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Abstract 

Feedback processing is commonly studied by analyzing the brain’s response to 

discrete rather than continuous events. Such studies have led to the hypothesis that 

rapid phasic midbrain dopaminergic activity tracks reward prediction errors (RPEs), 

the effects of which are measurable at the scalp via electroencephalography (EEG). 

Although studies using continuous feedback are sparse, recent animal work 

suggests that moment-to-moment changes in reward are tracked by slowly ramping 

midbrain dopaminergic activity. Some have argued that these ramping signals index 

state values rather than RPEs. Our goal here was to develop an EEG measure of 

continuous feedback processing in humans, then test whether its behaviour could be 

accounted for by the RPE hypothesis. Participants completed a stimulus-response 

learning task in which a continuous reward cue gradually increased or decreased 

over time. A regression-based unmixing approach revealed EEG activity with a 

topography and timecourse consistent with the stimulus-preceding negativity (SPN), 

a scalp potential previously linked to reward anticipation and tonic dopamine release. 

Importantly, this reward-related activity depended on outcome expectancy: as 

predicted by the RPE hypothesis, activity for expected reward cues was reduced 

compared to unexpected reward cues. These results demonstrate the possibility of 

using human scalp-recorded potentials to track continuous feedback processing, and 

test candidate hypotheses of this activity. 

 Keywords: feedback, reward, dopamine, EEG, ERP, stimulus-preceding 

negativity (SPN) 
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The Neural Correlates of Continuous Feedback Processing 

1 Introduction 

 Our daily lives often require us to monitor continuous feedback, yet much of 

what we know about feedback processing in the brain relies on experiments with 

discrete events only. For example, an unexpected reward is known to elicit phasic or 

“bursting” dopamine activity in monkey midbrain, which transfers back in time to a 

reward-predicting stimulus (Schultz et al., 1997, 2017). This is a pattern of activity 

consistent with a temporal difference reward prediction error (RPE), a computational 

measure of surprise (Sutton & Barto, 2018). In humans, this activity is thought to be 

measurable at the scalp via electroencephalography (EEG) using the method of 

event-related potentials (ERPs). In particular, Holroyd and Coles (2002) proposed 

that reward-related changes in phasic midbrain dopamine modulate the activity of 

neurons in anterior cingulate cortex, resulting in an ERP component called the 

reward positivity (RewP1). The theory that the RewP can be used to measure 

dopaminergic RPEs in humans has been influential, generating many experiments 

over the past 20 years (Glazer et al., 2018; Krigolson, 2017; Proudfit, 2015; Walsh & 

Anderson, 2012). However, the RewP is elicited by discrete feedback, so it is unclear 

whether such a signal would be present during continuous feedback processing. 

 In general, less is known about the neural correlates of continuous feedback 

processing compared to discrete feedback processing. Recent animal work has 

suggested that continuous feedback is tracked by tonic (“ramping”) dopamine as 

opposed to phasic dopamine. Specifically, a moving bar indicating the magnitude of 

 
1 Other names include the feedback-related negativity (FRN), the feedback error-related negativity (fERN), the 
medial-frontal negativity (MFN), and the feedback negativity (FN). See Proudfit (2015) for a detailed 
explanation. 
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an upcoming reward elicits tonic dopamine activity in the monkey midbrain (Wang et 

al., 2021). This is a significant result because it means that dopamine flexibly tracks 

both discrete and continuous feedback, and is consistent with other reports arguing 

that ramping dopamine activity can be described as a change in state value over 

time, tied to motivation (Hamid et al., 2016; Mohebi et al., 2019). However, others 

have shown that tonic dopamine may instead serve the same function as phasic 

dopamine – signalling an RPE (Kim et al., 2020; Mikhael et al., 2022). 

In humans, there is some evidence that changes in tonic dopaminergic activity 

can be measured using EEG. For example, reward anticipation, known to elicit tonic 

dopaminergic activity in monkeys (Fiorillo et al., 2003), is associated with an ERP 

component in humans called the stimulus-preceding negativity (SPN). The SPN is 

“slow”, ramping negatively from several hundred milliseconds before the onset of 

feedback2. Relevant here, its activity depends on reward magnitude and 

predictability. The SPN is enhanced when feedback is associated with monetary 

reward (Kotani et al., 2003) and scales with the uncertainty of the outcome. 

Outcomes that are 50% likely are associated with greater ramping compared to 

outcomes that are 75% likely (Catena et al., 2012). Likewise, the SPN tends to be 

greatest early in learning when outcomes are less predictable (Morís et al., 2013). 

Finally, SPN amplitude is lower in individuals who have decreased tonic dopamine 

levels due to Parkinson’s disease (Mattox et al., 2006) or genetics (Foti & Hajcak, 

2012). 

 
2 In general, any anticipated stimulus ought to elicit an SPN. Furthermore, the SPN may be a subcomponent of 
another ERP component called the contingent negative variation (CNV). See van Boxtel and Böcker (2004) for a 
discussion. 
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Our goal here was to build on previous animal work (Kim et al., 2020; Wang et 

al., 2021) by identifying and testing a neural signature of continuous feedback 

processing in humans. In particular, we sought to capitalise upon recent 

developments in EEG analysis that use a regression-based approach to unmix 

components for continuously varying task variables from other discrete events 

(Ehinger & Dimigen, 2019; Hassall et al., 2022; Ruesseler et al., 2022; Crosse et al., 

2016). We predicted that the resulting signal would resemble the SPN, an ERP 

component previously linked to reward anticipation and tonic dopamine (Glazer et 

al., 2018). Unlike previous work, we sought to understand how the brain tracks 

moment-to-moment changes in reward, not how it anticipates or processes a 

discrete reward. To do this, we designed a novel decision-making task in which the 

value of a reward cue changed continuously. We also varied outcome expectancy, 

which allowed us to test whether the identified signal tracks state values (Hamid et 

al., 2016; Mohebi et al., 2019) or RPEs (Kim et al., 2020; Mikhael et al., 2022). A 

signal that tracks state values (Hamid et al., 2016; Mohebi et al., 2019) ought to be 

greatest for continuous predictable reward cues because these cues become more 

strongly associated with the final outcome. Conversely, a signal that tracks RPEs 

ought to be greatest for continuous unpredictable reward cues because these cues 

would be more surprising overall. 

2 Method 

2.1 Participants 

Twenty-one participants (5 male, 2 left-handed, Mage = 25.81, SDage = 4.42) 

with normal or corrected-to-normal vision took part in the experiment. Participants 

provided informed consent approved by the Medical Sciences Interdivisional 
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Research Ethics Committee at the University of Oxford. Following the experiment, 

participants were compensated £20 (£10 per hour of participation) plus a mean 

performance bonus of £2.02 (SD = £0.53). Data for one participant was excluded 

from all analyses due to the presence of many EEG artifacts (see Section 2.4.2 for 

details). 

2.2 Apparatus and procedure 

Participants were seated approximately 660 mm from a 599 mm X 337 mm 

display (60 Hz, 1920 by 1080 pixels, Acer XB270H, New Taipei City, Taiwan). Visual 

stimuli were presented using the Psychophysics Toolbox Extension (Brainard, 1997; 

Pelli, 1997) for MATLAB 2022a (Mathworks, Natick, USA). Participants were given 

written and verbal instruction to minimize head and eye movements as much as 

possible.  

Participants played “Gnomes”, a continuous stimulus-response learning task. 

Participants were told that six gnomes, attending a fair, competed in a game of 

strength called “high striker” that involved striking an apparatus with a hammer to 

cause a puck to rise. The participants’ task was to bet on how high the puck would 

rise for each gnome (i.e., to bet on the strength of each gnome). Bets were placed by 

using a mouse to select a location on a vertical rectangular outline, representing the 

high striker apparatus. Participants then watched as a solid red rectangle, 

representing the location of the “puck”, gradually increased in height. Participants 

were awarded points depending on the how close their guess was to the actual 

outcome. Each gnome was encountered 25 times, in random order, for a total of 150 

trials. See Supplementary Figures S1 and S2 for screenshots of the participant 

instructions. 
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Each trial was preceded by a centrally presented fixation cross subtending 1° 

of visual angle. After 400-600 ms (uniform distribution), one of six gnomes appeared 

for 1500 ms. The size of the gnomes varied in width and height; all dimensions were 

within 3.5°. The gnome was then reduced in size by half and moved to the lower 

portion of the display, signalling the participant to respond. Directly above the 

gnome, participants saw the centrally presented black outline of a vertical rectangle 

(1° wide and 3° high). After using the mouse to move a 2° horizontal black line up or 

down along the vertical rectangle, participants clicked the left mouse button to 

indicate the location of their guess. Following a 400-600 ms delay (uniformly 

distributed), participants observed the outcome of their bet. A red rectangle, 1° in 

width and sharing a lower border with the black rectangle, increased in height at a 

rate of 1° per second (like an increasing progress bar). The animation continued until 

the actual outcome was reached, then stopped. The participant could then see how 

close their guess was to the actual outcome (i.e., the difference between the 

horizontal bar and the final height of the red rectangle). This outcome remained on 

the display for 1000 ms (Figure 1a). Points in each trial were determined according 

to the difference between the participant’s guess and the actual outcome, expressed 

as a proportion of the vertical black rectangle, and converted to a value from 1–1000 

(more points for closer guesses).  Points were converted to a bonus payment at a 

rate of £0.0002 per point (Mpoints = 10,088, SDpoints =2,670).  

 Each pre-trial cue (gnome) had a different outcome probability distribution, 

assigned randomly at the start of the experiment, meaning that some gnomes had a 

high level of predictability (and consequently, high reward expectancy), whereas 

others had medium or low levels of predictability (and medium/low reward 

expectancy). For two pre-trial cues (“high” predictability) outcomes were drawn from 
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a Gaussian distribution (SD = 0.01) with either a low mean (1/3 of the vertical 

rectangle) or high mean (2/3 of the vertical rectangle). The same two distributions 

were combined for the “medium” predictability pre-trial cues using the MATLAB 

function gmdistribution: 80% low, 20% high for one pre-trial cue, and vice-versa for 

the other. Finally, there were two “low” predictability pre-trial cues, following either a 

50-50 mixture of low and high Gaussians, or a uniform random distribution drawn 

from 0.2–0.8 of the vertical rectangle. See Figure 1b for a visual representation of 

the different outcome probabilities. 

Figure 1. Participants learned to predict a continuous outcome. (a) Sample trial. Participants made a 
prediction about how high an animated bar would rise, then observed the outcome. (b) Outcome 
predictability according to a pre-trial cue. (c) Probability density estimates indicated that participants 
could predict the outcomes, as did (d) the distance between their guess and the mean outcome. The 
dotted lines in (b) indicate the mode of the “low” and “high” outcome distributions. 

+

400–600 ms 1°/s1500 ms until response 400–600 ms 1000 ms

(a)

cue

outcome

high predictability medium predictability low predictability

(b)

(d)(c)
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2.3 Data Collection 

On each trial, the experimental software recorded the pre-trial cue identity, the 

participant guess (as a proportion of the height of the vertical black rectangle), and 

the outcome. As well, thirty-two channels of EEG, referenced to electrode Fz, were 

recorded using Brain Vision Recorder (Version 1.23.0003, Brain Products GmbH, 

Gilching, Germany. Thirty of the electrodes were place on a fitted cap (EASYCAP 

GmbH, Wörthsee, Germany) with a standard 10-20 layout. Two electrodes were also 

attached to the left and right mastoids. Conductive gel was applied to the electrodes 

to lower their impedance before recording. The EEG was sampled at 1000 Hz and 

amplified (actiCHamp Plus, Brain Products GmbH, Gilching, Germany) with a 280 Hz 

anti-aliasing filter.  

2.4 Data Analysis 

2.4.1 Behavioural analysis 

The behavioural data was analyzed in MATLAB 2022a (MathWorks, Natick, 

USA). To visualize participant guesses, we collapsed across all participant 

responses and used the distributionPlot function to estimate the guess probability 

density associated with each pre-trial cue (Jonas, 2008). For each participant, 

outcome predictability (high, medium, low), and trial (1-25), we computed the mean 

distance between the participant’s guess and the actual outcome. Next, we averaged 

across trials to get a single distance for each participant and outcome predictability. 

We then computed the continuous predicted reward experienced by each participant 

across the entire task, which was required for our EEG analysis. The time resolution 

of the continuous predicted reward was 250 Hz, matching that of the downsampled 
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EEG. During non-reward times the continuous predicted reward was set to zero. 

Finally, to quantify reward expectancy for each participant and pre-trial cue we 

computed the average reward that was experienced on a trial-by-trial basis (i.e., for a 

given cue and trial we computed the average reward over that cue’s previous trials). 

The resulting signal was used as a parametric regressor in our final EEG analysis. 

2.4.2 EEG preprocessing 

The EEG was also analyzed in MATLAB 2022a (MathWorks, Natick, USA) using the 

EEGLAB library (Delorme & Makeig, 2004). After downsampling to 250 Hz, we 

applied a bandpass filter (0.1-30 Hz, 50 Hz notch), and re-referenced to the average 

of the mastoid signals. Ocular artifacts were then identified and removed using 

independent component analysis (ICA). The ICA was trained on 3-second windows 

extending 0.2 s prior to 2.8 s after the onset of each pre-trial cue. Epochs with large 

artifacts (a range in potential of more than 500 mV) were excluded from the ICA. 

Ocular components were identified using the function iclabel and removed from the 

continuous dataset if assigned an “Eye” label with greater than 0.8 likelihood (Pion-

Tonachini et al., 2019). 

2.4.3 Correlation analysis  

Our initial approach was to simply compute the zero-lag correlation between 

the continuous reward signal (Figure 2a) and the continuous preprocessed EEG. We 

first identified artifacts in the continuous EEG using the uf_continuousArtifactDetect 

function from the Unfold toolbox (Ehinger & Dimigen, 2019), which is based on code 

from the ERPLAB toolbox (Lopez-Calderon & Luck, 2014). This sliding-window 

approach (window size: 2000 ms, step size: 100 ms) flagged all samples in a window 

with a peak-to-peak difference of more than 150 mV. Flagged samples were then 
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removed from subsequent analysis. One participant had excessively noisy EEG and 

was excluded from all analyses (17.51% of modelled samples). Of the remaining 20 

participants, we removed an average of 2.49% (SD = 2.19%) of modelled samples 

(that is, samples corresponding to non-zero elements of the continuous reward). A 

Pearson correlation coefficient (Pearson’s r) was then computed for each participant 

and electrode (Figure 2b).  

 

 

Figure 2. EEG tracks continuous predicted reward. Across the entire recording session, continuous 
reward (a) correlated maximally with EEG at a central-parietal scalp location (b). The EEG at 
rewarded timepoints was then modelled using linear regression. Regressors (1 during modelled times 
and 0 otherwise) were shifted to align to the time of maximum reward. Beta values b corresponded to 
the reward-related response which, when estimated, revealed a negative-going deflection (d) that was 
again central-parietally located (e). The shaded region indicates a 95% confidence interval, and the 
grey bars show the significant temporal clusters (light grey: without baseline correction, dark grey: 
with baseline correction). 

 

= .

reward+ reward-

b1
b2
b3

…

(a) (b)

(c) (d)

(e)

re
war

d+

reward-
max

max

EEG

estimated 
response

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.06.511117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511117
http://creativecommons.org/licenses/by/4.0/


2.4.4 Regression analysis 

The scalp topography in Figure 2b is useful because it indicates a relationship 

between scalp EEG data and continuous reward prediction. However, there are two 

issues with this analysis. First, it only examines the relationship between EEG and 

continuous reward at a single time lag (zero-lag correlation). In other words, a 

correlation analysis is uninformative about how the neural response to continuous 

reward prediction evolves over time. Second, a correlation analysis does not correct 

for other components that are also likely present in the EEG, such as movement-

related activity at the onset and offset of the animated bar. To better quantify how 

EEG tracks continuous reward, we therefore constructed a reward-aligned ERP for 

each participant. To account for possible component overlap, we used a regression-

based approach in which the ongoing EEG is modelled as a linear sum of underlying 

“regression-ERPs” or rERPs (Burns et al., 2013; Ehinger & Dimigen, 2019; Smith & 

Kutas, 2015a, 2015b). By “reward-aligned”, we mean that the rERP was time-locked 

to the time of maximum predicted reward (that is, the time at which the rising bar 

matched the participant’s guess). In practice, we did this by shifting the reward-

related regressors earlier or later in time (see Figure 2c). 

 In our first regression analysis, we collapsed across pre-trial cue types and 

included regressors corresponding to three “events”: 0–800 ms relative to the start of 

the bar animation, the continuous reward signal described above, and 0–800 ms 

relative to the end of the bar animation when the participant learned the final 

outcome. Note that the design matrix in Figure 2c only shows the reward-related 

regressors. The purpose of this analysis was to verify the presence of a continuous 

reward signal. No baseline correction was applied initially. However, following visual 

inspection of the resulting signal, a -4000 ms to -1000 ms baseline was subtracted 
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from the beta estimates to better isolate the prominent negativity observed around 

the time of maximum reward. 

Next, to determine the effect of outcome expectancy, we modelled the same 

three events (animation start, continuous reward, animation end) separately for each 

outcome predictability (high, medium, low). Finally, as outcome predictability was 

learnt gradually across the block, we sought to better measure (and isolate) the 

effect of outcome expectancy by collapsing across pre-trial cue types as before but 

including the trial-by-trial average reward for each pre-trial cue as a parametric 

regressor (see Section 2.4.1). 

We used regularization to reduce model overfitting. Overfitting of noise was a 

concern because the number of modelled timepoints varied throughout the epoch, 

e.g., there were fewer timepoints towards the end (See Supplementary Figure S3). 

We used a first-derivative form of Tikhonov regularization (Kristensen et al., 2017), 

which imposes a smoothness constraint (Reichel & Ye, 2008). Ten-fold cross-

validation was used to select an optimal regularization parameter for each 

participant. The error for a particular participant and fold was defined as the average 

mean-squared error across all electrodes. The following lambda values were tested: 

100, 1000, 10000, 100000, 1000000. The optimal lambda for each participant 

minimized the mean fold error across all ten folds (see Supplementary Figure 4). 

2.4.5 Statistics  

To check whether participants learned to predict trial outcomes we compared 

the mean distance between response and outcome via one-way repeated-measures 

ANOVA. Partial and generalized eta-squared were computed as:  

η𝑝2= 𝑆𝑆P/(𝑆𝑆P+𝑆𝑆𝑠P)  η𝑔2= 𝑆𝑆P/(𝑆𝑆P+𝑆𝑆𝑆+𝑆𝑆𝑠P) 
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where SSP was the sum of squares of the predictability effect (high, medium, low), 

SSsP was the error sum of squares of the predictability effect, and SSS was the sum 

of squares between subjects. 

 To check whether continuous EEG correlated with continuous reward, we 

conducted a repeated-measures t-test of the correlation coefficient at each electrode 

site. A Bonferroni-corrected alpha value of .05/30 = .0017 was used. Effect sizes 

were computed according to: 

𝐶𝑜ℎ𝑒𝑛!𝑠	𝑑 = 	
𝑀"

𝑠"
 

where Mr was the mean of the correlation coefficients and sr was the standard 

deviation of the correlation coefficients (Cumming, 2014). 

For our regression analyses, we used cluster-based permutation testing 

(Maris & Oostenveld, 2007). For each electrode, we computed a single-sample t-

statistic at each sample point. We then identified clusters of sample points for which 

the t-values exceeded the 2.5th or 97.5th percentile. Spatial clusters were defined 

according to an electrode template from the FieldTrip toolbox (Oostenveld et al., 

2010). For each spatial cluster, we defined a “cluster mass” as the sum of the 

absolute values of the temporal cluster t-values; to be included in a cluster mass, the 

voltage at a sample point had to reach significance for all members of the spatial 

cluster. We restricted the search for temporal clusters to the window -4000 ms to 200 

ms relative to the time of maximum reward. As Supplementary Figure S4 shows, 

most modelled sample points occurred prior to the time of maximum reward. The 

interval -4000 to 200 ms ensured that there were at ten least modelled sample points 

per condition, on average. To determine whether the observed cluster masses 
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exceeded what could occur by chance, we permuted the participant rERPs by 

randomly flipping the entire signal at all electrodes in the vertical axis. We then 

computed the cluster masses of the permuted waveforms and recorded the 

maximum cluster mass (or zero if there were no clusters). We tested 1000 

permutations in total. Finally, we labelled an observed cluster as “significant” if its 

cluster mass exceeded 95% of the permuted cluster masses. The reported p-value 

was the proportion of permuted cluster masses exceeding the observed cluster 

mass. For each significant cluster, we also reported an effect size by averaging the 

EEG over the cluster electrodes and sample points for each participant and 

computing: 

𝐶𝑜ℎ𝑒𝑛!𝑠	𝑑 = 	
𝑀#

𝑠#
 

where Mc and sc were the mean and standard deviation of the resulting cluster 

voltages. 

3 Results 

3.1 Behavioural Results 

To identify the neural correlates of continuous feedback processing, we 

designed a novel task in which participants tried to predict the outcome of an 

animated rising bar (the final position). After indicating their guess, participants 

watched the bar rise and were awarded a point amount that depended on the 

distance between their guess and the outcome. Outcome predictability varied 

depending on a pre-trial cue that appeared prior to each round (Figures 1a and 1b). 

After pooling responses from all participants, the estimated guess distribution 

suggested that participants were able to match their guesses to the mean outcome 
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(Figure 1c). Examining the mean distance between guesses and outcomes revealed 

an effect of outcome predictability (high, medium, low), F(2,38) = 13.09, p < .001, η𝑝2 

= 0.41, ηg2 = 0.18. See Supplementary Table S1 for the mean distances. 

3.2 EEG Results 

3.2.1 Correlation results 

 We first tested whether and how the time-varying continuous prediction of 

reward correlated with the time-varying EEG signal at zero lag. There was a negative 

correlation between continuous EEG and continuous reward at most electrode sites 

(Figure 2b). The correlation coefficients peaked at electrode CP2, Pearson’s r = -

0.14, 95% CI [-0.18, -0.11], where it differed significantly from zero, t(19) = -8.24, p < 

.001/30 (Bonferroni-corrected for 30 comparisons). 

3.2.2 Regression results 

Next, we modelled event-related activity relative to the time in each trial at 

which the maximum reward was experienced (i.e., when the animated bar crossed 

the participant’s guess) – see Figure 2c. This revealed a negative-going reward-

related signal at a cluster of electrodes centred on Pz (Pz, CP1, CPz, CP2) spanning 

-4000 ms to 200 ms relative to the time of maximum reward (the entire tested 

interval), p < .001, Cohen’s d = -1.68. The effect remained after baseline correction 

but was shifted rightward on the scalp to a cluster centred on electrode P4 (P4, CP2, 

CP6) and limited to -492 ms to 192 ms (p < .001, Cohen’s d = -0.66) – see Figures 

2d and 2e. The neural responses to the start and end of animation were not 

analyzed further but can be seen in Supplementary Figure S5.  

We then tested whether this time-varying “predicted reward” signal might be 

modulated by outcome expectancy, as manipulated by the different pre-trial cues. 
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After splitting by outcome predictability, we observed a difference (high versus low 

predictability) at a cluster located at Pz (Pz, CP1, CPz, CP2) from -516 ms to -164 

ms relative to the time of maximum reward, p = .007, Cohen’s d = -0.70 (Figure 3). 

Consistent with an RPE account of this signal, we found it was smallest when the 

outcome was most predictable (high predictability condition). 

 

Figure 3. Continuous reward processing depends on outcome predictability. When outcome 
predictability was high, the preceding reward-related activity was reduced relative to the less 
predictable outcomes (medium, low). The grey bar indicates the significant temporal cluster (high 
versus low).  

 

 Finally, we included an “expectancy” parametric regressor, quantified as the 

average trial-to-trial reward associated with each pre-trial cue (see Section 2.4.1). 

We replicated the mean reward-related signal from our first GLM – a cluster centred 

on Pz (Pz, CP1, CPz, CP2) from -4000 ms to 200 ms, Cohen’s d = -1.54. Applying a 

-4000 ms to -1000 ms baseline as before yielded a significant cluster at the same 

location but from -468 ms to 192 ms, Cohen’s d = -0.92 (Figure 4a). As further 

evidence of an RPE signal, we observed a frontal signal related to reward 

expectancy at a cluster centred on F4 (F4, FC2, FC6) from -1692 to -544 ms relative 

to the time of maximum reward, p < .001, Cohen’s d = 0.88 (Figure 4b). 
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Figure 4. Effect of expectancy on reward processing. By adding a parametric regressor (the mean 
trial-by-trial reward associated with each pre-trial cue) we recovered the original parietal signal (a) as 
well as a frontal expectancy effect (b). 

 

4 Discussion 

Our understanding of human feedback processing mostly relates to the 

anticipation and processing of discrete outcomes. However, recent animal work has 

suggested that a complete understanding of feedback processing should also 

include continuous outcomes (Kim et al., 2020; Mikhael et al., 2022; Wang et al., 

2021). We built on this animal work by identifying a scalp-recorded signal in humans 

related to continuous feedback processing. In line with a previous study in rodents 

that monitored activity of dopamine neurons directly (Kim et al., 2020), the scalp 

EEG signal we found has properties consistent with a reward prediction error (RPE). 

First, we observed that the amplitude of this continuous feedback signal 

varied inversely with expectancy – the more predictable the outcome, the smaller the 

signal (Figure 3). This result mirrors what has been found in discrete feedback 

studies (Holroyd & Krigolson, 2007; Sambrook & Goslin, 2015; Williams et al., 2017). 

Those studies found that the RewP (discussed earlier) is greatest for unexpected 

outcomes. This observation led to the view that the RewP tracks discrete RPEs via 

stick 
functions

Mean Signal Expectancy

parametric 
regressors 

(a) (b)
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the effect of phasic dopamine on the anterior cingulate (Holroyd & Coles, 2002; 

Walsh & Anderson, 2012). Here we extend this view to include continuous feedback 

and speculate that both types of scalp-recorded signals reflect the activity of a 

common midbrain dopaminergic system – phasic activity for discrete outcomes, tonic 

activity for continuous outcomes. In line with this interpretation, we observed an 

effect of outcome expectancy at a frontal location consistent with the RewP (Figure 

4). Taken together, our results support the claim that tonic dopamine tracks 

continuous temporal difference RPEs, not state values. 

Further support for this claim is provided by Kim et al. (2020). There, mice 

moving through a virtual maze were unexpectedly “teleported” closer to their 

destination. Across a series of experiments, teleportation events elicited phasic 

midbrain dopaminergic activity consistent with temporal difference RPEs but 

inconsistent with state values. Regular progress towards the mouse’s goal was 

associated with tonic activity, as shown in previous work (Hamid et al., 2016; Mohebi 

et al., 2019; Wang et al., 2021). The authors reconcile these two types of activity by 

providing a computational account in which phasic and tonic dopaminergic activity 

share a common function: the signalling of moment-to-moment RPEs (Kim et al., 

2020; Mikhael et al., 2022). 

In the present study, participants were presented with a continuous reward 

cue that changed at a constant rate. In other words, there were no unexpected 

“jumps” analogous to the teleportation events in the Kim et al. (2020) study. Instead, 

we used pre-trial cues to vary outcome expectancy. This was done for 

methodological reasons. Unlike single-unit recordings, EEG activity reflects a mixture 

of underlying components (the superposition problem: Luck, 2014). We reasoned 

that a sudden jump in the level of the continuous reward cue would result in a visual 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.06.511117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511117
http://creativecommons.org/licenses/by/4.0/


evoked potential superimposed on reward-related activity. Such a mixed signal will 

need to be unmixed and quantified in order to fully test the predictions of Kim et al. 

(2020) in future EEG work. 

The signal we identified also resembles the SPN, an ERP component 

previously associated with the anticipation of discrete outcomes. Both signals are 

slow, negative, and parietal. So, is the continuous signal that we identified just the 

SPN seen previously when presenting discrete, event-based feedback? Recall that 

each trial in our task concluded when the moving bar halted, and participants learned 

the outcome of the trial. Such an event could – if anticipated – have generated a 

discrete SPN independent of the continuous reward cue that we claim is the variable 

of interest here. Note however that our trials lacked the temporal predictability 

required to elicit a discrete SPN, especially in the “low predictability” condition 

(Brunia et al., 2011). Furthermore, we would expect any discrete SPN effects to be 

greatest in the “high predictability” condition – the opposite of what was observed 

(Figure 3).  

 Real-world outcomes may be discrete or continuous, yet most experiments 

tend to focus on discrete outcomes only. This has resulted in an incomplete 

understanding of naturalistic feedback processing. We address this issue by 

identifying a neural signature of continuous feedback processing that, like its discrete 

counterpart, depends on outcome expectancy and is therefore consistent with a 

reward prediction error (RPE) signal. Our results complement a large body of work 

focused mainly on discrete outcomes and suggest a common dopaminergic 

mechanism underlying both discrete and continuous feedback processing. 
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