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cLD: Rare-variant disequilibrium between genomic regions
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ABSTRACT

Linkage disequilibrium (LD) is a fundamental concept in genetics; critical for studying
genetic associations and molecular evolution. However, LD measurements are only
reliable for common genetic variants, leaving low-frequency variants unanalyzed. In this
work, we introduce cumulative LD (cLD), a stable statistic that captures the rare-variant
LD between genetic regions, which reflects more biological interactions between
variants, in addition to lack of recombination. We derived the theoretical variance of cLD
using delta methods to demonstrate its higher stability than LD for rare variants. This
property is also verified by bootstrapped simulations using real data. In application, we
find cLD reveals an increased genetic association between genes in 3D chromatin
interactions, a phenomenon recently reported negatively by calculating standard LD
between common variants. Additionally, we show that cLD is higher between gene pairs
reported in interaction databases, identifies unreported protein-protein interactions, and

reveals interacting genes distinguishing case/control samples in association studies.
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INTRODUCTION

Linkage Disequilibrium (LD) is a fundamental concept in population genetics that
statistically captures non-random associations between two genetic variants due to
reasons such as lack of recombination or different age of mutations (Slatkin 2008). LD
serves as a core component in genotype-phenotype association mapping, as a
statistically significant genetic variant could be just a proxy in LD with the genuine causal
variant(s) (Weissbrod et al. 2020). To this end, LD is critically important in analyzing the
fine resolution of genotype-phenotype association mapping (Flint-Garcia et al. 2003) and
forming polygenic risk scores (Amariuta et al. 2020). Additionally, from the perspective of
molecular evolution, LD values substantially higher than expected under neutrality may
indicate interesting phenomena, e.g., interactions between loci that are favored by
selection (Gregersen et al. 2006). As such, LD has been extensively utilized in

evolutionary studies.

The calculation of LD involves the use of allele frequencies of the genetic variants in its
denominator to normalize the statistic (Methods; Supplementary Materials 1.1) and
therefore suffers from a high variance (instability) when allele frequencies are close to
zero. As such, in practice, researchers only analyze common genetic variants with minor
allele frequency (MAF) higher than a threshold (e.g.,0.05), excluding more than 90% of

human genetic variants (Auton et al. 2015).

In the field of association mapping, researchers have developed multiple techniques to
aggregate the associations of multiple rare variants with a phenotype into a single
shared effect. One of the pioneering methods that is still popularly used (Li and Leal
2008) is synthesizing a cumulative allele frequency from multiple rare genetic variants in

the same genetic region (e.g., within a gene). The cumulative minor allele frequency
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(cMAF) is defined on a region containing multiple rare variants: an individual will be
labelled as a “mutant” if it has at least one of the rare variants, and then the proportion of
individuals in the sample that are labelled as mutants will be the cMAF for this region

(Fig. 1a).

Building on the idea of cMAF and the essence of LD, we developed a statistic,
cumulative Linkage Disequilibrium (cLD) to capture the aggregated correlation between

two sets of rare variants (Methods; Fig. 1b).

We thoroughly tested the property of cLD. First, using both theoretical closed-form
derivation and bootstrapped simulations (Methods), it is verified that cLD enjoys way
lower variance than the standard LD when applied to rare variants, evidencing cLD’s
higher stability (Fig. 2). We then applied cLD to four scenarios in genetic analysis
(Methods), discovering additional knowledge that have not been reported (or attempted

but negatively reported) using standard LD (Figs. 3 — 6).

RESULTS

The intuitive idea of defining cLD. In the similar vein of definition of cMAF, we define
cLD below. Specifically, for the traditional calculation of LD between two variants, g7 and
g2 with minor alleles a and b respectively, the essential part is the definition of individual
MAF P(a) and P(b) and the frequency that a and b show up in the same haplotype,
P(ab). For calculating cLD between two regions, A and B, we first use cMAF to define
P(A) and P(B) (the proportion of individuals carrying a rare variant within regions A and
B, respectively); and then P(AB), the proportion of individuals who have at least one rare
variant in both regions A and B (Fig. 1b). Mathematical details are spelt out in Methods

and Supplementary Materials 1.1 & 1.2).
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88 Figure 1. lllustration of the idea of a) cMAF and b) cLD. An example to show the calculation of
89 cLD, inspired by cMAF. a) Out of six haplotypes, there are two [1, 4] who have mutations in

90 region A. Therefore, the cMAF P(A) for region A is 2/6 = 0.33. b) There are three haplotypes [3,
91 4, 5] who have mutations in region B and the cMAF P(B) for region B is 3/6 = 0.50. If one

92 considers regions A and B together, there is one individual with mutations in both regions: [4].

93 Thus, the P(AB) is 1/6 = 0.17. Finally, by yielding P(A), P(B) and P(AB) into the standard formula
94  of LD we have cLD = 0.375.
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96

97  High stability of cLD in contrast to standard LD. Both LD and cLD could be used to
98  capture the correlation between two sets of rare variants. However, these two measures
99  differ in the aspect of stability. Intuitively, as cMAF is always higher than MAF, cLD’s
100 variance (reflecting its instability) should be lower than LD’s. We verify this intuition by
101  deriving the closed-form of variance of both LD and cLD (denoted as Var(LD) and
102  Var(cLD)) using multinomial distributions and their multivariate normal approximation as
103  well as the multivariate Delta Method (Lehmann Springer) (Methods; Supplementary

104 Materials 2.1 & 2.2). by plugging in the allele frequencies calculated using the 1000
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Genomes Project data (Auton et al. 2015) (Supplementary Materials 2.3), we observed
that the variance of cLD is at least six orders of magnitudes smaller (i.e., more stable)
than the alternative -- calculating LD directly on rare variants in all ethnic populations
and all cMAF bins (Fig. 2a; Supplementary Figs. S2.1a & S2.2a). Additionally,
following the conventional statistical procedure of bootstrapping to empirically estimate
stability, we sub-sampled half of each population sample 1,000 times to form
bootstrapped distributions for both cLD and LD (Methods; Supplementary Materials
2.4). The subsampling showed that cLD exhibits much slimmer bootstrapped
distributions than LD across all cMAF bins and all three ethnic groups (Fig. 2b,
Supplementary Figs. S2.1b & S2.2b), further confirming the greater stability of cLD

compared to traditional measures of LD.

cLD reveals linkage disequilibrium between 3D contact regions where standard
LD fails. A distinct advantage of cLD over LD is the ability to reveal linkage
disequilibrium between 3D contact regions. By aggregating information from multiple
independent mutations, cLD is sensitive to subtle interactions poorly reflected by LD
(which can only account for two at a time). As such, cLD captures more biological
interactions in addition to traditional LD that focuses more on the lack of recombination.
Interactions within the 3D structure of genomes is one place where this difference allows
for insight from cLD where LD-based methods fail. The availability of high-throughput
experimental technologies that can assess chromatin conformation such as Hi-C
(Rajarajan et al. 2018; Akbarian et al. 2015) allows researchers to analyze genetic
regions that are in close contact in 3D spatial structure. There was a widely

disseminated expectation that the 3D genomic interaction in the form of chromatin
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129 Figure 2. Stability of cLD and LD revealed by closed-form variance calculation and

130 bootstrapped distributions. a) The gene pairs were split into four different bins based on the
131 cMAF values, i.e., <0.05, 0.05 - 0.10, 0.10 - 0.20, and 0.20 - 0.40 (y-axis). The x-axis is the ratio
132 between the variances of cLD and LD, i.e., Var(cLD)/Var(LD). b) Probability density distribution of
133 cLD and LD from bootstrapped samples. Results from the European population are shown. See
[134  Supplementary Figs. S2.1 & S2.2 for other populations.
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contact may leave a footprint in the form of genetic LD (Joiret et al. 2019). Motivated by
such expectation, Whalen and Pollard calculated the standard LD based on common
variants (MAF>0.05) in 1000 Genomes Project data (Auton et al. 2015) and reported
negative results stating that genetic LD map is not overlapping with the 3D contact map
(Whalen and Pollard 2019). However, by reanalyzing the 1000 Genomes sequencing
data and Hi-C data (Akbarian et al. 2015; Rajarajan et al. 2018) in the developing brain
using cLD on rare variants (Methods; Supplementary Materials 3.1 & 3.2), we
revealed that the 3D chromatin interactions did leave genetic footprints in the form of
higher cLD in pairs of genes that are in the adjacent Hi-C regions (Fig 3a;
Supplementary Fig. S$3.1). To assess the statistical significance of the enrichment of
cLD in 3D contact regions, we conducted Mantel-Haenszel and Fisher exact tests
(Supplementary Materials 3.4), both of which are highly significant (P-value < 1.0E-50;
Supplementary Tables S3.2 & S$3.6, Supplementary Materials 3.4.1). As Whalen &
Pollard’s work (Whalen and Pollard 2019) is not at the resolution of genes, we re-
calculated standard LD using common variants based on gene pairs (Supplementary
Materials 3.2), which shows a subtle effect (Fig. 3b, Supplementary Fig. S3.2) but still
not statistically significant with Mantel-Haenszel and Fisher exact tests (P-value =0.999;
Supplementary Tables S3.3 & $3.4; Supplementary Materials 3.4.1). Additionally, we
checked the ratio between the number of pairs of genes within the 3D contact regions
and the number of pairs outside the 3D contact regions as a function of their cLD cut-off.
More specifically, we prespecified a cLD value cutoff and only counted the gene pairs
with cLD value higher than this cutoff; then we separated the number of genes within or
outside 3D contact regions and calculated their ratios (Supplementary Materials 3.5).
Indeed, we found that the ratios are significantly larger than 1.0 and increase as the cLD

cutoffs increase (Fig 3c,d,e, Supplementary Table S$3.7). Taking together, 3D
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163 Figure 3. Enrichment of cLD among pairs of genes in chromatin contact regions. a) The

164  comparisons of cLD values between the 3D chromatin interaction regions and non-interaction
165 regions among 13 different distance groups in the European population. (Other populations are
166  shown in Supplementary Fig. S3.1) The confidence intervals for these bars are presented in
167  Supplementary Table S3.1. b) The same comparisons using standard LD in the European

168 population. (Other populations are shown in Supplementary Fig. S3.2) c-e) The ratios between
169 the number of gene pairs in 3D chromatin interaction regions against the number of gene pairs
170 that are notin 3D regions. The x-axis is the cLD value cutoffs above which the gene pairs are
171 counted. ¢) European population. d) African population. e) East Asian population.
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interactions clearly overlap with genetic interactions; and cLD is instrumental in

observing this whereas standard LD fails.

cLD is enriched in known interacting genes. To demonstrate that gene-gene
interactions leave footprints in rare genetic mutations regardless of their physical
positions we computed the distribution of cLD among interacting pairs genes reported in
Reactome (Fabregat et al. 2018) and BioGRID (Stark et al. 2006), MINT (Orchard 2012)
and IntAct (Orchard et al. 2014) (Methods; Supplementary Materials 3.3). We
compared this distribution against a null distribution formed by all pairs of genes. Indeed,
the comparisons led to the expected result: for gene pairs separated by any physical
distance within 2MB, cLD is elevated in interacting gene pairs (Fig. 4; Supplementary
Fig. S3.3). Again, the Mantel-Haenszel and Fisher exact tests confirm that the
differences are significant (P-value < 1.0E-20; Supplementary Table S3.5;

Supplementary Materials 3.4.2).

Figure 4. The comparisons of cLD values in European populations between gene pairs found in
interaction databases and all pairs that are not in databases. Each bar represents the average of
pairs with distance smaller than the value of its x-axis label but larger than the value of the
previous x-axis label. (Other populations show the same trend, as depicted in Supplementary
Fig. S3.3)
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cLD identified novel pairs of likely interacting proteins. To examine the novel gene
pairs with higher cLD values have the receptor-ligand interactions of their translated
proteins, we performed protein-docking analysis to obtain the evidence. Looking at all
pairs of genes, we observed several pairs without prior evidence of interaction with
extraordinarily high cLD, such as between genes MEMO1 and DPY30 (encoding
proteins 3BCZ and 4RIQ, respectively) with a cLD of 0.86. We conducted protein
docking analysis for the genes of large cLD values (top 0.01% among all gene pairs)
with cMAF > 0.05 and existing IDs in PDB, however, not reported in any interaction
databases (Methods; Supplementary Materials 4.1; Supplementary Table S4.1).
These criteria lead to 19 pairs of genes for protein-docking. We found multiple lines of
evidence of the interaction at protein level for five pairs (Supplementary Table S4.2) in
terms of both binding affinity and interacting residues (Fig. 5a-d; Supplementary Figs.

S4.1 - S4.4).

Differences in cLD distinguish cases/controls in Autism exome data. In the context
of case/control association studies, cLD can be used to identify pairs of genes whose
interactions may be responsible for human diseases. Using data from the Autism
Spectrum Disorders (ASD) whole exome sequencing dataset (Satterstrom et al. 2020),
we calculated cLD values for all pairs of genes, separately conducted for the populations
of cases and controls (Methods; Supplementary Materials 5.1 & 5.2). The difference
in cLD for a pair of genes conditional on case/control status, defined as AcLD, is
indicative of an interaction that is non-random associating with disease status. We
collected gene pairs with high AcLD and checked their annotation and enrichment in

existing databases. Using a hypergeometric test, we analyzed the enrichment among

11
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217 Figure 5: Protein docking interaction between 3BCZ and 4RIQ revealed by cLD (=0.86) with a
218 binding affinity of -341.21 kJ/mol. a) Structure of 3BCZ (red) and 4RIO (blue) protein-protein

219 complex. b-d) 2D representation of closest interacting residues around the protein-protein

220 interaction interfaces, including multiple non-covalent bonds, for example, hydrogen bonds (green
221 dotted line) and hydrophobic interactions (read and rose semi-circle with spikes). Residues for the
222 3BCZ are depicted in upper letters (T, U, O, R, N) and for the 4RIO are depicted in lower letters.
223
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225  high-AcLD genes for ASD genes reported by DisGeNet (Pifiero et al. 2017), an

226  established general database for diseases and SFARI (Abrahams et al. 2013), a gold-

12
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standard database focusing on ASD (Supplementary Materials 5.3). The genes
included in the pairs with high AcLD scores are highly enriched in both the Autism
related genes in DisGeNet (Fig. 6a) and SFARI (Fig. 6b). Gene Ontology (Ashburner et
al. 2000) and pathways (KEGG) (Kanehisa and Goto 2000; Kanehisa et al. 2009)
enrichment analysis for the high AcLD genes (Methods; Supplementary Table S5.2;
Supplementary Materials 5.4) also showed sensible biological functions and pathways
(Fig. 6¢,d) that are well supported by the literature (Supplementary Materials 5.4)
(Ashburner et al. 2000; Kanehisa and Goto 2000; Kanehisa et al. 2009; Yu et al. 2012;
Rojas 2014; Hannelius et al. 2005; Richler et al. 2006; O ' Roak et al. 2012; Fung and
Hardan 2015; Sato et al. 2012; Berkel et al. 2010; Durand et al. 2007; Wei et al. 2021;
Ye et al. 2011; Betancur et al. 2009; Lin et al. 2016). By taking a closer look of the 20
genes identified by the top 10 gene pairs with the highest AcLD values, found that 14
genes (70%) have been reported to be associated with ASD, including DENND4A,
EFCABS, ABI2, RAPH1, MSTO1, DAP3, ARL13B, PRB2, PRB1, ZNF276, FANCA,
ADAM?7, SLC26A1 and TUBBS8 (Supplementary Table $5.1). Moreover, among the rest
of six genes, we also identified indirect links of two, RAB711A and /DUA with ASD

(Supplementary Materials 5.3).

Figure 6: AcLD gene pairs in case/control association mapping data: annotation of top
genes and enrichment of pathways. a-b) Group bar charts show the ratio between the number
of selected genes being validated in the database dividing the number of genes in the database
(g/m) as well as the number of selected genes dividing the total number of all known minus m
(k/n). The values on the top of each bar are the p-values of the hypergeometric distribution
probability test. The x-axis indicated the top gene pairs using different cutoffs, [200, 500, ...,
2,000]. a) DisGeNET database. b) SFARI database. ¢) a dot plot showing the top 10 KEGG
pathways ranked by the GeneRatio values. The size of the balls indicates the number of the
genes enriched and the color indicates the level of the enrichment (P-adjusted values). The
GeneRatio is calculated as count/setSize. 'count' is the number of genes that belong to a given
gene-set, while 'setSize' is the total number of genes in the gene-set. d). a bar plot showing the
top 10 enriched biological processes ranked by p-values. The correlation is more significant as
the red/blue ratio increases. The number on the x-axis indicates the number of genes that belong
to a given gene set.
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LD is a critical concept applicable to many types of genetic analyses. In this work, we
have defined cLD, a new statistic addressing the association between genetic regions
using rare genetic variants. In contrast to the previous attempts to utilize LD between
multiple variants focusing on dominant haplotypes (Zan et al. 2018) or joint distributions
(Turkmen and Lin 2017), cLD emphasizes biological interactions. Additionally, previously

researchers have proposed composite linkage (Hamilton and Cole 2004; Zaykin 2004),
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which addresses the property of variances and its normalization, however, does not

incorporate rare variants.

By both closed-form derivations and statistical simulations, we proved the stability of cLD
in contrast to the high instability of standard LD (when applied to rare variants). The
stability and the focus on biological interaction allows cLD to capture additional
information from the distributions of many variants segregating in a population at low
frequencies within particular regions of a genome. Indeed, by applying cLD to real data,
we observed interesting overlapping pattern of 3D interactions and genetic interactions
that have been negatively reported by using standard LD. We also successfully analyzed
protein docking and association mapping, providing two broadly impactable use-cases of
cLD. With its demonstrated power in identifying gene and protein interactions, cLD
might offer an essential tool to analyze biological interactions and their evolution using

rare genetic variants.

METHODS

Definition of LD and cLD:

The definition of LD between two bi-allelic loci relies on the calculation of three key
quantities: P,, the allele frequency of an allele in locus A, Py, the allele frequency of an
allele in locus B, and P,z, the frequency of these two alleles of A and B showing up
together. Then one can define the unnormalized disequilibrium statistic D = P,z — P4Pp.
To rescale the statistic based on allele frequency, one can normalize D by dividing it by

the allele frequency variances:

15
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D2

2 _
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292  An alternative definition of LD is D', which has a different way of normalization. In this
293  paper, we used r? as the representative. Because LD involves P, and Py in the
294  denominator, it is highly instable when P, or P; are close to zero, which means LD

295 cannot be used if A or B are rare variants.

296  The cLD statistic is designed to handle the above problem by aggregating rare variants
297  cumulatively. In the similar vein of definition of cMAF, the idea of cLD is illustrated in Fig.
298  1b. More specifically, here we look at two sets of variants in two genetic regions, e.g.,
299  two genes, again namely A and B. Assuming that there are m SNPs in gene A, and

300 there are r SNPs in gene B. Also, we assume the sample size is n. Then, for gene A, we
301  use Sy, 81, .-, Smi to denote the allele of the s-th SNP (s = 1, 2, ..., m) in the i-th individual
302 (i =1,2,...,n). Similarly, for gene B, we use {K;;,K,;, ..., K;;} to denote the allele of the k-
303 thSNP (k=1,2,...,r) in the i-th individual (i = 1, 2, ...,n). Note that S; and K, is either

304 Oor 1. (0denotes a major allele, whereas 1 denotes a minor allele).

305 Then we have the cMAF (P, & Pg) defined below:

1 n m
1 s=1

i=

1 n r
307 PB = EZI(Z Kki = 1)
i=1 k=1

308  Where I(.) is the indicator function. P, is then defined as the proportion of individual

309 haplotypes with a minor allele in both regions:
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1 n m r
- =521(1(25ﬂ21>+1<2Kki21>=2>
s=1 k=1

i=1

Following the convention of LD, we define the r? version of cLD:

__ (Pap—P4Pp)*
LD = p P ps1-Ppy

The more rigorous mathematical descriptions and the definition of D’ version is provided

in Supplementary Materials 1.1 & 1.2.

Derivation of theoretical variance of cLD in contrast to LD

To obtain the theoretical variance of cLD and LD, we derived their asymptotic
distributions. The details are in Supplementary Materials 2.1 & 2.2. The gist of our

approach is summarized in the following three steps:

First, we rewrote the formula of cLD and LD in terms of counts to use multinomial
random variables. In the definition, we used X;;, to denote the allele of the k-th variant of
the j-th gene for the j-th individual (haplotype) of. For a pair of variants, the i-th pair

X1 Xizp) (i =1,2,...,n) can take possible values (1,1), (0,1), (1,0) and (0,0). Using
0, to 0, to denote the count of the 4 possible pairs in two variants, the distribution of 0 =
(04,0,,04,0,) is O~multinom(n; p) with p = (p1,p,,P3,ps) represents the population

probability. The LD between the u-th and v-th variants can be re-written as:

(0104,-0,03)*
(01+02)(01+03)(02+04)(03+04)°

LD(u,v) =

Similarly, we followed the same strategy of using multinomial random variables to

describe cLD as below:
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330 Inanalogy to the case of LD, we used X;; to denote the allele of the j-th gene for the i-th
331 individual (haplotype). For a pair of genes, the i-th pair (X;;,X;;) (i = 1,2, ...,n) can take
332 possible values (1,1), (0,1), (1,0) and (0,0). Using M, to M, to denote the counts of the 4
333  possible pairs in two genes, then the distribution of M = (M, M,, M3, M,) is

334  M~multinom(n; q) with q = (q41,92,93,q4) represents the population probability. The

335  cLD between a pair of genes could be rewritten as:

(MyMy—M,M3)?

336 cLD = (M +My) (Mg +M3)(My+My) (M3 +M,)"

337  Second, we used the central limit theorem (CLT) to derive the asymptotic multivariate
338  normal distribution. In the LD case, with the population mean p = (p1, p2, P3, P4), WE Can

339  write the covariance matrix as

/m -pi —ppz PPz DD, \
2
—pP2p b2 —Dp —DP2P -
340 T=| 2P1 2 2 2 32 p,P,
\ —P3P1 —P3P, P3—P3 P3P, /
—P4P1  TPab2 TP4P3 Py pi

L
341  Then by the multivariate CLT (Lehmann Springer) we have \/T_l(% — p) - N(0,X).

342  Inthe cLD case, with the population mean q = (q4, 92, 93, 94), we can write the

343 covariance matrix as

/fh -4 —¢q: —¢9z  —qq, \
| a2t - G —%09;  —q,4q, |

4301 —939, 93— 95 —95q, |
\_q4q1 —q492 —q493 4, — Qi/

344 Q=
L
345  Then by the multivariate CLT (Lehmann Springer) we have vn (% — q) - N(0,Q).

18
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Third, as the cLD and LD are functions of random variables, we applied the multivariate

Delta method (Lehmann Springer) to derive the distribution of cLD and LD. In the LD
case, suppose the Jacobian matrix of LD(0O/n) is J;p = [aw(o/n)] lo=np- Then the

asymptotic distribution of LD(0/n) is LD(0/n) — LD(p) ~ AN(0,nJp2]]p), where ‘AN’

stands for asymptotic normal.

dcLD(M/n)
—] |M=nq-

In the cLD case, suppose the Jacobian matrix of cLD(M/n) is J.p = [
Then the asymptotic distribution of cLD(M /n) is cLD(M/n) — cLD(q) ~

AN(0,1J 1pQJ 1p)-

Genotype data used for the calculations

The 1000 Genomes Variant Call Data were used to validate the properties of cLD. In
particular, the phased (i.e., haploid instead of diploid) variant call data of the Phase 3 of
the 1000 Genomes dataset was obtained through The European Bioinformatics

Institute’s dedicated FTP server (Fairley et al. 2020).

Assessing the instability of LD and cLD using bootstrapped distributions

To use bootstrapped samples to quantify instability, we randomly sampled half of the

haplotypes in three main 1000 Genomes Project populations (EUR, AFR, or EAS), and
calculated the average cLD and average LD over the gene pairs within cMAF bins and
repeated this procedure 1,000 times. Based on these bootstrapped cLD and LD values
we formed bootstrapped distributions for cLD and LD respectively (with appropriate re-

scaling described in Supplementary Materials 2.3). More specifically, we randomly
19
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368 sampled 1,000 genes and assessed their pairwise LD and cLD in stratified cMAF bins
369 (Supplementary Materials 2.4) using half of the haplotypes in the given population

370 (AFR, EAS or EUR). These randomly drawn subsamples (each with half of the

371 individuals in the original population) form bootstrapped samples. We define the LD of a
372  gene pair as the average value of LD over all rare SNV pairs within that gene pair. In
373  each iteration, we calculate the average cLD over the gene pairs in each bin

374  (Supplementary Materials 2.4).

375
376  Calculation of cLD and LD for gene pairs in 3D interaction regions.

377  To revisit a previously negatively reported relationship between 3D interaction regions
378 and genetic linkage disequilibrium (Whalen and Pollard 2019) , we calculated both cLD
379 and LD in a Hi-C assessment in the developing brain (Li et al.), which has 27,982 brain-
380  specific paired 3D-interacting regions, measured from neurons derived from human

381  induced pluripotent stem cells (hiPSCs).

382  Again, the 1000 Genomes Project data were used. We first calculated the distance

383  between the genes in each pair and separate the gene pairs into 13 distance groups
384  (Supplementary Materials 3.1). After stratifying all gene pairs into distance groups,
385  within each distance group, we calculated cLD between all gene pairs and further split
386 them into two categories: the ones that are located in 3D interaction regions (assessed
387 by Hi-C experiments) and the ones that are located in non-3D interaction regions. The
388  gene pairs with exactly one gene in an interaction region were discarded. Finally, the
389 average cLD values over gene pairs within interaction and non-interaction regions were
390 used to conduct the comparison, quantified by two two-sample tests, namely Mantel-

391 Haenszel and Fisher exact tests (Supplementary Materials 3.4).
20
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392  The procedure of calculating standard LD mirrors the one used above for cLD using the
393  same distance groups and 3D-interaction vs non-interaction categories. As standard LD
394 s defined by individual variants (not by genes), the following averaging steps were

395 taken. For each gene pair in the 3D interaction regions, we randomly chose 2,000 rare
396 variant pairs from it to calculate their LD values. For each selected rare variant pair, we
397 calculated its distance and then, among the gene pairs without 3D interactions, we

398 randomly selected another rare variant pair with the same or closest possible distance
399 (Supplementary Materials 3.2). As a result, we achieved 2,000 randomly selected

400 variant pairs from gene pairs without interaction that were matched up with the 2,000
401  variant pairs from gene pairs with interaction. The average values of the 2,000 variant-

402  pairs were deemed as the LD between the gene pair.

403

404  Calculation of cLD and LD for gene pairs in gene-gene interaction databases

405  Four frequently used interaction databases, Biogrid (Stark et al. 2006), Reactome

406  (Fabregat et al. 2018), MINT (Orchard 2012) and Intact (Orchard et al. 2014) were

407  aggregated as the source of gene-gene interactions (Supplementary Materials 3.3).
408 The related datasets were downloaded from their corresponding websites and the IDs
409  were matched using standard gene models (gencode v17). To quantify the distance
410  between genes, only data for the gene pairs within the same chromosomes were used.
411  Calculation of cLD and LD follows the same procedure as described for the 3D-

412  interaction analysis, and the two-sample tests (Mantel-Haenszel and Fisher exact tests)

413  were used to quantify the significant levels (Supplementary Materials 3.4).

414
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Protein docking analysis

We used protein docking to validate the novel gene-gene interactions predicted by
unexpected high cLD values. HDOCKIite-v1.1 (Yan et al. 2020, 2017) was employed for
conducting the protein-protein docking analysis between the cLD prioritized protein pairs
(Supplementary Materials 4). The protein’s crystal structure was obtained from the
Protein Data Bank (Berman et al. 2000) and further validated (Perera et al. 2021)
(Supplementary Materials 4.1). The output file of the docked complex was visualized
by PyMOL 2.5.1 (Delano), and the 2D plot of the protein-protein binding region was
analyzed and deduced using LigPlot+ v.2.2 (Laskowski and Swindells 2011)

(Supplementary Materials 4.2).

AcLD genes, their functional annotation, and pathway enrichment

Calculation of cLD-differential gene pairs. To explore the use of cLD in distinguishing
cases and controls in a typical association study, we calculated cLD using the whole
exome sequencing data to study Autism Spectrum Disorder (ASD) (Satterstrom et al.
2020) [dbGaP ID: phs000298.v4.p3]. We first calculated cLD values for each gene pair
for cases and controls groups separately. Then, we calculated the absolute differences
between the cLD values in case and control groups for each gene pair, which was called
AcLD. These absolute differences were sorted from largest to smallest. The top ranked
genes pairs were collected and called cLD-differential gene pairs, or AcLD genes

(Supplementary Materials 5.2 & 5.3).
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Functional annotation and pathway enrichment. Based on their AcLD values, we
selected the top 200, 500, 1,000, 1,500 and 2,000 cLD-differential gene pairs (i.e., AcLD
genes) and used the genes sets for the downstream functional annotations. We utilized
two different databases, Simons Foundation Autism Research Initiative (SFARI)
(Abrahams et al. 2013) and DisGeNet (Pifiero et al. 2017) as the gold-standard because
they are frequently used in the field of ASD studies and general disease gene queries,
respectively. We used the hypergeometric distribution probability to assess the p-value
of the significance of enrichment of the cLD-differential genes against the background of
gold-standard genes (Supplementary Materials 5.4). Additionally, using the top 2,000
cLD-differential gene pairs, we conducted GO enrichment (Ashburner et al. 2000) and

KEGG pathway analysis (Kanehisa et al. 2009).

Author Contributions: Conceived and supervised the study: QZ. Analyzed real data:
DW, JH, DP, PK, QL. Conducted mathematical derivation and statistical simulations:
DW, WZ, JW. Provided comments: CC, XG, AP. Wrote the paper: DW and QZ with
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Data and Code Availability:

The codes calculating cLD and conducting all the analyses in this work are publicly

available at our GitHub: https://github.com/QingrunZhanglLab/cLD

The 1000 Genome Variant Call Data used in this study could be downloaded from

http://ftp.1000genomes.ebi.ac.uk. The complete variant call dataset was found using the

webpage (Announcements | 1000 Genomes (internationalgenome.org)) (This is a sub-
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page maintained by the 1000 Genome webpage) and downloaded from (Index of

/vol1/ftp/release/20130502/ (ebi.ac.uk)).

The 3D Hi-C dataset is available in the Synapse database (https://www.synapse.org/)

with Synapse ID: syn12979149.

The Protein Data Bank: https://www.rcsb.org/.

The DisGeNet Database: https://www.disgenet.org/

The SFARI Database: https://www.sfari.org/resource/sfari-gene/

The HDOCK protein docking software: http://hdock.phys.hust.edu.cn/
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