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ABSTRACT 24 

Linkage disequilibrium (LD) is a fundamental concept in genetics; critical for studying 25 

genetic associations and molecular evolution. However, LD measurements are only 26 

reliable for common genetic variants, leaving low-frequency variants unanalyzed. In this 27 

work, we introduce cumulative LD (cLD), a stable statistic that captures the rare-variant 28 

LD between genetic regions, which reflects more biological interactions between 29 

variants, in addition to lack of recombination. We derived the theoretical variance of cLD 30 

using delta methods to demonstrate its higher stability than LD for rare variants. This 31 

property is also verified by bootstrapped simulations using real data. In application, we 32 

find cLD reveals an increased genetic association between genes in 3D chromatin 33 

interactions, a phenomenon recently reported negatively by calculating standard LD 34 

between common variants. Additionally, we show that cLD is higher between gene pairs 35 

reported in interaction databases, identifies unreported protein-protein interactions, and 36 

reveals interacting genes distinguishing case/control samples in association studies. 37 

 38 

  39 
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INTRODUCTION 40 

Linkage Disequilibrium (LD) is a fundamental concept in population genetics that 41 

statistically captures non-random associations between two genetic variants due to 42 

reasons such as lack of recombination or different age of mutations (Slatkin 2008). LD 43 

serves as a core component in genotype-phenotype association mapping, as a 44 

statistically significant genetic variant could be just a proxy in LD with the genuine causal 45 

variant(s) (Weissbrod et al. 2020). To this end, LD is critically important in analyzing the 46 

fine resolution of genotype-phenotype association mapping (Flint-Garcia et al. 2003) and 47 

forming polygenic risk scores (Amariuta et al. 2020). Additionally, from the perspective of 48 

molecular evolution, LD values substantially higher than expected under neutrality may 49 

indicate interesting phenomena, e.g., interactions between loci that are favored by 50 

selection (Gregersen et al. 2006). As such, LD has been extensively utilized in 51 

evolutionary studies. 52 

The calculation of LD involves the use of allele frequencies of the genetic variants in its 53 

denominator to normalize the statistic (Methods; Supplementary Materials 1.1) and 54 

therefore suffers from a high variance (instability) when allele frequencies are close to 55 

zero. As such, in practice, researchers only analyze common genetic variants with minor 56 

allele frequency (MAF) higher than a threshold (e.g.,0.05), excluding more than 90% of 57 

human genetic variants (Auton et al. 2015). 58 

In the field of association mapping, researchers have developed multiple techniques to 59 

aggregate the associations of multiple rare variants with a phenotype into a single 60 

shared effect. One of the pioneering methods that is still popularly used (Li and Leal 61 

2008) is synthesizing a cumulative allele frequency from multiple rare genetic variants in 62 

the same genetic region (e.g., within a gene). The cumulative minor allele frequency 63 
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(cMAF) is defined on a region containing multiple rare variants: an individual will be 64 

labelled as a “mutant” if it has at least one of the rare variants, and then the proportion of 65 

individuals in the sample that are labelled as mutants will be the cMAF for this region 66 

(Fig. 1a).   67 

Building on the idea of cMAF and the essence of LD, we developed a statistic, 68 

cumulative Linkage Disequilibrium (cLD) to capture the aggregated correlation between 69 

two sets of rare variants (Methods; Fig. 1b).  70 

We thoroughly tested the property of cLD. First, using both theoretical closed-form 71 

derivation and bootstrapped simulations (Methods), it is verified that cLD enjoys way 72 

lower variance than the standard LD when applied to rare variants, evidencing cLD’s 73 

higher stability (Fig. 2). We then applied cLD to four scenarios in genetic analysis 74 

(Methods), discovering additional knowledge that have not been reported (or attempted 75 

but negatively reported) using standard LD (Figs. 3 – 6).   76 

 77 

RESULTS  78 

The intuitive idea of defining cLD. In the similar vein of definition of cMAF, we define 79 

cLD below. Specifically, for the traditional calculation of LD between two variants, g1 and 80 

g2 with minor alleles a and b respectively, the essential part is the definition of individual 81 

MAF P(a) and P(b) and the frequency that a and b show up in the same haplotype, 82 

P(ab). For calculating cLD between two regions, A and B, we first use cMAF to define 83 

P(A) and P(B) (the proportion of individuals carrying a rare variant within regions A and 84 

B, respectively); and then P(AB), the proportion of individuals who have at least one rare 85 

variant in both regions A and B (Fig. 1b). Mathematical details are spelt out in Methods 86 

and Supplementary Materials 1.1 & 1.2). 87 
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Figure 1. Illustration of the idea of a) cMAF and b) cLD. An example to show the calculation of 88 
cLD, inspired by cMAF. a) Out of six haplotypes, there are two [1, 4] who have mutations in 89 
region A. Therefore, the cMAF P(A) for region A is 2/6 = 0.33. b) There are three haplotypes [3, 90 
4, 5] who have mutations in region B and the cMAF P(B) for region B is 3/6 = 0.50. If one 91 
considers regions A and B together, there is one individual with mutations in both regions: [4]. 92 
Thus, the P(AB) is 1/6 = 0.17. Finally, by yielding P(A), P(B) and P(AB) into the standard formula 93 
of LD we have cLD = 0.375. 94 
 95 

 96 

High stability of cLD in contrast to standard LD. Both LD and cLD could be used to 97 

capture the correlation between two sets of rare variants. However, these two measures 98 

differ in the aspect of stability. Intuitively, as cMAF is always higher than MAF, cLD’s 99 

variance (reflecting its instability) should be lower than LD’s. We verify this intuition by 100 

deriving the closed-form of variance of both LD and cLD (denoted as Var(LD) and 101 

Var(cLD)) using multinomial distributions and their multivariate normal approximation as 102 

well as the multivariate Delta Method (Lehmann Springer) (Methods; Supplementary 103 

Materials 2.1 & 2.2). by plugging in the allele frequencies calculated using the 1000 104 
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Genomes Project data (Auton et al. 2015) (Supplementary Materials 2.3), we observed 105 

that the variance of cLD is at least six orders of magnitudes smaller (i.e., more stable) 106 

than the alternative -- calculating LD directly on rare variants in all ethnic populations 107 

and all cMAF bins (Fig. 2a; Supplementary Figs. S2.1a & S2.2a). Additionally, 108 

following the conventional statistical procedure of bootstrapping to empirically estimate 109 

stability, we sub-sampled half of each population sample 1,000 times to form 110 

bootstrapped distributions for both cLD and LD (Methods; Supplementary Materials 111 

2.4). The subsampling showed that cLD exhibits much slimmer bootstrapped 112 

distributions than LD across all cMAF bins and all three ethnic groups (Fig. 2b, 113 

Supplementary Figs. S2.1b & S2.2b), further confirming the greater stability of cLD 114 

compared to traditional measures of LD.  115 

 116 

cLD reveals linkage disequilibrium between 3D contact regions where standard 117 

LD fails. A distinct advantage of cLD over LD is the ability to reveal linkage 118 

disequilibrium between 3D contact regions. By aggregating information from multiple 119 

independent mutations, cLD is sensitive to subtle interactions poorly reflected by LD 120 

(which can only account for two at a time). As such, cLD captures more biological 121 

interactions in addition to traditional LD that focuses more on the lack of recombination. 122 

Interactions within the 3D structure of genomes is one place where this difference allows 123 

for insight from cLD where LD-based methods fail. The availability of high-throughput 124 

experimental technologies that can assess chromatin conformation such as Hi-C 125 

(Rajarajan et al. 2018; Akbarian et al. 2015) allows researchers to analyze genetic 126 

regions that are in close contact in 3D spatial structure. There was a widely 127 

disseminated expectation that the 3D genomic interaction in the form of chromatin  128 
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Figure 2. Stability of cLD and LD revealed by closed-form variance calculation and 129 
bootstrapped distributions. a) The gene pairs were split into four different bins based on the 130 
cMAF values, i.e., <0.05, 0.05 - 0.10, 0.10 - 0.20, and 0.20 - 0.40 (y-axis). The x-axis is the ratio 131 
between the variances of cLD and LD, i.e., Var(cLD)/Var(LD). b) Probability density distribution of 132 
cLD and LD from bootstrapped samples. Results from the European population are shown. See 133 
Supplementary Figs. S2.1 & S2.2 for other populations. 134 
 135 

 136 
 137 
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contact may leave a footprint in the form of genetic LD (Joiret et al. 2019). Motivated by 138 

such expectation, Whalen and Pollard calculated the standard LD based on common 139 

variants (MAF>0.05) in 1000 Genomes Project data (Auton et al. 2015)  and reported 140 

negative results stating that genetic LD map is not overlapping with the 3D contact map 141 

(Whalen and Pollard 2019). However, by reanalyzing the 1000 Genomes sequencing 142 

data and Hi-C data (Akbarian et al. 2015; Rajarajan et al. 2018) in the developing brain 143 

using cLD on rare variants (Methods; Supplementary Materials 3.1 & 3.2), we 144 

revealed that the 3D chromatin interactions did leave genetic footprints in the form of 145 

higher cLD in pairs of genes that are in the adjacent Hi-C regions (Fig 3a; 146 

Supplementary Fig. S3.1). To assess the statistical significance of the enrichment of 147 

cLD in 3D contact regions, we conducted Mantel-Haenszel and Fisher exact tests 148 

(Supplementary Materials 3.4), both of which are highly significant (P-value < 1.0E-50; 149 

Supplementary Tables S3.2 & S3.6, Supplementary Materials 3.4.1). As Whalen & 150 

Pollard’s work (Whalen and Pollard 2019) is not at the resolution of genes, we re-151 

calculated standard LD using common variants based on gene pairs (Supplementary 152 

Materials 3.2), which shows a subtle effect (Fig. 3b, Supplementary Fig. S3.2) but still 153 

not statistically significant with Mantel-Haenszel and Fisher exact tests (P-value =0.999; 154 

Supplementary Tables S3.3 & S3.4; Supplementary Materials 3.4.1). Additionally, we 155 

checked the ratio between the number of pairs of genes within the 3D contact regions 156 

and the number of pairs outside the 3D contact regions as a function of their cLD cut-off. 157 

More specifically, we prespecified a cLD value cutoff and only counted the gene pairs 158 

with cLD value higher than this cutoff; then we separated the number of genes within or 159 

outside 3D contact regions and calculated their ratios (Supplementary Materials 3.5). 160 

Indeed, we found that the ratios are significantly larger than 1.0 and increase as the cLD 161 

cutoffs increase (Fig 3c,d,e, Supplementary Table S3.7). Taking together, 3D  162 
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Figure 3. Enrichment of cLD among pairs of genes in chromatin contact regions. a) The 163 
comparisons of cLD values between the 3D chromatin interaction regions and non-interaction 164 
regions among 13 different distance groups in the European population. (Other populations are 165 
shown in Supplementary Fig. S3.1) The confidence intervals for these bars are presented in 166 
Supplementary Table S3.1. b) The same comparisons using standard LD in the European 167 
population. (Other populations are shown in Supplementary Fig. S3.2) c-e) The ratios between 168 
the number of gene pairs in 3D chromatin interaction regions against the number of gene pairs 169 
that are not in 3D regions. The x-axis is the cLD value cutoffs above which the gene pairs are 170 
counted. c) European population. d) African population. e) East Asian population.  171 
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interactions clearly overlap with genetic interactions; and cLD is instrumental in 172 

observing this whereas standard LD fails.  173 

 174 

cLD is enriched in known interacting genes. To demonstrate that gene-gene 175 

interactions leave footprints in rare genetic mutations regardless of their physical 176 

positions we computed the distribution of cLD among interacting pairs genes reported in 177 

Reactome (Fabregat et al. 2018) and BioGRID (Stark et al. 2006), MINT (Orchard 2012) 178 

and IntAct (Orchard et al. 2014) (Methods; Supplementary Materials 3.3). We 179 

compared this distribution against a null distribution formed by all pairs of genes. Indeed, 180 

the comparisons led to the expected result: for gene pairs separated by any physical 181 

distance within 2MB, cLD is elevated in interacting gene pairs (Fig. 4; Supplementary 182 

Fig. S3.3). Again, the Mantel-Haenszel and Fisher exact tests confirm that the 183 

differences are significant (P-value < 1.0E-20; Supplementary Table S3.5; 184 

Supplementary Materials 3.4.2).  185 

Figure 4. The comparisons of cLD values in European populations between gene pairs found in 186 
interaction databases and all pairs that are not in databases. Each bar represents the average of 187 
pairs with distance smaller than the value of its x-axis label but larger than the value of the 188 
previous x-axis label. (Other populations show the same trend, as depicted in Supplementary 189 
Fig. S3.3) 190 
 191 

 192 
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cLD identified novel pairs of likely interacting proteins. To examine the novel gene 193 

pairs with higher cLD values have the receptor-ligand interactions of their translated 194 

proteins, we performed protein-docking analysis to obtain the evidence. Looking at all 195 

pairs of genes, we observed several pairs without prior evidence of interaction with 196 

extraordinarily high cLD, such as between genes MEMO1 and DPY30 (encoding 197 

proteins 3BCZ and 4RIQ, respectively) with a cLD of 0.86. We conducted protein 198 

docking analysis for the genes of large cLD values (top 0.01% among all gene pairs) 199 

with cMAF > 0.05 and existing IDs in PDB, however, not reported in any interaction 200 

databases (Methods; Supplementary Materials 4.1; Supplementary Table S4.1). 201 

These criteria lead to 19 pairs of genes for protein-docking. We found multiple lines of 202 

evidence of the interaction at protein level for five pairs (Supplementary Table S4.2) in 203 

terms of both binding affinity and interacting residues (Fig. 5a-d; Supplementary Figs. 204 

S4.1 - S4.4).  205 

 206 

Differences in cLD distinguish cases/controls in Autism exome data. In the context 207 

of case/control association studies, cLD can be used to identify pairs of genes whose 208 

interactions may be responsible for human diseases. Using data from the Autism 209 

Spectrum Disorders (ASD) whole exome sequencing dataset (Satterstrom et al. 2020), 210 

we calculated cLD values for all pairs of genes, separately conducted for the populations 211 

of cases and controls (Methods; Supplementary Materials 5.1 & 5.2). The difference 212 

in cLD for a pair of genes conditional on case/control status, defined as ΔcLD, is 213 

indicative of an interaction that is non-random associating with disease status. We 214 

collected gene pairs with high ΔcLD and checked their annotation and enrichment in 215 

existing databases. Using a hypergeometric test, we analyzed the enrichment among  216 
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Figure 5: Protein docking interaction between 3BCZ and 4RIQ revealed by cLD (=0.86) with a 217 
binding affinity of -341.21 kJ/mol.  a) Structure of 3BCZ (red) and 4RIO (blue) protein-protein 218 
complex. b-d) 2D representation of closest interacting residues around the protein-protein 219 
interaction interfaces, including multiple non-covalent bonds, for example, hydrogen bonds (green 220 
dotted line) and hydrophobic interactions (read and rose semi-circle with spikes). Residues for the 221 
3BCZ are depicted in upper letters (T, U, O, R, N) and for the 4RIO are depicted in lower letters.  222 
 223 

 224 

high-ΔcLD genes for ASD genes reported by DisGeNet (Piñero et al. 2017), an 225 

established general database for diseases and SFARI (Abrahams et al. 2013), a gold-226 
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standard database focusing on ASD (Supplementary Materials 5.3). The genes 227 

included in the pairs with high ΔcLD scores are highly enriched in both the Autism 228 

related genes in DisGeNet (Fig. 6a) and SFARI (Fig. 6b). Gene Ontology (Ashburner et 229 

al. 2000) and pathways (KEGG) (Kanehisa and Goto 2000; Kanehisa et al. 2009) 230 

enrichment analysis for the high ΔcLD genes (Methods; Supplementary Table S5.2; 231 

Supplementary Materials 5.4) also showed sensible biological functions and pathways 232 

(Fig. 6c,d) that are well supported by the literature (Supplementary Materials 5.4) 233 

(Ashburner et al. 2000; Kanehisa and Goto 2000; Kanehisa et al. 2009; Yu et al. 2012; 234 

Rojas 2014; Hannelius et al. 2005; Richler et al. 2006; O ’ Roak et al. 2012; Fung and 235 

Hardan 2015; Sato et al. 2012; Berkel et al. 2010; Durand et al. 2007; Wei et al. 2021; 236 

Ye et al. 2011; Betancur et al. 2009; Lin et al. 2016). By taking a closer look of the 20 237 

genes identified by the top 10 gene pairs with the highest ΔcLD values, found that 14 238 

genes (70%) have been reported to be associated with ASD, including DENND4A, 239 

EFCAB5, ABI2, RAPH1, MSTO1, DAP3, ARL13B, PRB2, PRB1, ZNF276, FANCA, 240 

ADAM7, SLC26A1 and TUBB8 (Supplementary Table S5.1). Moreover, among the rest 241 

of six genes, we also identified indirect links of two, RAB11A and IDUA with ASD 242 

(Supplementary Materials 5.3). 243 

Figure 6: ΔcLD gene pairs in case/control association mapping data: annotation of top 244 
genes and enrichment of pathways. a-b) Group bar charts show the ratio between the number 245 
of selected genes being validated in the database dividing the number of genes in the database 246 
(q/m) as well as the number of selected genes dividing the total number of all known minus m 247 
(k/n). The values on the top of each bar are the p-values of the hypergeometric distribution 248 
probability test. The x-axis indicated the top gene pairs using different cutoffs, [200, 500, …, 249 
2,000]. a) DisGeNET database. b) SFARI database. c) a dot plot showing the top 10 KEGG 250 
pathways ranked by the GeneRatio values. The size of the balls indicates the number of the 251 
genes enriched and the color indicates the level of the enrichment (P-adjusted values). The 252 
GeneRatio is calculated as count/setSize. 'count' is the number of genes that belong to a given 253 
gene-set, while 'setSize' is the total number of genes in the gene-set. d). a bar plot showing the 254 
top 10 enriched biological processes ranked by p-values. The correlation is more significant as 255 
the red/blue ratio increases. The number on the x-axis indicates the number of genes that belong 256 
to a given gene set. 257 
 258 
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 259 

DISCUSSION  260 

 261 

LD is a critical concept applicable to many types of genetic analyses. In this work, we 262 

have defined cLD, a new statistic addressing the association between genetic regions 263 

using rare genetic variants. In contrast to the previous attempts to utilize LD between 264 

multiple variants focusing on dominant haplotypes (Zan et al. 2018) or joint distributions 265 

(Turkmen and Lin 2017), cLD emphasizes biological interactions. Additionally, previously 266 

researchers have proposed composite linkage (Hamilton and Cole 2004; Zaykin 2004), 267 
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which addresses the property of variances and its normalization, however, does not 268 

incorporate rare variants. 269 

 270 

By both closed-form derivations and statistical simulations, we proved the stability of cLD 271 

in contrast to the high instability of standard LD (when applied to rare variants). The 272 

stability and the focus on biological interaction allows cLD to capture additional 273 

information from the distributions of many variants segregating in a population at low 274 

frequencies within particular regions of a genome. Indeed, by applying cLD to real data, 275 

we observed interesting overlapping pattern of 3D interactions and genetic interactions 276 

that have been negatively reported by using standard LD. We also successfully analyzed 277 

protein docking and association mapping, providing two broadly impactable use-cases of 278 

cLD.  With its demonstrated power in identifying gene and protein interactions, cLD 279 

might offer an essential tool to analyze biological interactions and their evolution using 280 

rare genetic variants. 281 

 282 

METHODS 283 

Definition of LD and cLD: 284 

The definition of LD between two bi-allelic loci relies on the calculation of three key 285 

quantities: 𝑃஺, the allele frequency of an allele in locus A, 𝑃஻, the allele frequency of an 286 

allele in locus B, and 𝑃஺஻, the frequency of these two alleles of A and B showing up 287 

together. Then one can define the unnormalized disequilibrium statistic 𝐷 = 𝑃஺஻ − 𝑃஺𝑃஻. 288 

To rescale the statistic based on allele frequency, one can normalize 𝐷 by dividing it by 289 

the allele frequency variances: 290 
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𝑟ଶ =
஽మ

௉ಲ(ଵି௉ಲ)௉ಳ(ଵି௉ಳ)
. 291 

An alternative definition of LD is 𝐷ᇱ, which has a different way of normalization. In this 292 

paper, we used 𝑟ଶ as the representative. Because LD involves 𝑃஺ and 𝑃஻    in the 293 

denominator, it is highly instable when 𝑃஺ or 𝑃஻   are close to zero, which means LD 294 

cannot be used if A or B are rare variants.    295 

The cLD statistic is designed to handle the above problem by aggregating rare variants 296 

cumulatively. In the similar vein of definition of cMAF, the idea of cLD is illustrated in Fig. 297 

1b. More specifically, here we look at two sets of variants in two genetic regions, e.g., 298 

two genes, again namely A and B. Assuming that there are m SNPs in gene A, and 299 

there are r SNPs in gene B. Also, we assume the sample size is n. Then, for gene A, we 300 

use 𝑆ଵ௜, 𝑆ଵ௜ , … , 𝑆௠௜ to denote the allele of the s-th SNP (𝑠 = 1, 2, … , 𝑚) in the i-th individual 301 

(𝑖 = 1, 2, … , 𝑛). Similarly, for gene B, we use {𝐾ଵ௜ , 𝐾ଶ௜, … , 𝐾௥௜} to denote the allele of the k-302 

th SNP (𝑘 = 1, 2, … , 𝑟) in the i-th individual (𝑖 = 1, 2, … , 𝑛). Note that 𝑆௦௜ and 𝐾௞௜ is either 303 

0 or 1. (0 denotes a major allele, whereas 1 denotes a minor allele). 304 

Then we have the cMAF (𝑃஺ & 𝑃஻) defined below: 305 

𝑃஺ =
1

𝑛
෍ 𝐼 ൭෍ 𝑆௦௜

௠

௦ୀଵ

≥ 1൱

௡

௜ୀଵ

 306 

𝑃஻ =
1

𝑛
෍ 𝐼 ൭෍ 𝐾௞௜

௥

௞ୀଵ

≥ 1൱

௡

௜ୀଵ

 307 

Where 𝐼(. ) is the indicator function. 𝑃஺஻ is then defined as the proportion of individual 308 

haplotypes with a minor allele in both regions: 309 
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𝑃஺஻ =
1

𝑛
෍ 𝐼 ൭𝐼 ൭෍ 𝑆௦௜

௠

௦ୀଵ

≥ 1൱ + 𝐼 ൭෍ 𝐾௞௜

௥

௞ୀଵ

≥ 1൱ = 2൱

௡

௜ୀଵ

 310 

Following the convention of LD, we define the 𝑟ଶ version of cLD: 311 

𝑐𝐿𝐷 =
(௉ಲಳି௉ಲ௉ಳ)మ

௉ಲ(ଵି௉ಲ)௉ಳ(ଵି௉ಳ)
. 312 

The more rigorous mathematical descriptions and the definition of 𝐷ᇱ version is provided 313 

in Supplementary Materials 1.1 & 1.2.  314 

 315 

Derivation of theoretical variance of cLD in contrast to LD 316 

To obtain the theoretical variance of cLD and LD, we derived their asymptotic 317 

distributions. The details are in Supplementary Materials 2.1 & 2.2. The gist of our 318 

approach is summarized in the following three steps: 319 

First, we rewrote the formula of cLD and LD in terms of counts to use multinomial 320 

random variables. In the definition, we used 𝑋௜௝௞ to denote the allele of the k-th variant of 321 

the j-th gene for the i-th individual (haplotype) of. For a pair of variants, the i-th pair 322 

(𝑋௜ଵ௨, 𝑋௜ଶ௩)  (𝑖 = 1, 2, … , 𝑛) can take possible values (1,1), (0,1), (1,0) and (0,0). Using 323 

𝑂ଵ to 𝑂ସ to denote the count of the 4 possible pairs in two variants, the distribution of 𝑶 =324 

(𝑂ଵ, 𝑂ଶ, 𝑂ଷ, 𝑂ସ)  is 𝑶~𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚(𝑛; 𝒑)  with 𝒑 = (𝑝ଵ, 𝑝ଶ, 𝑝ଷ, 𝑝ସ)  represents the population 325 

probability. The LD between the u-th and v-th variants can be re-written as: 326 

 𝐿𝐷(௨,௩) =
(ைభைరିைమைయ)మ

(ைభାைమ)(ைభାைయ)(ைమାைర)(ைయାைర)
. 327 

Similarly, we followed the same strategy of using multinomial random variables to 328 

describe cLD as below:  329 
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In analogy to the case of LD, we used 𝑋௜௝ to denote the allele of the j-th gene for the i-th 330 

individual (haplotype). For a pair of genes, the i-th pair (𝑋௜ଵ, 𝑋௜ଶ) (𝑖 = 1, 2, … , 𝑛) can take 331 

possible values (1,1), (0,1), (1,0) and (0,0). Using 𝑀ଵ to 𝑀ସ to denote the counts of the 4 332 

possible pairs in two genes, then the distribution of 𝑴 = (𝑀ଵ, 𝑀ଶ, 𝑀ଷ, 𝑀ସ) is 333 

𝑴~𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚(𝑛; 𝑞)  with 𝒒 = (𝑞ଵ, 𝑞ଶ, 𝑞ଷ, 𝑞ସ)  represents the population probability. The 334 

cLD between a pair of genes could be rewritten as: 335 

 𝑐𝐿𝐷 =
(ெభெరିெమெయ)మ

(ெభାெమ)(ெభାெయ)(ெమାெర)(ெయାெర)
. 336 

Second, we used the central limit theorem (CLT) to derive the asymptotic multivariate 337 

normal distribution. In the LD case, with the population mean 𝒑 = (𝑝ଵ, 𝑝ଶ, 𝑝ଷ, 𝑝ସ), we can 338 

write the covariance matrix as  339 

𝚺 =

⎝

⎜
⎛

𝑝ଵ − 𝑝ଵ
ଶ −𝑝ଵ𝑝ଶ −𝑝ଵ𝑝ଷ −𝑝

1
𝑝

4

−𝑝ଶ𝑝ଵ 𝑝ଶ − 𝑝ଶ
ଶ −𝑝ଶ𝑝ଷ −𝑝

2
𝑝

4

−𝑝ଷ𝑝ଵ −𝑝
3
𝑝

2
𝑝

3
− 𝑝

3
2 −𝑝

3
𝑝

4

−𝑝
4
𝑝

1
−𝑝ସ𝑝ଶ −𝑝ସ𝑝ଷ 𝑝

4
− 𝑝

4
2

⎠

⎟
⎞

.  340 

Then by the multivariate CLT (Lehmann Springer) we have √𝑛 ቀ
𝑶

௡
− 𝒑ቁ

𝐿
→ 𝑁(𝟎, 𝚺).  341 

In the cLD case, with the population mean 𝒒 = (𝑞ଵ, 𝑞ଶ, 𝑞ଷ, 𝑞ସ), we can write the 342 

covariance matrix as  343 

𝐐 =

⎝

⎜
⎛

𝑞ଵ − 𝑞ଵ
ଶ −𝑞ଵ𝑞ଶ −𝑞ଵ𝑞ଷ −𝑞

1
𝑞

4

−𝑞ଶ𝑞ଵ 𝑞ଶ − 𝑞ଶ
ଶ −𝑞ଶ𝑞ଷ −𝑞

2
𝑞

4

−𝑞ଷ𝑞ଵ −𝑞
3
𝑞

2
𝑞

3
− 𝑞

3
2 −𝑞

3
𝑞

4

−𝑞
4
𝑞

1
−𝑞ସ𝑞ଶ −𝑞ସ𝑞ଷ 𝑞

4
− 𝑞

4
2

⎠

⎟
⎞

.  344 

Then by the multivariate CLT (Lehmann Springer) we have √𝑛 ቀ
𝑴

௡
− 𝒒ቁ

𝐿
→ 𝑁(𝟎, 𝐐).  345 
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Third, as the cLD and LD are functions of random variables, we applied the multivariate 346 

Delta method (Lehmann Springer) to derive the distribution of cLD and LD. In the LD 347 

case, suppose the Jacobian matrix of 𝐿𝐷(𝑶/𝑛) is 𝑱𝑳𝑫 = ቂ
ப௅஽(𝑶/௡)

ப𝑶
ቃ |𝑶ୀ௡𝒑. Then the 348 

asymptotic distribution of 𝐿𝐷(𝑶/𝑛)  is 𝐿𝐷(𝑶/𝑛) − 𝐿𝐷(𝒑) ∼ 𝐴𝑁൫0, 𝑛𝑱𝑳𝑫𝚺𝑱𝑳𝑫
ୃ ൯, where ‘AN’ 349 

stands for asymptotic normal.  350 

In the cLD case, suppose the Jacobian matrix of 𝑐𝐿𝐷(𝑴/𝑛)  is 𝑱𝒄𝑳𝑫 = ቂ
பୡ௅஽(𝑴/௡)

ப𝑴
ቃ |𝑴ୀ௡𝒒. 351 

Then the asymptotic distribution of 𝑐𝐿𝐷(𝑴/𝑛)  is 𝑐𝐿𝐷(𝑴/𝑛) − 𝑐𝐿𝐷(𝒒) ∼352 

𝐴𝑁൫0, 𝑛𝑱𝒄𝑳𝑫𝑸𝑱𝒄𝑳𝑫
ୃ ൯. 353 

 354 

Genotype data used for the calculations  355 

The 1000 Genomes Variant Call Data were used to validate the properties of cLD. In 356 

particular, the phased (i.e., haploid instead of diploid) variant call data of the Phase 3 of 357 

the 1000 Genomes dataset was obtained through The European Bioinformatics 358 

Institute’s dedicated FTP server (Fairley et al. 2020).  359 

 360 

Assessing the instability of LD and cLD using bootstrapped distributions  361 

To use bootstrapped samples to quantify instability, we randomly sampled half of the 362 

haplotypes in three main 1000 Genomes Project populations (EUR, AFR, or EAS), and 363 

calculated the average cLD and average LD over the gene pairs within cMAF bins and 364 

repeated this procedure 1,000 times. Based on these bootstrapped cLD and LD values 365 

we formed bootstrapped distributions for cLD and LD respectively (with appropriate re-366 

scaling described in Supplementary Materials 2.3). More specifically, we randomly 367 
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sampled 1,000 genes and assessed their pairwise LD and cLD in stratified cMAF bins 368 

(Supplementary Materials 2.4) using half of the haplotypes in the given population 369 

(AFR, EAS or EUR). These randomly drawn subsamples (each with half of the 370 

individuals in the original population) form bootstrapped samples. We define the LD of a 371 

gene pair as the average value of LD over all rare SNV pairs within that gene pair. In 372 

each iteration, we calculate the average cLD over the gene pairs in each bin 373 

(Supplementary Materials 2.4).  374 

 375 

Calculation of cLD and LD for gene pairs in 3D interaction regions. 376 

To revisit a previously negatively reported relationship between 3D interaction regions 377 

and genetic linkage disequilibrium (Whalen and Pollard 2019) , we calculated both cLD 378 

and LD in a Hi-C assessment in the developing brain (Li et al.), which has 27,982 brain-379 

specific paired 3D-interacting regions, measured from neurons derived from human 380 

induced pluripotent stem cells (hiPSCs).  381 

Again, the 1000 Genomes Project data were used. We first calculated the distance 382 

between the genes in each pair and separate the gene pairs into 13 distance groups 383 

(Supplementary Materials 3.1). After stratifying all gene pairs into distance groups, 384 

within each distance group, we calculated cLD between all gene pairs and further split 385 

them into two categories: the ones that are located in 3D interaction regions (assessed 386 

by Hi-C experiments) and the ones that are located in non-3D interaction regions. The 387 

gene pairs with exactly one gene in an interaction region were discarded. Finally, the 388 

average cLD values over gene pairs within interaction and non-interaction regions were 389 

used to conduct the comparison, quantified by two two-sample tests, namely Mantel-390 

Haenszel and Fisher exact tests (Supplementary Materials 3.4). 391 
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The procedure of calculating standard LD mirrors the one used above for cLD using the 392 

same distance groups and 3D-interaction vs non-interaction categories. As standard LD 393 

is defined by individual variants (not by genes), the following averaging steps were 394 

taken. For each gene pair in the 3D interaction regions, we randomly chose 2,000 rare 395 

variant pairs from it to calculate their LD values. For each selected rare variant pair, we 396 

calculated its distance and then, among the gene pairs without 3D interactions, we 397 

randomly selected another rare variant pair with the same or closest possible distance 398 

(Supplementary Materials 3.2). As a result, we achieved 2,000 randomly selected 399 

variant pairs from gene pairs without interaction that were matched up with the 2,000 400 

variant pairs from gene pairs with interaction. The average values of the 2,000 variant-401 

pairs were deemed as the LD between the gene pair.  402 

 403 

Calculation of cLD and LD for gene pairs in gene-gene interaction databases 404 

Four frequently used interaction databases, Biogrid (Stark et al. 2006), Reactome 405 

(Fabregat et al. 2018), MINT (Orchard 2012) and Intact (Orchard et al. 2014) were 406 

aggregated as the source of gene-gene interactions (Supplementary Materials 3.3). 407 

The related datasets were downloaded from their corresponding websites and the IDs 408 

were matched using standard gene models (gencode v17). To quantify the distance 409 

between genes, only data for the gene pairs within the same chromosomes were used. 410 

Calculation of cLD and LD follows the same procedure as described for the 3D-411 

interaction analysis, and the two-sample tests (Mantel-Haenszel and Fisher exact tests) 412 

were used to quantify the significant levels (Supplementary Materials 3.4). 413 

 414 
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Protein docking analysis 415 

We used protein docking to validate the novel gene-gene interactions predicted by 416 

unexpected high cLD values. HDOCKlite-v1.1 (Yan et al. 2020, 2017) was employed for 417 

conducting the protein-protein docking analysis between the cLD prioritized protein pairs 418 

(Supplementary Materials 4). The protein’s crystal structure was obtained from the 419 

Protein Data Bank (Berman et al. 2000) and further validated (Perera et al. 2021) 420 

(Supplementary Materials 4.1). The output file of the docked complex was visualized 421 

by PyMOL 2.5.1 (Delano), and the 2D plot of the protein-protein binding region was 422 

analyzed and deduced using LigPlot+ v.2.2 (Laskowski and Swindells 2011) 423 

(Supplementary Materials 4.2).  424 

 425 

ΔcLD genes, their functional annotation, and pathway enrichment 426 

Calculation of cLD-differential gene pairs. To explore the use of cLD in distinguishing 427 

cases and controls in a typical association study, we calculated cLD using the whole 428 

exome sequencing data to study Autism Spectrum Disorder (ASD) (Satterstrom et al. 429 

2020) [dbGaP ID: phs000298.v4.p3]. We first calculated cLD values for each gene pair 430 

for cases and controls groups separately. Then, we calculated the absolute differences 431 

between the cLD values in case and control groups for each gene pair, which was called 432 

ΔcLD. These absolute differences were sorted from largest to smallest. The top ranked 433 

genes pairs were collected and called cLD-differential gene pairs, or ΔcLD genes 434 

(Supplementary Materials 5.2 & 5.3).  435 

 436 
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Functional annotation and pathway enrichment. Based on their ΔcLD values, we 437 

selected the top 200, 500, 1,000, 1,500 and 2,000 cLD-differential gene pairs (i.e., ΔcLD 438 

genes) and used the genes sets for the downstream functional annotations. We utilized 439 

two different databases, Simons Foundation Autism Research Initiative (SFARI) 440 

(Abrahams et al. 2013) and DisGeNet (Piñero et al. 2017) as the gold-standard because 441 

they are frequently used in the field of ASD studies and general disease gene queries, 442 

respectively. We used the hypergeometric distribution probability to assess the p-value 443 

of the significance of enrichment of the cLD-differential genes against the background of 444 

gold-standard genes (Supplementary Materials 5.4). Additionally, using the top 2,000 445 

cLD-differential gene pairs, we conducted GO enrichment (Ashburner et al. 2000) and 446 

KEGG pathway analysis (Kanehisa et al. 2009).  447 

 448 
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The 1000 Genome Variant Call Data used in this study could be downloaded from 456 
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page maintained by the 1000 Genome webpage) and downloaded from (Index of 459 

/vol1/ftp/release/20130502/ (ebi.ac.uk)).  460 

The 3D Hi-C dataset is available in the Synapse database (https://www.synapse.org/) 461 

with Synapse ID: syn12979149.  462 

The Protein Data Bank: https://www.rcsb.org/.  463 
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