistics and
figures; and relevant instructions on how to run them, are available in https://github.com/CoDe-
Neuro/neonatal_dfc.
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3. Results

3.1. Global dynamics

We first assessed the association of global dynamic features with age at scan and postnatal
experience (PMA and PND at scan, respectively) in only term-born individuals (Table 2). We
did not observe any associations between PMA at scan and global dynamic features.
Nevertheless, there was an association between PND at scan with metastability (t = -2.4; p =
0.017). In comparison to these term-born infants, preterm-born infants had lower mean
synchrony (D = 0.567 — medium effect size; p < 0.001) and metastability (D = 0.454 — medium
effect size; p <0.001) (Figure 1AB, Table 2). Across the whole cohort, there was no significant
association between metastability and any neurodevelopmental outcome, although mean
synchronisation showed a weak but significant association with Q-CHAT scores (t = -2.57; p
= 0.011), i.e., lower neonatal mean synchronisation was associated with higher Q-CHAT
scores, indicative of more atypical social, sensory, and repetitive behaviours at 18 months of
age (Figure 1C).

Table 2 Association of global dynamic features (synchrony and metastability) with PMA
and PND at scan, and effect of preterm birth.

Term (n = 324) Term vs Preterm (n = 390)

PMA at scan PND at scan Term Preter Cohen’s p-

(n=324) m(n= D value'®
66)
tt p-value® tt p-value’ [mean (S.D.)]

Mean 0.039 0.970 1.143 0.259 0.52 0.48 0.567 p <
synchronisation (0.08) (0.08) 0.001*

Metastability 0.877 0379 -2403 0.017* 0.20 0.19 0.454 p <
(0.02) (0.02) 0.001*

'GLML1 (including 324 term-born babies): y ~ 6 + F/APMA + £PND + f3Sex + Motion
outliers (FD). "7GLM2 (including 324 term-born and 66 preterm-born babies): y ~ f +
SPreterm-born + /APMA + #3Sex + gaMotion outliers (FD). * p-values surviving multiple
comparison correction (FDR).
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Figure 1 Effect of preterm-birth on mean synchronisation (A) and metastability (B); and

correlation of mean synchronisation and Q-CHAT residuals (Res.) after correcting for PMA at
scan, sex, motion outliers and preterm-birth (C).

3.2. Modular dynamics: brain states

We defined six different brain states, obtained heuristically from K-Means clustering, using
the LEIDA approach (Figure 2). Three of the six states showed widespread phase concordance
amongst the parcels, we refer to these as whole-brain global synchronisation states, namely
global state A, global state B and global state C. Three states were more regionally constrained:
one state showed synchronous phases in the occipital cortex; one state represented high
synchrony for regions mainly in the sensory-motor cortex; and one state comprised high levels
of synchronisation in the frontal cortex, angular gyrus, and posterior cingulate gyrus (for
simplicity we refer to this as a ‘frontoparietal state’).
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LEIDA on brain surfaces (left side view).
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3.2.1. Brain states in term-born children

3.2.1.1.  Characteristic landscape of brain states

We compared the main dynamic features between the six identified states in term-born
participants. There were significant differences between states in mean synchronisation,
metastability, fractional occupancy, and dwelling times when tested using a type 11l ANOVA
model with Satterthwaite’s method: F(5, 1615) = 13163; p < 0.001 for mean synchronisation,
F(5, 1615) = 291; p < 0.001 for mean metastability, F(5, 1938) = 514; p < 0.001 for mean
fractional occupancy, and F(5, 1938) = 734; p < 0.001 for mean dwelling times. Between state
effects showed that global state A had increased mean synchronisation, mean fractional
occupancy, and mean dwelling times when compared with the other 5 states. Moreover, global
states B and C also had a heightened mean synchronisation which was intermediate between
the values recorded for global state A and the other states (see Supplementary Figure S4 for
between-group effects statistics).

We characterised the normative brain state transition probabilities landscape in Figure 3A.
Most occurrences are those of dwelling transitions, i.e., repeated continuous occurrences of the
same state, with probabilities above 83% for all six states. Excluding those dwelling sequences,
the 12 most frequent transitions displayed a complex profile, incorporating an indirect
transition to and from the high whole-brain synchronisation global state A. These transitions
occurred via the intermediate whole-brain synchronisation global states, B and C (Figure 3B).

3.2.1.2.  Association of brain state features with age at scan

Higher PMA at scan was positively correlated with increased dwelling times (t =4.4; p <
0.001), increased fractional occupancy (t =5.3, p <0.001), and increased mean synchronisation
(t =3.6; p < 0.001) for global state C; and with increased fractional occupancy (t = 2.8, p <
0.001) and mean synchronisation in the sensory-motor state (t = 3.1; p = 0.002). PMA was
negatively correlated with increased fractional occupancy in the global state B (t =-2.8; p =
0.004).

Postnatal age (PND at scan) was associated with shorter dwelling times in the global state B (t
=-2.8; p = 0.004), occipital state (t =-2.5; p = 0.013), and sensory-motor state (t =-2.8; p =
0.006). Significant associations of brain state features with PMA and PND at scan are
summarised in Figure 3C and Figure 3D; and compared in Figure 4G.

3.2.1.3 Association of brain state transitions with age at scan

Higher PMA at scan was positively associated with an increased likelihood of transitioning
from global state A to C (t = 3.2; p =0.002), from global state B to frontoparietal state (t = 3.1;
p = 0.002), and to stay (dwell) in global state C (t = 3.2; p = 0.001). Older PMA was also
associated with a lower likelihood of transitioning from global state C to occipital state (t = -
2.8; p = 0.006); and lower probability of staying in global state B (t = -2.9; p = 0.005).
Significant associations of state transition probabilities with PMA at scan are shown in Figure
3E.

Increased postnatal age (PND at scan) was associated with increased transitions from
frontoparietal and occipital states into global state B [(t = 3.1; p = 0.002) and (t =3.3; p =
0.001), respectively]; increased transition from the occipital state into state C (t = 3.1; p =
0.002); a reduction of transition likelihood from state B into a frontoparietal state (t =-3.0; p =
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0.003); and a reduction of probability to stay (dwell) in state C (t = -2.7; p = 0.007), occipital
state (t=-3.4; p =0.001), and sensory-motor state (t =-2.7; p = 0.007). Significant associations
of state transition probabilities with PND at scan are shown in Figure 3F. For a comparison of
the distinct effect of age (PMA at scan) and postnatal experience (PND at scan) in brain state
transitions see Figure 4H. Age at scan and postnatal experience had distinct correlates: for
example, transitions from intermediate whole-brain synchronisation state B to the occipital
state increased with PMA at scan but decreased with PND at scan.
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Figure 3 Brain dynamics in term-born children (n = 324). (A) All transitions including
dwelling state transitions. (B) Main transitions (top 12) between states excluding dwelling
transitions. (C) Summary of brain state features significantly associated with PMA at scan. (D)
Summary of brain state features significantly associated with PND at scan. (E) Summary of
significant correlations between state transitions probabilities and PMA at scan. (F) Summary
of significant correlations between state transitions probabilities and PND at scan. TGLM1
(including 324 term-born babies): y ~ fo + BiPMA + (2PND + [3Sex + S4Motion outliers
(FD). Occ.: Occipital. SM: Sensory-motor. FP: Frontoparietal.

3.2.2. Effect of preterm birth on brain dynamics

3.2.2.1 Association of preterm birth with brain state features

Compared to term-born participants, preterm-born babies had shorter dwelling times for the
global state A (t =-4.6; p <0.001, Figure 4A); decreased fractional occupancy for the global
state A (t=-4.1; p < 0.001); and increased fractional occupancy for global state B (t =3.4; p =
0.001), occipital state (t = 2.2; p = 0.03), and frontoparietal state (t = 2.7; p = 0.009) (Figure
4B). Preterm birth was also associated with lower mean synchronisation of global state A (t =
-5.1; p<0.001), global state B (t=-3.4; p = 0.001), global state C (t =-2.8; p = 0.005), occipital
state (t = -2.2; p = 0.031), and frontoparietal state (t = -2.6; p = 0.010)) (Figure 4C); and
reduced metastability for the global state A (t =-2.5; p = 0.014) and frontoparietal state (t = -
4.3; p <0.001) (Figure 4D). Significant associations of brain state features with preterm birth
are summarised in Figure 4E.

3.2.2.2 Association of preterm birth with brain state transition probability

Preterm birth was associated with an increased transition towards an occipital connectivity
profile, i.e., an increased transition probability from global state A to C (t=4.7; p = < 0.001)
and from global state C to occipital (t = 3.1; p = 0.002); as well as a reduction in the probability
staying (dwelling) in global state A (t = -4.4; p < 0.001); see Figure 4F. A similar profile of
results was obtained when assessing how brain dynamic features changed with gestational age
at birth which essentially captures preterm and term birth, see Supplementary Figure S5.
Significant changes in transition probabilities associated with preterm-birth, and how they
related to associations with PMA and PND at scan are summarised in Figure 4H.
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Figure 4 Effect of preterm birth in brain dynamics. (A) Mean dwelling times (DT). (B)
Mean fractional occupancy (FO). (C) Mean synchronisation. (D) Metastability. (E) Summary
of significant associations with preterm birth (F) Association of state transitions probabilities
and preterm birth. (G) Summary of brain state features significantly associated with preterm
birth, and comparison with those significantly associated with PMA and PND at scan. (H)
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Summary of brain state transition probabilities associated with increased PMA, increased PND,
and/or preterm-birth. TGLM1 (324 term-born babies): ¥ ~ 6 + SAIPMA + /PND + £5Sex +
Motion outliers (FD). TTGLM2 (324 term-born and 66 preterm-born babies): ¥ ~ £ +
LSPreterm-born + £2PMA + £3Sex + fMotion outliers (FD). * p < 0.05. ** p < 0.01. *** p <
0.001. Occ.: Occipital. SM: Sensory-motor. FP: Frontoparietal.

3.2.3. Associations with neurodevelopment

Higher mean synchronisation of the sensory-motor state in neonates was associated with poorer
performance on both Bayley’s cognitive and motor scores assessed later in childhood, at 18
months of age (t =-3.2, p =0.002; and t = -3.4, p = 0.002 respectively; Figure 5A).

Higher Q-CHAT scores at 18 months of age were associated with higher fractional occupancy
of sensory-motor state and reduced fractional occupancy of global state A (t = 2.5, p = 0.014;
and t =-2.6, p = 0.010 respectively; Figure 5B).

a Mean synchronisation b Fractional occupancy
77N
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Figure 5 Summary of associations of brain state features with neurodevelopmental
outcomes at 18 months corrected age. (A) Mean synchronisation and (B) Fractional
occupancy of the six defined brain states during perinatal period. GLM3 (257 term-born and
48 preterm-born babies for Bayley; and 254 term-born and 46 preterm-born babies for Q-
CHAT): y ~ Bo + B1GA + B2PMA + (3Sex + f4Motion outliers (FD) + BsCorrected age at
assessment + SsAssessed component + SzIndex of multiple deprivation.

4. Discussion

In this study, we used global and modular fMRI signal analysis tools to investigate the
characteristics of dynamic functional connectivity in a large sample of term and preterm born
neonates. This is, to our knowledge, the first study to characterise these fundamental
characteristics of brain dynamics this early in human development. We found that preterm birth
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disrupted brain dynamics and that the profile of brain dynamics in early postnatal life is
associated with a range of early childhood neurodevelopmental and behavioural outcomes at
18 months of age.

4.1. Global dynamics

We found that global dynamic features remained relatively stable through early development
(PMA at scan) in a term-born population, although lower metastability was seen with more
postnatal days at scan, suggesting that ex-utero life experience reduces brain dynamic
flexibility after birth, and promotes more stable connectivity patterns. This is consistent with
our observation that preterm born infants scanned at term equivalent age, and thus with greater
exposure to postnatal life experience at the time of scan, had lower metastability than term born
children. However, preterm babies also had lower mean synchronisation at term-equivalent age
suggesting a unique pattern of alteration in brain dynamics associated with preterm birth which
is independent of the extent of ex-utero life exposure (PND at scan). Lower metastability has
been previously associated with impairments in cognitive flexibility of mature individuals after
traumatic brain injury (Hellyer et al., 2015). However, the negative association between
duration of postnatal life and metastability observed here is unlikely to relate to cognitive
flexibility, but rather reflect a refinement of network dynamics driven by primary sensory
stimulation associated with ex-utero life experience. Metastability seems to be additionally
reduced by term equivalent age in preterm born babies, which may be consistent with theories
suggesting perinatal stress atypically accelerates brain maturation, with potentially negative
long-term impact (Tooley et al., 2021).

Our study extends prior work which has observed that, later in childhood, very preterm born
infants have suboptimal neural synchrony and altered global dynamic connectivity patterns
when scanned later in childhood (Padilla et al., 2020). Our metrics indicate that the impact of
preterm birth on brain dynamics begins much earlier in life. Such differences in preterm-born
babies may have their roots in alterations in the framework of structural and functional
networks reported to accompany preterm birth. For example, previous studies have shown that
preterm birth is associated with altered brain structure (Ment et al., 2009; Rogers et al., 2018),
global functional architecture (Ball et al., 2016; Eyre et al., 2021), and structural network
changes in the neonatal period (Batalle et al., 2017) which continue to be present at school-age
(Fischi-Gomez et al., 2016) and into young adulthood (Karolis et al., 2016; Nosarti et al., 2014).

Global dynamic features were linked to later behaviour: lower mean synchronisation in the
neonatal brain was associated with higher Q-CHAT scores at 18 months. Although high scores
on the Q-CHAT indicate more autistic traits, in this study, the Q-CHAT captured a continuum
of social, sensory, and repetitive behaviours across the normal distribution (Allison et al., 2008,
2021). Thus, while global metrics might usefully signpost the trajectory of foundational
dynamic steps of human brain development, their association with Q-CHAT should not be
over-interpreted as our study was not a study of ASD and we did not examine children at an
age where neurodevelopmental diagnoses begin to be formalised.
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4.2. Modular Brain state profile in term-born neonates

Summary metrics of global dynamics are likely themselves to be underpinned by much more
complex activity. Therefore, we explored the emergence and behaviour of modular brain states
in the early postnatal period. We characterised six transient states in the newborn brain at term
equivalent age. Amongst the three states that showed widespread concordance (global states
A-C), the first encompassed nearly all of the analysed cortical regions, the second showed a
higher contribution of all sensory regions (auditory, sensory-motor, and visual) and the third
state showed a higher contribution of visual and frontoparietal cortices. The other three states
had a more restricted/regional span with distinct contributions from sensory-motor, visual and
frontoparietal regions. The majority of these states thus encompassed primary sensory
networks which are already known to mature earlier than higher order networks (Doria et al.,
2010; Eyre et al., 2021; Smyser et al., 2010). This adds confidence to the results reported in
earlier preliminary studies of dynamic FC in neonates around birth. For example, Ma et al.,
2020, described dynamic functional connectivity with four brain states that encompassed
default-mode, dorsal attention, auditory, sensory-motor, and visual networks in 37 term
neonates (Ma et al., 2020). Here we establish a series of six brain states and describe
associations with age at scan and postnatal days in a larger cohort with 324 term neonates.

We observed that in newborn infants, whole-brain synchrony state A had the highest mean
synchronisation, as well as largest fractional occupancy and dwelling times; thus suggesting
that newborn infants spend a large amount of their time in a state of global phase synchrony
which is a similar to the previously described dominant pattern of whole-brain synchronisation
seen with both fMRI (Ma et al., 2020; Wen et al., 2020) and EEG (Tokariev et al., 2019).
Together with prior studies, our work supports the idea that large scale activity plays a crucial
role in early brain development. Our results also align with the concept that this activity could
support large scale cortical network formation and may foster the associated long-range
connections, which are known to subsequently mature during the first postnatal year (Damaraju
et al., 2014; Tau and Peterson, 2010).

4.3. Age-related changes in modular brain states

We observed a positive correlation of occupancy and mean synchronisation within the sensory-
motor cortices with increasing PMA at scan. This supports existing evidence that this system
is relatively mature, both in function and structure in comparison to other systems at birth. This
may be the product of significant short-range functional reorganisation during the last foetal
trimester (Cao et al., 2017; Dall’Orso et al., 2022) to support the functional specificity needed
to respond to sensory information coming from feet, hands and mouth (Allievi et al., 2016;
Dall’Orso et al., 2018).

We also found that increased PMA at scan, was associated with an increased probability of
transitioning into frontoparietal synchronicity states comprising the anterior part of the Default
Mode Network (DMN) (Buckner et al., 2008). This chimes with other evidence that, although
this system is relatively immature at birth, it undergoes significant changes postnatally with
increasing recruitment of frontoparietal areas into the network (Doria et al., 2010; Eyre et al.,
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2021). Our work suggests that this system is recruited more and more with age in the postnatal
period.

There was also a significant effect of PND at scan on an increasing probability of transition
from occipital to whole-brain synchronisation states. This finding is in line with key stages of
neurodevelopment. Specifically, changes in transitions from an occipital cortex profile may
help the maturation of visuomotor abilities and sensory integration in early infancy in the
environment outside the womb (Culham et al., 2006). Finally, we observed increased
transitions from sensory-motor to frontoparietal structures with increasing duration of postnatal
life, perhaps reflecting a move from a reliance on predominantly sensory-motor system output
to behaviour informed by the higher order functions subserved by frontoparietal regions.

4.4. Effect of preterm birth on modular brain states

Preterm birth is associated with a higher likelihood of atypical neurodevelopment (Boardman
and Counsell, 2020) including a greater rate of autism diagnosis (Agrawal et al., 2018; Joseph
etal., 2017; Leviton et al., 2018; Limperopoulos et al., 2008; Raybaud et al., 2013; Schieve et
al., 2016). Previous studies from our group have shown preterm born infants have alterations
in their functional architecture (Ball et al., 2016; Doria et al., 2010; Eyre et al., 2021). Here,
we extend this work to report that preterm birth also has an impact on dynamic functional
connectivity, increasing fractional occupancy of occipital and frontal states and increased
transitions from global to occipital state; and decreased dwelling for high whole-brain
synchronisation state. Only one other study has investigated the effect of prematurity on
dynamic functional connectivity (Ma et al., 2020). They reported significantly shorter mean
dwelling times in a state with stronger connectivity between sensory-motor and auditory
cortices and significantly higher mean dwelling times for a global state (Ma et al., 2020). Direct
comparison with our findings is challenging however, given the higher resolution of our study
in terms of a larger number of ROIs included in our study but also the power available from
our larger sample. We observed multiple global states in neonates with diverse contributions
from occipital and frontoparietal regions and a negative effect of prematurity on dwelling times
in state A. In summary, preterm-birth shifts dynamic functional connectivity towards occipital
and frontoparietal synchrony profiles and suppresses whole-brain synchronisation modes.
Preterm-birth is known to impact on cognition throughout the lifespan (Brydges et al., 2018;
Kroll et al., 2017). Our results raise the possibility, that alterations in brain functional
connectivity that are present soon after birth have functional consequences.

4.5. Associations with neurodevelopment

Our work and others consistently recognises the neonatal period as a key time for sensory-
motor cortical development (Allievi et al., 2016; Cao et al., 2017; Dall’Orso et al., 2018) and
subsequent transition to higher order network connectivity (Doria et al., 2010; Eyre et al.,
2021). We extended this observation here, to show that altered brain dynamics contributes to
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both general developmental outcomes and more specific social, sensory, and repetitive
behaviours at age 18 months. Lower levels of synchrony in the sensory-motor state around
term were positively correlated with better cognitive and motor outcomes (Bayley-I11) at 18
months. However, when there was lower fractional occupancy of the high whole-brain
synchronisation state A and increased fractional occupancy of the sensory-motor state around
birth, there were more atypical social, sensory, and repetitive traits present at 18 months, as
captured by the Q-CHAT.

Thus, our work indicates that the link between brain dynamics and autistic traits is not only
limited to state transitions in adulthood (Esfahlani et al., 2022; Watanabe and Rees, 2017) but
may comprise alterations in state occupancy and overall synchronicity as well as transitions
established during early development. One possible explanation for the association between
the sensory-motor cortex dynamics and later social, sensory and repetitive traits, is that altered
brain dynamics in the neonatal period may predispose individuals to exhibit unusual responses
to sensory stimuli (Rogers and Ozonoff, 2005). The positive correlation of higher fractional
occupancy of the sensory-motor state and a higher Q-CHAT score could also represent an
overreliance on that particular network during the neonatal period — which may impact upon
the development of higher order networks in the general population as a continuum.

We emphasize that we did not follow-up the children with higher Q-CHAT scores beyond 18
months, thus our work did not evaluate predictors of a confirmed diagnosis of ASD.
Longitudinal studies are clearly needed, but our work adds to the evidence for persistent
dysmaturation of sensory systems to autistic features across the lifespan. Sensory differences
are among the first features to signal a diagnosis of ASD (Kolesnik et al., 2019; Tomchek and
Dunn, 2007) and persist, remaining core to the diagnosis (American Psychiatric Association,
2013). For example, we have reported that neonates with an increased familial likelihood of
ASD had higher regional homogeneity in the sensory-motor cortex (Ciarrusta et al., 2020),
which fits with the higher fractional occupancy we record in this region. Studies of diagnosed
individuals have reported atypical activation of the motor cortex (Martineau et al., 2010), which
likely affects the translation of visual input into motor understanding, with a potential impact
on social interaction. These functional brain differences in sensory systems are thought to arise
from alterations in excitation-inhibition pathways, especially GABA neurotransmission.
Evidence includes a tight relationship between sensory processing and differences in sensory
cortex GABA levels (Puts et al., 2017) and we have reported direct experimental proof in
adults, that visual processing differences in ASD are GABA-dependent (Huang et al., 2022).

4.6. Strengths and limitations

We studied state-of-the-art infant fMRI acquired with a dedicated neonatal multiband EPI
pipeline which features high temporal resolution (TR = 392 ms) but acknowledge this has
relatively low signal-to-noise ratio in the deep grey matter (thalamus, basal ganglia, brainstem)
structures (Fitzgibbon et al., 2020).

We chose a LEIDA processing pipeline, as it provides time-resolved metrics of brain states and
has been successfully applied to study brain dynamics in adults (Cabral et al., 2017; Figueroa
et al., 2019; Gomes et al., 2020; Lord et al., 2019; Vohryzek et al., 2020). Although a majority
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of prior studies of dynamic brain functional connectivity have adopted sliding window
approaches, it necessitates the choice of arbitrary parameters in the analysis, such as window
and step sizes. There is little consensus on these parameters as the use of small windows can
magnify spurious variations and large windows can soften sharper changes in brain dynamics
(Leonardi and Van De Ville, 2015; Preti et al., 2017; Savva et al., 2019). Thus, the choice of a
time-resolved approach like LEIDA is a strength in our methodology.

However, our analysis treated brain state occurrence in an independent fashion, i.e., without
memory. Future studies could benefit from developing a metric that considers how brain states
are impacted by previously occurring states. Our results are also potentially limited by the use
of the AAL atlas which has been validated for neonatal use (Shi et al., 2011) to define our
regions of interest. Such structurally defined atlases could potentially poorly correlate with
functional boundaries in the brain, particularly during the neonatal period (Sala-Llonch et al.,
2019; Smith et al., 2013). A possible solution for future work could be the adaptation and use
of multi-modal generated surface atlases (Glasser et al., 2016) for neonatal fMRI studies.

In our analysis, we didn’t consider the effect of socio-demographic factors and social
deprivation beyond using the Index of Multiple Deprivation scores as a covariate. However,
multiples studies have shown that family psychosocial and socio-demographic factors have a
significant impact on brain development in childhood; with factors such as maternal stress,
depression, low education, maternal immigration status, maternal age greater than 35 years,
paternal age over 38 years and low household income all being linked to poorer developmental
outcomes (Deave et al., 2008; Dollaghan et al., 1999; Gale-Grant et al., 2020; Glover and
O’Connor, 2002; Leonard et al., 2011; Rice et al., 2010; To et al., 2004). Thus, further studies
could benefit from evaluating links between these wider socio-demographic markers and brain
dynamics in early childhood (Gale-Grant et al., 2022).

5. Conclusions

In this study we evaluated global functional brain dynamics and transient brain states in the
newborn brain. Our approach allowed us to define a set of six fundamental transient brain
states, which are comprised by structures previously shown to be established in earlier phases
of brain development. We have highlighted the impact brain maturation has on brain dynamics,
as well as atypical patterns associated with preterm birth. Brain state dynamics at birth appear
to be functionally relevant as they are correlated with a range of neurodevelopmental outcomes
in early childhood. This encourages further work to understand their prognostic value and
regulation to guide support and intervention where appropriate.
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Supplementary

Supplementary Figure S1 Exclusion criteria flowchart.
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