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Abstract

Untargeted LC/HRMS assays in metabolomics and exposomics aim to characterize the small molecule
chemical space in a biospecimen. To gain maximum biological insights from these datasets, LC/[HRMS
peaks should be annotated with chemical and functional information including molecular formula, structure,
chemical class and metabolic pathways. Among these, molecular formulas may be assigned to LC/HRMS
peaks through matching theoretical and observed isotopic profiles (MS1) of the underlying ionized
compound. For this, we have developed the Integrated Data Science Laboratory for Metabolomics and
Exposomics — United Formula Annotation (IDSL.UFA) R package. In the untargeted metabolomics
validation tests, IDSL.UFA assigned 54.31%-85.51% molecular formula for true positive annotations as the
top hit, and 90.58%-100% within the top five hits. Molecular formula annotations were also supported by
MS/MS data. We have implemented new strategies to 1) generate formula sources and their theoretical
isotopic profiles 2) optimize the formula hits ranking for the individual and the aligned peak lists and 3) scale
IDSL.UFA-based workflows for studies with larger sample sizes. Annotating the raw data for a publicly
available pregnancy metabolome study using IDSL.UFA highlighted hundreds of new pregnancy related
compounds, and also suggested presence of chlorinated perfluorotriether alcohols (CI-PFTrEAS) in human
specimens. IDSL.UFA is useful for human metabolomics and exposomics studies where we need to
minimize the loss of biological insights in untargeted LC/HRMS datasets. The IDSL.UFA package is
available in the R CRAN repository https://cran.r-project.org/package=IDSL.UFA. Detailed documentation
and tutorials are also provided at www.ufa.idsl.me.

Introduction

Untargeted LC/HRMS analyses of human specimens enable studying the metabolome and exposome in
an unbiased manner!- 2. They have delivered many novel biomarkers and mechanisms for diseases and
have improved our understanding of basic metabolic pathways®®. These assays are unique in nature since
they record all the mass to charge (m/z) ratio signals above the limit of detection of an instrument for ionized
compounds in a sample®. This makes the collected data a rich source of information with great opportunities
to generate novel hypotheses about metabolome and exposome. It is critical for the promises that
untargeted assay offers, that the data are utilized in an inclusive way to not miss any discovery
opportunities.

A key post-data acquisition step in the untargeted LC/HRMS assays is to annotate the detected peaks
with a range of structural and functional information which can enable biological interpretations® - . This
information includes a chemical structure, molecular formula, chemical class and metabolic pathway?® ® 1°,
These annotations may help in understanding the nature, origin and function of the chemical structure
underlying a peak. Among these information, molecular formula can be assigned to a LC/HRMS peak
using the observed and theoretical isotopic profiles for a chemical compound.! Isotopic profiles are
distinguishable mass spectral signature that represent atomic masses and their natural abundances in
the molecular formulas of a compound.*? Despite the known limitations of high-resolution mass
spectrometry instruments, observed experimental isotopic profiles for an ionized compound may
sufficiently match the theoretical counterpart within instrument errors in many instances'* 13, allowing to
annotate LC/HRMS peaks with molecular formula'#. Peak annotation by isotopic profile matching should
be performed using efficient computational strategies to account for instrumental errors, multi-sample
studies, biological plausibility and chemical diversity.*®

There has been a great deal of efforts to develop computational tools for annotating peaks in a LC/HRMS
dataset with MS1 only data. In a MS1 peak list, a series of m/z values representing different isotopes, ESI
adducts, and in-source fragments can belong to one compound. Grouping these m/z values are normally
performed by retention time and elution profile similarities within a single file, for example by xcms-
CAMERA®® 17 and peak intensity correlations across multiple samples such as MS-FLO and CliqueMS?®
tools. Clustered isotopologues from these tools can be used by the Rdisop R package®® to assign
molecular formulas in a ‘database independent’ manner. But this approach may miss expected
compounds for a sample due to MS instrument’s sensitivity and specificity. MetDNA” can search for
theoretical isotope profiles for a list of molecular formulas from a metabolic reaction network database in
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the MS1 peak list. However, their ‘database dependent’ approach is prone to miss 1) exposure
compounds that are poorly represented in such biochemical databases and 2) compounds which may not
have any transformation products because of their bioaccumulative nature and 3) compounds that were
filtered out by the detection frequency and intensity thresholds while generating MS1 peak table for a
study. Moreover, MetDNA’ and other tools including SIRIUS? and ZODIAC?, NetID?2 are mainly
designed for assigning molecular formulas to peaks having MS/MS fragmentation data. Furthermore,
implementing these tools for larger studies where only MS1 data are available for every sample remains
to be challenging due to the ranking of formula hits on individual and aligned peak tables, scalable
computation and various sources for formulas which need to be covered for exposomics projects.

There is a need to develop new tools to compute and to compare theoretical and experimental isotopic
profiles for chemical lists from larger databases and chemical spaces for molecular formula annotations.
Here, we have developed a scalable, user-friendly, thoroughly tested R package, the IDSL.UFA to assign
molecular formulas with high confidence to peaks in untargeted LC/HRMS datasets from large-scale
studies. IDSL.UFA covers major possible situations in which a molecular formula can be assigned to
LC/HRMS peaks. We propose that processing LC/HRMS data with IDSL.UFA can find new opportunities
for hypotheses and biomarker discoveries for studying the role of metabolism and exposome in human
diseases.

Methods

Publicly available LC/HRMS test datasets: To test and develop the IDSL.UFA R package, we have
utilized the raw LC/HRMS data for human and mouse biospecimen studies (MTBLS1684%3,
MTBLS254224, ST001683%5, ST001430%, ST001154%7, ST002044 and reference authentic standards
(MSV000088661) available from Metabolomics WorkBench (https://www.metabolomicsworkbench.org/),
MassIVE (https://www.massive.ucsd.edu), and MetaboLights (https://www.ebi.ac.uk/metabolights)
repositories. Data processing results that we have generated for these studies have been submitted to
the Zenodo.org repository and corresponding entry pages are provided in Table S.1. Sample preparation
and data collection procedures are available at entry pages for these studies in the repositories.

Data analysis setup: IDSL.UFA R package is available in the R-CRAN repository (https://cran.r-
project.org/package=IDSL.UFA). The package was installed using the ‘install.packages(“IDSL.UFA”)’ R
command. The IDSL.MXP package (https://cran.r-project.org/package=IDSL.MXP) was used to read
mzML/mzXML/netCDF mass spectrometry data in the centroid mode. mzML files were generated from
the vendor specific data format using the ProteoWizard MSConvert utility?® when needed. All data files
related to only one type of analysis such as “reverse phase - electrospray ionization negative mode” were
stored in a single file folder. Figure 1 (simplified) and Figure S.1 (detailed) show the workflow steps to
assign molecular formulas for a study. Data processing parameters for IDSL.UFA were provided in a
Microsoft excel file (https://zenodo.org/record/6466688) which was created for individual test studies. We
have provided the parameters files used in this manuscript in the Zenodo.org repository at
(https://zenodo.org/record/6466684). To run the IDSL.UFA workflow, only a single R command
‘UFA_workflow(spreadsheet = "address of the parameter xIsx file") was needed. Tutorials to create the
parameter files for different scenarios are available at (https://ufa.idsl.me). For each individual peak list in
a study, a formula annotation list with rank, score and other peak properties was generated and exported
to a csv file. Likewise, for each peak in the aligned peak table, top 5-20 formulas with detection frequency
and median ranks across all samples were exported to a csv file for each test study.

Generating the isotopic profile database (IPDB): An IPDB is a digital collection of theoretical isotopic
profiles computed by the IDSL.UFA R package for a list of candidate molecular formulas. IDSL.UFA
gueries and matches the experimental isotopic profile against this collection to annotate a LC/HRMS
peak. To compute the isotopic profile for a molecular formula, we have utilized the reference stable
isotope masses and abundances for elements in the periodic table from the PubChem database entries?®
which have been sourced from International Union of Pure and Applied Chemistry (IUPAC)%. We have
also provided an online tool (https://.ipc.idsl.me) to compute an isotopic profile for a single molecular
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formula. IDSL.UFA generates centroid isotopic profiles using a dynamic intensity threshold and a peak-
spacing criterion to merge adjacent isotopologues within a mass accuracy window. In this work, we have
covered two sources of molecular formulas.

Source A (databases): Chemical compound lists for four key databases in metabolomics and
exposomics including the blood exposome (chemicals expected in a mammalian blood specimen),
RefMet (measured and expected small molecules in biological organisms)3?, Lipid Maps (known lipid
molecules)®? and the US-Food and Drug Administration substance registry3® were obtained from their
online web addresses. These four databases were combined into a single compound list referenced as
IDSL.ExposomeDB in this manuscript and also provided at the Zenodo repository
(https://zenodo.org/record/5823455). Charged compounds, isotope-labeled compounds and multi-
components were excluded. Unique molecular formulas from this consolidated database were used for
computing IPDB. IPDBs for these four databases and the environmental protection agency (EPA)
CompTox Chemicals Dashboard?®* are available at the Zenodo repository
(https://zenodo.org/record/5823455).

Source B (enumerated chemical space with constraints): Molecular formulas were enumerated using
a set of combinatorial and filtering rules using C, H, As, B, Br, CI, F, |, K, N, Na, O, P, S, Se, and Si
elements. These 16 elements were able to cover 93.76% of carbon-containing compounds (50 < mass <
2000) in the IDSL.ExposomeDB combined with EPA chemistry Dashboard®*. An enumerated chemical
space (ECS) can be represented using equation (1).

CcHpASqsBp BTy Clo F i K Ny Ny O, Py SsSege Si;

1)

where the subscripts of elements represent the number of atoms. A fully combinatorial chemical space
from above-mentioned 16 elements is impractical to be managed by current computational resources.
Therefore, we derived and coded in R a set of four rules which were inspired from the seven golden rules
approach® to constrain ECSs. These rules included 1) C/N chemical space rule ‘((c/2-n-1) <
(h+cl+br+f+i) < (2c+3n+6))’ was used to set elemental boundaries for the organic compounds to ensure
entire moieties are bond to carbon and nitrogen atoms. 2) Extended SENIOR rule was used to ensure
that the molecular formulas completely filled s- and p- valence electron shells.®> 3) Maximum number of
halogens thresholds was used to constrain halogenated compounds. For example, we have used the
maximum number of (br+cl) < 8 and the maximum number of ((br+cl+f+i) < 31) thresholds to cover
halogenated compounds in the blood exposome database. 4) Maximum number of elements rule was
used to skip unrealistically complex molecular formulas generated through molecular formula
enumeration. For example, the maximum number of elements for glucose (CsH1205) is three (C, H, and
0O). The ECS boundaries and rules for the MTBLS1684 study are provided in the Zenodo repository
(https://zenodo.org/record/5838603).

MS1 peak detection and alignment: IDSL.IPA3 R package (https://cran.r-
project.org/package=IDSL.IPA) was used to generate individual peak lists for each sample and the
aligned peak table (m/z-RT pairs across all samples) for each study. Data processing parameter files and
IDSL.IPA results for each test study are provided in the Zenodo repository (see Table S.1). Details and a
tutorial for IDSL.IPA data processing can be found at (https://ipa.idsl.me) site.

Isotopic profile matching for individual sample: First, IDSL.UFA software accessed the peak
boundaries, *2C m/z, *3C m/z and ratio of cumulated intensity of 1>C to *3C (R*3C) for each peak in an
IDSL.IPA generated peak list for a sample. Next, it finds all the theoretical isotopic profiles in an IPDB that
matches the 12C and *C m/z for a peak. Then, for each matched theoretical profile, experimental profiles
are retrieved from raw data using a mass accuracy threshold within the peak boundaries for a peak. If a
compound formula has three isotopologues in the IPDB and only two were observed in the raw data, the
formula will not be annotated. IDSL.UFA requires that a minimum one MS1 scan across the peak should
have the full isotope profile for a formula in the IPDB.
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For the experimental isotopic profiles, the IDSL.UFA software calculates cumulated intensities and
intensity-weighted average masses for each isotopologue using equations (2) and (3) across the
chromatographic peak to minimize the effect of fluctuations such as peak saturation.

t=tend
Tnt = Z Int, @)
t=tg
t=tend
_ m/z, * Int
m/Z — t=ty _/ t t (3)
Int

where m/z: and Int: represent mass and intensity of the matched isotopologue in individual scans across
the chromatographic peak from to to tend.

We have used the Profile cosine similarity (PCS) to quantify profile similarity between experimental and
theoretical isotopic profiles using equation (4). To assess mass accuracy error for whole isotopic profile,
Normalized Euclidean mass error (NEME) was calculated using the equation (5).*

S
PCS = Z
i= s theory2 N exptly? (4)
=t i=1(; ) i=1(1i )

h exptl 2
W=J (M eo;‘Mi ) ®)

theor yexptl
I; IL-

where |i, Mi, and S represent the intensity of the isotopologue, mass of the isotopologues, and humber of
isotopologues in the isotopic profile, respectively. Superscripts of theor and exptl also represent
theoretical and experimental isotopic profiles, respectively.

Candidate formulas were then filtered using thresholds for 1) PCS 2) NEME 3) the top 80% of number of
scans with the confirmed whole isotopic profile (NDCS) and 4) minimum percentage of NDCS within a
chromatography peak (RCS (%)). These linear cutoffs allow eliminating false positives; however, they can
reject true positive peaks with poor isotopic profiles.

Next, a matching score for each candidate filtered formula was computed using equation (6).

coeff[1] m oIl _RCS coet I3l \
— S * <W) * (150) ©6)
core = m coeff[4] W coeff[5]
(2N (expfn (B
maxNEME R13Cp

where R13C,, and R13(;, indicate experimental and theoretical R*3C values, respectively. R**C values
represent the ratio of the general 3C isotopologue [M+1] relative to 1°C isotopologue [M] on the most
abundant mass. coeff[1-5] are powers of the parameters to apply different magnitudes of each variable in
different studies. Using this score, a ranking for candidate formula was determined. By default, IDSL.UFA
utilized a value of 1 for coeff[1-5] to rank candidate molecular formulas in the equation (6). However, we
have provided a score coefficient optimization strategy in the section S.1 which can be helpful for
improving the ranking when larger size IPDB are utilized.

Summary statistics of molecular formulas annotation in the aligned peak table: It is quite common
to have more than 50 samples in metabolomics and exposomics projects, which can be leveraged to
compute a statistic for formula annotations across all the samples. For each peak (m/z-RT pair) in the
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183  aligned peak table, corresponding molecular formula lists across all the samples were retrieved using the
184 peak indices provided by the IDSL.IPA data processing. We then aggregated these formula lists and

185 computed two properties 1) the detection frequency and 2) median rank for each formula assigned for a
186 peak across all the samples (individual peak list). Then we generated a new sort order for each molecular

187  formula at the aligned peak table level using the following formula: m—m. For each peak in the

188  aligned peak table, top 5-20 formulas with detection frequency and median ranks across all samples were
189 exported to a csv file for each test study.

190 Molecular formula class detection: Many compounds belong to a chemical class with a distinct sub-
191 structure pattern such as polychlorinated biphenyl (PCBs), polybrominated diphenyl ethers (PBDES),

192 polycyclic aromatic hydrocarbons (PAHS), perfluoroalkyl substances (PFAS), lipids and phthalates etc.
193 The formula annotations generated via the enumerated chemical space (ECS) approach were processed
194 to detect such classes within a list of formulas. The IDSL.UFA function ‘detect_formula_sets’ was used to
195 detect 1) constant AH/AC ratios for polymeric (AH/AC = 2) and cyclic (AH/AC = 1/2) chain progressions
196  within polymeric and cyclic classes (Table S.2- S.4) and 2) a constant number of carbons and fixed

197  summation of hydrogens and halogens (Z(H+Br+Cl+F+l1)) representing classes similar to PCBs, PBDEs
198 (Table S.5).

199 Correlation analysis for gestational age: The ST001430 study?® includes weekly blood samples of 30
200 pregnancies. The study has 781 total samples each processed in positive and negative modes to predict
201 gestational age. To reduce batch effects, the peak heights were adjusted by raw total ion chromatograms
202 (TICs) in each sample, and then the positive and negative aligned peak height tables were stacked to
203 generate a comprehensive list of peaks. We computed a Spearman correlation coefficient between

204  gestational age and peak height data for each pregnancy. A schematic of this workflow is presented in
205 Figure S.2.

206 Results and discussion

207  We have engineered a new software, IDSL.UFA, to annotate LC/HRMS peaks with molecular formulas for
208 an untargeted metabolomics or exposomics study. In this approach, IDSL.UFA computes theoretical

209 isotopic profiles for molecular formulas, matches theoretical isotopic profiles against experimental

210 LC/HRMS data in individual data file using a set of matching parameters and then summarizes the

211 formula annotations using detection frequency and median ranks in multiple samples (aligned annotated
212 peak table) in a study. The IDSL.UFA software has been implemented as an R package and made

213 publicly available via the R-CRAN repository and www.ufa.idsl.me site.

214  Section 1) Development and validation of IDSL.UFA results: To demonstrate the validity of our
215 approach to assign molecular formulas, we have utilized datasets with true positive annotations and show
216 their ranks in the IDSL.UFA result matrices.

217  Analysis of authentic reference standards: First, we evaluated performance of the IDSL.UFA software
218 to detect molecular formulas in LC/HRMS data for authentic reference standards. We found that the

219 average NEME (indicator of mass difference) was 0.70 mDa and PCS (indicator of isotope profile

220  similarity) were 99.968% between experimental and theoretical isotopic profiles for 367 authentic

221 standard compounds of common metabolites. This indicated that the observed isotopic profiles were very
222 similar to the theoretical counterparts for these reference standards and suggested that molecular

223 formulas can be reliably assigned to untargeted data generated by the commonly used LC/HRMS

224 instruments. The theoretical and experimental integrated isotopic profile spectra across chromatography
225  for these standards are provided at Zenodo repository accession (https://zenodo.org/record/5803968) and
226  an example compound (Kynurenine ion [C10H13N203]*) is shown in Figure 2 and Figure S.3 (NEME < 0.61
227  mbDa and PCS = 100.000%).

228  Analysis of untargeted LC/HRMS data with structurally annotated peaks:
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229  We selected four publicly available studies (ST001154%7, ST001683%%, MTBLS168423, and

230  MTBLS2542%%). These studies have reported annotations with MSI 1-3 confidence levels

231 (https://zenodo.org/record/5838709) that were obtained using retention time, accurate mass and MS/MS
232 spectra matching. For these studies, the IDSL.UFA software assigned 61.85%, 54.31%, 70.58% and
233 85.51% molecular formula as the top hit, and 96.90%, 90.58%, 100% and 99.29% molecular formulas in
234  the top five hits in the aligned table. These results were generated using the IPDB of the

235 IDSL.ExposomeDB with 209,592 and 129,122 ion formulas in positive and negative modes from multiple
236 ionization pathways, respectively representing 83,951 unique intact molecular formulas

237 (http://zenodo.org/deposit/5838709).

238 For each selected study, an ECS IPDB was generated using the element boundaries that covered the
239  formula list of true positive annotations for the study. When IDSL.UFA software was used for each study
240  using those specific ECS IPDBs, the assignment rates were — 52.74%, 53.36%, 79.41% and 51.08%
241 molecular formula as the top hit, and 95.60%, 84.45%, 100% and 91.66% molecular formula in the top 5
242 hits in the aligned table (Figure S.4). Generally, the IDSL.UFA software annotated 924 (90.14%) and 877
243 (85.56%) molecular formulas across all four studies using IDSL.ExposomeDB and ECS IPDBs,

244 respectively. These findings demonstrate that IDSL.UFA is a sensitive approach to cover the majority of
245 formulas for chemicals detectable in a biospecimen.

246  There is a tradeoff of coverage and the confidence in annotation while choosing chemical space for

247 molecular formula annotation. We have noticed that the rank of true positive hits degrades when we have
248  used a larger chemical space (Figure S.5). However, when compounds that are known and expected to
249  Dbe found in a blood specimen are used, we have observed that formulas for true positives are often

250 ranked top hits. Therefore, we recommend a chemical prioritization strategy by sample type and to first
251 match the compounds that are expected for that sample type and then expand the chemical space to
252 cover additional peaks.

253 Summary of the formula annotations in the aligned peak table: Our raw data processing generates
254 both a separate list of m/z-RT pairs for each sample (individual peak list) and a single combine list

255 (aligned-table) of m/z-RT pairs for all samples. IDSL.UFA annotates molecular formulas only to individual
256  peak lists, then, it computes the detection frequency and median rank for all formulas annotated for the
257  same peak across all samples using the aligned peak table (See methods). Our hypothesis is that the
258 most probable formula of the underlying ionized compound will have a higher detection frequency and
259 median rank across all the samples. For example, for the MTLS1684 study, 24/35 (69%) of the reported
260 annotations had a median rank of 1 and 8/35 (23%) had a median rank of 2 across all 499 samples

261 (https://zenodo.org/record/5838709). We propose that the summary of detection frequencies and ranks
262 across individual data files can be helpful in boosting the confidence for formula assignments in multi-
263 sample studies. It should be noted that IDSL.UFA does not group related peaks to flag them as potential
264 ESI adducts or in-source fragments. Such grouping of peaks can be achieved by existing solutions such
265  as MS-FLO*8 online tool or CliqueMS?® R package.

266  Additional validation of molecular formula assignment by MS/MS: To further ensure that IDSL.UFA
267 can assign high confidence molecular formulas for untargeted LC/HRMS data, we utilized data from

268 ST002044 study which has high quality MS/MS data collected in the data dependent mode. A total 73 hits
269  were confirmed by matching their spectra to the NIST 2020 MS/MS library (https://chemdata.nist.gov) and
270 public mass spectral libraries (https://zenodo.org/record/6416108). IDSL.UFA assigned 78.75% of these
271 hits within a median rank of < 2 in the aligned peak table generated using the IDSL.ExposomeDB formula
272 IPDB (Table S.6 and Figure S.6). These results provided additional supports to confidence in the

273 molecular formula assignment by the IDSL.UFA software using the IDSL.ExposomDB IPDB.

274 Rank score optimization: IDSL.UFA utilized a number of chromatographic-mass spectrometry

275 parameters to compute the rank of a molecular formula for a peak in the individual peak list. By default, a
276  score coefficient of 1 is used which works sufficiently in most situations. However, the rank can be further
277 improved by an optimization strategy that utilizes the true positive, curated and high-quality structure
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278 annotations for each data file as input. This can be achieved by running a mixture of reference standards
279 using the same analytical method or by annotating peaks using MS/MS, RT and isotopic profile matching
280 using stringent criteria. For metabolite standards (MSV000088661) and blood specimens (ST002044)
281 studies, we have observed a significant improvement in the ranking of molecular formulas when

282 optimized score coefficients were utilized in the IDSL.UFA software (Table S.7).

283 Section 2) Application of IDSL.UFA for a pregnancy study

284  To demonstrate an application of IDSL.UFA software to characterize the metabolome and exposome for
285 blood specimens, we have re-processed a publicly available study ST0014302%¢ (n=781) which has weekly
286 blood samples analyzed for 30 pregnancies to accurately predict gestational age (GA in weeks). Raw

287 data were processed using the IDSL.IPA software to generate the individual peak lists and the aligned
288  peak table (https://zenodo.org/record/5804527). On average, (3,416 ESI  and 6,978 ESI*) peaks were
289 detected across individual peak lists for this study and a total of (89,174 ESI- and 143,712 ESI*) peaks
290  were reported in the aligned peak table. The IDSL.UFA software using the IDSL.ExposomeDB IPDB

2901 annotated (80,957 ESI and 124,647 ESI*) peaks in the aligned peak table with at least one molecular
292 formula having a median rank of < 5.

293  We identify the peaks that were associated with GA by computing a spearman correlation coefficient

294 between normalized peak-height for each peak and GA. On a spearman cutoff of (p-value < 0.05, |p| =
295 0.65, “two.sided” alternative), 274 peaks with a detection frequency of = 5 within each subject were found
296  to be significantly associated with GA (only < 36 weeks). We observed 242 (red) and 32 (blue) ascending
297 and descending correlations patterns with GA, which were consistent with the patterns reported in the
298 original paper?® and corresponded to chemicals related to steroid hormone biosynthesis and long-chain
299  fatty acids. These results show the potential the IDSL.UFA approach to characterize the pregnancy

300 related metabolic changes (Figure 3).

301 To flag the potential peaks related to chemical exposures in the preghancy study (ST001430), we first
302 assigned a molecular formula using an ECS that may cover diverse halogenated compounds that were
303 not found in the IDSL.ExposomDB formula list. IDSL.UFA resulted with 199,837 unique molecular

304 formulas on the aligned table (top rank < 30 and number of hits < 30) in the ST001430 study. Grouping
305 these formulas by a class detection approach (see method) highlighted that 7,615, 18,452, and 32,107
306  distinct formula classes. For instance, a class of heavily halogenated compounds, ChHCIF2104 (n=10-12),
307 known as chlorinated perfluorotriether alcohols (CI-PFTrEAS) was detected for human specimens in this
308  study. CI-PFTrEAs was previously only reported in air samples from eastern China®” and may represent a
309 new ubiquitous global contaminant class. IDSL.UFA can only confirm isotopic profiles match (Figure S.6);
310 however, a confirmatory in-source fragment ([M-C3sFsO]) was consistent with the published MS/MS

311  fragmentation (Figure S.8).%” Authentic standards for CI-PFTrEAs are not readily available; therefore a
312 confidence level 3b (isotopic profile match combined with fragmentation-based candidate) is suggested
313 for these annotations according to a recently proposed PFAS identification confidence level by

314  Charbonnet et al.3® Levels of CI-PFTrEAs were similar to the commonly known legacy halogenated

315 compounds?# for human serum samples (Figure 4). These findings also show that IDSL.UFA software can
316 potentially detect chemicals of public health concerns in a human biospecimen and can be helpful in

317 expanding the existing database of exposome chemicals.*®

318  Section 3) Performance benchmarking and comparison with existing tools

319 IDSL.UFA processed one file (D115 _NEG.mzml from the ST2044 study) in ~10 minutes on a computer
320  with 6 cores, indicating the pipeline can be used in normally available computing resources.

321 To check how IDSL.UFA performed for low abundant signals, we utilized data from the MTBLS1040 study
322  which has a seven-point calibration curve for the analyzed compounds. For the hippuric acid standard in
323 the MTBLS1040 study, IDSL.UFA correctly assigned the molecular formula to the corresponding peak in
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samples analyzed at up to 8 fmol concentration level (second-lowest point)
(https://zenodo.org/record/6466668).

IDSL.UFA software is designed to cover commonly used LC-HRMS instruments for human biospecimens
studies in the EBI MetaboLights and Metabolomics Workbench repositories. A mass resolution of 20,000
and mass accuracy of 5 ppm is often found for these instruments. We compared the results for publicly
available two raw data files for a BioRec human plasma sample analyzed for a lipidomic assay by
QToF(ST001843) and Orbitrap instruments(ST001264) using the same chromatography method in the
same lab. Our workflow generated 1752 peaks with 2855 formulas for the QToF data file and 1328 peaks
with 2209 formulas for the Orbitrap data file. A list of 151 true positive annotations from the ST110054%"
study (MS/MS matches were inspected by an expert user from the same lab and chromatography
method) was utilized for these test data files (https://zenodo.org/record/6621138). For these true
positives, 35% were found to be top hits in the QToF data file and 53% in the Orbitrap data file. It seems
our approach works slightly better for Orbitrap data. However, an even higher resolution and better mass
accuracy can be helpful in removing several false positive annotations, and in improving the ranking of
the true positive annotations.

When we imported a MS1 only data file in the SIRIUS? tool, it did not process the file, which was
expected since SIRIUS only processes data files with MS/MS spectra. For a data file (D115_NEG.mzml
from the ST002044 study) with MS/MS spectra in the Data Dependent Acquisition (DDA) mode, SIRIUS
processed 885 MS/MS spectra and suggested formula annotations for 221 spectra, whereas IDSL.UFA
assigned molecular formula to 9303 peaks in this data file.

IDSL.UFA natively uses IUPAC isotope table data?® to calculate theoretical isotopic profiles and
calculated almost identical isotopic profiles to that obtained from the enviPat package*’ (Table S.8).
Negligible mass and profile similarity differences (NEME < 0.69 mDa and PCS = 99.999%) were
observed for formula [CeF1703S] between IDSL.UFA and enviPat*°,

Next, we compared the IDSL.UFA against Rdisop*® R package to show the advantages of a database-
dependent approach (IDSL.UFA) over a database independent approach (Rdisop) for molecular formula
annotation. For kynurenine authentic standard (MSV000088661), both IDSL.UFA and Rdisop*® ranked
the M+H adduct formula as the top hit(Section S.2 and Table S.9). But Rdisop's ranking for PFOS
isomers were >20 in the studies ST001430 and ST002044 (both human blood samples). Whereas
IDSL.UFA annotated both isomers of PFOS as top hit for these studies (Table S.10-11 and Figure S.9-
10). This suggests that Rdisop may miss important expected compounds when a complex chemical
space (CHBrCIFNOPS) is targeted, but IDSL.UFA will be able to annotate them for human blood
specimens. Next, we extended the comparison to the lipidomics analysis with 151 true positive
annotations. Rdisop annotated 12%, whereas IDSL.UFA reported 53% of true annotations as top hits for
the Orbitrap data file (Figure S.11). These comparisons suggest that a database dependent approach for
formula annotation, such as IDSL.UFA should be used first to screen for expected compounds in HRMS
data before looking for unknown-unknowns. We also provide a comparison (Table S.12) between
IDSL.UFA and Rdisop®® R packages, highlighting new features that IDSL.UFA is introducing into R
computing workflows for metabolomics and exposomics studies.

Our approach to obtain homologous series with polymeric chain increment from a list of input molecular
formulas is different from the prior approaches?*-#34% in which molecular formulas are enumerated only for
a known series or chain increment rule. Therefore, our approach has the flexibility to discover new types
of homologous series among a collection of formulas.

Conclusion

IDSL.UFA enabled a comprehensive characterization of the chemical space that was detected by an
untargeted LC/HRMS assay to study the metabolome and exposome and its role in human health. The
unique feature of the IDSL.UFA software is to utilize the summary statistics for the rank and frequency of
detected molecular formulas in the aligned annotated molecular formula table. It can complement the
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other peak annotation efforts that use mainly MS/MS data to annotate peaks, and thus lower the number
of false negative reporting of peaks and minimize the under-utilization of the untargeted LC/HRMS
datasets. We provided various scenarios to obtain molecular formulas from a known database and
enumeration strategies to assign a formula to peaks in a LC/HRMS dataset. These new computational
strategies for molecular formula assignment can greatly expand the quality of untargeted LC/HRMS data
matrices and their analyses especially when MS/MS data are not available.
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520 Figure 1. A simplified flowchart of the IDSL.UFA software.
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Figure 2. a) A chromatographic peak generated by the IDSL.IPA pipeline for Kynurenine ion ([C1o0H13N203]*
= [M+H]") to detect peak boundaries. b) Comparison between the theoretical isotopic profile and integrated

spectra across the chromatographic peak after molecular formula annotation using IDSL.UFA.
521
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523 Figure 3. Trends of 274 peaks associated with pregnancy dynamics. Molecular formula annotated
524  interactive plots are available at https://ufa.idsl.me/st001430 for an enumerated chemical space and
525 IDSL.ExposomeDB IPDBs.
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527 Figure 4. Peak area of halogenated contaminants in human blood ([CnF2n+103S] (n = 4, 6, 8), [CsF1502],
528  [CeClsO], [CoH14ClsO4P], [C18H14Cl30s]", [C12H6Cl302]") and CI-PFTrEAS [CnCIF2nO4] (n = 10-12) across
529 781 negative samples in the ST001430 study.
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