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Abstract

Feedback processing is commonly studied by analyzing the brain’s response to
discrete rather than continuous events. Such studies have led to the hypothesis that
rapid phasic midbrain dopaminergic activity tracks reward prediction errors (RPES),
the effects of which are measurable at the scalp via electroencephalography (EEG).
Although studies using continuous feedback are sparse, recent animal work
suggests that moment-to-moment changes in reward are tracked by slowly ramping
midbrain dopaminergic activity. Some have argued that these ramping signals index
state values rather than RPEs. Our goal here was to develop an EEG measure of
continuous feedback processing in humans, then test whether its behaviour could be
accounted for by the RPE hypothesis. Participants completed a stimulus-response
learning task in which a continuous reward cue gradually increased or decreased
over time. A regression-based unmixing approach revealed EEG activity with a
topography and timecourse consistent with the stimulus-preceding negativity (SPN),
a scalp potential previously linked to reward anticipation and tonic dopamine release.
Importantly, this reward-related activity depended on outcome expectancy: as
predicted by the RPE hypothesis, activity for expected reward cues was reduced
compared to unexpected reward cues. These results demonstrate the possibility of
using human scalp-recorded potentials to track continuous feedback processing, and

test candidate hypotheses of this activity.
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The Neural Correlates of Continuous Feedback Processing
1 Introduction

Our daily lives often require us to monitor continuous feedback, yet much of
what we know about feedback processing in the brain relies on experiments with
discrete events only. For example, an unexpected reward is known to elicit phasic or
“bursting” dopamine activity in monkey midbrain, which transfers back in time to a
reward-predicting stimulus (Schultz et al., 1997, 2017). This is a pattern of activity
consistent with a temporal difference reward prediction error (RPE), a computational
measure of surprise (Sutton & Barto, 2018). In humans, this activity is thought to be
measurable at the scalp via electroencephalography (EEG) using the method of
event-related potentials (ERPs). In particular, Holroyd and Coles (2002) proposed
that reward-related changes in phasic midbrain dopamine modulate the activity of
neurons in anterior cingulate cortex, resulting in an ERP component called the
reward positivity (RewP"). The theory that the RewP can be used to measure
dopaminergic RPEs in humans has been influential, generating many experiments
over the past 20 years (Glazer et al., 2018; Krigolson, 2017; Proudfit, 2015; Walsh &
Anderson, 2012). However, the RewP is elicited by discrete feedback, so it is unclear

whether such a signal would be present during continuous feedback processing.

In general, less is known about the neural correlates of continuous feedback
processing compared to discrete feedback processing. Recent animal work has
suggested that continuous feedback is tracked by tonic (“ramping”) dopamine as

opposed to phasic dopamine. Specifically, a moving bar indicating the magnitude of

1 Other names include the feedback-related negativity (FRN), the feedback error-related negativity (fERN), the
medial-frontal negativity (MFN), and the feedback negativity (FN). See Proudfit (2015) for a detailed
explanation.
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an upcoming reward elicits tonic dopamine activity in the monkey midbrain (Wang et
al., 2021). This is a significant result because it means that dopamine flexibly tracks
both discrete and continuous feedback, and is consistent with other reports arguing
that ramping dopamine activity can be described as a change in state value over
time, tied to motivation (Hamid et al., 2016; Mohebi et al., 2019). However, others
have shown that tonic dopamine may instead serve the same function as phasic

dopamine — signalling an RPE (Kim et al., 2020; Mikhael et al., 2022).

In humans, there is some evidence that changes in tonic dopaminergic activity
can be measured using EEG. For example, reward anticipation, known to elicit tonic
dopaminergic activity in monkeys (Fiorillo et al., 2003), is associated with an ERP
component in humans called the stimulus-preceding negativity (SPN). The SPN is
“slow”, ramping negatively from several hundred milliseconds before the onset of
feedback?. Relevant here, its activity depends on reward magnitude and
predictability. The SPN is enhanced when feedback is associated with monetary
reward (Kotani et al., 2003) and scales with the uncertainty of the outcome.
Outcomes that are 50% likely are associated with greater ramping compared to
outcomes that are 75% likely (Catena et al., 2012). Likewise, the SPN tends to be
greatest early in learning when outcomes are less predictable (Moris et al., 2013).
Finally, SPN amplitude is lower in individuals who have decreased tonic dopamine
levels due to Parkinson’s disease (Mattox et al., 2006) or genetics (Foti & Hajcak,

2012).

2 In general, any anticipated stimulus ought to elicit an SPN. Furthermore, the SPN may be a subcomponent of
another ERP component called the contingent negative variation (CNV). See van Boxtel and Bocker (2004) for a
discussion.
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Our goal here was to build on previous animal work (Kim et al., 2020; Wang et
al., 2021) by identifying and testing a neural signature of continuous feedback
processing in humans. In particular, we sought to capitalise upon recent
developments in EEG analysis that use a regression-based approach to unmix
components for continuously varying task variables from other discrete events
(Ehinger & Dimigen, 2019; Hassall et al., 2022; Ruesseler et al., 2022; Crosse et al.,
2016). We predicted that the resulting signal would resemble the SPN, an ERP
component previously linked to reward anticipation and tonic dopamine (Glazer et
al., 2018). Unlike previous work, we sought to understand how the brain tracks
moment-to-moment changes in reward, not how it anticipates or processes a
discrete reward. To do this, we designed a novel decision-making task in which the
value of a reward cue changed continuously. We also varied outcome expectancy,
which allowed us to test whether the identified signal tracks state values (Hamid et
al., 2016; Mohebi et al., 2019) or RPEs (Kim et al., 2020; Mikhael et al., 2022). A
signal that tracks state values (Hamid et al., 2016; Mohebi et al., 2019) ought to be
greatest for continuous predictable reward cues because these cues become more
strongly associated with the final outcome. Conversely, a signal that tracks RPEs
ought to be greatest for continuous unpredictable reward cues because these cues

would be more surprising overall.

2 Method

2.1 Participants

Twenty-one participants (5 male, 2 left-handed, Mage = 25.81, SDage = 4.42)
with normal or corrected-to-normal vision took part in the experiment. Participants

provided informed consent approved by the Medical Sciences Interdivisional
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Research Ethics Committee at the University of Oxford. Following the experiment,
participants were compensated £20 (£10 per hour of participation) plus a mean
performance bonus of £2.02 (SD = £0.53). Data for one participant was excluded
from all analyses due to the presence of many EEG artifacts (see Section 2.4.2 for

details).

2.2 Apparatus and procedure

Participants were seated approximately 660 mm from a 599 mm X 337 mm
display (60 Hz, 1920 by 1080 pixels, Acer XB270H, New Taipei City, Taiwan). Visual
stimuli were presented using the Psychophysics Toolbox Extension (Brainard, 1997;
Pelli, 1997) for MATLAB 2022a (Mathworks, Natick, USA). Participants were given
written and verbal instruction to minimize head and eye movements as much as

possible.

Participants played “Gnomes”, a continuous stimulus-response learning task.
Participants were told that six gnomes, attending a fair, competed in a game of
strength called “high striker” that involved striking an apparatus with a hammer to
cause a puck to rise. The participants’ task was to bet on how high the puck would
rise for each gnome (i.e., to bet on the strength of each gnome). Bets were placed by
using a mouse to select a location on a vertical rectangular outline, representing the
high striker apparatus. Participants then watched as a solid red rectangle,
representing the location of the “puck”, gradually increased in height. Participants
were awarded points depending on the how close their guess was to the actual
outcome. Each gnome was encountered 25 times, in random order, for a total of 150
trials. See Supplementary Figures S1 and S2 for screenshots of the participant

instructions.
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Each trial was preceded by a centrally presented fixation cross subtending 1°
of visual angle. After 400-600 ms (uniform distribution), one of six gnomes appeared
for 1500 ms. The size of the gnomes varied in width and height; all dimensions were
within 3.5°. The gnome was then reduced in size by half and moved to the lower
portion of the display, signalling the participant to respond. Directly above the
gnome, participants saw the centrally presented black outline of a vertical rectangle
(1° wide and 3° high). After using the mouse to move a 2° horizontal black line up or
down along the vertical rectangle, participants clicked the left mouse button to
indicate the location of their guess. Following a 400-600 ms delay (uniformly
distributed), participants observed the outcome of their bet. A red rectangle, 1° in
width and sharing a lower border with the black rectangle, increased in height at a
rate of 1° per second (like an increasing progress bar). The animation continued until
the actual outcome was reached, then stopped. The participant could then see how
close their guess was to the actual outcome (i.e., the difference between the
horizontal bar and the final height of the red rectangle). This outcome remained on
the display for 1000 ms (Figure 1a). Points in each trial were determined according
to the difference between the participant’s guess and the actual outcome, expressed
as a proportion of the vertical black rectangle, and converted to a value from 1-1000
(more points for closer guesses). Points were converted to a bonus payment at a

rate of £0.0002 per point (Mpoints = 10,088, SDpoints =2,670).

Each pre-trial cue (gnome) had a different outcome probability distribution,
assigned randomly at the start of the experiment, meaning that some gnomes had a
high level of predictability (and consequently, high reward expectancy), whereas
others had medium or low levels of predictability (and medium/low reward

expectancy). For two pre-trial cues (“high” predictability) outcomes were drawn from
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a Gaussian distribution (SD = 0.01) with either a low mean (1/3 of the vertical
rectangle) or high mean (2/3 of the vertical rectangle). The same two distributions
were combined for the “medium” predictability pre-trial cues using the MATLAB
function gmdistribution: 80% low, 20% high for one pre-trial cue, and vice-versa for
the other. Finally, there were two “low” predictability pre-trial cues, following either a
50-50 mixture of low and high Gaussians, or a uniform random distribution drawn
from 0.2—0.8 of the vertical rectangle. See Figure 1b for a visual representation of

the different outcome probabilities.

(a)

L1

g g g g

- 8

400-600 ms 1500 ms until response 400-600 ms 1°/s 1000 ms

J.2
- ks ke ve
8 18 0

outcome

high predictability medium predictability low predictability
(c) (d)
1r =
‘ 8 018
- ‘ L S
© L S 0.16
508 l ‘ L g
G S
S 0.14
c o 0.
g 0.6 l \E./
g 20.12
e | o
804 g
o
% r ‘ s 0.1
3024 L high
O] r r r 8 0.081 medium
E low
0 2 0. . - : : g
o 0.06 5 10 15 20 25

feleue =

Figure 1. Participants learned to predict a continuous outcome. (a) Sample trial. Participants made a
prediction about how high an animated bar would rise, then observed the outcome. (b) Outcome
predictability according to a pre-trial cue. (c) Probability density estimates indicated that participants
could predict the outcomes, as did (d) the distance between their guess and the mean outcome. The
dotted lines in (b) indicate the mode of the “low” and “high” outcome distributions.
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2.3 Data Collection

On each trial, the experimental software recorded the pre-trial cue identity, the
participant guess (as a proportion of the height of the vertical black rectangle), and
the outcome. As well, thirty-two channels of EEG, referenced to electrode Fz, were
recorded using Brain Vision Recorder (Version 1.23.0003, Brain Products GmbH,
Gilching, Germany. Thirty of the electrodes were place on a fitted cap (EASYCAP
GmbH, Woérthsee, Germany) with a standard 10-20 layout. Two electrodes were also
attached to the left and right mastoids. Conductive gel was applied to the electrodes
to lower their impedance before recording. The EEG was sampled at 1000 Hz and
amplified (actiCHamp Plus, Brain Products GmbH, Gilching, Germany) with a 280 Hz

anti-aliasing filter.

2.4 Data Analysis

2.4.1 Behavioural analysis

The behavioural data was analyzed in MATLAB 2022a (MathWorks, Natick,
USA). To visualize participant guesses, we collapsed across all participant
responses and used the distributionPlot function to estimate the guess probability
density associated with each pre-trial cue (Jonas, 2008). For each participant,
outcome predictability (high, medium, low), and trial (1-25), we computed the mean
distance between the participant’s guess and the actual outcome. Next, we averaged
across trials to get a single distance for each participant and outcome predictability.
We then computed the continuous predicted reward experienced by each participant
across the entire task, which was required for our EEG analysis. The time resolution

of the continuous predicted reward was 250 Hz, matching that of the downsampled
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EEG. During non-reward times the continuous predicted reward was set to zero.
Finally, to quantify reward expectancy for each participant and pre-trial cue we
computed the average reward that was experienced on a trial-by-trial basis (i.e., for a
given cue and trial we computed the average reward over that cue’s previous trials).

The resulting signal was used as a parametric regressor in our final EEG analysis.

2.4.2 EEG preprocessing

The EEG was also analyzed in MATLAB 2022a (MathWorks, Natick, USA) using the
EEGLAB library (Delorme & Makeig, 2004). After downsampling to 250 Hz, we
applied a bandpass filter (0.1-30 Hz, 50 Hz notch), and re-referenced to the average
of the mastoid signals. Ocular artifacts were then identified and removed using
independent component analysis (ICA). The ICA was trained on 3-second windows
extending 0.2 s prior to 2.8 s after the onset of each pre-trial cue. Epochs with large
artifacts (a range in potential of more than 500 mV) were excluded from the ICA.
Ocular components were identified using the function iclabel and removed from the
continuous dataset if assigned an “Eye” label with greater than 0.8 likelihood (Pion-

Tonachini et al., 2019).

2.4.3 Correlation analysis

Our initial approach was to simply compute the zero-lag correlation between
the continuous reward signal (Figure 2a) and the continuous preprocessed EEG. We
first identified artifacts in the continuous EEG using the uf_continuousArtifactDetect
function from the Unfold toolbox (Ehinger & Dimigen, 2019), which is based on code
from the ERPLAB toolbox (Lopez-Calderon & Luck, 2014). This sliding-window
approach (window size: 2000 ms, step size: 100 ms) flagged all samples in a window

with a peak-to-peak difference of more than 150 mV. Flagged samples were then
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removed from subsequent analysis. One participant had excessively noisy EEG and
was excluded from all analyses (17.51% of modelled samples). Of the remaining 20
participants, we removed an average of 2.49% (SD = 2.19%) of modelled samples
(that is, samples corresponding to non-zero elements of the continuous reward). A
Pearson correlation coefficient (Pearson’s r) was then computed for each participant

and electrode (Figure 2b).
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Figure 2. EEG tracks continuous predicted reward. Across the entire recording session, continuous
reward (a) correlated maximally with EEG at a central-parietal scalp location (b). The EEG at
rewarded timepoints was then modelled using linear regression. Regressors (1 during modelled times
and 0 otherwise) were shifted to align to the time of maximum reward. Beta values b corresponded to
the reward-related response which, when estimated, revealed a negative-going deflection (d) that was
again central-parietally located (e). The shaded region indicates a 95% confidence interval, and the
grey bars show the significant temporal clusters (light grey: without baseline correction, dark grey:
with baseline correction).
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2.4 .4 Regression analysis

The scalp topography in Figure 2b is useful because it indicates a relationship
between scalp EEG data and continuous reward prediction. However, there are two
issues with this analysis. First, it only examines the relationship between EEG and
continuous reward at a single time lag (zero-lag correlation). In other words, a
correlation analysis is uninformative about how the neural response to continuous
reward prediction evolves over time. Second, a correlation analysis does not correct
for other components that are also likely present in the EEG, such as movement-
related activity at the onset and offset of the animated bar. To better quantify how
EEG tracks continuous reward, we therefore constructed a reward-aligned ERP for
each participant. To account for possible component overlap, we used a regression-
based approach in which the ongoing EEG is modelled as a linear sum of underlying
“regression-ERPs” or rERPs (Burns et al., 2013; Ehinger & Dimigen, 2019; Smith &
Kutas, 2015a, 2015b). By “reward-aligned”, we mean that the rERP was time-locked
to the time of maximum predicted reward (that is, the time at which the rising bar
matched the participant’s guess). In practice, we did this by shifting the reward-

related regressors earlier or later in time (see Figure 2c).

In our first regression analysis, we collapsed across pre-trial cue types and
included regressors corresponding to three “events”. 0—-800 ms relative to the start of
the bar animation, the continuous reward signal described above, and 0—800 ms
relative to the end of the bar animation when the participant learned the final
outcome. Note that the design matrix in Figure 2c only shows the reward-related
regressors. The purpose of this analysis was to verify the presence of a continuous
reward signal. No baseline correction was applied initially. However, following visual

inspection of the resulting signal, a -4000 ms to -1000 ms baseline was subtracted
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from the beta estimates to better isolate the prominent negativity observed around

the time of maximum reward.

Next, to determine the effect of outcome expectancy, we modelled the same
three events (animation start, continuous reward, animation end) separately for each
outcome predictability (high, medium, low). Finally, as outcome predictability was
learnt gradually across the block, we sought to better measure (and isolate) the
effect of outcome expectancy by collapsing across pre-trial cue types as before but
including the trial-by-trial average reward for each pre-trial cue as a parametric

regressor (see Section 2.4.1).

We used regularization to reduce model overfitting. Overfitting of noise was a
concern because the number of modelled timepoints varied throughout the epoch,
e.g., there were fewer timepoints towards the end (See Supplementary Figure S3).
We used a first-derivative form of Tikhonov regularization (Kristensen et al., 2017),
which imposes a smoothness constraint (Reichel & Ye, 2008). Ten-fold cross-
validation was used to select an optimal regularization parameter for each
participant. The error for a particular participant and fold was defined as the average
mean-squared error across all electrodes. The following lambda values were tested:
100, 1000, 10000, 100000, 1000000. The optimal lambda for each participant

minimized the mean fold error across all ten folds (see Supplementary Figure 4).

2.4 5 Statistics

To check whether participants learned to predict trial outcomes we compared
the mean distance between response and outcome via one-way repeated-measures

ANOVA. Partial and generalized eta-squared were computed as:

Np>= SSp/(SSp+SSsp) Ng>= SSp/(SSp+SSs+SSsp)
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where SSp was the sum of squares of the predictability effect (high, medium, low),
SSsp was the error sum of squares of the predictability effect, and SSs was the sum

of squares between subjects.

To check whether continuous EEG correlated with continuous reward, we
conducted a repeated-measures t-test of the correlation coefficient at each electrode
site. A Bonferroni-corrected alpha value of .05/30 = .0017 was used. Effect sizes

were computed according to:

M,
Cohen'sd = —
ST

where M, was the mean of the correlation coefficients and sr was the standard

deviation of the correlation coefficients (Cumming, 2014).

For our regression analyses, we used cluster-based permutation testing
(Maris & Oostenveld, 2007). For each electrode, we computed a single-sample ¢-
statistic at each sample point. We then identified clusters of sample points for which
the t-values exceeded the 2.5th or 97.5th percentile. Spatial clusters were defined
according to an electrode template from the FieldTrip toolbox (Oostenveld et al.,
2010). For each spatial cluster, we defined a “cluster mass” as the sum of the
absolute values of the temporal cluster t-values; to be included in a cluster mass, the
voltage at a sample point had to reach significance for all members of the spatial
cluster. We restricted the search for temporal clusters to the window -4000 ms to 200
ms relative to the time of maximum reward. As Supplementary Figure S4 shows,
most modelled sample points occurred prior to the time of maximum reward. The
interval -4000 to 200 ms ensured that there were at ten least modelled sample points

per condition, on average. To determine whether the observed cluster masses
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exceeded what could occur by chance, we permuted the participant rERPs by
randomly flipping the entire signal at all electrodes in the vertical axis. We then
computed the cluster masses of the permuted waveforms and recorded the
maximum cluster mass (or zero if there were no clusters). We tested 1000
permutations in total. Finally, we labelled an observed cluster as “significant” if its
cluster mass exceeded 95% of the permuted cluster masses. The reported p-value
was the proportion of permuted cluster masses exceeding the observed cluster
mass. For each significant cluster, we also reported an effect size by averaging the
EEG over the cluster electrodes and sample points for each participant and
computing:

M,
Cohen'sd = —
SC

where M. and s; were the mean and standard deviation of the resulting cluster

voltages.

3 Results
3.1 Behavioural Results

To identify the neural correlates of continuous feedback processing, we
designed a novel task in which participants tried to predict the outcome of an
animated rising bar (the final position). After indicating their guess, participants
watched the bar rise and were awarded a point amount that depended on the
distance between their guess and the outcome. Outcome predictability varied
depending on a pre-trial cue that appeared prior to each round (Figures 1a and 1b).
After pooling responses from all participants, the estimated guess distribution

suggested that participants were able to match their guesses to the mean outcome
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(Figure 1c). Examining the mean distance between guesses and outcomes revealed
an effect of outcome predictability (high, medium, low), F(2,38) = 13.09, p < .001, n,?

= 0.41, ng®> = 0.18. See Supplementary Table S1 for the mean distances.
3.2 EEG Results
3.2.1 Correlation results

We first tested whether and how the time-varying continuous prediction of
reward correlated with the time-varying EEG signal at zero lag. There was a negative
correlation between continuous EEG and continuous reward at most electrode sites
(Figure 2b). The correlation coefficients peaked at electrode CP2, Pearson’s r = -
0.14, 95% CI [-0.18, -0.11], where it differed significantly from zero, t{(19) = -8.24, p <

.001/30 (Bonferroni-corrected for 30 comparisons).
3.2.2 Regression results

Next, we modelled event-related activity relative to the time in each trial at
which the maximum reward was experienced (i.e., when the animated bar crossed
the participant’s guess) — see Figure 2c. This revealed a negative-going reward-
related signal at a cluster of electrodes centred on Pz (Pz, CP1, CPz, CP2) spanning
-4000 ms to 200 ms relative to the time of maximum reward (the entire tested
interval), p <.001, Cohen’s d = -1.68. The effect remained after baseline correction
but was shifted rightward on the scalp to a cluster centred on electrode P4 (P4, CP2,
CP6) and limited to -492 ms to 192 ms (p < .001, Cohen’s d = -0.66) — see Figures
2d and 2e. The neural responses to the start and end of animation were not

analyzed further but can be seen in Supplementary Figure S5.

We then tested whether this time-varying “predicted reward” signal might be

modulated by outcome expectancy, as manipulated by the different pre-trial cues.
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After splitting by outcome predictability, we observed a difference (high versus low
predictability) at a cluster located at Pz (Pz, CP1, CPz, CP2) from -516 ms to -164
ms relative to the time of maximum reward, p = .007, Cohen’s d = -0.70 (Figure 3).
Consistent with an RPE account of this signal, we found it was smallest when the

outcome was most predictable (high predictability condition).

Pz, CP1, CPz, CP2 //

Voltage (V)

-2 -1.5 A1 -0.5 0 0.5 1 1.5
Time (s)

Figure 3. Continuous reward processing depends on outcome predictability. When outcome
predictability was high, the preceding reward-related activity was reduced relative to the less
predictable outcomes (medium, low). The grey bar indicates the significant temporal cluster (high
versus low).

Finally, we included an “expectancy” parametric regressor, quantified as the
average trial-to-trial reward associated with each pre-trial cue (see Section 2.4.1).
We replicated the mean reward-related signal from our first GLM — a cluster centred
on Pz (Pz, CP1, CPz, CP2) from -4000 ms to 200 ms, Cohen’s d = -1.54. Applying a
-4000 ms to -1000 ms baseline as before yielded a significant cluster at the same
location but from -468 ms to 192 ms, Cohen’s d = -0.92 (Figure 4a). As further
evidence of an RPE signal, we observed a frontal signal related to reward

expectancy at a cluster centred on F4 (F4, FC2, FC6) from -1692 to -544 ms relative

to the time of maximum reward, p <.001, Cohen’s d = 0.88 (Figure 4b).
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Figure 4. Effect of expectancy on reward processing. By adding a parametric regressor (the mean
trial-by-trial reward associated with each pre-trial cue) we recovered the original parietal signal (a) as
well as a frontal expectancy effect (b).

4 Discussion

Our understanding of human feedback processing mostly relates to the
anticipation and processing of discrete outcomes. However, recent animal work has
suggested that a complete understanding of feedback processing should also
include continuous outcomes (Kim et al., 2020; Mikhael et al., 2022; Wang et al.,
2021). We built on this animal work by identifying a scalp-recorded signal in humans
related to continuous feedback processing. In line with a previous study in rodents
that monitored activity of dopamine neurons directly (Kim et al., 2020), the scalp

EEG signal we found has properties consistent with a reward prediction error (RPE).

First, we observed that the amplitude of this continuous feedback signal
varied inversely with expectancy — the more predictable the outcome, the smaller the
signal (Figure 3). This result mirrors what has been found in discrete feedback
studies (Holroyd & Krigolson, 2007; Sambrook & Goslin, 2015; Williams et al., 2017).
Those studies found that the RewP (discussed earlier) is greatest for unexpected

outcomes. This observation led to the view that the RewP tracks discrete RPEs via
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the effect of phasic dopamine on the anterior cingulate (Holroyd & Coles, 2002;
Walsh & Anderson, 2012). Here we extend this view to include continuous feedback
and speculate that both types of scalp-recorded signals reflect the activity of a
common midbrain dopaminergic system — phasic activity for discrete outcomes, tonic
activity for continuous outcomes. In line with this interpretation, we observed an
effect of outcome expectancy at a frontal location consistent with the RewP (Figure
4). Taken together, our results support the claim that tonic dopamine tracks

continuous temporal difference RPEs, not state values.

Further support for this claim is provided by Kim et al. (2020). There, mice
moving through a virtual maze were unexpectedly “teleported” closer to their
destination. Across a series of experiments, teleportation events elicited phasic
midbrain dopaminergic activity consistent with temporal difference RPEs but
inconsistent with state values. Regular progress towards the mouse’s goal was
associated with tonic activity, as shown in previous work (Hamid et al., 2016; Mohebi
et al., 2019; Wang et al., 2021). The authors reconcile these two types of activity by
providing a computational account in which phasic and tonic dopaminergic activity
share a common function: the signalling of moment-to-moment RPEs (Kim et al.,

2020; Mikhael et al., 2022).

In the present study, participants were presented with a continuous reward
cue that changed at a constant rate. In other words, there were no unexpected
‘jlumps” analogous to the teleportation events in the Kim et al. (2020) study. Instead,
we used pre-trial cues to vary outcome expectancy. This was done for
methodological reasons. Unlike single-unit recordings, EEG activity reflects a mixture
of underlying components (the superposition problem: Luck, 2014). We reasoned

that a sudden jump in the level of the continuous reward cue would result in a visual
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evoked potential superimposed on reward-related activity. Such a mixed signal will
need to be unmixed and quantified in order to fully test the predictions of Kim et al.

(2020) in future EEG work.

The signal we identified also resembles the SPN, an ERP component
previously associated with the anticipation of discrete outcomes. Both signals are
slow, negative, and parietal. So, is the continuous signal that we identified just the
SPN seen previously when presenting discrete, event-based feedback? Recall that
each trial in our task concluded when the moving bar halted, and participants learned
the outcome of the trial. Such an event could — if anticipated — have generated a
discrete SPN independent of the continuous reward cue that we claim is the variable
of interest here. Note however that our trials lacked the temporal predictability
required to elicit a discrete SPN, especially in the “low predictability” condition
(Brunia et al., 2011). Furthermore, we would expect any discrete SPN effects to be
greatest in the “high predictability” condition — the opposite of what was observed

(Figure 3).

Real-world outcomes may be discrete or continuous, yet most experiments
tend to focus on discrete outcomes only. This has resulted in an incomplete
understanding of naturalistic feedback processing. We address this issue by
identifying a neural signature of continuous feedback processing that, like its discrete
counterpart, depends on outcome expectancy and is therefore consistent with a
reward prediction error (RPE) signal. Our results complement a large body of work
focused mainly on discrete outcomes and suggest a common dopaminergic

mechanism underlying both discrete and continuous feedback processing.
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