

1 **Amplicon structure creates collateral therapeutic vulnerability in cancer**

2

3 Yi Bei¹, Luca Bramé^{1,2}, Marieluise Kirchner³, Raphaela Fritsche-Guenther⁴, Sevrine Kunz⁵,
4 Animesh Bhattacharya⁶, Julia Köppke¹, Jutta Proba¹, Nadine Wittstruck¹, Olga A. Sidorova¹,
5 Rocío Chamorro González¹, Heathcliff Dorado Garcia¹, Lotte Brückner⁴, Robin Xu¹,
6 Mădălina Giurgiu¹, Elias Rodriguez-Fos¹, Richard Koche⁷, Clemens Schmitt⁶, Johannes H.
7 Schulte¹, Angelika Eggert¹, Kerstin Haase^{1,2}, Jennifer Kirwan³, Anja I.H. Hagemann^{1,2},
8 Philipp Mertins², Jan R. Dörr^{1,2,8,9*}, Anton G. Henssen^{1,2,5,8,9*}

9

10 ¹Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin,
11 Germany.

12 ²German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research
13 Center (DKFZ), Heidelberg, Germany.

14 ³Core Unit Proteomics, Berlin Institute of Health at Charité- Universitätsmedizin Berlin and
15 Max Delbrück Center for Molecular Medicine, Berlin, Germany

16 ⁴Core Unit Metabolomics, Berlin Institute of Health at Charité- Universitätsmedizin Berlin
17 Germany.

18 ⁵Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany.

19 ⁶Department of Hematology, Oncology and Tumor Immunology, Charité-
20 Universitätsmedizin Berlin, Germany.

21 ⁷Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY,
22 USA.

23 ⁸Berlin Institute of Health, 10178 Berlin, Germany.

24 ⁹Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin,
25 Germany.

26 *These authors jointly supervised this work.

27 Correspondence should be addressed to A.G.H. (henssenlab@gmail.com) and J.R.D. (jan-rafael.doerr@charite.de)

28

29

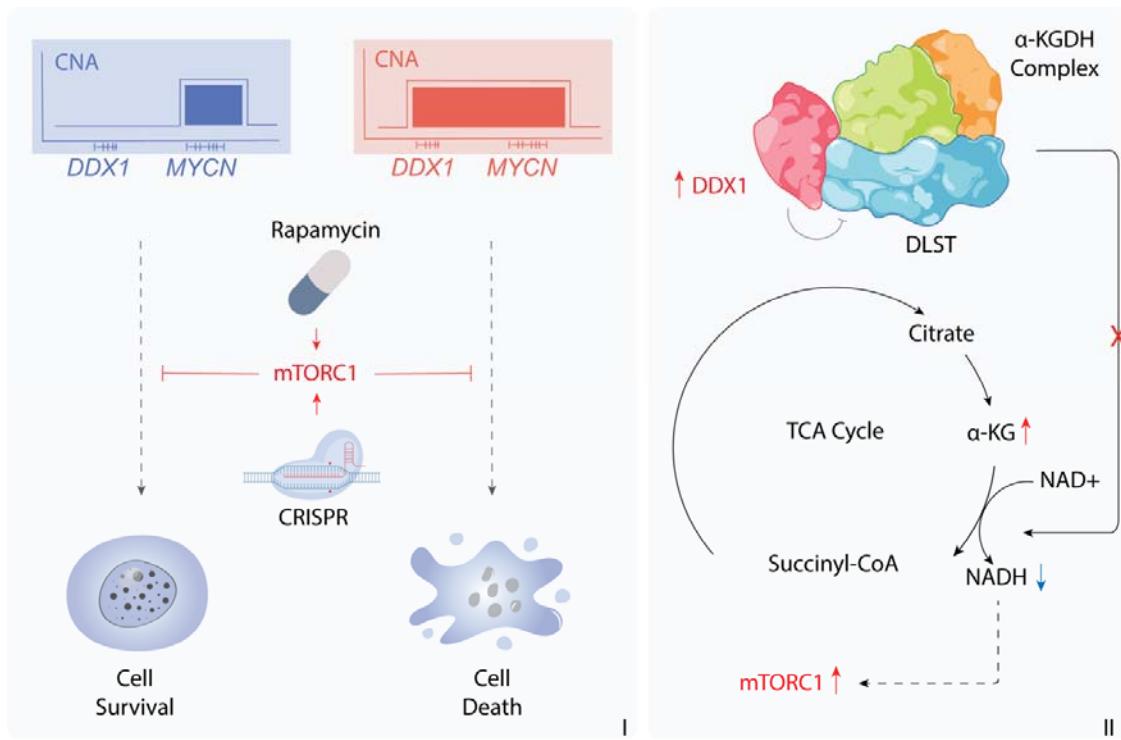
30

31

32

33 **Summary**

34 Although DNA amplifications in cancers frequently harbor passenger genes alongside
35 oncogenes, the functional consequence of such co-amplifications and their impact for therapy
36 remains ill-defined. We discovered that passenger co-amplifications can create amplicon
37 structure-specific collateral vulnerabilities. We present the DEAD-box helicase 1 (*DDX1*)
38 gene as a *bona fide* passenger co-amplified with *MYCN* in cancers. Survival of cancer cells
39 with *DDX1* co-amplifications strongly depends on the mammalian target of rapamycin
40 complex 1 (mTORC1). Mechanistically, aberrant DDX1 expression inhibits the tricarboxylic
41 acid cycle through a previously unrecognized interaction with dihydrolipoamide S-
42 succinyltransferase, a component of the alpha-ketoglutarate dehydrogenase complex. Cells
43 expressing aberrant DDX1 levels compensate for the metabolic shift by enhancing mTORC1
44 activity. Consequently, pharmacological mTORC1 inhibition triggered cell death specifically
45 in cells harboring the *DDX1* co-amplification. This work highlights a significant contribution
46 of passenger gene alterations to the therapeutic susceptibility of cancers.


47

48

49

50 **Graphical abstract**

51

52

53 **Introduction**

54 Somatic DNA amplification is a common phenomenon in cancers and one of the most
55 important causes of excessive oncogene expression (Beroukhim et al., 2010; Calabrese et al.,
56 2020; Schwab, 1999). Recent cancer genome sequencing efforts have revealed fundamental
57 insights into amplicon structures (Helmsauer et al., 2020; Kim et al., 2020; Morton et al.,
58 2019; Rosswog et al., 2021; Shoshani et al., 2021). Accordingly, DNA amplification exists in
59 at least two forms: (i) self-repeating arrays on a chromosome (homogeneously staining
60 regions, HSR) and (ii) many individual circular extrachromosomal DNA molecules
61 (extrachromosomal DNA, ecDNA)(Shimizu et al., 1998; Turner et al., 2017; van Leen et al.,
62 2022; Verhaak et al., 2019; Yi et al., 2022). The genomic boundaries of such amplicons are
63 not randomly distributed around oncogenes but are largely defined by the location of nearby
64 core-regulatory enhancer elements (Helmsauer et al., 2020; Morton et al., 2019). Enhancers
65 that are included on amplicons are required for sustained oncogene expression (Helmsauer et
66 al., 2020; Morton et al., 2019; Wu et al., 2019; Zhu et al., 2021), suggesting that genomic
67 regions co-amplified with oncogenes are under strong positive selection. One prominent
68 example of extrachromosomal oncogene amplification is the *MYCN*-harboring amplicon in
69 neuroblastoma, which can carry multiple enhancers and can include many megabases of
70 additional genomic sequences (Helmsauer et al., 2020). These emerging structural properties
71 of DNA amplicons may explain the recurrently observed co-amplification of passenger genes
72 in the vicinity of the amplified oncogene (Albertson, 2006; Chen et al., 2014; Schwab, 1998;
73 Scott et al., 2003). The fact that such passenger genes are retained on amplicons in cancer
74 cells implies that their amplification does not compromise cancer cell fitness. Whether and
75 how passenger gene co-amplifications alter cancer cell physiology and therapeutic
76 susceptibility, however, has not been investigated conclusively to date.

77 Inspired by the concept of collateral lethality, which has been employed to identify cancer-
78 specific therapeutic vulnerabilities resulting from co-deletions of genes neighboring tumor
79 suppressor genes (Dey et al., 2017; Muller et al., 2015; Muller et al., 2012), we here
80 investigated whether passenger co-amplification could present novel amplicon structure-
81 specific therapeutic strategies for tumors harboring oncogene amplifications, for which drug
82 development has remained largely elusive to date.

83

84

85

86

87 **Results**

88 ***Passenger genes are frequently co-amplified with oncogenes in cancer***

89 The recent discovery that oncogene amplifications encompass large neighboring genomic
90 regions with regulatory elements suggests that co-amplification of nearby passenger genes
91 may be more common in cancers than previously anticipated. To assess the frequency of
92 passenger gene co-amplification, we analyzed whole-genome sequences from well-
93 characterized cohorts of childhood and adult tumors from the Pan-Cancer Analysis of Whole
94 Genomes (PCAWG) study (Pan-cancer analysis of whole genomes, 2020) and Tumor
95 Alteration Relevant for Genomics-driven Therapy (TARGET) database (Pugh et al., 2013;
96 Van Allen et al., 2014). We classified amplified genes as oncogenes or passenger genes based
97 on the Catalogue Of Somatic Mutations In Cancer (COSMIC) cancer annotation (Sondka et
98 al., 2018). Passenger gene amplification was common in all analyzed tumor entities (Figure
99 1A and Figure S1A-S1B), but very rarely occurred on amplicons not harboring oncogenes.
100 Intriguingly, almost all oncogene-containing amplicons also harbored passenger genes
101 (Figure S1C-S1E). Thus, passenger gene co-amplification is common in cancers, which may
102 affect the physiology of cancer cells and generate collateral therapeutic vulnerabilities.

103

104 ***DDX1 is frequently co-amplified with MYCN in cancers***

105 To uncover collateral vulnerabilities induced by passenger gene co-amplification, we focused
106 our analysis on *MYCN* amplifications, which are frequent in many tumor entities, particularly
107 neuroblastoma, and are often associated with high-risk disease and poor therapeutic outcome
108 (Brodeur et al., 1984; Helmsauer et al., 2020; Koche et al., 2020; Maris, 2010; Seeger et al.,
109 1985; Weiss et al., 1997). As a basic helix-loop-helix oncogenic transcription factor, *MYCN*
110 remains inapproachable for direct therapeutic interventions (Chen et al., 2018), making it an
111 ideal and clinically highly relevant candidate to test our hypothesis. Analysis of 556
112 published neuroblastoma genome-wide copy number profiles (Depuydt et al., 2018a;
113 Depuydt et al., 2018b) identified 238 neuroblastomas with *MYCN* amplifications (Figure 1B).
114 In line with our previous reports (Helmsauer et al., 2020), the *MYCN* amplicon on average
115 encompassed a large 1-3 Mb region with several co-amplified passenger genes, including
116 *DDX1*, *NBAS*, and *FAM49A*. *DDX1*, a gene encoding for the Asp-Glu-Ala-Asp (DEAD)
117 functioning DNA:RNA ATPase DDX1 (Godbout et al., 1998; Linder et al., 1989; Schmid
118 and Linder, 1992; Wassarman and Steitz, 1991), was the most recurrently co-amplified
119 passenger gene with *MYCN* in neuroblastomas (57.98%, 138 out of 238) (Figure 1B, 1C and
120 S1E). No *DDX1* amplifications without *MYCN* were detectable in 556 cancer genomes.

121 *DDX1-MYCN* co-amplification also occurred in several other cancer entities (Figure 1D).
122 Combined analysis of copy number and mRNA expression of *DDX1* and *MYCN* confirmed a
123 significant positive correlation in expression and aberrantly high *DDX1* expression levels in
124 the context of co-amplification (Figure 1E and Figure S2). Consistently, neuroblastoma cell
125 lines harboring a *DDX1-MYCN* co-amplification had elevated DDX1 protein and mRNA
126 levels compared to those lacking *DDX1* co-amplifications or cells without *MYCN*
127 amplification (Figure 1F, 1G and Figure S2). Thus, *DDX1-MYCN* co-amplification is present
128 in a considerable fraction of cancers and is associated with aberrantly high DDX1 expression,
129 which could affect cancer cell physiology.

130

131 ***DDX1 is a bona fide passenger gene***

132 In the classic dichotomous model of driver and passenger genes, passenger genes are defined
133 as genetic moieties that are altered in their expression or sequence but unlike oncogenes do
134 not drive cancer initiation or progression (Greenman et al., 2007). Although DDX1 has been
135 implicated in many critical cellular activities, such as RNA regulation (Chen et al., 2002; Han
136 et al., 2014) and DNA damage repair (Li et al., 2008), evidence for its oncogenic potential is
137 scarce. To investigate the role of DDX1 in the pathogenesis of neuroblastoma in an *in vivo*
138 experimental system, we generated a transgenic zebrafish line that stably expresses human
139 DDX1 in the peripheral sympathetic nervous system under the control of the zebrafish
140 dopamine- β -hydroxylase gene (*d\beta h*) promoter. Transgenic fish were created by injection of
141 *d\beta h-DDX1:CryAA-mCerulean* into zebrafish fertilized eggs (Figure 2A). Transgenic
142 integration was identified in fish (generation F0) by fluorescent reporter expression and
143 human DDX1 expression was confirmed in offspring (F1) by immunoblotting (Figure 2B and
144 2C). No tumors developed with transgenic expression of DDX1 alone in fish of F1 generation
145 with stable transgenic germline integration (Figure 2B, 2C and 2D), indicating that DDX1
146 cannot drive tumorigenesis. Given the strong association of DDX1 and MYCN expression
147 due to co-amplification in human neuroblastoma (Figure 1), we next tested whether high
148 levels of DDX1 expression could cooperate with MYCN to affect the onset or penetrance of
149 neuroblastic zebrafish tumors. An established zebrafish model that expresses human MYCN
150 under control of the *d\beta h* promoter was interbred with DDX1-expressing zebrafish (Tao et al.,
151 2017). Neuroblastic tumors in the adrenal gland analogue developed in 100% of the *d\beta h-*
152 *MYCN; d\beta h-DDX1* progeny by 8 weeks of age, compared to an overall penetrance of 97% for
153 the fish with MYCN expression alone, which also developed around the same time (Figure

154 2D and Figure S3A). Thus, high levels of *DDX1* expression does not significantly alter the
155 initiation or progression of *MYCN*-driven neuroblast tumors *in vivo*.
156 In line with our observation in zebrafish, *DDX1-MYCN* co-amplification in human
157 neuroblastoma was not associated with differences in overall patient survival compared to
158 patients with tumors only harboring *MYCN* amplifications (Figure 2E), indicating that *DDX1*
159 does not significantly alter clinically relevant malignant features of neuroblastoma. To further
160 test the effect of high *DDX1* expression in cancer cells, we selected human neuroblastoma
161 cell lines harboring *MYCN* amplifications, not including *DDX1* and introduced a
162 doxycycline-inducible *DDX1* expression vector. Ectopic expression of *DDX1* did not affect
163 neuroblastoma cell proliferation (Figure S3B-S3E). In line with its role as a passenger gene,
164 short hairpin RNA (shRNA) mediated *DDX1* knockdown in *DDX1-MYCN* co-amplified
165 neuroblastoma cell lines did not reduce neuroblastoma proliferation (Figure S3F-S3I).
166 Although *DDX1* did not influence the tumorigenic properties of neuroblastoma cells, ectopic
167 *DDX1* expression was associated with significantly reduced neuroblastoma cell size (Figure
168 S3J-S3K). This suggests that *DDX1* acts as a *bona fide* passenger gene in neuroblastoma, but
169 that its aberrant expression influences cellular physiology. This raises the possibility that the
170 non-tumorigenic effects of *DDX1-MYCN* co-amplification could generate collateral lethal
171 dependencies.

172

173 ***DDX1* co-amplification is accompanied by a collateral mTORC1 dependency**

174 Having confirmed that *DDX1* acts as a *bona fide* passenger gene in *MYCN*-amplified
175 neuroblastoma and that its amplification is structurally linked to *MYCN*, we asked whether its
176 aberrantly high expression could result in collateral genetic dependencies. To identify such
177 dependencies, we analyzed copy number profiles of human cancer cell lines from the Broad-
178 Novartis Cancer Cell line Encyclopedia (CCLE)(Barretina et al., 2012; Ghandi et al., 2019)
179 and selected all cancer cell lines with *MYCN* amplification. Next, we compared the genetic
180 dependencies of cell lines with *DDX1-MYCN* co-amplification to those only harboring *MYCN*
181 amplifications by analyzing genome-scale pooled CRISPR/Cas9 loss of viability screens in
182 over 700 genetically characterized human cancer cells from 26 tumor lineages as part of the
183 Cancer Dependency Map (Dempster et al., 2019; Meyers et al., 2017). We confirmed that
184 *MYCN* copy number and expression levels were comparable between these two groups
185 (Figure S4A and S4B). We calculated the dependency score as well as its median difference
186 for each gene between cell lines with *MYCN* amplifications vs. cell lines with *DDX1-MYCN*

187 co-amplifications (Figure 3A). This revealed that *DDX1-MYCN* co-amplification was
188 significantly associated with high genetic dependency to mTORC1 complex members mTOR
189 and its scaffold protein RAPTOR, which plays an important role in mTORC1 activation
190 (Carrière et al., 2008; Yao et al., 2016) (Figure 3B, Figure S4C and Table S1). In line with an
191 increased RAPTOR dependency in the context of *DDX1-MYCN* co-amplification,
192 dependency scores for RAPTOR significantly negatively correlated with the *DDX1* copy
193 number in *MYCN*-amplified neuroblastoma cell lines (Figure 3C, Pearson coefficient = -
194 0.5996, $P = 0.0152$, Figure S4D and S4E). Moreover, ectopic expression of DDX1 in *MYCN*-
195 amplified cell lines was sufficient to increase RAPTOR dependency, as evidenced by reduced
196 clonogenicity of cells after CRISPR-Cas9-mediated knockout of RAPTOR (Figure 3D, 3E
197 and Figure S4F and S4G). This indicates that high DDX1 expression, as observed in the
198 context of *DDX1-MYCN* co-amplification, can generate an mTORC1 dependency.

199

200 ***DDX1 overexpression is sufficient to induce mTORC1 pathway activation***

201 To understand the mechanism of DDX1-induced mTORC1 dependency, we analyzed
202 previously published neuroblastoma gene expression data from 709 patients (Oberthuer et al.,
203 2015). Intriguingly, high DDX1 expression was significantly associated with gene expression
204 programs linked to high mTORC1 pathway activation in primary neuroblastomas (Figure 4A
205 and 4B, $q = 0.01$, NES = 1.675, Table S2). To test whether DDX1 expression was sufficient
206 to induce mTORC1 pathway activation, we analyzed mTORC1 activity by RNA sequencing
207 and immunoblot analyses of *MYCN*-amplified neuroblastoma cells after ectopic DDX1
208 expression. Indeed, ectopic DDX1 expression was accompanied by significant differential
209 expression of genes associated with mTORC1 pathway activation (Figure 4C and 4D, $q =$
210 0.028, NES = 2.09, Table S3 and Figure S5A). Furthermore, phosphorylation of mTOR at
211 Ser2448 and P70-S6K at Thr389, signs of mTORC1 pathway activation (Chiang and
212 Abraham, 2005; Hoeffer and Klann, 2010; Takei and Nawa, 2014; Xiao et al., 2009),
213 increased in neuroblastoma cells after ectopic DDX1 expression (Figure 4E, Figure S5B and
214 S5C). In turn, shRNA-mediated DDX1 knockdown in *DDX1-MYCN* co-amplified
215 neuroblastoma cells resulted in reduced phosphorylation of mTOR and P70-S6K (Figure 4F
216 and Figure S5D and S5E). This suggests that DDX1 is sufficient to drive mTORC1 pathway
217 activation in the context of *MYCN* amplification and could thereby generate a dependency on
218 mTORC1 in cancer cells harboring *DDX1-MYCN* amplifications.

219

220

221

222 ***DDX1 interacts with alpha-KGDH complex members***

223 To investigate the mechanism by which DDX1 induces mTORC1 pathway activation, we
224 performed immunoprecipitation of DDX1 followed by mass spectrometry-based proteomics
225 in two *MYCN*-amplified neuroblastoma cell lines with and without *DDX1* co-amplification to
226 identify proteins that associate with DDX1 in the context of high DDX1 expression,
227 respectively (Figure 5A, 5B). In addition to known interactors of DDX1, e.g., eIF4G2,
228 FAM98B and c14orf166 (Pérez-González et al., 2014), three members of the α -KGDH
229 complex DLST, OGDH, and DLD were significantly enriched after DDX1
230 immunoprecipitation, particularly in cells with *DDX1-MYCN* co-amplification (Figure 5C,
231 and Table S4). The interaction of these proteins was confirmed by co-immunoprecipitation
232 followed by immunoblotting (Figure 5D). The α -KGDH complex predominantly localizes to
233 the mitochondria and critically regulates electron transport chain activity and tricarboxylic
234 acid cycle (TCA) flux. Even though DDX1 is mostly localized in the cytoplasm and nucleus
235 in normal cells, it can associate with mitochondria during embryonal development and
236 immune activation (Wang et al., 2022; Zhang et al., 2011). To investigate the localization of
237 DDX1 in neuroblastoma cells, we generated cell lines expressing DDX1 fused to mCherry.
238 Indeed, ectopically expressed DDX1-mCherry significantly co-localized with thiol-reactive
239 chloromethyl fluorescently labeled mitochondria (Figure 5E). Thus, DDX1 can interact with
240 α -KGDH complex members, especially when expressed at supraphysiologic levels.

241 DDX ATPases usually contain a structurally conserved core with two RecA-like domains,
242 which catalyze the enzymatic function of DDX proteins. Compared to other DDX ATPases,
243 DDX1 has a unique protein structure. The first RecA-like domain is interrupted by a large
244 SPla and the ryanodine receptor (SPRY) domain (Godbout et al., 1994), which is suspected to
245 function as a protein-protein interaction platform (Kellner et al., 2015). To identify the
246 protein domain required for DDX1:DLST interaction, we generated cells expressing a series
247 of DDX1 domain truncation mutants tagged with V5 (Figure 5F). Truncation of the entire
248 RecA-like domain 1, including the SPRY domain, strongly compromised the interaction with
249 DLST, as evidenced by reduced co-immunoprecipitation (Figure 5G and Figure S6A).
250 Conversely, no changes in DLST association were observed for a DDX1 truncation mutant
251 lacking the RecA-like domain 2, hinting at the SPRY domain within RecA1 as a possible
252 interaction site with DLST (Figure 5G). To test this, we generated a DDX1 mutant lacking

253 the most conserved part of the SPRY domain (AA70-247), which contains the highly
254 conserved surface patch predicted to serve as a protein interaction site (Figure 5F)(Kellner
255 and Meinhart, 2015). Surprisingly, this DDX1 truncation mutant also preserved the
256 interaction with DLST (Figure 5G), suggesting that the DDX1:DLST interaction may depend
257 on the less conserved C-terminal part of the SPRY domain (AA247-295)(Kellner and
258 Meinhart, 2015).

259 Disordered domains of proteins are candidate sites of protein-protein interaction (Hibino and
260 Hoshino, 2020; Wong et al., 2020). To test whether a C-terminal part of the SPRY domain
261 may provide the structural scaffold for the interaction with DLST, we searched for intrinsic
262 disordered domains of DDX1, as predicted based on its amino acid sequences via PONDR
263 (Xue et al., 2010) and IUPred2A (Mészáros et al., 2018). Polynomial modeling of the
264 predicted interaction scores generated by these algorithms nominated amino acids 269aa to
265 295aa in DDX1 as a candidate disordered domain (Figure 5F). Indeed, immunoprecipitation
266 of the V5-DDX1 Δ269-295aa mutant was associated with reduced DLST co-
267 immunoprecipitation (Figure 5H). A proximity ligation assay (PLA) with V5-DDX1 Δ269-
268 295aa-expressing cells confirmed the reduced interaction with DLST (Figure 5I and Figure
269 5J). This indicates that the amino acid stretch 269-295 in the C-terminal part of the SPRY
270 domain of DDX1 is necessary for its interaction with DLST and raises the question whether
271 this interaction is required for DDX1-mediated mTORC1 activation. Thus, DDX1 interacts
272 with the α-KGDH complex in neuroblastoma cells, particularly when expressed at
273 supraphysiological levels in the context of *DDX1-MYCN* co-amplification.

274

275 ***DDX1:DLST interaction is required for DDX1-mediated mTORC1 pathway activation***

276 As a key component of the α-KGDH complex, DLST plays an important role in the energy
277 metabolism of cells. Since changes in energy metabolism also directly modulate mTORC1
278 pathway activation (de la Cruz López et al., 2019), we hypothesized that the interaction of
279 DDX1 with DLST may interfere with α-KGDH function thereby stimulating mTORC1
280 activity. To assess whether the DDX1:DLST interaction was required for DDX1-mediated
281 mTORC1 pathway activation, we ectopically overexpressed DDX1 or DDX1 Δ269-295aa in
282 *MYCN*-amplified neuroblastoma cells. DDX1 Δ269-295aa was expressed at similar levels
283 compared to wild-type DDX1, as confirmed by Western immunoblotting, and also localized
284 to mitochondria (Figure S6B and S6C). Ectopic expression of DDX1 Δ269-295aa, however,
285 was not associated with increased phosphorylation of P70-S6K at Thr389 in neuroblastoma

286 cells (Figure 5K and Figure S6D), suggesting that it was insufficient to induce mTORC1
287 pathway activation. Thus, DDX1:DLST interaction is required for DDX1-mediated mTORC1
288 pathway activation.

289

290 ***DDX1 alters α-KGDH complex activity resulting in α-KG accumulation and reduced***
291 ***oxidative phosphorylation (OXPHOS)***

292 Considering the importance of DLST for α-KGDH complex activity in the TCA cycle
293 (Tretter and Adam-Vizi, 2005), we hypothesized that the interaction between DDX1 and
294 DLST may alter the catalytic function of α-KGDH and disrupt TCA cycle flux, which could
295 lead to the accumulation of α-KG and subsequently activate mTORC1 to sustain cell survival,
296 as previously reported in different contexts (Rathore et al., 2021). To test this hypothesis, we
297 analyzed metabolomics data from the CCLE database including measurements of 225
298 metabolite levels in 928 cell lines from more than 20 cancer types (Li et al., 2019), and
299 compared metabolite levels between cells with *DDX1-MYCN* co-amplification to those only
300 harboring *MYCN* amplification. In line with altered α-KGDH activity, cancer cells with
301 *DDX1-MYCN* co-amplification had higher levels of citrate, isocitrate, and α-KG (Figure 6A,
302 Figure S7A and Table S5). Next, we measured metabolites in neuroblastoma cells ectopically
303 expressing DDX1 compared to cells expressing the truncated DDX1 Δ269-295aa variant or
304 cells expressing physiological levels of DDX1 performed using gas chromatography-mass
305 spectrometry (GC-MS). Consistent with decreased α-KGDH activity, α-KG was increased
306 upon ectopic DDX1 expression, but not when expressing DDX1 Δ269-295aa (Figure 6B).
307 This indicates that aberrant DDX1 expression is sufficient to alter α-KG levels as a direct
308 result of its interaction with the α-KGDH complex member DLST.

309 As a rate-determining intermediate in the TCA cycle and the central product of
310 glutaminolysis driving anaplerotic reactions in cells (Durán et al., 2012), α-KG can alter
311 mTORC1 activity (Altman et al., 2016; Bodineau et al., 2021; de la Cruz López et al., 2019;
312 Durán et al., 2012; Ge et al., 2018; Sancak et al., 2008; Takahara et al., 2020). We
313 hypothesized that DDX1-mediated mTORC1 activation was due to α-KG accumulation.
314 Indeed, incubation of neuroblastoma cell lines in the presence of membrane-permeable
315 Dimethyl 2-oxoglutarate (DM-KG) was accompanied by mTORC1 pathway activation,
316 phenocopying the effects of DDX1 overexpression (Figure 6C, 6D and Figure S7B).
317 Disruption of α-KGDH is predicted to impair ATP production through OXPHOS in
318 mitochondria. To test this, we measured oxygen consumption rates as a parameter to study

319 mitochondrial function. Ectopic expression of DDX1, but not of the DDX1 Δ269-295aa
320 mutant, was accompanied by reduced ATP production and respiration (Figure 6E, Figure S5F
321 and Table S6). Thus, the DDX1:DLST interaction in cells expressing high levels of DDX1
322 can alter α-KGDH complex activity, resulting in α-KG accumulation, reduced OXPHOS and
323 compensatory activation of mTORC1 pathway, which may explain the pronounced genetic
324 dependency of *DDX1-MYCN* co-amplified cells on mTORC1.

325

326 ***Pharmacologic mTORC1 inhibition results in cell death in cells with DDX1-MYCN co-***
327 ***amplification***

328 Even though pharmacological mTOR inhibitors, such as everolimus and rapamycin, are in
329 clinical use in patients suffering from different cancers, including *MYCN*-amplified
330 neuroblastoma (Hua et al., 2019; Zou et al., 2020), biomarkers predicting mTOR inhibitor
331 sensitivity are largely lacking. Besides its central role in TCA metabolism, α-KG can broadly
332 influence cellular physiology, for example as the rate-limiting substrate of 2-oxoglutarate-
333 dependent dioxygenases in the management of hypoxia and in epigenetic remodeling (Liu et
334 al., 2017; Losman et al., 2020; Wise David et al., 2011). Furthermore, α-KG accumulation
335 can induce cancer cell differentiation and death (Abla et al., 2020; Morris et al., 2019; Zhang
336 et al., 2021). Thus, we hypothesized that the α-KG-induced activation of the mTORC1
337 pathway in cells with *DDX1-MYCN* co-amplification was required to sustain cancer cell
338 viability through mTORC1-dependent cell survival mechanisms (Durán et al., 2012; Ferrara-
339 Romeo et al., 2020; Mills et al., 2008). To test this hypothesis, we incubated *MYCN*-
340 amplified neuroblastoma cell lines with and without *DDX1* co-amplification with DM-αKG
341 in the presence and absence of mTORC1 inhibitors. Indeed, cells were more sensitive to DM-
342 αKG induced cell death when overexpressing DDX1, an effect that was potentiated when
343 combined with the mTORC1 inhibitor rapamycin (Figure S8A-D). Moreover, cell lines
344 harboring a *DDX1-MYCN* co-amplification were more sensitive to rapamycin treatment than
345 cell lines only harboring a *MYCN* amplification (Figure 7A and Figure S8E). In line with
346 DDX1-induced mTORC1 dependency, ectopic expression of DDX1 increased sensitivity to
347 rapamycin, which was not observed when expressing mutant DDX1 Δ269-295aa (Figure 7B
348 and Figure S8F), suggesting that the increase in sensitivity depended on the DDX1-DLST
349 interaction. In turn, shRNA-mediated DDX1 knockdown in neuroblastoma cells with a
350 *DDX1-MYCN* co-amplification resulted in reduced rapamycin sensitivity (Figure 7C and
351 Figure S8G), indicating that high DDX1 expression was required for mTOR inhibitor

352 sensitivity in the context of *DDX1-MYCN* co-amplification. Previously published 50%
353 inhibitory concentrations (IC₅₀) for rapamycin from the Genomics of Drug Sensitivity in
354 Cancer database (GDSC2)(Iorio et al., 2016; Yang et al., 2013) anti-correlated significantly
355 with *DDX1* copy number in *MYCN*-amplified neuroblastoma cell lines (Figure 7D, Pearson
356 coefficient = -0.5043 in neuroblastoma cells, $P = 0.0394$), further corroborating the link
357 between *DDX1* co-amplification and mTORC1 dependency. Lastly, we treated primary
358 zebrafish neuroblastic tumor cells either co-expressing *DDX1* and *MYCN* or *MYCN* alone
359 with rapamycin (Figure S8H). *DDX1-MYCN* expressing neuroblastic zebrafish cells were
360 more sensitive to pharmacological mTORC1 inhibition than cells only expressing *MYCN*
361 (Figure 7E). In conclusion, high *DDX1* expression as a result of *DDX1-MYCN* co-
362 amplification can induce a therapeutically actionable dependency on mTORC1.

363

364 **Discussion**

365 With the goal to expand therapeutic strategies in cancer beyond targetable molecular
366 alterations, we found that the co-amplification of a passenger gene, which is not directly
367 involved in tumorigenesis, can create pharmacologically actionable amplicon structure-
368 defined collateral lethal therapeutic vulnerabilities. Our re-analysis of pan-cancer genomes
369 further suggests that this strategy may be successful in many cancer entities with diverse
370 DNA amplicons.

371 We and others have previously shown that large neighboring genomic regions harboring
372 enhancers co-amplify with oncogenes on the same intra- or extrachromosomal DNA
373 amplicon (ecDNA)(Helmsauer et al., 2020; Morton et al., 2019). This implies that positive
374 selection acts on these rewired loci. Here, we describe that the co-amplification of
375 neighboring genomic regions frequently also results in the inclusion of passenger genes.
376 Under our current model, passenger genes are under neutral selection and represent mere
377 structural bystanders of DNA amplifications. However, it is conceivable that some passenger
378 genes on amplicons provide functional or structural advantages to cancer cells. Functionally,
379 passenger genes could improve tumor cell fitness under special cellular or environmental
380 conditions. Structurally, yet unidentified elements near or within passenger genes may also
381 positively influence ecDNA stability, maintenance or oncogene regulation. Thus, we here
382 provide an additional layer of information on the content of DNA amplicons, which may help
383 resolve longstanding questions about their structural requirements and functional
384 consequences.

385 Some new important questions for cancer therapy and treatment resistance directly arise from
386 our observations: Firstly, there are other passenger genes on the *MYCN* amplicon, e.g., *NBAS*
387 and *FAM49A*, which might similarly create their own, so far unidentified therapeutic
388 vulnerabilities. Identifying such collateral vulnerabilities may allow new therapeutic
389 approaches that would substantially improve tumor eradication in high-risk *MYCN*-driven
390 cancers. Beyond the idea of targeting individual vulnerabilities created by the co-
391 amplification of different passenger genes, the *MYCN* amplicon also contains a unique
392 chromatin landscape with enhancers required to drive gene expression from the amplicon
393 (Helmsauer *et al.*, 2020; Morton *et al.*, 2019). It is tempting to speculate that the structural
394 coupling of genes and their coordinated expression from the joint enhancers could create
395 additional, amplicon-specific, therapeutically actionable vulnerabilities.

396 The DEAD-box ATPase *DDX1* has previously been implicated in various steps of DNA,
397 mRNA, rRNA and tRNA processing and repair. Our in-depth investigation of *DDX1* co-
398 amplification revealed a previously unanticipated and fundamentally new role of *DDX1* in
399 cellular metabolism by uncovering its interaction with the α -KGDH complex as a non-
400 canonical interaction partner of the DLST subunit in neuroblastoma cells. Our data suggest
401 that high *DDX1* expression impedes the TCA cycle as well as OXPHOS and consequently
402 promotes accumulation of α -KG, which in turn triggers mTORC1 activation to maintain
403 tumor cell survival. Many nuclear ATPases localize to mitochondria (Ding and Liu, 2015;
404 Padmanabhan *et al.*, 2016), but to our knowledge interactions of these ATPases with TCA
405 enzymes or a direct impact on cellular metabolism have not been reported to date. *DDX1* is
406 unique amongst other *DDX* protein family members, because it contains a long ~211 amino-
407 acid insertion between the signature motifs of their ATPase core (Godbout *et al.*, 1994). This
408 insertion encompasses the SPRY core domain and at its C-terminal end a relatively
409 unconserved presumably disordered domain, which we found to be essential for the
410 interaction between *DDX1* and DLST. Additionally, *DDX1* is functionally unique in its
411 exceptionally high affinity for ADP, which could leave *DDX1* in an inactive, ADP bound
412 form at cytoplasmic nucleotide concentrations. Whether the spatial enrichment of ATP in
413 mitochondria facilitates conformational changes of *DDX1* and thereby promotes substrate
414 exchange or whether so far unidentified nucleotide exchange factors exist to promote ADP
415 release remains to be determined. It also needs to be tested if *DDX1* interacts with DLST at
416 physiological protein levels in untransformed cells, or if this only occurs in the context of
417 aberrant *DDX1* expression in *DDX1-MYCN*-amplified cancer cells. Since the ATPase activity

418 of DDX proteins are required for their role in DNA and RNA biology, it is conceivable that
419 these functions are not required for DDX1 to establish stable interactions with protein
420 substrates such as a- α -KGDH or as recently reported with casein kinase 2 (Fatti *et al.*, 2021).
421 Whether such canonical DDX1 functions also influence mitochondrial metabolism and
422 thereby contribute to the observed mTORC1 dependency remains to be investigated.
423 Recent reports suggest that the α -KGDH complex can regulate histone succinylation and
424 gene expression in the nucleus (Wang *et al.*, 2017). DDX1 and its DNA:RNA binding has
425 important functions in many cell activities also located in the cell nucleus (Chen *et al.*, 2002;
426 Han *et al.*, 2014; Li *et al.*, 2008; Zhang *et al.*, 2011). Therefore, DDX1 could in principle also
427 interact with DLST in the nucleus and may affect the role of α -KGDH in histone
428 succinylation and gene expression, which could also generate, yet undefined, collateral
429 vulnerabilities or may contribute to the observed mTORC1 dependency.
430 Even though mTORC1 is a well-studied multiprotein complex essential for cancer cell
431 survival, proliferation, and growth (Guertin and Sabatini, 2007; Kim *et al.*, 2017; Mills *et al.*,
432 2008), biomarkers predicting patient responses to mTOR inhibitors are still largely missing.
433 Intriguingly, rapamycin is part of the treatment protocol RIST (rapamycin, irinotecan,
434 sunitinib, temozolomide), which was developed for treatment-refractory or relapsed
435 neuroblastomas (Corbacioglu *et al.*, 2013). Even though rapamycin is only one of four agents
436 used in this treatment protocol, it will be important to test whether neuroblastoma patients
437 with *DDX1-MYCN* amplifications respond better to RIST than neuroblastoma patients
438 without such co-amplifications. These analyses may reveal that *DDX1*-co-amplification could
439 serve as a predictive response biomarker for mTORC1 inhibitor treatment.
440 We and others recently identified ecDNA copy number dynamics as a driver of therapy
441 resistance (Lange *et al.*, 2021). Based on these observations, we anticipate that decreases in
442 the number of *DDX1*-containing ecDNA under mTORC1 inhibitor treatment could represent
443 one way of treatment evasion in *DDX1-MYCN*-amplified cancer cells. The concept of
444 ecDNA-targeting therapies has recently been proposed (van Leen *et al.*, 2022). Since such
445 therapies may prevent ecDNA-mediated resistance acquisition, combining targeted therapies
446 based on amplicon-structure-defined collateral vulnerabilities with ecDNA-directed therapies
447 may represent therapeutically meaningful future avenues.
448 In conclusion, we here present a strategy to eliminate cancer cells by targeting factors not
449 directly linked to cancer pathogenesis. We identified a collateral vulnerability in
450 neuroblastoma cells, which is created through passenger-mediated metabolic reprogramming.

451 We propose that pharmacological mTORC1 inhibition could provide an effective therapy for
452 a meaningful fraction of cancer patients with *DDX1-MYCN* co-amplification. Since passenger
453 co-amplifications are common in cancer, our approach has the potential to identify previously
454 unanticipated therapeutic targets and transform target discovery in oncology, especially in
455 cancers with amplification of oncogenes that have been considered undruggable to date.

456

457 **STAR Methods**

458 **Cell culture**

459 Human tumor cell lines were obtained from the American Type Culture Collection (ATCC)
460 or a gift from collaborative laboratories. The identity of all cell lines was verified by short
461 tandem repeat genotyping (Eurofins Genomics). The absence of *Mycoplasma* sp.
462 contamination was determined using a Lonza MycoAlert system (Lonza). Neuroblastoma cell
463 lines were cultured in RPMI-1640 medium (Gibco) supplemented with 1 % of penicillin,
464 streptomycin, and 10 % of fetal calf serum (FCS) (Thermo Fisher). RPE cells were cultured
465 in DMEM (Gibco) supplemented with 1 % of penicillin, streptomycin, and 10 % of FCS. To
466 assess the number of viable cells, cells were trypsinized (Thermo Fisher), resuspended in
467 medium, and sedimented at 300 g for 5 minutes. Cells were then resuspended in medium,
468 mixed in a 1:1 ratio with 0.02 % trypan blue (Thermo Fisher), and counted with a Bio-Rad
469 TC20 cell counter.

470

471 **Cell viability measurements**

472 10,000 cells per well were seeded in transparent, flat-bottom, 96 well plates. After 24 hours,
473 drug was added to the medium and cells were incubated for 72 hours. 3-(4,5-dimethylthiazol-
474 2-yl)-2,5-diphenyltetrazolium (MTT) assay reagent (Abcam, ab211091) was added according
475 to the manufacturers protocol, and MTT signal was measured by an Epoch plate reader
476 (BioTeK) with read absorbance at OD = 590nm.

477

478 **Plasmid constructs**

479 Human *DDX1* cDNA (NM_004939.2) was PCR-amplified and isolated from pRecLV151-
480 *DDX1* (GeneCopoeia, Rockville, MD, USA). *DDX1* cDNA was cloned into pENTR1A
481 (Thermo Fisher) using restriction enzymes SalI and NotI (New England Biolabs) and cloned
482 into a pInducer20 (Addgene) using the Gateway strategy and the manufacturer's protocol
483 (Thermo Fisher). *DDX1* cDNA was cloned into the pRNTR1A vector in frame with C-
484 terminal V5 tag or mCherry and used to generated pInducer20-*DDX1*-V5 or pInducer20-

485 DDX1-mcherry using the Gateway cloning, according to the manufacturer's instructions.
486 Large truncation of V5-tagged DDX1 lentiviral vectors were generated using site-directed
487 mutagenesis according to the manufacturer's instructions (Q5® Site-Directed Mutagenesis,
488 New England Biolabs) and were confirmed using sanger sequencing. Truncation of core
489 SPRY domain in DDX1: Truncation of unordered region of SPRY domain in DDX1: K69-
490 F247 is missing. Truncation of RecA-like domain 1 in DDX1: I13-K472 is missing.
491 Truncation of RecA-like domain 2 in DDX1: K493-V681 is missing. Human *DLST* cDNA
492 (NM_001933.4) was PCR-amplified and isolated from human retro-synthesized cDNA
493 library. *DLST* cDNA was cloned into pENTR1A using restriction enzymes SalI and NotI
494 (New England Biolabs) and cloned into a pInducer20 using the Gateway strategy and the
495 manufacturer's protocol (Thermo Fisher). pLKO.1 shRNA plasmids targeting DDX1
496 (TRCN0000050500, TRCN0000050501, TRCN0000050502) and control targeting GFP
497 (shGFP) were obtaining from the RNAi Consortium (Broad Institute).

498

499 **Lentivirus production and cell transduction**

500 Lentivirus production was carried out as previously described (Henssen et al., 2017). In brief,
501 HEK293T cells were transfected with TransIT-LT1 (Mirus) in a 2:1:1 ratio of the lentiviral
502 vector and psPAX2 and pMD2.G packaging plasmids (Addgene), according to the
503 manufacturer's instructions. Viral supernatant was collected 48 and 72 hours after
504 transfection. The supernatant was pooled, filtered, and stored at -80°C. Neuroblastoma and
505 RPE cells were transduced with virus particles in the presence of 8 µg/ml hexadimethrine
506 bromide (Merck). Cells were transduced for 1 day in antibiotic-free medium and then grown
507 in full medium for 1 day. Neuroblastoma cells were then selected for 2 days with puromycin
508 hydrochloride (2 µg/ml) or geneticin disulphate (G418, Roth) (2mg/ml).

509

510 **Western immunoblotting**

511 Whole-cell protein lysates were prepared by lysing cells in 15 mM HEPES, 150 mM NaCl,
512 10 mM EGTA, and 2 % (v/v) Triton X-100 supplemented with cOmplete (Roche) and
513 PhosStop (Roche) phosphatase inhibitors. Protein concentrations were assessed by
514 bicinchoninic acid assay (BSA, Santa Cruz Biotechnology). For 5 minutes, 10 µg of protein
515 was denatured in Laemmli buffer at 90 °C. Samples were run on NuPage 10 %
516 polyacrylamide, 1 mm Tris-Glycine Protein Gels (Thermo Fisher Scientific) and transferred to
517 PVDF membranes (Roche). Membranes were blocked with 5 % dry milk or 5 % BSA (Roth)

518 in TBS with 0.1 % (v/v) Tween-20 (Carl Roth). Membranes were probed with primary
519 antibodies overnight at 4 °C and then with secondary antibodies conjugated to horseradish
520 peroxidase for 1 hour at room temperature. Chemiluminescent detection of proteins was
521 carried out using Immunocruz Western blotting luminol reagent (Santa Cruz Biotechnology)
522 and the Fusion FX7 imaging system (Vilber Lourmat). Densitometry was performed using
523 ImageJ (NIH).

524

525 **Immunofluorescence staining and colocalization analysis**

526 Cells were grown at the desired confluence on a glass cover slide for 24 hours and treated
527 with 1000ng/mL doxycycline for another 48 hours (for the corresponding experiment). Cells
528 were washed with phosphate-buffered saline (PBS) three times and fixed for 10 minutes with
529 4 % paraformaldehyde, washed with PBS three times and permeabilized with PBS containing
530 0.2 % Triton-X100. For immunofluorescence, cells were blocked for 30 minutes in 10 % FCS
531 in PBS, incubated overnight at 4°C with the primary antibody, washed three times with PBS-
532 T (0.05 % Tween-20 in PBS), incubated for 1 hour in the dark at room temperature with the
533 secondary antibody, washed three times with PBS-T and mounted on a slide with 4',6-
534 diamidino-2-phenylindole (DAPI)-containing mounting media. As co-localization staining,
535 DDX1-mCherry or DDX1-mCherry-Δ269-295aa inducibly expressed KELLY cells were
536 seeded on 8 well μ-slide (ibidi) for 48 hours in the presence or absence of doxycycline
537 (1μg/ml, Sigma-Aldrich). 30 minutes before fixation, cells were incubated with MitoTracker
538 (500nM, cell signaling technology) and Hoechest (1μg/ml, Thermo Fisher) at 37°C. After
539 fixation, cells were washed 3 times with PBS and mounted with PBS. Cells were imaged
540 using a Leica TCS SP5 II (Leica Microsystems) and quantified using ImageJ.

541

542 **RNA sequencing**

543 mRNA was isolated from DDX1 inducibly expressed KELLY cells after 48 hours incubation
544 in the presence or absence of doxycycline (1μg/ml, Sigma-Aldrich). Libraries were
545 sequenced on HiSeq 2000 v4 instruments with 2×125-bp paired-end reads (Illumina). Reads
546 were mapped with STAR(v2.7.6a) to the human reference genome hg19 with the Gencode
547 v19 annotation using default parameters (Dobin et al., 2013). Gene abundance was estimated
548 using RSEM (v1.3.1) (Li and Dewey, 2011), counting only alignments with both mates
549 mapped and allowing for fractional counting of multi-mapping and multi-overlapping reads.

550

551 **Clonogenic assay**

552 5,000 cells were seeded in 24 well plate coated with poly-l-lysine (Merck, USA). After 24
553 hours, drugs and doxycycline (1 μ g/ml) were added to the medium and fresh medium with
554 drugs and doxycycline was replaced every 48 hours. Cells were continuously cultured for 10
555 days until formation of colonies was observed. Cells were fixed with 3.7 % formaldehyde for
556 10 minutes at room temperature, dried and stained with 0.1 % crystal violet (Merck) in 10 %
557 ethanol (Roth) for 10 minutes. After washing with sterile water and drying, colonies were
558 measured by ColonyArea (Guzmán et al., 2014) from ImageJ (Schneider et al., 2012).

559

560 **Proximity ligation assay**

561 Cells were seeded into 8 well slides at 3000 cells per well, treated for 48 hours with
562 doxycycline to induce V5-DDX1 and V5-DDX1(Δ 269-295) expression. After fixation for 10
563 minutes with 4 % paraformaldehyde and blocking for 30 min with 10 % FCS in PBS, cells
564 were incubated overnight at 4°C with primary antibody against V5 (Mouse, Abcam, 1:500)
565 and DLST (Rabbit, Cell Signaling Technology, 1:500). Proximity ligation assay was
566 performed using Duolink® In Situ Kit (Sigma-Aldrich) according to the manufacturer's
567 protocol. Nuclei were counterstained using Duolink® In Situ Mounting Medium with DAPI
568 (Sigma-Aldrich) and F-actin were stained using Phalloidin (Thermo Fisher) according to the
569 manufacturer's instruction. Pictures were taken with a Leica TCS SP5 II (Leica
570 Microsystems) with 63-fold magnification and analyzed using ImageJ.

571

572 **Zebrafish maintenance**

573 Zebrafish (*Danio rerio*) were raised and maintained according to standard protocols at 28°C
574 with a 14/10h light dark cycle (Westerfield, 2000). The transgenic line Tg (*d β h-MYCN: d β h-*
575 *eGFP*) (Tao et al., 2017) was a kind gift from Thomas Look (Dana Farber Cancer Institute,
576 Boston, USA). All zebrafish were of the AB background strain. All experiments were
577 performed in accord with the legal authorities approved license "G 0325/19".

578

579 **Zebrafish transgenesis**

580 Zebrafish line Tg (*d β h-MYCN: d β h-*eGFP*) was a kind gift of Thomas Look (Dana Farber
581 Cancer Institute, Boston, USA) and described previously (Tao et al., 2017). Plasmid *d β h-*
582 *eGFP* (*pDest_Isce1*) was also a kind gift of Thomas Look. Plasmid of Tol2 constructs were a
583 kind gift from Jan Philipp Junker. To create *d β h-DDX1-polyA-Tol2-CryAA:mCerulean*, the*

584 *dβh* promoter was excised using restriction enzymes ClaI and KpnI (New England Biolabs)
585 and cloned in p5E-MCS (Multiple Cloning Sites, Addgene #26029), linearized with the same
586 enzymes, through T4 Rapid DNA Ligation Kit (Roche). DDX1 was PCR-amplified using
587 primers containing suitable recombination sites for the Gateway System (FW:
588 GGGGACAAGTTGTACAAAAAAGCAGGCTTACCATGGCGGCCTTCT, RV:
589 GGGGACCACTTGTACAAGAAAGCTGGTTCTAGAACAGCTGGTT
590 AGG). DDX1 fragment was cloned into pDONR221 (Thermo Fisher) using the Gateway
591 system following the manufacturer's protocol (Thermo Fisher). P3E-polyA and pDEST-
592 Tol2- *CryAA-mCerulean* were a kind gift of Jan-Philipp Junker (Max Delbrück Center,
593 Berlin, Germany). P5E-*dβh*, pDONR-DDX1 and p3E-polyA were cloned in a pDEST-Tol2-
594 *CryAA-mCerulean* using the Gateway System following the manufacturer's protocol
595 (Thermo Fisher). The final construct was sequenced by LightRun Sequencing (Eurofins
596 Genomics) to confirm the successful reaction. To generate the zebrafish transgenic line Tg
597 (*dβh-DDX1:CryAA-mCerulean*), plasmid *dβh-DDX1-polyA-Tol2-CryAA:mCerulean* was
598 injected into fertilized eggs and fish were grown to adulthood.

599

600 **Zebrafish tumor cell treatment**

601 Tumors from Tg (*dβh-MYCN:dβh -eGFP*; *dβh-DDX1:CryAA-mCerulean*) double transgenic
602 fish and Tg (*dβh-MYCN:dβh-eGFP*) were excised from adult fish immediately after
603 hypothermal shock euthanasia. Tumors were dissociated using a Collagenase II (Thermo
604 Fisher) based protocol (330 µL Collagenase II – final concentration: 100 U/mL -, 120 µL
605 HBSS, 50 µL FCS for 30 minutes at 37 °C, followed by 5 minutes of incubation at 37 °C
606 after addition of 200 µL of Dispase II (Thermo Fisher) – final concentration: 2 U/mL -,
607 gently pipetting every 10 minutes). After dissociation, single cell suspension was transferred
608 to Round-Bottom Polystyrene Test Tubes with Cell Strainer Snap Cap to remove
609 undissociated tissue. Cells were resuspended in DMEM (Gibco) supplemented with 10 %
610 FCS and 1 % Penicillin/Streptomycin and plated in 96 well plates at a density of 0,1 x 10⁵
611 cells. Cells were incubated at 27 °C, 5 % CO₂. After 24 h, cells were visually inspected for
612 eGFP expression using a AXIO microscope (Zeiss) and Rapamycin (2.5 µM) or vehicle were
613 added to the DMSO; cells were then incubated for 72 h and viability assessed through MTT
614 assay (Abcam) following manufacturer's protocol. Absorbance was measured using an Epoch
615 plate reader (BioTeK) at OD = 590.

616

617 **Oxygen consumption rate (OCR) measurements**

618 The mitochondrial respiratory capacity was determined with the XF Cell Mito Stress Test Kit
619 (Agilent Technologies). Cells were seeded in the XF96 cell culture microplate at a density of
620 1×10^4 per well with 4 replicates of each condition. XF96 FluxPak sensor cartridge was
621 hydrated with Seahorse Calibrant overnight in a non-CO₂ incubator at 37 °C. The following
622 day, cells were incubated with the Seahorse medium (plus 1 mM pyruvate, 2 mM glutamine,
623 and 10 mM glucose) for 1 hour prior. The OCR was measured by Xfe96 extracellular flux
624 analyzer with the sequential injection of 1 µM oligomycin A, 0.5 µM carbonyl cyanide-p-
625 trifluoromethoxyphenylhydrazone (FCCP), and 0.5 µM rotenone/antimycin A.

626

627 **Electron microscopy**

628 Cells were grown on poly-l-lysine-coated sapphire discs and frozen using the Leica EM ICE.
629 Freeze substitution was done in 1 % H₂O (v/v), 1 % glutaraldehyde (v/v), 1 % osmium
630 tetroxide (v/v) in anhydrous acetone using the following protocol: 37h at -90 °C, 8h from -90
631 to -50 °C, 6h from -50 to -30 °C, 12h at -20 °C and 3h from -20 to 20 °C. Samples were
632 further contrasted with 0.1 % uranyl acetate [w/v] in anhydrous acetone and infiltrated with
633 30 %, 70 % and 90 % epon-acetone mixtures for 2h each, followed by 3 x 2h changes of 100 %
634 epon (Polybed 812, Science Services) and polymerized at 60 °C for 48 h. 70nm sections were
635 obtained with an ultra-microtome and imaged at 80 kV with an EM910 (Zeiss). ImageJ was
636 used for quantification.

637

638 **Co-immunoprecipitation**

639 In the standard co-immunoprecipitation assay, cells were lysed in lysis buffer (50 mM Tris
640 pH 7.5, 150 mM NaCl, 10 mM MgCl₂, 0.5 % Nonidet P40 (Igepal), 10 % Glycerol, 1 mM
641 NaF, freshly added 1 mM 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride
642 (AEBSF, Sigma-Aldrich), protease inhibitors) and frozen in liquid nitrogen for 1 min. After
643 thawing at 37 °C shortly and removal of cell debris by centrifugation, 1.2 µg of antibody
644 and 100 µl of 20 % Protein A-Sepharose beads (Amersham Biosciences) were added to
645 clarified whole cell extract (WCE) and incubated overnight at 4 °C. The next day, beads
646 then were subjected to three washes with lysis buffer contained 1 mM
647 Dichlorodiphenyltrichloroethane (DTT, Thermo Scientific). The beads were then sent for
648 Mass Spectrometry based Proteomics of DDX1 interactome or boiled with 1× Sodium
649 dodecyl sulfate (SDS) loading buffer at 90 °C for western blot analysis. For V5-tagged
650 immunoprecipitation, to assess the binding region of DDX1 to α-KGDH complex, different

651 truncated V5-DDX1s were overexpressed. The same amounts of input and V5
652 immunoprecipitation eluates were loaded in western blot analysis for the detection of α -
653 KGDH complex.

654

655 **Mass Spectrometry based Proteomics**

656 Beads from immunoprecipitation experiments were resuspended in 20 mL denaturation
657 buffer (6 M Urea, 2 M Thiourea, 10 mM HEPES, pH 8.0), reduced for 30 min at 25 °C in 12
658 mM dithiothreitol, followed by alkylation with 40 mM chloroacetamide for 20 min at 25 °C.
659 Samples were first digested with 0.5 μ g endopeptidase LysC (Wako, Osaka, Japan) for 4 h.
660 After diluting the samples with 80 μ l 50 mM ammonium bicarbonate (pH 8.5), 1 μ g sequence
661 grade trypsin (Promega) was added overnight at 25 °C. The peptide-containing supernatant
662 was collected and acidified with formic acid (1 % final concentration) to stop the digestion.
663 Peptides were desalted and cleaned up using Stage Tip protocol(Rappsilber et al., 2003).
664 After elution with 80 % acetonitrile/0.1 % formic acid, samples were dried using speedvac,
665 resolved in 3 % acetonitrile/0.1 % formic acid and analysed by LC-MS/MS.

666 Peptides were separated on a reversed-phase column (20 cm fritless silica microcolumns
667 with an inner diameter of 75 μ m, packed with ReproSil-Pur C18-AQ 1.9 μ m resin (Dr.
668 Maisch GmbH) using a 90 min gradient with a 250 nL/min flow rate of increasing Buffer B
669 concentration (from 2 % to 60 %) on a High-Performance Liquid Chromatography (HPLC)
670 system (Thermo Fisher) and ionized using an electrospray ionization (ESI) source (Thermo
671 Fisher) and analyzed on a Thermo Q Exactive HF-X instrument. The instrument was run in
672 data dependent mode selecting the top 20 most intense ions in the MS full scans, selecting
673 ions from 350 to 2000 *m/z*, using 60 K resolution with a 3×10^6 ion count target and 10 ms
674 injection time. Tandem MS was performed at a resolution of 15 K. The MS2 ion count target
675 was set to 1×10^5 with a maximum injection time of 22 ms. Only precursors with charge
676 state 2–6 were selected for MS2. The dynamic exclusion duration was set to 30 s with a 10-
677 ppm tolerance around the selected precursor and its isotopes.

678 Raw data were analyzed using MaxQuant software package (v1.6.3.4)(Tyanova et al., 2016a).
679 The internal Andromeda search engine was used to search MS2 spectra against a human
680 UniProt database (HUMAN.2019-07) containing forward and reverse sequences. The search
681 included variable modifications of methionine oxidation, N-terminal acetylation and fixed
682 modification of carbamidomethyl cysteine. Minimal peptide length was set to seven amino
683 acids and a maximum of 3 missed cleavages was allowed. The FDR was set to 1 % for

684 peptide and protein identifications. Unique and razor peptides were considered for
685 quantification. Retention times were recalibrated based on the built-in nonlinear time-
686 rescaling algorithm. MS2 identifications were transferred between runs with the “Match
687 between runs” option in which the maximal retention time window was set to 0.7 min. The
688 LFQ (label-free quantitation) algorithm was activated.

689 The resulting text file was filtered to exclude reverse database hits, potential contaminants,
690 and proteins only identified by site. Statistical data analysis was performed using Perseus
691 software (v1.6.2.1)(Tyanova et al., 2016b). Log2 transformed LFQ intensity values were
692 filtered for minimum of 3 valid values in at least one experimental group and missing values
693 were imputed with random low intensity values taken from a normal distribution. Differences
694 in protein abundance between DDX1 bait and IgG control samples were calculated using
695 two-sample Student’s t-test. Proteins enriched in the DDX1 group and passing the
696 significance cut-off (permutation-based FDR $\square < \square 5\%$), were defined as DDX1 interactors.

697

698 **Gas chromatography–mass spectrometry (GS-MS)**

699 Cells were lysed with 5 mL of ice-cold 50% methanol (MeOH, Honeywell) solution
700 containing 2 μ g/mL cinnamic acid (Sigma-Aldrich). Immediately after the MeOH solution
701 was added to the culture plate, lysates were scraped into the MeOH solution and the
702 methanolic lysates were collected. After cell harvest, 4 mL of chloroform (CHCl₃, VWR), 1.5
703 mL of MeOH and 1.5 mL of water (H₂O, VWR) was added to the methanolic cell extracts,
704 shaken for 60 minutes at 4 °C, and centrifuged at 4,149xg for 10 minutes to separate the
705 phases. The polar phase (6 mL) was collected and dried at 30 °C at a speed of 1,550x g at 0.1
706 mbar using a rotational vacuum concentrator (RVC 2-33 CD plus, Christ, Osterode am Harz,
707 Germany). Samples were pooled after extraction and used as a quality control (QC) sample to
708 test the technical variability of the instrument. They were prepared alongside the samples in
709 the same way. After drying, samples were split by adding 600 μ L of 20% MeOH to the dried
710 extracts, shaking for 60 minutes at 4 °C, followed by centrifugation at maximum speed
711 (18,213xg) for 10 minutes. Two 280 μ L aliquots per sample were then dried under vacuum of
712 which one was analyzed and the other kept as a backup.

713 All polar cell extracts were stored dry at -80 °C until analysis. Extracts were removed from
714 the freezer and dried in a rotational vacuum concentrator for 60 minutes before further
715 processing to ensure there was no residual water, which may influence derivatization
716 efficiency. Dried extracts were dissolved in 15 μ L of methoxyamine hydrochloride solution
717 (40 mg/mL in pyridine) and incubated for 90 minutes at 30 °C with constant shaking,

718 followed by the addition of 50 μ L of N-methyl-N-[trimethylsilyl]trifluoroacetamide (MSTFA)
719 including an alkane mixture for retention index determination and incubated at 37 °C for 60
720 minutes. The extracts were centrifuged for 10 minutes at 10,000 x g, and aliquots of 25 μ L
721 were transferred into glass vials for GC-MS measurement. An identification mixture for
722 reliable compound identification was prepared and derivatized in the same way and an alkane
723 mixture for reliable retention index calculation was included(Opialla et al., 2020).
724 Metabolite analysis was performed on a Pegasus BT GC-TOF-MS-System (LECO
725 Corporation, St. Joseph, MN, USA) complemented with an auto-sampler (Gerstel). Gas
726 chromatographic separation was performed on an Agilent 8890 (Agilent Technologies, Santa
727 Clara, CA, USA), equipped with a VF-5 ms column of 30-m length, 250- μ m inner diameter,
728 and 0.25- μ m film thickness (Agilent technologies, Santa Clara, CA, USA). Helium was used
729 as carrier gas with a 1.2 mL/min flow rate. Gas chromatography was performed with the
730 following temperature gradient: the first 2 minutes allowed the column to equilibrate at 70°C,
731 a first temperature gradient was applied at a rate of increase of 5°C per minute until a
732 maximum temperature of 120°C was reached. Subsequently, a second temperature gradient
733 was applied using a rate of increase of 7°C/min up to a maximum temperature of 200°C. This
734 was immediately followed by a third gradient of 12°C/min up to a maximum temperature of
735 320°C with a hold time of 7.5 min. The spectra were recorded in a mass range of 60 to 600
736 m/z with a scan rate of 10 spectra/s. A split ratio of 1:5 was used. QC samples were used both
737 for conditioning (6 mouse liver samples at the beginning of the run) the instrument and for
738 measuring technical variability (pooled QC samples) across the batch. The pooled QC
739 samples were run at the beginning and end of each batch and after every 10th sample. The
740 GC-MS chromatograms were processed with the ChromaTOF software (LECO Corporation,
741 St. Joseph, MN, USA) including baseline assessment, peak picking, and computation of the
742 area and height of peaks without calibration by using an in-house created reference and a
743 library containing the top 3 masses by intensity for metabolites related to the central carbon
744 metabolism. Data were normalized to the sum of the area. Individual derivatives were
745 summed up. Relative quantities were used. The quality control samples were analyzed
746 separately (Table S7).

747

748 **Copy number analysis**

749 The Patients' copy number dataset of Pan-Cancer Analysis of Whole Genomes (PCAWG)
750 study and Tumor Alteration Relevant for Genomics-driven Therapy (TARGET) were
751 retrieved from cbioportal database (<https://www.cbioportal.org>). The high-level amplified

752 genes were labeled as “2” from the profile description. In copy-number data for 556
753 neuroblastoma patients, cutoffs were chosen to maximize discrimination between *MYCN*-
754 amplified and nonamplified samples (or *DDX1*-amplified and nonamplified samples) and
755 exclude high-level gains: 1.5 for Affymetrix and NimbleGen arrays, 2 for Agilent arrays and
756 0.7 for Illumina arrays. Finally, segments with log₂ ratio lower than -2 were called as
757 homozygous deletion.

758

759 **Dependency map (DepMap) data analysis**

760 CRISPR dependency data (Dempster *et al.*, 2019; Meyers *et al.*, 2017)(CERES scores) and
761 gene-level copy number data (Meyers *et al.*, 2017) were downloaded from the Public
762 Achilles 2021Q1 DepMap release using the Broad Institute’s DepMap portal. Cell lines were
763 characterized as being ‘*DDX1-MYCN*-coamplified’ if they had *DDX1* and *MCYN* copy
764 number value that both were greater than or equal to 2, or ‘*MYCN*-amplified alone’ if they
765 had *MCYN* copy number value that both were greater than or equal to 2 but *DDX1* copy
766 number value that was less than 2; cell lines with no copy number data for *DDX1* and
767 *MYCN* were removed from the analysis. From a total cell line in the dependency dataset, 12
768 were classified as *DDX1-MYCN* co-amplified, and 8 were classified as *MYCN*-amplified. The
769 Wilcoxon rank-sum test was used to compare dependency scores for each gene between the 2
770 groups. In Figure 3B difference in median gene depletion was plotted on the x-axis versus the
771 nominal P value of the difference on the y-axis. Nominal P values are provided. Results of
772 the analysis can be found in a tabular format in the source data.

773

774 **Statistical analysis**

775 All experiments were performed a minimum of three times with a minimum of three
776 independent measurements. All statistical analysis was performed with R 3.6 or Python 3.7.
777 All data are represented as mean \pm standard error. Statistical significance was defined as *, P
778 < 0.05 ; **, P < 0.01 , ***, P < 0.001 .

779

780 **Data availability**

781 Copy-number data for 556 neuroblastoma patients were downloaded
782 from https://github.com/padpuydt/copynumber_HR_NB/. Public data of 709 neuroblastoma
783 patients’ microarray supporting the findings of this manuscript were downloaded from
784 ArrayExpress under accession E-MTAB-1781. Cancer cell line metabolism dataset was
785 downloaded from DepMap (Li *et al.*, 2019). Public drug response dataset (GDSC2) was

786 downloaded from <https://www.cancerrxgene.org/>. CRISPR dependency data (Dempster *et al.*,
787 2019; Meyers *et al.*, 2017)(CERES scores) and gene-level copy number data (Meyers *et al.*,
788 2017) were downloaded from the Public Achilles 2021Q1 DepMap. Pan-Cancer Analysis of
789 Whole Genomes (PCAWG) study (Kim *et al.*, 2020) and Tumor Alteration Relevant for
790 Genomics-driven Therapy (TARGET) database (Pugh *et al.*, 2013; Van Allen *et al.*, 2014)
791 from cbioportal. All other data are available from the corresponding authors upon reasonable
792 request

793

794 **Code availability**

795 Code is available at https://github.com/yeebae1118/DDX1_Bei

796

797 **Competing interests**

798 A.G.H and R.P.K are co-founders and shareholders of AMZL therapeutics. The other authors
799 have no competing interests to declare.

800

801 **Correspondence**

802 Correspondence and requests for materials should be addressed to henssenlab@gmail.com

803

804 **Author Contributions**

805 Y.B. and A.G.H contributed to the study design and collection and interpretation of the data
806 and wrote the manuscript. Y.B., L.B., A.B., M.K., J.P., S.K., R.F-G., D.W., H.D.G, R.X.,
807 L.B., M.G., R.R-F., O.A.S, N.W., J.K. and R.C.G. performed the experiments, analyzed data
808 and reviewed this manuscript. L.B., generated transgenic zebrafish. Y.B., and M.K.
809 performed MS-based protein-protein interaction experiment and analysis. R.K., C.S., J.S.,
810 A.E., K.H., J.K., A.I.H.H., P.M., and J.D. contributed to study design. A.G.H. led the study
811 design, to which all authors contributed.

812

813 **Acknowledgements**

814 We are grateful to Maria Hondele, Markus Landthaler and Nicole Hübener for critical
815 discussions and to Thomas Look (Dana Faber Cancer Institute, Boston, USA) for transgenic
816 zebrafish and Jan-Philipp Junker (Max Delbrück Center, Berlin, Germany) for providing
817 plasmids. A.G.H. is supported by the *Deutsche Forschungsgemeinschaft* (DFG, German
818 Research Foundation) – 398299703. A.G.H. is supported by the *Deutsche Krebshilfe*
819 (German Cancer Aid) Mildred Scheel Professorship program – 70114107. A.I.H.H. is

820 supported by the *KinderLeben Foundation*. L.B. is supported by the *Deutsche Konsortium für*
821 *Translationale Krebsforschung (DKTK)*. This project has received funding from the European
822 Research Council (ERC) under the European Union's Horizon 2020 research and innovation
823 programme (grant agreement No. 949172). This project was supported by Cancer Research
824 UK and the National Institute of Health (398299703, the eDynamic Cancer Grand Challenge).
825 This project was supported by the Berlin Institute of Health (BIH). Computation has been
826 performed on the HPC for Research cluster of the Berlin Institute of Health.

827

828 **References**

829 Abla, H., Sollazzo, M., Gasparre, G., Iommarini, L., and Porcelli, A.M. (2020). The
830 multifaceted contribution of α -ketoglutarate to tumor progression: An opportunity to exploit?
831 Seminars in Cell & Developmental Biology 98, 26-33.
832 <https://doi.org/10.1016/j.semcdb.2019.05.031>.

833 Albertson, D.G. (2006). Gene amplification in cancer. Trends Genet 22, 447-455.
834 10.1016/j.tig.2006.06.007.

835 Altman, B.J., Stine, Z.E., and Dang, C.V. (2016). From Krebs to clinic: glutamine
836 metabolism to cancer therapy. Nature Reviews Cancer 16, 619-634. 10.1038/nrc.2016.71.

837 Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson,
838 C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia
839 enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607.
840 10.1038/nature11003.

841 Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina,
842 J., Boehm, J.S., Dobson, J., Urashima, M., et al. (2010). The landscape of somatic copy-
843 number alteration across human cancers. Nature 463, 899-905. 10.1038/nature08822.

844 Bodineau, C., Tomé, M., Courtois, S., Costa, A.S.H., Sciacovelli, M., Rousseau, B., Richard,
845 E., Vacher, P., Parejo-Pérez, C., Bessede, E., et al. (2021). Two parallel pathways connect
846 glutamine metabolism and mTORC1 activity to regulate glutamoptosis. Nature
847 Communications 12, 4814. 10.1038/s41467-021-25079-4.

848 Brodeur, G.M., Seeger, R.C., Schwab, M., Varmus, H.E., and Bishop, J.M. (1984).
849 Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease
850 stage. Science 224, 1121-1124. 10.1126/science.6719137.

851 Calabrese, C., Davidson, N.R., Demircioğlu, D., Fonseca, N.A., He, Y., Kahles, A., Lehmann,
852 K.-V., Liu, F., Shiraishi, Y., Soulette, C.M., et al. (2020). Genomic basis for RNA alterations
853 in cancer. Nature 578, 129-136. 10.1038/s41586-020-1970-0.

854 Carrière, A., Cargnello, M., Julien, L.A., Gao, H., Bonneil, E., Thibault, P., and Roux, P.P.
855 (2008). Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-
856 mediated raptor phosphorylation. Curr Biol 18, 1269-1277. 10.1016/j.cub.2008.07.078.

857 Chen, H., Liu, H., and Qing, G. (2018). Targeting oncogenic Myc as a strategy for cancer
858 treatment. Signal Transduction and Targeted Therapy 3. 10.1038/s41392-018-0008-7.

859 Chen, H.-C., Lin, W.-C., Tsay, Y.-G., Lee, S.-C., and Chang, C.-J. (2002). An RNA Helicase,
860 DDX1, Interacting with Poly(A) RNA and Heterogeneous Nuclear Ribonucleoprotein K.
861 Journal of Biological Chemistry 277, 40403-40409. 10.1074/jbc.m206981200.

862 Chen, Y., McGee, J., Chen, X., Doman, T.N., Gong, X., Zhang, Y., Hamm, N., Ma, X.,
863 Higgs, R.E., Bhagwat, S.V., et al. (2014). Identification of Druggable Cancer Driver Genes
864 Amplified across TCGA Datasets. PLoS ONE 9, e98293. 10.1371/journal.pone.0098293.

865 Chiang, G.G., and Abraham, R.T. (2005). Phosphorylation of mammalian target of
866 rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. *J Biol Chem* *280*, 25485-25490.
867 10.1074/jbc.M501707200.

868 Corbacioglu, S., Steinbach, D., Lode, H.N., Gruhn, B., Fruehwald, M., Broeckelmann, M.,
869 Suttorp, M., Escherich, G., Cario, G., Ehlert, K., et al. (2013). The RIST design: A
870 molecularly targeted multimodal approach for the treatment of patients with relapsed and
871 refractory neuroblastoma. *Journal of Clinical Oncology* *31*, 10017-10017.
872 10.1200/jco.2013.31.15_suppl.10017.

873 de la Cruz López, K.G., Toledo Guzmán, M.E., Sánchez, E.O., and García Carrancá, A.
874 (2019). mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in
875 Cancer. *Front Oncol* *9*, 1373. 10.3389/fonc.2019.01373.

876 Dempster, J.M., Rossen, J., Kazachkova, M., Pan, J., Kugener, G., Root, D.E., and Tsherniak,
877 A. (2019). Extracting Biological Insights from the Project Achilles Genome-Scale CRISPR
878 Screens in Cancer Cell Lines. *Cold Spring Harbor Laboratory*.

879 Depuydt, P., Boeva, V., Hocking, T.D., Cannoodt, R., Ambros, I.M., Ambros, P.F.,
880 Asgharzadeh, S., Attiyeh, E.F., Combaret, V., Defferrari, R., et al. (2018a). Genomic
881 Amplifications and Distal 6q Loss: Novel Markers for Poor Survival in High-risk
882 Neuroblastoma Patients. *JNCI: Journal of the National Cancer Institute* *110*, 1084-1093.
883 10.1093/jnci/djy022.

884 Depuydt, P., Koster, J., Boeva, V., Hocking, T.D., Speleman, F., Schleiermacher, G., and De
885 Preter, K. (2018b). Meta-mining of copy number profiles of high-risk neuroblastoma tumors.
886 *Scientific Data* *5*. 10.1038/sdata.2018.240.

887 Dey, P., Baddour, J., Muller, F., Wu, C.C., Wang, H., Liao, W.-T., Lan, Z., Chen, A.,
888 Gutschner, T., Kang, Y., et al. (2017). Genomic deletion of malic enzyme 2 confers collateral
889 lethality in pancreatic cancer. *Nature* *542*, 119-123. 10.1038/nature21052.

890 Ding, L., and Liu, Y. (2015). Borrowing Nuclear DNA Helicases to Protect Mitochondrial
891 DNA. *International Journal of Molecular Sciences* *16*, 10870-10887. 10.3390/ijms160510870.

892 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson,
893 M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*
894 *29*, 15-21. 10.1093/bioinformatics/bts635.

895 Durán, R.V., Oppiger, W., Robitaille, A.M., Heiserich, L., Skendaj, R., Gottlieb, E., and Hall,
896 M.N. (2012). Glutaminolysis activates Rag-mTORC1 signaling. *Mol Cell* *47*, 349-358.
897 10.1016/j.molcel.2012.05.043.

898 Fatti, E., Hirth, A., Švorinić, A., Günther, M., Cruciat, C.-M., Stier, G., Acebron, S.P.,
899 Papageorgiou, D., Sinning, I., Krijgsveld, J., et al. (2021). DEAD-box RNA Helicases Act as
900 Nucleotide Exchange Factors for Casein Kinase 2. *bioRxiv*, 2021.2012.2020.473452.
901 10.1101/2021.12.20.473452.

902 Ferrara-Romeo, I., Martinez, P., Saraswati, S., Whittemore, K., Graña-Castro, O., Thelma
903 Poluha, L., Serrano, R., Hernandez-Encinas, E., Blanco-Aparicio, C., Maria Flores, J., and
904 Blasco, M.A. (2020). The mTOR pathway is necessary for survival of mice with short
905 telomeres. *Nature Communications* *11*, 1168. 10.1038/s41467-020-14962-1.

906 Ge, J., Cui, H., Xie, N., Banerjee, S., Guo, S., Dubey, S., Barnes, S., and Liu, G. (2018).
907 Glutaminolysis Promotes Collagen Translation and Stability via α -Ketoglutarate-mediated
908 mTOR Activation and Proline Hydroxylation. *American Journal of Respiratory Cell and*
909 *Molecular Biology* *58*, 378-390. 10.1165/rcmb.2017-0238oc.

910 Ghandi, M., Huang, F.W., Jané-Valbuena, J., Kryukov, G.V., Lo, C.C., McDonald, E.R.,
911 Barretina, J., Gelfand, E.T., Bielski, C.M., Li, H., et al. (2019). Next-generation
912 characterization of the Cancer Cell Line Encyclopedia. *Nature* *569*, 503-508.
913 10.1038/s41586-019-1186-3.

914 Godbout, R., Hale, M., and Bisgrove, D. (1994). A human DEAD box protein with partial
915 homology to heterogeneous nuclear ribonucleoprotein U. *Gene* *138*, 243-245. 10.1016/0378-
916 1119(94)90816-8.

917 Godbout, R., Packer, M., and Bie, W. (1998). Overexpression of a DEAD box protein
918 (DDX1) in neuroblastoma and retinoblastoma cell lines. *J Biol Chem* *273*, 21161-21168.
919 10.1074/jbc.273.33.21161.

920 Greenman, C., Stephens, P., Smith, R., Dalglish, G.L., Hunter, C., Bignell, G., Davies, H.,
921 Teague, J., Butler, A., Stevens, C., et al. (2007). Patterns of somatic mutation in human
922 cancer genomes. *Nature* *446*, 153-158. 10.1038/nature05610.

923 Guertin, D.A., and Sabatini, D.M. (2007). Defining the Role of mTOR in Cancer. *Cancer*
924 *Cell* *12*, 9-22. <https://doi.org/10.1016/j.ccr.2007.05.008>.

925 Guzmán, C., Bagga, M., Kaur, A., Westermarck, J., and Abankwa, D. (2014). ColonyArea:
926 An ImageJ Plugin to Automatically Quantify Colony Formation in Clonogenic Assays. *PLoS*
927 ONE *9*, e92444. 10.1371/journal.pone.0092444.

928 Han, C., Liu, Y., Wan, G., Choi, H.J., Zhao, L., Ivan, C., He, X., Sood, A.K., Zhang, X., and
929 Lu, X. (2014). The RNA-binding protein DDX1 promotes primary microRNA maturation
930 and inhibits ovarian tumor progression. *Cell reports* *8*, 1447-1460.
931 10.1016/j.celrep.2014.07.058.

932 Helmsauer, K., Valieva, M.E., Ali, S., Chamorro González, R., Schöpflin, R., Röefzaad, C.,
933 Bei, Y., Dorado Garcia, H., Rodriguez-Fos, E., Puiggròs, M., et al. (2020). Enhancer
934 hijacking determines extrachromosomal circular MYCN amplicon architecture in
935 neuroblastoma. *Nature Communications* *11*. 10.1038/s41467-020-19452-y.

936 Henssen, A.G., Reed, C., Jiang, E., Garcia, H.D., von Stebut, J., MacArthur, I.C.,
937 Hundsdoerfer, P., Kim, J.H., de Stanchina, E., Kuwahara, Y., et al. (2017). Therapeutic
938 targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors. *Sci Transl
939 Med* *9*. 10.1126/scitranslmed.aam9078.

940 Hibino, E., and Hoshino, M. (2020). A novel mode of interaction between intrinsically
941 disordered proteins. *Biophys Physicobiol* *17*, 86-93. 10.2142/biophysico.BSJ-2020012.

942 Hoeffer, C.A., and Klann, E. (2010). mTOR signaling: At the crossroads of plasticity,
943 memory and disease. *Trends in Neurosciences* *33*, 67-75. 10.1016/j.tins.2009.11.003.

944 Hua, H., Kong, Q., Zhang, H., Wang, J., Luo, T., and Jiang, Y. (2019). Targeting mTOR for
945 cancer therapy. *Journal of Hematology & Oncology* *12*. 10.1186/s13045-019-0754-1.

946 Iorio, F., Knijnenburg, T.A., Vis, D.J., Bignell, G.R., Menden, M.P., Schubert, M., Aben, N.,
947 Gonçalves, E., Barthorpe, S., Lightfoot, H., et al. (2016). A Landscape of Pharmacogenomic
948 Interactions in Cancer. *Cell* *166*, 740-754. 10.1016/j.cell.2016.06.017.

949 Kellner, J.N., and Meinhart, A. (2015). Structure of the SPRY domain of the human RNA
950 helicase DDX1, a putative interaction platform within a DEAD-box protein. *Acta Crystallogr
951 F Struct Biol Commun* *71*, 1176-1188. 10.1107/s2053230x15013709.

952 Kellner, J.N., Reinstein, J., and Meinhart, A. (2015). Synergistic effects of ATP and RNA
953 binding to human DEAD-box protein DDX1. *Nucleic Acids Research* *43*, 2813-2828.
954 10.1093/nar/gkv106.

955 Kim, H., Nguyen, N.P., Turner, K., Wu, S., Gujar, A.D., Luebeck, J., Liu, J., Deshpande, V.,
956 Rajkumar, U., Namburi, S., et al. (2020). Extrachromosomal DNA is associated with
957 oncogene amplification and poor outcome across multiple cancers. *Nat Genet* *52*, 891-897.
958 10.1038/s41588-020-0678-2.

959 Kim, L.C., Cook, R.S., and Chen, J. (2017). mTORC1 and mTORC2 in cancer and the tumor
960 microenvironment. *Oncogene* *36*, 2191-2201. 10.1038/onc.2016.363.

961 Koche, R.P., Rodriguez-Fos, E., Helmsauer, K., Burkert, M., Macarthur, I.C., Maag, J.,
962 Chamorro, R., Munoz-Perez, N., Puiggròs, M., Dorado Garcia, H., et al. (2020).

963 Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma.
964 *Nature Genetics* 52, 29-34. 10.1038/s41588-019-0547-z.
965 Lange, J.T., Chen, C.Y., Pichugin, Y., Xie, L., Tang, J., Hung, K.L., Yost, K.E., Shi, Q., Erb,
966 M.L., Rajkumar, U., et al. (2021). Principles of ecDNA random inheritance drive rapid
967 genome change and therapy resistance in human cancers. *bioRxiv*, 2021.2006.2011.447968.
968 10.1101/2021.06.11.447968.
969 Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq
970 data with or without a reference genome. *BMC Bioinformatics* 12, 323. 10.1186/1471-2105-
971 12-323.
972 Li, H., Ning, S., Ghandi, M., Kryukov, G.V., Gopal, S., Deik, A., Souza, A., Pierce, K.,
973 Keskula, P., Hernandez, D., et al. (2019). The landscape of cancer cell line metabolism.
974 *Nature medicine* 25, 850-860. 10.1038/s41591-019-0404-8.
975 Li, L., Monckton, E.A., and Godbout, R. (2008). A role for DEAD box 1 at DNA double-
976 strand breaks. *Mol Cell Biol* 28, 6413-6425. 10.1128/MCB.01053-08.
977 Linder, P., Lasko, P.F., Ashburner, M., Leroy, P., Nielsen, P.J., Nishi, K., Schnier, J., and
978 Slonimski, P.P. (1989). Birth of the D-E-A-D box. *Nature* 337, 121-122. 10.1038/337121a0.
979 Liu, P.-S., Wang, H., Li, X., Chao, T., Teav, T., Christen, S., Di Conza, G., Cheng, W.-C.,
980 Chou, C.-H., Vavakova, M., et al. (2017). α -ketoglutarate orchestrates macrophage activation
981 through metabolic and epigenetic reprogramming. *Nature Immunology* 18, 985-994.
982 10.1038/ni.3796.
983 Losman, J.A., Koivunen, P., and Kaelin, W.G., Jr. (2020). 2-Oxoglutarate-dependent
984 dioxygenases in cancer. *Nat Rev Cancer* 20, 710-726. 10.1038/s41568-020-00303-3.
985 Maris, J.M. (2010). Recent Advances in Neuroblastoma. *New England Journal of Medicine*
986 362, 2202-2211. 10.1056/nejmra0804577.
987 Mészáros, B., Erdős, G., and Dosztányi, Z. (2018). IUPred2A: context-dependent prediction
988 of protein disorder as a function of redox state and protein binding. *Nucleic Acids Research*
989 46, W329-W337. 10.1093/nar/gky384.
990 Meyers, R.M., Bryan, J.G., McFarland, J.M., Weir, B.A., Sizemore, A.E., Xu, H., Dharia,
991 N.V., Montgomery, P.G., Cowley, G.S., Pantel, S., et al. (2017). Computational correction of
992 copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells.
993 *Nature Genetics* 49, 1779-1784. 10.1038/ng.3984.
994 Mills, J.R., Hippo, Y., Robert, F., Chen, S.M.H., Malina, A., Lin, C.-J., Trojahn, U., Wendel,
995 H.-G., Charest, A., Bronson, R.T., et al. (2008). mTORC1 promotes survival through
996 translational control of Mcl-1. *Proceedings of the National Academy of Sciences* 105, 10853-
997 10858. doi:10.1073/pnas.0804821105.
998 Morris, J.P.t., Yashinskie, J.J., Koche, R., Chandwani, R., Tian, S., Chen, C.-C., Baslan, T.,
999 Marinkovic, Z.S., Sánchez-Rivera, F.J., Leach, S.D., et al. (2019). α -Ketoglutarate links p53
1000 to cell fate during tumour suppression. *Nature* 573, 595-599. 10.1038/s41586-019-1577-5.
1001 Morton, A.R., Dogan-Artun, N., Faber, Z.J., MacLeod, G., Bartels, C.F., Piazza, M.S., Allan,
1002 K.C., Mack, S.C., Wang, X., Gimple, R.C., et al. (2019). Functional Enhancers Shape
1003 Extrachromosomal Oncogene Amplifications. *Cell* 179, 1330-1341 e1313.
1004 10.1016/j.cell.2019.10.039.
1005 Muller, F.L., Aquilanti, E.A., and DePinho, R.A. (2015). Collateral Lethality: A new
1006 therapeutic strategy in oncology. *Trends Cancer* 1, 161-173. 10.1016/j.trecan.2015.10.002.
1007 Muller, F.L., Colla, S., Aquilanti, E., Manzo, V.E., Genovese, G., Lee, J., Eisenson, D.,
1008 Narurkar, R., Deng, P., Nezi, L., et al. (2012). Passenger deletions generate therapeutic
1009 vulnerabilities in cancer. *Nature* 488, 337-342. 10.1038/nature11331.
1010 Oberthuer, A., Juraeva, D., Hero, B., Volland, R., Sterz, C., Schmidt, R., Faldum, A., Kahlert,
1011 Y., Engesser, A., Asgharzadeh, S., et al. (2015). Revised risk estimation and treatment
1012 stratification of low- and intermediate-risk neuroblastoma patients by integrating clinical and

1013 molecular prognostic markers. *Clin Cancer Res* 21, 1904-1915. 10.1158/1078-0432.Ccr-14-
1014 0817.

1015 Opialla, T., Kempa, S., and Pietzke, M. (2020). Towards a More Reliable Identification of
1016 Isomeric Metabolites Using Pattern Guided Retention Validation. *Metabolites* 10.
1017 10.3390/metabo10110457.

1018 Padmanabhan, P.K., Zghidi-Abouzid, O., Samant, M., Dumas, C., Aguiar, B.G., Estaquier, J.,
1019 and Papadopoulou, B. (2016). DDX3 DEAD-box RNA helicase plays a central role in
1020 mitochondrial protein quality control in *Leishmania*. *Cell Death & Disease* 7, e2406-e2406.
1021 10.1038/cddis.2016.315.

1022 Pan-cancer analysis of whole genomes. (2020). *Nature* 578, 82-93. 10.1038/s41586-020-
1023 1969-6.

1024 Pérez-González, A., Pazo, A., Navajas, R., Ciordia, S., Rodriguez-Frandsen, A., and Nieto, A.
1025 (2014). hCLE/C14orf166 associates with DDX1-HSPC117-FAM98B in a novel
1026 transcription-dependent shuttling RNA-transporting complex. *PLoS One* 9, e90957.
1027 10.1371/journal.pone.0090957.

1028 Pugh, T.J., Morozova, O., Attiyeh, E.F., Asgharzadeh, S., Wei, J.S., Auclair, D., Carter, S.L.,
1029 Cibulskis, K., Hanna, M., Kiezun, A., et al. (2013). The genetic landscape of high-risk
1030 neuroblastoma. *Nature Genetics* 45, 279-284. 10.1038/ng.2529.

1031 Rappaport, J., Ishihama, Y., and Mann, M. (2003). Stop and go extraction tips for matrix-
1032 assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in
1033 proteomics. *Anal Chem* 75, 663-670. 10.1021/ac026117i.

1034 Rathore, R., Caldwell, K.E., Schutt, C., Brashears, C.B., Prudner, B.C., Ehrhardt, W.R.,
1035 Leung, C.H., Lin, H., Daw, N.C., Beird, H.C., et al. (2021). Metabolic compensation
1036 activates pro-survival mTORC1 signaling upon 3-phosphoglycerate dehydrogenase inhibition
1037 in osteosarcoma. *Cell Rep* 34, 108678. 10.1016/j.celrep.2020.108678.

1038 Rosswog, C., Bartenhagen, C., Welte, A., Kahlert, Y., Hemstedt, N., Lorenz, W., Cartolano,
1039 M., Ackermann, S., Perner, S., Vogel, W., et al. (2021). Chromothripsis followed by circular
1040 recombination drives oncogene amplification in human cancer. *Nature Genetics* 53, 1673-
1041 1685. 10.1038/s41588-021-00951-7.

1042 Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and
1043 Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to
1044 mTORC1. *Science* 320, 1496-1501. 10.1126/science.1157535.

1045 Schmid, S.R., and Linder, P. (1992). D-E-A-D protein family of putative RNA helicases. *Mol*
1046 *Microbiol* 6, 283-291. 10.1111/j.1365-2958.1992.tb01470.x.

1047 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years
1048 of image analysis. *Nat Methods* 9, 671-675. 10.1038/nmeth.2089.

1049 Schwab, M. (1998). Amplification of oncogenes in human cancer cells. *Bioessays* 20, 473-
1050 479. 10.1002/(sici)1521-1878(199806)20:6<473::Aid-bies5>3.0.Co;2-n.

1051 Schwab, M. (1999). Oncogene amplification in solid tumors. *Seminars in Cancer Biology* 9,
1052 319-325. <https://doi.org/10.1006/scbi.1999.0126>.

1053 Scott, D., Elsden, J., Pearson, A., and Lunec, J. (2003). Genes co-amplified with MYCN in
1054 neuroblastoma: silent passengers or co-determinants of phenotype? *Cancer Lett* 197, 81-86.
1055 10.1016/s0304-3835(03)00086-7.

1056 Seeger, R.C., Brodeur, G.M., Sather, H., Dalton, A., Siegel, S.E., Wong, K.Y., and
1057 Hammond, D. (1985). Association of multiple copies of the N-myc oncogene with rapid
1058 progression of neuroblastomas. *N Engl J Med* 313, 1111-1116.
1059 10.1056/nejm198510313131802.

1060 Shimizu, N., Itoh, N., Utiyama, H., and Wahl, G.M. (1998). Selective entrapment of
1061 extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase.
1062 *J Cell Biol* 140, 1307-1320. 10.1083/jcb.140.6.1307.

1063 Shoshani, O., Brunner, S.F., Yaeger, R., Ly, P., Nechemia-Arbely, Y., Kim, D.H., Fang, R.,
1064 Castillon, G.A., Yu, M., Li, J.S.Z., et al. (2021). Chromothripsis drives the evolution of gene
1065 amplification in cancer. *Nature* *591*, 137-141. 10.1038/s41586-020-03064-z.

1066 Sondka, Z., Bamford, S., Cole, C.G., Ward, S.A., Dunham, I., and Forbes, S.A. (2018). The
1067 COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers.
1068 *Nature Reviews Cancer* *18*, 696-705. 10.1038/s41568-018-0060-1.

1069 Takahara, T., Amemiya, Y., Sugiyama, R., Maki, M., and Shibata, H. (2020). Amino acid-
1070 dependent control of mTORC1 signaling: a variety of regulatory modes. *Journal of*
1071 *Biomedical Science* *27*. 10.1186/s12929-020-00679-2.

1072 Takei, N., and Nawa, H. (2014). mTOR signaling and its roles in normal and abnormal brain
1073 development. *Front Mol Neurosci* *7*, 28. 10.3389/fnmol.2014.00028.

1074 Tao, T., Sondalle, S.B., Shi, H., Zhu, S., Perez-Atayde, A.R., Peng, J., Baserga, S.J., and
1075 Look, A.T. (2017). The pre-rRNA processing factor DEF is rate limiting for the pathogenesis
1076 of MYCN-driven neuroblastoma. *Oncogene* *36*, 3852-3867. 10.1038/onc.2016.527.

1077 Tretter, L., and Adam-Vizi, V. (2005). Alpha-ketoglutarate dehydrogenase: a target and
1078 generator of oxidative stress. *Philos Trans R Soc Lond B Biol Sci* *360*, 2335-2345.
1079 10.1098/rstb.2005.1764.

1080 Turner, K.M., Deshpande, V., Beyter, D., Koga, T., Rusert, J., Lee, C., Li, B., Arden, K., Ren,
1081 B., Nathanson, D.A., et al. (2017). Extrachromosomal oncogene amplification drives tumour
1082 evolution and genetic heterogeneity. *Nature* *543*, 122-125. 10.1038/nature21356.

1083 Tyanova, S., Temu, T., and Cox, J. (2016a). The MaxQuant computational platform for mass
1084 spectrometry-based shotgun proteomics. *Nat Protoc* *11*, 2301-2319. 10.1038/nprot.2016.136.

1085 Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., and Cox,
1086 J. (2016b). The Perseus computational platform for comprehensive analysis of (prote)omics
1087 data. *Nat Methods* *13*, 731-740. 10.1038/nmeth.3901.

1088 Van Allen, E.M., Wagle, N., Stojanov, P., Perrin, D.L., Cibulskis, K., Marlow, S., Jane-
1089 Valbuena, J., Friedrich, D.C., Kryukov, G., Carter, S.L., et al. (2014). Whole-exome
1090 sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to
1091 guide precision cancer medicine. *Nature Medicine* *20*, 682-688. 10.1038/nm.3559.

1092 van Leen, E., Brückner, L., and Henssen, A.G. (2022). The genomic and spatial mobility of
1093 extrachromosomal DNA and its implications for cancer therapy. *Nature Genetics* *54*, 107-114.
1094 10.1038/s41588-021-01000-z.

1095 Verhaak, R.G.W., Bafna, V., and Mischel, P.S. (2019). Extrachromosomal oncogene
1096 amplification in tumour pathogenesis and evolution. *Nat Rev Cancer* *19*, 283-288.
1097 10.1038/s41568-019-0128-6.

1098 Wang, Y., Guo, Y.R., Liu, K., Yin, Z., Liu, R., Xia, Y., Tan, L., Yang, P., Lee, J.-H., Li, X.-J.,
1099 et al. (2017). KAT2A coupled with the α -KGDH complex acts as a histone H3
1100 succinyltransferase. *Nature* *552*, 273-277. 10.1038/nature25003.

1101 Wang, Y., Yasmin, L., Li, L., Gao, P., Xu, X., Sun, X., and Godbout, R. (2022). DDX1
1102 vesicles control calcium-dependent mitochondrial activity in mouse embryos. *Nature*
1103 *Communications* *13*, 3794. 10.1038/s41467-022-31497-9.

1104 Wassarman, D.A., and Steitz, J.A. (1991). Alive with DEAD proteins. *Nature* *349*, 463-464.
1105 10.1038/349463a0.

1106 Weiss, W.A., Aldape, K., Mohapatra, G., Feuerstein, B.G., and Bishop, J.M. (1997).
1107 Targeted expression of MYCN causes neuroblastoma in transgenic mice. *The EMBO Journal*
1108 *16*, 2985-2995. <https://doi.org/10.1093/emboj/16.11.2985>.

1109 Wise David, R., Ward Patrick, S., Shay Jessica, E.S., Cross Justin, R., Gruber Joshua, J.,
1110 Sachdeva Uma, M., Platt Jesse, M., DeMatteo Raymond, G., Simon, M.C., and Thompson
1111 Craig, B. (2011). Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α -

1112 ketoglutarate to citrate to support cell growth and viability. *Proceedings of the National*
1113 *Academy of Sciences* *108*, 19611-19616. 10.1073/pnas.1117773108.

1114 Wong, E.T.C., So, V., Guron, M., Kuechler, E.R., Malhis, N., Bui, J.M., and Gsponer, J.
1115 (2020). Protein-Protein Interactions Mediated by Intrinsically Disordered Protein Regions
1116 Are Enriched in Missense Mutations. *Biomolecules* *10*. 10.3390/biom10081097.

1117 Wu, S., Turner, K.M., Nguyen, N., Raviram, R., Erb, M., Santini, J., Luebeck, J., Rajkumar,
1118 U., Diao, Y., Li, B., et al. (2019). Circular ecDNA promotes accessible chromatin and high
1119 oncogene expression. *Nature* *575*, 699-703. 10.1038/s41586-019-1763-5.

1120 Xiao, L., Wang, Y.C., Li, W.S., and Du, Y. (2009). The role of mTOR and phospho-p70S6K
1121 in pathogenesis and progression of gastric carcinomas: an immunohistochemical study on
1122 tissue microarray. *J Exp Clin Cancer Res* *28*, 152-152. 10.1186/1756-9966-28-152.

1123 Xue, B., Dunbrack, R.L., Williams, R.W., Dunker, A.K., and Uversky, V.N. (2010).
1124 PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. *Biochim Biophys
1125 Acta* *1804*, 996-1010. 10.1016/j.bbapap.2010.01.011.

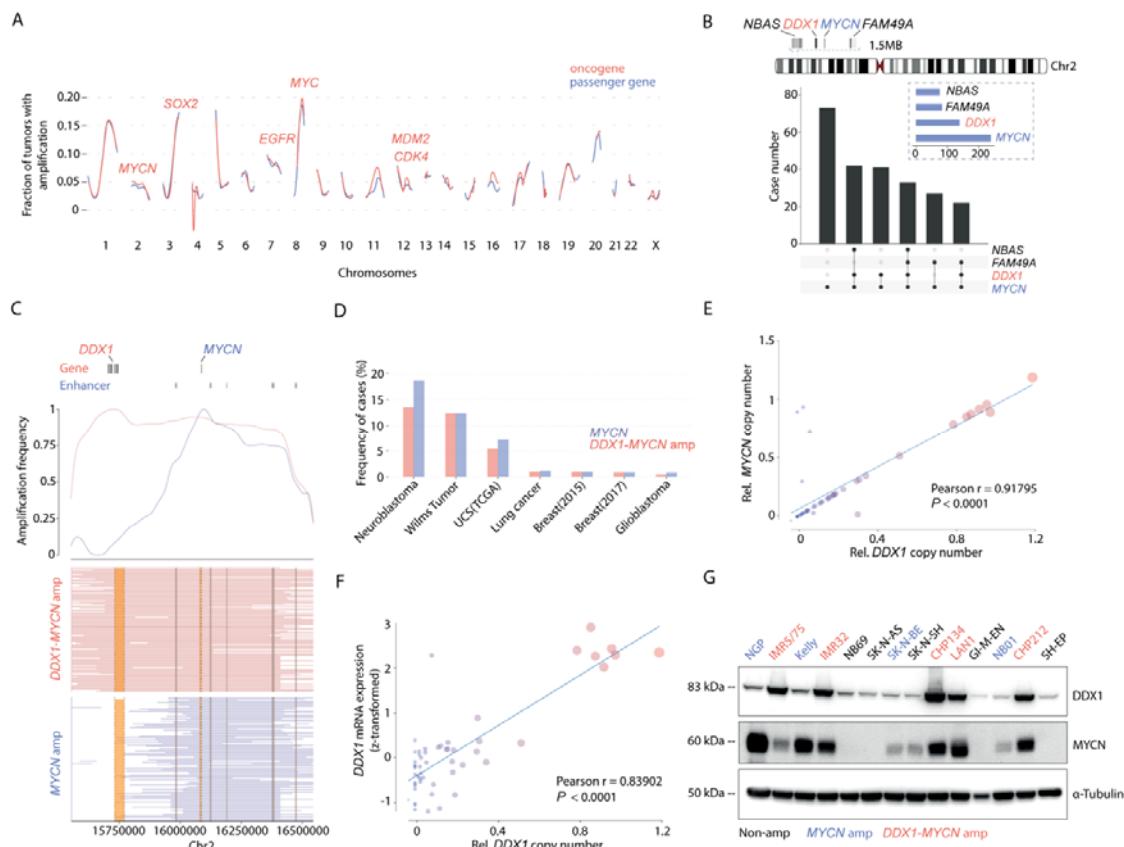
1126 Yang, W., Soares, J., Greninger, P., Edelman, E.J., Lightfoot, H., Forbes, S., Bindal, N.,
1127 Beare, D., Smith, J.A., Thompson, I.R., et al. (2013). Genomics of Drug Sensitivity in Cancer
1128 (GDSC): a resource for therapeutic biomarker discovery in cancer cells. *Nucleic acids
1129 research* *41*, D955-D961. 10.1093/nar/gks1111.

1130 Yao, Y., Parnell, N., and Inoki, K. (2016). mTORC1: Upstream and Downstream. In
1131 *Encyclopedia of Cell Biology*, R.A. Bradshaw, and P.D. Stahl, eds. (Academic Press), pp.
1132 243-253. <https://doi.org/10.1016/B978-0-12-394447-4.30035-9>.

1133 Yi, E., Chamorro González, R., Henssen, A.G., and Verhaak, R.G.W. (2022).
1134 Extrachromosomal DNA amplifications in cancer. *Nature Reviews Genetics*.
1135 10.1038/s41576-022-00521-5.

1136 Zhang, J.-Y., Zhou, B., Sun, R.-Y., Ai, Y.-L., Cheng, K., Li, F.-N., Wang, B.-R., Liu, F.-J.,
1137 Jiang, Z.-H., Wang, W.-J., et al. (2021). The metabolite α -KG induces GSDMC-dependent
1138 pyroptosis through death receptor 6-activated caspase-8. *Cell Res* *31*, 980-997.
1139 10.1038/s41422-021-00506-9.

1140 Zhang, Z., Kim, T., Bao, M., Facchinetto, V., Jung, S.Y., Ghaffari, A.A., Qin, J., Cheng, G.,
1141 and Liu, Y.-J. (2011). DDX1, DDX21, and DHX36 helicases form a complex with the
1142 adaptor molecule TRIF to sense dsRNA in dendritic cells. *Immunity* *34*, 866-878.
1143 10.1016/j.jimmuni.2011.03.027.


1144 Zhu, Y., Gujar, A.D., Wong, C.H., Tjong, H., Ngan, C.Y., Gong, L., Chen, Y.A., Kim, H.,
1145 Liu, J., Li, M., et al. (2021). Oncogenic extrachromosomal DNA functions as mobile
1146 enhancers to globally amplify chromosomal transcription. *Cancer Cell* *39*, 694-707.e697.
1147 10.1016/j.ccr.2021.03.006.

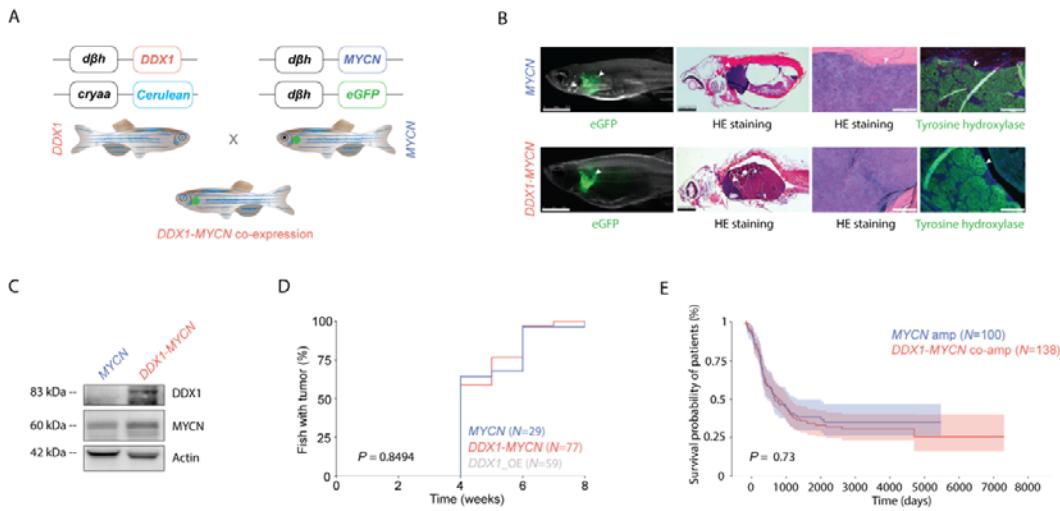
1148 Zou, Z., Tao, T., Li, H., and Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors
1149 in cancer: progress and challenges. *Cell & Bioscience* *10*. 10.1186/s13578-020-00396-1.

1150

1151 **Figures**

1152

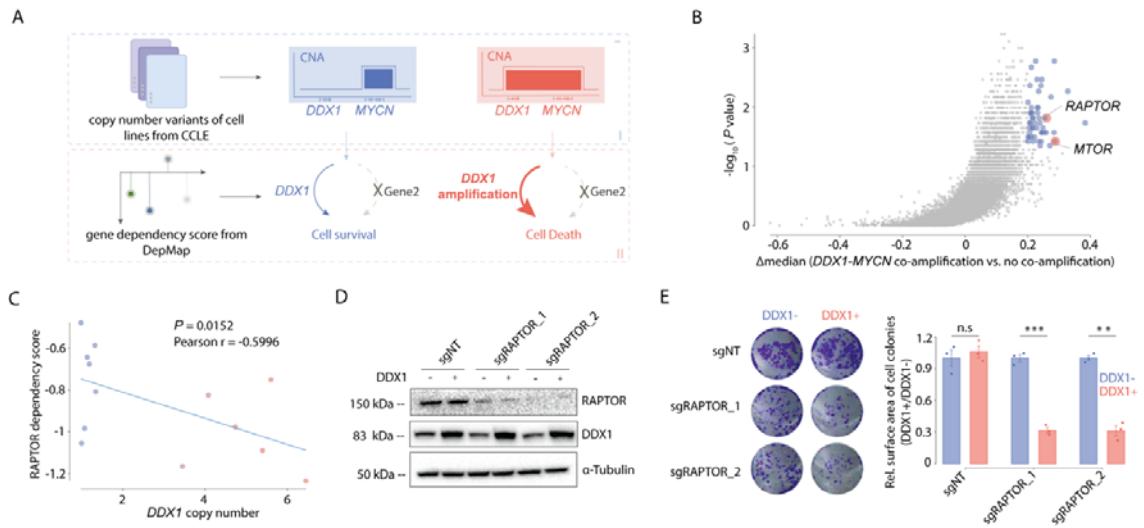
1153


1154

1155 **Figure 1. Passenger genes are frequently co-amplified with oncogenes across tumor**
1156 **entities. A**, Fraction of tumors ($N = 2960$) from PCAWG and TARGET datasets with
1157 oncogene amplifications (red) or passenger gene amplifications (blue) throughout the genome
1158 fitted by local regression (LOESS). The annotated genes are amongst the most commonly
1159 altered oncogenes in cancers. **B**, Chromosome 2 schematic highlighting the area of *MYCN*
1160 amplification and passenger genes recurrently included on the amplicon (top). Upset plot
1161 (bottom) for the co-amplification frequency of three passenger genes, *NBAS*, *DDX1* and
1162 *FAM49A*, identified on the *MYCN* amplicon in a cohort of 556 neuroblastomas. **C**, Density
1163 plot for the amplification frequency near *MYCN*, measured using copy number profiles from
1164 238 *MYCN*-amplified neuroblastoma patients with (red) and without (blue) *DDX1* co-
1165 amplification. **D**, Frequency of *MYCN* amplifications with (red) and without (blue) *DDX1* co-
1166 amplification in different tumor entities. UCS, uterine carcinosarcoma; Lung cancer, lung
1167 adenocarcinoma. Breast 2015, BRCA_igr_2015; Breast 2017,
1168 BRCA_mbcproject_wagle_2017. **E**, Correlation between *DDX1* copy number and *MYCN*
1169 copy number derived from the TARGET neuroblastoma dataset (Pearson $r = 0.91795$, $P < 0.0001$, $N = 59$). Size of dots reflects the relative *MYCN* and *DDX1* copy number. **F**, Correlation between *DDX1* copy number and *DDX1* mRNA expression derived from the
1170 TARGET neuroblastoma dataset (microarray) (Pearson $r = 0.83952$, $P < 0.0001$, $N = 59$). **G**, Western immunoblot of *DDX1* and *MYCN* in a panel of neuroblastoma cell lines with (red)
1171 and without (blue) *DDX1-MYCN* co-amplifications, compared to cell lines without *MYCN*
1172 amplifications (black).
1173

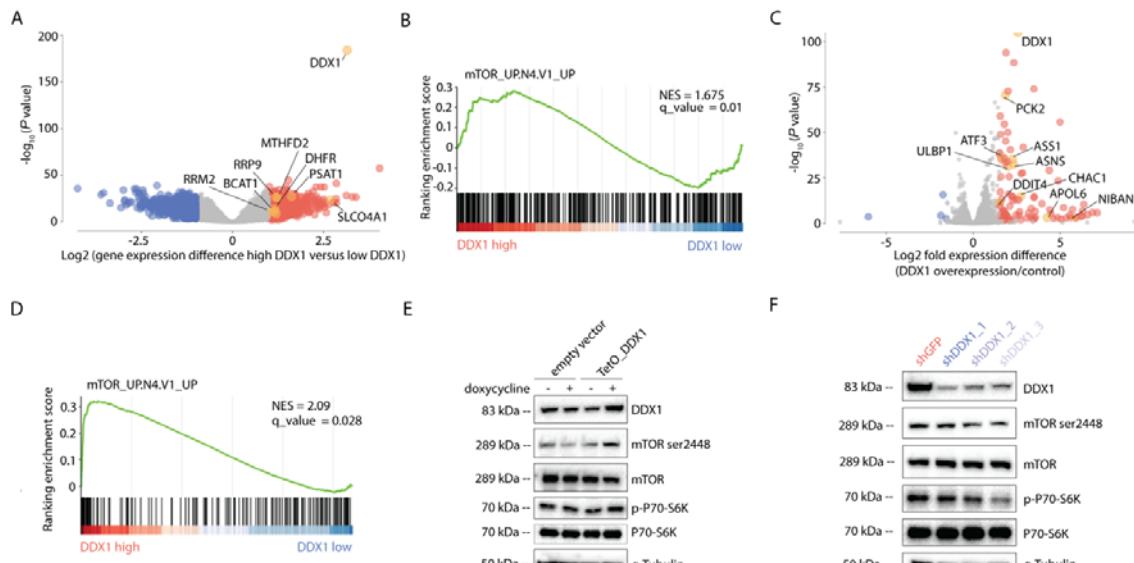
1174

1175


1176

1177
1178

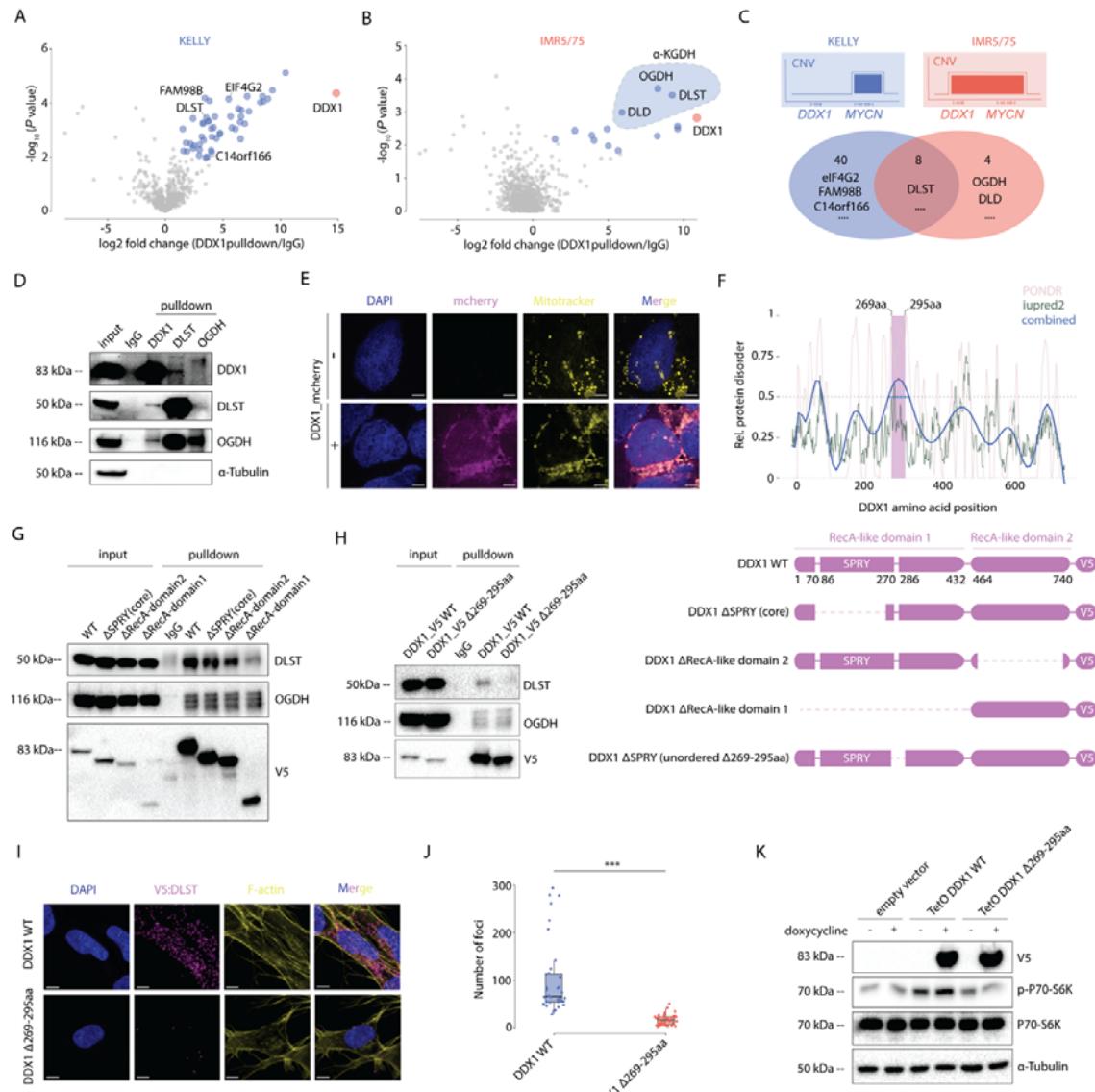
Figure 2. Ectopic DDX1 expression does not alter MYCN-driven tumorigenesis in zebrafish. **A**, Schematic figure showing the generation of DDX1-MYCN co-expressing zebrafish through breeding of tg (*dβh-DDX1:CryAA-mCerulean*) and tg (*dβh-MYCN: dβh-eGFP*) zebrafish. **B** From left to right, exemplary images from transgenic zebrafish tg (*dβh-DDX1:CryAA-mCerulean*) and tg (*dβh-MYCN: dβh-eGFP*) green fluorescent neuroblast tumors in the adrenal medulla analogue (interrenal gland, white arrowhead). Hematoxylin & Eosin (HE) staining of sagittal paraffin sections from the same fish. Magnification into the tumor area from sections shown left, with HE and tyrosine hydroxylase (green) staining. Scale bar from left to right: 2.5 mm, 1 mm, 100 μ m and 100 μ m. Arrowheads point to neuroblast tumors in zebrafish. **C**, Western immunoblot of DDX1 and MYCN in zebrafish tumor cell extracts. **D**, Cumulative frequency of neuroblast tumors in stable transgenic zebrafish by Kaplan-Meier analysis (*DDX1-MYCN* vs. *MYCN*, Kolmogorow-Smirnow-Test, $P = 0.8494$). **E**, Kaplan-Meier analysis of patients with *DDX1-MYCN* co-amplification compared to patients with *MYCN* amplifications lacking *DDX1* co-amplification (Log-Rank Test, $P = 0.73$).


1194
1195
1196
1197
1198
1199
1200
1201
1202

1203
1204
1205 **Figure 3. Neuroblastoma cells harboring *DDX1-MYCN* amplifications depend on**
1206 **mTORC1. A**, Schematic figure illustrating the approach for the identification of collateral
1207 lethal dependencies in *DDX1-MYCN* co-amplified cancer cells. *DDX1* and *MYCN* copy
1208 numbers across cancer cell lines were retrieved from the Cancer Cell Line Encyclopedia
1209 (CCLE II). CRISPR-Cas9-based gene dependency scores from DepMap of cell lines with
1210 *MYCN*-amplifications were compared to those with *DDX1-MYCN* co-amplification. **B**,
1211 Difference in gene dependency scores between cancer cell lines with *DDX1-MYCN* co-
1212 amplification vs. cell lines with *MYCN* amplifications compared to the log-transformed *P*
1213 values (Wilcoxon; candidate collateral lethal dependencies in *DDX1-MYCN* co-amplified
1214 cancer cells, blue; mTORC1 complex, blue). **C**, Correlation between *DDX1* copy number and
1215 dependency scores (CERES) for *RAPTOR* in neuroblastoma cell lines (Pearson correlation
1216 analysis, $R = -0.5996$, $P = 0.0152$, $N = 13$). **D**, Western immunoblot of *RAPTOR* and *DDX1*
1217 in the KELLY cells transduced with the doxycycline-inducible *DDX1-mcherry* vectors and
1218 with two pairs of sgRNAs targeting *RAPTOR* (sgRAPTOR) or a non-targeting sgRNA (sgNT)
1219 as well as Cas9 in the presence and absence of doxycycline (1 μ g/ml). Tubulin serves as a
1220 loading control. **E**, Representative images of cell colonies formed by KELLY cells
1221 transduced with the doxycycline-inducible *DDX1-mcherry* vectors and with two pairs of
1222 sgRNA targeting *RAPTOR* (sgRAPTOR) or non-target sgRNA (sgNT) as well as Cas9 in the
1223 presence and absence of doxycycline (1 μ g/ml) and stained with crystal violet (left).
1224 Quantification of colony numbers (right, mean \pm s.e. $N = 3$ biological replicates; Welch t-test,
1225 $P = 0.564$, 0.000117 and 0.00131 for sgNT, sgRAPTOR_1 and sgRAPTOR_2, respectively).

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

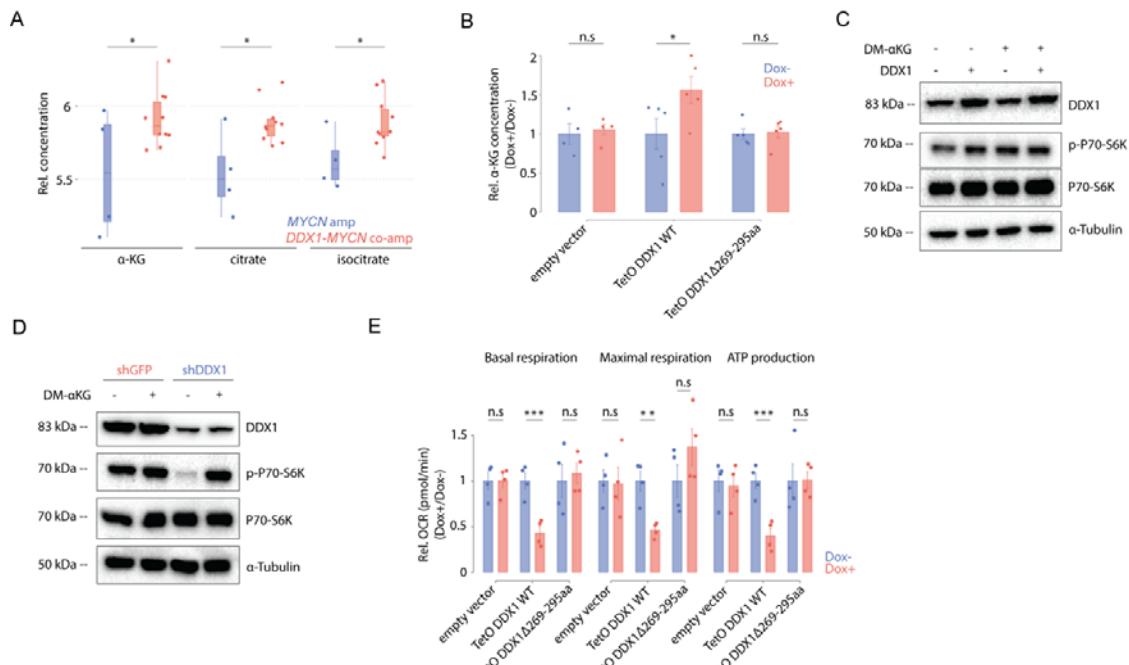
1239



1240

1241

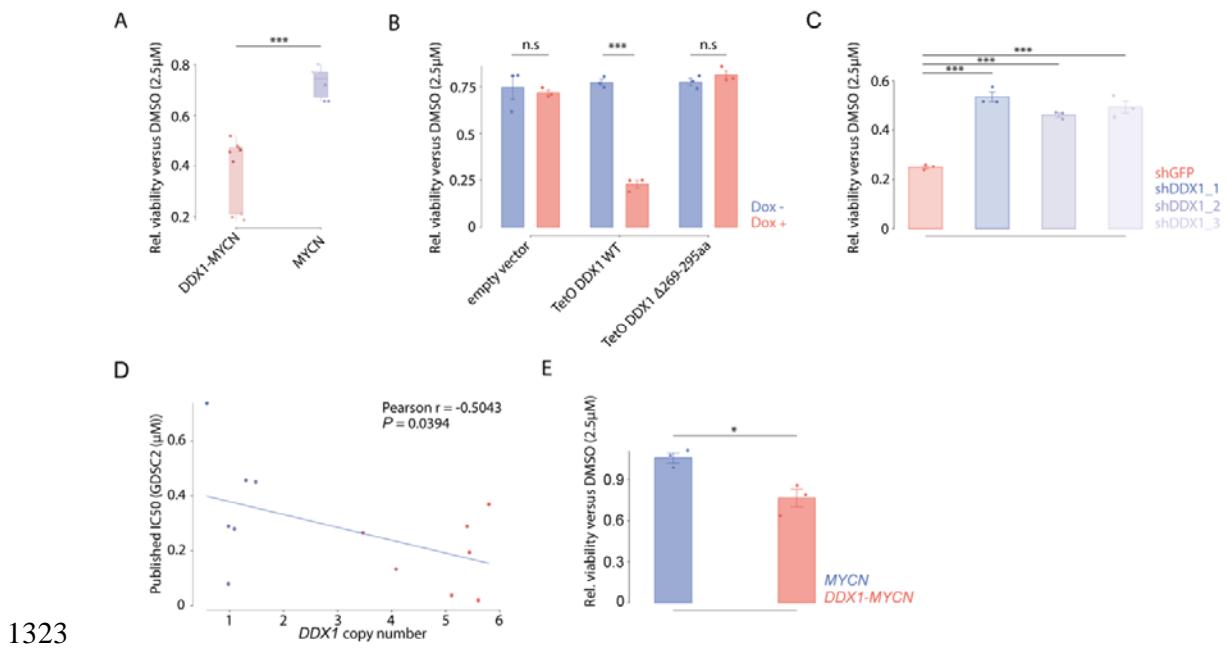
1242 **Figure 4. High DDX1 expression results in mTORC1 pathway activation.** **A**, Volcano plot of genes differentially expressed between primary neuroblastomas with high vs. low DDX1 mRNA expression ($N = 709$ patients; genes with significantly lower expression, blue; genes with significantly higher expression, red, genes known to be regulated by mTORC1 signaling, orange). **B**, Gene set enrichment analysis (GSEA) based on a set of genes regulated by mTORC1 measured in genes differentially expressed in tumors with high vs. low DDX1 expression. **C**, Volcano plot of genes differentially expressed in KELLY cells with vs. without ectopic DDX1 expression ($N = 3$ independent replicates; genes with significantly lower expression, blue; genes with significantly higher expression, red, genes known to be regulated by mTORC1 signaling, orange). **D**, GSEA based on a set of genes regulated by mTORC1 measured in genes differentially expressed in KELLY cells harboring a *MYCN* amplification with vs. without ectopic DDX1 expression. **E**, Western immunoblot of mTOR ser2448 phosphorylation and P70-S6K Thr389 phosphorylation in KELLY cells 48h after inducible expression of DDX1. KELLY cell transduced with empty vector serve as negative controls. **F**, Western immunoblot of mTOR ser2448 phosphorylation and P70-S6K Thr389 phosphorylation in IMR5/75 cell after shRNA-mediated knock down of DDX1 using three independent shRNAs (blue) compared to cells expressing shRNA targeting GFP (red).


1259

1260
1261

Figure 5. DDX1 interacts with α-KGDH complex members and its interaction is required for mTORC1 pathway activation. **A-B**, Volcano plot of proteins significantly enriched after immunoprecipitation of DDX1 in KELLY cells harboring *MYCN* amplifications without *DDX1* co-amplifications (**A**) and in IMR5/75 cells harboring *DDX1-MYCN* co-amplifications (**B**) measured using LC-MS/MS (significantly enriched proteins, blue; DDX1 marked in red; dotted line with blue filling marks α-KGDH complex members). **C**, Schematic of the amplicon structure in KELLY and IMR5/75 cells (top). Venn diagram (bottom) of the proteins identified after immunoprecipitation of DDX1 in KELLY cells lacking *DDX1* co-amplifications compared to IMR5/75 cells harboring *DDX1-MYCN* co-amplifications. **D**, Western immunoblot of DDX1, DLST, OGDH and α-tubulin in IMR5/75 protein extracts before and after immunoprecipitation using antibodies directed against DDX1, DLST, OGDH or non-specific immunoglobulins (IgG). **E**, Representative confocal fluorescence imaging photomicrographs of KELLY cells expressing DDX1-mCherry (magenta), in which mitochondria were stained by MitoTracker DeepRed (yellow) and the nucleus is stained by DAPI (blue; scale bar: 6 μm). **F**, Prediction of disordered regions in

1277 DDX1 (top) using Predictor of Natural Disordered regions (PONDR, XL1_XT, pink),
1278 Iupred2(green) and polynomial fitted model (blue; the position of amino acids 269-295 is
1279 marked in purple). Schematic illustration (bottom) of protein domains in DDX1 as well as
1280 engineered DDX1 mutants (DDX1-ΔSPRY (core), Δ69-247aa; ΔRecA1, Δ13-472aa; ΔRecA2,
1281 Δ493-681aa). **G**, Western immunoblot of V5, DLST and OGDH before and after
1282 immunoprecipitation using antibodies directed against V5, DLST, OGDH or non-specific
1283 immunoglobulins (IgG) in IMR5/75 cells expressing DDX1-V5 compared to DDX1-
1284 ΔSPRY(core), ΔRecA1 or ΔRecA2 truncation mutants, respectively. **H**, Western immunoblot
1285 of V5, DLST and OGDH before and after immunoprecipitation using antibodies directed
1286 against V5, DLST, OGDH or non-specific immunoglobulins (IgG) in IMR5/75 cells
1287 expressing DDX1-V5 or DDX1-V5-Δ269-295aa. **I**, Representative confocal fluorescence
1288 imaging photomicrographs of proximity ligation assay signals (magenta dots) in IMR5/75
1289 cells expressing DDX1-V5 or DDX1-V5-Δ269-295aa detected using anti-V5 and anti-DLST
1290 antibodies and counterstained with DAPI (blue) and phalloidin (yellow; scale bar: 7 μ m). **J**,
1291 Quantification of proximity ligation signal (magenta) using anti-DLST and anti-V5
1292 antibodies in IMR5/75 cells expressing DDX1-V5 ($N = 36$) or DDX1-V5-Δ269-295aa ($N =$
1293 34) as shown in Figure 5I. (Welch t-test, $P = 1.476\text{e-}07$). **K**, Western immunoblot of V5,
1294 P70-S6K, P70-S6K Thr389 phosphorylation and α -tubulin in KELLY cells after inducible
1295 expression of DDX1-V5, DDX1-V5-Δ269-295aa or an empty vector.
1296
1297
1298



1299
1300

1301 **Figure 6. DDX1 hijacks the α-KGDH complex resulting in α-KG accumulation and**
 1302 **OXPHOS reduction. A, Relative concentrations of α-KG, citrate and isocitrate in cancer**
 1303 **cell lines with DDX1-MYCN co-amplifications (red) compared to cells only harboring MYCN**
 1304 **amplifications (blue; Welch t-test, $P = 0.038764, 0.008224$ and 0.025814 for α-KG, citrate**
 1305 **and isocitrate, respectively; $N = 4$ independent MYCN-amplified cancer cell lines versus $N =$**
 1306 **8 independent cancer cell lines with DDX1-MYCN co-amplification). B, Relative α-KG**
 1307 **concentrations measured by GC-MS in KELLY cells ectopically expressing DDX1 or the**
 1308 **DDX1-Δ269-295aa for 48 hours. KELLY cell transduced with an empty vector and exposed**
 1309 **to doxycycline were used as control (Wilcoxon test, $P = 0.02778$; Data are shown as mean**
 1310 **± standard error) C, Western immunoblot of DDX1, P70-S6K, P70-S6K Thr389**
 1311 **phosphorylation and α-tubulin on KELLY cells treated with DM-αKG (2mM for 48 hours)**
 1312 **in the presence or absence of ectopic DDX1 expression. D, Western immunoblot of DDX1,**
 1313 **P70-S6K, P70-S6K Thr389 phosphorylation and α-tubulin in IMR5/75 cells treated with**
 1314 **DM-αKG (2 mM for 48 hours) and expressing shRNA targeting either DLST or GFP as**
 1315 **control. E, Mitochondrial oxygen consumption rate (OCR) measured using live-cell**
 1316 **metabolic analysis at basal respiration, maximal respiration and ATP production in KELLY**
 1317 **cells inducibly expressing DDX1 or DDX1-Δ269-295aa for 48 hours. KELLY cell**
 1318 **transduced with a doxycycline-inducible empty vector served as negative control (Welch t-**
 1319 **test, $P = 0.002463, 0.01083$ and 0.002127 for basal respiration, maximal respiration and ATP**
 1320 **production, respectively; Data are shown as mean ± s.e.; $N = 4$ independent replicates).**

1321

1322

1323

1324

1325

Figure 7. Aberrant DDX1 expression is sufficient to increase sensitivity to pharmacological mTORC1 inhibition. **A**, Relative cell viability as measured using MTT assay of neuroblastoma cell lines with *DDX1*-*MYCN* co-amplification (red, $N = 3$), or with *MYCN* amplifications (blue, $N = 2$) treated with rapamycin (2.5 μM for 72 hours) compared to cell viability after DMSO (vehicle control) treatment (Welch t-test, $P = 2.291e-05$ *DDX1*-*MYCN* vs *MYCN*; each data point represents a technical replicate). **B**, Relative cell viability as measured using MTT assay of KELLY cells inducibly expressing DDX1, DDX1-Δ269-295aa or an empty vector and treated with rapamycin (2.5 μM for 72 hours) compared to cell viability after DMSO (vehicle control) treatment (Welch t-test, $P = 3.943e-05$; data are shown as mean ± s.e.; $N = 3$ technical replicates). **C**, Relative cell viability as measured using MTT assay of IMR5/75 cells expressing shRNAs directed against DDX1 (blue) or GFP (red) and treated with rapamycin (2.5 μM for 72 hours) compared to cell viability after DMSO (vehicle control) treatment. (Pairwise t-test adjusted by Benjamini-Hochberg correction, $P = 1.3e-05$, $4.1e-05$ and $2.2e-05$ for each independent shRNA directed against DDX1 vs. shGFP, respectively; Data are shown as mean ± s.e.; $N = 3$ technical replicates). **D**, Correlation between the *DDX1* copy number and the IC₅₀ value of rapamycin in different neuroblastoma cell lines derived from the GDSC2 database (Pearson correlation, $R = -0.5043$, $P = 0.0394$, $N = 13$ independent cancer cell lines). **E**, Relative cell viability as measured using MTT assay of neuroblastic tumor cells derived from transgenic zebrafish expressing *MYCN* or *MYCN* and *DDX1* and treated with rapamycin (2.5 μM for 72 hours) compared to cell viability after DMSO (vehicle control) treatment (Welch t-test, $P = 0.02707$; Data are shown as mean ± s.e.; $N = 3$ independent replicates from cells derived from different zebrafish).

1347