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Abstract

Pancreatic islets control glucose homeostasis by the balanced secretion of insulin and other
hormones, and their abnormal function causes diabetes or hypoglycemia. Here, we uncover a
conserved program of alternative microexons included in mRNAs of islet cells, particularly in genes
involved in vesicle transport and exocytosis. Islet microexons (IsletMICs) are regulated by the RNA
binding protein SRRM3 and represent a subset of the larger neural program that are particularly
sensitive to the levels of this regulator. Both SRRM3 and IsletMICs are induced by elevated glucose
levels, and depletion of SRRM3 in beta cell lines and mouse islets, or repression of particular
IsletMICs using antisense oligonucleotides, leads to inappropriate insulin secretion. Consistently,
SRRM3 mutant mice display defects in islet cell identity and function, leading to hyperinsulinemic
hypoglycemia. Importantly, human genetic variants that influence SRRM3 expression and IsletMIC

inclusion in islets are associated with fasting glucose variation and type 2 diabetes risk.
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Introduction

Pancreatic islets are complex endocrine micro-organs that play an essential role in maintaining
glucose homeostasis through the balanced secretion of hormones into the bloodstream. Insulin, the
major glucose-lowering hormone, is produced exclusively by pancreatic islet beta cells. Alterations
in beta cell function and insulin secretion perturb glucose homeostasis, leading to either diabetes,
when there is a deficiency of insulin, or to persistent hypoglycemia, when insulin is secreted in
excess. Over the last decade, extensive research has uncovered cell type-specific transcriptional
programs driving islet cell differentiation and identity' as well as transcription factors and signaling
pathways involved in the acquisition of functional maturity and the ability to regulate insulin
secretion?. Moreover, integration of transcriptomic, epigenomic and genetic data has shown that
dysregulation of islet-specific gene expression is a common mechanism underlying type 2 diabetes

(T2D)* # and monogenic forms of diabetes®.

In contrast, the roles of alternative splicing in pancreatic islet function remain not well understood.
Alternative splicing regulates the differential processing of introns and exons to generate multiple
mRNA isoforms from a single primary transcript, contributing to transcriptomic and proteomic
diversity. It is estimated that over 95% of human multi-exonic genes undergo alternative splicing® 7,
a substantial fraction of which is regulated in a tissue- and cell-type enriched manner®. A plethora of
studies have provided experimental evidence that alternative splicing regulation is essential for many
biological processes, and unveiled the roles of several RNA binding splicing regulatory proteins in
tissue-specific development and functions’. In the case of pancreatic beta cells, previous findings
indicate that they express neural-related RNA binding proteins that impact the regulation of insulin

secretion!?: 11

, and that splicing misregulation contributes to beta cell apoptosis in an in vitro model
of type 1 diabetes!?. However, the presence, regulation and impact of islet-enriched alternative

splicing programs on endocrine cell development and identity remain unexplored.

Microexons, very short exons (between 3 to 27 nucleotides), constitute a unique form of tissue-
enriched alternative splicing, and were originally described as a highly conserved program
preferentially included in neurons'® !4, These microexons tend to maintain the open reading frame,
introducing as few as one amino acid into the surface of proteins, where they often rewire protein-
protein interactions'. Microexon inclusion in neurons is largely dependent on the RNA binding
proteins SRRM3 and SRRM4, which provide essential functions in nervous system development!>-18,

Both factors share a common 39 amino acid domain (enhancer of microexons, or eMIC) at their C-


https://doi.org/10.1101/2022.04.02.486809
http://creativecommons.org/licenses/by-nc/4.0/

© 00 N o v b~ w N R

W W W W W N N N N N N N N NN P P R R P R R R p p
2 W N P O O O N O U B W N P O O 00 N O 1 B W N P O

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.02.486809; this version posted October 22, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

termini that is necessary and sufficient for microexon inclusion!. Interestingly, microexons are

misregulated in the brains of some autistic patients'>2°,

Here, we found that a subset of neural microexons is also present in pancreatic islets, forming an
evolutionarily conserved program that particularly affects genes involved in insulin secretory
function and T2D risk. These microexons respond to physiological changes in glucose levels and are
regulated by SRRM3. Consistently, misregulation of microexons in beta cell lines, either globally
through SRRM3 depletion or individually using antisense oligonucleotides, result in dysregulated
insulin release. In line with this, Sr#m3 knockout mice show alterations in islet cell identity,
increased insulin secretion and persistent hypoglycemia. Furthermore, genetic variations affecting
the regulation of SRRM3 and microexon inclusion in human islets are associated with fasting glucose
and T2D risk. Our results thus uncover a post-transcriptional regulatory program necessary for

mature islet cell function and glycemic control.

Results

Human and rodent islets express a subset of neural microexons

To systematically identify tissue-enriched alternative exons in human islets, we profiled alternative
splicing genome-wide using publicly available RNA-seq data from islets, endocrine pancreatic cells
and multiple neural and non-neural tissues, including exocrine pancreas (Supplementary Table 1),
and searched for exons enriched in endocrine pancreatic and/or neural tissues compared to other
tissues (see Methods). Surprisingly, out of 201 exons enriched in endocrine pancreas, 109 (54.2%)
consisted of 3-27 nucleotide microexons (hereafter IsletMICs) (Fig. 1A and Supplementary Table 2).
Interestingly, endocrine pancreas displayed the highest ratio of microexons to longer tissue-specific
exons found in any human tissue (e.g. compared to 33% in neural tissues, 11% in skeletal muscle,
6% in liver or 1% in exocrine pancreas). The vast majority (106/109, 97.3%) of IsletMICs were also
highly included in neural cells, and thus represent a subprogram that is nested within the larger
neural microexon program (Fig. 1A,B). IsletMICs were highly included in the different types of
endocrine cells, as observed using both bulk (Fig. 1C) and single cell RNA-seq data (Extended Data
Fig. 1A,B), but were largely absent or lowly included in other non-neural tissues, including exocrine
pancreas acinar and ductal cells (Fig. 1A,C and Extended Data Fig. 1A,B). As is the case for neural
microexons'3, IsletMICs showed a high degree of conservation from human to rodents at both the
genomic and regulatory level (Fig. 1D), and largely maintained the open reading frame and are thus
predicted to generate alternative protein isoforms (Extended Data Fig. 1C). These patterns were in

sharp contrast with those of the program of longer islet exons (hereafter IsletLONGs), which showed
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a lower overlap with neural-enriched exons (Extended Data Fig. 1D,E), lower evolutionary
conservation (Fig. 1D) and a higher frequency of open reading frame-disrupting events (Extended

Data Fig. 1C).

Genes hosting IsletMICs were enriched in a wide array of processes associated with endocrine
secretory functions (Fig. 1E), including regulation of GTPase activity (4CAP2, CPEB2, GITI,
RAPGEF6), ion channel activity (CACNA2D1, CACNAID), exocytosis (CASK, SYNJ1, PPFIA3) and
vesicle-mediated transport (VAV2, KIFIB, DCTNI). Remarkably, in contrast to IsletLONGs and to
NeuralMICs, IsletMICs were significantly enriched in genes located in T2D susceptibility loci (Fig.
1F; e.g. TCF7L2, PTPRS, MYHI0, CPEB3, VTIiA). Together, these data point to potentially

important roles of the IsletMIC program in pancreatic islet development and/or function.

IsletMICs are regulated by the splicing factor SRRM3

To investigate the regulation of IsletMICs, we examined mRNA expression of the well-established
microexon regulators SRRM4 and SRRM3 in pancreatic islets. Whereas human and rodent islets
showed little or undetectable expression of the master neuronal microexon regulator SRRM4 (Figs.
2A and Extended Data Fig. 2A,B), mRNA expression of its paralog SRRM3 was readily detectable in
human, mouse and rat islets, although at consistently lower levels than in neural tissues (Figs. 2A and
Extended Data Fig. 2A,B). To test whether SRRM3 regulates the inclusion of IsletMICs, we
performed siRNA-mediated knock-down (KD) of SRRM3 transcripts in human EndoC-BH1 and rat
INS-1E beta cell lines, followed by analysis of the inclusion of selected microexons by RT-PCR as
well as global RNA-seq analyses. A ~50% reduction of SRRM3 (Figs. 2B and Extended Data Fig.
2C) was sufficient to induce skipping of most IsletMICs (APSI < -15) in both human and rat beta
cells (Figs. 2C-E and Extended Data Fig. 2D-F, Supplementary Table 3). Moreover, short exons
comprised the majority of misregulated alternatively spliced exons upon Srrm3 KD (Fig. 2D and
Extended Data Fig. 2E), supporting a highly specific function for SRRM3 in the inclusion of
IsletMICs.

Because IsletMICs mainly comprised a defined subset of the neural microexon program (Fig. 1B),
we next wondered how this two-level (neural-islet) tissue-enriched regulation was achieved. Given
that the combined levels of SRRM3/4 were significantly lower in islets than in neural tissues (Fig. 2A
and Extended Data Fig. 2A,B), we hypothesized that the reason why IsletMICs are included in both
tissues is because they are more sensitive to low levels of SRRM3/4 expression than neural-only

microexons, whose inclusion would require higher levels of the regulators. To test this hypothesis,
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we stably expressed SRRM3 in HeLa cells, a non-neural cell line in which microexons are not
included, at three different levels (low, mid and high) using a doxycycline-inducible system. As
predicted, whereas most IsletMICs were highly included already at low levels of SRRM3 expression,
the majority of neural-only microexons required higher SRRM3 expression to reach detectable
inclusion levels (Fig. 2F and Supplementary Table 3). Comparing the changes in microexon
inclusion between IsletMICs and neural-only microexons at each induction level further evidenced
that IsletMICs displayed higher responsiveness to SRRM3 (Extended Data Fig. 2H). These findings
strongly argue that differential intrinsic sensitivity of microexons to SRRM3/4 activity is the major
determinant of their tissue-enriched inclusion pattern, and that the two-level expression of SRRM3/4

in islets and neural tissues is sufficient to configure two nested tissue-enriched microexon programs.

Srrm3 depletion affects insulin secretory functions of beta cells at multiple levels

To gain insights into the functional role of IsletMICs in pancreatic beta cells, we next assessed the
impact of SRRM3 depletion on insulin secretion. Remarkably, SRRM3 KD led to a significant
increase in insulin release following static stimulation with high glucose, with or without the
adenylyl cyclase activator forskolin, in human Endoc-BH1 and rat INS-1E beta cells (Fig. 3A,B).
Dynamic insulin secretion measurements in INS-1E cells showed a significant increase in both the
first (0-15 min) and the second (16-40 min) phases of insulin release (Fig. 3C), suggesting that Srrm3
silencing impacts both the K-ATP channel-dependent pathway responsible for the first phase, as well
as other K-ATP-independent pathways contributing to the second phase?!. In line with this, exposure
of cells to the ATP-sensitive K+ channel inhibitor tolbutamide, in the presence of low or high

glucose, revealed that Srrm3 KD increased insulin release in both conditions (Fig. 3D).

Because genes with IsletMICs were enriched in multiple functions that may impact insulin secretion
(Fig. 1E), we next investigated different relevant cellular pathways involved in this process upon
Srrm3 depletion. First, to test whether alterations in cell metabolism contributed to the observed
increase in insulin secretion, we transfected INS-1E cells with a cytoplasmic ATP FRET probe 22 and
measured ATP levels at resting (1.7 mM glucose) and stimulatory (17 mM glucose) conditions in
Srrm3-depleted and control cells (Extended Data Fig. 3A). Srrm3-depleted cells showed a two-fold
increase in ATP levels in low glucose conditions (Extended Data Fig. 3A-B), and faster ATP
production following stimulation with high glucose (Extended Data Fig. 3C), suggesting an impact
of Srrm3 on cellular energy metabolism. Second, we evaluated alterations on the organization and
remodeling of cytoskeleton, which plays crucial roles in insulin granules exocytosis®®. Srrm3-

depleted INS-1E cells showed a visible change in cell morphology, and staining of filamentous actin
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revealed a significant reduction of actin-rich filopodia (Extended Data Fig. 3D-F). Moreover, the
actin cytoskeleton showed altered remodeling dynamics when stimulated with high glucose as
measured by the intensity ratio between filamentous and globular actin (Extended Data Fig. 3QG).
Along similar lines, Srrm3-depleted cells under low glucose displayed decreased tubulin staining,
consistent with alterations in microtubule polymerization (Extended Data Fig. 3H,I). Collectively,

these observations argue that Srrm3 impacts multiple aspects of the process of insulin secretion.

Given this diversity of phenotypes, we next tested whether misregulation of individual IsletMICs
was sufficient to induce changes in glucose-stimulated insulin secretion. To that end, we designed
antisense oligonucleotides (ASO) harboring 2'-O-methyl phosphorothioate modifications targeting
microexon 3’ splice sites and adjacent regulatory sequences, including the UGC motif required for
SRRM3-mediated regulation'® 24 (Fig. 3E). We selected 11 IsletMICs dependent on SRRM3 in both
human and rat cell lines, which were located in genes belonging to different pathways previously
linked to beta cell function, membrane depolarization and/or exocytosis. In 8 out of 11 cases, we
were able to induce microexon skipping to an extent similar to that observed following Srrm3 KD
(Fig. 3F). Importantly, microexon skipping led to a significant misregulation of glucose-stimulated
insulin secretion in four cases (Fig. 3G), three of which enhanced the process (Ptk2, Cacnaldl,
Sh3glbl). Taken together, these observations argue that microexon regulation by Srrm3 modulates

several processes and pathways that affect the regulation of insulin secretion in beta cells.

Srrm3 is necessary for microexon inclusion and proper insulin secretion regulation in mouse
islets

To investigate the physiological role of Srrm3-regulated IsletMICs in islet function and glucose
metabolism in vivo, we took advantage of a recently published constitutive Srrm3 gene-trapped
mouse line!8, We bred mice with homozygous or heterozygous deletions, and analyzed islets at 10-
12 weeks to assess alternative splicing by RT-PCR and RNA-seq. Consistent with the observations
made in beta cell line knockdowns, the majority of IsletMICs were down-regulated in Srrm3
homozygous mutant (Srrm3 -/-) islets (Fig. 4A and Extended Data Fig. 4A,B), and the lack of Srrm3
had a preferential impact on IsletMICs compared to other alternative exons (Fig. 4B). A milder, but
highly significant down-regulation of IsletMICs was also observed in heterozygous mutant mice
(Srrm3 +/-) (Fig. 4A and Extended Data Fig. 4B-D). To investigate the effect of the loss of Sr7m3 on
islet function, we performed static secretion experiments following stimulation with high
concentration of glucose or an amino acid mix. In line with the results in cell lines (Fig. 3A,B),

Srrm3 -/- islets displayed increased stimulated insulin secretion following exposure to high glucose
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(Fig. 4C) and to amino acids (Fig. 4D). Total cellular insulin was decreased in Srrm3 -/- islets
(Extended Data Fig. 4E), while insulin mRNA levels were unaltered (Extended Data Fig. 4F),
suggesting a depletion of intracellular insulin stores. We also assessed glucagon secretion from alpha
cells after exposing islets from high to low glucose concentrations. Resembling the effects on insulin
secretion, Srrm3 -/- islets showed significantly increased glucagon release in response to 1 mM
glucose (Fig. 4E), while the levels of glucagon expression were not affected (Extended Data Fig.
4G,H). In the case of Srrm3 +/- islets, a milder increase in insulin secretion was observed following
exposure to high glucose (Fig. 4C) and to amino acids (Fig. 4D), but, contrary to Srrm3 -/-, no
differences in glucagon secretion were detected (Fig. 4E). Altogether, these findings indicate that

loss of Srrm3 leads to defective islet hormone secretion.

To shed light into the molecular basis of these phenotypes, we next performed a differential gene
expression analysis of Srrm3 mutant and WT islets. A total of 193 and 286 genes were down- and
up-regulated, respectively, in islets from Srrm3 -/- mice relative to WT (padj < 0.05, |log2FC| > 0.25)
(Fig. 4F). The regulated genes showed no significant overlap with genes harboring IsletMICs or
IsletLONGs (Extended Data Fig. 4L,J), indicating that changes in gene expression are not directly
caused by misregulation of islet-enriched exons. Down-regulated genes were mainly enriched in
mitochondrial genes related to oxidative phosphorylation and ATP production by cellular respiration
(Fig. 4G, Supplementary Table 4), in apparent contradiction with the increased insulin release
observed both ex vivo and in vivo. Nevertheless, several pathways that play a positive role in insulin
secretion were enriched among the up-regulated genes, including small GTPase-mediated signaling,
hormone secretion, response to carbohydrates and amino acid transmembrane transport (Fig. 4G,
Supplementary Table 4). These data suggest that altered nutrient sensing and an augmented secretory
response compensate the decrease in mitochondrial respiration, resulting in net increase of insulin
secretion. Remarkably, up-regulated genes were also enriched in GO terms related to organ
morphogenesis and differentiation of epithelial cells, including endocrine system development (Fig.
4G, Supplementary Table 4). These up-regulated genes include several transcription factors with key
roles in islet cell differentiation, such as PdxI, Neurog3, Mafb and Nkx2.2 (Fig. 4H). Moreover,
Gene Set Enrichment Analysis (GSEA) revealed a general up-regulation of the endocrine pancreas
development pathway in Srrm3 -/- islets (Fig. 4I), suggesting that loss of Srrm3 can affect islet

morphogenesis.

Loss of Srrm3 disrupts islet cell composition and architecture
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To further investigate how Srrm3 loss affected islet development and cell identity, we performed
histological analysis of mice pancreata at 4 weeks after birth. Srrm3 mutant islets presented
alterations in cell type composition and architecture (Fig. SA). In particular, Srrm3 -/- islets showed a
higher proportion of alpha cells than WT islets (Fig. 5B), with decreased stereotypical location at the
islet periphery (Fig. 5C). Moreover, Srrm3 -/- islets presented a significant increase in the number of
polyhormonal cells co-expressing both insulin and glucagon (Fig. 5D). Islets from Srrm3 +/- mice
showed similar but milder alterations (Fig. 5A-D). Next, to determine whether these alterations
occurred during embryonic development or were acquired postnatally, we analyzed pancreata from
newborn mice. Similar to 4-week-old mice, neonatal islets of mutant mice showed signs of altered
endocrine cell differentiation, with an increased number of polyhormonal cells in Srrm3 -/-
(Extended Data Fig. 5C). Additionally, Srrm3 -/- pancreata showed alterations in the clustering of
endocrine cells, presenting a higher proportion of disorganized islet structures and dispersed
endocrine cells (Extended Data Fig. 5D). Taken together, these findings indicate that loss of Srrm3

alters normal islet morphogenesis during pancreas development.

Srrm3 depletion leads to hyperinsulinemic hypoglycemia in mice

We next investigated if the functional and histological alterations observed in the islets of Srrm3
mutant mice impacted glycemic control in vivo. We first performed blood glucose measurements in
adult mice fed ad libitum and found that Srrm3 -/- mice presented drastically decreased glycemia
compared to WT and Srrm3 +/- littermates (Fig 6A). Next, we measured blood glucose after 4h of
fasting and 30 min after food intake (postprandial). Srrm3 -/- mice presented strong hypoglycemia in
both fasting and postprandial conditions, while glycemia in Srrm3 +/- mice was normal at fasting but
significantly reduced in postprandial conditions (Fig. 6B). In order to test whether hypoglycemia in
Srrm3 -/- mice was associated with excessive insulin secretion from pancreatic islets, we measured
insulin plasma levels at fasting and postprandial conditions. While insulin was undetectable at fasting
in most samples for all genotypes, Srrm3 -/- mice showed a significant increase in plasma insulin and
insulin/glucose ratio at 30 min postprandial compared to WT mice (Fig. 6C,D). We also found that
Srrm3 -/- mice showed reduced glucagon levels at fasting (Fig. 6E), potentially due to insulin-
induced inhibition of glucagon secretion. No major differences between male and female mice were
observed in either glycemia or hormone plasma levels (Extended Data Fig. 6A-F). Taken together,
these findings are compatible with hyperinsulinemic hypoglycemia induced by depletion of Srrm3 in

homozygous mutant mice.
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Because Srrm3 -/- mice displayed reduced body weight and neurological defects (Nakano et al.
2019), which may also contribute to altered glycemia, we next focused on Srrm3 +/- mice, which
showed no differences in growth or evident neurological defects but exhibited functional and
histological alterations in islets. Intraperitoneal glucose tolerance test (IPGTT) showed mild but
significantly increased glucose tolerance in Srrm3 +/- compared to WT mice (Fig. 6F,G). This
increase was associated with augmented plasma insulin levels at 15 min after glucose injection (Fig.
6H). On the other hand, intraperitoneal insulin tolerance test (ITT) showed no significant differences
in sensitivity to exogenously administered insulin between Srrm3 +/- and WT mice (Fig. 6LJ).
Collectively, these observations are compatible with the concept that loss of Srrm3 impairs glucose

homeostasis due to inappropriate insulin secretion.

SRRM3 harbors genetic variants associated with fasting glucose and T2D risk

We next explored possible associations between human genetic variants in the SRRM3 locus and
either T2D susceptibility or glycemic traits. We found a suggestive association between T2D risk and
variants downstream of the SRRM3 gene in the Finnish population (Finngen study, r5.finngen.fi)
(rs7459185; B = -0.0565, P = 2.1 x 10%) (Fig. 7A), although this association was not observed in
other human populations (* and CMDKP database, hugeamp.org). On the other hand, the analysis of
a trans-ancestral large-scale meta-analysis of glycemic traits?® revealed that rs67070387, a
polymorphism within SRRM3 intron 1, is strongly associated with increased fasting glucose (FQG)
levels (B = 0.0233, P = 7.94 x 10"'?) (Extended Data Fig. 6A). Additional variants in SRRM3 and in
the nearby gene STYXLI associated with the same trait are also reported in the CMDKP database
(hugeamp.org) (Extended Data Fig. 7A), although credible set analysis did not confidently identify

the likely causal variant?¢

. Next, we investigated whether these genetic variants overlap with
previously annotated regulatory elements in human islets. The variant with suggestive T2D
association, rs7459185, and its associated linkage disequilibrium block are located in a linear
enhancer cluster active in human islets that directly interacts with SRRM3 promoter according to
capture Hi-C and Hi-ChIP chromatin analyses (Fig. 7B*). On the other hand, the FG variant
rs67070387 maps to an intronic region near the SRRM3 promoter (Fig. 7B) that is annotated as a
weak enhancer in the ENCODE database. This variant is predicted to disrupt a binding site for
FOXA2 (Extended Data Fig. 6B), a transcription factor that participates in the regulation of the

insulin secretory pathway?’.

To test whether these variants are associated with transcriptional variation in SRRM3 expression

and/or IsletMICs inclusion, we analyzed human islet RNA-seq data from 110 genotyped non-diabetic
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donors from two different sources?® ?°, Despite the low allele frequency (Extended Data Fig. 7B), we
found a significant association between the FG variant rs67070387 and increased SRRM3 expression
in cis, as well as higher microexon inclusion in trans (Fig. 7C). To validate this association, we
cloned the 500-nt region containing the rs67070387 SNP in a vector containing a luciferase cDNA
reporter under a minimal promoter and performed luciferase assays in EndoC-BH1 and INS-1E cells.
While the most common variant reduced basal luciferase expression, suggesting that it harbors a
transcriptional repressive activity, the rare FG variant associated with increased fasting glucose
abolished this effect, displaying higher luciferase expression in both human (Fig. 7D) and rat
(Extended Data Fig. 7C) cells. This is in line with the differences in SRRM3 expression between the
two genotypes observed in the human islet data (Fig. 7C). In the case of rs7459185, although no
differences in SRRM3 expression were found between genotypes under these conditions (Fig. 7E, left
panel), the genotype associated with decreased T2D risk showed a significantly increased inclusion

of IsletMICs (Fig. 7E, right panel).

We next investigated whether genetic variants in IsletMICs or their flanking intronic regions were
associated with fasting glucose or increased risk of T2D. To that end, we leveraged quantile-quantile
(QQ) plots to compare the distribution of trait association p-values against the expected null
distribution for variants located between 500 nt upstream and downstream of IsletMICs. While no
major inflation was found for T2D (Extended Data Fig. 7D, left panel), we observed a suggestive
trend of lower FG association p-values at microexon variants (Extended Data Fig. 7D, right panel).
Although our results are limited due to the relatively low number of IsletMICs under study, this
finding raises the possibility that variants affecting splicing regulatory sequences and microexon

inclusion levels may impact islet function and glycemic control.

IsletMICs respond to glucose and are misregulated in islets of T2D patients

To further substantiate the physiological relevance of the IsletMIC program, we next explored
whether IsletMICs and/or SRRM3 could be dynamically regulated in response to extracellular
signals. First, we analyzed RNA-seq data of human islets exposed to moderately low (4 mM) or high
(11 mM) glucose for 72 h* and found that both SRRM3 expression and microexon inclusion were
significantly increased under high glucose (Fig. 7F). Interestingly, these changes correlated with an
increase of the open chromatin H3K27ac signal on the SRRM3 enhancer cluster (Fig. 7G), arguing
that the IsletMIC program is directly induced by glucose.
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Finally, we assessed whether the IsletMIC program is misregulated in islets from individuals with
T2D. RNA-seq analysis from two independent studies?®*° (revealed that, while SRRM3 mRNA
levels were not significantly altered (Fig. 7H and Extended Data Fig. 7E left panels), IsletMIC
inclusion was strongly down-regulated in T2D islets (Fig. 7H and Extended Data Fig. 7E right
panels). A similar pattern was also found in islets from diabetes-susceptible NZO mice following a
diabetogenic stimulus (Extended Data Fig. 7F)*!. Importantly, down-regulation of IsletMICs was
unlikely to be due to beta cell loss, as we also observed it in individuals with impaired glucose
tolerance (Extended Data Fig. 7G,H) and in single beta cells form T2D individuals (Extended Data
Fig. 7I). Collectively, our findings are consistent with the concept that the IsletMIC program is
dynamically regulated under physiological and pathological conditions and argue that human genetic
variation affecting islet-enriched regulation of SRRM3 and overall IsletMIC inclusion levels has an

impact on human glucose homeostasis.

Discussion

While alternative splicing is known to play crucial roles in the development and function of a variety
of cell and tissue types’, its impact on endocrine pancreas and its physiological relevance in the
context of glycemic control remains largely unknown. Here, we identify a novel conserved program
of islet-enriched alternative microexons and provide diverse in vitro, in vivo and genetic evidence
that it plays important roles in maintaining islet function, globally impacting the regulation of

glucose homeostasis and T2D susceptibility.

We show that IsletMICs represent a subset of the broader microexon program previously described
as neural-enriched and regulated by the neural-specific expression of the splicing factor SRRM4"3,
Our work reveals that this previous paradigm is in fact part of a more complex regulatory design,
whereby two nested tissue-enriched programs are generated by the tiered expression of a single
regulatory activity (provided by SRRM3 and/or SRRM4) and the different intrinsic sensitivities of its
target microexons. By expressing relatively low levels of SRRM3, in contrast to the higher levels of
both SRRM3 and SRRM4 in neurons, islet cells recruited only the most sensitive microexons among
the larger neural microexon program. Such nested regulation likely reflects the deployment of
common biological processes for the function of both pancreatic endocrine cells and neurons. In line
with this hypothesis, IsletMICs are strongly enriched for processes involved in secretory exocytosis,
including vesicle transport, ion channel activity, vesicle priming or cytoskeleton organization,
processes that are shared and essential for hormone and neurotransmitter release. These findings are

in line with previous studies uncovering the expression of other neural-enriched RNA binding
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proteins, such as Noval and Rbfox1/2, in beta cells'® !'. Moreover, a shared regulation of alternative
splicing fits with the general observation that mRNA expression and chromatin marks of islet cells
are similar to those of neurons despite their different embryological origin®? These patterns are thus
consistent with the hypothesis that pancreatic endocrine cells have co-opted regulatory signatures

from neurons33: 34,

In line with a functional role of IsletMICs in vesicle exocytosis, we show that SRRM3 depletion in
human and rat beta cell lines leads to increased glucose-stimulated insulin secretion. Our data
suggest that SRRM3 impacts several processes involved in insulin secretion in beta cells, including
energy metabolism and cytoskeletal reorganization. In agreement with this, individual down-
regulation of IsletMICs included in genes involved in different biological processes such as vesicle
formation (SH3GLBI), cytoskeleton reorganization (P7K2), calcium signaling (CACNA2DI) and
granule exocytosis (CASK) was sufficient to alter glucose-stimulated secretion. Similar to cell lines,
islets from Srrm3 mutant mice showed an inappropriate increase in insulin secretion. At the
physiological organismal level, this increase correlated with higher postprandial plasma insulin
levels and fasting hypoglycemia in homozygous mice, suggesting that the lack of microexon
inclusion in islets leads to hyperinsulinemic hypoglycemia. Importantly, heterozygous mice, which
show no growth or neurological defects compared to their homozygous littermates!'s, presented a
similar but milder phenotype characterized by increased glucose tolerance. Although future work
using tissue-specific ablation of Srrm3 will be required to determine the precise impact of islet
microexons in vivo, our data collectively support an important role for the Srrm3-regulated islet
splicing program in insulin secretion, impacting various of the underlying processes and possibly

also islet cell differentiation and morphogenesis.

Several lines of evidence suggest that SRRM3 has also relevance for human glucose homeostasis and
diabetes pathophysiology. Firstly, we found genetic variants in both SRRM3 and microexons
associated with fasting glucose or T2D risk. Secondly, exposure of human islets to mildly elevated
glucose concentrations led to increased SRRM3 expression and IsletMIC inclusion, suggesting an
adaptive mechanism to modulate insulin secretion in a setting that has the potential to enhance
secretion. Finally, we also observed that IsletMICs are broadly down-regulated in islets from T2D
patients, an effect also recently reported in a diabetic mouse model®!. Altogether, these data suggest
that changes in the activity of SRRM3 and its microexon targets affect islet function and glucose
homeostasis, potentially contributing to T2D predisposition. There is currently a broad range of

strategies to manipulate RNA splicing therapeutically 3°. Therefore, future research on the molecular
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function of IsletMICs and other islet-enriched exons and their role in islet dysfunction might provide
valuable knowledge not only for islet biology but also for the development of novel therapies for

T2D based on splicing modulation.
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METHODS

Definition of islet-enriched alternative exons

Inclusion tables for human and mouse were downloaded from VastDB website (vastdb.crg.eu)?,
together with additional islet and beta and alpha cell RNA-seq samples downloaded from the NCBI
Short Read Archive (SRA) (Supplementary Table 1). We also downloaded available RNA-seq data
from SRA for multiple differentiated tissues and embryonic samples for Rattus norvegicus and
created a similar inclusion table for all alternative splicing events using vast-fools v2.5.1 (see below),

which is also accessible in VastDB (Supplementary Table 1).
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To define islet-enriched and neural-enriched exon programs we first parsed these RNA-seq datasets
to identify tissue-specific exons using the script Get Tissue Specific AS.pl script’
(https://github.com/vastdb-pastdb/pastdb), requiring the following cut-offs: i) absolute difference in
the average exon inclusion level (using the percent-spliced-in metric, PSI) between the target tissue
and the averages across other tissues of |APSI| > 15 (--min_dPSI 15), ii) global |APSI| > 25, i.e.,
difference between target tissue inclusion average and the average of all other tissues combined (--
min_dPSI glob 25), iii) a valid average PSI value in at least N = 5 tissues (--N_groups 5), and iv)
sufficient read coverage in at least n = 2 samples per valid tissue group (--min_rep 2), i.e., score
VLOW or higher as provided by vast-tools®. For each species, a config file with the tissue groups for
each RNA-seq sample was provided as input (Supplementary Table 5). To better capture all
microexons with biased inclusion in certain tissue groups, we excluded from the tissues with known
or expected partial overlap of microexon inclusion from comparisons in those tissues (for example,
neural, endocrine pancreas, muscle and heart), as provided in the column EXCLUDED in the config
files (Supplementary Table 5). Next, for those exons defined as up-regulated in neural and/or
endocrine pancreas by this analysis, we added two additional steps. First, if the difference between
the average PSI in neural/endocrine pancreas samples and in other tissues (APSI, as provided by
Get Tissue _Specific AS.pl using the --test tis option) was higher than 15, the exon was further
considered as neural/islet enriched. Second, enriched exons whose average PSI in other tissues was

higher than 25 were discarded.

Gene Ontology and GWAS gene enrichment analyses

Gene Ontology (GO) analyses of IsletMICs were performed gprofiler2 R package (Kolberg et al.,
2020), with custom annotations and gene backgrounds. Human GO annotations were obtained
from?®’. For GO analysis of human IsletMICs, we provided as a custom gene background all genes
harboring at least one splicing event of any type from vast-tools passing the same filtering criteria
required in the analysis described above using the Get Tissue Specific AS.pl script for the islet-
enriched exons (the list of such events was obtained using the option --test tis). We identified 106
GO terms for Biological Process passing FDR < 5%. We then manually curated GO terms and
collapsed them into 10 generalized functions important for the endocrine pancreas, taking the FDR

value of the largest terms within the new group.

To test the overlap between genes containing islet-enriched exons and GWAS variants of interest, we

first downloaded from the NHGRI-EBI GWAS Catalog® all unique genes harboring significant
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GWAS variants associated with disease traits matching “Type 1 diabetes”, “Type 2 diabetes” or
“Glycemic traits" (download date 2021-12-05; https://www.ebi.ac.uk/gwas/) (Supplementary Table
6). To test the overlap with genes containing islet-enriched exons, we first discarded from these sets
the genes that did not contain at least one splicing event that passed the filtering criteria used to
define islet-enriched exons (see above). The significance of the overlap between each of these sets
and genes harboring IsletMICs/IsletLONGs was assessed using two-sided Fisher's Exact tests, with

the same gene background as per GO analyses.

Single Cell RNA-Seq analysis

Publicly available islet single cell RNA-seq samples from multiple donors, studies and technologies
were used to identify cell specific expression and splicing profiles. Reads from plate-based methods
(SRP075377%°, SRP0763074°, ERP017126* and SRP075970%?), which provide full-transcript
information, were mapped to human transcriptome (Ensembl release 104) using Salmon*® (version
1.4.0) for gene quantification, generating a gene expression table per study. In addition to these
samples, we used the gene counts from Drop-Seq technology for an additional study (SRP111557)*.
All gene counts were integrated (top 3000 variable features) after normalization (top 5000 variable
features) with Variance Stabilizing Transformation (VST) from sctransform package * into a single
table, and then the Uniform Manifold Approximation and Projection technique (on the first 30 PCs)
was used for dimension reduction using Seurat R package*®. Cell clustering was calculated using a
resolution of 0.3. We annotated each cluster based on the cell type with the highest proportion per
cluster using the CellID pipeline (50 dimensions using 200 features)*’. Alternative splicing
quantifications were obtained using vast-tools v2.5.1% for hg38 with a pseudo-bulk approach, where
FASTQ files were merged based on cell type. Inclusion levels, using the PSI metric, for all IsletMICs
and IsletLONGs were pulled out of each cell type from non-T2D donors ignoring those with N or

VLOW vast-tools read coverage score for comparing PSI among cell types.

Evolutionary conservation and open reading frame impact prediction

To investigate the evolutionary conservation of human IsletMICs and IsletLONGs in rodents (Fig.
1D), we performed the following steps. First, genome-conservation was assessed as previously
described'?. Briefly, exon coordinates from human exons (hg38) were lifted to the mouse (mm10) or
rat (rn6) genomes with the /iftOver tool. Then, lifted exon coordinates in the target rodent species
were matched with the exon coordinates from the vast-tools mm10 or rn6 annotation. Then, to
investigate islet-enriched regulatory conservation, we first obtained APSI values (average PSI in

islets - average PSI in other tissues) from the Get Tissue Specific AS.pl as described above (using
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the --test tis option), but requiring only one replicate with sufficient read coverage per tissue group,
to increase the number of tested exons (--min_rep 1). If the exon had sufficient read coverage, it was
considered regulatory conserved if APSI > 15. Open reading frame impact predictions (Extended
Data Fig. 1E) were done as previously described!3, using the predictions provided in VastDB (v4;
https://vastdb.crg.eu/wiki/Downloads).

Alternative splicing and differential gene expression analyses

Alternative splicing was quantified using vast-tools v2.5.1% for all RNA-seq datasets. FASTQ reads
were aligned with vast-tools align employing the following VASTDB libraries: (i) human (hg38,
vastdb.hs2.23.06.20), (ii)) rat (rn6, vastdb.rno.23.06.20), and (iii) mouse (mmlO0,
vastdb.mm?2.23.06.20). The outputs of vast-tools align for each RNA-seq sample were then
combined into a single table with all splicing events using vast-tools combine with default
parameters. Differentially spliced exons upon Srrm3 depletion were identified using vast-tools
compare, with default parameters: |[APSI| > 15 between the means of the two compared groups, e.g.
control vs SRRM3 siRNA (--min_dPSI 15), and a non-overlapping PSI distribution between two

sample groups of at least 5 (--min_range 5).

Differential gene expression analysis was additionally performed for mouse islets (Figs. 4 and
Extended Data Fig. 4). RNA-seq reads were mapped with Salmon*? for gene quantification to human
or mouse transcriptome (Ensembl release 104). Raw gene counts were normalized with VST from
DESeq2*® bioconductor package. Differential gene expression was assessed using DESeq2, after
independent filtering, with a design which takes into account Genotype + Batch, and genes were
considered differentially expressed if adjusted p-value was lower than 0.05 and absolute shrinked log
fold change, calculated with apeglm method*, greater than 0.6. For the functional enrichment
analysis (Fig. 4G), all genes assessed for differential expression (9,729) genes were sorted based on
log2 fold change expression between Srrm3 mutant and WT mice and used as input for a Gene Set
Enrichment Analysis of GO with bioconductor package clusterProfiler™®. Enriched terms shown in
Fig. 4G were selected according to GO-terms Semantic Similarity Measures from GOSemSim>!

based by p-value with a similarity cutoff of 0.5 and the “Jiang” method.

Evaluation of microexon sensitivity to SRRM3
Stable cell lines overexpressing mouse Srrm3 at three different levels were generated using HeLa
Flp-In T-Rex cells (kindly provided by S. Taylor, University of Manchester) and Flp-In (Thermo

Fisher Scientific) expression plasmids. Flp-In plasmids containing either GFP! or 3x N-terminal-
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Flag tagged mouse Srrm3 were generated using standard restriction and ligation (sequences of
primers used for cloning are provided in Supplementary Table 7). HeLa Flp-In T-REx cells were
transfected with 0,5 pg pcDNAS vector expressing GFP! or mouse Srrm3 and 4,5 pg pOG44 vector
in a 10 cm plate (10° cells) using Lipofectamine 2000 (Invitrogen). Cells containing stably integrated
constructs were selected using 150 pg/ml Hygromycin B until visible colonies were formed.
Individual colonies were isolated and expanded. For the induction experiments (Fig. 2F), cells were
plated at 200,000 cells per well of a 6-wells plate. The GFP expressing cells were grown without
Doxycycline (Control) and Flag-Srrm3 expressing cells were treated with either no Doxycycline
(low) or 0.6 (mid) and 16.7 (high) ng/ml Doxycycline for 24 hours. RNA was extracted using the
RNeasy Plus Mini kit (Qiagen). RNA quality was checked using Bioanalyzer (Agilent), and strand-
specific [llumina libraries were prepared and sequenced at the CRG Genomics Unit. Samples were
sequenced on HiSeq2500 and 125 nts paired-end reads were generated. Number of reads and

percentage of mapping to genome and transcriptome are described in Supplementary Table 1.

Culture and Transfection of Rat INS-1E Cells and Human EndoC-BH1 Cells

Rat insulin-producing INS-1E cells, kindly provided by Dr. C. Wollheim (University of Geneva,
Geneva, Switzerland), were cultured in RPMI 1640 GlutaMAX-I medium (Invitrogen) as described
previously®?. Human insulin-producing EndoC-BH1 cells, purchased from Univercell Biosolutions,
were grown on plates coated with Matrigel/fibronectin (100 and 2 pg/ml, respectively, Sigma), and
cultured in DMEM as described previously®®. The small interfering RNAs (siRNA) targeting human
and rat Srrm3 and the antisense oligonucleotides (ASO) harboring 2'-O-methyl phosphorothioate
modifications targeting individual microexons used in this study are described in Supplementary
Table 6; Allstars Negative Control siRNA (Qiagen) was used as a negative control (siCTL).
Transient transfection was performed using 30 nmol/L siRNA or 25 nmol/ L ASO and

Lipofectamine RNAIMAX (Invitrogen).

RNA analysis of beta cell lines and mouse islets

Total RNA was extracted using Maxwell RNAeasy kit (Promega) following the manufacturer's
instructions. For RNA-seq experiments, total RNA extraction was performed using RNeasy Mini Kit
(Qiagen) following the manufacturer's instructions. Reverse transcription (RT) was performed with
200 ng—1 pg of total RNA in the presence of 125 ng of random primers (Invitrogen), 50 pmol of
oligo dT (Sigma) and 0.5 pL of Superscript III reverse transcriptase (Invitrogen) in a total volumen
of 20 pL. Semiquantitative PCR reactions were carried out with 1-2 pL of cDNA and 0.2 uL of

GoTaq DNA Polymerase (Promega) in a total reaction volume of 30 pL according to the
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manufacturer's instructions. Typical parameters for the reactions were: 3 min at 94°C, 35 cycles of
30 sec at 94°C, 30 sec at 60°C, 30 sec at 72°C and a final incubation of 1 min at 72°C.
Inclusion/exclusion patterns for selected alternative microexons were analyzed by RT-PCR followed
by acrylamide electrophoresis and band densitometry using ImageJ. The primers were designed
against flanking constitutive exons, allowing different splice variants to be distinguished based on
fragment size. Quantitative PCR (qPCR) reactions were carried out with 4 uL of diluted cDNA, 0.4
uM of each primer, and 5 puL of Power SYBR Green PCR master mix (Applied Biosystems) in a
total reaction volume of 10 pL. Technical replicates for each experimental sample were analyzed in a
ViiA 7 Real-Time PCR system (Applied Biosystems) using the standard curve method. Relative
expressions were calculated using the quantity mean normalized by actin or Gapdh. All primers used
in this study are described in Supplementary Table 7. For in-house RNA sequencing, RNA quality
for three independent experiments, each composed of a trio of sex-matched WT, heterozygous and
homozygous mutant siblings, was assessed using Bioanalyzer (Agilent) and strand-specific [llumina
libraries were prepared and sequenced at CRG Genomics Unit. Samples were sequenced on
HiSeq2500 and 125 nts paired-end reads were generated. Number of reads and percentage of

mapping to genome and transcriptome are described in Supplementary Table 1.

Quantification of insulin secretion from INS-1E and EndoC-BH1 cells

To assess insulin secretion in INS-1E, cells were first pre-incubated for 1 h in glucose-free RPMI
1640 GlutaMAX-I medium (Life Technologies, Inc.), followed by incubation with Krebs-Ringer
buffer (KRB) (140 mM NaCl, 3.6 mM KCI, 0.5 mM NaH2PO4, 2 mM NaHCO3, 1.5 mM CaCl2,
0.5 mM MgSO04, 10 mM HEPES, 0.25% BSA, pH =7.4) for 30 min. Next, cells were exposed to 1.7
mM glucose (low) followed by sequential exposure to 17 mM glucose (high) with or without 20 uM
forskolin or 100 uM tolbutamide during 30 min. Dynamic insulin secretion measurements was
performed by collecting supernatants every 4 min after 17 mM glucose stimulation. To assess
insulin secretion in EndoC-BH1, cells were first pre-incubated with culture medium containing 2.8
mmol/L glucose for 18 h. Next, cells were incubated in KRB for 1 h and sequentially stimulated with
1 mM glucose (low), 20 mM glucose (high), or 20 mM glucose plus 20 uM forskolin for 40 min.
Supernatants were collected to assess insulin secretion and cells were sonicated in an alcohol-acid

solution to measure total insulin content using Rat and Human Insulin ELISA Kits (Mercodia).

Actin and tubulin cytoskeleton measurements
INS-1E cells were cultured on glass slides coated with Matrigel-fibronectin (100 and 2 pg/ml,

respectively; Sigma) and transfected with control or Srrm3 siRNAs as previously described.
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Following the same protocol used to assess glucose-stimulated insulin secretion, cells were pre-
incubated for 1 h in glucose-free medium followed by 30-min incubation with KBR, and 30-min
incubation with KBR 1.7 mM glucose. Cells were then exposed to 17 mM glucose for 5 or 20
minutes and immediately after fixed in 4% paraformaldehyde for 10 min. Cells were then washed
and permeabilized with Triton X-100 0.25% for 3 min and blocked using 3% BSA. Next, cells were
incubated at room temperature in sequential order with deoxyribonuclease I-Alexa Fluor 488
conjugate (Life Technologies, Inc.) and Atto 550-phalloidin (Sigma) to specifically stain G-actin
(globular) and F-actin (filaments), respectively, or with an antibody against B-tubulin (1:500; Sigma).
Nuclei were stained with Hoechst 33342. Slides were imaged by confocal microscopy using a Leica
TCS SP5 and images processed by LAS X (Leica). ImageJ software was used to measure actin-rich

filopodia and to quantify the intensity ratio between F-actin and G-actin, or B-tubulin.

Measurements of intracellular ATP levels

To monitoring intracellular ATP levels under low and high glucose conditions, INS-1E cells were
co-transfected with control or Srrm3 siRNAs together with a vector encoding for a cytoplasmic ATP
FRET probe?2. Cells were transfected in 24 well plates, at a density of 300,000 cells per well, with
200 ng of vector and 30 nM of siRNAs. After 48 h, cells underwent the same protocol used to assess
glucose-stimulated insulin secretion. Briefly, cells were pre-incubated in glucose-free medium for 1
h followed by KBR for 30 min. Next cells, were exposed to KRB 1.7 mM glucose for 30 min,
followed by stimulation with KBR 17 mM glucose. Individual cells were imaged at 1.7 mM glucose
(time 0) and at different time points following 17 mM glucose stimulation using a Leica TCS SP5
confocal microscopy and LAS X software (Leica,). FRET indexes per cell and time point were
obtained by analyzing images with the Image] Plug-in “FRET and co-localization analyzer”

(rsb.info.nih.gov/ij/plugins/fret-analyzer.html).

Srrm3 knock out mouse

C57BL/6 Srrm3 gene-trapped mice were kindly provided by Botond Banfi (University of Towa) '8,
The gene trap is located in the third intron of Srrm3, and it encodes a b-galactosidase reporter. Mice
were housed collectively (3 animals per cage) and maintained under a light-dark cycle (12 h light and
12 h dark) with a controlled humidity and temperature, and were feed ad libitum using a standard
chow diet. The described experimental procedures were carried out in accordance to the European
Community Council Directive 2010/63/EU and approved by the local Ethics Committee for Animal

Experiments (Comité Etic d’Experimentacié Animal-Parc de Recerca Biomédica de Barcelona,

18


https://doi.org/10.1101/2022.04.02.486809
http://creativecommons.org/licenses/by-nc/4.0/

© 00 N o v b~ w N R

W W W W W N N N N N N N N NN P P R R P R R R p p
2 W N P O O O N O U B W N P O O 00 N O 1 B W N P O

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.02.486809; this version posted October 22, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

CEEA-PRBB). Mouse genotyping was conducted on tail biopsies as described !® using published

primers. In all analysis, WT littermates were used as controls.

Isolation of mouse pancreatic islets

Mouse pancreata from adult mice (9-14 week old) were perfused with a solution containing 1 mg/mL
collagenase-P (Roche) in Hank’s buffered salt solution (HBSS) (Invitrogen) by injection in the
common hepatic bile duct. Pancreata were then removed and digested for 12-15 min at 37°C in a
water bath. Subsequently, dissociated pancreata were passed through a metal sieve and washed with
HBSS. Islets were then isolated using a density gradient purification with HISTOPAQUE-1077
(Sigma), washed and handpicked. Isolated islets were cultured for 24h in RPMI 1640 medium
supplemented with 10% FBS, 100 U/mL penicillin, 100 pg/mL streptomycin, 10 mM, HEPES, 1

mM sodium pyruvate and 0.05 mM 2-mercaptoethanol.

Insulin and glucagon secretion in mouse islets ex vivo

24h after isolation, ten to fifteen islets from each mouse in triplicates were used to assess insulin and
glucagon secretion. First, islets were pre-incubated for 1 h in Krebs-Ringer bicarbonate (KRB) buffer
containing 0.3% bovine serum albumin (BSA) and 2.8 mM glucose. Next, islets were sequentially
incubated with the same buffer containing 2.8 mM glucose followed by 20 mM glucose for 1 h. For
amino acid-stimulated insulin secretion, islets were pre-incubated for 1 h in KRB buffer containing
0.3% BSA followed by sequential incubations with 0 mM or 12 mM of an amino acid mix
containing alanine, arginine, leucine, lysine, proline and glutamic acid. To assess glucagon secretion,
islets were pre-incubated for 1 h KRB buffer containing 0.3% BSA and 2.8 mM glucose followed by
sequential incubations with 20 mM and 1 mM glucose for 1 h. After these incubations, supernatants
were collected to access insulin and glucagon secretion and the remaining islets were sonicated in an
alcohol-acid solution to measure total insulin and glucagon content using Mouse Insulin and

Glucagon ELISA Kits (Mercodia).

Measurements of blood glucose and plasma hormones in mice

Adult WT and Srrm3 mutant (Srrm3 +/- and Srrm3 -/-) mice were fasted during 4h after which blood
samples were collected from a tail snip by gentle massaging. After that, mice were offered food and
blood sampling was performed 30 min after food intake. Blood glucose levels were measured using
a standard glucometer (Glucomen Aero 2K), while circulating insulin and glucagon was measured

from plasma using Ultra Sensitive Mouse Insulin and Glucagon ELISA kits (Mercodia).
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Intraperitoneal Glucose and Insulin Tolerance Tests IPGTT and ITT) in mice

To test glucose tolerance, adult WT and Srrm3 +/- mice were fasted during 12h before they received
an intraperitoneal administration of 1g/kg glucose load. Blood glucose levels was measured before (0
min) and 15, 30, 60 and 120 min after glucose injection, from a tail snip by gentle massaging using a
blood glucose meter (Glucomen Aero 2K). To test insulin tolerance, mice were restricted to food
during 4 h before they received an intraperitoneal administration of 1U/kg insulin (Actrapid,
recombinant human insulin, Novo Nordisk), and their blood glucose was measured before (0 min)

and 15, 30, 60 and 120 min after insulin administration.

Immunofluorescence analysis of pancreatic slices

Pancreata from newborn (P1) and 4 weeks old mice were paraffin embedded and cut in 4 pum
sections, dewaxed, and incubated with primary antibodies overnight at 4 °C after microwave antigen
retrieval. Primary antibodies used were: Polyclonal Guinea Pig Anti-Insulin (1:200; DAKO, Agilent)
and Polyclonal Rabbit anti-Glucagon (1:200; Cell Signaling). IgG secondary antibodies used were:
Cy3-conjugated donkey-a-guinea pig and Cy2-conjugated mouse-o-rabbit (1:500; Jackson
ImmunoResearch). Slides were imaged by confocal microscopy using a Leica TCS SP5 and images

processed by LAS X (Leica) or ImagelJ software.

Analysis of SRRM3 expression and Exon Set Enrichment analyses in human and mouse islets

Transcriptomic analyses in Figs. 7 and Extended Data Fig. 7 aimed at characterizing the expression
of SRRM3 and the relative inclusion of IsletMICs in human or mouse islets comparing two specific
conditions (e.g. T2D patients vs controls). Gene expression quantifications were obtained by
mapping RNA-seq reads with Salmon* to human or mouse transcriptome (Ensembl release 104).
Single cell RNA-seq clustering and cell type classification from all human studies and donors were
used to deconvolute human islet bulk RNA-seq with MuSiC>*. Briefly, raw gene counts from all
bulk RNA-seq samples were used as input for MuSiC, as recommended, and samples were filtered
based on the proportion of pancreatic islet cell types (Alpha, Beta, Gamma and Delta >60% and only
Alpha + Beta >50%; details for each discarded sample is provided in Supplementary Table 1). For
SRRM3 expression, gene raw read counts were normalized with VST from DESeq2. We tested if the

SRRM3 normalized expression differs between groups with a two tailed Wilcoxon test.

To assess the level and direction of global misregulation of the IsletMIC program, we implemented a
modification of GSEA, which we termed Exon Set Enrichment Analyses (ESEA). In brief, exon PSI

levels were quantified as described above, using vast-tools v2.5.1%, and APSI for each pairwise
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comparison (PSI test - PSI control) was calculated for those exons with sufficient read coverage in
both conditions (score VLOW or higher in least of 60% of all samples per group tested, except for*°
where events were considered if at least 3 samples per group had coverage greater than VLOW, as
provided by vast-tools). Next, we generated a background set of alternatively spliced exons for each
pairwise comparison, corresponding to exons with sufficient read coverage and a PSI between 5 and
95 in at least one of the conditions, and sorted them based on APSI (rnk file). For each comparison,
the tested exon set corresponded to the IsletMICs with sufficient read coverage (gmx file). The

ranked backgrounds and the test sets were used as input for fgsea®>.

Mapping of SRRM3 regulatory elements and GWAS variants associated with fasting glucose
and type 2 diabetes

Position and p-values for GWAS variants associated with “Type 2 diabetes” or “Fasting Glucose”
located in the SRRM3 region were obtained from the databases Finngen (r5.finngen.fi) and CMDKP
(hugeamp.org), respectively (date 2021-12-05). Annotated regulatory elements and chromatin marks
including pcHi-C and HiChip interactions between clustered enhancers and gene promoter as well as

H3K27ac signals under low and high glucose in human islets acting on SRRM3 were obtained from*.

We generated quantile-quantile (Q-Q) plots to examine genomic inflation in IsletMICs or
surrounding intronic regions variants for T2D risk and glycemic traits variation. For T2D, we used
BMI-adjusted T2D summary statistics®®. For glycemic traits, we relied on summary statistics data
from a trans-ancestral meta-analysis for fasting glucose (FG)?*$. We included genetic variants with
MAF< 1% that were intersected with genomic regions comprising 500nt upstream and downstream

of IsletMICs.

Luciferase reporter assay

For episomal reporter assays in INS-1E cells, a 500 nt region of SRRM3 intron 1 containing the
rs67070387 SNP was first amplified from genomic DNA with primers (Supplementary Table 7)
containing Kpnl/Xhol restriction sites. The amplicon was next cloned into the PGL4.23[luc2/minP]
Luciferase Reporter Vector (Promega). Briefly, the amplicon and the vector were simultaneously
digested. Next, the vector was dephosphorylated with FastAP (Thermo Scientific). The DNA was
then purified and ligated with a T4 DNA ligase (Promega). Next, the generated Reporter Vectors
were transformed into E. coli (DH5a) and purified using the Plasmid Maxi Kit (Qiagen). Site-
directed mutagenesis was used to introduce single nucleotide variants into the generated construct.

The variants were generated by PCR using phosphorylated primers described in Supplementary
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Table 7. The parental supercoiled double-stranded DNA was digested with Dpnl (NEB, 174R0176S)
1h at 37°C and the constructs were transformed in competent E. coli cells (DH5a) by thermal shock.

Finally, the introduced variants were validated by Sanger sequencing.

INS-1E cells were transfected in 24 well plates, at a density of 300,000 cells per well, with 200 ng of
reporter vectors with or without the insert, plus 20 ng of phRL-CMYV Renilla-luciferase to control for
transfection efficiency. Transfections were performed with lipofectamine 2000 (Invitrogen) for 8h,
according to manufacturer instructions. After 48 h, cells were processed using the Dual Luciferase
Assay (Promega) and luciferase activity measured using a VICTOR Multilabel Plate Reader
(PerkinElmer), following manufacturer instructions. Firefly luciferase activity was normalized to

Renilla luciferase activity.

Data collection and statistical methods

Insulin secretion data represents samples of independent cell line experiments or mouse islet
preparations. Transcriptomics data represents data on the level of single tissues or cells, which are
pooled from three independent experiments. Morphological data represents population-wide
observations from independent experiments. ATP and actin cytoskeleton measurements represent
recordings from individual cells in independent experiments. In vivo data is derived from
independent animals. Statistical methods used are represented in each figure legend, statistical tests
are two-sided in all cases.

For boxplots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile
range; points, outliers). Error bars correspond to (SD, SE, CI) unless otherwise stated in the figure

caption.

Data availability
RNA-sequencing data was submitted to GEO under the project GSE198906. All other RNA-seq

samples used in this study are publicly available and listed in Supplementary Table 1.
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Figure 1. Pancreatic islets express a conserved subset of neural microexons. A) Heatmap of
tissue inclusion levels (expressed as z-score of the percent-spliced-in [PSI]) of a subset of human
microexons (<27 nt) enriched in pancreatic islets (IsletMICs). PSI values are the mean of three to ten
tissue samples per group. B) Overlap between IsletMICs and neural-enriched microexons illustrates
how the IsletMICs program is nested within the larger neural program. C) Mean inclusion levels of
IsletMICs in different cell types from endocrine (beta and alpha cells, orange) and exocrine (acinar
and duct cells, grey) pancreas from bulk RNA-seq. PSI values are the mean of four samples per
group. D) Evolutionary conservation of human IsletMICs at the genomic and tissue-regulatory level
compared with mouse and rat. Regulatory conservation refers to exons with enriched inclusion in
endocrine pancreas compared to other tissues in the target species. Genomic conservation refers to
exons having an ortholog in the target species, but either no specific islet enrichment ("not reg.") or
not sufficient read coverage to assess regulation ("no cov."). E) Top ten enriched GO terms for
human IsletMIC-harboring genes. P-values were corrected for FDR. F) Enrichment of islet-enriched
exons in genes harboring T2D, T1D or fasting glucose (FG) risk variants. The size of the circle is

proportional to ratio of the observed versus expected overlaps. P-values correspond to
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hypergeometric tests (color coded). ***, p < 0.001 versus all multi-exonic genes with matched
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Figure 2. IsletMICs correspond to the subset of neuronal microexons with high sensitivity to
SRRM3. A) mRNA expression of the neural microexon regulator SRRM4 and of its paralog SRRM3
in neural tissues, pancreatic islets, exocrine pancreas and other human tissues (data from VastDB, n
= 4-12 tissue samples per group). B-D) siRNA-mediated knockdown (KD) of SRRM3 in EndoC-H]1
human beta cell line. B) SRRM3 mRNA levels measured by qPCR following 48h transfection with
Srrm3 (siSRRM3) or control (siCTL) siRNAs, normalized to actin (n = 5, mean £s.e.m). *** p <
0.001 versus siCTL; paired t test. C) RT-PCR assays of selected microexons in control and SRRM3
KD cells. The positions of inclusion/skipping isoforms and the percent of microexon inclusion are
indicated for two biological replicates. D) Global impact of SRRM3 KD on exon inclusion levels
estimated by PSI values from RNA-seq data. Differentially included exons in SRRM3 KD vs control
are shown in orange (microexons, length [le] < 27 nt), light blue (short exons, length between 28 and
51 nt) and dark blue (cassette exons, length > 51 nt). The pie chart shows the number of misregulated
exons (JAPSI| > 15) according to their size range. Lower panel shows APSI cumulative proportions
for microexons, short exons and alternative cassette exons. P-value was obtained from two-sided
Wilcoxon test comparing the distributions of microexons and cassette exons of length > 51 nt. PSI
values are the mean of three independent experiments. E) Overlap between SRRM3-regulated

microexons in human EndoC-BHI1 cells (SRRM3-regulated) and human IsletMICs. Only microexons

28


https://doi.org/10.1101/2022.04.02.486809
http://creativecommons.org/licenses/by-nc/4.0/

o v A W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.02.486809; this version posted October 22, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

with sufficient read coverage in both comparisons are shown. F) SRRM3 overexpression at three
different levels in HeLa cells reveals different sensitivities to SRRM3-mediated regulation for
IsletMICs and neuronal-only MICs (NeuralMICs). Mean inclusion levels for IsletMICs and
NeuralMICs in control cells and at three different SRRM3 expression levels are shown (n = 1). Area

fill represents the interquartile range.
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Figure 3. Srrm3 regulates insulin secretory functions of pancreatic beta cells. Human EndoC-
BH1 (A) or rat INS-1E (B-D) beta cells were transfected with control (siCTL) or SRRM3-targeting
(siSRRM3) siRNAs for 48h. Increased basal and stimulated secretion upon SRRM3 KD after
exposure to low and high glucose concentrations with or without the cAMP activator forskolin in
EndoC-BH1 (A) and INS-1E cells (B) (n = 9). C) Increased dynamic insulin secretion upon Srrm3
KD; measurements were made every 4 min after replacing 1.7 mM glucose medium with 17 mM
glucose, (n = 3). D) Static insulin secretion after exposure to the K-ATP channel inhibitor
tolbutamide, in combination with low and high glucose, (n = 5). E) Scheme indicating the design of
ASOs complementary to pre-mRNA sequences encompassing the UGC Srrm3-responsive motif and
the 3’ss. Targeted genes and microexon sizes are shown. Grey indicates cases were no significant
changes in PSI were achieved. F) RT-PCR analysis of microexon inclusion/exclusion after
transfection with control (CTL) or microexon-specific (ASO) ASOs in rat INS-1E cells. G) Glucose-
stimulated insulin secretion following transfection with microexon-specific ASOs. Glucose
stimulation index indicates the fold change insulin secretion between 1.7 mM and 17 mM glucose
conditions (n = 6-9). All data are presented as mean + s.e.m. Statistical comparisons: *, p < 0.05; **,

p <0.01 and *** p <0.001 versus siCTL or CTL ASO; unpaired t test.
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Figure 4. Srrm3 depletion in mouse islets causes IsletMIC downregulation and increased
stimulated insulin release. A) Exon inclusion levels in islets from Srrm3 mutant vs wild type mice
for IsletMIC and IsletLONG programs. PSI values are the mean of three mice islet preparations. B)
Density plots for APSI distributions in Srrm3 -/- islets of IsletMICs, IsletLONGs and other
alternative exons. P-values were obtained from two-sided Wilcoxon test comparing the distributions
of IsletMICs (orange) or IsletLONGs (red) against other alternative exons. C) Fold change in
glucose-stimulated insulin secretion following sequential stimulation from 2.8 mM to 20 mM
glucose in cultured islets of each genotype (n = 8, mean +s.e.m). D) Fold change insulin secretion
following sequential stimulation from 0 mM to 12 mM of a mix of six amino acids (n = 4-6,
mean + s.e.m). E) Fold change in glucagon secretion following sequential stimulation from 20 mM to
1 mM glucose (n = 4-6, mean +s.e.m). F) Volcano plot showing differentially expressed genes in
Srrm3 -/- islets ([log2FC| > 0.25) (n = 3). G) Representative enriched Biological Process GO terms
for genes downregulated (black) or upregulated (grey) in islets from Srrm3 -/- mutant mice. H)
mRNA expression levels for several transcription factors involved in endocrine pancreas
development. Lines connect data obtained for different mice from the same litter/batch. I) Gene set
enrichment analysis of endocrine pancreas development genes showing significant up-regulation of
the pathway in Srrm3 -/- islets. Statistical comparisons in (A) and (C-E): *, p < 0.05; **, p < 0.01
and *** p <0.001 versus WT; unpaired t test.
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Figure 5. Srrm3 depletion disrupts islet cell composition and architecture. A) Representative
immunofluorescence images of islets from WT and Srrm3 mutant mice stained for insulin (Ins; red)
and glucagon (Gceg; green) at 4 weeks of age. B) Percent of alpha cells in WT and Srrm3 mutant
islets. C) Percent of alpha cells outside the islet periphery, indicating disrupted islet architecture in
Srrm3 mutant mice. D) Percent of insulin and glucagon double positive cells in WT and Srrm3
mutant mice. All data are presented as mean+s.e.m (n = average of 9-12 islets from 6 mice per
genotype including males and females). Statistical comparisons: *, p < 0.05; **, p <0.01 and ***, p

<0.001 versus WT; unpaired t test.
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Figure 6. Srrm3 mutant mice display hypoglycemic hyperinsulinemia. A) Random blood glucose
measurements in Srrm3 mutant and wild type mice fed ad libitum (n = 13-15). B) Blood glucose
levels following a fast and fed test (n = 14-15). Glucose was measured at the end of a 4h fast and at
30 min postprandial (30 min fed). C,D) Insulin plasma levels (C) and ratio between plasma insulin
and blood glucose (D) at 30 min postprandial (z = 12-15). E) Plasma glucagon at 4h fasting (n = 7-
9). F) Intraperitoneal glucose tolerance test in WT and Srrm3 +/- mice, showing blood glucose levels
at different time points (n = 6, mean £ s.e.m). G) Area under the curve (AUC) for each mouse shown
in (F). H) Plasma insulin at 15 min after intraperitoneal glucose injection. I) Insulin tolerance test in
WT and Srrm3 +/- mice, showing blood glucose levels at different time points (n = 5, mean + s.e.m).
J) Area under the curve (AUC) for each mouse shown in (I). Statistical comparisons: *, p < 0.05; **,
p <0.01 and *** p <0.001 versus WT; unpaired t test. Measurements shown in A-E were performed

using both male and female mice, while tolerance test shown in F-J were performed only in males.
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Figure 7. The SRRM3 locus responds to glucose and harbors genetic variants associated with
fasting glucose and type 2 diabetes risk. A) Regional plot of T2D GWAS variants from the
FinnGen study (r5.finngen.fi/gene/SRRM3). An islet-specific enhancer cluster regulating SRRM3 is
shown in orange. B) Integrative map of the SRRM3 locus in human islets showing chromatin state
profiles and pcHi-C interactions between clustered enhancers and the gene promoter 4. C)
Normalized SRRM3 expression and microexons inclusion (measured by alternative splicing set
enrichment analysis) in human islets from two independent datasets according to FG rs67070387
genotype (n = 7-103). D) Luciferase assay in EndoC-BH1 cells following transfection of a control
reporter vector or carrying the genomic sequence surrounding rs67070387 with one or the other
allele (n = 5). **, p <0.01 versus indicated by unpaired t test. E) Normalized SRRM3 expression and
IsletMIC inclusion in human islets from two independent datasets according to T2D rs7459185
genotype (n = 39-60). F) SRRM3 expression and IsletMIC inclusion following exposure of human
islets to high/low glucose (n = 72). G) Mean H3K27ac signals of the SRRM3 enhancer cluster in
human islets following exposure to low and high glucose. H) SRRM3 expression and IsletMIC
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inclusion in human islets from non-diabetic (ND) and type 2 diabetes (T2D) individuals (n = 6-34)
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Extended Data Fig. 1. IsletLONGs display a different tissue inclusion pattern and conservation
compared to IsletMICs. A) UMAP projections of single-cell RNA-seq (scRNA-seq) data from
human islets and expression levels of pancreatic hormones according to cell type. B) Mean inclusion
levels of IsletMICs and IsletLONGs in the different islet cell types from scRNA-seq. C) Predicted
impact of IsletMICs and IsletLONGs on protein sequences. IsletMICs are largely predicted to
generate new protein isoforms upon inclusion by preserving the open reading frame (ORF), while
IsletLONGs have a higher proportion of events that disrupt ORFs (i.e. the exon leads to a frame shift
and/or introduces a premature termination codon when included or excluded) or impact UTRs. D)
Heatmap showing the tissue inclusion levels (expressed as z-score of the PSIs) of human cassette
exons >28 nt enriched in pancreatic islets (IsletLONGs). E) Overlap between IsletLONGs and
neuron-enriched cassette exons >28 nt, showing that 39% (in contrast to 3% of IsletMICs) of tissue-

enriched exons are not shared between islet and neural tissues.
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Extended Data Fig. 2. IsletMICs correspond to the subset of neuronal microexons with high
sensitivity to SRRM3. A-B) mRNA expression of the neural microexons regulator Srrm4 and of its
paralog Srrm3 in neural tissues, pancreatic islets, exocrine pancreas and other rat (A) and mouse (B)
tissues (data from VastDB, n = 4-20 tissue samples). C-E) siRNA-mediated knockdown (KD) of
Srrm3 in INS-1E rat beta cell line. C) Srrm3 mRNA levels measured by qPCR following 48h
transfection with Srrm3 (siSrrm3) or control (siCTL) siRNAs, normalized to Gapdh (n = 5,
mean £s.e.m). ** p <0.01 versus siCTL; paired t test. D) RT-PCR assays for selected microexons
in control and Srrm3 KD cells. The positions of inclusion/skipping isoforms and the percentage of
microexon inclusion are indicated for two biological replicates. E) Global impact of Srrm3 KD on
exon inclusion levels estimated by PSI values from RNA-seq data. Differentially included exons in
Srrm3 KD vs control are shown in orange (microexons, length [le] < 27 nt), light blue (short exons,
27 <le < 51 nt) and dark blue (cassette exons, le > 51 nt). The pie chart shows the number of
misregulated exons (JAPSI| > 15) according to their size range. Lower panel shows APSI cumulative
proportions for microexons, short exons and alternative cassette exons. P-value was obtained from
two-sided Wilcoxon test comparing the distributions of microexons and cassette exons of length > 51
nt. PSI values are the mean of three independent experiments. F) Overlap between Srrm3-regulated
microexons in rat INS-1E cells and rat IsletMICs. Only microexons with sufficient read coverage in
both comparisons are shown. G) Overlap between SRRM3-regulated microexons in rat INS-1E (R)
and human EndoC-BHI1 (H). Microexons presenting no ortholog (“no orth”) or with no sufficient
read coverage (“no cov”) in the other species are indicated. H) SRRM3 overexpression in HeLa cells

at three different levels reveals different sensitivities for IsletMICs and neuronal-only MICs
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(NeuralMICs). Exon inclusion levels were quantified from RNA-seq and differences in inclusion

between control and SRRM3-overexpressing cells are shown for IsletMICs and NeuralMICs (n = 1).
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Extended Data Fig. 3. Srrm3 regulates insulin secretory functions of pancreatic beta cells. A)

Tubulin intensity (AU)

mM glucose 1.7 17

Representative images of control and Srrm3-depleted cells FRET measurements of the levels of ATP
produced at 1.7 mM glucose (0 min) and following stimulation with 17 mM glucose (5-15 min). B)
FRET measurements of ATP production at 1.7 mM glucose indicating that Srrm3-depleted cells
display increased basal cellular metabolism (n = 20 individual cells). C) Fold increase in ATP
production following exposure to high glucose (17 mM) showing that Srrm3 KD increases ATP
production dynamics (n = 20 individual cells). D) Representative confocal images of control and
Srrm3 KD cells actin filaments. E, F) Quantification of the length (E) and number of projections per
cell (F) of actin-rich filopodia (n = 20 individual cells). G) Quantification of glucose-induced actin
depolymerization measured by the intensity ratio between filamentous [F] and globular [G] actin (n =
94 individual cells). F and G actin were stained with Atto 550-phalloidin and Alexa 488- DNase I,
respectively. H) Representative confocal images of control and Srrm3 KD cells stained against -
tubulin (green) and insulin (red) following 1h exposure to 1.7 mM and 17 mM glucose. I)
Fluorescence intensity of immunostained tubulin in low and high glucose concentrations showing

that Srrm3 KD cells present a lower microtubule nucleation at low glucose compared to control cells
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(n =53-66 individual cells). All statistical comparisons: *, p < 0.05; **, p < 0.01 and ***, p < 0.001
versus siCTL or CTL ASO; unpaired t test.
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Extended Data Fig. 4. Srrm3 depletion in mouse islets causes IsletMIC downregulation and
increased stimulated insulin release. A) Differences in inclusion levels (APSI) in islets from Srrm3
-/- vs wild type (WT) mice for all exons shorter than 300 nucleotides with sufficient read coverage.
PSI values are the mean of three mice islet preparations. B) Number of misregulated alternative
exons according to size range in Srrm3 -/- and Srrm3 +/- mouse islets compared to WT ones. Black
and grey bars indicate exons with APSI > 15 and APSI < -15, respectively. C) Differences in
inclusion levels (APSI) in islets from Srrm3 +/- vs wild type (WT) mice for all exons shorter than
300 nucleotides with sufficient read coverage. PSI values are the mean of three mice islet
preparations. D) Density plots for APSI distributions in Srrm3 +/ islets of IsletMICs, IsletLONGs
and other alternative exons. P-values were obtained from two-sided Wilcoxon test comparing the
distributions of IsletMICs (orange) or IsletLONGs (red) against other alternative exons. E) Total
insulin protein content in mice islets measured by ELISA (n = 10-13, mean=+s.e.m). F) Insulin

mRNA levels in mice islets measured by RNA-seq (n = 3, mean + s.e.m). G) Total glucagon protein
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content in mice islets measured by ELISA (n = 4-6, mean £ s.e.m). H) Glucagon mRNA levels in
mice islets measured by RNA-seq (n = 3, mean + s.e.m). Statistical comparisons in (E-H): *** p <
0.001 versus WT; unpaired t test. I) Overlap between differentially expressed genes in Srrm3 -/-
islets and genes harbouring IsletMIC and IsletLONG alternative exons. J) Distribution of log2 fold
change values in genes containing either IsletMICs or IsletLONGs compared to background (genes

expressed in mouse islets). Color code represents -log10 adjusted p values.
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Extended Data Fig. S. Srrm3 depletion disrupts islet cell composition and architecture. A)
Representative immunofluorescence images of islets from WT and Srrm3 mutant neonatal mice
stained for insulin (Ins; red) and glucagon (Gcg; green). B,C) Quantification of the fraction of alpha
cells (B) and insulin and glucagon double-positive cells (C) (n = average of 9-12 islets from 4-5 mice
per genotype including males and females). D) Percent of endocrine cell clusters in well-organized
islet-like structures or displaying more dispersed organization. Statistical comparisons: *, p < 0.05

and **, p <0.01 versus WT; unpaired t test.
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Extended Data Fig. 6. Srrm3 mutant mice display hypoglycemic hyperinsulinemia. Glycemia
and plasma insulin and glucagon levels segregated by sex. A) Random blood glucose measurements
in Srrm3 mutant and wild type mice fed ad libitum (n = 7-9). B) Blood glucose levels following a 4h
fast (n = 7-9). C) Blood glucose levels at 30 min postprandial (n = 7-9). D,E) Insulin plasma levels
(D) and ratio between plasma insulin and blood glucose (E) at 30 min postprandial (n = 6-8). F)
Plasma glucagon at 4h fasting (n = 4-5). Statistical comparisons: *, p < 0.05; ** p <0.01 and ***, p
<0.001 versus WT; unpaired t test.
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Extended Data Fig. 7. The SRRM3 locus responds to glucose and harbors genetic variants
associated with fasting glucose and type 2 diabetes risk. A) Regional plot of Fasting Glucose
GWAS variants from the CMDKP database (hugeamp.org). B) Allele frequency and predicted
impact on a Foxa2 binding motif for the SNP rs67070387 associated with elevated Fasting glucose.
C) Luciferase assay in INS-1E cells following transfection of a control reporter vector or carrying the
genomic sequence surrounding rs67070387 with one or the other allele (n = 6-7). *** p < 0.001

versus indicated by unpaired t test. D) Quantile-quantile (QQ) plots showing distribution of p-values
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associated with type 2 diabetes from?® or fasting glucose from?¢ for variants located in 1Kb genomic
regions containing microexons. E) SRRM3 expression and IsletMIC inclusion in human islets from
non-diabetic (ND) and type 2 diabetes (T2D) individuals from*° (n = 16-28). F) Srrm3 expression
and IsletMIC inclusion in islets from B6-ob/ob (OBOB) and New Zealand Obese (NZO) mice from?!
(n=15). G) SRRM3 expression and IsletMIC inclusion in human islets from non-diabetic (ND) and
impaired glucose tolerant (IGT) individuals from?® (n = 14-34). H) SRRM3 expression and IsletMIC
inclusion in human islets from non-diabetic (ND) impaired glucose tolerant (IGT) individuals from*°
(n = 16-34). I) SRRM3 expression and IsletMIC inclusion in single beta cells from non-diabetic
(ND) and type 2 diabetes (T2D) individuals from multiple studies (n = 4) (see methods).
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