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Abstract
Background

Eukaryotes such as fungi and protists frequently accompany bacteria and archaea in microbial
communities. Unfortunately, their presence is difficult to study with ‘shotgun’ metagenomic sequencing
since prokaryotic signals dominate in most environments. Recent methods for eukaryotic detection use
eukaryote-specific marker genes, but they do not allow for quantification of eukaryote signal and do not
incorporate strategies to handle the presence of eukaryotes that are not represented in the reference
marker gene set.

Results

Here we present CORRAL (for Clustering Of Related Reference ALignments), a tool for identification
of eukaryotes in shotgun metagenomic data based on alignments to eukaryote-specific marker genes
and Markov clustering. Using a combination of simulated datasets and large publicly available human
microbiome studies, we demonstrate that our method is not only sensitive and accurate but is also
capable of inferring the presence of eukaryotes not included in the marker gene reference, such as
novel species and strains. Finally, we deploy CORRAL on our MicrobiomeDB.org resource, producing
an atlas of eukaryotes present in various environments of the human body and linking their presence
to study covariates.

Conclusion

CORRAL allows eukaryotic detection to be automated and carried out at scale. Since our approach is
independent of the reference used, it may be applicable to other contexts where shotgun metagenomic
reads are matched against redundant but non-exhaustive databases, such as identification of novel
bacterial strains or taxonomic classification of viral reads.

Background

Eukaryotic microbes are a large and phylogenetically diverse group of organisms that includes both
pathogens and commensals, the latter of which are emerging as important modulators of health and
disease. Protists include many important pathogens of humans and other animals, such as
Cryptosporidium, Toxoplasma, Eimeria, Trypanosoma, and Plasmodium. Many fungi are also well-
studied pathogens affecting a diverse range of hosts. For example, Aspergillus fumigatus is an
important cause of respiratory disease in humans (1); Magnaporthe oryzae is the most important fungal
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disease of rice globally (2); while Pseudogymnoascus destructans is the cause of White-Nose
Syndrome, one of the most devastating diseases of bats (3). However, recent data also suggest that
non-pathogenic commensal fungi are critical modulators of the human antibody repertoire (4-6),
intestinal barrier integrity (7), and colonization resistance (8). The diverse array of host-microbe
interactions and host phenotypes influenced by eukaryotic microbes underscores the importance of
studying this class of organisms in their natural habitats. Unfortunately, the ability to carry out culture-
independent analysis of eukaryotic microbes is severely hindered by their low abundance relative to
bacteria, which makes accurate detection a challenge and consequently eukaryotes are commonly
overlooked in metagenomic studies (9). For example, an analysis of stool metagenomes in healthy
adults participating in the Human Microbiome Project reports only 0.01% reads aligning to fungal
genomes (10).

Several methods have been developed to improve the detection of eukaryotes in complex samples.
Targeted sequencing of internal transcribed spacer regions (ITS) is a common approach but prevents
simultaneous profiling of other members of the microbiome (11). Alternatively, collections of curated
fungal genomes have been successfully used for strain-level identification of Blastocystis from stool
(12). However, pitfalls associated with non-specific or erroneous parts of reference genomes (13)
combined with computational challenges associated with carrying out alignments to very large
collections of reference genomes (14) limit applicability of these approaches to the discovery of
eukaryotes from the vast amount of metagenomic data already available in the public domain. One
attractive solution to this challenge was recently proposed in important work by Lind and Pollard (15),
who base their method for sensitive and specific identification of eukaryotes in metagenomic studies,
EukDetect, on alignments to a collection of over 500,000 universal, single-copy eukaryotic marker
genes.

We recently sought to add the EukDetect reference database and software to our web-based resource,
MicrobiomeDB.org (16), to allow for automated detection of eukaryotes across a range of human
metagenomic studies currently available on the site. Since the EukDetect pipeline does not allow for
adjustment of filtering thresholds and is not packaged for containerized deployments, we decided to
implement our own tool built with a more flexible software architecture. Our approach retains the
EukDetect reference database, as well as the use of Bowtie2 (17) since it has been shown to be a
sensitive aligner (18). To better understand the filtering process used by EukDetect, we carried out a
simulation-based evaluation. We observed that filtering of read alignments based on mapping quality
(MAPQ) scores (19) — though necessary for EukDetect’s high specificity — removes correct alignments
for which Bowtie2 has inferior but closely scored alternatives.

Considering that the difficulty of detecting a taxon may be affected by similarity of its marker gene
sequences to its most similar neighbor led us to develop CORRAL (for Clustering Of Related Reference
ALignments), an approach for processing marker gene alignments based on exploiting information in
shared alignments to reference genes through Markov clustering. This allows for sensitive and accurate
detection which also extends to species not present in the reference but which are similar to one or
more known taxa present in the reference.

Results
Species-specific impact of MAPQ filtering

To evaluate how read mapping and filtering parameters influence eukaryotic detection, we carried out
a series of simulations using the EukDetect database of eukaryotic marker genes as both a source of
reads with known identity and a reference to which to align these reads. When metagenomic reads are
simulated from this reference and then simply mapped back, thus exactly matching the reference, they
are accurately mapped to the correct taxon with a recall (fraction of correctly mapped reads among all
reads) and precision (fraction of correctly mapped reads among all reads that mapped) of 95.1% for
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importance.

Since the diversity of eukaryotic microbial life extends far beyond the currently discovered species, let
alone species present in the EukDetect reference (20), we next modified this simulation above to
evaluate the possibility of detecting ‘novel’ species. To do this, species-level markers in the EukDetect
reference were split into a holdout set of 371 taxa from which we simulated reads that were then
mapped back to the remaining 3343 taxa in the EukDetect reference, thus mimicking a scenario in
which a metagenomic sample contains reads from eukaryotes not represented in the reference. In this
circumstance, the MAPQ 2 30 filter is not on average an improvement. Same-genus precision and
recall are 82% and 30%, respectively, without the filter. Applying the MAPQ filter results in a similar
precision (83.6%) but a much-diminished recall of 7%. Source taxon is a structural component here as
well — applying the MAPQ = 30 filter increases the number of taxa which only map to the correct genus
from 48 to 152 but increases the number of taxa that fail to map from 49 to 175.

There is extensive strain variation in complex microbial communities, so we next set out to evaluate the
ability to identify eukaryotes when a sample contains a novel strain of a species present in the reference
database (Figure 2). We carried out a third simulation in which sampled reads were mutated before
mapping back to the reference. As mutation rate increases, recall declines from 95.1% to less than
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Figure 2: Mutation rate influences
MAPQ filter performance. Proportion
—®— Same species recall ft h ” . .
Same species procision of taxa where recall or precision are as
—®— Same species recall (MAPQ = 30) described (legend), as mutation rate is
Same species precision (MAPQ = 30) .
increased from 0 to 0.2.

Proportion

10% when mutation rate is 0.2. In this
range, precision stays between 95-96%
for all reads and = 99% for reads with
MAPQ = 30 — an observation consistent
0 T Toos | oi0 | o 090 with previous reports of bowtie2

Mutation rate preserving precision over recall [22].

Applying the MAPQ 2 30 filter results in
a rapid decline in recall. For example, when mutation rate is 0.1, recall is 68.3% overall but drops to
5.0% when a MAPQ 2 30 filter is applied. These results indicate there may be many taxa which match
the reference sufficiently closely to allow for sensitive detection, but only if one does not apply the
MAPQ = 30 filter.

CORRAL leverages Markov clustering for reference-based eukaryote detection

To address the challenges described above and to fully leverage the valuable eukaryotic marker gene
reference database created by Lind and Pollard (15), we developed CORRAL (Clustering Of Related
Reference Alignments) as a Nextflow workflow wrapping a Python module. CORRAL retrieves
sequence files, aligns reads to the EukDetect reference of markers, and produces a taxonomic profile
through a multi-step process (Figure 3). First, we run Bowtie2 and keep all alignments that are at least
60 nucleotides in length (Figure 3, step 1), ensuring that sequence matches contain enough
information to be marker-specific. We then run Markov Clustering (MCL) on a graph composed of
marker genes as nodes and counts of shared alignments as edge weights to obtain marker clusters
(Figure 3, step 2). Next, percent match identities of alignments are calculated and aggregated by
marker to obtain an identity average for each marker gene, as well as per cluster to obtain a cluster
average (Figure 3, step 3). Each marker whose identity average is lower than the cluster average is
considered an inferior representation of signal in the sample, and taxa with = 50% of such markers are
rejected (Figure 3, step 4). Remaining taxa are then gathered into taxonomic clusters using MCL on
counts of multiply aligned reads (Figure 3, step 5), which allows us to incorporate ambiguity of
identification into any taxa reported. Unambiguous matches (defined as having average alignment
identity of at least 97%, and two different reads aligned to at least two markers) are reported (Figure
3, step 6), while other taxa in clusters where there are any unambiguous matches reported are rejected.
Finally, for each remaining taxon cluster, we report it as one hit if it is a strong ambiguous match (defined
as having at least four markers and eight reads) by joining names of taxa in the cluster and prepending
with a “?” (Figure 3, step 7).

This approach represents a set of default parameters — based on our observations in simulated and
human microbiome data — that can be altered when configuring CORRAL. Additionally, CORRAL has
rich reporting capabilities, including the ability to quantify abundance of eukaryotes using a ‘copies per
million (CPM)’ metric (see Methods).

CORRAL infers the presence of novel species

To demonstrate CORRAL'’s ability to handle reads from a taxon that is not in the provided reference,
we returned to a holdout set simulation like the one described above. We simulated a metagenomic
dataset consisting of 338 samples, each containing a single ‘novel’ eukaryotic species (from the holdout
set) at 0.1x genome coverage. Using this data set, we compared CORRAL, EukDetect with default
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settings, EukDetect with a relaxed MAPQ filter of = 5, and a simple “4 reads + 2 markers (MAPQ = 30)”
scenario in which taxa are reported when at least four reads align with MAPQ = 30 to at least two
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Figure 3: The CORRAL workflow. Schematic showing all seven steps of the CORRAL workflow.

markers. We evaluated accuracy based on whether a single taxon was reported, rather than no hit or
more than one hit (since each simulated sample was created to only contain one novel species). If
there was a hit, we also evaluated taxonomic proximity — whether the hit was of the same genus as the
novel species.
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Out of the four methods outlined above, CORRAL performs best at reporting a single novel species as
a single result in the correct genus (Figure 4). EukDetect’s proportion of ‘No result’ is higher than for
“‘EukDetect (MAPQ = 5)” and exactly the same as “4 reads + 2 markers (MAPQ = 30)”, which indicates
that use of a MAPQ = 30 filter makes inferring novel species more difficult. Furthermore, although
relaxing the MAPQ filter from = 30 to =2 5 decreases the proportion of ‘No results’ (Figure 4, leftmost

1.0

() No filter

@ 2 markers + 4 reads (MAPQ = 30)
0.8 T @ EukDetect (MAPQ = 30)

@ EukDetect (MAPQ = 5)

(] CORRAL
0.6 () CORRAL (unambiguous hits only)

Proportion of results with outcome

0.4
0.2
0- v v h i I:J_L : h :
No result Single result Multiple results One result Multiple results
same genus same genus  not same genus not same genus

Outcomes assessed

Figure 4: CORRAL yields high sensitivity and specificity when predicting the presence of eukaryotes in
metagenomic data. Proportion of results (Y-axis) corresponding to each of 5 possible outcomes (X-axis).
CORRAL (light green bar) balances high sensitivity (low proportion of ‘No result’; leftmost group of bars)
with high specificity (highest proportion of single results in the same genus as the ‘novel’ taxon from the
holdout set). CORRAL allows users to understand which hits may be ambiguous. Considering only
unambiguous hits shows that CORRAL has the lowest proportion of single or multiple results occurring
outside of genus of the ‘novel’ taxon (lavender bar).

group of bars), it substantially increases the proportion of results that yielded multiple hits that were not
in the same genus (Figure 4, rightmost group of bars). This indicates that simply modifying EukDetect
to use a less stringent filter (MAPQ = 5) would not be a desirable adjustment, because while it improves
sensitivity to detect eukaryotic signal in a sample, it compromises the ability to recognize that this signal
consists of only a single species. In contrast, CORRAL vyielded the lowest proportion of ‘No result’ and
the highest proportion of single hits to the same genus as the novel species. We also noticed that
CORRAL showed the highest proportion of single hits that were not in the same genus. To better
understand the source of these potential ‘off-target’ hits, we separated CORRAL results into ambiguous
and non-ambiguous, which is easily achieved since the report produced by CORRAL flags ambiguous
hits with a “?’. This closer examination of the CORRAL results showed that most of these hits to other
genera were indeed flagged as ambiguous and therefore could easily be excluded by the user. Taken
together, these data show that CORRAL demonstrates higher sensitivity and specificity than all other
methods tested.

Evaluating CORRAL on human microbiome data

To move beyond the simulations described above we next tested CORRAL on data from real
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microbiome studies where some expectations exist about which eukaryotes might be present. We first
evaluated the DIABIMMUNE study (21), for which 136 data points about 30 different eukaryotes were
reported across 1154 samples in the original EukDetect publication (15). Processing these same 1154
samples, CORRAL is in exact concordance with EukDetect on 122/136 data points and adds an
additional 97 data points. CORRAL reports common taxa at a higher frequency. For example, S.
cerevisiae is detected by CORRAL 67 times, while EukDetect only identifies this organism 31 times.
The other additional hits detected by CORRAL, but not EukDetect, consist primarily of yeast and other
fungi that have been previously reported in the human gut, and thus seem plausible. In summary,
these results are evidence that, when applied to real metagenomic data, CORRAL improves sensitivity
for eukaryote detection without compromising specificity.

Importantly, CORRAL differs from EukDetect in how it treats reads that might originate from a novel
species. For example, in sample G78909 from DIABIMMUNE, EukDetect reports Penicillium nordicum,
while our method reports a novel Penicillium. In sample G80329, our method agrees with EukDetect
regarding detection of Candida parapsilosis, and also identifies the sample as positive for C. albicans.
Finally, in sample G78500 EukDetect reports Saccharomyces cerevisiae and Kazachstania unispora,
which our method reports to be reads from a single taxon: a strain of S. cerevisiae that differs from the
reference strain.

Automating eukaryote detection with CORRAL

Top 15 eukaryotic taxa detected Table 1: CORRAL expands eukaryote identification
across 8 metagenomic studies on MicrobiomeDB when deployed at scale on MicrobiomeDB.org. Top 15
Taxon Sample count Eukaryote type eukaryotes (by prevalence) detected across eight

Malassezia festricta 364 Fungi metagenomic studies encompassing 6337 samples.
Candida albicans 295 Fung In addition to making our software simple to install
Saccharomyces cerevisiae 190 Fungi through pip and easily parametrized, we integrated
Purpureocillium lilacinum 181 Fungi CORRAL into the automated data loading workflow for
. . our open-science platform, MicrobiomeDB.org. As of
Malassezia globosa 129 Fungi Release 27 (17 May 2022), the site contains 6337
Candida parapsilosis 114 Fungi samples from 8 published metagenomic studies (21—
Blastocystis sp. subtype 3 88 Protist 28). Automated analysis of these samples by CORRAL
occurs at the time a study is loaded for public release
Clavispora lusitaniae 59 Fungi onto the database website. In the case of these 6337
Blastocystis 47 Protist samples, this results in the identification of eukaryotes
. B . in 1453/6337 (23%) of the samples, yielding 2084 data
Cyberlindnera jadini 48 Fung points for 190 different eukaryotic taxa. A large
Blastocystis sp. subtype 1 42 Protist majority, 1851/2084 or 89% of these data points, are
Candida tropicalis 39 Fungi fungal taxa. Of the 233 data points for non-fungal
_ , eukaryotes detected in these samples, 200 (86%) are
Malassezia 39 Fungi species belonging to the genus Blastocystis, one of the
Malassezia sympodialis 19 Fungi most common protozoan parasites found in the human
Candida 16 Fungi Gl tract (29). A summary of the top 15 most frequently
observed eukaryotes (Table 1) reveals that

Malassezia restricta, a common commensal and
opportunistic pathogen; and Candida albicans, a prevalent component of gut flora, are the top two most
common fungal taxa identified on MicrobiomeDB using CORRAL, detected in 364 and 255 samples,
respectively.


https://doi.org/10.1101/2022.03.09.483664
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.09.483664; this version posted May 17, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Integration of CORRAL in MicrobiomeDB enables exploration of associations
between eukaryotic microbes and host phenotypes

Although CORRAL can be run as stand-alone software, one advantage of integrating this software into
MicrobiomeDB is that the results can viewed across many different studies, sample types and in many
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Figure 5: Integration of CORRAL results with study metadata on MicrobiomeDB. A) Heatmap showing
row Z scores for the top 15 eukaryotes (by prevalence) across all eight metagenomic datasets currently
publicly available on MicrobiomeDB.org. Study name and metadata are shown below and above the
heatmap, respectively. B) % of all stool, skin swab or nostril swab (skin/nostril), or oral swab or saliva
(oral/saliva) metagenomic samples on MicrobiomeDB that were positive for six selected eukaryotes (X-axis)
by analysis by CORRAL.

different experimental contexts, thus allowing researchers to identify associations between eukaryotes
and study metadata, potentially leading to novel hypotheses (Figure 5). The metagenomic data
currently available on MicrobiomeDB were generated from distinct geographic regions and from
participants that vary in age from infant to adult. When we viewed the top 15 most prevalent eukaryotic
taxa across all 8 datasets on MicrobiomeDB, in the context of this study metadata, interesting trends
emerged. For example, species of Malassezia were primarily found in the Human Microbiome Project
study (HMP) (Figure 5A), likely because this study included sample types other than stool. A closer
look at Malassezia species prevalence by sample type across all 8 studies showed that over 60% of
the 119 skin and nostril swab samples were positive for M. globosa, while M. restricta was more
restricted to the oral cavity and saliva (Figure 5B). Blastocystis sp. were primarily observed in samples
from studies carried out in Niger and Malaysia (MORDOR and Malaysia Helminth studies) (Figure 5A),
suggesting that these protists may be more prevalent in lower- and middle-income countries. Similarly,
Candida species were most prevalent in infant samples. The fungi Clavispora lusitaniae and
Purpureocillium lilacinum were each primarily observed in the BONUS-CF and NICU NEC studies,
respectively. Interestingly, careful analysis of P. lilacinum by the authors of the NICU NEC study
identified this organism as a reagent contaminant (30). Taken together, these results suggest that
implementing CORRAL at database-scale can accelerate the discovery of species-specific niches,
improve identification of taxa that arise from spurious results or contamination, and help researchers
link eukaryotic taxa to environmental covariates within and across studies.
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CORRAL enables quantification of eukaryotes in metagenomic data
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Figure 6: Quantification of eukaryotes by
CORRAL. Comparison of detection
(presence/absence) and quantification (copies
per million; CPM) by CORRAL for A) Candida
albicans and B) Malassezia globosa in the
Human Microbiome Project (HMP) study. For
detection, number of samples testing positive
out of total samples assayed is shown on each
bar. P value from Wilcoxon rank-sum test
comparing levels of M. globosa between nostril
swabs and skin swabs. C) Correlation of CPM
for Candida tropicalis and Cyberlindnera jadinii
in HMP.

In addition to the presence/absence detection of
eukaryotes, CORRAL also reports the relative
abundance of the eukaryotes it detects, thus opening
the door to using many of the same visualization and
analytics already familiar to the microbiome
community for interpreting bacterial census data. To
demonstrate this, we focused on the Human
Microbiome Project (HMP) study, since it is the only
metagenomic study on our MicrobiomeDB resource
that contains multiple sample types. We compared
CORRAL’s detection data with relative abundance
data for two of the most prevalent fungal taxa detected
across all studies on our site, Candida albicans and
Malassezia globosa (Figure 6). Although CORRAL
detected Candida albicans in less than 10% of vaginal
swabs, these positive samples had the highest levels
of this organism compared to all other sample types
examined (Figure G6A). Although the HMP
participants were healthy adults, these data may point
to individuals that either had or were at risk of
developing vaginal yeast infections. Similarly,
Malassezia globosa was detected in nearly every skin
swab examined (Figure 6B, left), consistent with
numerous reports of this fungus as a skin-dwelling
microbe, yet the abundance of M. globosa is
significantly higher in the nasal cavity, compared to
skin swabs (Figure 6B, right). These data
underscore how quantitative data can impact our
understanding of host-microbe interactions. Although
this analysis focused on associations between fungal
taxa and sample type, a similar analysis could be
carried out using any available experimental metadata
loaded into MicrobiomeDB (e.g. fungal taxa by clinical
status).

Quantification data produced by CORRAL also allow
conventional statistical analyses to be readily applied,
either manually by downloading data from
MicrobiomeDB, or directly within the website using
data visualization applications (‘apps’) built using the
R/Shiny (16,31). For example, we used the
‘Correlation App’ on MicrobiomeDB to search for co-
associated fungal taxa. This analysis identified a
strong positive correlation between the abundance of

the fungi Candida tropicalis and Cyberlindnera jadinii in the HMP dataset (Figure 6C; R?> = 0.93).
Interestingly, this correlation was evident even in sample types where the relative abundance of these
organisms was low or high (Figure 6C; oral swabs vs. nostril swabs, respectively). Importantly, due to
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the relatively low prevalence of eukaryotes in metagenomic samples, observing this type of correlation
may only be possible when eukaryotic data can be mined at scale, using large collections of studies.
Whether or how these two fungi interact is beyond the scope of this study, nevertheless these data
underscore the ability to use CORRAL in conjunction with MicrobiomeDB to generate hypotheses about
fungal community interactions which can then be experimentally tested.

Discussion

CORRAL (Cluster of Related Reference ALignments) is open-source software that uses multiple
alignments and Markov clustering to achieve high sensitivity and specificity for identification of
eukaryotes in metagenomic data, while also enabling inferences about the presence of eukaryotes not
represented in the reference. We highlight the utility of this software using simulated metagenomic
samples containing ‘novel’ species and strains. We also deploy CORRAL on our open-science platform,
MicrobiomeDB.org, which allowed automated processing of thousands of samples currently on the site,
thus generating the first cross-study atlas of eukaryotes from metagenomic data. With CORRAL now
part of our standard data loading workflow for metagenomic data on MicrobiomeDB, this atlas will
continue to grow as new studies are loaded. This demonstrates the value of combining robust software
with web-based tools for conducting large-scale screens of metagenomic data, thereby creating a
resource that will allow investigators to access eukaryotic data from a vast range of sample types and
studies, irrespective of whether the original study investigators intended to examine eukaryotes in their
data.

The high cost of metagenomic sequencing, the relative low abundance of most eukaryotes in the
microbiome, and the inherent limitation of reference-based methods for identification of taxa remain
major challenges to identification of eukaryotes. CORRAL helps to address some of these issues by
being able to work with minimal information required to plausibly report the presence and abundance
of eukaryotes, even when the source reads do not perfectly match the marker gene reference. Future
improvements in genome assembly will provide more complete information on eukaryote-specific
genomic sequences which could be used to create a larger reference with more taxa and more
sequences per taxon, improving both specificity and sensitivity of hits reported by CORRAL.

Our strategy of clustering of related read alignments could be further improved by making use of
information about taxonomic similarity between reference sequences. Not relying on external data
about similarity of different proteins has the benefit of flexibility but lacks the capacity to act on implied
‘improbability’ of reported taxa. For example, it is relatively unlikely that a sequenced sample containing
reads which map to multiple closely related Leishmania species does in fact contain different species
of Leishmania, because the reference sequences are highly similar, and the species readily hybridize
[31]. Conversely, reads sharing alignments to markers across a large taxonomic distance are more
likely to come from a single source because of relative implausibility of the sample containing multiple
eukaryotes of unknown genera — for example, they might all be contamination from a metazoan host.
Incorporating such speculations about ‘likely’ and ‘unlikely’ results into a detection method is an
ambitious undertaking, because it involves making and modeling assumptions about vast numbers of
eukaryotic taxa, most of which have not been sequenced and not yet well studied. It could, however,
yield methods with a more natural choice of threshold parameters, and further gains in sensitivity and
specificity. Since the computational approach used by CORRAL is independent of the reference
sequences used, our software could potentially be applied to processing alignments to any reference
that is anticipated to be redundant and incomplete, and where reads are expected to map with varying
identity. This includes identification of bacteria to the strain-level resolution required in genomic
epidemiology, as well as taxonomic classification of viral reads to reference sequences (32),
identification of antibiotic resistance genes (33), or bacterial virulence genes (34).
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Methods

Simulations

We used wgsim (35) to sample 100 basepair reads with base error rate of 0 from the EukDetect
reference (the 1/23/2021 version, latest at time of writing, consisting of BUSCOs from OrthoDB (36)).
Bowtie2 (17) was used to align reads to references with identical settings to those used in EukDetect:
the end to end (default) mode and the --no-discordant flag.

To check correctness of simulated alignments, we retrieved the rank of the nearest taxon containing
source and match by using the ETE toolkit and the NCBI database version dated 2020/1/14 packaged
with EukDetect. Alignments were deemed correct if the source and match were of the same species,
or genus in case of hold-out analysis where the species was missing from the reference by design.

Our formulas to calculate precision and recall are as used in the OPAL method of assessing taxonomic
metagenome profilers (37): precision is a fraction of correctly mapped reads among all reads that are
mapped, and recall is a fraction of correctly mapped reads among all reads.

When simulating whole samples, we obtained 338 simulated samples from a holdout set of 371 taxa,
because we skipped 33 cases in which wgsim considers the sequences too fragmented to source
reads at a set coverage, and errors out. The number of reads to source per marker to obtain 0.1
coverage was calculated as previously described (38).

To run EukDetect, we edited the default config file such that it lists the simulated samples. To run
“‘EukDetect (MAPQ >= 5)", we additionally modified the source code of our local installation. To run “4
reads + 2 markers (MAPQ >= 30)”, we ran CORRAL configured to use these three filters instead of the
default procedure described in this publication.

CORRAL quantifies abundance for each found taxon with ‘copies per million’ (CPMs) as the number of
reads assigned to the taxon normalized by marker length and sequencing depth, in line with the quantity
being calculated in the integrated metagenomic profiling tool, HUMANN (39).

Deploying CORRAL on MicrobiomeDB.org

CORRAL is integrated into the standard MicrobiomeDB workflow for metagenomic datasets (see
https:/github.com/VEuPathDB/MicrobiomeWorkflow) along with bioBakery tools for bacterial
abundance estimation. CORRAL output is loaded as both binary (presence/absence) and quantitative
Copies Per Million (CPM) values for each sample and can be used along with other sample details
related to the collection, processing and analysis of data for filtering and stratification of bacterial
abundance data as well as directly for exploring correlations between eukaryotic abundance and other
sample data.
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Data availability

All our software is publicly available under the MIT license: CORRAL (github.com/wbazant/CORRAL),
its main Python module, (github.com/wbazant/marker_alignments), and a mix of Python, Make, and
Bash scripts to produce simulations, comparisons, and figures for this publication
(github.com/wbazant/markerAlignmentsPaper).

All results are publicly viewable and downloadable on MicrobiomeDB. In addition, the following files are
available as supplemental material:

LINK: Simulated whole samples - results for different methods

LINK: Simulated reads - per-species breakdown and aggregate stats

LINK: Comparison of CORRAL and EukDetect on DIABIMMUNE study

LINK: Summary of MicrobiomeDB results
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