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Abstract 
Background 
Eukaryotes such as fungi and protists frequently accompany bacteria and archaea in microbial 
communities. Unfortunately, their presence is difficult to study with ‘shotgun’ metagenomic sequencing 
since prokaryotic signals dominate in most environments. Recent methods for eukaryotic detection use 
eukaryote-specific marker genes, but they do not allow for quantification of eukaryote signal and do not 
incorporate strategies to handle the presence of eukaryotes that are not represented in the reference 
marker gene set. 

Results 
Here we present CORRAL (for Clustering Of Related Reference ALignments), a tool for identification 
of eukaryotes in shotgun metagenomic data based on alignments to eukaryote-specific marker genes 
and Markov clustering. Using a combination of simulated datasets and large publicly available human 
microbiome studies, we demonstrate that our method is not only sensitive and accurate but is also 
capable of inferring the presence of eukaryotes not included in the marker gene reference, such as 
novel species and strains. Finally, we deploy CORRAL on our MicrobiomeDB.org resource, producing 
an atlas of eukaryotes present in various environments of the human body and linking their presence 
to study covariates. 

Conclusion 
CORRAL allows eukaryotic detection to be automated and carried out at scale. Since our approach is 
independent of the reference used, it may be applicable to other contexts where shotgun metagenomic 
reads are matched against redundant but non-exhaustive databases, such as identification of novel 
bacterial strains or taxonomic classification of viral reads. 

Background 
Eukaryotic microbes are a large and phylogenetically diverse group of organisms that includes both 
pathogens and commensals, the latter of which are emerging as important modulators of health and 
disease. Protists include many important pathogens of humans and other animals, such as 
Cryptosporidium, Toxoplasma, Eimeria, Trypanosoma, and Plasmodium. Many fungi are also well-
studied pathogens affecting a diverse range of hosts. For example, Aspergillus fumigatus is an 
important cause of respiratory disease in humans (1); Magnaporthe oryzae is the most important fungal 
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disease of rice globally (2); while Pseudogymnoascus destructans is the cause of White-Nose 
Syndrome, one of the most devastating diseases of bats (3). However, recent data also suggest that 
non-pathogenic commensal fungi are critical modulators of the human antibody repertoire (4–6), 
intestinal barrier integrity (7), and colonization resistance (8). The diverse array of host-microbe 
interactions and host phenotypes influenced by eukaryotic microbes underscores the importance of 
studying this class of organisms in their natural habitats. Unfortunately, the ability to carry out culture-
independent analysis of eukaryotic microbes is severely hindered by their low abundance relative to 
bacteria, which makes accurate detection a challenge and consequently eukaryotes are commonly 
overlooked in metagenomic studies (9). For example, an analysis of stool metagenomes in healthy 
adults participating in the Human Microbiome Project reports only 0.01% reads aligning to fungal 
genomes (10). 

Several methods have been developed to improve the detection of eukaryotes in complex samples. 
Targeted sequencing of internal transcribed spacer regions (ITS) is a common approach but prevents 
simultaneous profiling of other members of the microbiome (11). Alternatively, collections of curated 
fungal genomes have been successfully used for strain-level identification of Blastocystis from stool 
(12). However, pitfalls associated with non-specific or erroneous parts of reference genomes (13) 
combined with computational challenges associated with carrying out alignments to very large 
collections of reference genomes (14) limit applicability of these approaches to the discovery of 
eukaryotes from the vast amount of metagenomic data already available in the public domain. One 
attractive solution to this challenge was recently proposed in important work by Lind and Pollard (15), 
who base their method for sensitive and specific identification of eukaryotes in metagenomic studies, 
EukDetect, on alignments to a collection of over 500,000 universal, single-copy eukaryotic marker 
genes. 

We recently sought to add the EukDetect reference database and software to our web-based resource, 
MicrobiomeDB.org (16), to allow for automated detection of eukaryotes across a range of human 
metagenomic studies currently available on the site. Since the EukDetect pipeline does not allow for 
adjustment of filtering thresholds and is not packaged for containerized deployments, we decided to 
implement our own tool built with a more flexible software architecture. Our approach retains the 
EukDetect reference database, as well as the use of Bowtie2 (17) since it has been shown to be a 
sensitive aligner (18). To better understand the filtering process used by EukDetect, we carried out a 
simulation-based evaluation. We observed that filtering of read alignments based on mapping quality 
(MAPQ) scores (19) – though necessary for EukDetect’s high specificity – removes correct alignments 
for which Bowtie2 has inferior but closely scored alternatives. 

Considering that the difficulty of detecting a taxon may be affected by similarity of its marker gene 
sequences to its most similar neighbor led us to develop CORRAL (for Clustering Of Related Reference 
ALignments), an approach for processing marker gene alignments based on exploiting information in 
shared alignments to reference genes through Markov clustering. This allows for sensitive and accurate 
detection which also extends to species not present in the reference but which are similar to one or 
more known taxa present in the reference. 

Results 
Species-specific impact of MAPQ filtering 
To evaluate how read mapping and filtering parameters influence eukaryotic detection, we carried out 
a series of simulations using the EukDetect database of eukaryotic marker genes as both a source of 
reads with known identity and a reference to which to align these reads. When metagenomic reads are 
simulated from this reference and then simply mapped back, thus exactly matching the reference, they 
are accurately mapped to the correct taxon with a recall (fraction of correctly mapped reads among all 
reads) and precision (fraction of correctly mapped reads among all reads that mapped) of 95.1% for 
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each. Applying a MAPQ ≥ 30 filter increases precision to 99.7% 
and decreases recall to 91.7%. This translates to 92% of the 
simulated reads mapping with MAPQ ≥ 30, with only 0.3% of these 
mapping incorrectly, and out of the remaining 8%, almost half 
mapping incorrectly. 

Examining these data at the level of individual taxa from which the 
reads were sourced reveals a structural component to the difficulty 
of mapping the reads, as well as the efficacy of the MAPQ filter 
(Figure 1). For example, out of 3977 taxa whose reads map back 
to the reference, reads from 1908 taxa map with 100% precision 
(Figure 1, upper rightmost points), and after applying the 
MAPQ ≥ 30 filter, 1105 more taxa map with 100% precision. 
Despite this clear improvement after filtering, 146 taxa still map 
with precision lower than the pre-filter overall total of 95.1% 
(Figure 1, dashed line). This set of taxa includes numerous 
species of Aspergillus (Figure 1A), Leishmania (Figure 1B), and 
Trichinella (Figure 1C), all of which are important pathogens of 
humans and other mammals. Furthermore, filtering based on 
MAPQ decreases precision for five taxa, including the fungi 
Fusarium cf. fujikuroi NRRL 66890 and Escovopsis sp. Ae733 
(Figure 1A), and the protists Favella ehrenbergii, Leishmania 
peruviana, and Mesodinium rubrum (Figure 1B).  Taken together, 
these results suggest that relying on MAPQ filter alone may not 
allow for robust detection of multiple eukaryotes of public health 
importance. 

Since the diversity of eukaryotic microbial life extends far beyond the currently discovered species, let 
alone species present in the EukDetect reference (20), we next modified this simulation above to 
evaluate the possibility of detecting ‘novel’ species. To do this, species-level markers in the EukDetect 
reference were split into a holdout set of 371 taxa from which we simulated reads that were then 
mapped back to the remaining 3343 taxa in the EukDetect reference, thus mimicking a scenario in 
which a metagenomic sample contains reads from eukaryotes not represented in the reference.  In this 
circumstance, the MAPQ ≥ 30 filter is not on average an improvement. Same-genus precision and 
recall are 82% and 30%, respectively, without the filter.  Applying the MAPQ filter results in a similar 
precision (83.6%) but a much-diminished recall of 7%.  Source taxon is a structural component here as 
well – applying the MAPQ ≥ 30 filter increases the number of taxa which only map to the correct genus 
from 48 to 152 but increases the number of taxa that fail to map from 49 to 175. 

There is extensive strain variation in complex microbial communities, so we next set out to evaluate the 
ability to identify eukaryotes when a sample contains a novel strain of a species present in the reference 
database (Figure 2).  We carried out a third simulation in which sampled reads were mutated before 
mapping back to the reference. As mutation rate increases, recall declines from 95.1% to less than 

Figure 1: Species-specific impact of MAPQ filtering.  Precision of 
read mapping comparing MAPQ ≥ 30 (Y-axis) versus no MAPQ 
filter (X-axis) for A) fungi, B) protists, and C) metazoa.  Points are 
colored by average MAPQ scores.  Horizontal dashed line indicates 
prefilter precision and recall of 95.1%.  Select taxa for which the 
MAPQ filter either only marginally improved or impaired precision 
are labeled. 
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10% when mutation rate is 0.2. In this 
range, precision stays between 95-96% 
for all reads and ≥ 99% for reads with 
MAPQ ≥ 30 – an observation consistent 
with previous reports of bowtie2 
preserving precision over recall [22]. 
Applying the MAPQ ≥ 30 filter results in 

a rapid decline in recall.  For example, when mutation rate is 0.1, recall is 68.3% overall but drops to 
5.0% when a MAPQ ≥ 30 filter is applied.  These results indicate there may be many taxa which match 
the reference sufficiently closely to allow for sensitive detection, but only if one does not apply the 
MAPQ ≥ 30 filter.   

CORRAL leverages Markov clustering for reference-based eukaryote detection 
To address the challenges described above and to fully leverage the valuable eukaryotic marker gene 
reference database created by Lind and Pollard (15), we developed CORRAL (Clustering Of Related 
Reference Alignments) as a Nextflow workflow wrapping a Python module. CORRAL retrieves 
sequence files, aligns reads to the EukDetect reference of markers, and produces a taxonomic profile 
through a multi-step process (Figure 3). First, we run Bowtie2 and keep all alignments that are at least 
60 nucleotides in length (Figure 3, step 1), ensuring that sequence matches contain enough 
information to be marker-specific.  We then run Markov Clustering (MCL) on a graph composed of 
marker genes as nodes and counts of shared alignments as edge weights to obtain marker clusters 
(Figure 3, step 2). Next, percent match identities of alignments are calculated and aggregated by 
marker to obtain an identity average for each marker gene, as well as per cluster to obtain a cluster 
average (Figure 3, step 3). Each marker whose identity average is lower than the cluster average is 
considered an inferior representation of signal in the sample, and taxa with ≥ 50% of such markers are 
rejected (Figure 3, step 4). Remaining taxa are then gathered into taxonomic clusters using MCL on 
counts of multiply aligned reads (Figure 3, step 5), which allows us to incorporate ambiguity of 
identification into any taxa reported.  Unambiguous matches (defined as having average alignment 
identity of at least 97%, and two different reads aligned to at least two markers) are reported (Figure 
3, step 6), while other taxa in clusters where there are any unambiguous matches reported are rejected. 
Finally, for each remaining taxon cluster, we report it as one hit if it is a strong ambiguous match (defined 
as having at least four markers and eight reads) by joining names of taxa in the cluster and prepending 
with a “?” (Figure 3, step 7). 

This approach represents a set of default parameters – based on our observations in simulated and 
human microbiome data – that can be altered when configuring CORRAL. Additionally, CORRAL has 
rich reporting capabilities, including the ability to quantify abundance of eukaryotes using a ‘copies per 
million (CPM)’ metric (see Methods). 

CORRAL infers the presence of novel species 
To demonstrate CORRAL’s ability to handle reads from a taxon that is not in the provided reference, 
we returned to a holdout set simulation like the one described above.  We simulated a metagenomic 
dataset consisting of 338 samples, each containing a single ‘novel’ eukaryotic species (from the holdout 
set) at 0.1x genome coverage. Using this data set, we compared CORRAL, EukDetect with default 

Figure 2: Mutation rate influences 
MAPQ filter performance.  Proportion 
of taxa where recall or precision are as 
described (legend), as mutation rate is 
increased from 0 to 0.2. 
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settings, EukDetect with a relaxed MAPQ filter of ≥ 5, and a simple “4 reads + 2 markers (MAPQ ≥ 30)” 
scenario in which taxa are reported when at least four reads align with MAPQ ≥ 30 to at least two 

markers. We evaluated accuracy based on whether a single taxon was reported, rather than no hit or 
more than one hit (since each simulated sample was created to only contain one novel species).  If 
there was a hit, we also evaluated taxonomic proximity – whether the hit was of the same genus as the 
novel species. 

Figure 3: The CORRAL workflow.  Schematic showing all seven steps of the CORRAL workflow. 
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Out of the four methods outlined above, CORRAL performs best at reporting a single novel species as 
a single result in the correct genus (Figure 4). EukDetect’s proportion of ‘No result’ is higher than for 
“EukDetect (MAPQ ≥ 5)” and exactly the same as “4 reads + 2 markers (MAPQ ≥ 30)”, which indicates 
that use of a MAPQ ≥ 30 filter makes inferring novel species more difficult.  Furthermore, although 
relaxing the MAPQ filter from ≥ 30 to ≥ 5 decreases the proportion of ‘No results’ (Figure 4, leftmost 

group of bars), it substantially increases the proportion of results that yielded multiple hits that were not 
in the same genus (Figure 4, rightmost group of bars).  This indicates that simply modifying EukDetect 
to use a less stringent filter (MAPQ ≥ 5) would not be a desirable adjustment, because while it improves 
sensitivity to detect eukaryotic signal in a sample, it compromises the ability to recognize that this signal 
consists of only a single species. In contrast, CORRAL yielded the lowest proportion of ‘No result’ and 
the highest proportion of single hits to the same genus as the novel species.  We also noticed that 
CORRAL showed the highest proportion of single hits that were not in the same genus.  To better 
understand the source of these potential ‘off-target’ hits, we separated CORRAL results into ambiguous 
and non-ambiguous, which is easily achieved since the report produced by CORRAL flags ambiguous 
hits with a ‘?’.  This closer examination of the CORRAL results showed that most of these hits to other 
genera were indeed flagged as ambiguous and therefore could easily be excluded by the user.  Taken 
together, these data show that CORRAL demonstrates higher sensitivity and specificity than all other 
methods tested. 

Evaluating CORRAL on human microbiome data 
To move beyond the simulations described above we next tested CORRAL on data from real 

Figure 4: CORRAL yields high sensitivity and specificity when predicting the presence of eukaryotes in 
metagenomic data.  Proportion of results (Y-axis) corresponding to each of 5 possible outcomes (X-axis).  
CORRAL (light green bar) balances high sensitivity (low proportion of ‘No result’; leftmost group of bars) 
with high specificity (highest proportion of single results in the same genus as the ‘novel’ taxon from the 
holdout set).  CORRAL allows users to understand which hits may be ambiguous.  Considering only 
unambiguous hits shows that CORRAL has the lowest proportion of single or multiple results occurring 
outside of genus of the ‘novel’ taxon (lavender bar).   
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microbiome studies where some expectations exist about which eukaryotes might be present. We first 
evaluated the DIABIMMUNE study (21), for which 136 data points about 30 different eukaryotes were 
reported across 1154 samples in the original EukDetect publication (15). Processing these same 1154 
samples, CORRAL is in exact concordance with EukDetect on 122/136 data points and adds an 
additional 97 data points. CORRAL reports common taxa at a higher frequency. For example, S. 
cerevisiae is detected by CORRAL 67 times, while EukDetect only identifies this organism 31 times. 
The other additional hits detected by CORRAL, but not EukDetect, consist primarily of yeast and other 
fungi that have been previously reported in the human gut, and thus seem plausible.  In summary, 
these results are evidence that, when applied to real metagenomic data, CORRAL improves sensitivity 
for eukaryote detection without compromising specificity. 

Importantly, CORRAL differs from EukDetect in how it treats reads that might originate from a novel 
species.  For example, in sample G78909 from DIABIMMUNE, EukDetect reports Penicillium nordicum, 
while our method reports a novel Penicillium. In sample G80329, our method agrees with EukDetect 
regarding detection of Candida parapsilosis, and also identifies the sample as positive for C. albicans. 
Finally, in sample G78500 EukDetect reports Saccharomyces cerevisiae and Kazachstania unispora, 
which our method reports to be reads from a single taxon: a strain of S. cerevisiae that differs from the 
reference strain. 

Automating eukaryote detection with CORRAL 

In addition to making our software simple to install 
through pip and easily parametrized, we integrated 
CORRAL into the automated data loading workflow for 
our open-science platform, MicrobiomeDB.org. As of 
Release 27 (17 May 2022), the site contains 6337 
samples from 8 published metagenomic studies (21–
28). Automated analysis of these samples by CORRAL 
occurs at the time a study is loaded for public release 
onto the database website.  In the case of these 6337 
samples, this results in the identification of eukaryotes 
in 1453/6337 (23%) of the samples, yielding 2084 data 
points for 190 different eukaryotic taxa. A large 
majority, 1851/2084 or 89% of these data points, are 
fungal taxa. Of the 233 data points for non-fungal 
eukaryotes detected in these samples, 200 (86%) are 
species belonging to the genus Blastocystis, one of the 
most common protozoan parasites found in the human 
GI tract (29).  A summary of the top 15 most frequently 
observed eukaryotes (Table 1) reveals that 
Malassezia restricta, a common commensal and 

opportunistic pathogen; and Candida albicans, a prevalent component of gut flora, are the top two most 
common fungal taxa identified on MicrobiomeDB using CORRAL, detected in 364 and 255 samples, 
respectively.  

 

Table 1: CORRAL expands eukaryote identification 
when deployed at scale on MicrobiomeDB.org.  Top 15 
eukaryotes (by prevalence) detected across eight 
metagenomic studies encompassing 6337 samples. 
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Integration of CORRAL in MicrobiomeDB enables exploration of associations 
between eukaryotic microbes and host phenotypes  
Although CORRAL can be run as stand-alone software, one advantage of integrating this software into 
MicrobiomeDB is that the results can viewed across many different studies, sample types and in many 

different experimental contexts, thus allowing researchers to identify associations between eukaryotes 
and study metadata, potentially leading to novel hypotheses (Figure 5).  The metagenomic data 
currently available on MicrobiomeDB were generated from distinct geographic regions and from 
participants that vary in age from infant to adult.  When we viewed the top 15 most prevalent eukaryotic 
taxa across all 8 datasets on MicrobiomeDB, in the context of this study metadata, interesting trends 
emerged.  For example, species of Malassezia were primarily found in the Human Microbiome Project 
study (HMP) (Figure 5A), likely because this study included sample types other than stool.  A closer 
look at Malassezia species prevalence by sample type across all 8 studies showed that over 60% of 
the 119 skin and nostril swab samples were positive for M. globosa, while M. restricta was more 
restricted to the oral cavity and saliva (Figure 5B).  Blastocystis sp. were primarily observed in samples 
from studies carried out in Niger and Malaysia (MORDOR and Malaysia Helminth studies) (Figure 5A), 
suggesting that these protists may be more prevalent in lower- and middle-income countries.  Similarly, 
Candida species were most prevalent in infant samples.  The fungi Clavispora lusitaniae and 
Purpureocillium lilacinum were each primarily observed in the BONUS-CF and NICU NEC studies, 
respectively.  Interestingly, careful analysis of P. lilacinum by the authors of the NICU NEC study 
identified this organism as a reagent contaminant (30).  Taken together, these results suggest that 
implementing CORRAL at database-scale can accelerate the discovery of species-specific niches, 
improve identification of taxa that arise from spurious results or contamination, and help researchers 
link eukaryotic taxa to environmental covariates within and across studies.   

Figure 5: Integration of CORRAL results with study metadata on MicrobiomeDB.  A) Heatmap showing 
row Z scores for the top 15 eukaryotes (by prevalence) across all eight metagenomic datasets currently 
publicly available on MicrobiomeDB.org.  Study name and metadata are shown below and above the 
heatmap, respectively.  B) % of all stool, skin swab or nostril swab (skin/nostril), or oral swab or saliva 
(oral/saliva) metagenomic samples on MicrobiomeDB that were positive for six selected eukaryotes (X-axis) 
by analysis by CORRAL.   
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CORRAL enables quantification of eukaryotes in metagenomic data 

In addition to the presence/absence detection of 
eukaryotes, CORRAL also reports the relative 
abundance of the eukaryotes it detects, thus opening 
the door to using many of the same visualization and 
analytics already familiar to the microbiome 
community for interpreting bacterial census data.  To 
demonstrate this, we focused on the Human 
Microbiome Project (HMP) study, since it is the only 
metagenomic study on our MicrobiomeDB resource 
that contains multiple sample types.  We compared 
CORRAL’s detection data with relative abundance 
data for two of the most prevalent fungal taxa detected 
across all studies on our site, Candida albicans and 
Malassezia globosa (Figure 6).  Although CORRAL 
detected Candida albicans in less than 10% of vaginal 
swabs, these positive samples had the highest levels 
of this organism compared to all other sample types 
examined (Figure 6A).  Although the HMP 
participants were healthy adults, these data may point 
to individuals that either had or were at risk of 
developing vaginal yeast infections.  Similarly, 
Malassezia globosa was detected in nearly every skin 
swab examined (Figure 6B, left), consistent with 
numerous reports of this fungus as a skin-dwelling 
microbe, yet the abundance of M. globosa is 
significantly higher in the nasal cavity, compared to 
skin swabs (Figure 6B, right).  These data 
underscore how quantitative data can impact our 
understanding of host-microbe interactions.  Although 
this analysis focused on associations between fungal 
taxa and sample type, a similar analysis could be 
carried out using any available experimental metadata 
loaded into MicrobiomeDB (e.g. fungal taxa by clinical 
status).   

Quantification data produced by CORRAL also allow 
conventional statistical analyses to be readily applied, 
either manually by downloading data from 
MicrobiomeDB, or directly within the website using 
data visualization applications (‘apps’) built using the 
R/Shiny (16,31).  For example, we used the 
‘Correlation App’ on MicrobiomeDB to search for co-
associated fungal taxa.  This analysis identified a 
strong positive correlation between the abundance of 

the fungi Candida tropicalis and Cyberlindnera jadinii in the HMP dataset (Figure 6C; R2 = 0.93).  
Interestingly, this correlation was evident even in sample types where the relative abundance of these 
organisms was low or high (Figure 6C; oral swabs vs. nostril swabs, respectively).  Importantly, due to 

Figure 6: Quantification of eukaryotes by 
CORRAL.  Comparison of detection 
(presence/absence) and quantification (copies 
per million; CPM) by CORRAL for A) Candida 
albicans and B)  Malassezia globosa in the 
Human Microbiome Project (HMP) study.  For 
detection, number of samples testing positive 
out of total samples assayed is shown on each 
bar.  P value from Wilcoxon rank-sum test 
comparing levels of M. globosa between nostril 
swabs and skin swabs.  C) Correlation of CPM 
for Candida tropicalis and Cyberlindnera jadinii 
in HMP.   
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the relatively low prevalence of eukaryotes in metagenomic samples, observing this type of correlation 
may only be possible when eukaryotic data can be mined at scale, using large collections of studies.  
Whether or how these two fungi interact is beyond the scope of this study, nevertheless these data 
underscore the ability to use CORRAL in conjunction with MicrobiomeDB to generate hypotheses about 
fungal community interactions which can then be experimentally tested.   
 
Discussion 
CORRAL (Cluster of Related Reference ALignments) is open-source software that uses multiple 
alignments and Markov clustering to achieve high sensitivity and specificity for identification of 
eukaryotes in metagenomic data, while also enabling inferences about the presence of eukaryotes not 
represented in the reference.  We highlight the utility of this software using simulated metagenomic 
samples containing ‘novel’ species and strains. We also deploy CORRAL on our open-science platform, 
MicrobiomeDB.org, which allowed automated processing of thousands of samples currently on the site, 
thus generating the first cross-study atlas of eukaryotes from metagenomic data.  With CORRAL now 
part of our standard data loading workflow for metagenomic data on MicrobiomeDB, this atlas will 
continue to grow as new studies are loaded.  This demonstrates the value of combining robust software 
with web-based tools for conducting large-scale screens of metagenomic data, thereby creating a 
resource that will allow investigators to access eukaryotic data from a vast range of sample types and 
studies, irrespective of whether the original study investigators intended to examine eukaryotes in their 
data. 

The high cost of metagenomic sequencing, the relative low abundance of most eukaryotes in the 
microbiome, and the inherent limitation of reference-based methods for identification of taxa remain 
major challenges to identification of eukaryotes.  CORRAL helps to address some of these issues by 
being able to work with minimal information required to plausibly report the presence and abundance 
of eukaryotes, even when the source reads do not perfectly match the marker gene reference. Future 
improvements in genome assembly will provide more complete information on eukaryote-specific 
genomic sequences which could be used to create a larger reference with more taxa and more 
sequences per taxon, improving both specificity and sensitivity of hits reported by CORRAL.  

Our strategy of clustering of related read alignments could be further improved by making use of 
information about taxonomic similarity between reference sequences. Not relying on external data 
about similarity of different proteins has the benefit of flexibility but lacks the capacity to act on implied 
‘improbability’ of reported taxa. For example, it is relatively unlikely that a sequenced sample containing 
reads which map to multiple closely related Leishmania species does in fact contain different species 
of Leishmania, because the reference sequences are highly similar, and the species readily hybridize 
[31]. Conversely, reads sharing alignments to markers across a large taxonomic distance are more 
likely to come from a single source because of relative implausibility of the sample containing multiple 
eukaryotes of unknown genera – for example, they might all be contamination from a metazoan host. 
Incorporating such speculations about ‘likely’ and ‘unlikely’ results into a detection method is an 
ambitious undertaking, because it involves making and modeling assumptions about vast numbers of 
eukaryotic taxa, most of which have not been sequenced and not yet well studied. It could, however, 
yield methods with a more natural choice of threshold parameters, and further gains in sensitivity and 
specificity. Since the computational approach used by CORRAL is independent of the reference 
sequences used, our software could potentially be applied to processing alignments to any reference 
that is anticipated to be redundant and incomplete, and where reads are expected to map with varying 
identity. This includes identification of bacteria to the strain-level resolution required in genomic 
epidemiology, as well as taxonomic classification of viral reads to reference sequences (32), 
identification of antibiotic resistance genes (33), or bacterial virulence genes (34). 
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Methods 
Simulations 

We used wgsim (35) to sample 100 basepair reads with base error rate of 0 from the EukDetect 
reference (the 1/23/2021 version, latest at time of writing, consisting of BUSCOs from OrthoDB (36)). 
Bowtie2 (17) was used to align reads to references with identical settings to those used in EukDetect: 
the end to end (default) mode and the --no-discordant flag. 

To check correctness of simulated alignments, we retrieved the rank of the nearest taxon containing 
source and match by using the ETE toolkit and the NCBI database version dated 2020/1/14 packaged 
with EukDetect. Alignments were deemed correct if the source and match were of the same species, 
or genus in case of hold-out analysis where the species was missing from the reference by design. 

Our formulas to calculate precision and recall are as used in the OPAL method of assessing taxonomic 
metagenome profilers (37): precision is a fraction of correctly mapped reads among all reads that are 
mapped, and recall is a fraction of correctly mapped reads among all reads. 

When simulating whole samples, we obtained 338 simulated samples from a holdout set of 371 taxa, 
because we skipped 33 cases in which wgsim considers the sequences too fragmented to source 
reads at a set coverage, and errors out. The number of reads to source per marker to obtain 0.1 
coverage was calculated as previously described (38). 

To run EukDetect, we edited the default config file such that it lists the simulated samples. To run 
“EukDetect (MAPQ >= 5)”, we additionally modified the source code of our local installation. To run “4 
reads + 2 markers (MAPQ >= 30)”, we ran CORRAL configured to use these three filters instead of the 
default procedure described in this publication. 

CORRAL quantifies abundance for each found taxon with ‘copies per million’ (CPMs) as the number of 
reads assigned to the taxon normalized by marker length and sequencing depth, in line with the quantity 
being calculated in the integrated metagenomic profiling tool, HUMAnN (39). 

 

Deploying CORRAL on MicrobiomeDB.org 

CORRAL is integrated into the standard MicrobiomeDB workflow for metagenomic datasets (see 
https://github.com/VEuPathDB/MicrobiomeWorkflow) along with bioBakery tools for bacterial 
abundance estimation. CORRAL output is loaded as both binary (presence/absence) and quantitative 
Copies Per Million (CPM) values for each sample and can be used along with other sample details 
related to the collection, processing and analysis of data for filtering and stratification of bacterial 
abundance data as well as directly for exploring correlations between eukaryotic abundance and other 
sample data. 
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Data availability 
All our software is publicly available under the MIT license: CORRAL (github.com/wbazant/CORRAL), 
its main Python module, (github.com/wbazant/marker_alignments), and a mix of Python, Make, and 
Bash scripts to produce simulations, comparisons, and figures for this publication 
(github.com/wbazant/markerAlignmentsPaper). 

All results are publicly viewable and downloadable on MicrobiomeDB. In addition, the following files are 
available as supplemental material: 

LINK: Simulated whole samples - results for different methods 

LINK: Simulated reads - per-species breakdown and aggregate stats 

LINK: Comparison of CORRAL and EukDetect on DIABIMMUNE study 

LINK: Summary of MicrobiomeDB results 
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