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Abstract

Neuronally orchestrated muscular movement and locomotion are defining faculties of multicellular animals.
Due to its numerically simple brain and neuromuscular system and its genetic accessibility, the larva of
the fruit fly Drosophila melanogaster is an established model to study these processes at tractable levels
is an established model for studying these processes at tractable levels of complexity. However, although
the faculty of locomotion clearly pertains to the individual animal, present studies of locomotion in larval
Drosophila mostly use group assays and measurements aggregated across individual animals. The alternative
is to measure animals one at a time, an extravagance for larger-scale analyses. In principle or in practice, this
in particular rules out grasping the inter- and intra-individual variability in locomotion and its genetic and
neuronal determinants. Here we present the IMBA (Individual Maggot Behaviour Analyser) for tracking
and analysing the behaviour of individual larvae within groups. Using a combination of computational
modelling and statistical approaches, the IMBA reliably resolves individual identity across collisions. It does
not require specific hardware and can therefore be used in non-expert labs. We take advantage of the IMBA
first to systematically describe the inter- and intra-individual variability in free, unconstrained locomotion
in wild-type animals. We then report the discovery of a novel, complex locomotion phenotype of a mutant
lacking an adhesion-type GPCR. The IMBA further allows us to determine, at the level of individual animals,
the modulation of locomotion across repeated activations of dopamine neurons. Strikingly, IMBA can also
be used to analyse ’silly walks’, that is patterns of locomotion it was not originally designed to investigate.
This is shown for the transient backward locomotion induced by brief optogenetic activation of the brain-
descending ’mooncrawler’ neurons, and the variability in this behaviour. Thus, the IMBA is an easy-to-use
toolbox allowing an unprecedentedly rich view of the behaviour and behavioural variability of individual
Drosophila larvae, with utility in multiple biomedical research contexts.

1 Introduction

Understanding the neuronal control of movement and locomotion, that is of how we do what we do, is an
important and rewarding task for basic research in the behavioural and neural sciences. Furthermore, such an
understanding can inspire the development of medical and technical applications, for example regarding gait
analysis for medical diagnosis, or bio-inspired robotics [1–3]. A comprehensive analysis of neuromuscular
control in humans remains a formidable challenge, however, not least because of the complexity of our
brains and bodies, complexity that is scarcely less in other mammals. In the past few years, the larva of
the fruit fly Drosophila melanogaster has emerged as a model organism for studying many aspects of these
processes [4]. The combination of a rich toolbox for cell-specific transgenic manipulation, a nervous system of
only about 10,000 neurons, and the availability of an electron-microscope-based synaptic connectome allows
neuronal processes to be studied in unrivalled detail. The utility of the larva for behavioural neuroscience
has been further aided both by its relatively simple body and the relatively moderate level of complexity in
its locomotion. Locomotion in Drosophila larvae can, simplifying somewhat, be described as consisting of
periods of relatively straight runs characterized by peristaltic waves of muscle contraction along the body
wall that alternate with occasional lateral head movements [4–14]. This results in a zig-zagging pattern of
locomotion towards their target, similarly observed in adult flies and mosquitoes.

Most studies of locomotion in larval Drosophila either use en-masse, group assays and measurements
aggregated across individual animals, or they need to measure single animals one at a time, which practi-
cally precludes larger-scale analyses. It has thus remained difficult to come to grips with the causes and
consequences of the variability in locomotion both between and within individual animals (henceforth called
inter-individual and intra-individual variability, respectively). Yet individual idiosyncrasies in behaviour are
described across the animal kingdom, including Drosophila [15, 16]. Such inter-individual variance in be-
haviour may be regarded not as noise, but as an inroad to studying the determinants and implications of
such variability and (if these are heritable) as raw material for natural selection. Likewise, intra-individual
variability in behaviour is essential to initiate operant learning, that is to generate novel actions capable of
bringing about desired outcomes. To study behavioural differences between and across individuals efficiently,
we need to be able to (1) observe behaviour in individual animals, (2) measure large numbers of animals in
a short period of time, and (3) manipulate the candidate cellular and molecular substrates of the observed
behaviour easily and precisely.
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An increasing number of video-tracking approaches have been developed in the past decade to facilitate
such analyses in larval Drosophila. Some of these were designed to track the behaviour of individually
assayed animals, e.g. [17–20]. These usually provide a very high temporal and spatial resolution, but are
extravagantly time-consuming if high sample sizes are required. Other approaches were designed to track
groups of animals, e.g. [21–28]. These focus on the average behaviour of groups of animals and thus do not
allow for individuals to be followed. More recent approaches have tried to combine the advantages of both
types of tracking [29, 30]. The major challenge in these cases is that individual Drosophila larvae look very
much alike. As a result, when two larvae collide, their identity is lost, resulting in a multitude of separated
tracks and no opportunity for the experimenter to disentangle which tracks belong to which of the animals.
Two different strategies have been followed in tackling this problem: one relies on the parallel tracking of
many separated individual animals [29]; the other tries to resolve the collisions between larvae and thus to
keep track of the identity of individual larvae within a group of animals [30] (for an earlier approach not
specific to Drosophila larvae, see [31]). The latter solution has been integrated into the FIM (Frustrated total
internal reflection-based Imaging Method) tracker software which requires specific hardware to illuminate
the tracked animals [23]. Although both these approaches are suitable to track and analyse high numbers
of individual animals, they both have specific requirements regarding the physical setup for video-recording,
and therefore require extensive redesigns of established behavioural assays in order to be used. We follow
a different approach by starting from an established standard behavioural assay and developing a tracking
solution that works for that assay and that non-expert users can easily implement in their research programs
using that assay or its derivatives.

Here we present the IMBA, the Individual Maggot Behaviour Analyser. It consists of the IMBAtracker
and the IMBAvisualiser. Together, these can track and analyse the behaviour of individual larvae within
groups. They allow collisions to be resolved between individual larvae using a combination of statistical
and computational approaches that can be applied to videos obtained by non-expert users in standard
experimental assays. They do not require any specific hardware beyond a camera and stable lighting, and
can therefore be easily applied to various derivatives of these standard behavioural assays, including ones
that are commonly used for olfactory, gustatory or visual choice [32–36], or associative learning [37–39].
We further show the utility of the IMBA as a research tool by discovering a novel, complex locomotion
phenotype in mutants of an adhesion G-protein coupled receptor gene (Cirl) [40] and by studying the effects
of repeatedly activating dopamine neurons (as covered by the TH-Gal4 driver) on locomotion. The utility of
the IMBA is further demonstrated for patterns of locomotion it was not originally designed to study, using
as an example the backward movements induced by optogenetic activation of the so-called ’mooncrawler’
neurons (as covered by the R53F07-Gal4 driver). In all these cases we pay particular attention to the
inter-individual and intra-individual variability in behaviour.

2 Results

In this study, we investigate the behaviour of individuals within groups of Drosophila larvae. Our approach
to the problem of losing track of individual identities upon collisions involves two critical steps: first, for our
analysis we only considered tracks that were more than half the length of the recorded video, so we were sure
that no two tracks in our analysis belonged to the same individual animal; second, we tried to stitch together
tracks from the same individual across collisions in order to maximize the number of individual animals that
we could include within our analysis. To this end, we employed a combination of a computational approach
modelling the shape of larvae and keeping their identities during a collision, and a statistical approach
comparing larvae before and after a collision. For more details, see the Materials and Methods section.

2.1 The IMBA allows the behaviour of individuals within groups to be studied

In order to evaluate our approach, we compared the results with manual assessments of collisions by an
experienced experimenter. In 48 videos with approximately 20 larvae each, 1844 collisions were found by
the experimenter. We attempted to resolve 1531 by means of the IMBAtracker, and of these, 1511 were
correctly resolved (Fig. 1-E1A). In total, 83.7 % of all tracked data belonged to tracks that fulfilled our
criterion of being at least half the length of the video after collision resolution and were used in the analysis
(Fig. 1-E1B-D).
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Fig. 1: Principles of the analysis. (A) The track of the midpoint of a sample larva. Green and red dots indicate left and right HCs,
respectively. The arrow head indicates the end of the track. (B) (left) 12 equidistant spine points are determined along the spine of
each larva, including the back and front ”tip” (spine points 1 and 12, respectively). The second spine point from the front (i.e. number
11) is taken as indicative of the head, the second point from the rear as indicative of the tail (i.e. number 2). (right) A head vector
(HV) is determined from spine points 9 to 11, and a tail vector (TV) from spine points 2 to 6. (C) The angular speed of the head
vector of the sample larva displayed in (A). Negative values indicate movement to the left, positive values movement to the right. A
HC is detected when the HV angular speed exceeds a threshold of ±35 °/s (stippled lines). In this and the following figures, left and
right HCs are indicated by green and red shadings, respectively. (D) The forward velocity of the tail of the sample larva displayed in
(A). During runs, the velocity oscillates regularly. Each oscillation marks one cycle of peristaltic forward movement. Therefore, we
define each peak of the Tail forward velocity during runs as one “step”, indicated by grey lines in this and analogous figures. During
HCs, the regular forward movement is stopped. Therefore, 1.5 s before and after each HC, no steps are detected.

In the next step, we developed an R-based shiny application to analyse and visualize the behaviour of
these individual larvae. This application, called the IMBAvisualiser, calculates a total of 95 attributes for
each animal that can be explored and visualized in an interactive manner. For an overview of the process,
see Figure 1-E2. Both the code and a full documentation of this application can be accessed via GitHub at
https://github.com/XXX and will be regularly updated and further developed in the future.

The locomotion of Drosophila larvae has been studied in detail in the past decade [5–7]. In brief, the
locomotion can be described as sequences of run phases, consisting of relatively straight, forward peristaltic
movement, and reorientation manoeuvres, consisting of lateral head casts (HC), which are usually associated
with a strong reduction in speed and are followed by changes in direction (Fig. 1A) [8]. Accordingly, we
first defined HC phases by the above-threshold angular velocity of the animal’s head vector (Fig. 1B-C) (for
details, see the Materials and Methods section). Animals were considered to be in a run phase whenever
they were not in a HC phase. A period of 1.5 s before and after each HC was excluded from the run phases
to prevent the potential effects of HCs on run behaviour. All these definitions are in line with our previous
work [27, 41]. For a more detailed analysis of run periods, we defined the cycles of peristaltic movement by
means of the animal’s forward velocity (Fig. 1D). Each local maximum of forward velocity during a run was
defined as one “step”, with the period between two steps (inter-step, IS) capturing one complete cycle of
peristaltic movement (for a similar approach, see [42]).
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2.2 Attributes of basic locomotion in larvae are variable across individuals

On the basis of these observations, and considering the behaviour of 875 innate, i.e. experimentally näıve,
animals, we determined a set of six behavioural attributes to describe the basic locomotion of larvae: the
IS speed, indicating the average speed across all peristaltic cycles (Fig. 2A); the IS distance, indicating the
average size of the steps (Fig. 2B); the IS interval, indicating the average time between two steps (Fig.
2C); the absolute bending angle, indicating how much the body of a larva was bent throughout the whole
observation period (Fig. 2D); the HC rate, indicating how many HCs an animal performed per second (Fig.
2E); and the absolute HC angle, indicating the average size of an animal’s HCs (Fig. 2F). To determine the
variability in each behavioural attribute, we calculated the coefficient of variation (CV), which indicates the
standard deviation as a percentage of the mean and allows the inter-individual variability to be compared
across different behavioural attributes. The CV was lowest for the IS distance (15.6 %) and highest for the
HC rate (47.4 %).

One important reason for variability across animals is known from previous studies: the size of animals
[42]. We therefore investigated the impact of animals’ size on the six behavioural locomotion attributes and
found that both IS speed and IS distance were correlated with the body length of a larva, whereas other
attributes were not affected (Fig. 2-E1). This finding is in line with previous work [42]. We therefore decided
to correct for the body length in all following analyses by dividing any distance measured by the average
body length of the individual larva in question. Distances are reported in body lengths (bl), speeds and
velocities in body lengths per second (bl/s).

2.3 Bending and head-casting behaviour is more variable within individuals
than peristaltic forward locomotion

After investigating the inter-individual variability, we explored the intra-individual variability in behaviour
(Fig. 2G-I). We found that attributes related to the peristaltic forward movement such as the IS speed, IS
distance and IS interval were much less variable than attributes associated with directional changes such as
the absolute bending and HC angles (Fig. 2I; as the HC rate is calculated as a single value per individual it
is excluded from this analysis). This finding suggests that peristaltic forward movement is a highly stable,
regular behaviour with little variation, whereas directional changes are much more variable. Interestingly,
the directional changes, but not the peristaltic forward movement, were much more variable within each
individual than across individuals (Fig. 2I).

2.4 Attributes of peristaltic forward locomotion are stable over time within
individuals

Next, we wondered how stable the behaviour of individual animals was over time. To this end, we determined
each of the six behavioural attributes for each individual in the first and in the third minute of the three-
minute video, and asked whether the behaviour in either minute would be correlated with that in the other.
We detected mild correlations of the HC rate as well as the absolute bending and HC angles, and strong
correlations of the IS speed, the IS distance and the IS interval (Fig. 3). This suggests that the behaviour of
individual animals, though variable, was nevertheless remarkably consistent over time: the fastest animals
in the first minute were also the fastest in the third minute, and the animals making the largest HCs in the
first minute tended to do the same in the third minute. This finding may suggest that individual larvae have
particular behavioural traits that are different between, but consistent within, individual animals.

2.5 The Cirl mutation reduces speed, bending and head-casting behaviour

To put the newly developed technology to the test, we performed detailed analyses of larval locomotion and
its modulations in response to genetic manipulation. To this end, we first chose the Latrophilin homolog Cirl,
which is broadly expressed throughout the larval nervous system. Importantly, CirlKO mutant larvae are
known to exhibit a strong locomotion deficit compared to wild type animals as well as a genomic CirlRescue

control [40], which has not, however, been studied in detail thus far.
We tracked and analysed the behaviour of 225 mutant and 147 rescue control larvae (Fig. 4). First, we

confirmed the previously observed phenotype in crawling speed (Fig. 4B) [40]. Then, we analysed mutant
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Fig. 2: Variability of basic locomotor attributes of individual Drosophila larvae. Six basic locomotor attributes were determined: (A)
the inter-step (IS) speed, i.e. the average speed of each larva’s midpoint during runs, (B) the IS distance, i.e. the average distance
travelled within one peristaltic cycle for each larva, (C) the IS interval, i.e. the average time required for one peristaltic cycle for each
larva, (D) the absolute bending angle, i.e. how much each larva was bent throughout the observation period, (E) the HC rate, i.e. the
number of HCs per second of each larva, and (F) the absolute HC angle, measuring the average size of each larva’s HCs. Displayed are
histograms of each behavioural attribute per individual, together with the coefficient of variation (CV), which indicates the standard
deviation of the attribute, divided by its mean, across all individuals. (G) Three sample tracks of individuals showing different patterns
of behaviour: (top) a stretch of relatively straight, forward locomotion, followed by a series of rather large HCs and turns, (middle)
a stretch of curved forward locomotion, flanked by HCs, (bottom) continuous, small HCs. (H) Absolute HC angles of the top sample
individual from (G) range from close to zero up to 60°. (I) The CV of each attribute within each individual animal (box plot), and
across animals (diamonds). The median is displayed as the middle line, the 25 % and 75 % quantiles as boxes, and the 10 % and 90 %
quantiles as whiskers. The underlying source data can be accessed in the ”Figure 2-source data” file.

and control animals regarding the six behavioural attributes described above. We found that the IS speed
of the mutants was reduced compared to the control (Fig. 4C). Notably, a lower speed can come about in
two ways: the larvae may make a slower peristaltic movement, resulting in a higher IS interval, or they may
move less per peristaltic cycle, resulting in a lower IS distance. In the present case, we found only a small
difference in the IS distance and a large difference in the IS interval (Fig. 4D-E). An even closer look into
the run behaviour revealed that mutant animals are disturbed in their regular peristaltic cycle (see below).

In addition to the expected phenotype in speed, we detected a reduced absolute bending (Fig. 4F),
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Fig. 3: Basic locomotor attributes differ in how consistent they are over time. We determined each behavioural attribute for each
individual independently for the first and the third minute of the video. We uncovered differences across behavioural attributes: we
found moderate to strong correlations for (A) the IS speed, (B) the IS distance and (C) the IS interval, but only very weak, yet
significant correlations for (D) the absolute bending angle, (E) the HC rate and (F) the absolute HC angle. Correlations are determined
by SC tests. The underlying source data, as well as the results of the statistical tests, can be accessed in the ”Figure 3-source data”
file.

which was accompanied by a reduced HC rate, as well as a reduced absolute HC angle, in the CirlKO mutant
larvae (Fig. 4G-H). That is, the mutants made fewer and smaller HCs, and were bending less. This suggests
that mutant larvae are generally impaired in the bending of the body and in directional changes, possibly
due to impaired functioning of the chordotonal organs. This result was surprising, as in a previous study a
qualitative description of the CirlKO mutant locomotion implied an increased number of HCs [40].

We also analysed the variability of each of the behavioural attributes within individuals, and observed
increased variability in the IS speed and the IS interval in CirlKO mutant larvae compared to the controls
(Fig. 4-E1).

2.6 A machine-learning approach reveals additional modulations of locomotion
in CirlKO mutants

So far, our analysis had focused on the six basic locomotion attributes. But the CirlKO mutation may affect
behaviour in further ways. We therefore extended our analysis to include additional behavioural attributes,
including angular velocities of the head and tail, accelerations of head and tail, as well as the coefficients of
variation whenever applicable. A full list of the 30 behavioural attributes used can be found in Tables 2-3
in the Materials and Methods section. We then employed an unbiased, machine-learning-based approach to
determine the most decisive attributes that differentiate mutants and control larvae. Random forests work
by building a large number of decision trees, each of them trying to classify each individual animal according
to either one genotype or the other. Importantly, random forests are not only useful in classifying data,
but also in estimating which attributes are most important for the classification. For more details, see the
Materials and Methods section. Applying this approach to our data set, we were able to discriminate mutant
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Fig. 4: The Cirl mutation reduces speed, bending and head-casting behaviour. We analysed basic locomotor properties of the CirlKO

mutant and a CirlRescue control. (A) Representative sample tracks of five individual mutant and five control larvae. Green and red dots
indicate left and right HCs, respectively. (B) The mutants displayed a strongly reduced midpoint speed compared to the control animals,
confirming earlier results. (C) Also limited to run phases, the speed of mutants was reduced. (D) The IS distance was decreased, and
(E) the IS interval increased. (F) In addition, the mutants were on average bending less than the control animals, which manifested
itself as a decreased (G) HC rate and (H) absolute HC angle. The median is displayed as the middle line, the 25 % and 75 % quantiles
as boxes, and the 10 % and 90 % quantiles as whiskers. Asterisks indicate significant differences in MW tests. The underlying source
data, as well as the results of the statistical tests, can be accessed in the ”Figure 4-source data” file.

and control larvae with an accuracy of 0.91 (Fig. 5A). Our assessment of which of the behavioural attributes
were the most important in discriminating the behaviour of the two genotypes found that most of the top
behavioural attributes were those already covered in our previous analysis: the IS speed, the IS interval, the
absolute bending and HC angle, as well as the coefficient of variation of the IS speed and the IS interval
(Fig. 5B). This result confirmed our analysis so far. However, the random forest method also revealed four
additional behavioural attributes: the distance travelled by the larva, the absolute angular speeds of the
head vector (HV) and tail vector (TV), as well as the coefficient of variation of the forward velocity. A closer
look revealed that the CirlKO mutant larvae travelled shorter distances (Fig. 5C), consistent with their
reduced speed. Furthermore, the mutants had decreased absolute HV and TV angular speeds (Fig. 5D-E),
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Fig. 5: Discriminating CirlKO mutant and control animals animals by means of a random forest. We applied the random forest
approach to discriminate CirlKO mutant animals from control animals. (A) Using a set of 30 behavioural attributes, the random forest
was able to discriminate the two genotypes with an accuracy of 0.91. Displayed is the confusion matrix showing predicted versus actual
affiliations of individual larvae to the two genotypes. (B) The top ten most important behavioural attributes for discriminating the two
genotypes with the random forest, sorted by the average importance rank across 10 repetitions of the random forest approach. (C-F)
Four additional behavioural attributes found by the random forest were (C) the distance travelled by the larvae, (D) the angular speed
of the head vector (HV), (E) the angular speed of the tail vector (TV), as well as (F) the coefficient of variation (CV) of the velocity of
the tail in a forward direction. Displayed are the mean and the 95 % confidence interval in (B), and the median as the middle line, the
25 % and 75 % quantiles as boxes, and the 10 % and 90 % quantiles as whiskers in (C-F). Asterisks indicate significant differences in
MW tests. The underlying source data, as well as the results of the statistical tests, can be accessed in the ”Figure 5-source data” file.

consistent with the general observation of decreased bending and turning rates in the mutant. Finally, we did
not observe any clear difference in intra-individual variability in the tail forward velocity between mutant and
rescue (Fig. 5F). The last result implies that the random forest can use attributes to differentiate individual
animals that do not display obvious differences when plotted as box plots.

To confirm that these top ten behavioural attributes were indeed the critical ones for describing the
behaviour of CirlKO mutants and control animals, we ran the random forest algorithm again, but this time
with only those ten attributes. The algorithm was able to discriminate the two genotypes with an accuracy
of 0.91, just as high as with the full set of behavioural attributes. The ten attributes in question were thus
shown to be fully sufficient to discriminate between the genotypes. In turn, when we ran the random forest
algorithm with the remaining 20 attributes and excluding the top ten, the accuracy was still 0.83. This
suggests some redundancy in our analysis, with multiple attributes providing related information such that
the algorithm can employ substitute attributes to discriminate between the genotypes even when the most
decisive attributes are excluded.

2.7 CirlKO mutant larvae have an altered rhythmic peristaltic cycle

In order to understand the origin of the CirlKO phenotype in crawling speed, we analysed the temporal
behavioural patterns of individual animals (Fig. 6). Just like wild-type larvae (Fig. 1D), CirlRescue controls
displayed a very regular rhythm in their forward velocity, indicated by a smooth, wave-like curve with local
maxima of very similar heights that we detected as steps, and always one local minimum between two steps
(Fig. 6A, top, Rich media file 1). CirlKO mutants, in contrast, regularly exhibited a pattern of two local
minima with one very small local maximum between two steps (Fig. 6A, bottom, Rich media file 2), resulting
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Fig. 6: CirlKO mutant larvae have an altered rhythmic peristaltic cycle. (A) The forward velocity of the tail in each one sample

CirlRescue (top) and CirlKO larva (bottom). Periods of normal stepping are indicated by a coloured stripe on top of the curve, periods
of stumble stepping by a hatched stripe. (B) Distribution of the IS interval between the normal and stumble stepping cycles for each

genotype. (C) CirlKO individuals have a much lower ratio of normal stepping cycles (and thus a higher ratio of stumble stepping) than

CirlRescue individuals. (D-I) Within-animal comparison of various behavioural attributes of mutant animals during normal or stumble
stepping, and between-animal comparison between mutant and control animals during normal stepping. Periods of stumble stepping in
control animals were omitted due to their low number. (D) IS speed, (E) IS distance, (F) IS interval, (G) absolute Bending angle, (H)
absolute head vector (HV) angular speed, (I) absolute tail vector (TV) angular speed. Displayed are the median as the middle line, the
25 % and 75 % quantiles as boxes, and the 10 % and 90 % quantiles as whiskers. Asterisks indicate significant MW tests, hash symbols
significant WS tests. The underlying source data, as well as the results of the statistical tests, can be accessed in the ”Figure 6-source
data” file.
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in IS intervals that were longer and more variable than those of CirlRescue controls (Fig. 4E, 4-E1C). For
further analyses, we defined each period between two steps with only one local minimum in the tail forward
velocity as normal stepping, and each period with two local minima as ’stumble’ stepping. A quantification
revealed that stumble stepping was much more common in mutant than in control larvae, and that their
proportion increased with increased IS intervals (Fig. 6B-C).

Next, we directly compared the animals’ behaviour specifically during normal stepping and stumble
stepping. We found that larvae were slower and had longer IS intervals, but unchanged IS distances during
stumble stepping compared to normal stepping (Fig. 6D-F). In other words, stumble steps took longer to
complete, but were not larger. Likewise, neither the animals’ bending nor the angular speed of their head
vector was different between normal and stumble steps; only the angular speed of the tail vector was slightly
decreased (Fig. 6G-I). This suggests that the phenotype in bending and turning that we observed was largely
independent of the irregular stepping behaviour of the CirlKO mutants.

In summary, we found that the CirlKO mutants’ phenotype in crawling speed can be at least partially
attributed to an unusual stepping pattern that causes a slower peristaltic forward locomotion, whereas the
phenotype in bending and turning is largely independent.

2.8 Optogenetic activation of dopamine neurons triggers stopping and bending

Next, we investigated how the acute optogenetic activation of sets of neurons affected the locomotion of
individual larvae. First, we applied our unbiased approach to the behaviour of Drosophila larvae upon
optogenetic activation of dopamine neurons. To this end, we used larvae that expressed the highly sensitive
effector Channelrhodopsin2-XXL (ChR2-XXL) [43] in a broad subset of dopaminergic neurons, as defined
by the TH-Gal4 driver strain (experimental genotype). Groups of larvae were allowed to move freely over
a Petri dish for 30 s in darkness, followed by 30 s of blue light in order to trigger the activation of the
dopaminergic neurons, and another 60 s of darkness. The behaviour of the animals was compared to that of
heterozygous driver and effector controls that did not express ChR2-XXL (Fig. 7). Upon light stimulation,
animals of all three genotypes increased their absolute bending, suggesting that this was a response to the
sudden light. However, the experimental genotype did so to a much greater extent than the genetic controls,
suggesting that this stronger reaction was caused by the activation of the dopaminergic neurons (Fig. 7B,
Rich media file 3).

In order to evaluate the reaction of the animals to the light stimulation and the light-induced neuronal
activation, we normalized each individual animal’s behaviour during the 30 s of light stimulation by subtract-
ing its behaviour in the 30 s of darkness before. The normalized values of 30 behavioural attributes (called
Δ-values) were fed into the random forest. The random forest classified the three genotypes with an accuracy
of 0.90 and provided the top ten most important attributes that differed between the three genotypes in their
change in response to the light stimulation (Fig. 7C). In detail, we found a more strongly reduced distance
travelled by larvae of the experimental genotype than of the genetic controls and accordingly a more strongly
reduced tail forward velocity and midpoint speed (Fig. 7D-F). Interestingly, the intra-individual variability
in the midpoint speed, as determined by the coefficient of variation, was increased in all three genotypes,
but more in the experimental genotype (Fig. 7G). In addition, the random forest approach provided three
behavioural attributes regarding the animals’ bending. For the bending angle, which is positive if a larva is
bent to the left and negative if bent to the right, we found no significant differences, but a strongly increased
scatter of the data in the experimental genotype (Fig. 7H). Fittingly, the absolute bending angle, not tak-
ing the direction into account, was increased in all three genotypes, but much more so in the experimental
genotype (Fig. 7I). The intra-individual variability in the absolute bending angle was increased only in the
genetic controls, but not in the experimental genotype (Fig. 7J). Finally, the angular speeds of the animals’
head and tail vectors also differed between the genotypes: both angular speeds were increased more strongly
in the experimental genotype than in the controls (Fig. 7K-L). Regarding the tail vector angular speed, the
intra-individual variability was also more strongly increased in the experimental genotype (Fig. 7M).

In summary, activating a broad set of dopaminergic neurons caused the animals to slow down markedly
and to bend and rotate their bodies (for a time-resolved view of the three genotypes’ behaviour, see Fig.
R7-E1).
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Fig. 7: Optogenetic activation of dopamine neurons triggers stopping and bending. Larvae of the experimental genotype (TH >ChR2-
XXL), the driver control (TH / +) and the effector control (+ / ChR2-XXL) were recorded during free locomotion for 30 s in darkness,
followed by 30 s of light stimulation and 60 s of darkness. (A) Sample tracks of three individuals, colour-coded according to the absolute
bending angle. Phases of stopping and increased bending are indicated by brighter colour (arrows). (B) The absolute bending angle
over time. Black and blue stripes on the X-axis indicate periods of darkness and blue light stimulation, respectively. (C) 30 behavioural
attributes during light stimulation were normalized to each individual’s behaviour before light activation (called Δ-values). Shown
are the top ten most important Δ-values for discriminating the three genotypes by means of random forest, sorted by the average
importance rank across 10 repetitions. The top ten Δ-values provided by random forest were (D) the distance each larva travelled,
(E) the velocity of the tail in a forward direction, (F) the speed of the midpoint, as well as (G) its coefficient of variation (CV), (H)
the bending angle, (I) the absolute bending angle, as well as (J) its CV, (K) the absolute angular speed of the head vector (HV), (L)
the absolute angular speed of the tail vector (TV), as well as (M) its CV. Displayed are the mean and the 95 % confidence interval
in (B-C), and the median as the middle line, the 25 % and 75 % quantiles as boxes, and the 10 % and 90 % quantiles as whiskers in
(D-M). Asterisks indicate significant differences in MW tests. The underlying source data, as well as the results of the statistical tests,
can be accessed in the ”Figure 7-source data” file.
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Fig. 8: Individuals reduce speed consistently upon repeated optogenetic activation of dopamine neurons. Larvae of the experimental
genotype (TH >ChR2-XXL) were recorded during free locomotion for 30 s in darkness, followed by three cycles of 10 s of light
stimulation and 60 s of darkness. (A) The tail forward velocity over time. Black and blue stripes on the X-axis indicate periods
of darkness and blue light stimulation, respectively. (B) The tail forward velocity during light stimulation was normalized to each
individual’s behaviour in the 10 s before light activation (called Δ-values). The Δ-velocities of the first and second activation were
positively correlated. (C-D) As in (A-B), but for the midpoint speed. (E-F) As in (A-B), but for the absolute bending angle. (G-H)
As in (A-B), but for the HV absolute angular speed. Displayed are the mean and the 95 % confidence interval in (A,C,E,G), and the
individual Δ-values in (B,D,F,H). Correlations were determined by SC tests. The underlying source data, as well as the results of the
statistical tests, can be accessed in the ”Figure 8-source data” file.
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2.9 Individuals reduce speed consistently upon repeated activation of dopamine
neurons

In wild-type animals we observed that behavioural attributes associated with peristaltic forward crawling
were more consistent within each animal than attributes associated with bending and HC behaviour (Fig.
2-3). We therefore wondered whether this would also be true for the dopamine-induced changes in behaviour
that we had observed. To tackle this question, we repeated the previous experiment with the experimental
genotype expressing ChR2-XXL in TH-Gal4 neurons, but this time we activated the neurons three times for
10 s, each time followed by 60 s of darkness (Fig. 8). Then we determined the changes in the four behavioural
attributes that had previously been found to be most important by the random forest method (Fig. 7C):
tail forward velocity, midpoint speed, absolute bending angle, and absolute angular speed of the head vector.
On average, the animals reacted very similarly to the three neuronal activations (Fig. 8). As regards the
changes in behaviour within each animal, however, we found differences between the behavioural attributes.
We observed mild to moderate correlations across the three neuronal activations for the tail forward velocity
and the midpoint speed (Fig. 8B, D; Fig. 8-E1B, D), but no correlations for the absolute bending angle and
the absolute angular speed of the head vector (Fig. 8F, G; Fig. 8-E1F, G).

Thus, we indeed found that the reduction in speed upon activation of dopamine neurons was consistent
within individual animals, whereas the increases in bending and lateral head movement were not. This further
stresses the distinction between forward crawling and bending behaviour with respect to intra-individual
variability.

2.10 Optogenetic activation of ’mooncrawler’ neurons triggers backward crawl-
ing

In order to probe the utility of our approach further, we applied it to an analogous experiment to that
described above, but activating a very different set of neurons. This time we chose the driver strain R53F07-
Gal4, which reportedly covers a rather broad set of interneurons in the ventral nerve cord (VNC), the insects’
functional analog of the spinal cord, including the so-called moonwalker descending neurons (MDNs) [44].
Optogenetically activating these neurons (henceforth called ’mooncrawler’ neurons) had caused larvae to
crawl backwards in a previous study [44], but a in-depth analysis of their behaviour is lacking. Therefore, we
crossed R53F07-Gal4 to the UAS-ChR2-XXL effector strain, performed the same experiment as described
above, and compared the animals’ behaviour with the respective genetic controls (Fig. 9). Light stimu-
lation did indeed cause backward crawling, as indicated by a negative forward velocity, in animals of the
experimental genotype but not of the genetic controls (Fig. 9B, Rich media file 4).

We applied the same strategy as before, fed the Δ-values of behavioural attributes into the random forest
(accuracy 0.83), and obtained the top ten attributes that differed between the three genotypes in their change
in response to the light stimulation (Fig. 9C). Similarly to the case of dopaminergic neurons, we found the
distance travelled, the tail forward velocity and the midpoint speed to be more strongly decreased in the
experimental genotype than in the genetic controls, and the intra-individual variability of the midpoint speed
to be more strongly increased (Fig. 9D-G). In contrast to the previous experiment, however, the IS speed
and the IS interval were also among the top ten attributes: we found the IS speed to be strongly reduced,
and the IS interval to be strongly increased, in the experimental genotype but not the genetic controls (Fig.
9H-I). Again, we found the animals’ bending to be important, yet in a different way from the previous
experiment: the absolute bending angle was reported as an important attribute by random forest, but the
experimental genotype was different only from the effector control, not from the driver control (Fig. 9J).
Thus, there was no evidence that the activation of the R53F07-Gal4 neurons were responsible for the change
in the absolute bending angle. Interestingly, the intra-individual variability in the absolute bending angle
was increased in the genetic controls but decreased in the experimental genotype (Fig. 9K). Although the
change in the average bending was not significantly different from the genetic controls, therefore, activating
the R53F07-Gal4 nneurons made the bending less variable. Finally, the angular speed of the head vector
as well as the HC rate were reported by the random forest. However, for the angular speed we found a
significant difference in the experimental genotype only in relation to the driver, but not the effector control
(Fig. 9L), and no significant differences in the HC rate at all (Fig. 9M).
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2.11 Individuals differ in the timing of their switching gears from backward to
forward locomotion

A closer look at the temporal patterns of the behavioural attributes induced by the two sets of neurons
activated revealed striking differences. The activation of dopaminergic neurons triggered a number of be-
havioural changes that quickly reverted back to normal as soon the light stimulation ended (Fig. 7-E1). In
contrast, activating the R53F07-Gal4 neurons triggered behavioural changes of very different, more complex
dynamics (Fig. 9-E1). For example, the tail forward velocity dropped quickly to the negative upon light
onset and started to become more positive gradually over the course of 90 s (Fig. 9-E1A). The midpoint
speed and IS speed, in contrast, continued to drop slowly until a minimum was reached about 30 to 40 s after
light onset (Fig. 9-E1B-C). The absolute bending angle was increased in all three genotypes during light
stimulation. But whereas it reverted back to normal upon light offset in the genetic controls, it remained
high for another 30 s in the experimental genotype before gradually decreasing (Fig. 9-E1E). What is the
cause of these complex temporal patterns?

We compared the temporal pattern of the tail forward velocity across individual animals (Fig. 10-E1).
Whereas all the individuals switched to backward crawling within a few seconds after light onset, the reverse
switch to forward crawling was highly variable, with some animals not reverting at all within the recording
time (Fig. 10A). In other words, most larvae continued to crawl backwards even after the optogenetic
activation of the R53F07-Gal4 neurons had finished, and each reverted to forward crawling in its own time.
On average, those animals that did revert to forward locomotion within the recording time crawled backwards
for about 51 s (Fig. 10B). This also means that our previous analysis was confounded by mixing unknown
numbers of forward- and backward-crawling individuals at any given time point. Therefore, we determined
the switching points in each individual animal (Fig. 10-E1) and compared the individual animals’ behaviour
while the animals were crawling backward (i.e. between the switching points) with their behaviour while
crawling forward (Fig. 10C).

We found that the midpoint speed was reduced, but its intra-individual variability was increased, while
animals crawled backwards (Fig. 10D-E). Taking only run phases into account, the IS speed was reduced
and the IS interval was accordingly increased, during backward crawling (Fig. 10F-G). The absolute bending
angle was increased, with reduced intra-individual variability, while larvae crawled backwards (Fig. 10H-I).
Finally, we found no differences between forward and backward crawling regarding the angular speed of the
head vector, but a reduced HC rate during backward crawling (Fig. 10J-K).

In summary, backward crawling was characterized by longer IS intervals, leading to a reduced and more
variable speed, and by increased but less variable bending of the larvae, compared to forward crawling.

2.12 Switches between forward and backward locomotion are characterized by
changes in speed, and peaks in bending and head-casting behaviour

Finally, we wondered how specifically the animals’ behaviour was altered during the switches between forward
and backward locomotion. To this end, we aligned the data of all the animals either to the switch to backward
crawling, or to the switch to forward crawling (Fig. 11A). This alignment revealed that both midpoint speed
and IS speed rapidly dropped at the switch to backward crawling, followed by a slow further decrease in
the following seconds. Both speeds decreased until a few seconds before the switch to forward crawling
and quickly rose again after the switch (Fig. 11B-C). Fittingly, the IS interval increased after the backward
switch and decreased again after the forward switch (Fig. 11D). The absolute bending angle rapidly increased
precisely at the backward switch and stayed constant afterwards. At the forward switch, the absolute bending
angle peaked and then dropped quickly back to normal levels (Fig. 11E). The absolute angular speed of
the head vector did not change at all at the backward switch but peaked at the forward switch (Fig. 11F).
Finally, the HC rate peaked at both switching points, albeit on different absolute levels (Fig. 11G).

In order to determine how the direction of crawling changed at each switching point, we calculated the
change in the tail vector in the 10 s before and after each switch (Fig. 11H). We found that in both cases
the larvae changed their crawling direction by about 100 °, suggesting that either switch was followed by a
movement approximately orthogonal to the previous direction.
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Fig. 9: Optogenetic activation of ’mooncrawler’ neurons triggers backward crawling. Larvae of the experimental genotype (R53F07
>ChR2-XXL), the driver control (R53F07 / +) and the effector control (+ / ChR2-XXL) were recorded during free locomotion for
30 s in darkness, followed by 30 s of light stimulation and 60 s of darkness. (A) Sample tracks of two larvae, colour-coded according to
their tail forward velocity. Phases of backward locomotion are indicated by darker colour (arrows).(B) The tail forward velocity over
time. Black and blue stripes on the X-axis indicate periods of darkness and blue light stimulation, respectively. (C) 30 behavioural
attributes during light stimulation were normalized to the individual’s behaviour before light activation (called Δ-values). Shown are
the top ten most important Δ-values. The top ten Δ-values were (D) the distance each larva travelled, (E) the velocity of the tail in a
forward direction, (F) the speed of the midpoint, as well as (G) its coefficient of variation (CV), (H) the IS speed, (I) the IS interval,
(J) the absolute bending angle, as well as (K) its CV, (L) the absolute angular speed of the head vector (HV), and (M) the HC rate.
Displayed are the mean and the 95 % confidence interval in (B-C), and the median as the middle line, the 25 % and 75 % quantiles as
boxes, and the 10 % and 90 % quantiles as whiskers in (D-M). Asterisks indicate significant differences in MW tests. The underlying
source data, as well as the results of the statistical tests, can be accessed in the ”Figure 9-source data” file.

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.509663doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509663
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 10: Backward locomotion is characterized by reduced yet more variable speed, and increased yet less variable bending. (A)
Distribution of the switching points to backwards crawling (white) and forward crawling (grey). N = 97, 64. (B) Distribution of
backward crawling durations, only taking those animals into account that perform both switches, i.e. that start to crawl backward and
switch back to forward crawling later (N = 58). (C-K) Within-animal comparison of the backward crawling phase (i.e. between the
switching points) and the forward crawling phases, regarding (C) the tail forward velocity, (D) the midpoint speed, (E) its coefficient
of variation (CV), (F) the IS speed, (G) the IS interval, (H) the absolute bending angle, (I) its CV, (J) the HV absolute angular speed,
and (K) the HC rate. Displayed are the median as the middle line, the 25 % and 75 % quantiles as boxes, and the 10 % and 90 %
quantiles as whiskers. Hash symbols indicate significant differences in WS tests. The underlying source data, as well as the results of
the statistical tests, can be accessed in the ”Figure 10-source data” file.
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Fig. 11: Switching between forward and backward locomotion (and vice versa) is characterized by changes in speed and peaks in
bending and head-casting. (A-G) The tracks of animals from the experimental genotype (R53F07 >ChR2-XXL) were aligned either
to the switch from forward to backward crawling (left, ”Backward switch”), or to the switch from backward to forward crawling (right,
”Forward switch”). Only animals that performed the respective switch were considered (N = 97, 64). (A) Tail forward velocity, (B)
midpoint speed, (C) IS speed, (D) IS interval, (E) absolute bending angle, (F) absolute head vector (HV) angular speed, (G) HC rate.
Displayed are the mean and 95 % confidence intervals of all data within each 2 s bin, except for the HC rate which was calculated
within each 2 s bin by dividing all frames with a HC by all frames in the bin. (H) The orientation of the animal’s body, indicated by the
tail vector, was compared in the 10 s before and after a switch. Displayed is the percentage of animals that changed their orientation
by the respective absolute angle, in brackets of 20°. The underlying source data can be accessed in the ”Figure 11-source data” file.
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Fig. 12: Individuals change speed consistently upon repeated backward, but not forward switches. Larvae of the experimental genotype
(R53F07 >ChR2-XXL) were recorded during free locomotion for 30 s in darkness, followed by three cycles of 10 s of light stimulation
and 60 s of darkness. Individual data were aligned either to the switch from forward to backward crawling (A,C,E), or to the switch
from backward to forward crawling (B,D,F,H). (A) (left) The tail forward velocity over time, aligned to the first, second and third
backward switch. (right) The tail forward velocity during the 10 s after the switch was normalized to each individual’s behaviour in
the 10 s before the switch (called Δ-values). The Δ-velocity of the first and second activation was positively correlated. (B) As in (A),
but for the forward switches. (C-D) As in (A-B), but for the midpoint speed. (E) As in (A), but for the absolute bending angle. (F) To
quantify the peak of the absolute bending angle at forward switches, we normalized the behaviour in the 10 s around the switch with the
5 s before and the 5 s after (called peak values). (G) (left) The duration of the backward crawling phases following the first, second and
third neuronal activation. (right) The durations of the first and second backward phases were positively correlated. (H) As in (F), but
for the HV absolute angular speed. As no particular change in the angular speed is seen upon backward switches, we quantify only the
forward switches. Displayed are the mean and the 95 % confidence interval in (A,C,E,G), and the individual Δ-values, or peak-values,
in (B,D,F,H). Correlations were determined by SC tests. The underlying source data, as well as the results of the statistical tests, can
be accessed in the ”Figure 12-source data” file.
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2.13 Individuals change speed consistently upon repeated backward, but not
forward switches

We characterized backward switches by a decrease in speed and an increase in absolute bending angle, and
forward switches by an increase in speed, and peaks in absolute bending angle and absolute angular speed
of the head vector. How stable were these changes for repeated switches across and within individuals? To
address this question, we stimulated the R53F07-Gal4 neurons three times for 10 s and aligned all animals
either to the backward or to the forward switch (Fig. 12). We found that the average behaviour of the
animals was astonishingly consistent across all three backward and forward switches. Looking at individual
behaviour with regard to the changes in tail forward velocity and midpoint speed, we observed mild to
moderate correlations across repeated backward switches (Fig. 12A, C; Fig. 12-E1A, C), but not across
repeated forward switches (Fig. 12B, D; Fig. 12-E1B, D). A notable exception was a significant moderate
correlation in the midpoint speed between the second and third forward switch (Fig. 12-E1D). In contrast,
no correlations were found for the absolute bending angle and the absolute angular speed of the head vector
(Fig. 12E-H; Fig. 12-E1E-H). The IS speed, IS interval and HC rate were not included in this analysis, as
steps and HCs occur too rarely within the short observation periods used for this analysis.

In addition, we determined the duration of each of the three backward crawling phases upon each acti-
vation of R53F07-Gal4 neurons in individual animals, and found positive correlations that were significant
between the first and the second, as well as between the second and third backward phases (Fig. 12G; Fig
12-E1G). Between the first and third backward phase too, a positive correlation was observed; this remained
non-significant due to the sample size of only seven animals that completed both backward phases.

In summary, we again found that changes in speed upon neuronal activation were more consistent within
individuals than changes in bending or lateral head movement, just as we found to be the case with respect
to dopamine neurons.

3 Discussion

In this study, we demonstrate the utility of the IMBA with four examples: our findings provide new insights
into variability in locomotor behaviour, the complex behavioural phenotypes of an adhesion GPCR mutation,
the effects of repeatedly activating dopamine neurons on locomotion, and the ‘switching of gears’ between
forward and backward locomotion. In the following paragraphs, we first discuss the implications of our
findings and the possible future directions for each of these cases, before summarizing the more general
potential of the IMBA.

3.1 Bending and head-casting behaviour is variable; peristaltic locomotion is
stable

Our analysis revealed that peristaltic forward locomotion is characterized by very low intra-individual vari-
ability and high consistency over time (Fig. 2-3). Bending and head-casting behaviour, in contrast, is much
more variable, and less stable. We note that, while similar findings have led to the suggestion that peristaltic
forward locomotion would thus be best suitable for high-throughput phenotyping [42], we found reliable
effects of transgenic manipulations on bending and HC behaviour too (Fig. 4, 7, 9). In any event, when we
repeatedly activated the same set of neurons in the same individual animals, we found mild yet significant
correlations for these repetitions for peristaltic forward locomotion, but not for bending and head-casting
behaviour. This was true for both dopamine neurons and mooncrawler neurons (as covered by the R53F07-
Gal4 driver) (Fig. 8, 12). This suggests that individual larvae not only have a fairly stable, inherent rhythm
of peristaltic locomotion, but they also modify this rhythm in a relatively idiosyncratic manner upon re-
peated neuronal activation. Bending and head-casting behaviour, on the other hand, appears highly variable
and is modulated in an unpredictable manner upon repeated neuronal activation.

The reason for this apparent difference in variability between peristaltic locomotion on the one hand
and bending and head-casting behaviour on the other hand is not known. Interestingly, however, previous
studies have found that peristaltic locomotion originates in both the anterior and posterior segments of the
VNC, whereas head-casting behaviour and bending originate more anteriorly [45, 46]. In both cases, input
from the brain is reportedly not required. Input from the brain is required, in contrast, for organizing
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peristalsis, bending and head-casting behaviour in a goal-directed manner [45]. Consistently with this, in
previous studies we have demonstrated that ”higher” brain functions, such as associative memories, almost
exclusively modulate head-casting behaviour, but not peristaltic runs [27, 41, 47]. Overall, it therefore seems
that the characteristics of peristaltic runs that are particularly relevant for speed are relatively stable features
of a given individual animal, ”hard-wired” in the VNC, whereas bending and head-casting behaviour, and
thus changes in direction, are more flexible features that can be adaptively modulated by external stimuli
and internal goals, modulations that apparently take place via the brain. We are curious whether such a
distinction between speed-related, hard-wired, stable motor outputs from the VNC and direction-related,
flexible, brain-modulated behaviours may turn out to be a general principle of behavioural control.

We note that intra-individual variability itself can be affected by specific experimental manipulations: for
example, we found that the CirlKO mutants show an increased variability in their IS interval (Fig. 4-E1).The
optogenetic activation of select sets of neurons can also elicit changes in the variability of behaviour (Fig. 7,
9). One might therefore expect there to be cases in which experimental manipulation specifically affects the
variability of a behavioural measure, but not its average. This would be interesting in particular in relation
to processes for which behavioural variability is of particular value, e.g. for generating unpredictable actions
during escape, for generating novel actions in pursuit of desired outcomes in operant learning, or for adapting
to changed environmental contingencies during reversal learning.

3.2 CirlKO mutants exhibit ’stumble’ steps

We discovered a new, complex behavioural phenotype of Latrophilin/Cirl mutants. Cirl constitutes an
aGPCR (adhesion G-protein-coupled receptor) expressed in larval chordotonal organs and mechanosensory
organs crucial for proprioception [40]. Previously, it was known only that mutants were slower, as was
confirmed by our analysis (Fig. 4). Here we found that the reason for the reduced speed was the abnormal
’stumble’ stepping of the mutant animals, in which the peristaltic cycle was interrupted, and the time required
to complete one cycle was therefore prolonged (Fig. 6). Interestingly, this different way of stepping was in
itself rather regular, such that some mutant individuals always performed stumble steps (Fig. 6A).

The stumble stepping explained parts of the observed behavioural phenotype: the IS interval was in-
creased, and the IS speed was thus decreased during stumble stepping compared to ’normal’ stepping in the
same individual mutant animals (Fig. 6D, F). However, the normal stepping phases of mutant and control
animals also differed in these behavioural attributes, suggesting that the peristaltic cycles that we classified
as ’normal’ were partially impaired as well. Moreover, we found that mutant animals bend and turn less
than control animals, a phenotype that was completely independent of the kind of stepping the animals
performed (Fig. 6G-H).

The molecular mechanisms through which aGPCRs exert their function remain incompletely understood.
However, it is known that chordotonal neuron-located Cirl suppresses cAMP levels to shape larval propri-
oception and thus behaviour [40, 48]. If and how Cirl has an impact in other cells that are part of the
neuronal circuits that modulate locomotion remains elusive. Our analysis suggests that the correct func-
tioning of the receptor is required for a normal, uninterrupted peristaltic cycle, but that even without the
receptor larvae can eventually crawl forward. This is in line with published accounts showing decreased
but existent proprioceptive capability [40]. It will be interesting to study animals that express genetically
modified Cirl, cell-specific knock-outs or knock-downs to elucidate the Cirl-expressing cells that contribute
to larval locomotion, and the ability of cirl mutants successfully to reach goals such as odours or tastants
despite their impairment in crawling.

3.3 Activation of dopamine neurons makes larvae stop and turn

Across the animal kingdom, the dopaminergic system is closely associated with locomotion and the gener-
ation of movement [49, 50]. In humans, the progressive death of dopaminergic neurons is widely accepted
as a cause of Parkinson’s disease, which results in difficulties in initiating movement [51–53]. Based on
studies mostly of rodents, locomotion has been found to be controlled by interactions of several dopamine
receptors in the ventral striatum, with some of them increasing, others inhibiting forward locomotion [54].
Turning behaviour can be induced by the unilateral administration of dopamine receptor agonists [55]. The
administration of cocaine, which strongly activates the dopaminergic system, causes complex, concentration-
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dependent modulations of locomotion, including increased forward locomotion upon administration of lower
concentrations of cocaine, and circling behaviour as well as a reduced forward movement upon repeated, or
highly concentrated cocaine administration [56–58].

In Drosophila too, the dopaminergic system is linked to locomotion. Genetic fly models for Parkinson’s
disease show similar impairments in locomotion, as well as the death of dopaminergic neurons as found
in mammals [59]. Cocaine administration leads successively to a reduction in forward movement, circling
behaviour and rotating, before the animals stop moving at all, similar to the case in mammals [60]. In a
pioneering optogenetic study, activation of the dopamine neurons covered by TH-Gal4 resulted in increased
locomotion in flies that were little active before, and decreased locomotion in flies that were highly active
[61]. Recently, a study has found the activity of specific dopamine neurons to be correlated with speed and
turning of flies, suggesting that dopamine neurons both report and change specific movements [62].

Much less is known about the impact of dopamine on locomotion in Drosophila larvae. In this study,
we optogenetically activated most dopamine neurons, and found that larvae stop forward locomotion and
start strong bending (Fig. 7). Such behaviour would correspond to the behaviour of adult flies and mice
after cocaine administration [56–58, 60], and to what was observed in highly active flies upon activation of
dopamine neurons [61]. Our results are also in line with one of the very few studies that link dopamine
function with locomotion in larvae: a transgenic knockdown of the dopamine receptor Dop1R1, one of the
two Drosophila homologs of the vertebrate D1-type dopamine receptors, was reported to increase locomotion
in larvae [63]. Our experimental treatment, in contrast, acutely increased dopamine signalling, leading to
reduced forward locomotion.

Interestingly, the effects of the Dop1R1-knockdown were also observed when it occurred locally only in
the mushroom body, one of the central brain regions in insects [63]. The dopamine neurons innervating the
mushroom body play a crucial role in signalling reward or punishment information in associative learning
[29, 64–68]. The mushroom body-innervating neurons covered by TH-Gal4 are mostly linked to punishment
signalling, with the reward-signalling dopamine neurons notably missing in the expression pattern [64, 69,
70]. This raises the question of what the activation of these neurons ’means’ to the animals. On the one hand,
stopping and turning can be interpreted as an avoidance behaviour in response to a sudden punishment signal
(for a similar interpretation regarding the activation of dopamine-downstream neurons, see [71]). On the
other hand, an excessive release of dopamine, as probably happens in our experiment, may cause malfunctions
in the motor control pathways, similar to what was observed upon cocaine administration in adults [60]. The
fine genetic tools available make the Drosophila larva an ideal study case to answer this question. Dopamine
neurons can be manipulated in small subsets and even one by one [65–67] to find out which neuron causes
which behavioural reaction.

3.4 Switching from forward to backward locomotion, and back again

In free, undisturbed locomotion, Drosophila larvae normally crawl forward, and backward crawling is very
rarely observed. They do, however, perform short bouts of backward locomotion on encountering an obstacle
or receiving a noxious stimulus to their head [72, 73]. Thus, backward locomotion can be seen as part of
an avoidance reaction. In recent years, several Gal4 driver strains have been described that cover neurons
which induce backward locomotion upon activation [44, 73, 74]. One of them, R53F07-Gal4, we used in
the present study [44]. We described many facets of the behaviour of individual animals over extended
phases of backward locomotion, including the bending and head-casting behaviour that had not been looked
at in previous studies [44, 73, 74]. We found, for example, that during backward locomotion bending
was increased in amplitude, but decreased in variability, and that the HC rate was decreased compared to
forward locomotion (Fig. 10H-K). Moreover, we found that larvae did not revert to forward locomotion
immediately after the optogenetic activation terminated. Rather, they continued to crawl backward for
various time periods, and then quickly switched to forward locomotion (Fig. 10-E1). Both kinds of switches
were accompanied by characteristic changes in speed and bending behaviours (Fig. 11, 13).

On the neuronal level, both forward and backward locomotion are characterized by waves of activity
in the motor neurons and interneurons of the segmented VNC, which travel from anterior to posterior
during forward locomotion, and the other way around during backward locomotion [8, 45, 75, 76]. More
specifically, two pairs of command-like neurons have been identified in the rather broad expression pattern of
R53F07-Gal4, called mooncrawler descending neurons (MDNs), which inhibit forward and induce backward
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locomotion [74]. It is likely that the effects of activating R53F07-Gal4 neurons come about through these
MDNs. Two main effects of activating the MDNs have been proposed: on the one hand, one of their
main downstream partners, called Pair1, stops forward locomotion by inhibiting the forward-movement-
inducing A27h neuron; on the other hand, another downstream partner, A18b, induces backward locomotion
specifically in the most anterior segment of the VNC [11, 14, 74]. Remarkably, both the MDNs and Pair1
neurons persist through metamorphosis, and induce analogous behavioural effects in adult flies [74, 77, 78].

It is a straight-forward assumption that the switches between forward and backward locomotion that
we describe here may be caused by the backward-movement-inducing A18b and the forward-movement-
inducing A27h neurons, respectively. The observation that larvae did not revert to forward locomotion as
soon as the optogenetic activation ended suggests that activating the MDN→A18b pathway leads to backward
locomotion that continues until forward locomotion is triggered again, potentially by A27h. Our behavioural
approach, together with the available tools for fine circuit analysis, is suited to test this hypothesis.

3.5 Utility for analysing individual behaviour

The IMBA software introduced here can serve to track, visualize and analyse the behaviour of individual
Drosophila larvae within groups. The IMBA is compatible with well-established, standard Petri-dish assays
and requires no specific additional hardware beyond stable light conditions and a camera. Indeed, the present
study features data from setups located both at the Leibniz Institute for Neurobiology and the University
of Leipzig, which use different means of lighting, cameras and video quality. We also successfully analysed
videos from other researchers with yet different conditions (not shown). Such robustness makes the IMBA
a useful tool for studying a broad range of research questions using derivatives of this standard assay. In
the present study, we focused on locomotion and used the IMBA to phenotype a mutant (Fig. 4-6) and
study the effects of optogenetic neuronal activation (Fig. 7-12). Other future applications may include the
screening of pharmacological effectors [79] and libraries for RNAi knockdown, and comparisons across inbred
strains of Drosophila or across species.

A critical property of the IMBA that allows for such broad use is that we included a large number of
behavioural attributes that can be adapted and extended by the user (the full list is available online under
https://github.com/XXX). Among them are 22 attributes describing behaviour relative to a local stimulus.
This makes the IMBA useful for experiments on behaviour towards stimuli such as odours, tastants, light or
temperature, as well as for analysing stimulus-related behaviour after various types of learning experiment.
Importantly, we combine this large number of behavioural attributes with an approach to selecting the most
relevant ones for each particular data set in an unbiased way. Random forest analysis provides a ranking of
behavioural attributes according to their importance for differentiating animals in the particular experimental
conditions of the particular data set under study (compare Fig. 7C and 9C). This includes attributes that
do not differ in their centres of distribution (and thus result in non-significant standard statistical tests) but
rather in the distribution of the data (Fig. 5F, 7H).

The IMBA is versatile for analysing relatively fine-grained temporal patterns of behaviour. This has led
us to discover stumble stepping in CirlKO mutants (Fig. 6). Indeed, the IMBA allows for the analysis of
even more extreme kinds of ‘silly walks’ that it was not designed to study, such as the backward locomotion
elicited by activation of MDN neurons (Fig. 9-12). Furthermore, the IMBA lends itself to protocols that
involve repeated experimental stimulation, as in the case of the repeated activation of select sets of neurons
(Fig. 8, 12). This should make it possible to establish larval versions of paradigms such as prepulse inhibition
or repetition priming, which are workhorse paradigms in the experimental neuropsychology of rodents and
humans. Last but not least, the IMBA allows data to be aligned to changes in behaviour (that is, to the
time of action initiation rather than stimulus application), revealing effects that would otherwise be masked
by differences in action-timing between individuals (Fig. 11, 12).

In summary, the IMBA is an easy-to-use toolbox providing an unprecedentedly rich view of behaviour
and behavioural variability across the multitude of biomedical research contexts in which larval Drosophila
can be used.
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4 Material and Methods

4.1 Data sets

We used six different data sets for our analysis:

• A set of 48 videos with 875 individual animals entering the analysis. Wildtype larvae were tested for
innate odour preference on Petri dishes of 15 cm over 3 minutes. These data were previously published
in [27], and are re-analysed in this study regarding individual animals.

• A set of 126 videos with 372 individual animals entering the analysis. CirlKO and CirlRescue larvae
were tested for locomotion over 1 minute. For details, see below.

• A set of 50 videos with 253 individual animals entering the analysis. Larvae expressing ChR2-XXL
in TH-Gal4 neurons, together with the respective genetic controls, were tested for locomotion upon
optogenetic activation over 2 minutes in total. For details, see below.

• A set of 56 videos with 257 individual animals entering the analysis. Larvae expressing ChR2-XXL in
R53F07-Gal4 neurons, together with the respective genetic controls, were tested for locomotion upon
optogenetic activation over 2 minutes in total. For details, see below.

• A set of 22 videos with 122 individual animals entering the analysis. Larvae expressing ChR2-XXL in
TH-Gal4 neurons were tested for locomotion upon repeated optogenetic activation over 4 minutes in
total. For details, see below.

• A set of 20 videos with 115 individual animals entering the analysis. Larvae expressing ChR2-XXL in
R53F07-Gal4 neurons were tested for locomotion upon repeated optogenetic activation over 4 minutes
in total. For details, see below.

4.2 Behavioural experiments

4.2.1 Animals

Third-instar feeding-stage larvae (Drosophila melanogaster), aged 5 days after egg laying, were used through-
out. Flies were maintained on standard medium, in mass culture at 25 °C, 60-70 % relative humidity and
a 12/12 hour light/dark cycle. We took a spoonful of food medium from a food vial, randomly selected the
desired number of larvae, briefly rinsed them in tap water, and started the experiment.

For the experiments regarding the Cirl mutant, we used two genotypes: the CirlKO null mutant and a
genomic rescue strain, CirlRescue. For a detailed description of the genotypes, see [40].

For optogenetic experiments, we used transgenic larvae to express the ChR2-XXL light-gated ion channel
in DANs. To this end, the effector strain UAS-ChR2-XXL (Bloomington Stock Center no. 58374) [43] was
crossed to one of two driver strains: either TH-Gal4 (Bloomington Stock Center no. 8848) or R53F07-Gal4
(Bloomington Stock Center no. 50442) to obtain double-heterozygous offspring. As driver controls, the
driver strains were crossed to a local copy of w1118 (Bloomington Stock Center no. 3605, 5905, 6326). As
effector controls, either w1118, or a strain carrying the landing site used for the Gal4 (attP2), yet without
a Gal4 domain inserted (“empty”) [80], was crossed to UAS-ChR2-XXL. Because ChR2-XXL is sensitive
enough to be activated by daylight (not shown), the flies were raised in vials constantly darkened by black
cardboard wrapping.

4.2.2 CirlKO experiments

For the experiments regarding the Cirl mutant, the larvae were placed in the centre of Petri dishes of 9 cm
inner diameter (Sarstedt, Nümbrecht, Germany), filled with 1 % agarose (Biozym Scientific GmbH, Hessisch
Oldendorf, Germany). The Petri dish was placed in a custom-built arena lit up with infrared light (PeakTech
DC Power Supply 6080). Always five larvae were placed on a Petri dish, and their behaviour was recorded
for 1 minute with a camera (Logitech C920 HD Pro).
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4.2.3 Optogenetic activation experiments

For optogenetic experiments, the larvae were placed on Petri dishes of 9 cm inner diameter, filled with 1 %
agarose. Experiments were performed inside a 43 x 43 x 73 cm surrounding box equipped with a custom-
made light table featuring a 24 x 12 LED array (470 nm; Solarox, Dessau-Roßlau, Germany) and a 6 mm
thick diffusion plate of frosted plexiglass on top to ensure uniform blue light for ChR2-XXL activation (120
µW/cm²). The Petri dishes were placed directly on top of the diffusion plate. They were surrounded by a
polyethylene diffusion ring; behind the diffusion ring 30 infrared LEDs (850 nm; Solarox, Dessau-Roßlau,
Germany) were mounted to provide illumination that was invisible to the larvae, yet allowed the recording
and tracking of their behaviour for offline analysis. To this end, a camera (Basler acA204090umNIR; Basler,
Ahrensburg, Germany) equipped with an infrared-pass filter was placed above the Petri dish.

Experiments were performed by placing seven to eight larvae in the middle of a Petri dish, and letting
them walk freely for two or four minutes. The first 30 s were in darkness, followed either by a 30 s light
stimulation period and another 60 s of darkness, or by three cycles of 10 s light stimulation and 60 s of
darkness.

4.3 Tracking

Fig. 13: Overview of the tracking process. The IMBAtracker works through a sequence of three phases. (A) In the first phase,
the image is processed: e.g. by background subtraction, objects (”blobs”) are detected by thresholding, and initial assignments of
individual larvae are made (before collision resolution). (B) In the second phase, the head and tail of each larva is determined, and a
contour-based model of colliding larvae is applied to undertake a first round of collision resolution. (C) For collisions that could not be
resolved in the second phase, the third phase adds a statistical collision-resolution approach that compares attributes such as the size
of the larvae to match individuals before and after the collision.

We developed the IMBAtracker to track multiple larvae on a single Petri dish while keeping track of
their identity. Although several tracking solutions have been developed in recent years [17–27, 31], the
development of new tracking software seemed necessary to ensure two important aspects: first, increasing
and controlling the overall measurement precision according to the needs of the analysis; second, reducing
the data fragmentation caused by collisions or by the larvae leaving the region of interest. This attempt to
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reduce fragmentation is especially important since it paves the way for the individual-level analysis.

4.3.1 Architecture

The tracker is designed to process a region of interest (the Petri dish area), which is defined per video.
We do not require the region to contain all the objects of interest at all times (i.e. larvae can exit the
region of interest). Videos should be made from above or below with a minimum resolution of 30 pixels per
animal (although higher resolutions improve accuracy). Either a light background with dark objects or a
dark background with light objects is supported, and any colour information is discarded as the image is
converted to greyscale. In order to deal efficiently with the issue of fragmentation, it is crucial to separate
the tracking into three distinct phases (see below). The general architecture is depicted in Fig. 13.

4.3.2 Implementation

The software is written in C++ using OpenCV [81] as a base for input-output and image processing, lpsolve
for linear optimization, and further standard algorithms and data structures. This ensures fast processing
of the videos, which can be performed on a commodity PC. A simple user interface (written in Python) is
provided.

4.3.3 First Phase

The first tracking phase works similarly to other tracking software: we perform image processing, segmenta-
tion and extraction of objects of interest as connected components. However, instead of discarding objects
during collisions, the contours are used to detect and record the types and objects involved in those collisions.
An overview of the process can be seen in Fig. 13A.

We perform the following image-processing steps to extract the foreground from the background and to
separate our objects of interest:

1. Background subtraction: We opt for a very simple background subtraction. The background model
consists simply of the pixel-wise average value of 100 equidistantly spaced frames of the central third
of the video to increase robustness against sudden video changes towards the beginning or end of the
video.

2. Thresholding: A threshold separates the image into two classes: the objects of interest in the fore-
ground, and the background. To perform this thresholding in an automated fashion we make use of
Otsu’s method [82], which selects the threshold that minimizes the in-class variance.

3. Blob extraction: This step tries to extract all connected components of the foreground as objects,
which we refer to as blobs. For this step we use a library called cvBlob. The algorithm used by the
library is derived from [83].

At each video frame we receive new blobs from the blob extraction routine. In order to see how well the
blobs match the blobs from the previous frame, we test each blob from the new frame on its overlap with
all blobs from the previous frame. Here we have the following categories:

• 1− 1: 1 blob from the old frame matches 1 blob from the new frame.

• 1 ∼ 1: 1 blob from the old frame partially matches 1 blob from the new frame.

• 1−N : 1 blob from the old frame matches N blobs from the new frame.

• N − 1: N blobs from the old frame match 1 blob from the new frame.

• N −M : N blobs from the old frame match M blobs from the new frame.

The latter three cases point to collisions of larvae, as they occur, for example, when larvae merge with
one object from a given frame (N-1), as well as when they split again (1-N). In this way, blobs that consist
of several larvae can be separated from blobs that probably only consist of a single larva. This information
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can be visualized in a collision graph with parental nodes (blobs that split into several new blobs) and child
nodes (blobs that emerge from the parental node) that will be used in the second phase of the tracking.

For those blobs that could be single larvae we try to extract some key information on the shape. To do
this, we first reconstruct the contour using parametric cubic smoothing splines. We generate a contour of 200
points for each blob based on the splines. We then compute curvatures of the reconstructed contour points
and, after applying a multiple-pass moving average filter over the contour for noise reduction, we detect the
two biggest local maxima. These indicate the endpoints (head, tail) of the larva and are the base for the
spine reconstruction. We always match the endpoints across frames based on distance, thereby storing the
trajectories of each endpoint during the track. For cases where the continuation is unclear (such as where
there is curling or a spine cannot be reconstructed), the track is interrupted and split into subtracks in which
the endpoints’ trajectories are continuous.

4.3.4 Second Phase

After the basic processing of the video, we attempt to clarify and reduce the fragmentation of the data by
merging subtracks. We initially work on two aspects, the larva count in each blob and accurate head/tail
detection. We then tackle the issue of fragmentation.

To clarify whether a blob is a larva or a cluster of colliding larvae, we observe that a good approximation
of the contents is given by trying to find the minimum number of larvae needed to fulfil the parent-child
constraints, namely that parental nodes have the same number of larvae as their children nodes. We formalize
this as a linear optimization problem over a collision graph. Nodes store the uncertain number of colliding
larvae, which is to be determined during optimization, and edges represent the parent-child relationship.

Given the collision graph G(V,E), where V are the nodes and E the set of edges (i, j) from node i to
node j, we want to solve the following integer optimization problem

min{1Tx | Ax ≤ b,x integer},

where vector x = (x1, ..., xn) contains the number of larvae for every node i as components xi, vector
1 = (1, ..., 1) ∈ {1}n, and the system of inequalities Ax ≤ b is constructed from the following two constraints
with the sets of parent nodes Pi and child nodes Ci of a node i.

The number of larvae xi in a blob i is at least the number of incoming parent edges, outgoing child edges
or 1, whichever is highest:

xi ≥ max{|Pi|, |Ci|, 1}

The number of parent larvae and the number of child larvae of every blob, more specifically every internal
node i, should be in balance: ∑

j∈Pi

xj =
∑
k∈Ci

xk

Note that this equality constraint can be rewritten as two non-strict inequalities for the system of inequalities
in the above minimization problem.

Matrix A is totally unimodular, which guarantees that the problem is tractable, that we can use linear
optimization techniques to solve it, and that these techniques will return integral solutions only [84].

We can now proceed to disambiguate the head/tail assignment. As mentioned above, all larva tracks are
split into sub-tracks in which the endpoints have clear and continuous trajectories. For these trajectories we
calculate several metrics per endpoint (Fig. 13B, middle panel), such as:

• Average brightness around 10 pixels of the endpoint

• Total distance covered

• Total distance of the endpoint relative to the centroid in the previous frame, i.e. the endpoint moves
towards or away from the centroid.

The head is then assigned according to votes from each of these measurements. We assign one head vote to
endpoint A and one tail vote to endpoint B in each of the following cases (and the reverse otherwise):

• Average brightness of A < Average brightness of B
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• Total distance covered of A > Total distance covered of B

• A moves away from the centroid

We assign endpoint A to be the head if it has more head votes than endpoint B; otherwise we assign B to
be the head.

As our main interest lies in studying the behaviour of freely moving larvae, we do not try to disentangle
their behaviour within a collision. In order to decrease the fragmentation of tracks, we decided first to disen-
tangle the ephemeral collisions. During these, behaviour should be minimally affected, and their elimination
should allow for longer tracks and greater preservation of identity.

We define a larva shape model for tracking purposes based on orientation and four joint angles as depicted
in Fig. 13B (right-most panel). In order to avoid wrong assignments, we restrict this larva model to ephemeral
collisions, i.e. collisions of two larvae that last less than eight seconds, or short touches of single larvae on
larger blobs. This representation is initialized for the collision participants one frame before the collision,
using the values that we have already calculated. For each frame of the collision, the contour of each
larva in collision is approximated by subtracting the contours of the counterparts from the previous frame
from the complete contour of the current frame. We then search, using a brute-force grid search, through
the parameter space (i.e. orientation and joint angles) for the best neighbouring fit of our model to the
approximated contour. When the collision is finished we compare the centroids of the collided models of the
last frame of the collision to the new larvae coming out of it and assign the closest match.

4.3.5 Third Phase: Statistical Collision Resolution

The first approach for resolving collisions, described above, is limited to collisions of two larvae that do not
take longer than 8 s. For collisions that involve up to three larvae, or take longer, a second approach for
collision resolution based on statistical attributes is adopted. In brief, for each larva entering a collision
that was not already resolved by the first approach, the distributions of its body length, width, area and
perimeter values are compared by non-parametric testing with those of each larva leaving the collision (Fig.
13C).

Taking a collision of two larvae as an example, we first perform a principal component analysis (PCA)
over the standardized values of the body length, width, area and perimeter, using only the first resulting
principal component, which explains about 83 to 94 % of all variance in a test data set, for all further steps.
Then we perform Mann-Whitney U-tests between the two ingoing and the two outgoing larvae, and compare
the resulting p-values. The rationale is that a high p-value indicates little difference between the data, so
the higher the p-value, the higher the chance that an ingoing and an outgoing larva are actually the same
individual. Such comparison is legitimate if all the tests include the identical sample size [85]. Therefore,
we restrict the tests to the minimal number of frames for any larva involved (i.e. the frames before the
collision for the ingoing larvae, and the frames after the collision for the outgoing larvae), up to a maximum
of 45 frames, as higher frame numbers decreased the rate of correct assignments in a test data set (not
shown). With two ingoing (larvae 1 and 2) and two outgoing (larvae A and B) animals, there are only two
logical assignments: either 1-A and 2-B is correct, or 1-B and 2-A. A collision is resolved if both p-values for
one assignment are higher by a factor of 1000 (i.e. the larvae are more similar) than both p-values for the
other assignment. If no logical assignment can be made, or the difference between the p-values is too small,
the collision remains unresolved. Collisions of three larvae are performed in an analogous way. We do not
attempt to resolve collisions of four or more animals, as the chances of a resolution are extremely low.

We also apply this approach to asymmetrical collisions, e.g. when a single larva leaves a collision of three
animals or when the tracker loses track of larvae either at the Petri dish wall or at objects such as odour
containers in olfactory experiments. In the latter cases, whenever a larva leaves the Petri dish wall, for
example, it is statistically compared to all larvae that were previously lost at the wall. In these asymmetrical
cases, we perform additional U-tests between all ingoing larvae (e.g. all larvae that have been lost at the
wall). Such a collision is resolved if the p-value of a test between the outgoing and one of the ingoing larvae
is higher by a factor of 1000 than all other p-values. If no logical assignment can be made, or the difference
between the p-values is too small, the collision remains unresolved.
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4.4 Data Analysis

The main output of the IMBAtracker is a time series of 12 spine points that reach from the head of the
animal to its tail, as well as 24 contour points (Fig. 1). These data are the basis for all further data analyses
and visualisations with the IMBAvisualiser. To prevent multiple tracks from the same individual animal
from entering the analysis, we discarded all tracks shorter than half of the video length after the collision
resolution.

The spatial resolution in our video recordings was not sufficient to resolve the peristaltic wave along
individual body segments. However, we noticed that the rhythmic velocity changes of the tail point provided
a reliable indicator for the occurrence of one peristaltic forward movement (Fig. 1). We therefore defined
each local maximum in the tail forward velocity as one step, and the period between two maxima, i.e. one
complete peristaltic cycle, as an inter-step (IS) period (Fig. 1D). Since the local-maxima detection algorithm
we employed also produced false maxima during intervals of little or no forward motion, we discarded maxima
detected whenever the tail speed in a forward direction was less than 0.6 mm/s.

Lateral head casts are a very prominent feature during larval chemotaxis on a plain agarose surface. We
quantified these head movements based on the angular speed during the head vector, where the head vector
was defined as the vector between the ninth and the eleventh spine point (Fig. 1B). In order to detect head
casts to the left (or right) we first detected all intervals of angular speed larger than 35°/s (or smaller than
-35°/s) (Fig. 1C). The start and end points of these intervals correspond to salient movements of the head
part of the animal to the left or right side. We next introduced two criteria in order to discard incorrectly
assigned head casts. (1) We discarded any initially detected head cast whenever the angular speed of the
tail vector during head casting exceeded 45°/s. This criterion takes account of the visual observation that
whenever the tail parts of the animal reorient, these periods most likely do not coincide with an active lateral
head casting movement, but rather a stretching out of the body bending angle when stepping is resumed.
(2) We discarded any initially detected head cast whenever more than one step was detected during head
casting. This criterion takes account of the observation that any active lateral head casting interval can
coincide with at most one forward stepping detection point.

After the detection of runs, steps and head casts, we calculated a number of behavioural attributes. In
the following we provide a detailed description of all the attributes used in this study. A full list of attributes
implemented by the IMBAvisualiser is available online (https://github.com/XXX). Please note that for some
attributes two versions exist, using either mm or individual body lengths (bl) as the unit. Unless explicitly
mentioned in the results, it was always the version using body lengths that was applied.

4.4.1 Attributes

Name Unit Description Random
Forest

Spine points (x, y) mm The 12 spine points of the animal from tail to head. The first
pair of coordinates is the position of the rear end and the 12th
spine point indicates the front end of the animal. All spine point
positions are convoluted by 0.3 seconds.

No

Contour points (x, y) mm The 24 contour points of the animal’s body. All contour point
positions are convoluted by 0.3 seconds.

No

Body length mm The sum of distances between all 12 spine points of the animal. No

Head vector (x, y) The vector between the 9th and the 11th spine point. No

Tail vector (x, y) The vector between the 2nd and the 6th spine point divided by its
magnitude.

No

Table 1: Description of all basic body attributes used in this study.
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Name Unit Description Random
Forest

Bending angle ◦ The angle between the larva’s tail vector, and a vector from the
middle of the larva to its head. Positive values indicate the larva
bending to the left, negative values bending to the right.

Yes

Absolute bending angle ◦ The absolute value of the bending angle. Yes

CV absolute bending angle The coefficient of variation (CV) of the absolute bending angle,

calculated as 100 *
s(ABA)

ABA
, where s(ABA) is the standard devi-

ation, and ABA is the mean of the absolute bending angle.

Yes

HV angular speed
◦
s The angular speed of the head vector (HV). Positive values in-

dicate movement of the head to the right, negative values to the
left.

Yes

Absolute HV angular speed
◦
s The absolute value for the HV angular speed. Yes

CV absolute HV angular speed The coefficient of variation (CV) of the absolute HV angular
speed, calculated as exemplified above for the absolute bending
angle.

Yes

HV angular acceleration
◦
s2

The angular acceleration of the head vector (HV). Positive values
indicate movement of the head to the right, negative values to the
left.

Yes

TV angular speed
◦
s The angular speed of the tail vector (TV). Positive values indicate

movement of the tail to the right, negative values to the left.
Yes

Absolute TV angular speed
◦
s The absolute value for the TV angular speed. Yes

CV absolute TV angular speed The coefficient of variation (CV) of the absolute TV angular
speed, calculated as exemplified above for the absolute bending
angle.

Yes

TV angular acceleration
◦
s2

The angular acceleration of the tail vector (TV). Positive values
indicate movement of the tail to the right, negative values to the
left.

Yes

IS angle ◦ The inter-step (IS) angle indicates how much the orientation of the
animal changes within one cycle of peristaltic forward movement.
It is defined as the angle between a larva’s head vector at one
step minus the head vector at the previous step. A step is defined
as the local maximum of the tail forward velocity during runs.
Positive values indicate that the larva changes its orientation to
the left, negative values that it changes its orientation to the right.

Yes

Absolute IS angle ◦ The absolute value of the IS angle. Yes

CV absolute IS angle The coefficient of variation (CV) of the absolute IS angle, calcu-
lated as exemplified above for the absolute bending angle.

Yes

HC rate HC
s The number of head casts (HC) per second. Yes

HC angle ◦ The head-cast (HC) angle indicates how much the orientation of
the animal changes upon each HC. It is defined as the difference
between the bending angle at the end and the beginning of the
HC. Positive values indicate that the larva changes its orientation
to the left, negative values that it changes its orientation to the
right.

Yes

Absolute HC angle ◦ The absolute value of the HC angle. Yes

CV absolute HC angle The coefficient of variation (CV) of the absolute HC angle, calcu-
lated as exemplified above for the absolute bending angle.

Yes

Table 2: Description of all bending- and head-cast-related behavioural attributes used in this study.

30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.509663doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509663
http://creativecommons.org/licenses/by-nc/4.0/


Name Unit Description Random
Forest

Midpoint speed (mm) mm
s The speed of the larva’s midpoint, independent of direction. The

midpoint is defined as the 6th spine point.
No

Midpoint speed (body length) bl
s The speed of the larva’s midpoint (measured in body lengths per

second), independent of direction.
No

CV midpoint speed The coefficient of variation (CV) of the midpoint speed, calculated
as exemplified above for the absolute bending angle.

No

Head forward velocity bl
s The velocity of the larva’s head point in a forward direction, that

is in the direction of the head vector.
Yes

CV head forward velocity The coefficient of variation (CV) of the head forward velocity,
calculated as exemplified above for the absolute bending angle.

Yes

Tail forward velocity bl
s The velocity of the larva’s tail point in a forward direction, that

is in the direction of the tail vector.
Yes

CV tail forward velocity The coefficient of variation (CV) of the tail forward velocity, cal-
culated as exemplified above for the absolute bending angle.

Yes

IS distance (mm) mm The inter-step (IS) distance measures the distance of the larva’s
midpoint between two steps. A step is defined as the local maxi-
mum of the tail forward velocity during runs.

No

IS distance (body length) bl The inter-step (IS) distance, measured in body lengths per second. Yes

CV IS distance The coefficient of variation (CV) of the IS distance, calculated as
exemplified above for the absolute bending angle.

Yes

IS interval s The inter-step (IS) interval measures the time between two steps.
A step is defined as the local maximum of the tail forward velocity
during runs.

Yes

CV IS interval The coefficient of variation (CV) of the IS interval, calculated as
exemplified above for the absolute bending angle.

Yes

IS speed (mm) mm
s The average midpoint speed between two steps. No

IS speed (body length) bl
s The average midpoint speed between two steps, measured in body

length per second.
Yes

CV IS speed The coefficient of variation (CV) of the IS speed, calculated as
exemplified above for the absolute bending angle.

Yes

Distance travelled bl The distance of the complete path a larva travels during the ob-
servation period.

Yes

Distance from startpoint bl The maximal distance a larva reaches from its starting-point dur-
ing the observation period. The starting-point is the location of
the larva when it is first identified by the tracker.

Yes

Table 3: Description of all speed-related attributes used in this study.

Whenever the behaviour of an individual larva is displayed over time (Fig. 1, 10-E1), the respective
attributes are calculated per video frame. Whenever the average behaviour of a group of larvae is displayed
over time (Fig. 7B, 7-E1, 8A,C,E,G, 9B, 9-E1, 11, 12), the mean and the 95 % confidence intervals of the
respective attribute are calculated per 2 s time bin. Whenever data are displayed in box plots to compare
across experimental conditions, or in scatter plots to determine correlations, the mean of each attribute is
calculated for each individual larva across the whole observation period.

For the optogenetic experiments, we were interested in the difference in a given attribute X between
different time intervals. In these cases we calculated Δ-values as the difference in X during each of the time
intervals. For Figures 7 and 9, we calculated X during the 30 s of light stimulation minus X during the 30 s
before light stimulation. For Figure 8, we calculated X during the 10 s of light stimulation minus X during
the 10 s before. In Figure 12, we calculated X in the 10 s after a switching point minus X in the 10 s before
the switching point. In Figure 12, we additionally calculated so-called peak values of the absolute bending
angle and the absolute HV angular speed in order to quantify the local maxima of these values at the forward
switching points. The peak values were calculated as X during the 10 s interval around the switching point
minus X during the 5 s before and the 5 s after that interval.
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4.4.2 User Interface for Visual Analysis

The interactive IBMAvisualizer is a visual analytics concept [86]. Visual analytics generally enculapses
approaches such as visually supported dimension reduction techniques [87–89] or visual paramaterization
support [90, 91] in order to support a human-centered context-related analysis cycle [92]. The IMBAvisualiser
was created using the R programming language [93] and the Shiny library, which allows user interfaces to be
built for data visualization [94]. For this, the analysed data sets are saved in RDS files which are serialized
R objects. These RDS files can be uploaded in order to plot various visualizations based on the attributes
that are calculated. In addition, the data are saved in CSV files that can easily be opened and further
processed by other software. In the following paragraphs, we very briefly introduce the essential functions
of the software. A detailed documentation can be found online along with the code.

In the ”Single Mode” the user has the possibility to visualize individual tracks, compare different time
series attributes, and compare different tracks. The track selection menu allows multiple tracks to be selected.
This way of analysing the data permits a detailed analysis of the time dependent attributes for individual
animals. This detailed analysis of individual animals’ time series allowed us to find anomalies in the behavior
of the larvae.

Data aggregation allows attributes to be calculated, usually as means or variance, from all the data either
on the Petri dish or the individual animal. Using different sliders, it is possible to filter the aggregated data
by time, absolute bearing angle, absolute HC angle, and the distance from the source of a stimulus, e.g.
an odour (in experiments using such a stimulus). For the analysis of backwards-walking larvae, it is also
possible to filter the data based on the run direction (forwards, backwards). These filtering options permit
a detailed analysis for different subsets of the data.

We used random forest models, which were established by Leo Breiman and are based on CART (Classi-
fication and Regression Trees) [95, 96]. The random forest algorithm works by building N number of decision
trees and then predicting the class label of an instance using a majority voting. Each tree is trained on a
random subspace of the data, only using a sample of the instances. To evaluate the random forest classifi-
cation, we used five-fold cross validation, which was repeated three times. Five-fold cross validation means
that the test set for the model is used from five different, disjunct sets of the data set. The data set is then
shuffled, and the procedure is repeated three times. Cross validation is used to make sure that the model is
not based merely on the selected data, but can explain the full data set.

For the applications of the random forest in this study, we pre-selected 30 behavioural attributes to be
included (Tables 2-3). The pre-selection was warranted to avoid using largely redundant attributes (such as
the IS speed in both bl/s and in mm/s), and to exclude non-behavioural attributes such as the size of the
larvae. In order to provide a good estimate of the importance of each attribute, the complete random forest
model (including the cross validation) was performed 10 times for any given data set, and the importance
rank of each attribute was noted.

4.5 Statistical Tests

Two-tailed non-parametric tests were used throughout. When multiple comparisons were performed within
one analysis, a Bonferroni-Holm correction was applied to keep the experiment-wide error rate below 5 %
[97]. Values were compared across multiple independent groups with Kruskal-Wallis tests (KW tests). In
case of significance, subsequent pair-wise comparisons used Mann-Whitney U-tests (MW tests). In cases
of within-animal comparisons, as well as for comparison to a single baseline (Fig. 2G) we used Wilcoxon
signed-rank tests (WS tests). For correlations, we employed Spearman’s rank correlation test (SC tests).
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1. Gonçalves, A. I., Zavatone-Veth, J. A., Carey, M. R. & Clark, D. A. Parallel locomotor control strategies
in mice and flies. Current Opinion in Neurobiology 73, 102516 (2022).

2. Sethi, D., Bharti, S. & Prakash, C. A comprehensive survey on gait analysis: History, parameters,
approaches, pose estimation, and future work. Artificial Intelligence in Medicine 129, 102314 (2022).

3. Manoonpong, P. et al. Insect-Inspired Robots: Bridging Biological and Artificial Systems. Sensors 21
(2021).

4. Hunter, I., Coulson, B., Zarin, A. A. & Baines, R. A. The Drosophila Larval Locomotor Circuit Provides
a Model to Understand Neural Circuit Development and Function. Frontiers in Neural Circuits 15
(2021).

5. Caldwell, J. C., Miller, M. M., Wing, S., Soll, D. R. & Eberl, D. F. Dynamic analysis of larval locomotion
in Drosophila chordotonal organ mutants. Proceedings of the National Academy of Sciences 100, 16053–
16058 (2003).
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8 Extended Figures

Fig. 1-E1: Evaluation of the collision resolution. (A) Manual evaluation of all collisions between two larvae in the data set. We
attempted to resolve 83 % of all collisions, and 99 % of those were correct. (B) All tracks of individuals accepted for the analysis. We
accepted only larvae that were observed for at least half of the duration of the recording (in this case, 90 s). Two areas are free from
tracks as they were covered by teflon containers for odour application. (C) All tracks not considered for the analysis. (D) Percentage
of all data points of the accepted and non-accepted tracks.
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Fig. 1-E2: The individual maggot behaviour analyser (IMBA). (A) Video recordings can be obtained from various sources, either
providing bright objects on a black background, or dark objects on a white background. (B) The IMBAtracker (written in C++,
controlled by a graphical user interface, written in Python) identifies larvae with their spines, contours, heads and tails, resolves
collisions, and provides coordinates for each spine and contour point in each frame for every larva detected. (C) The IMBAvisualiser
(written in R shiny) allows flexible visualization and analysis of the tracked data. This includes calculating 95 behavioural attributes,
performing machine-learning algorithms and basic statistical tests, displaying the behaviour of individual larvae, and quantifying large
data sets with a multitude of options.

39

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.509663doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509663
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 2-E1: Crawling speed of larvae is correlated with body length. Of the six basic locomotor attributes, we found (A) the IS
speed and (B) the IS distance to be mildly correlated with the individual animals’ body length. In contrast, no correlations were
found between body length and (C) the IS interval, (D) the absolute bending angle, (E) the HC rate, or (F) the absolute HC angle.
Correlations are determined by SC tests. The underlying source data, as well as the results of the statistical tests, can be accessed in
the ”Figure 2-source data” file.
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Fig. 4-E1: Intra-individual variability of speed and duration of peristaltic forward cycles is increased in the CirlKO mutant. We
determined the coefficient of variation (CV) for each basic locomotor attribute (except the HC rate) in each individual animal, and
found (A) an increased variability for the IS speed, (B) no change for the IS distance, (C) increased variability for the IS interval, and
no change for (D) the absolute Bending angle and the absolute HC angle. Displayed are the median as the middle line, the 25 % and
75 % quantiles as boxes, and the 10 % and 90 % quantiles as whiskers. Asterisks indicate significant differences in MW tests. The
underlying source data, as well as the results of the statistical tests, can be accessed in the ”Figure 4-source data” file.
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Fig. 7-E1: Dopamine neuron activation reduces speed and increases bending. Displayed are the mean and 95 % confidence intervals
of all the data for each genotype within each 2 s bin. Black and blue stripes on the X-axis indicate periods of darkness and blue light
stimulation, respectively. Of the ten behavioural attributes found in Fig. 7, the travelled distance was omitted as it is a cumulative
measure, and the measures of intra-individual variability were omitted as this kind of display does not take into account individual
behaviour. (A) Tail forward velocity, (B) midpoint speed, (C) bending angle, (D) absolute bending angle, (E) absolute HV angular
speed, (F) absolute TV angular speed. The underlying source data can be accessed in the ”Figure 7-source data” file.
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Fig. 8-E1: Individuals reduce speed consistently upon repeated optogenetic activation of dopamine neurons. (A-B) The tail forward
velocity during light stimulation was normalized to each individual’s behaviour in the 10 s before light activation (called Δ-values).
The Δ-values of (A) the first and third activation, as well as (B) the second and third activation, were positively correlated. (C-D)
As in (A-B), but for the midpoint speed. (E-F) As in (A-B), but for the absolute bending angle. (G-H) As in (A-B), but for the HV
absolute angular speed. Correlations were determined by SC tests. The underlying source data, as well as the results of the statistical
tests, can be accessed in the ”Figure 8-source data” file.
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Fig. 9-E1: Activation of R53F07-Gal4 neurons triggers backward locomotion, reduces speed and increases bending. Displayed are
the mean and 95 % cconfidence intervals of all data for each genotype within each 2 s bin, except in case of the HC rate, which was
calculated within each 2 s bin by dividing all frames with a HC by all the frames in the bin. Black and blue stripes on the X-axis
indicate periods of darkness and blue light stimulation, respectively. Of the ten behavioural attributes found in Fig. 8, the travelled
distance was omitted as it is a cumulative measure, and the measures of intra-individual variability were omitted as this kind of display
does not take into account individual behaviour. (A) Tail forward velocity, (B) midpoint speed, (C) IS speed, (D) absolute bending
angle, (E) HV absolute angular speed, (F) HC rate. The underlying source data can be accessed in the ”Figure 9-source data” file.
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Fig. 10-E1: Velocity of sample individuals over time. Six sample animals of the experimental genotype (R53F07 >ChR2-XXL) were
picked to display the tail forward velocity over the course of the experiment. Blue light stimulation started at 30 s and ended at 60 s.
Stippled blue lines indicate the automatically detected switch from forward to backward locomotion, and solid black lines the switch
from backward to forward locomotion. The two animals at the bottom had not reverted to forward locomotion by the end of the
recording. For other details, see Fig. 1.
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Fig. 12-E1: Individuals change speed consistently upon repeated backward, but not forward switches. Individual data were aligned
either to the switch from forward to backward crawling (A,C,E), or to the switch from backward to forward crawling (B,D,F,H). (A)
The tail forward velocity during the 10 s after the switch was normalized to each individual’s behaviour in the 10 s before the switch.
These Δ-velocities of (left) the first and third activation, as well as (right) the second and third activation, were positively correlated.
(B) As in (A), but for the forward switches. (C-D) As in (A-B), but for the midpoint speed. (E) As in (A), but for the absolute bending
angle. (F) To quantify the peak of the absolute bending angle at forward switches, we normalized the behaviour in the 10 s around
the switch with the 5 s before and the 5 s after (called peak values). (G) The durations of the first and third, as well as the second
and third, backward crawling phases were positively correlated.(H) As in (F), but for the HV absolute angular speed. Correlations
were determined by SC tests. The underlying source data, as well as the results of the statistical tests, can be accessed in the ”Figure
12-source data” file.
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9 Rich media files and source data files

9.1 Rich media files

Rich media file 1: Animation of a sample CirlRescue control larva. The blue dot marks the position of the
head. The filling indicates the tail forward velocity in [bl/s]. The fast and regular peristaltic cycles can be
easily seen by the quick colour changes.

Rich media file 2: Animation of a sample CirlKO mutant larva. The blue dot marks the position of the
head. The filling indicates the tail forward velocity in [bl/s]. In contrast to control larvae (Rich media file
1), the rhythm is much slower, with alternating lower and higher maxima.

Rich media file 3: Animation of a sample TH >ChR2-XXL larva. The blue dot marks the position of
the head. The filling indicates the absolute bending angle in [°]. At t = 30 s, light stimulation activates
dopaminergic neurons; at t = 60 s, the light stimulation ends.

Rich media file 4: Animation of a sample R53F07 >ChR2-XXL larva. The blue dot marks the position
of the head. The filling indicates the tail forward velocity in [bl/s]. At t = 30 s, light stimulation activates
R53F07-neurons; at t = 60 s, the light stimulation ends.

9.2 Source files

Figure 1-source file: Source data underlying Figure 1-E1.

Figure 2-source file: Source data underlying Figures 2 and 2-E1, as well as precise sample sizes and results
of statistical tests.

Figure 3-source file: Source data underlying Figure 3, as well as precise sample sizes and results of
statistical tests.

Figure 4-source file: Source data underlying Figures 4 and 4-E1, as well as precise sample sizes and results
of statistical tests.

Figure 5-source file: Source data underlying Figure 5, as well as precise sample sizes and results of
statistical tests.

Figure 6-source file: Source data underlying Figure 6, as well as precise sample sizes and results of
statistical tests.

Figure 7-source file: Source data underlying Figures 7 and 7-E1, as well as precise sample sizes and results
of statistical tests.

Figure 8-source file: Source data underlying Figures 8 and 8-E1, as well as precise sample sizes and results
of statistical tests.

Figure 9-source file: Source data underlying Figures 9 and 9-E1, as well as precise sample sizes and results
of statistical tests.

Figure 10-source file: Source data underlying Figure 10, as well as precise sample sizes and results of
statistical tests.

Figure 11-source file: Source data underlying Figure 11, as well as precise sample sizes and results of
statistical tests.

Figure 12-source file: Source data underlying Figures 12 and 12-E1, as well as precise sample sizes and
results of statistical tests.
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