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Distinguishing discrete and continuous behavioral variability
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Julia C. Costacurta >', Lea Duncker® Blue Sheffer’*, Winthrop Gillis®, Caleb Weinreb®,
Jeffrey E. Markowitz’, Sandeep R. Datta®, Alex H. Williams®°, Scott W. Linderman®!%"

Abstract

A core goal in systems neuroscience and neuroethology is to understand how neural circuits
generate naturalistic behavior. One foundational idea is that complex naturalistic behavior may
be composed of sequences of stereotyped behavioral syllables, which combine to generate rich
sequences of actions. To investigate this, a common approach is to use autoregressive hidden Markov
models (ARHMMs) to segment video into discrete behavioral syllables. While these approaches have
been successful in extracting syllables that are interpretable, they fail to account for other forms of
behavioral variability, such as differences in speed, which may be better described as continuous in
nature. To overcome these limitations, we introduce a class of warped ARHMMs (WARHMM). As is
the case in the ARHMM, behavior is modeled as a mixture of autoregressive dynamics. However, the
dynamics under each discrete latent state (i.e. each behavioral syllable) are additionally modulated
by a continuous latent “warping variable.” We present two versions of warped ARHMM in which the
warping variable affects the dynamics of each syllable either linearly or nonlinearly. Using depth-
camera recordings of freely moving mice, we demonstrate that the failure of ARHMMs to account
for continuous behavioral variability results in duplicate cluster assignments. WARHMM achieves
similar performance to the standard ARHMM while using fewer behavioral syllables. Further analysis
of behavioral measurements in mice demonstrates that WARHMM identifies structure relating to
response vigor.
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1 Introduction

A fundamental question in systems neuroscience is how neural activity generates complex behavior [1-3].
Specifically, a key goal is to understand how changes in neural activity determine which actions are
selected or executed on a moment-by-moment basis. To make progress towards this goal, it is essential
to study ethologically relevant, naturalistic behavior. A common way of studying naturalistic behavior
is to observe animals as they freely explore an environment [4-6]. Such unconstrained, spontaneous
behavior offers a rich setting for studying behavioral variability. However, the hours of raw video
data required to capture naturalistic behavior in detail are high-dimensional and difficult to use for
follow-up analyses. Thus, a key goal in behavioral neuroscience research is to develop data-analysis
strategies that can extract interpretable lower-dimensional summaries of behavior [4-10]. Ultimately,
such descriptions will facilitate relating complex naturalistic behaviors to the underlying neural activity
patterns that generate them [3, 11]. This will provide insight into how and why behavior may differ
across environmental contexts [2, 3, 11, 12], under pharmacological manipulations [6] or across health
and disease [13, 14].

One hypothesis is that the brain generates complex behaviors by concatenating a series of simpler,
stereotyped actions [15, 16, 4, 5, 11]. Just like syllables form the building blocks of spoken language,
behavioral syllables may be composed to perform complex sequences of behavior. A large focus of previous
work has been to discover such behavioral syllables in an unsupervised manner, thereby obtaining a
low-dimensional description of high-dimensional behavior [4, 5, 12, 16-19].

Autoregressive Hidden Markov Models (ARHMMs) are well-suited to this task [5, 6]. For example,
Wiltschko et al. [5] used depth video to capture the posture of freely moving mice (Fig. 1A). In this
work, authors projected the video frames onto the top D principal components (PCs) to obtain a D-
dimensional time series of behavior. The authors then used an ARHMM to segment the behavioral
time series into discrete syllables (Fig. 1B). Each discrete syllable corresponds to vector autoregressive
dynamics in PC space, which can be conceptualized as a vector field (Fig. 1C). Each instance of a syllable
corresponds to a short, stereotyped trajectory following this vector field (red-to-blue trajectories in
Fig. 1C). Empirically, these often correspond to stereotyped patterns of movement like rearing, darting,
or grooming (Fig. 1D).

However, current modeling approaches have focused on clustering discrete behavioral syllables while
failing to account for other, continuous forms of behavioral variability. For example, the same type
of behavior (e.g. a dart) could be performed more or less vigorously. While these two actions might
be identified by a human observer as the same behavior under different speeds (fast vs. slow darts),
current models lack the ability to allow for such structured continuous variability within states, and thus
might assign these actions to entirely separate behavioral states. As a result, current approaches often
over-segment video data, by allocating distinct clusters to the same movement type. The data might be
better described by a model which incorporates a continuous spectrum of structured variability within a
specific behavior.

We extend the ARHMM by incorporating a latent warping variable. With this Warped Autoregressive
Hidden Markov Model (WARHMM), we are able to capture continuous variability within a discrete
syllable. Thus, we are able to disentangle variability due to (discrete) movement type from other forms
of (continuous) variability, such as movement speed. We consider two types of warping: time-warping,
which captures changes in the speed of evolution of the autoregressive dynamics, and Gaussian process


https://doi.org/10.1101/2022.06.10.495690
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.10.495690; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A. Framet B. Segmented Time Series C.
I
= AN e

AR Dynamics D. Syllables

Top 10 PCs

0 time [s] 5 PC1

Figure 1: A. Single frame of depth video of a freely behaving mouse. B. The frames are projected onto their top
ten principal components (black lines) and then segmented into discrete syllables (colors) with an autoregressive
HMM (ARHMM). C. Each syllable is defined by autoregressive (AR) dynamics, which can be visualized as a flow
field in PCA space. Here, the scatter plot shows the distribution of frames projected onto the top two PCs, and the
red-to-blue trajectories correspond to multiple instances of one discrete state. D. Empirically, syllables correspond
to interpretable behaviors like investigating, rearing, and falling from a rear, as illustrated here.

warping, which allows for nonlinear changes in dynamics. We develop an efficient inference algorithm for
the WARHMM and show that it can correctly identify the underlying states and parameters in simulated
data. Then, using behavioral measurements of freely behaving mice, we demonstrate that accounting for
continuous sources of behavioral variability can resolve issues of over-segmentation commonly observed
using previous approaches. Furthermore, using behavioral data of mice treated with either saline solution
or amphetamine, we demonstrate that the WARHMM identifies differences in the distribution of latent
warping variables across both groups of mice. This result reflects potential modulations of movement
vigor and speed distributions due to the pharmacological intervention.

2 Background

We first review related work and then present a brief description of two classes of Hidden Markov
Models that have been used for time series segmentation and behavioral modeling. The key features of
each model form the basis for our warped extension to the ARHMM model, which represents the main
contribution of our work.

Related work in unsupervised behavioral segmentation. We build upon a rich body of work in
the unsupervised behavioral segmentation space. Our model is inspired by the ARHMM approach to
unsupervised behavioral segmentation (MoSeq) proposed by Wiltschko et al. [5], which is described
in the introduction. Berman et al. [4] addressed a similar task in fruit fly video using MotionMapper,
which identifies discrete behavioral states as peaks in a non-linear, two-dimensional embedding of
postural spectrograms. Hsu and Yttri [17] have proposed B-SOiD, which uses a random forest to classify
non-linear postural feature embedding clusters into multiple behavioral classes. Harris et al. [18] fit an
autoregressive linear model to time-windowed postural features using low-rank tensor decomposition,
and interpret clusters in the fit model parameters as discrete behavioral states. Luxem et al. [ 19] identify
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behavioral states by clustering the latent vectors produced by training a variational autoencoder on
input from markerless pose estimation [9]. For a more thorough treatment of work in unsupervised
behavioral quantification, see McCullough and Goodhill [20] for a recent review. The majority of these
related approaches have focused on segmenting behavioral video based on movement type or on tracking
animal pose. The model we introduce in section 3 extends on this work by explicitly taking other forms
of behavioral variability, such as movement speed, into account.

Autoregressive Hidden Markov Models. An ARHMM (Fig. 2A, top) consists of a discrete latent state
variable z, € {1,2,...,K} and observations x, € R. Transitions between the discrete state values over
time are governed by a transition matrix P, where the entry Py ;. indicates the probability of advancing
from state z, = k to state z,,; = k’. Given the discrete state value, the observations are modeled to
evolve according to linear dynamics, where a dynamics matrix A, and bias term b, determine the
mapping from X, to X, in the presence of Gaussian noise with covariance matrix Q, . Thus, the model
represents an extension of classic Gaussian mixture models to time series with autoregressive dynamics.
The ARHMM model can be summarized as

Zi+1 | 2. =k ~ Cat(Py . ) ke{l,...,K}

1)
Xey1 | X, 2 =k~ N (X +ApX, + by, Qi) X, € RP

In the context of behavioral modeling [5], the discrete latent state reflects the behavioral syllable (such
as a dart, leftward turn, rear, etc.) and determines which dynamics are used to describe the temporal
evolution of the observed posture x,.

Factorial Hidden Markov Models. In Factorial Hidden Markov Models (FHMMs) [21], multiple
discrete hidden state variables influence the distribution of observed states. The FHMM model can be
summarized as

28 120 =k ~ catr(P)) kef{l,...,KD}, i=1,... .M

(2)

X | P ~plx | 2O3) x, eRP

FHMMs are useful in cases when aspects of data can be distributed across multiple states. For example,
to fit data that varies according to M binary variables, a standard HMM would need 2M discrete states,
while a FHMM would only need M binary states [21].

In the context of behavior, adding additional latent variables is an appealing way to provide structured
variability within discrete syllables. Assuming this variability is included in a reasonable way, an FHMM
has the potential to describe a dataset with fewer discrete latent states than an HMM.

3 Warped Autoregressive Hidden Markov Models

ARHMMs have been successful in clustering video measurements of behavior into discrete sets of
behavioral syllables. However, in practice they are prone to over-segmentation, where behaviors that
appear similar to a human expert are split into distinct clusters. We hypothesize that oversegmentation
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Figure 2: A. Probabilistic graphical models for the ARHMM and the Warped ARHMM. The warping variables
and discrete states (i.e. syllables) together determine the AR dynamics. B. We consider two types of warping:
time-warping, where dynamics are sped up or slowed down by the warping variable, and GP warping, where the
dynamics vary smoothly but nonlinearly with the warping variable.

arises because the ARHMM conflates discrete sources of behavioral variability — the expression of
distinct behavioral syllables — with continuous sources of variability that cannot be captured by linear
autoregressive dynamics with Gaussian noise.

To address this limitation, we develop Warped Autoregressive Hidden Markov Models (WARHMMs).
WARHMMs extend the ARHMM with an additional latent variable, like in a Factorial HMM. In addition
to the discrete state variable z,, WARHMM includes a latent warping state 7, € [—1,1] at each time
step (Fig. 2A, bottom). The warping state 7, modulates the dynamics associated with each state z,.
While z, can model rapid switches in dynamics, T, can account for additional variability in the dynamics
associated with a given latent state.

The general form of this model class can be summarized as follows, where Ay (7,), bi(7,), and Qi (7,)
are functions of 7,:

Zi41 | 2. = k ~ Cat(Py.) ke{l,...,K}
Tepr | T ~p(Tes1l7e) Te[-1,1] 3)
Xeq1 | X, 20 =k, Ty ~ ,/V(xt +A(7) %, +bi(7,), Qk(T[)) X, € RP

Below, we consider two possibilities for how exactly the warping variable modulates the dynamics.

3.1 Time-Warped ARHMM: linear modulation of autoregressive dynamics

Our first specific instance of WARHMM has a direct motivation in terms of time-warping, and we thus
refer to it as a time-warped ARHMM (T-WARHMM). Specifically, we aim to capture continuous changes
in how quickly trajectories move through observation space. If we consider the change in current state
AX, = X,,; — X, due to the dynamics within a given state z, = k and let 7 be a log step-size parameter,
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we can write
CTAX, = Acx, + by + QZ€,, e, ~ N0, 4
Xeq1 =xt+CT(Akxt+bk)+CTQ%et (5)

When 7 = 0 the step size C* is always one, so equation (5) is equivalent to the classic ARHMM. For
nonzero T, however, the warping variable modulates how far a single update can move the state, akin to a
time-constant in ordinary differential equations. The constant C determines the maximum multiplicative
factor by which dynamics can be scaled; in our experiments we set C = 2. In terms of the functional
mapping, TWARHMM corresponds to the following mapping between the warping state 7, and the
parameters determining the autoregressive dynamics of the observed states x,:

AZt(Tt) = CTtAzt) bzt(Tt) = CTth[) ta(T) = CZTtQZ[ (6)

Fig. 2B (top) shows how an example syllable’s dynamics are sped up or slowed down by changing 7. As
T increases, the trajectories traverse a greater distance in the same number of time steps. In the context
of behavioral modeling, the time-warping variable may capture modulations in movement speed. As we
will see in section 5, the inferred warping variables correlate with other intuitive notions of vigor, like
centroid velocity in darting syllables, while also offering a quantification of vigor in stationary syllables
such as grooming.

3.2 Gaussian Process-WARHMM: Nonlinear modulation of autoregressive dynamics

The model formulation for TWARHMM is interpetable and intuitive, but also makes strong parametric
assumptions about how continuous variability affects the dynamics of behavior. As a point of comparison,
we consider a more flexible model, in which the influence of 7, via A, (7,) and b, (7,) is specified
nonparametrically in terms of Gaussian processes. This Gaussian Process WARHMM (GP-WARHMM)
moves beyond using 7, to describe speed or vigor, as 7, could have effects beyond modulation of
time-constants of the dynamics. Here 7, can modulate entries of the dynamics matrix according to a
smooth nonparametric function. In particular, the dynamics are modeled as follows:

Ayij(t) ~GP(0,Ky(7,7), i,j=1,...,D;k=1,....,K
byi(t) ~GP(0,Ky(7,7)), j=1,....,D;k=1,....,K )
Qi(7)=Qy, k=1,...,K.

where Ay;;(7) denotes the (i, j)-th entry of the matrix Ax(7) and by;(7) is the i-th entry of the vector

by (7). Thus, each coordinate varies smoothly and independently as a function of 7, a prioir. In our
experiments, we choose a squared exponential kernel with kernel hyperparameters 6 = (p, o).

1
Ko(7,7') = p?exp {—T‘Z(T—T’)z}, (8

Fig. 2B (bottom) shows how an example syllable’s dynamics are modulated by changing 7 in a GP-
WARHMM. The central dynamics (Ax(7 = 0)) are the same as in the TWARHMM above, but now T can
have nonlinear effects on the dynamics that do more than simply slow them down or speed them up.
This extra flexibility could be useful for capturing more general types of continuous variability within
discrete syllables, but it may also come at the cost of interpretability.

6
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3.3 Inference and Learning

Though we have presented 7, € [—1, 1] as a continuous latent variable, in practice we find it sufficient
to discretize 7, over a fine grid of J evenly spaced points, since it is a one-dimensional, bounded random
variable. Once discretized, we model the warping variable dynamics as a Markov process with a banded
transition matrix to encourage small, local changes over time. Similarly, the GP prior in eq. (7) reduces
to a multivariate normal after discretization. Full details are provided in the Appendix.

As in standard ARHMMs, we estimate the states and parameters with the Expectation-Maximization
algorithm (EM) [22]. We perform exact inference over the discrete syllables and warping variables using
the forward-backward algorithm, which runs in O(T(K? +J?2)) time and uses O(TKJ) memory. For both
the time-warped and GP-warped ARHMMs, the parameter updates have closed-form solutions. For large
datasets, we used stochastic EM [23] to speed convergence. For the GP-WARHMM, we manually tuned
the kernel hyperparameters, but they can in principle be learned by type-II maximum likelihood learning.
Again, complete details are in the Appendix.

4 Synthetic data validation

We begin by generating two-dimensional synthetic data x, € R? with K = 2 discrete states. The
autoregressive dynamics under each discrete state are chosen to be a clockwise and counterclockwise
rotation. We modulated the dynamics with a time-warped ARHMM, setting A, (7) = 2% Ay, as illustrated
in Fig. 3A. For this simple experiment, we limited the true time-warping variables to J = 5 values of T
evenly spaced on [—1,1]. A snippet of simulated data and the corresponding time constants and states
is shown in Fig. 3B. We fit both a GP-WARHMM and TWARHMM with K = 2 states and J = 5 warping
variables to data simulated from this model.

The results from this experiment are summarized in Fig. 3C-E. Panel C shows the true and learned values
of entries of the autoregressive dynamics A,(7) as both z and 7 vary. We see that both the TWARHMM
and GP-WARHMM learn dynamics that reflect the overall rotational structure of the matrix. However,
only TWARHMM is able to recover the clockwise and counterclockwise variation with z and correct
speed modulation with 7.

| Model | Test LL | The increased flexibility of GP-WARHMM, in contrast, allows it to
achieve a comparable test log likelihood (Table 1), while not being
able to correctly disentangle discrete and continuous contributions
to the observed data variability. Fig. 3D and E show the true state
changes in z, and 7., together with the mode of the inferred posterior
T ] . ... distributions under each model. TWARHMM is able to recover the
able 1: Comparison of test log likeli- B B )
hoods on simulated data across true COIT€Ct segmentation of the data, while GP-WARHMM’s increased
and fitted models. flexibility allows it to fit the data, but in a less interpretable way.

T-WARHMM 0.0180
GP-WARHMM | -0.0040
True Model 0.0344
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Figure 3: A. lllustration of the dynamics of the simulated example. Two discrete latent states represent a clockwise
(z = 2, bottom) and counterclockwise (z = 1, top) rotation, each shown as vector fields. The speed of the rotation
is modulated via different values of 7, where A,(7) = 27A,. B. Illustration of the state trajectory as the generative
dynamics are modulated by both state switches in z (discrete variability) and changes in rotation angle via 7
(continuous variability). C. The generative value for A;(7) = 2"A, (top row) together with the learned matrices
for TWARHMM (tw, middle) and GP-WARHMM (gp, bottom). T-WARHMM is able to learn the variations in the
autoregressive dynamics. GP-TWARHMM learns the overall rotation structure of this examble, but the increased
flexibility of the GP model makes it harder for it to disentangle discrete and continuous contributions to changes
in A; (7). D.-E. The true and inferred latent paths (posterior mode) for z, (D) and 7, (E) under each model.

5 Modeling depth video of freely behaving mice

For the remainder of the paper, we are interested in extracting discrete and continuous structure in
behavior from posture data x, extracted from depth-imaging recordings of freely behaving mice. To
do this, we reanalyze data from Wiltschko et al. [5], which represents the original application of the
ARHMM to clustering mouse behavior. In the context of this dataset, the ARHMM approach is often also
referred to as MoSeq, and we thus refer to the dataset as the MoSeq dataset.

In the MoSeq dataset, the observations x, are taken to be the first 10 principal components of depth
camera video data of mice exploring an open field. The dataset consists of 20-minute depth camera
recordings of 24 mice. In preprocessing, the videos are cropped and centered around the mouse centroid,
and then filtered to remove recording artifacts. Finally, the preprocessed video is projected onto the top
principal components to obtain a 10-dimensional time series.

5.1 Comparison of model performances on the MoSeq dataset

To provide a direct comparison of performance between the ARHMM, TTWARHMM, and GP-WARHMM,
we trained each model using 50 epochs of stochastic EM. The ARHMM is equivalent to setting the number
of T-values in TWARHMM to J = 1. TWARHMM and GP-WARHMM each had J = 31 evenly spaced
values of T on the interval [—1,1].
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Figure 4: A. Comparison of log-likelihood on held-out test data as a function of the number of discrete latent
states after training the different model classes on the MoSeq dataset. B. For an ARHMM and TWARHMM with
similar test log-likelihoods, total number of syllables that are grouped into the same behavior class by expert
neuroethologists. The ARHMM creates new syllables to model qualitatively similar behaviors.

Fig. 4A shows the log-likelihood of each model on held-out test data for a range of K values. For a
given value of K, both TWARHMM and GP-WARHMM outperform the classic ARHMM in terms of their
generalization performance on unseen data. However, we achieve similar test log-likelihoods for an
ARHMM with K = 40 syllables, a TWARHMM with K = 25 syllables, and a GP-WARHMM with K = 15
syllables. This further illustrates that the ARHMM has to account for continuous variability by creating
a larger number of discrete states, while the factorial structure of the WARHMMs enables syllables to
be merged when the difference in their dynamics can be explained by changes in 7. The GP-WARHMM
outperforms the TWARHMM in terms of test log-likelihood, which can be attributed to the fact that the
GP-WARHMM is more flexible than the TWARHMM and can capture additional structure in the data.
However, the GP-WARHMM accomplishes this at the cost of interpretability. The TWARHMM warping
constant is physiologically motivated and, as we will show in the later results, has direct correlations
to centroid velocity and other notions of vigor. While the GP-WARHMM warping variable is allowed
to vary the syllable in whichever way will increase data log-likelihood, the TWARHMM is restricted to
modulating syllables in a way that is biologically interpretable. We believe that this interpretability of
T-WARHMM makes it more useful for behavioral analysis purposes. For this reason, we focus on the
utility of TWARHMM for the remainder of this paper.

5.2 Interpreting the time-warping variable

Which syllables are “warped”? To begin our analysis of the TWARHMM results, we fit a model
with K = 20 discrete states and J = 31 time constants. As shown in Fig. 4A, this model attains
similar test log-likelihood to an ARHMM with K = 35 discrete states. We then determine which types
of syllables are over-represented as multiple distinct discrete states in the ARHMM by analyzing the
syllable labels from each model. After generating sample videos of behavior from both models, we
asked expert neuroethologists and MoSeq users to label the syllables produced. We then gathered the
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Figure 5: Centroid velocity (pixels/ms) vs. inferred vigor (27) for three representative states of the TW-ARHMM,
showing a clear positive correlation between the variables.

labels under three general behaviors: darts, grooms/pauses, and rears. The results are shown in Fig.
4B. Both models have similar numbers of darting states, while the numbers of grooms and rears are
reduced in TWARHMM, with TWARHMM halving the number of rear states. While TWARHMM does
not completely resolve the oversegmentation issue, it is able to perform as well as the ARHMM with
fewer syllables.

Connections to centroid velocity. From our formulation of the time warping variable, it is expected
that the time warping variable and centroid velocity of the mouse would be highly correlated. In Fig. 5
we plot measured centroid velocity (in pixels/ms) vs. inferred vigor (27) for four representative states.
We see a strong relationship between centroid velocity and vigor for the darting state, where we would
expect such a relationship to occur. The other states also show this relationship, but less consistently. In
these states, the warping variable may be accounting for additional forms of timing-related variability that
are not well accounted for by centroid speed. These analyses validate that the time warping parameter
T is able to extract speed-related information also contained in centroid velocity for behavioral syllables
such as darting motions.

5.3 Identifying drug-induced changes in behavior

Finally, we analyze video recordings of two groups of mice treated with either saline solution or am-
phetamine. As shown in Fig. 6A, the distribution of centroid speed varies slightly between the groups,
with the amphetamine-treated mice performing actions at higher speeds more frequently than the saline
mice. We fit a TWARHMM with J = 31 time constants and K = 20 syllables to both sets of data. Fig. 6B
shows the the inferred vigor (27) distributions from two representative syllables, demonstrating that there
is a clear rightward shift between amphetamine and saline treated mice. This indicates that amphetamine
mice use faster time warping variables more frequently than saline mice. The difference between means
of the 7 index distributions are shown in Fig. 6C. Our model shows a significant difference (p < 0.05,
independent t-test) between the means of the T distributions for all except one of the inferred syllables.
Thus, TWARHMM is able to detect and dynamically track drug-induced differences in behavior across
both groups of mice.
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Figure 6: A. The distribution of centroid speed across mice treated with saline (blue) or amphetamines (pink). B.
Histograms showing the vigor distributions across the two classes of mice treated with saline (blue) or amphetamines
(pink) for two example syllables (discrete states). The dashed lines indicate the mean of distributions, showing
a clear increase in mean vigor in the amphetamine treated group. C. Mean 7 index for each of the 20 discrete
states in the model for both the saline (blue) and amphetamine (pink) treated mice. The inferred 7 indices in the
amphetamine treated group are larger (higher vigor, faster movement speed) for all but one syllable.

6 Conclusion

We have introduced an approach for unsupervised behavioral modeling which allows for the identification
of continuous variability within discrete behavioral syllables. Our work builds on a prior state-of-the-art
technique, which uses a discrete hidden state in combination with autoregressive linear dynamics to
cluster behavior. In our proposed model extension (WARHMM), underlying the behavioral measurement
at each time point are both a discrete state variable and a warping variable. Both of these latent variables
modulate the dynamics of the syllable, either through discrete switches (via the discrete state variable)
or through more continuous forms of modulation (via the warping variable). We found that WARHMM
achieved similar performance in terms of log-likelihood on held out test data while utilizing fewer
discrete latent states than the ARHMM.

Our analyses on mouse behavioral data focused on an interpretable subclass of warped ARHMM, where
the warping variable interacts linearly with the autoregressive dynamics of the observed data (the
T-WARHMM). Notably, the warping variable in this simple model can be viewed as implementing a local
rescaling of time. Similar time warping models have been fruitfully applied to trial-structured neural data
[24, 25], and our work illustrates how these ideas can be extended to naturalistic time series data that
lack repeated trial-structure. Our work on mouse behavioral data illustrates that continuous variability
in behavior may be induced through pharamacological interventions and can be extracted directly from
video recordings.
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Limitations. For simplicity, we discretized 7 on a fine grid instead of explicitly performing inference
over the continuous variable. This was done in favor of computational efficiency and ease of inference.
While we believe the fine grid we’ve used for 7 offers a good approximation of a continuous function,
future work could capture continuous variability by including a truly continuous posterior, e.g. via a
Gaussian Process [24]. Furthermore, our model assumes that the behavioral PCs evolve according to
linear dynamics, and though the GP-WARHMM allows these dynamics to be modulated in nonlinear
ways, the basic assumption could be relaxed to more general nonlinear dynamics in future work.

Future work. This work establishes multiple directions for future research. The first involves further
extending the ARHMM model by adding in additional forms of structured, interpretable variability.
What aspects of behavior, in addition to speed, may vary within syllables? In the context of mouse
behavior, variables such as turning radius or depth-camera pixel height may provide additional continuous
axes along which behaviors can be modulated. Another future direction lies in using TWARHMM to
analyze neural correlates of behavior. Similar behavioral segmentation approaches have been used
to simultaneously analyze the evolution of behavioral and neural recordings [26, 8, 27, 28]. A future
research area of particular interest lies in understanding how the dorsolateral striatum encodes action
selection and vigor [29, 13, 30-32]. Neural activity in this midbrain nucleus is known to be disrupted
in motor diseases like Parkinson’s and Huntington’s [33, 34]. The TWARHMM approach allows us
to simultaneously extract descriptions of movement type (how frequently actions are selected) and
movement speed (how vigorously actions are performed) from behavioral measurements. We expect
that the ability to disentangle the contributions of these two factors could provide an important basis
for better understanding how variations in neural activity determine changes in action selection and
vigor. Finally, the models we have proposed here could be applied more widely to analyze other types of
behavioral data.
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A Inference and Learning

We fit warped ARHMMs to behavioral measurements using the Expectation-Maximization (EM) algorithm.
Here, we provide additional details on performing posterior inference over the latent variables z;.; and
T1.7 (E-Step), and include details on closed-form parameter updates (M-Step).

A.1 Inference

Our inference approach is the same for both model classes of WARHMM presented in the main text.
Inference is performed using forward-backward message passing, with a slight twist to speed inference
over a large number of (z, 7) hidden state pairs. In particular, during message passing the K discrete
states and J warping variables are represented as K - J “paired” states, so inference via message passing
becomes very slow due to multiplication with a KJ x KJ transition matrix. To ease this bottleneck we
enforced Kronecker structure on the KJ x KJ transition matrix:

P(Z’T) = Pz ® PT

Then, if we let a,, B, € RX*/ be the forward and backward messages defined on the grid of (z, T) values,
the recursive calculations become:

a, = P ryvec(a,_; @ 1_1) = a, = vec (PZT(at—l © lt—l)Pr)
Be = Pz ryvec(feq © lpy1) = B = vec (PZ([th © lt+1)P;r) >

where ® denotes elementwise multiplication, I, € RX*/ denotes the likelihoods over the grid of (2, T)
values at time t, and vec(-) denotes the vectorization operation which concatenates columns of a matrix
into a single column vector. This results in a complexity decrease of O(K2J2) to O(K? + J?) in the
matrix-vector multiplication. The posterior marginal distributions are proportional to the elementwise
product, q(z;,7,) o< a2, © 1, ® B;.

A.2 Learning

In this section, we provide additional details on the parameter updates under each model class.

A.2.1 T-WARHMM

The closed form updates for the model parameters under the TWARHMM model class are given by

-1

T T
. 1
k= (Z AXtXrT—l) (Z Eq(rlz=k) [T—] Xr—le_l) )
t=2 t

t=2
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and

T

T * T T *T
_(ZEq(T[|Zt:k)[Tt]AxtAxt —(Akxt_let + Ax,x,_ AL ) (10)
t=2

1 * T * T
FEq(z,Js=k) [E}Akxt—lxt—lAk ) (11)
where Ax, =x; —X;_;.

A.2.2 Gaussian Process WARHMM

We place independent Gaussian priors over the transition dynamics
a ~ A (0,Kg) 1,j=1,...,D; a; €R’ (12)

The prior covariance is constructed via an exponetiated quadratic covariance function such that
Ky[7,7']=p?ex —L(T—T/)Z
0 > - p p 20_2

is evaluated on the grid of T values and 6 = {p,o}. The full set of autoregressive dynamics for the
different (z,, T,) pairs, A, isa D x D x K x J tensor. We will work with different reshapings of this tensor
to obtain to derive a closed form update.

Let A, € RP *xJ denote the reshaping of the transition dynamics. Here, each column corresponds to the
vectorization of a D x D slice of the tensor, and each column corresponds to a different value on the 7
grid. The prior over A, can be expressed as a Matrix Normal distribution with identity row covariance I
and column covariance Kg:

_ 1 - . D?
log p(Ax|0) = —3 Tr[KglAIIAk] Y log |[Kg| + constant (13)

To find the update for Ay, we need to maximize

T
_ 1 _

(PG A lO)g(ee) = =5 D (A% A, (7)) QA% A, (1)), (14)

t=1

K 2
1 T D
-3 ZTr[KglAIIAk] - log |[Ky| + constant (15)
k=1

We can rewrite A, (T;)X;_; as

vec(A, — (T = j)X—1) = x/,® DA, (T, =J)) = x] ,® DA —j

where 1(; _j; is a length-J vector with binary entries, which selects the column from Ay for which
Ty =].
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Letting q(z, = k, T, = j) = wyj,, differentiating with respect to A, and setting to zero, we obtain:

T T
AKS + D (x o) QN (x , @ DA, = Y (x| @ NTQ Ax,w], (16)

t=1 t=1

where Q, = diag(wy1¢, - - -, Wiye) = diag(wy,). We can show that
x ,eDN"Q (x] &) =(x_1%_;®Q.") (17)

and
T T

Z:(xtT_1 ® I)TQZ1 Axtht = Z Vec(Q;1 AxtxtT_l)a);(rt (18)

t=1 t=1

Substituting these expressions into Equation (16), we obtain

T

T
Angl + z:(xt_lxtT_1 ® Q;l)[_\kﬂkt = Zlvec(Q;1 AxtxtT_l)coZt (19)
t=1 t=1

To solve this equation for Ay in closed form, we can rewrite the above in terms of the the length D2J
vector a; = vec(Ay). We obtain the update equation

T -1 T
a; = (Kgl ®Ip2 + Z (th ® xt_lxtT_1 ® Q;l)) vec (Z Vec(QzletxtT_l)w,It) (20)

t=1 t=1
The update above can be expressed more efficiently in terms of expected sufficient statistics. Letting
250) = xtxtT, ZED = AxtxtT and 2&2) = AxtAxtT, we obtain the expected sufficient statistics

0 1 2
s = Zc(id)’twkif st = ng)’twkﬂ s = ng)’twkﬂ 02

where we have used tensor index notation to indicate a summation over the time index. S22 are
D x D x K x J tensors. Precomputing and storing these statistics after each E-step allows for efficient
M-Step updates.

The update for Qy, takes the closed form

_]:1 H5K] Z,Z,k,] .,.,k, 55K, :,:,k,j

T T
Zj:l Diemn Pkje

J (2) w7 (1) AT (0) AT
Z' (S:,:,k,j —A. . k S =S ]A ki + A:,:,k,js;’;’k’jA )

Q= (22)

B Computing details

B.1 Code

The code required to reproduce our main results is published at https://github. com/lindermanlab/
warhmm.
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B.2 Training details

All of the models shown in the paper results were trained with 50 epochs of either EM (simulated data)
or stochastic EM (MoSeq dataset). The data was split 80/20 into train and test datasets.

Hyperparameters. We set specific hyperparameters as follows:

1. x and a are as in [5] and enforce a prior on discrete state transitions, so that discrete states are
more likely to remain the same for multiple time steps before switching. In our code, based on a
previous sweep over a and k we found that a = 5 and k = 10000 produced discrete states with
durations long enough to be interpretable as behavioral syllables.

2. Tgay is the probability that 7, = 7.,;, or the diagonal entry of the 7 transition matrix. To
approximate T as continuous, we enforced a banded structure on the transition matrix so T could
only transition to adjacent values between time steps, and the off-diagonal values were (1—7T,y)/2.
In our training we tried T,, = 0.7 and Ty,, = 0.9. We found that 7,, = 0.7 allowed for more
variation of T within discrete states, matching our desire that the warping variable could change
its effect while a discrete state is carried out. Thus, Ty,, = 0.7 was used for the paper results.

3. o and p are the two parameters of the GP-WARHMM’s RBF kernel. We tried three values of
the lengthscale o in our experiments: 0.5,1,2. We found that there was little difference in test
log-likeihood between these values of o, so the experiments in the paper use o = 1 to encourage
smoothness in the learned GP functions without being too restrictive. Due to compute time we did
not perform a similar sweep over the output scale p, and took p =1 in the paper experiments.

4. C is the log step-size parameter for the TWARHMM warping variables. In the paper experiments
we took C = 2 so that syllable instances could take on speeds from “half as fast” to “twice as fast”
as the base syllable.

Compute power. The models in section 5 (MoSeq dataset) were trained on a CPU cluster. As a
comparison, a TWARHMM with 30 discrete states and 31 warping variables took approximately 2.5 hr
to train. A GP-WARHMM with the same parameters took approximately 15 hr to train. An ARHMM with
30 discrete states took approximately 1.5 hr to train.

C Societal impacts

Research on obtaining quantitative characterizations of natural behavior will have broad implications
for basic research in the field of neuroscience and neuroethology. Beyond basic neuroscience research,
such methods can also be used to better characterize disease phenotypes and therefore also represent an
important research direction for clinical sciences. One potential negative societal impact could come
if these behavioral analysis approaches are applied to human surveillance, especially as they relate to
identifying the influence of drugs on behavior.
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