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Abstract

Purpose: To compare the estimation accuracy of ax-
isymmetric diffusion kurtosis imaging (DKI) and stan-
dard DKI in combination with Rician bias correction
(RBC) under the influence of noise.

Methods: Axisymmetric DKI is more robust against
noise-induced variation in the measured signal than
standard DKI because of its reduced parameter space.
However, its susceptibility to Rician noise bias at low
signal-to-noise ratios (SNRs) is unknown. Here, we in-
vestigate two main questions: first, does Rician bias cor-
rection improve estimation accuracy of axisymmetric
DKI7?; second, is the estimation accuracy of axisymmet-
ric DKI increased compared to standard DKI? Estima-
tion accuracy was investigated on the five axisymmetric
DKI tensor metrics (AxTM): the parallel and perpen-
dicular diffusivity and kurtosis and the mean kurtosis,
using a simulation study based on synthetic and in-vivo
data.

Results: We found that RBC was most effective for
increasing accuracy of the parallel AxTM in highly to
moderately aligned white matter. For the perpendicu-
lar AxTM, axisymmetric DKI without RBC performed
slightly better than with RBC. However, the combi-
nation of axisymmetric DKI with RBC was the overall
best performing algorithm across all five AxXTM and the
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axisymmetric DKI framework itself substantially im-
proved accuracy in tissues with low fiber alignment.
Conclusion: The combination of axisymmetric DKI
with RBC facilitates accurate DKI parameter estima-
tion at unprecedented low SNRs (& 15), possibly mak-
ing it a valuable tool for neuroscience and clinical re-
search studies where scan time is a limited resource.
The tools used in this paper are publicly available in
the open-source ACID toolbox for SPM.
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Glossary

RBC Rician bias correction.

DTI Diffusion tensor imaging.

DKI Diffusion kurtosis imaging.

HA Highly aligned fibers.

MA Fibers with moderate alignment.

LA Fibers with low alignment.

AxTM Axisymmetric DKI tensor metrics: Dy, D, W),
Wl, and W.

D) Parallel diffusivity.

D, Perpendicular diffusivity.

W) Parallel kurtosis.

W Perpendicular kurtosis.

W Mean kurtosis.
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1 Introduction

Diffusion weighted MRI is an in-vivo imaging modality
used in neuroscience and clinical research. It is sensi-
tive to changes in nervous tissues that, e.g., go along
with neurodegenerative diseases like epilepsy and mul-
tiple sclerosis (Deppe et al., 2008; Rovira et al., 2015).
Diffusion MRI measures the net diffusion of nuclear
spins of hydrogen nuclei in water molecules that are
omnipresent in nervous tissue.

Diffusion of water molecules within the microstructural
tissue landscape can be arbitrarily complex. A data-
efficient method that captures both, standard Gaussian
diffusion and more complex restricted diffusion pro-
cesses (e.g., due to diffusion of water trapped in the
cell-body of axons), is the recently introduced axisym-
metric diffusion kurtosis imaging (DKI) framework
(Hansen et al., 2016; Hansen and Jespersen, 2017).
Its data-efficiency stems from requiring fewer diffusion
weighted images than standard DKI, for the follow-
ing reasons: while standard diffusion kurtosis imaging
(DKI) is based on 22 parameters (Jensen et al., 2005),
axisymmetric DKI has a reduced parameter space of 8
parameters due to imposing the assumption of axisym-
metrically distributed axons. This is likely a reason-
able assumption in major white matter fiber bundles
(Hansen et al., 2016). Furthermore, this is expected to
make axisymmetric DKI less susceptible to the noise
induced variation of the acquired diffusion MRI signals.

Noise in MRI images introduces a random variation
into the measured diffusion signals and a bias for the es-
timated DKI parameters when the signal-to-noise-ratio
(SNR) is low. This bias is known as the "Rician noise
bias" (Henkelman, 1985; Gudbjartsson and Patz, 1995;
Sijbers et al., 1998) and becomes more severe, the lower
the SNR is. Diffusion MRI is prone to a low SNR (Derek
K. Jones, 2012) because it generates image contrast
from additional spin dephasing associated with water
mobility leading to a signal attenuation. DKI is even
more susceptible to the Rician noise bias compared to
conventional diffusion tensor imaging (DTI), since esti-
mating the DKI parameters requires multiple diffusion
shells including higher diffusion weighting, lowering the
SNR. This increases the demand for effective Rician
bias correction (RBC) schemes (Veraart et al., 2013a;
Glenn et al., 2015) in DKI. Right now it is unclear
whether fitting the axisymmetric DKI framework with
its reduced parameter space (axisymmetric DKI has
8 parameters while standard DKI has 22) is better
suited for parameter estimation from noisy diffusion
MRI data than standard DKI. And it is furthermore

unknown, how this could affect the susceptibility to
the Rician noise bias.

The effect of the Rician noise bias on the fractional
anisotropy (FA), mean diffusivity (MD), mean kurto-
sis W, diffusion tensor and diffusion kurtosis tensor el-
ements was shown to be mitigated by using RBC in
standard DKI (Koay et al., 2009; Veraart et al., 2011,
2013a; André et al., 2014).

Of these parameters, only the mean kurtosis is part
of the axisymmetric DKI tensor metrics (AxTM). The
AXTM are the parallel and perpendicular diffusivities
(D” and D ) and the mean, parallel, and perpendicular
kurtosis (W, W) and W, ). Here parallel and perpen-
dicular are in reference to the axis of symmetry. The
axisymmetric DKT framework contains three additional
parameters, the two angles of the unit vector point-
ing along the axis of symmetry, and the non diffusion-
weighted signal (b = 0).

The AXTM can be estimated based on standard DKI
where they are computed as aggregates from its 22
parameters or directly with axisymmetric DKI (see
Table 2.1). The AxTM are of particular interest for
neuroscience and clinical research (Coutu et al., 2014;
Geng et al., 2018; Donat et al., 2021) because they
are invariant against coordinate transformations and
describe free and restricted diffusion within nervous
tissue. Furthermore, the AXTM can be directly related
to the tissue microstructure. The latter relation is es-
tablished via their mathematical relation to the five
microstructure parameters of the biophysical standard
model (Novikov et al., 2018; Jespersen et al., 2018):
axon water fraction, axon dispersion, and three dif-
fusivities associated with the intra- and extra-axonal
space.

Furthermore, it was shown empirically (Veraart et al.,
2011) that RBC will impact the estimation of the
parallel and perpendicular AxTM differently. It was
speculated that the parallel and perpendicular AxTM
are associated with different levels of water mobility
and consequently different levels of SNR. Another open
question is the influence of fiber alignment on the
effectiveness of RBC. It can be expected that the degree
of fiber alignment within a white matter MRI voxel
affects water mobility and thereby also the efficiency of
RBC.

In this work two main questions are investigated: First,
and motivated by the improved parameter estimation
accuracy when applying RBC in standard DKI, we in-
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vestigate whether RBC also increases the estimation
accuracy of axisymmetric DKI. Second, we investigate
whether the estimation accuracy is improved by us-
ing axisymmetric DKI as compared to standard DKI.
Moreover, we investigate whether the performance of
RBC depends on tissue fibre alignment in a voxel and
investigate differences in effectiveness for the parallel
and perpendicular AXTM. To study these questions,
we simulated two datasets: the "synthetic dataset"
is based on three sets of synthetic AxTM describing tis-
sues with varying degrees of fiber alignment which al-
lows us to assess AxTM estimation accuracy as a func-
tion of fiber alignment; the "in-vivo like dataset"
is based on in-vivo measurements of white matter tis-
sue fiber tracts with a high to moderate fiber alignment
which allows us to study AxTM estimation accuracy
under realistic, in-vivo like conditions. In both stud-
ies, axisymmetric DKI and standard DKI (with and
without RBC) were used to obtain estimates of the five
AxTM.

2 Methods
2.1 Standard DKI signal representation

For a given diffusion weighting b and diffusion gradient
d = (91,92,93)", the noise-free DKI signal can be
represented as Jensen and Helpern (2003); Jensen et al.
(2005):

b2 [/ Tr(D)\>
Mb.g(Mo, D, W) = mg exp [_bD+( ( )) W]

6 3
(2.1a)
3

D= gi9;Di (2.1b)
ij=1
3

W= " 99,959 Wijn (2.1c)

i g kl=1

where D;; are the diffusion tensor entries, Wj;i; are
the kurtosis tensor entries and 1 is the non-diffusion-
weighted signal (b = 0=-).

2.2 Axisymmetric DKI

Axisymmetric DKI (Hansen et al., 2016) assumes sym-
metric diffusion around an axis of symmetry ¢ inside an
imaging voxel. Mathematically, this assumption leads
to axisymmetric diffusion and kurtosis tensors with a

drastically reduced number of independent tensor pa-
rameters compared to standard DKI (from 15 to 3 pa-
rameters for the kurtosis tensor and from 6 to 2 param-
eters for the diffusion tensor). The symmetry assump-
tions are likely to be a reasonable approximation to
diffusion in major white matter fiber bundles (Hansen
et al., 2016) due to their structural organization.

With the axis of symmetry ¢ parameterized by the in-
sin 6 cos ¢
sin @ sin ¢

cos
sion and kurtosis tensors can be determined according
to Hansen et al. (2016):

clination # and azimuth ¢: ¢ = , the diffu-
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matrix. The tensors P, A and Q can be computed with
the Kronecker delta 0., and the components of the
axis of symmetry ¢, (z,y € 1,2,3) as: P, = cicjcrcy,
Qijr = F(CiC; S+ cicrdji+ cicd i+ cjerdin + cjedik +
ckclf)ij) and /\ijkl = %(5”5]@1 + 6ik6jl + 6il5jk) (Hansen
et al., 2016). The according noise-free signal 1 7(Q)
can then be computed based upon the axissymmetric
tensors (Hansen et al., 2017):
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The AXTM can be computed from the standard DKI
tensor metrics assuming axial-symmetry. For example,
D, = % where A refers to the eigenvalues of the
diffusion tensor. Formulas for the computation of the
other AXTM can be found in Tabesh et al. (2011),
Table 2.1 shows the AxTM and the standard DKI
tensor metrics needed to compute them. Figure 2.1
shows the five AxTM obtained with the axisymmetric
DKI fit without RBC, available in the open source
ACID toolbox for SPM.

2.3 Parameter estimation and the Rician noise bias

Standard DKI or axisymmetric DKI parameter estima-
tion would typically be done using the acquired magni-
tude signals Sy, 7 and Eq. (2.1a) or Equation (2.3) in the
least-squares approach (Veraart et al., 2013b; Tabesh
et al., 2011):

(n07 ﬁ7 W) = arg minnOa Da w Z(Sb,g_; —ﬂb,ﬁi (‘107 D7 W))2
%

(2.5)

However, this least-squares approach is built on the as-
sumption of Gaussian distributed noise in Sp 5 which
is not true in reality. Sy 7 is a magnitude signal com-
puted from the noise contaminated k-space data de-
scribed by a complex Gaussian (standard deviation o)
as the sum of squares of the measured signal intensity
(Constantinides et al., 1997) from the receiver coil after
it was Fourier transformed into real space. Computing
the sum of squares rectifies the composite magnitude
signal and leads to Rician distributed noise for one re-
ceiver coil (L= 1). Therefore, assuming Gaussian noise
in MRI magnitude signals leads to a bias that propa-
gates into the estimated parameters which is referred to
as the "Rician noise bias". Eq.(2.5) is therefore biased.

More generally, if one assumes uncorrelated noise and
statistically independent receiver coils with an equiva-
lent noise variance (Aja-Ferndndez and Tristan-Vega,
2012), the resulting probability density function of
the noisy magnitude data is given by a non-central
X-distribution (Constantinides et al., 1997), where 2L
is the number of degrees of freedom of the distribution.
L = 1 results in the Rician distribution (Rice, 1944;
Gudbjartsson and Patz, 1995).

The severity of the Rician noise bias depends on the
SNR (Polzehl and Tabelow, 2016) because the sum of

squares rectifies the composite magnitude signal: the
lower the SNR, the larger the bias. For RBC, we rely
on an approach outlined in Polzehl and Tabelow (2016)
that uses the expectation value E(S; 7) of the composite
magnitude signal. The probability density function of
E(Sy5) is a non-central x distribution and given by
(Polzehl and Tabelow, 2016):

]

E(Sp,3) = k(M,g(o, D, W), 0) = 0\/;

Mo,5(No, D, W)?
202

(2.6)

(L-1)
L1/2 (

)

g(Mo,D,W
where 71“”9(”2 )

is the SNR and L(Lfl)(x) =

1/2
%M(fl/Q,L,x) is the generalized Laguerre

polynomial which can be expressed using a confluent
hypergeometric function M and the Gamma func-
tion T'. Only for simplicity of notation, in the text
we neglect any possible dependence of ¢ on b, ¢ or
location, the employed RBC algorithm used the same
o in every image voxel. The SNR dependent expecta-
tion value Eq. (2.6) differs from the noise-free signal,
1wMe,g(Mo, D, W), 0) > My g(Mo, D, W) with the differ-
ence decreasing with increasing SNR. Following Polzehl
and Tabelow (2016), we implemented a time-efficient
fitting algorithm that, unlike Eq. (2.5), accounts for
Rician noise in magnitude MRI data by solving the
optimization problem:

(Mo, D, W) = argmin, p Z(Sb,gg—
i (2.7

H(nbﬁi (nOa D, W)’ G))z

Estimating parameters this way is referred to as "quasi-
likelihood" estimation and is denoted as "RBC ON" in
this paper. It was shown, that parameter estimation us-
ing the non-central x noise statistic in a quasi-likelihood
framework yields asymptotically unbiased parameter
estimates (Bunke and Schmidt, 1980; Polzehl and Tabe-
low, 2016).

Rician bias corrected, standard DKI or axisymmet-
ric DKI parameter estimation can be done by using
Eq. (2.1a) or Eq. (2.3) to compute the noise-free sig-
nal predictions 1 g, then using Eq. (2.6) to compute
1(Mp,g(Mo, D, W), 0) and finally minimize Eq. (2.7) to
estimate the framework parameters (19, D, W) for stan-
dard DKI or Q for axisymmetric DKI.

In reality, noise correlations between receiver coils occur
and are non-negligible, especially for a higher number
of receiver coils (32 or 64). This affects the degrees
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Table 2.1: AxTM and standard DKI tensor metrics with which they are calculated. The numbers show how many
standard DKI tensor metrics are needed to compute the AXTM. \ refers to the eigenvalues of the diffusion tensor,

W refers to the components of the kurtosis tensor.

Axisymmetric DKI tensor metric (AxTM) | Corresponding standard DKI tensor metrics

D” 1: A\

D 2: A2, A3

W 4: A1, A2, Az, Wit

Wi 6: A1, A2, Az, Waaz22, Ws333, Waass

w 9: A1, A2, Az, Wii11, Waaoa, Wa3s3, Waoss, Wiissz, Wiize

Fig. 2.1: AXTM results in white matter. The AxTM are the parallel and perpendicular diffusivity and kurtosis
and the mean kurtosis. The shown maps were obtained with the axisymmetric DKI fit available in the open source
ACID toolbox for SPM that was used in this work. The AxXTM were estimated from the in-vivo measurement used

for the in-vivo like dataset (Figure 2.3).

of freedom of the underlying noise statistic. However,
the non-central x distribution can still be used as a
good approximation, if an effective number of coils Leg
and noise variance 02 are used (Aja-Ferndndez and
Tristan-Vega, 2012) for which L > Leg and o? < Ggﬂ
can be shown. Similarly, the generalized autocalibrating
partially parallel acquisition (GRAPPA) scheme can be
accounted for by specifying an effective number of coils
Leg, while L = 1 for sensitivity encoding (SENSE)
(Aja-Fernandez and Tristan-Vega, 2012).

2.4 Parameter estimation with the Gauss-Newton
algorithm

To minimize Eq. (2.5) or Eq. (2.7) time-efficiently, we
have implemented a Gauss-Newton minimization algo-
rithm (Modersitzki, 2009) in Matlab for slice-wise and
parallelizable parameter estimation on MR-images in-
stead of using standard Matlab optimization functions.
The used tools are freely available online within the
ACID toolbox (http://www.diffusiontools.com/) for
SPM. Slice-wise fitting refers to fitting all voxels of an
image-slice at the same time which improves run-time.
The implemented algorithm is highly adaptable and
can fit any signal model (especially non-linear models).
Gauss Newton parameter estimation approximates the

search direction in parameter space based on the Ja-
cobian and is sensitive to the initial guess. For the
initial guess of the axisymmetric DKI fit implementa-
tion, we used code from the repository of Sune Ngrhgj
Jespersen: https://github.com/sunenj/Fast-diffusion-
kurtosis-imaging-DKI (Hansen et al., 2016).

2.5 Simulation study: Datasets and overview

We assessed estimation accuracy of the five AxTM as
a function of the SNR in a simulation study with two
types of datasets. One dataset consisted of three syn-
thetic voxels with varying fiber alignment (defined in
Coelho et al. (2019)). This dataset is refereed to as
"synthetic dataset" because it was derived in the
context of another study (Coelho et al., 2019) by ran-
dom sampling of the parameter space of biophysical pa-
rameters and consequent derivation of the correspond-
ing AXTM. The other dataset consisted of twelve major
white matter fiber tract voxels from an in-vivo brain
measurement, this dataset is refereed to as "in-vivo
like dataset". Details on both datasets are listed be-
low and in Figure 2.2. For both datasets, magnitude
diffusion MRI data were simulated for varying SNRs
and fitted with standard DKI and axisymmetric DKI,
with and without RBC (as described in Section 2.3)
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a) Dataset d) Fit MRI data e) Results

Synthetic dataset
Data: 3 synthetic
sets of AXTM

b) Signal framework ¢) Noisy MRI data
Axisymmetric

DKI framework

Fit diffusion signals
with axissymmetric
DKI and standard
DKI with and
without RBC

Axissymmetric
DKI tensor metrics
(AXTM):

Dy, D, Wy, Wi, W

Diffusion signals

for varying SNRs

In-vivo dataset
Data: 12 in-vivo sets
of standard DKI
tensor metrics

Standard DKI
framework

Fig. 2.2: Scheme of the simulation study. Simulations were performed in 5 steps: a) choice of datasets, b) signal
framework used for simulation, c) diffusion signal simulation and contamination with noise, d) parameter estimation
and e) results. Note that both simulation studies only differed in a) and b) but were identical in the following
procedures. a) the synthetic dataset consisted of 3x5 sets of AxXTM (Table 8.3) while the in-vivo like
dataset consisted of 12x22 standard DKI tensor metrics (Table 8.1 in the Supplementary material). b) The
DKT signal framework used for diffusion signal simulation. ¢) Diffusion signal data were contaminated with 2500
Rician noise samples for each SNR=[1, 2, 3...100]. d) Simulated diffusion data were fitted with axisymmetric DKI
and standard DKI with and without RBC in both simulation studies for each of the 2500 noise samples. e¢) The
axisymmetric DKI tensor metrics (AXTM): Dy, Dy, W), W, and W were calculated for standard DKI data (for
axisymmetric DKI they were directly estimated), averaged across the 2500 noise samples per SNR and finally

compared to the ground truth.

to obtain estimates of the five AxXTM. Accuracy of the
obtained AxTM estimates were evaluated as the mean
absolute percentage error (MAPE):

| GT — FitResults(SNR) |

MAPE = 100 -
GT

(2.8)

Here GT reefers to the ground truth and FitResults
reefers to the average of the fit results over the noise
samples. We evaluated the accuracy of the AxTM es-
timates for each estimation method by looking for the
SNR after which the MAPE was smaller 5%. The 5%
threshold was considered an acceptable error in a trade-
off between estimation accuracy and SNR requirement.
The different setup of both simulation studies enables
an isolated investigation of the effectiveness and tissue
dependence of the RBC and to test the fitting methods
in an in-vivo like dataset. As a summary to com-
pare each method, we looked at the maximum SNR
needed across the five AxXTM for which MAPE con-
sistently < 5% for all AxTM ("Maximum" column in
Figure 3.2).

Datasets: The synthetic dataset consisted of three
synthetic sets of AxXTM (from Coelho et al. (2019)) de-
scribing three voxels with varying fiber alignment, one
with fibers with low alignment ("LA", FA=0.067), one
with fibers with moderate alignment ("MA", FA=0.24)
and one with highly aligned fibers ("HA", FA=0.86).
The AxTM of the three synthetic voxels are summa-
rized in Table 8.3 ("Supplementary material"). Figure

2.4 shows two areas of typical brain regions in a map of
the mean kurtosis W where LA and HA voxels can be
found and the corresponding idealized fiber stick model.

The in-vivo like dataset consists of twelve voxels
extracted from four major white matter tracts (three
voxels from each of the four fiber tracts, see Figure
2.3) from an in-vivo brain measurement (SNR=23.4) of
a healthy volunteer. The twelve voxels were extracted
from the in-vivo measurement by fitting the standard
DKI framework in 12 voxels to get the corresponding
22 standard DKI tensor metrics, the derived data are
therefore refereed to as "in-vivo like". Three voxels with
HA to MA (defined through their fractional anisotropy
(FA)) were extracted from these four major white mat-
ter fiber tracts based upon the Jiilich fiber atlas: the
callosum body (cb), the corticospinal tract (ct), the
optic radiation (or) and the superior longitudinal fas-
ciculus (s1f), see Figure 2.3. The sets of the 12 in-vivo
like standard DKI tensor metrics are documented in
the Supplementary material in Table 8.1, the derived
AxTM are found in Table 8.2.

Signal framework used for simulation: The three
synthetic voxels of AxXTM were simulated with the
axisymmetric DKI framework to first obtain noise-free
diffusion MRI magnitude signals. The twelve in-vivo
like voxels were simulated with the standard DKI
framework to first obtain noise-free diffusion MRI mag-
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Fig. 2.3: Selection of voxels of the in-vivo like dataset: The four white matter fiber pathways within which
voxels were selected and used as a basis for the in-vivo like dataset. Top: a) Optic radiation (or), b) cortico
spinal tract (ct), ¢) superior longitudinal fasciculus (slf) and d) callosum body (cb) in a fractional anisotropy (FA)
map of a healthy human brain. The fiber pathways were identified with the coregistered Jiilich fiber atlas (Eickhoff
et al., 2005). Bottom: Voxels in the fiber pathways used for the in-vivo like dataset. In each fiber pathway,
three voxels were chosen for the in-vivo like dataset (for slf an or only one is shown here because the chosen

voxels were not in the same slice).

nitude signals.

Contamination with noise: For both the synthetic
and the in-vivo like dataset, the noise-free diffu-
sion MRI magnitude signals were contaminated with
noise for SNRs [1, 2, 3...100].

Estimating the five AxTM: Both, the simulated
signals from the synthetic and the in-vivo like
dataset were fitted with axisymmetric DKI and stan-
dard DKI, with and without RBC (section 2.3) to
obtain estimates of the AxTM whose accuracy could
then be investigated as a function of SNR.

2.6 In-vivo data acquistion and simulated sequence

The DWI sequence used to acquire the in-vivo like
dataset was a mono-polar single-shot spin-echo EPI
scheme, consisting of 16 non-diffusion-weighted im-
ages (b = 0 image). The diffusion weighted images
were acquired at three b values (500—=, 1250 —

mm? "’ mm? "’

2500 "), sampled for 60 unique diffusion-gradient

directions for the 1250mfn2 and 2500mf’][12 shells and

30 unique directions for the 500> shell. The entire
protocol was repeated with reversed phase encoding
directions ("blip-up", "blip-down" correction) to cor-
rect for susceptibility-related distortions so that in
total 166 - 2 images were acquired. Other acquisition
parameters were: an isotropic voxel size of (1.6mm?),
FoV of 240x230x154mm3, TE = 73ms, TE = 5300ms
and 7/8 partial Fourier imaging. Signal simulation in
our simulation study was done with only one b = 0
signal, so that the simulated sequence consisted of 151
signals per noise realization.

2.7 Simulation studies: Details

We simulated 100 SNRs: SNR = [1, 2, 3,...100]. Noise
was added according to Scont = |Snoise—frec + & + i,
where «,3 € AN(0,0) are drawn from a zero mean
Gaussian with standard deviation o, yielding different
SNR = \@% (for one receiver coil) for a given Sy =
1. For every SNR, 2500 noise samples were realized,
i.e., 2500 - 151 pairs (o, ) were drawn and 2500 - 151
Scont. Were calculated per SNR for every simulated
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Fig. 2.4: Model of fiber alignment in characteristic areas of the brain. Left: in-vivo map of the mean kurtosis W
with a typical area where fibers with low alignment (LA) are found and a typical area where highly aligned fibers
(HA) are found. Right: the corresponding golden and red sticks depict an idealized model of the underlying fiber
arrangement, the white dashed line indicates the axis of symmetry ¢, the green dashed line indicates the diffusion

gradient direction g, v is the angle between ¢ and C.

voxel. These diffusion MRI magnitude signals were
then fitted with the four proposed methods (section
2.3). For each of the 2500 noise samples per SNR,
2500 parameter estimates of D), D, WH,WL.,W were
obtained and averaged to find the SNR above which the
average over these 2500 noise samples had a MAPE <
5% (synthetic datset). For the in-vivo datset this
MAPE was averaged per SNR across the 12 simulated
voxels and the SNR above which this averaged MAPE
< 5% is reported.

For simulation of the three synthetic voxels, the axis
of symmetry ¢ = (1,0,0)7 was fixed throughout the
study. For data fitting, the two angles # and ¢ that
define the axis of symmetry within the axisymmet-
ric DKI framework were variable but constrained to
0, ¢ € [—2m, 2] which improved convergence of the fit-
ting algorithm. Data were simulated according to the
simulation scheme described in Section 2.6.

2.8 Diffusion signal profiles influenced by fiber
alignment

To further elucidate differences between tissues with
different levels of fiber alignment, angular signal pro-
files under the influence of noise were studied for the
three voxels of the synthetic dataset. Noise-free and
noise-contaminated signals have been simulated (SNR
= 20). The simulated signal’s mean and standard devi-
ation could then be plotted as a function of angle 9 (in
degree) between diffusion gradient § and axis of sym-
metry ¢. For a graphical representation of angle v, see
Figure 2.4.

3 Results

First, the results of the diffusion signal profiles in voxels
with different levels of fiber alignments (Section 3.1)
are shown because these not only explain the results
obtained in different tissues but also help to understand
the difference between estimating the parallel or the
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Fig. 3.1: Simulated signal decay along the axis of symmetry at SNR = 20. Signal decay is shown for the synthetic
dataset consisting of a) highly aligned fibers (HA), b) fibers with moderate alignment (MA) and ¢) fibers with
low alignment (LA) as a function of angle ¥ between the diffusion gradient § and the axis of symmetry ¢, see
Section 2.8. The "Contaminated signal" shows the mean and standard deviation over 2500 noise-samples. All
signals, including the noise-free ones, were normalized to the noise strength, the plots always show % The SNR is
calculated for the signal at b = 0" (Sp) according to: SNR = \@% = 20 which corresponds to o = \/55—8 All

three plots show the signals for the highest b-shell (b = 2500—"-). For a graphical representation of angle ¢ see
Figure 2.4.

perpendicular AxTM. After that, our main findings  synthetic and in-vivo like dataset. Shown are the
are stated and the corresponding results are reported  results for axisymmetric DKI and standard DKI with
(Section 3.2). (hatched) or without RBC.

RBC most effective in highly aligned fibers and
parallel diffusion: RBC was most effective for the
parallel parameters D and W) in HA to MA (for
both the synthetic and in-vivo like dataset), see
Figure 3.2. For example, achieving MAPE <5% for
W) in the synthetic HA voxel could be reduced from
SNR= 81 to SNR=25 (standard DKI) or SNR=29
(axisymmetric DKI). In the in-vivo like voxels, the
SNR requirements for achieving MAPE <5% for W)
could be reduced from 20 to 10 (standard DKI) or to 8
(axisymmetric DKI). Estimation of W was significantly
improved by RBC in the synthetic HA and MA voxels
but only slightly in the in-vivo like datasets.

3.1 Diffusion signal profiles influenced by fiber
alignment

Each of the simulated voxels of the synthetic dataset
shows a characteristic, 1) dependent shape, see Fig-
ure 3.1. For smaller angles ¢ between ¢ = 20° and
1 = 0°, the simulated signals of white matter with HA
are strongly diffusion weighted and are close or below
the noise floor (SNR = 1) where the signal and noise
strength are equal, see Figure 3.1a. In the simulated
voxel of MA, the noise floor is already reached for an-
gles ¥ = 50°, see Figure 3.1b. In the simulated voxel of
white matter with low fiber alignment the noise floor
is never reached and the simulation shows a seemingly
constant, 1 independent signal form, see Figure 3.1c. ~ Superiority of axisymmetric DKI in fibers with
In summary, the signal in HA to MA decays along the low alignment where RBC is ineffective: In the
direction of symmetry, whereas there is almost no decay ~ synthetic LA voxel, estimation of D), D, W) and W
in LA. were substantially improved by using the axisymmetric

DKI framework instead of standard DKI. E.g., it only

required an SNR= 15 (axisymmetric DKI) instead of
3.2 Results of simulation study SNR= 51 (standard DKI) to achieve MAPE <5%

for W, . For W, axisymmetric DKI performed slightly
Figure 3.2 shows the SNRs required to accurately esti-  worse than standard DKI (SNR= 8 instead of SNR= 5).
mate the AxXTM (MAPE< 5%, Equation (2.8)) in the  Interestingly, RBC did not influence the fitting results
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Fig. 3.2: Signal-to-noise ratio (SNR) above which the mean absolute percentage error (MAPE, Equation (2.8))
< 5% for the synthetic dataset with high, medium and low fiber alignment ("HA", "MA", "LA") and the
in-vivo like dataset. For the in-vivo like dataset, the MAPE was averaged across the 12 simulated voxels
and the SNR above which this average MAPE < 5% is shown. The standard deviation across the in-vivo dataset
voxels is not shown here because the values were between =~ 0.5 and ~ 6 with an average of ~ 2.5 and thus to small
to display. The number above the barplots indicates the barplot’s height. Blue encodes standard DKI, red encodes
axisymmetric DKI, the hatched barplots show the results if RBC is used. "Maximum" shows the maximum SNR

needed to achieve MAPE < 5% across all five AxTM.

much in this fiber alignment configuration but even
worsened them in some cases (e.g. D)), see Figure 3.2.

Axisymmetric DKI improves estimation of per-
pendicular parameters: Estimation of D, and W
could also be improved (MAPE <5% reached for
lower SNRs) by using the axisymmetric DKI frame-
work in HA to MA of the synthetic and in-vivo
like dataset (e.g., for HA, D,: SNR= 4 instead of
SNR= 13; W, : SNR= 40 instead of SNR= 49).

RBC can also worsen accuracy: Interestingly, there
were also few scenarios in which RBC increased the
SNR requirements. As described above this was ob-
served for D, W, and W in the LA voxel and, out-
side the LA voxel, predominantly for the perpendicu-
lar parameters, e.g., from SNR= 11 to SNR= 15 for
the axisymmetric DKI fit of W, in the in-vivo like
dataset.

4 Discussion
4.1 Summary of main findings

Overall, we found, that the combination of axisymmet-
ric DKI with Rician bias correction (RBC) was the best
option for estimating all five axisymmetric DKI tensor
metrics (AxTM), see "Maximum" column of Figure 3.2.
This combination achieved a mean absolute percent-
age error (MAPE, Equation (2.8)) < 5%) on our sim-
ulated in-vivo like data if the signal-to-noise ratio
(SNR)> 15, making this combination a possibly valu-
able tool in neuroscience and clinical research studies.
Specifically, we found that RBC is highly effective for
increasing estimation accuracy of the AxXTM associated
with diffusion parallel to the main fiber orientation, i.e.,
parallel diffusivity and kurtosis, in white matter with
HA. In contrast, it fails in improving estimation ac-
curacy in parameters perpendicular to the main fiber
orientation, i.e., perpendicular diffusivity and kurtosis,
or if fiber alignment is too low. For the latter scenarios,
axisymmetric DKI is more effective than standard DKI.
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4.2 Rician noise bias and its correction: Effectiveness
for different DKI parameters and levels of fiber
alignment within white matter

The effectiveness of RBC correlated with the severity
of the Rician noise bias influenced by either the level of
fiber alignment or direction of the AxTM which indi-
cates that the proposed method for RBC indeed miti-
gates Rician noise bias. Severity of the Rician noise bias
is inversely proportional to the SNR and hence depends
on a variety of parameters. One of these parameters is
the level of water mobility which tunes the diffusivity
and thereby the diffusion weighted signal. Water mobil-
ity is influenced by a combination of the level of fiber
alignment and orientation of the AxTM relative to the
axis of symmetry ¢. Figure 3.1 shows simulated signals
in three tissue types with varying degrees of fiber align-
ment as a function of angle 1 between ¢ and diffusion
gradient ¢g. In HA for example, the diffusion signal is
heavily diffusion weighted if measured along the main
fiber orientation (small angle ) and the Rician noise
bias in these signals therefore strongest, see Figure 3.1a.
Since the parallel AXTM (D) and W) predominantly
depend on these signals, it can be expected that they,
too, are more heavily biased in a high fiber alignment
setting. Accordingly, we found that Rician bias correc-
tion (RBC) turned out to be particularly important
for the AXTM associated with parallel diffusion (D)
and W) in highly aligned white matter (synthetic
dataset and in-vivo like dataset). On the other
hand, diffusion perpendicular to ¢ will be more re-
stricted than the parallel diffusion and the SNR there-
fore higher. D) and W, should therefore be less af-
fected by the Rician noise bias. Indeed, we found that
RBC was not as effective for the perpendicular pa-
rameters D | and W in white matter with HA as for
the parallel parameters. An apparent contradiction to
this argument was found for W, in the synthetic MA
dataset. This contradictory finding, however, can be ex-
plained by the relatively high perpendicular diffusivity
of the MA voxel (Table 8.3) causing a strong diffusion
weighting and therefore smaller perpendicular signal in
this case (Figure 3.1b).

RBC was furthermore ineffective in tissues with LA (LA
voxel of the synthetic dataset has an FA= 0.067),
see Figure 3.2. Here, the signal change as a function of
angle between ¢ and § is smaller than the variation in-
troduced by noise and the signals almost seem indepen-
dent of the diffusion gradient direction. This is because
these tissues do not posses a clearly distinguishable axis
along which water mobility is significantly heightened
compared to other directions, see Figure 3.1c. For the

same SNR (in reference to the Sy signal), the Rician
noise bias in such tissues is therefore less severe, com-
pared to, e.g., signals in HA acquired for diffusion gra-
dients parallel to the axis of symmetry. Accordingly, we
found that RBC had little to no effect on parameter es-
timation in white matter with low fiber alignment. Fur-
thermore, the original signal shape may be lost in the
noise pattern which is why RBC could even increase the
bias instead of reducing it because it acts on a falsely
modeled signal form.

4.3 Advantage of the axisymmetric DKI framework

In the introduction, we hypothesized that a reduction
of the parameter space could make axisymmetric DKI
more robust against the Rician noise bias. We observed
that axisymmetric DKI predominantly improved ac-
curacy of parameter estimation of the perpendicular
AxTM D, and W, in both the synthetic dataset
(HA and MA voxels) and the in-vivo like dataset,
i.e., MAPE < 5% was achieved for lower SNRs.

The increased accuracy for W, can be understood with
Table 2.1. In standard DKI, 6 of the 22 framework pa-
rameters are needed to compute W, including the
highly diffusion weighted and therefore highly Rician
bias affected A;. Axisymmetric DKI, on the other hand,
always estimates W, directly and therefore is getting
rid of the highly Rician bias affected A; which mitigates
the effects of Rician noise bias. Furthermore, the per-
pendicular AxTM are predominantly estimated from
the "perpendicular signals" (see Section 4.2) which are
less diffusion weighted in general. This additionally
reduced effects of the Rician noise bias.

Another observation was that, accuracy of parameter
estimation with axisymmetric DKI was substantially
better in tissues with low fiber alignment (Figure 3.2)
compared to standard DKI. We observed, e.g., an SNR
reduction of up to 70% when using axisymmetric DKI
instead of standard DKI for estimation of W, in the
LA voxel, see Figure 3.2. This could be due to the
seemingly constant and high signal, independent of
the diffusion gradient direction, in the synthetic LA
dataset. Since the variation in the almost constant
diffusion signal is dominated by noise, the complex 22
parametric standard DKI framework is more likely to
overfit the data than the 8 parametric axisymmetric
DKI framework, particularly in case of lower SNRs
where noise has a greater impact. This could be the
reason for the clear advantage of axisymmetric DKI
over standard DKI in this fiber configuration.
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4.4 Considerations

Possible circularity of simulation study: Since the
simulation studies were either based on the axisym-
metric DKI (synthetic dataset) or the standard DKI
framework (in-vivo like dataset), one might argue
that the simulations will favor their respective signal
frameworks. Here we re-discuss our signal-framework
comparisons in the light of this potential circularity:
We observed that using axisymmetric DKI was ad-
vantageous over standard DKI for the perpendicular
AxTM. The same trend was observed in the synthetic
LA dataset. Since the improvement of axisymmetric
DKI over standard DKI for the perpendicular AxTM
was observed across both simulations, the observation
cannot be explained by a circularity argument and we
believe that it is a genuine advantage of axisymmetric
DKI. The synthetic LA dataset, however, is based on
the axisymmetric DKI framework and thus might well
be confounded by the circularity argument. However,
our noise-robustness argument is also a reasonable ex-
planation for the superiority of axisymmetric DKI in
this case. Thus, the truth might be in between, i.e.,
the real improvement of estimation accuracy in the LA
dataset when using axisymmetric DKI might be lower
than in the simulation but we would expect to still ob-
serve an improvement in in-vivo like data.

Limits of current measurements protocols: Look-
ing at the estimation accuracy for each of the five
AxTM individually revealed that each metric comes
with different SNR requirements. Estimation of W)
with a MAPE< 5%, for example, required an SNR of 81
in the HA voxel of the synthetic dataset and an SNR
of > 100 in the MA voxel of the synthetic dataset if
RBC was not used. This reveals that current measure-
ment protocols could reach their limits under realistic
conditions where the SNR is below 81 or 100 if Rician
bias correction is not used. This underlines the impor-
tance of using Rician bias correction in cases where all
five AxXTM are of importance, e.g., for estimation of the
biophysical microstructure parameters.

Limits of RBC for single voxel application: Sim-
ilar to previous simulation studies on RBC (Veraart
et al., 2011, 2013a; André et al., 2014), we focused on
the effects of RBC on the averaged estimated AxTM
over the 2500 noise samples. The SNR at which the
AXTM could be estimated with a MAPE < 5% is re-
ported for that ensemble average. Therefore, the re-
ported results may not directly translate themselves
one to one into in-vivo like applications where only one
noise realization per voxel is measured.

5 Conclusion

Our study revealed that Axisymmetric DKI with RBC
is the most SNR effective choice for estimating the
AXTM because of two mutually supporting factors.
First, RBC itself is most effective for the parallel dif-
fusivity and kurtosis and the mean kurtosis, however,
it needs at least some level of fiber alignment to work.
Second, compared to standard DKI, axisymmetric DKI
is superior in fibers with low alignment and more ef-
fective for estimating the perpendicular diffusivity and
kurtosis. This makes the combination of axisymmetric
DKI with RBC a possibly valuable tool for neuroscience
and clinical research studies where a gain in SNR could
either be used to reduce scan time or increase spatial
resolution.

6 Availability of data and materials

The open source ACID toolbox for SPM contains the es-
timation methods for standard and axisymmetric DKI
with and without Rician bias correction used in this
study and is available at
http://www.diffusiontools.com/.
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— The Gauss Newton fit algorithm implementation
used in this study was conceptualized and writ-
ten by Jan Modersitzki (Modersitzki, 2009) and ex-
panded by Lars Ruthotto who, e.g., implemented
slice-wise parameter estimation and introduced an
efficient, multi-voxel procedure to accelerate conver-
gence; both improved the algorithm’s run-time.

— For the initial guess of the axisymmetric DKI fit
implementation, we used code from the reposi-
tory of Sune Ngrhgj Jespersen: https://github.
com /sunenj/Fast-diffusion-kurtosis-imaging-DKI
(Hansen et al., 2016).
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8.1 Ground truth DKI datasets

Table 8.1: Ground truth in-vivo like standard DKI voxels for the in-vivo like dataset (Figure 2.3), shown are the

2
unI?s ]

diffusion and kurtosis tensor components and Sp, the diffusivities are in |

Parameter cb Dataset 1  c¢b Dataset 2 cb Dataset 3 ¢t Dataset 1 ct Dataset 2 ct Dataset 3

D11 1.92726 1.62057 1.86790 0.53951 0.78384 0.73087
D22 0.31583 0.38127 0.41435 0.36193 0.42447 0.49957
D33 0.39808 0.39813 0.36425 1.54966 1.37428 1.29096
D12 —0.00731 —0.26198 —0.11110 —0.15777 —0.08699 —0.05191
Di3 0.04079 —0.25240 0.09536 0.00094 —0.08181 —0.03291
Da3s 0.03170 —0.09149 —0.03971 —0.04121 0.15430 0.03331
So 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
Wi 4.26728 4.20207 3.73642 0.58735 1.16398 1.12725
Waa22 0.30183 0.43656 0.36961 0.22285 0.51330 0.74976
W3a33 0.43632 0.59204 0.26940 3.41702 2.14949 2.30314
Wii12 —0.15654 —0.41618 —0.18526 —0.07888 —0.06150 —0.08996
Wi113 0.10051 —0.64422 0.18910 0.00636 —0.02166 0.02767
Wa221 0.19206 —0.46340 —0.26578 —0.08910 —0.06061 —0.09517
Wa223 0.06537 —0.17548 —0.08403 0.09611 0.10937 —0.04710
W3s31 —0.08171 —0.15145 0.12274 —0.08214 —0.17008 —0.09078
Wsssa 0.07430 —0.16995 —0.09129 —0.12567 0.28125 —0.09293
Wi122 0.45163 0.51896 0.50221 0.20913 0.21167 0.25976
Wi133 0.45000 0.53712 0.43661 0.52253 0.56751 0.30986
Waas3 0.15867 0.16724 0.07048 0.32234 0.42040 0.39227
Wi123 —0.00501 —0.08834 —0.03636 0.07669 0.03705 —0.00512
Wa213 —0.00262 0.00521 0.08195 —0.02098 —0.08206 —0.02479
Wi3s12 0.03732 —0.13410 —0.11029 —0.16710 —0.06077 —0.02733
Parameter  or Dataset 1 or Dataset 2 or Dataset 3  slf Dataset 1  slf Dataset 2  slf Dataset 3
D11 1.06085 0.67273 0.69468 0.46699 0.68565 0.63911
D22 0.59047 0.75000 1.79639 0.43803 0.48026 0.61127
D33 1.36088 1.48673 0.49756 1.69614 1.23269 1.22297
D12 0.12149 0.04143 —0.43159 0.05648 0.02784 0.08187
D13 0.61736 0.22247 0.19896 0.07981 —0.07817 —0.04450
Da3 0.05184 0.26023 —0.21783 —0.20355 —0.15512 —0.09252
So 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
Wii11 1.18421 0.74417 0.60364 0.38485 1.27168 0.65976
Wa229 0.48582 0.71486 2.21601 0.51498 0.72106 0.83091
W3as33 1.72750 1.99702 0.37346 3.25042 2.56281 1.96113
Wit12 0.09557 0.04945 —0.18369 0.03519 0.11477 0.00824
Wi113 0.42320 0.11965 0.04012 0.01711 0.05484 0.06571
Waa21 0.22072 —0.01878 —0.49678 0.11049 —0.03851 —0.10122
Waa23 0.13593 —0.00500 —0.40378 —0.02510 0.06858 0.06213
W3331 0.70421 0.13580 0.03943 0.15730 —0.32397 —0.13608
Wassa 0.15332 0.36637 0.09475 —0.41687 —0.24668 —0.29428
Wi122 0.19154 0.25614 0.52836 0.12737 0.22065 0.18565
Wi133 0.61697 0.26980 0.15419 0.49145 0.36651 0.53366
Waass3 0.26455 0.40726 0.34763 0.42856 0.14162 0.27141
Wii23 0.04012 0.00642 —0.11345 —0.04016 —0.01867 —0.08256
Wa213 0.06872 0.07859 0.24902 —0.01085 —0.04099 0.02417

Wssi2 0.02283 0.04014 —0.03715 0.06156 0.07493 0.17797



https://doi.org/10.1101/2022.03.15.484442
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.484442; this version posted March 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

16 Oeschger et al.

Table 8.2: Ground truth AxTM of the in-vivo like dataset, corresponding to the tensor components listed in
2
Table 8.1, the diffusivities are in [E2-].

Voxel Dy Dy w) Wy w

cb voxel 1 1.928 0.356 4.276 0.401 1.425
cb voxel 2 1.714 0.343 4.549 0.387 1.535
cb voxel 3 1.883 0.382 3.798 0.240 1.279

ct voxel 1 1.551 0.450 3.427 0.471 1.267
ct voxel 2 1.413 0.585 2.373 0.762 1.245
ct voxel 3 1.295 0.613 2.294 0.903 1.221
or voxel 1 1.857 0.578 2.891 0.463 1.109
or voxel 2 1.623 0.643 2.244 0.706 1.064
or voxel 3 1.995 0.497 2.959 0.498 1.051

slf voxel 1 1.732 0.435 3.421 0.439 1.249
slf voxel 2 1.275 0.562 2.715 0.919 1.203
slf voxel 3 1.242 0.616 2.153 0.725 1.087

Table 8.3: Set of synthetic AxTM, Sp and axis of symmetry ¢ used to simulate the synthetic dataset based on
axisymmetric DKI. The synthetic dataset consisting of three voxels with sets of {DH,DL, wy, Wi, W} was taken

2

from Coelho et al. (2019), diffusivities are in [£2=], Sp is in arbitrary units.

Dataset D” D W“ Wi w So c

Fibers with high alignment (HA) 1503 0.195 1456 0291 0926 1  (L0,0)
Fibers with moderate alignment (MA) 1.557 1.048 0.396 0.708 0.330 1 (1,0,0)T
Fibers with low alignment (LA) 0.457 0.408 2.901 2.702 2.770 1 (1,0,0)T



https://doi.org/10.1101/2022.03.15.484442
http://creativecommons.org/licenses/by-nc/4.0/

