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Abstract 12 
Untargeted LC/HRMS assays in metabolomics and exposomics aim to characterize the small molecule 13 
chemical space in a biospecimen. To gain maximum biological insights from these datasets, LC/HRMS 14 
peaks should be annotated with chemical and functional information including molecular formula, structure, 15 
chemical class and metabolic pathways. Among these, molecular formulas may be assigned to LC/HRMS 16 
peaks through matching theoretical and observed isotopic profiles (MS1) of the underlying ionized 17 
compound. For this, we have developed the Integrated Data Science Laboratory for Metabolomics and 18 
Exposomics – United Formula Annotation (IDSL.UFA) R package. In the untargeted metabolomics 19 
validation tests, IDSL.UFA assigned 54.31%-85.51% molecular formula for true positive annotations as the 20 
top hit, and 90.58%-100% within the top five hits. Molecular formula annotations were also supported by 21 
MS/MS data. We have implemented new strategies to 1) generate formula sources and their theoretical 22 
isotopic profiles 2) optimize the formula hits ranking for the individual and the aligned peak lists and 3) scale 23 
IDSL.UFA-based workflows for studies with larger sample sizes. Annotating the raw data for a publicly 24 
available pregnancy metabolome study using IDSL.UFA highlighted hundreds of new pregnancy related 25 
compounds, and also suggested presence of chlorinated perfluorotriether alcohols (Cl-PFTrEAs) in human 26 
specimens. IDSL.UFA is useful for human metabolomics and exposomics studies where we need to 27 
minimize the loss of biological insights in untargeted LC/HRMS datasets. The IDSL.UFA package is 28 
available in the R CRAN repository https://cran.r-project.org/package=IDSL.UFA. Detailed documentation 29 
and tutorials are also provided at www.ufa.idsl.me.    30 

Introduction 31 
Untargeted LC/HRMS analyses of human specimens enable studying the metabolome and exposome in 32 
an unbiased manner1, 2.They have delivered many novel biomarkers and mechanisms for diseases and 33 
have improved our understanding of basic metabolic pathways3-5. These assays are unique in nature since 34 
they record all the mass to charge (m/z) ratio signals above the limit of detection of an instrument for ionized 35 
compounds in a sample6. This makes the collected data a rich source of information with great opportunities 36 
to generate novel hypotheses about metabolome and exposome. It is critical for the promises that 37 
untargeted assay offers, that the data are utilized in an inclusive way to not miss any discovery 38 
opportunities.  39 

A key post-data acquisition step in the untargeted LC/HRMS assays is to annotate the detected peaks 40 
with a range of structural and functional information which can enable biological interpretations3, 7, 8. This 41 
information includes a chemical structure, molecular formula, chemical class and metabolic pathway1, 9, 10. 42 
These annotations may help in understanding the nature, origin and function of the chemical structure 43 
underlying a peak. Among these information, molecular formula can be assigned to a LC/HRMS peak 44 
using the observed and theoretical isotopic profiles for a chemical compound.11 Isotopic profiles are 45 
distinguishable mass spectral signature that represent atomic masses and their natural abundances in 46 
the molecular formulas of a compound.12 Despite the known limitations of high-resolution mass 47 
spectrometry instruments, observed experimental isotopic profiles for an ionized compound may 48 
sufficiently match the theoretical counterpart within instrument errors in many instances11, 13, allowing to 49 
annotate LC/HRMS peaks with molecular formula14. Peak annotation by isotopic profile matching should 50 
be performed using efficient computational strategies to account for instrumental errors, multi-sample 51 
studies, biological plausibility and chemical diversity.15  52 

There has been a great deal of efforts to develop computational tools for annotating peaks in a LC/HRMS 53 
dataset with MS1 only data. In a MS1 peak list, a series of m/z values representing different isotopes, ESI 54 
adducts, and in-source fragments can belong to one compound. Grouping these m/z values are normally 55 
performed by retention time and elution profile similarities within a single file, for example by xcms-56 
CAMERA16, 17, and peak intensity correlations across multiple samples such as MS-FLO18 and CliqueMS9 57 
tools. Clustered isotopologues from these tools can be used by the Rdisop R package19 to assign 58 
molecular formulas in a ‘database independent’ manner. But this approach may miss expected 59 
compounds for a sample due to MS instrument’s sensitivity and specificity. MetDNA7 can search for 60 
theoretical isotope profiles for a list of molecular formulas from a metabolic reaction network database in 61 
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the MS1 peak list. However, their ‘database dependent’ approach is prone to miss 1) exposure 62 
compounds that are poorly represented in such biochemical databases and 2) compounds which may not 63 
have any transformation products because of their bioaccumulative nature and 3) compounds that were 64 
filtered out by the detection frequency and intensity thresholds while generating MS1 peak table for a 65 
study. Moreover, MetDNA7 and other tools including SIRIUS20 and ZODIAC21, NetID22 are mainly 66 
designed for assigning molecular formulas to peaks having MS/MS fragmentation data. Furthermore, 67 
implementing these tools for larger studies where only MS1 data are available for every sample remains 68 
to be challenging due to the ranking of formula hits on individual and aligned peak tables, scalable 69 
computation and various sources for formulas which need to be covered for exposomics projects. 70 

There is a need to develop new tools to compute and to compare theoretical and experimental isotopic 71 
profiles for chemical lists from larger databases and chemical spaces for molecular formula annotations. 72 
Here, we have developed a scalable, user-friendly, thoroughly tested R package, the IDSL.UFA to assign 73 
molecular formulas with high confidence to peaks in untargeted LC/HRMS datasets from large-scale 74 
studies. IDSL.UFA covers major possible situations in which a molecular formula can be assigned to 75 
LC/HRMS peaks. We propose that processing LC/HRMS data with IDSL.UFA can find new opportunities 76 
for hypotheses and biomarker discoveries for studying the role of metabolism and exposome in human 77 
diseases. 78 

Methods 79 
Publicly available LC/HRMS test datasets: To test and develop the IDSL.UFA R package, we have 80 
utilized the raw LC/HRMS data for human and mouse biospecimen studies (MTBLS168423, 81 
MTBLS254224, ST00168325, ST00143026, ST00115427, ST002044 and reference authentic standards 82 
(MSV000088661) available from Metabolomics WorkBench (https://www.metabolomicsworkbench.org/), 83 
MassIVE (https://www.massive.ucsd.edu), and MetaboLights (https://www.ebi.ac.uk/metabolights) 84 
repositories. Data processing results that we have generated for these studies have been submitted to 85 
the Zenodo.org repository and corresponding entry pages are provided in Table S.1. Sample preparation 86 
and data collection procedures are available at entry pages for these studies in the repositories.  87 

Data analysis setup: IDSL.UFA R package is available in the R-CRAN repository (https://cran.r-88 
project.org/package=IDSL.UFA). The package was installed using the ‘install.packages(“IDSL.UFA”)’ R 89 
command. The IDSL.MXP package (https://cran.r-project.org/package=IDSL.MXP) was used to read 90 
mzML/mzXML/netCDF mass spectrometry data in the centroid mode. mzML files were generated from 91 
the vendor specific data format using the ProteoWizard MSConvert utility28 when needed. All data files 92 
related to only one type of analysis such as “reverse phase - electrospray ionization negative mode” were 93 
stored in a single file folder. Figure 1 (simplified) and Figure S.1 (detailed) show the workflow steps to 94 
assign molecular formulas for a study. Data processing parameters for IDSL.UFA were provided in a 95 
Microsoft excel file (https://zenodo.org/record/6466688) which was created for individual test studies. We 96 
have provided the parameters files used in this manuscript in the Zenodo.org repository at 97 
(https://zenodo.org/record/6466684). To run the IDSL.UFA workflow, only a single R command 98 
‘UFA_workflow(spreadsheet = "address of the parameter xlsx file")’ was needed. Tutorials to create the 99 
parameter files for different scenarios are available at (https://ufa.idsl.me). For each individual peak list in 100 
a study, a formula annotation list with rank, score and other peak properties was generated and exported 101 
to a csv file. Likewise, for each peak in the aligned peak table, top 5-20 formulas with detection frequency 102 
and median ranks across all samples were exported to a csv file for each test study. 103 

Generating the isotopic profile database (IPDB): An IPDB is a digital collection of theoretical isotopic 104 
profiles computed by the IDSL.UFA R package for a list of candidate molecular formulas. IDSL.UFA 105 
queries and matches the experimental isotopic profile against this collection to annotate a LC/HRMS 106 
peak. To compute the isotopic profile for a molecular formula, we have utilized the reference stable 107 
isotope masses and abundances for elements in the periodic table from the PubChem database entries29 108 
which have been sourced from International Union of Pure and Applied Chemistry (IUPAC)30. We have 109 
also provided an online tool (https://.ipc.idsl.me) to compute an isotopic profile for a single molecular 110 
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formula. IDSL.UFA generates centroid isotopic profiles using a dynamic intensity threshold and a peak-111 
spacing criterion to merge adjacent isotopologues within a mass accuracy window. In this work, we have 112 
covered two sources of molecular formulas.  113 

Source A (databases): Chemical compound lists for four key databases in metabolomics and 114 
exposomics including the blood exposome (chemicals expected in a mammalian blood specimen), 115 
RefMet (measured and expected small molecules in biological organisms)31, Lipid Maps (known lipid 116 
molecules)32 and the US-Food and Drug Administration substance registry33 were obtained from their 117 
online web addresses. These four databases were combined into a single compound list referenced as 118 
IDSL.ExposomeDB in this manuscript and also provided at the Zenodo repository 119 
(https://zenodo.org/record/5823455). Charged compounds, isotope-labeled compounds and multi-120 
components were excluded. Unique molecular formulas from this consolidated database were used for 121 
computing IPDB. IPDBs for these four databases and the environmental protection agency (EPA) 122 
CompTox Chemicals Dashboard34 are available at the Zenodo repository 123 
(https://zenodo.org/record/5823455).  124 

Source B (enumerated chemical space with constraints): Molecular formulas were enumerated using 125 
a set of combinatorial and filtering rules using C, H, As, B, Br, Cl, F, I, K, N, Na, O, P, S, Se, and Si 126 
elements. These 16 elements were able to cover 93.76% of carbon-containing compounds (50 ≤ mass ≤ 127 
2000) in the IDSL.ExposomeDB combined with EPA chemistry Dashboard34. An enumerated chemical 128 
space (ECS) can be represented using equation (1). 129 

where the subscripts of elements represent the number of atoms. A fully combinatorial chemical space 130 
from above-mentioned 16 elements is impractical to be managed by current computational resources. 131 
Therefore, we derived and coded in R a set of four rules which were inspired from the seven golden rules 132 
approach35 to constrain ECSs. These rules included 1) C/N chemical space rule ‘((c/2-n-1) ≤ 133 
(h+cl+br+f+i) ≤ (2c+3n+6))’ was used to set elemental boundaries for the organic compounds to ensure 134 
entire moieties are bond to carbon and nitrogen atoms. 2) Extended SENIOR rule was used to ensure 135 
that the molecular formulas completely filled s- and p- valence electron shells.35 3) Maximum number of 136 
halogens thresholds was used to constrain halogenated compounds. For example, we have used the 137 
maximum number of (br+cl) ≤ 8 and the maximum number of ((br+cl+f+i) ≤ 31) thresholds to cover 138 
halogenated compounds in the blood exposome database. 4) Maximum number of elements rule was 139 
used to skip unrealistically complex molecular formulas generated through molecular formula 140 
enumeration. For example, the maximum number of elements for glucose (C6H12O6) is three (C, H, and 141 
O). The ECS boundaries and rules for the MTBLS1684 study are provided in the Zenodo repository 142 
(https://zenodo.org/record/5838603).   143 

MS1 peak detection and alignment: IDSL.IPA36 R package (https://cran.r-144 
project.org/package=IDSL.IPA) was used to generate individual peak lists for each sample and the 145 
aligned peak table (m/z-RT pairs across all samples) for each study. Data processing parameter files and 146 
IDSL.IPA results for each test study are provided in the Zenodo repository (see Table S.1). Details and a 147 
tutorial for IDSL.IPA data processing can be found at (https://ipa.idsl.me) site. 148 

Isotopic profile matching for individual sample: First, IDSL.UFA software accessed the peak 149 
boundaries, 12C m/z, 13C m/z and ratio of cumulated intensity of 12C to 13C (R13C) for each peak in an 150 
IDSL.IPA generated peak list for a sample. Next, it finds all the theoretical isotopic profiles in an IPDB that 151 
matches the 12C and 13C m/z for a peak. Then, for each matched theoretical profile, experimental profiles 152 
are retrieved from raw data using a mass accuracy threshold within the peak boundaries for a peak. If a 153 
compound formula has three isotopologues in the IPDB and only two were observed in the raw data, the 154 
formula will not be annotated. IDSL.UFA requires that a minimum one MS1 scan across the peak should 155 
have the full isotope profile for a formula in the IPDB. 156 

𝐶𝑐𝐻ℎ𝐴𝑠𝑎𝑠𝐵𝑏𝐵𝑟𝑏𝑟𝐶𝑙𝑐𝑙𝐹𝑓𝐼𝑖𝐾𝑘𝑁𝑛𝑁𝑎𝑛𝑎𝑂𝑜𝑃𝑝𝑆𝑠𝑆𝑒𝑠𝑒𝑆𝑖𝑠𝑖 (1) 
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For the experimental isotopic profiles, the IDSL.UFA software calculates cumulated intensities and 157 
intensity-weighted average masses for each isotopologue using equations (2) and (3) across the 158 
chromatographic peak to minimize the effect of fluctuations such as peak saturation. 159 

𝐼𝑛𝑡̅̅ ̅̅ = ∑ 𝐼𝑛𝑡𝑡

𝑡=𝑡𝑒𝑛𝑑

𝑡=𝑡0

 (2) 

𝑚/𝑧 ̅̅ ̅̅ ̅̅ =
∑ 𝑚/𝑧𝑡 ∗ 𝐼𝑛𝑡𝑡
𝑡=𝑡𝑒𝑛𝑑
𝑡=𝑡0

𝐼𝑛𝑡̅̅ ̅̅
 (3) 

where m/zt and Intt represent mass and intensity of the matched isotopologue in individual scans across 160 
the chromatographic peak from t0 to tend. 161 

We have used the Profile cosine similarity (𝑃𝐶𝑆̅̅ ̅̅ ̅) to quantify profile similarity between experimental and 162 
theoretical isotopic profiles using equation (4). To assess mass accuracy error for whole isotopic profile, 163 
Normalized Euclidean mass error (𝑁𝐸𝑀𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅) was calculated using the equation (5).11 164 

𝑃𝐶𝑆̅̅ ̅̅ ̅ =∑
𝐼𝑖
𝑡ℎ𝑒𝑜𝑟𝐼𝑖

𝑒𝑥𝑝𝑡𝑙

√∑ (𝐼𝑖
𝑡ℎ𝑒𝑜𝑟)2𝑆

𝑖=1
√∑ (𝐼𝑖

𝑒𝑥𝑝𝑡𝑙
)
2

𝑆
𝑖=1

𝑆

𝑖=1

 
(4) 

𝑁𝐸𝑀𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ = √
∑ (𝑀𝑖

𝑡ℎ𝑒𝑜𝑟 −𝑀𝑖
𝑒𝑥𝑝𝑡𝑙

)
2

𝑆
𝑖=1

𝑆
 (5) 

where Ii , Mi, and S represent the intensity of the isotopologue, mass of the isotopologues, and number of 165 
isotopologues in the isotopic profile, respectively. Superscripts of theor and exptl also represent 166 
theoretical and experimental isotopic profiles, respectively. 167 

Candidate formulas were then filtered using thresholds for 1) 𝑃𝐶𝑆̅̅ ̅̅ ̅ 2) 𝑁𝐸𝑀𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ 3) the top 80% of number of 168 
scans with the confirmed whole isotopic profile (NDCS) and 4) minimum percentage of NDCS within a 169 
chromatography peak (RCS (%)). These linear cutoffs allow eliminating false positives; however, they can 170 
reject true positive peaks with poor isotopic profiles. 171 

Next, a matching score for each candidate filtered formula was computed using equation (6). 172 

𝑆𝑐𝑜𝑟𝑒 =

(

 
 𝑆𝑐𝑜𝑒𝑓𝑓[1] ∗ (

𝑃𝐶𝑆̅̅ ̅̅ ̅

100
)
𝑐𝑜𝑒𝑓𝑓[2]

∗  (
𝑅𝐶𝑆
100)

𝑐𝑜𝑒𝑓𝑓[3]

(
𝑁𝐸𝑀𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑚𝑎𝑥𝑁𝐸𝑀𝐸
)
𝑐𝑜𝑒𝑓𝑓[4]

∗ (exp(|ln (
𝑅13𝐶𝑃𝐿̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑅13𝐶𝐼𝑃
)|))

𝑐𝑜𝑒𝑓𝑓[5]

)

 
 

 
(6) 

where 𝑅13𝐶𝑃𝐿̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑅13𝐶𝐼𝑃 indicate experimental and theoretical R13C values, respectively. R13C values 173 
represent the ratio of the general 13C isotopologue [M+1] relative to 12C isotopologue [M] on the most 174 
abundant mass. coeff[1-5] are powers of the parameters to apply different magnitudes of each variable in 175 
different studies. Using this score, a ranking for candidate formula was determined. By default, IDSL.UFA 176 
utilized a value of 1 for coeff[1-5] to rank candidate molecular formulas in the equation (6). However, we 177 
have provided a score coefficient optimization strategy in the section S.1 which can be helpful for 178 
improving the ranking when larger size IPDB are utilized. 179 

Summary statistics of molecular formulas annotation in the aligned peak table: It is quite common 180 
to have more than 50 samples in metabolomics and exposomics projects, which can be leveraged to 181 
compute a statistic for formula annotations across all the samples. For each peak (m/z-RT pair) in the 182 
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aligned peak table, corresponding molecular formula lists across all the samples were retrieved using the 183 
peak indices provided by the IDSL.IPA data processing. We then aggregated these formula lists and 184 
computed two properties 1) the detection frequency and 2) median rank for each formula assigned for a 185 
peak across all the samples (individual peak list). Then we generated a new sort order for each molecular 186 

formula at the aligned peak table level using the following formula: 
√𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑚𝑒𝑑𝑖𝑎𝑛 𝑟𝑎𝑛𝑘
. For each peak in the 187 

aligned peak table, top 5-20 formulas with detection frequency and median ranks across all samples were 188 
exported to a csv file for each test study.  189 

Molecular formula class detection: Many compounds belong to a chemical class with a distinct sub-190 
structure pattern such as polychlorinated biphenyl (PCBs), polybrominated diphenyl ethers (PBDEs), 191 
polycyclic aromatic hydrocarbons (PAHs), perfluoroalkyl substances (PFAS), lipids and phthalates etc. 192 
The formula annotations generated via the enumerated chemical space (ECS) approach were processed 193 
to detect such classes within a list of formulas. The IDSL.UFA function ‘detect_formula_sets’ was used to 194 
detect 1) constant ΔH/ΔC ratios for polymeric (ΔH/ΔC = 2) and cyclic (ΔH/ΔC = 1/2) chain progressions 195 
within polymeric and cyclic classes (Table S.2- S.4) and 2) a constant number of carbons and fixed 196 
summation of hydrogens and halogens (Σ(H+Br+Cl+F+I)) representing classes similar to PCBs, PBDEs 197 
(Table S.5).  198 

Correlation analysis for gestational age: The ST001430 study26 includes weekly blood samples of 30 199 
pregnancies. The study has 781 total samples each processed in positive and negative modes to predict 200 
gestational age. To reduce batch effects, the peak heights were adjusted by raw total ion chromatograms 201 
(TICs) in each sample, and then the positive and negative aligned peak height tables were stacked to 202 
generate a comprehensive list of peaks. We computed a Spearman correlation coefficient between 203 
gestational age and peak height data for each pregnancy. A schematic of this workflow is presented in 204 
Figure S.2. 205 

Results and discussion 206 
We have engineered a new software, IDSL.UFA, to annotate LC/HRMS peaks with molecular formulas for 207 
an untargeted metabolomics or exposomics study. In this approach, IDSL.UFA computes theoretical 208 
isotopic profiles for molecular formulas, matches theoretical isotopic profiles against experimental 209 
LC/HRMS data in individual data file using a set of matching parameters and then summarizes the 210 
formula annotations using detection frequency and median ranks in multiple samples (aligned annotated 211 
peak table) in a study. The IDSL.UFA software has been implemented as an R package and made 212 
publicly available via the R-CRAN repository and www.ufa.idsl.me site. 213 

Section 1) Development and validation of IDSL.UFA results: To demonstrate the validity of our 214 
approach to assign molecular formulas, we have utilized datasets with true positive annotations and show 215 
their ranks in the IDSL.UFA result matrices. 216 

Analysis of authentic reference standards: First, we evaluated performance of the IDSL.UFA software 217 
to detect molecular formulas in LC/HRMS data for authentic reference standards. We found that the 218 
average 𝑁𝐸𝑀𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ (indicator of mass difference) was 0.70 mDa and 𝑃𝐶𝑆̅̅ ̅̅ ̅ (indicator of isotope profile 219 
similarity) were 99.968% between experimental and theoretical isotopic profiles for 367 authentic 220 
standard compounds of common metabolites. This indicated that the observed isotopic profiles were very 221 
similar to the theoretical counterparts for these reference standards and suggested that molecular 222 
formulas can be reliably assigned to untargeted data generated by the commonly used LC/HRMS 223 
instruments. The theoretical and experimental integrated isotopic profile spectra across chromatography 224 
for these standards are provided at Zenodo repository accession (https://zenodo.org/record/5803968) and 225 
an example compound (Kynurenine ion [C10H13N2O3]+) is shown in Figure 2 and Figure S.3 (𝑁𝐸𝑀𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ ≤ 0.61 226 
mDa and 𝑃𝐶𝑆̅̅ ̅̅ ̅ = 100.000%). 227 

Analysis of untargeted LC/HRMS data with structurally annotated peaks:  228 
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We selected four publicly available studies (ST00115427, ST00168325, MTBLS168423, and 229 
MTBLS254224). These studies have reported annotations with MSI 1-3 confidence levels 230 
(https://zenodo.org/record/5838709) that were obtained using retention time, accurate mass and MS/MS 231 
spectra matching. For these studies, the IDSL.UFA software assigned 61.85%, 54.31%, 70.58% and 232 
85.51% molecular formula as the top hit, and 96.90%, 90.58%, 100% and 99.29% molecular formulas in 233 
the top five hits in the aligned table. These results were generated using the IPDB of the 234 
IDSL.ExposomeDB with 209,592 and 129,122 ion formulas in positive and negative modes from multiple 235 
ionization pathways, respectively representing 83,951 unique intact molecular formulas 236 
(http://zenodo.org/deposit/5838709).  237 

For each selected study, an ECS IPDB was generated using the element boundaries that covered the 238 
formula list of true positive annotations for the study. When IDSL.UFA software was used for each study 239 
using those specific ECS IPDBs, the assignment rates were – 52.74%, 53.36%, 79.41% and 51.08% 240 
molecular formula as the top hit, and 95.60%, 84.45%, 100% and 91.66% molecular formula in the top 5 241 
hits in the aligned table (Figure S.4). Generally, the IDSL.UFA software annotated 924 (90.14%) and 877 242 
(85.56%) molecular formulas across all four studies using IDSL.ExposomeDB and ECS IPDBs, 243 
respectively. These findings demonstrate that IDSL.UFA is a sensitive approach to cover the majority of 244 
formulas for chemicals detectable in a biospecimen. 245 

There is a tradeoff of coverage and the confidence in annotation while choosing chemical space for 246 
molecular formula annotation. We have noticed that the rank of true positive hits degrades when we have 247 
used a larger chemical space (Figure S.5). However, when compounds that are known and expected to 248 
be found in a blood specimen are used, we have observed that formulas for true positives are often 249 
ranked top hits. Therefore, we recommend a chemical prioritization strategy by sample type and to first 250 
match the compounds that are expected for that sample type and then expand the chemical space to 251 
cover additional peaks. 252 

Summary of the formula annotations in the aligned peak table: Our raw data processing generates 253 
both a separate list of m/z-RT pairs for each sample (individual peak list) and a single combine list 254 
(aligned-table) of m/z-RT pairs for all samples. IDSL.UFA annotates molecular formulas only to individual 255 
peak lists, then, it computes the detection frequency and median rank for all formulas annotated for the 256 
same peak across all samples using the aligned peak table (See methods). Our hypothesis is that the 257 
most probable formula of the underlying ionized compound will have a higher detection frequency and 258 
median rank across all the samples. For example, for the MTLS1684 study, 24/35 (69%) of the reported 259 
annotations had a median rank of 1 and 8/35 (23%) had a median rank of 2 across all 499 samples 260 
(https://zenodo.org/record/5838709). We propose that the summary of detection frequencies and ranks 261 
across individual data files can be helpful in boosting the confidence for formula assignments in multi-262 
sample studies. It should be noted that IDSL.UFA does not group related peaks to flag them as potential 263 
ESI adducts or in-source fragments. Such grouping of peaks can be achieved by existing solutions such 264 
as MS-FLO18 online tool or CliqueMS9 R package.  265 

Additional validation of molecular formula assignment by MS/MS: To further ensure that IDSL.UFA 266 
can assign high confidence molecular formulas for untargeted LC/HRMS data, we utilized data from 267 
ST002044 study which has high quality MS/MS data collected in the data dependent mode. A total 73 hits 268 
were confirmed by matching their spectra to the NIST 2020 MS/MS library (https://chemdata.nist.gov) and 269 
public mass spectral libraries (https://zenodo.org/record/6416108). IDSL.UFA assigned 78.75% of these 270 
hits within a median rank of ≤ 2 in the aligned peak table generated using the IDSL.ExposomeDB formula 271 
IPDB (Table S.6 and Figure S.6). These results provided additional supports to confidence in the 272 
molecular formula assignment by the IDSL.UFA software using the IDSL.ExposomDB IPDB. 273 

Rank score optimization: IDSL.UFA utilized a number of chromatographic-mass spectrometry 274 
parameters to compute the rank of a molecular formula for a peak in the individual peak list. By default, a 275 
score coefficient of 1 is used which works sufficiently in most situations. However, the rank can be further 276 
improved by an optimization strategy that utilizes the true positive, curated and high-quality structure 277 
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annotations for each data file as input. This can be achieved by running a mixture of reference standards 278 
using the same analytical method or by annotating peaks using MS/MS, RT and isotopic profile matching 279 
using stringent criteria. For metabolite standards (MSV000088661) and blood specimens (ST002044) 280 
studies, we have observed a significant improvement in the ranking of molecular formulas when 281 
optimized score coefficients were utilized in the IDSL.UFA software (Table S.7). 282 

Section 2) Application of IDSL.UFA for a pregnancy study 283 

To demonstrate an application of IDSL.UFA software to characterize the metabolome and exposome for 284 
blood specimens, we have re-processed a publicly available study ST00143026 (n=781) which has weekly 285 
blood samples analyzed for 30 pregnancies to accurately predict gestational age (GA in weeks). Raw 286 
data were processed using the IDSL.IPA software to generate the individual peak lists and the aligned 287 
peak table (https://zenodo.org/record/5804527). On average, (3,416 ESI- and 6,978 ESI+) peaks were 288 
detected across individual peak lists for this study and a total of (89,174 ESI- and 143,712 ESI+) peaks 289 
were reported in the aligned peak table. The IDSL.UFA software using the IDSL.ExposomeDB IPDB 290 
annotated (80,957 ESI- and 124,647 ESI+) peaks in the aligned peak table with at least one molecular 291 
formula having a median rank of ≤ 5. 292 

We identify the peaks that were associated with GA by computing a spearman correlation coefficient 293 
between normalized peak-height for each peak and GA. On a spearman cutoff of (p-value ≤ 0.05, |ρ| ≥ 294 
0.65, “two.sided” alternative), 274 peaks with a detection frequency of ≥ 5 within each subject were found 295 
to be significantly associated with GA (only ≤ 36 weeks). We observed 242 (red) and 32 (blue) ascending 296 
and descending correlations patterns with GA, which were consistent with the patterns reported in the 297 
original paper26 and corresponded to chemicals related to steroid hormone biosynthesis and long-chain 298 
fatty acids. These results show the potential the IDSL.UFA approach to characterize the pregnancy 299 
related metabolic changes (Figure 3). 300 

To flag the potential peaks related to chemical exposures in the pregnancy study (ST001430), we first 301 
assigned a molecular formula using an ECS that may cover diverse halogenated compounds that were 302 
not found in the IDSL.ExposomDB formula list. IDSL.UFA resulted with 199,837 unique molecular 303 
formulas on the aligned table (top rank ≤ 30 and number of hits ≤ 30) in the ST001430 study. Grouping 304 
these formulas by a class detection approach (see method) highlighted that 7,615, 18,452, and 32,107 305 
distinct formula classes. For instance, a class of heavily halogenated compounds, CnHClF2nO4 (n=10-12), 306 
known as chlorinated perfluorotriether alcohols (Cl-PFTrEAs) was detected for human specimens in this 307 
study. Cl-PFTrEAs was previously only reported in air samples from eastern China37 and may represent a 308 
new ubiquitous global contaminant class. IDSL.UFA can only confirm isotopic profiles match (Figure S.6); 309 
however, a confirmatory in-source fragment ([M-C3F6O]-) was  consistent with the published MS/MS 310 
fragmentation (Figure S.8).37 Authentic standards for Cl-PFTrEAs are not readily available; therefore a 311 
confidence level 3b (isotopic profile match combined with fragmentation-based candidate) is suggested 312 
for these annotations  according to a recently proposed PFAS identification confidence level by 313 
Charbonnet et al.38 Levels of Cl-PFTrEAs were similar to the commonly known legacy halogenated 314 
compounds14 for human serum samples (Figure 4). These findings also show that IDSL.UFA software can 315 
potentially detect chemicals of public health concerns in a human biospecimen and can be helpful in 316 
expanding the existing database of exposome chemicals.39  317 

Section 3) Performance benchmarking and comparison with existing tools  318 

IDSL.UFA processed one file (D115_NEG.mzml from the ST2044 study) in ~10 minutes on a computer 319 
with 6 cores, indicating the pipeline can be used in normally available computing resources.  320 

To check how IDSL.UFA performed for low abundant signals, we utilized data from the MTBLS1040 study 321 
which has a seven-point calibration curve for the analyzed compounds. For the hippuric acid standard in 322 
the MTBLS1040 study, IDSL.UFA correctly assigned the molecular formula to the corresponding peak in 323 
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samples analyzed at up to 8 fmol concentration level (second-lowest point) 324 
(https://zenodo.org/record/6466668). 325 

IDSL.UFA software is designed to cover commonly used LC-HRMS instruments for human biospecimens 326 
studies in the EBI MetaboLights and Metabolomics Workbench repositories. A mass resolution of 20,000 327 
and mass accuracy of 5 ppm is often found for these instruments. We compared the results for publicly 328 
available two raw data files for a BioRec human plasma sample analyzed for a lipidomic assay by 329 
QToF(ST001843) and Orbitrap instruments(ST001264) using the same chromatography method in the 330 
same lab. Our workflow generated 1752 peaks with 2855 formulas for the QToF data file and 1328 peaks 331 
with 2209 formulas for the Orbitrap data file. A list of 151 true positive annotations from the ST11005427 332 
study (MS/MS matches were inspected by an expert user from the same lab and chromatography 333 
method) was utilized for these test data files (https://zenodo.org/record/6621138). For these true 334 
positives, 35% were found to be top hits in the QToF data file and 53% in the Orbitrap data file. It seems 335 
our approach works slightly better for Orbitrap data. However, an even higher resolution and better mass 336 
accuracy can be helpful in removing several false positive annotations, and in improving the ranking of 337 
the true positive annotations.  338 

When we imported a MS1 only data file in the SIRIUS20 tool, it did not process the file, which was 339 
expected since SIRIUS only processes data files with MS/MS spectra. For a data file (D115_NEG.mzml 340 
from the ST002044 study) with MS/MS spectra in the Data Dependent Acquisition (DDA) mode, SIRIUS 341 
processed 885 MS/MS spectra and suggested formula annotations for 221 spectra, whereas IDSL.UFA 342 
assigned molecular formula to 9303 peaks in this data file.  343 

IDSL.UFA natively uses IUPAC isotope table data29 to calculate theoretical isotopic profiles and 344 
calculated almost identical isotopic profiles to that obtained from the enviPat package40 (Table S.8). 345 
Negligible mass and profile similarity  differences (NEME ≤ 0.69 mDa and PCS ≥ 99.999%) were 346 
observed for formula [C8F17O3S]- between IDSL.UFA and enviPat40.  347 

Next, we compared the IDSL.UFA against Rdisop19 R package to show the advantages of a database-348 
dependent approach (IDSL.UFA) over a database independent approach (Rdisop) for molecular formula 349 
annotation. For kynurenine authentic standard (MSV000088661), both IDSL.UFA and Rdisop19 ranked 350 
the M+H adduct formula as the top hit(Section S.2 and Table S.9). But Rdisop‘s ranking for PFOS 351 
isomers were >20 in the studies ST001430 and ST002044 (both human blood samples). Whereas 352 
IDSL.UFA annotated both isomers of PFOS as top hit for these studies (Table S.10-11 and Figure S.9-353 
10). This suggests that Rdisop may miss important expected compounds when a complex chemical 354 
space (CHBrClFNOPS) is targeted, but IDSL.UFA will be able to annotate them for human blood 355 
specimens. Next, we extended the comparison to the lipidomics analysis with 151 true positive 356 
annotations. Rdisop annotated 12%, whereas IDSL.UFA reported 53% of true annotations as top hits for 357 
the Orbitrap data file (Figure S.11). These comparisons suggest that a database dependent approach for 358 
formula annotation, such as IDSL.UFA should be used first to screen for expected compounds in HRMS 359 
data before looking for unknown-unknowns. We also provide a comparison (Table S.12) between 360 
IDSL.UFA and Rdisop19 R packages, highlighting new features that IDSL.UFA is introducing into R 361 
computing workflows for metabolomics and exposomics studies.  362 

Our approach to obtain homologous series with polymeric chain increment from a list of input molecular 363 
formulas is different from the prior approaches41-43-40 in which molecular formulas are enumerated only for 364 
a known series or chain increment rule. Therefore, our approach has the flexibility to discover new types 365 
of homologous series among a collection of formulas. 366 

Conclusion 367 
IDSL.UFA enabled a comprehensive characterization of the chemical space that was detected by an 368 
untargeted LC/HRMS assay to study the metabolome and exposome and its role in human health. The 369 
unique feature of the IDSL.UFA software is to utilize the summary statistics for the rank and frequency of 370 
detected molecular formulas in the aligned annotated molecular formula table. It can complement the 371 
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other peak annotation efforts that use mainly MS/MS data to annotate peaks, and thus lower the number 372 
of false negative reporting of peaks and minimize the under-utilization of the untargeted LC/HRMS 373 
datasets. We provided various scenarios to obtain molecular formulas from a known database and 374 
enumeration strategies to assign a formula to peaks in a LC/HRMS dataset. These new computational 375 
strategies for molecular formula assignment can greatly expand the quality of untargeted LC/HRMS data 376 
matrices and their analyses especially when MS/MS data are not available. 377 
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 519 

Figure 1. A simplified flowchart of the IDSL.UFA software.  520 
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a) 

 
b) 

Figure 2. a) A chromatographic peak generated by the IDSL.IPA pipeline for Kynurenine ion ([C10H13N2O3]+ 
= [M+H]+) to detect peak boundaries. b) Comparison between the theoretical isotopic profile and integrated 
spectra across the chromatographic peak after molecular formula annotation using IDSL.UFA. 
  521 
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  522 

Figure 3. Trends of 274 peaks associated with pregnancy dynamics. Molecular formula annotated 523 
interactive plots are available at https://ufa.idsl.me/st001430 for an enumerated chemical space and 524 
IDSL.ExposomeDB IPDBs.  525 
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 526 

Figure 4. Peak area of halogenated contaminants in human blood ([CnF2n+1O3S]- (n = 4, 6, 8), [C8F15O2]-, 527 
[C6Cl5O]-, [C9H14Cl6O4P]-, [C18H14Cl3O8]-, [C12H6Cl3O2]-) and Cl-PFTrEAs [CnClF2nO4]- (n = 10-12) across 528 
781 negative samples in the ST001430 study. 529 
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