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Abstract 8 

Computational modeling has been indispensable for understanding how subcellular neuronal 9 

features influence circuit processing. However, the role of dendritic computations in network-10 

level operations remains largely unexplored. This is partly because existing tools do not allow the 11 

development of realistic and efficient network models that account for dendrites. Current spiking 12 

neural networks, although efficient, are usually quite simplistic, overlooking essential dendritic 13 

properties. Conversely, circuit models with morphologically detailed neuron models are 14 

computationally costly, thus impractical for large-network simulations. To bridge the gap 15 

between these two extremes, we introduce Dendrify, an open-source Python package 16 

compatible with Brian2, designed to facilitate the development of bioinspired spiking neural 17 

networks. Dendrify, through simple commands, automatically generates reduced compartmental 18 

neuron models with simplified yet biologically relevant dendritic and synaptic integrative 19 
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properties. Such models strike a good balance between flexibility, performance, and biological 20 

accuracy, allowing us to explore dendritic contributions to network-level functions while paving 21 

the way for developing more powerful neuromorphic systems.  22 

Introduction 23 

Simulations of spiking neural networks (SNNs) are widely used to understand how brain 24 

functions arise from area-specific network dynamics1. Moreover, SNNs have recently gained 25 

much attention for their value in low-power neuromorphic computing and practical machine 26 

learning applications2,3. SNNs typically comprise point, integrate-and-fire (I&F) neurons and can 27 

replicate basic biological features such as specific connectivity motifs, excitation-inhibition 28 

dynamics, and learning via synaptic plasticity rules. However, SNNs often ignore dendrites, the 29 

thin membranous extensions of neurons that receive the vast majority of incoming inputs. 30 

Numerous studies have shown that the dendrites of excitatory and inhibitory neurons possess 31 

compelling computational capabilities4,5 that can significantly influence both neuronal and circuit 32 

function6–9 and cannot be captured by point-neuron SNNs.  33 

First, dendrites can act as semi-independent thresholding units, producing local 34 

regenerative events termed dendritic spikes (dSpikes). These spikes are generated by local 35 

voltage-gated mechanisms (e.g., Na+/Ca2+ channels, NMDA receptors) and influence both 36 

synaptic input integration and plasticity4,5. Moreover, dendritic mechanisms operate in multiple 37 

timescales, ranging from a few up to hundreds of milliseconds, allowing complex computations, 38 

including coincidence detection, low-pass filtering, input segregation/amplification, parallel 39 

nonlinear processing, and logical operations10–15. 40 
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Due to these nonlinear phenomena, the arrangement of synapses along dendrites becomes 41 

a key determinant of local and somatic responses. For example, the impact of inhibitory pathways 42 

depends on their exact location relative to excitatory inputs16,17. Moreover, functionally related 43 

synapses can form anatomical clusters, which facilitate the induction of dSpikes, thus increasing 44 

computational efficiency and storage capacity18–20. Finally, dendritic morphology and passive 45 

properties shape the general electrotonic properties of neurons4. For example, dendritic filtering 46 

affects both the amplitude and the kinetics of synaptic currents traveling towards the soma in a 47 

location-dependent manner. Given the complexity of dendritic processing, SNNs that lack 48 

dendrites may fail to account for important dendritic contributions to neuronal integration and 49 

output, limiting their true computational power. 50 

Conversely, biophysical models of neurons with a detailed morphology are ideal for 51 

studying how dendritic processing affects neuronal computations at the single-cell level1. Such 52 

models comprise hundreds of compartments, each furnished with numerous ionic mechanisms 53 

to faithfully replicate the electrophysiological profile of simulated neurons. However, achieving 54 

high model accuracy is typically accompanied by increased complexity (e.g., higher CPU/GPU 55 

demands and larger run times), as numerous differential equations have to be solved at each 56 

simulation time step1. Therefore, this category of models is unsuitable for large-network 57 

simulations, where computational efficiency is a key priority.  58 

A middle-ground solution utilizes simplified models that capture only the essential 59 

electrophysiological characteristics of real neurons21–26. Notable examples of this approach are 60 

found in recent theoretical studies showing that dendritic mechanisms convey significant 61 

advantages to simplified network models of varying levels of abstraction. These include improved 62 
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associative learning20, better input discrimination (pattern separation27), efficient short-term 63 

memory (persistent activity28), and increased memory storage and recall capacity8. Similar 64 

advantages were recently seen in the machine learning field: the addition of dendritic nodes in 65 

artificial neural networks (ANNs) reduced the number of trainable parameters required to 66 

achieve high-performance accuracy29 (also see30). Moreover, incorporating dendritic nodes in 67 

Self Organizing Map classifiers31 and other types of neuro-inspired networks32 improved their 68 

ability to learn continuously. 69 

Overall, while dendrites confer advanced computational power to simulated biological 70 

networks and these benefits are likely to extend to machine learning systems, SNNs remain 71 

largely dendrite-ignorant. A likely reason is that the current theoretical framework for modeling 72 

dendritic properties consists of overly complex equations with numerous free parameters, 73 

making it mathematically intractable and impractical for use in SNNs. 74 

To address the abovementioned complexity issues and provide a framework that allows 75 

the seamless incorporation of dendrites in SNN models, we developed Dendrify (Figure 1). 76 

Dendrify is a free, open-source Python package that facilitates the addition of dendrites along 77 

with various dendritic mechanisms in SNNs. Importantly, Dendrify works seamlessly with the 78 

Brian 2 simulator33; it builds upon the powerful and flexible features of the latter while it 79 

automates some potentially complex and error-prone steps related to compartmental modeling. 80 

Specifically, through simple and intuitive commands, Dendrify automatically generates and 81 

handles all the equations (and most parameters) needed by Brian 2 to build simplified 82 

compartmental neurons. Its internal library of premade models supports a broad range of 83 

neuronal mechanisms, yet it allows users to provide their own model equations. Among other 84 
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optimizations, we also introduce a novel phenomenological approach for modeling dSpikes, 85 

significantly more efficient and mathematically tractable than the Hodgkin-Huxley formalism.  86 

 

Figure 1 | The main characteristics of Dendrify. a) Dendrify stemmed from our efforts to bridge 

the gap between detailed biophysical models and reduced I&F models. The result is a modeling 

framework for developing simplified compartmental models that balance efficiency and 

biological accuracy by capturing the most important characteristics of both worlds. b) Dendrify 

facilitates the development of SNNs comprising reduced compartmental neurons (ball and sticks) 

and known dendritic phenomena, such as various types of local spikes (Color code; teal: Na+ 

spikes, red: Ca2+ spikes, orange: NMDA spikes. Scalebar: 20mV / 10ms). 
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To demonstrate the power of Dendrify, we showcase its main features through four 87 

modeling paradigms of increasing complexity. a) A basic compartmental model with passive 88 

dendrites, b) a reduced compartmental model with active dendrites, c) a simplified model of a 89 

CA1 pyramidal neuron that reproduces numerous experimental observations, and d) a pool of 90 

CA1 neurons used to assess the contribution of dendritic Na+ spikes in coincidence input 91 

detection. Moreover, we provide a step-by-step guide for designing reduced compartmental 92 

models that capture the key electrophysiological and anatomical properties of their biological 93 

counterparts. Notably, the proposed guide builds upon established theoretical work21,22,24, and 94 

its implementation is not exclusive to any simulator software. To our knowledge, this is the first 95 

tool that adds dendrites to simple, phenomenological neuronal models in a standardized and 96 

mathematically concise manner. 97 

Results 98 

Example 1: A basic compartmental model with passive dendrites 99 

We start with a simple neuron model consisting of three compartments (Fig. 2a). A soma, 100 

modeled as a leaky I&F unit, and two passive dendrites (apical & basal) that are electrically 101 

coupled to the soma (see Methods). This architecture is meant to roughly resemble the general 102 

dendritic organization of excitatory, pyramidal-like neurons. In this example, the apical dendrite 103 

can integrate excitatory synaptic inputs consisting of a fast α-amino-3-hydroxy-5-methyl-4-104 

isoxazolepropionic acid (AMPA) component and a slow N-methyl-D-aspartate (NMDA) 105 

component. In addition, both dendritic compartments are connected to a source of Gaussian 106 
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white noise (i.e., noisy input current). The Python code needed to reproduce this model is 107 

described in Fig. 3. All model parameters are available in Table S1. 108 

To test our model’s electrical behavior, we applied depolarizing current injections (400 ms 109 

pulses of 100 pA at -70 mV baseline voltage) individually to each compartment and recorded the 110 

voltage responses of all compartments (Fig. 2b). As expected, the largest depolarization was 111 

observed at the current injection site, while compartments located further apart were less 112 

affected. Note that the basal dendrite in this model is more excitable than the apical one due to 113 

the difference in length (150 μm vs. 250 μm, respectively). The attenuation of currents traveling 114 

along the somatodendritic axis is an intrinsic property of biological neurons and is due to the 115 

morphology and cable properties of dendritic trees4,34. 116 

 

Figure 2 | A basic compartmental neuron model with passive dendrites. a) Schematic 
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illustration of a compartmental model consisting of a soma (spiking unit) and two dendrites 

(passive integrators). The apical dendrite can integrate excitatory synapses comprising AMPA and 

NMDA currents. b) Membrane voltage responses to current injections of the same amplitude, 

applied individually to each compartment. Notice the electrical segregation caused by the 

resistance between the three neuronal compartments. c) Somatic responses to a varying number 

of simultaneous synaptic inputs. Left: control EPSPs, right: EPSPs in the presence of NMDA 

blockers. d) Input-output function of the apical dendrite as recorded at the soma. The dotted line 

represents a linear function. Notice the shift from supralinear to sublinear mode when NMDARs 

are blocked. The simulations and analysis code related to the above figure will be provided upon 

reasonable request, and will be freely available upon publication. 

 

Although dendritic attenuation may seem undesirable, it has several computational 117 

advantages4. For instance, it allows dendrites to operate semi-independently from the soma35 118 

and perform complex functions, especially when paired with local voltage-gated mechanisms. In 119 

our toy model, simultaneous activation of an increasing number of synapses on the apical 120 

dendrite evokes somatic responses much larger than the expected arithmetic sum of individual 121 

inputs (Fig. 2c-d). The additional depolarization is due to the activation of NMDARs (at elevated 122 

dendritic voltages), resulting in supralinear integration. However, when NMDARs are blocked, 123 

the apical dendrite switches from supralinear to a sublinear integration mode (Fig. 2c-d), and this 124 

alteration can be dendrite-specific. This happens because synaptic currents are susceptible to the 125 

decrease in driving force as dendritic voltage approaches the AMPA reversal potential (EAMPA = 0 126 

mV). Both types of dendritic integration have been observed in real neurons and allow distinct 127 

computations, such as e.g. clustered vs. scattered input sensitivity34.  128 

This example shows that even rudimentary compartmental models can simulate essential 129 
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dendritic functions like signal attenuation and segregation that point-neuron models cannot 130 

capture. Importantly, they allow the presence of multiple input segregation sites, theoretically 131 

enhancing the computational capacity of single neurons36. In addition, we provide an example of 132 

how even basic dendritic-driven mechanisms can impact neuronal integration and somatic 133 

output.  134 

 

Figure 3 | Python code for the neuron model in Figure 2a. Dendrify applies a standardized 

approach for describing the architecture, mechanisms, and parameters of simplified 

compartmental models. This approach involves creating Soma/Dendrite objects (lines 6, 9, 12) 
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representing the model’s compartments. Here, soma acts as the primary spiking unit (leaky I&F), 

while dendrites are simulated (by default) as passive leaky integrators. Users can specify each 

compartment’s physical dimensions, which are used to calculate its surface area. Moreover, 

Dendrify allows adding any desired mechanism (dendritic, synaptic, or other) to a single 

compartment, such as Gaussian noise (lines 15, 16) and synaptic currents (lines 19, 20). Users can 

specify the coupling strength between the adjacent compartments (line 23); otherwise, it is 

inferred from the model parameters (see Methods). Finally, we introduce another object, the 

NeuronModel (line 24), which has four primary functions: a) to group related Compartment 

objects into a single model, b) to allow setting global model parameters, c) to extract model 

equations, properties, and custom events, d) to allow deeper integration with Brian 2, which 

unlocks several automations (line 32). Upon creating a NeuronModel, users can easily construct 

a NeuronGroup (line 29 - a group of neurons that share the same equations and properties), 

Brian’s core object of every simulation. The entire simulation code and detailed Dendrify 

examples will be freely available on GitHub. For more information, see the Methods section and 

the Brian 2 documentation: https://brian2.readthedocs.io/en/stable. 

 

Example 2: A reduced compartmental model with active dendrites 135 

 In the previous example, dendrites were modeled as passive leaky compartments with 136 

added synaptic mechanisms. However, a unique feature of Dendrify is the ability to incorporate 137 

voltage-gated ion channels (VGICs, see Methods) that are implemented phenomenologically 138 

without utilizing the Hodgkin-Huxley formalism. This approach further reduces mathematical and 139 

computational complexity as exemplified by a second reduced model (parameters shown in 140 

Table S2) consisting of a somatic compartment (leaky I&F) and an apical dendrite divided into 141 

three segments (Fig. 4a, Fig. 5). All dendritic compartments are equipped with models of Na+-142 

type VGICs (allowing the generation of Na+ dSpikes), while the distal and proximal segments can 143 
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integrate synaptic inputs consisting of AMPA and NMDA currents.  144 

First, to test the impact of locally generated Na+ spikes on dendritic and somatic responses 145 

in the model neuron, we simulated the application of short current injections (5 ms long pulses 146 

of rheobase intensity) to each dendritic segment and recorded simultaneously from all 147 

compartments (Fig. 4b-d). Although model parameters were adjusted to elicit nearly identical 148 

responses in all dendritic compartments (Fig. 4e left), somatic responses varied significantly, 149 

depending on the dSpike initiation site (Fig. 4e right). As in real neurons, distal dSpikes became 150 

much weaker and broader as they traveled towards the soma due to the dendritic filtering 151 

effect4,37. 152 
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Figure 4 | A reduced compartmental model that replicates active dendritic properties. a) 

Schematic illustration of a compartmental model consisting of a soma (leaky I&F) and three 

dendritic segments (trunk, proximal, distal) equipped with Na+-type VGICs. The distal and 

proximal segments can also receive AMPA and NMDA synapses. b-d) Rheobase current injections 

(5ms square pulses) for dSpike generation were applied individually to each dendritic segment. 
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Shaded areas: location of current injection and dSpike initiation. Top: stimulation protocol 

showing the current threshold for a single dSpike (rheobase current). e) First temporal derivative 

of dendritic (left) and somatic (right) voltage traces from panels b-d. f) Input-output function of 

the distal (left) and proximal (right) segment as recorded from the corresponding dendritic 

locations. We also indicate the number of quasi-simultaneously activated synapses (ISI = 0.1 ms) 

needed to elicit a single dSpike in each case. OFF: deactivation of Na+ dSpikes. Dashed lines: linear 

input-output relationship. g) Left: Backpropagating dSpikes are generated in response to somatic 

current injections. The short-amplitude spikelets detected in the distal branch are subthreshold 

voltage responses for dSpike initiation. Right: Magnified and superimposed voltage traces (top) 

from the dashed box (left). Bellow: dendritic voltage-activated currents responsible for dSpikes 

generation in each dendritic segment. The simulations and analysis code related to the above 

figure will be provided upon reasonable request, and will be freely available upon publication. 

 

Moreover, the threshold for dendritic spiking significantly differs among the three dendritic 153 

locations (Fig. 4b-d top). For example, dSpike generation in the distal segment (Fig. 4b) requires 154 

approximately 2.5 times less current than the proximal one (Fig. 4c). Due to its smaller diameter 155 

and sealed end, the distal segment has higher input resistance (Rinput); thus, its membrane is 156 

more excitable. Biological neurons also exhibit a large variability of axial resistance along their 157 

dendrites caused mainly by differences in local branch dimensions (length and diameter) and 158 

dendritic geometry (e.g., bifurcations number, branch order). This location-dependent change in 159 

input resistance (typically increases in the thinner, distal branches) serves two functions. First, it 160 

increases the probability of dSpike initiation in the distal dendritic branches, and second, it helps 161 

to counterbalance the distance-dependent input attenuation caused by cable filtering34,37,38. 162 

To examine how dendritic spiking combined with local branch properties affect synaptic 163 
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integration in our toy model, we activated quasi-simultaneously (train of spikes with ISI 0.1 ms) 164 

an increasing number of synapses placed on the distal and the proximal segments. We then 165 

compared the peak amplitude of the dendritic voltage responses (Actual) to what would be 166 

obtained by a linear arithmetic sum of unitary responses (Expected) (Fig. 4f). Both segments 167 

produce voltage responses that increase in a sigmoid-like fashion, with a supralinear rise in their 168 

amplitude occurring above a certain number of synapses (Fig. 4f control). This behavior is typical 169 

of pyramidal neurons in the cortex and the hippocampus10,12,35,39 as well as some 170 

interneurons7,40. Moreover, blocking dSpikes (Fig. 4f OFF) disrupts the above response leading to 171 

sublinear integration. Although the two segments appear to have similar input-output curves, 172 

dendritic nonlinearities emerge earlier in the distal compartment. This is because of its higher 173 

input resistance (Rinput), requiring less synaptic excitation to cross the dSpike voltage threshold. 174 

This model property, which is based on experimental data37, highlights the importance of 175 

accounting for input pathways projecting to different dendritic locations, as they may be subject 176 

to different integration rules. Notably, the same approach used to build phenomenological 177 

models of Na+ dSpikes can be used to build models of other types of local spikes (e.g., Ca2+-based). 178 

Another key feature of biological neurons is the ability of APs initiated in the axon to invade 179 

the soma and nearby dendrites and propagate backward towards the dendritic tips. The 180 

transmission efficacy of these backpropagating action potentials (BPAPs) depends on the 181 

dendritic morphology and the abundance of dendritic VGICs (Na+ or Ca2+)36. Notably, in several 182 

neuronal types, BPAPs can propagate more efficiently than forward-propagating dSpikes, acting 183 

as feedback signals of somatic activity36 and serving as instructive plasticity signals41–43. To test if 184 

our model can recreate the generation of BPAPs, we injected a depolarizing step current at the 185 
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soma (135 pA for 300 ms) capable of eliciting a small number of somatic APs (Fig. 4f). Upon 186 

somatic activation (the axon is not explicitly modeled here), BPAPs were successfully generated 187 

and propagated to the distal dendritic segment. There, dSpikes were reduced to sharp, small-188 

amplitude responses (spikelets), as observed experimentally44. These spikelets resulted from 189 

attenuating ion influxes from nearby dSpikes, that failed to trigger local suprathreshold 190 

responses. It should be noted that to achieve BPAP generation, we had to utilize a custom version 191 

of the I&F model20 that results in a more realistic somatic AP shape (see Methods). 192 

Altogether, the above simulations show that Dendrify allows the development of reduced 193 

compartmental models that incorporate phenomenological voltage-gated mechanisms and can 194 

replicate a variety of dendritic features and their impact on somatic output. These reduced yet 195 

more biologically relevant models offer a compelling alternative for developing SNNs with a high 196 

degree of bioinspiration and small computational overhead. Importantly, Dendrify provides easy 197 

access to this category of models by radically simplifying their implementation in Brian 2. 198 

 

Example 3: A simplified yet biologically accurate model of a CA1 pyramidal cell 199 

 The previous examples demonstrated how Dendrify promotes the development of simple 200 

compartmental models reproducing several essential dendritic functions. However, our 201 

examples comprised generic neuron models rather than an area-specific cell type. To explore our 202 

approach’s full potential and limitations, we built a simplified yet realistic model of a CA1 203 

pyramidal cell (PC). This cell type was selected due to the availability of a large number of 204 

experimental data45 and computational models46,47 to compare our work with. Notably, to keep 205 
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our approach simple, we did not use third-party software to design the model’s morphology48 or 206 

fit its parameters49. Instead, based on previous theoretical work21,22,24, we created a set of 207 

instructions that guides Dendrify users throughout model development and validation processes. 208 

The specific approach is briefly discussed below (for a more detailed description, see Methods). 209 

Our reduced CA1 PC model (Fig. 6a) consists of 9 segments (1 somatic + 8 dendritic), the 210 

dimensions of which were constrained using mouse anatomical data50,51. All model parameters 211 

are provided in Table S3. Our goal was to preserve: a) the main functional and anatomical 212 

characteristics of the dendritic morphology, b) accurate synaptic placement, and c) realistic 213 

dendritic attenuation (axial resistance). In particular, this morphology reflects the anatomical 214 

layering of the CA1 hippocampal area and the spatial segregation of input pathways coming from 215 

the Entorhinal Cortex (EC) and the CA3 area, respectively. Moreover, synaptic conductances were 216 

manually calibrated to ensure that the AMPA to NMDA ratio and the unitary postsynaptic 217 

responses along the dendritic tree agree with empirical data (Fig. S2, Table S3)52–57. To directly 218 

compare our model with the available in vitro data45, we replicated the experimental procedures 219 

used to estimate essential electrophysiological properties (Fig. 6b-c, Fig. S1). We observe that 220 

the model’s membrane time constant (τm), input resistance (Rinput), sag ratio, and F-I curve closely 221 

approximate the respective properties of real PCs located in the CA1b subregion, the most central 222 

part of the CA1 area. 223 
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Figure 5 | Python code for the model shown in Figure 4a. The code shown here follows the same 

principles described in Fig. 3. In addition, we introduce another feature of Dendrify, which is the 

option to add a dendritic spiking mechanism to Dendrite objects (lines 10, 16, 22). Dendritic 

spiking is modeled in an event-driven fashion, which mimics the rising and falling phase of dSpikes 

caused by the sequential activation of inward Na+ (or Ca2+) and outward K+ currents (Fig. 4g, also 

see Methods). Users can specify the dSpike threshold and the amplitudes of the inward (‘g_rise’) 

and outward (‘g_fall’) currents individually in each dendrite. Moreover, it is possible to set global 

dSpike properties (lines 31, 32), such as the decay time constants for the rise and the fall phases, 
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the temporal delay of the fall phase (offset_fall), and a dSpike refractory period.  

 

Since studies with simultaneous somatodendritic recordings are scarce in the literature, we 224 

utilized data from various sources (experimental39,52 and modelling35,46,47,58) to calibrate our 225 

model’s dendritic properties. First, to quantify dendritic attenuation as a function of distance 226 

from the soma, we injected current at the soma (1,000 ms square pulse of -10 pA) and calculated 227 

the ratio of the dendritic to somatic steady-state voltage responses (dVdend/dVsoma) at various 228 

locations. The reduced model is similar to three detailed biophysical models46 (Fig. 6d). Next, to 229 

examine synaptic input attenuation, we activated synapses (single pulse with a time interval of 230 

0.1 ms) at various apical dendrite locations and calculated the somatic to dendritic peak voltage 231 

(dVsoma/dVdend) (Fig. 6e). Compared to experimental data52 and a recent, highly optimized 232 

biophysical model58, the reduced model captures the distance-dependent attenuation of EPSPs. 233 

It should be noted that the high variability in the morphology51 and the electrophysiological 234 

properties45 of real CA1 PCs make any attempt to build a single (detailed or simplified) neuron 235 

model that replicates all characteristics virtually impossible (also see47). As an alternative 236 

approach, Dendrify’s ease of implementation and simulation efficiency allows for the 237 

development of multiple, different single neuron models, each designed to replicate specific 238 

features found in these cells.  239 

The dendrites of biological CA1 PCs express several VGICs that allow them to perform 240 

complex operations1,4,5. For simplicity, we equipped our CA1 neuron model only with Na+ VGICs, 241 

which underlie the generation of Na+ dSpikes (Fig. 4). First, to test our model’s ability to generate 242 

BPAPs, we injected current at the soma (500 ms square pulse of 200 pA) and recorded 243 
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simultaneously from the most distal parts of the apical dendritic segments (Fig. 4f). We observed 244 

that BPAPs are successfully generated and propagate robustly to the end of the main apical trunk 245 

(250 μm from the soma). From that point onwards (> 250 μm from the soma), BPAPs are reduced 246 

to small-amplitude spikelets that fail to trigger dSpike initiation in the distal dendritic segments. 247 

This phenomenon has also been documented in recent in vitro studies44. However, we should 248 

note that backpropagation efficacy among actual CA1 PCs is quite variable and highly dependent 249 

on the dendritic morphology and ionic channel distribution59. 250 
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Figure 6 | CA1 pyramidal model validation. a) Schematic illustration of our reduced CA1 PC 

model consisting of a somatic and eight dendritic segments (2 x basal, 1 x proximal trunk, 1 x 

distal trunk, 2 x radial oblique, 2 x distal tuft). Grey numbers: distance of the indicated points 

from the soma. Red axons: EC layer two input, orange axons: CA3 input. Long horizontal lines: 

borders of the four CA1 layers (slm: stratum lacunosum-moleculare, sr: stratum radiatum, sp: 

stratum pyramidale, so: stratum oriens). b) Somatic voltage responses to various (1,000 ms long) 

current injections used for model validation. c) F-I curves comparing the model with actual 

superficial and deep PCs located in the CA1b area45. Shaded area: SEM. d) Steady-state, distance-

dependent voltage attenuation of a long current pulse injected at the soma. G15: data for three 

different detailed biophysical models adapted from Golding et al., 200546. e) The attenuation of 

postsynaptic currents propagating along the apical dendrite as a function of distance from the 

soma. M18: biophysical modeling data adapted from Migliore et al., 201858, Exp: experimental 

data adapted from Magee & Cook, 200060. Shaded area: 2 standard deviations. f) Simultaneous 

somatodendritic recordings in response to a somatic current injection showing the emergence of 

BPAPs. T1/T2: start/end of current injection (duration = 500 ms). g) Main panel: Input-output 

function of the reduced model’s oblique dendrite (the interval between inputs is 0.1 ms). P03: 

biophysical modeling data adapted from Poirazi et al., 200335. Arrows: indicate a different 

number of co-active synapses (grey = 13, pink = 14, blue = 24). Inset: dendritic voltage responses 

from the three highlighted cases. h) Main panel: peak dV/dt of somatic voltage responses as a 

function of synaptic inputs (data aligned to their respective thresholds for dSpike initiation). M18: 

biophysical modeling data adapted from Migliore et al., 201858. Exp: experimental data adapted 

from Magee & Cook, 200060. Shaded areas: SEM. Inset: First temporal derivative of the reduced 

model’s somatic EPSPs. Numbers indicate the number of co-active synapses on the apical oblique 

dendrites. The simulations and analysis code related to the above figure will be provided upon 

reasonable request, and will be freely available upon publication. 

 

 Next, we tested our model’s ability to generate dSpikes in response to correlated synaptic 251 

input onto its oblique dendrites (see Fig. S3). This property is a hallmark of real CA1 PCs39 and 252 
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was used in the past as a metric of model accuracy47. Our model reproduces a sigmoidal-like 253 

input-output function (Fig. 6g), also observed in a previous example (Fig. 4f). Above a certain 254 

number of quasi-simultaneous activation (0.1 ms interval) of synaptic inputs, dendritic responses 255 

increase sharply due to dSpike initiation, resulting in supralinear integration35. Dendritic sodium 256 

spikes cause a rapid jump in the amplitude and kinetics of somatic EPSPs, similar to what is 257 

observed in in vitro and biophysical modeling studies39,58 (Fig. 6h). Capturing this dendro-somatic 258 

nonlinear interaction in our model is essential since this feature is known to increase the 259 

conditional excitability of biological CA1 PCs and the temporal precision of their spiking 260 

output5,10. 261 

In sum, the above example demonstrates that Dendrify can be used to build versatile, 262 

reduced models that reproduce a wide range of biophysical and synaptic characteristics of 263 

specific types of neurons. Although at a fraction of the computational cost, these reduced models 264 

are on par with far more complex ones in terms of accuracy for several features. Moreover, their 265 

small number of parameters makes them substantially more flexible and tractable since 266 

modelers can easily adjust their properties and incorporate any available data type.  267 

Example 4: Pathway interaction in CA1 model neurons 268 

Biological CA1 PCs are more likely to generate action potentials when input from the EC on 269 

their distal tuft is paired with coincident CA3 input on more proximal dendritic branches. Due to 270 

strong dendritic attenuation, distal synaptic input generally has a negligible effect on the soma, 271 

even when dSpikes are generated61. However, combining EC and (moderate) CA3 input results in 272 

more reliable dSpike initiation and propagation, facilitating axonal action-potential output61. 273 
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To test whether our reduced model (Fig. 6a) captures the coincidence detection capabilities 274 

of CA1 pyramidal neurons, we constructed a pool of 10,000 CA1 pyramidal neurons (Fig. 7a). 275 

Every neuron received five streams of input drawn from two different Poisson distributions (EC 276 

vs. CA3). Each input stream was assigned to a single dendritic branch; two EC streams impinged 277 

onto the distal tuft segments, whereas three CA3 streams impinged onto the oblique dendrites 278 

and the distal trunk. To replicate the experiments of Jarsky et al61 regarding the response of CA1 279 

pyramidal neurons to EC, CA3, and EC + CA3 input, we adjusted the average rates (λ) of the 280 

Poisson distributions so that: a) When only the EC pathway is active, neurons have a moderate 281 

probability (>55%) of generating at least one distal dSpike, but no somatic APs (Fig. S4a, Fig. S5a). 282 

b) When only the CA3 pathway is active, neurons generate neither dendritic nor somatic spikes 283 

(Fig. S4b, Fig. S5b). c) The model outcome when simultaneously activating the two input 284 

pathways in the presence or absence of dendritic Na+ VGICs is shown in (Fig. 7b-c, Fig. S5b-c). 285 
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Figure 7 | Pathway interaction in a reduced CA1 network model. a) Schematic illustration of a 

pool of reduced compartmental CA1 PCs (N = 10,000). The arrows represent the two streams of 

input (independent Poisson-distributed spike trains) projecting to distinct dendritic segments. 

Each neuron represents a repetition of the same experiment with independent Poisson-

distributed inputs of the same average frequency. Bottom: table describing the conditional 

activation of CA1 PCs requiring coincident EC and CA3 input. b) Probability distribution of somatic 
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spike count, with (ON) or without (OFF) dendritic spikes when both EC and CA3 input is applied 

to the network. c) Summary of the results shown in panel b. Active neurons: PCs that fired ≥1 

somatic spike. Notice the reduction of the active population size when dendritic spiking is turned 

off. d) Repeating the coincidence detection experiment for a broad range of input intensities. 

Left: Mean neuronal firing rate (MFR) for each combination of EC/CA3 input amplitudes. Centre: 

same as in Left but with dSpikes turned off. The highlighted squares indicate the initial 

experimental conditions for the data shown in panels b and c. Right: quantifying the decrease in 

coincidence detection efficacy by measuring the MFR percentage decrease (dSpikes ON vs. 

dSpikes OFF). Deactivation of dendritic spiking results in reduced MFR in all cases tested. The 

white squares (bottom left) represent cases with very low initial MFR (< 0.1 Hz or < 5% network 

activity) that were excluded from the analysis. The highlighted squares indicate the experimental 

conditions of the data shown in panel f. e) Distribution of the results shown in panel d (right). f) 

Comparing the ISI distributions between the dSpikes ON and OFF conditions, using the 

highlighted cases in panel d (right). The circles represent the distribution medians and the vertical 

lines the first and third quantiles containing 50% of the data. Stars denote significance with 

unpaired t test (two-tailed) with Bonferroni’s correction. The simulations and analysis code 

related to the above figure will be provided upon reasonable request, and will be freely available 

upon publication. 

 

 In control conditions (dSpikes ON), most neurons (~80 %) generated one or more somatic 286 

spikes when both the EC and CA3 pathways were active. The rest of the population remained 287 

silent throughout the 500 ms of the simulation duration. Deactivating dendritic spikes (dSpikes 288 

OFF) impacted neuronal firing significantly: the percentage of active neurons dropped to ~10%, 289 

signifying a ~70% decrease compared to the control experiment (dSpikes ON). In addition, all 290 

active neurons fired just a single somatic spike. This finding is in line with previous studies61 and 291 

suggests a direct link between dendritic spiking and the conditional activation of CA1 PCs. 292 
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Importantly, it highlights our model’s ability to reproduce complex pathway interaction rules 293 

discovered in biological neurons beyond their basic dendritic properties (Fig. 6). 294 

 We next performed a parametric exploration of the input space to gain more insight into 295 

the above phenomenon and assess its robustness (Fig. 7d). Specifically, we created ten input 296 

distributions for each pathway, with firing rates that varied by 50-150% (with step 10%) of the 297 

original values. This led to 121 EC / CA3 inputs combinations, which were then tested in the 298 

presence and absence of dSpikes. Coincidence detection efficacy was estimated using the mean 299 

neuronal firing rate (MFR) for every combination of inputs (Fig. 7d left, center). This metric 300 

provides a quantitive way of gauging the dendritic effect on somatic output (Fig. 7b) rather than 301 

simply recording the percentage of active neurons.  302 

We found that dSpike deactivation greatly decreased the estimated MFR across all input 303 

combinations (Fig. 7d right). This drop in MFR ranged between 40-100% (Fig. 7e); cases with 304 

lower initial activity were prone to complete silencing, whereas high-activity cases were affected 305 

to a lesser extent. Moreover, dendritic spiking significantly decreased the inter-spike intervals 306 

(ISI) of somatic APs (Fig. 7f). The increased excitability caused by dSpikes resulted in somatic 307 

responses with lower ISIs, close to those reported during bursting. However, in agreement with 308 

experimental data62,63, the simulated neurons did not generate actual somatic bursts since this 309 

behavior requires the presence of dendritic Ca2+ plateau potentials, which are not included in our 310 

model. 311 

Overall, this example highlighted the ability of our simplified neuron models to reproduce 312 

coincidence detection rules intrinsic to the dendrites of biological CA1 PCs. Moreover, we verified 313 
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the robustness of this behavior through a wide variety of EC/CA3 input parameters. Finally, we 314 

showed that dendritic Na+ spikes determine the frequency of somatic output in response to 315 

coincident input and their temporal precision, reducing the threshold for strong somatic 316 

activity62. 317 

Discussion 318 

Establishing a rapport between biological and artificial neural networks is necessary for 319 

understanding and hopefully replicating our brain’s superior computing capabilities2,3,64. 320 

However, despite decades of research revealing the central role of dendrites in neuronal 321 

information processing1,4,5,34, the dendritic contributions to network-level functions remain 322 

largely unexplored. Dendrify aims to promote the development of realistic spiking network 323 

models by providing a theoretical framework and a modeling toolkit for efficiently adding 324 

bioinspired dendritic mechanisms to SNNs. This is materialized by developing simplified yet 325 

biologically accurate neuron models, optimal for network simulations in the Brian 2 simulator33. 326 

Here, we demonstrated the ability of simple phenomenological models developed with 327 

Dendrify to reproduce numerous experimentally observed dendritic functions. First, we showed 328 

that even a generic toy model with passive dendrites can display some electrical segmentation 329 

due to the resistance between its compartments (Fig. 2). This property allows dendrites to 330 

operate semi-autonomously from the soma and multiple input integration sites to coexist within 331 

a single neuron35. Next, we showed that adding dendritic Na+ VGICs to a basic four-compartment 332 

model (Fig. 4) unlocks important dendritic features that include: a) the presence of branch-333 

specific integration rules affected by local dendritic morphology34, b) the supralinear summation 334 
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of correlated synaptic inputs and its impact on neuronal output35, c) the generation of BPAPs as 335 

feedback signals of neuronal activity36,43,59. Finally, we built a simplified yet biologically 336 

constrained model of a CA1 PC (Fig. 6) and showed its ability to capture numerous passive (τm, 337 

Rinput, sag ratio, somatodendritic attenuation) and active (F-I curve, nonlinear dendritic 338 

integration, BPAPs generation) properties of real CA1 PCs. Notably, the reduced model 339 

reproduced complex coincidence detection rules found in CA1 PC dendrites and the impact of 340 

Na+ dSpikes on the frequency and the temporal precision of neuronal output10,65 (Fig. 7). Overall, 341 

we illustrated that Dendrify allows for building simple, mathematically tractable models that 342 

replicate essential dendritic functions and their influence on neuronal activity. 343 

Multiple recent SNNs studies seemingly converge to the same conclusion; neural 344 

heterogeneity within a network can positively impact its learning and information processing 345 

capabilities3. For example, heterogeneous SNNs with dynamic neuronal properties, such as 346 

learnable adaptation66 and membrane67 time constants or a slowly moving firing threshold68, 347 

performed better in complex tasks like image classification or playing Atari games. Since 348 

dendrites constitute a significant source of heterogeneity in biological networks, we expect that 349 

transferring their properties into SNNs can confer important computational advantages. These 350 

include a) the coexistence of numerous semi-independent integration sites within a single 351 

neuron34, b) flexible and adaptive information processing that adjusts to computational 352 

demand69, c) the presence of multi-timescale dynamics37, and d) synergy between different 353 

synaptic plasticity rules20. Indeed, few recent studies suggest that combining nonlinear dendritic 354 

mechanisms with local learning rules provides SNNs with compelling advantages over previous 355 

modeling standards. In particular, dendritic SNNs prolong memory retention in an associative 356 
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task20 and enable sophisticated credit assignment in hierarchical circuits59. However, despite 357 

noteworthy progress, we have a long way to go until we fully understand the implications of 358 

dendritic processing in neural network functions. 359 

Dendrify enables the development of reduced phenomenological neuron models that 360 

preserve many essential properties of their biological counterparts. It is designed for non-experts 361 

to increase its attractiveness to both experimental and theoretical groups interested in 362 

developing bioinspired SNNs. Although software tools that help create reduced neuron models 363 

are readily available26,48, they rely on the HH formalism to simulate VGICs across the 364 

somatodendritic axis. Here, by modeling dSpike mechanisms in an event-driven fashion, we 365 

significantly reduce model complexity while maintaining high biological accuracy. Moreover, 366 

contrary to similar known approaches20, dSpikes and BPAPs are not simulated by clamping 367 

segment voltages, allowing multiple synaptic or dendritic currents to be summed as in real 368 

neurons. Notably, the proposed approach requires a relatively small number of free parameters, 369 

resulting in straightforward model development and calibration. The latter is also facilitated by 370 

the intuitiveness and the powerful features of the Brian 2 simulator, which has seamless 371 

compatibility with Dendrify and requires only basic knowledge of the Python programming 372 

language. Finally, our approach allows testing new algorithms compatible with neuromorphic 373 

hardware70,71, which has seen impressive resource-saving benefits by including dendrites72. We 374 

expect Dendrify to be a valuable tool for anyone interested in developing SNNs with a high degree 375 

of bioinspiration to study how single-cell properties can influence network-level functions. 376 

It is important to note that the presented modeling framework does not come without any 377 

limitations. First, reduced compartmental models cannot compete with morphologically detailed 378 
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models in terms of spatial resolution. More specifically, in detailed models, each dendrite consists 379 

of several segments used to ensure numerical simulation stability and allow more sophisticated 380 

and realistic synaptic placement. In addition, since we do not utilize the HH formalism, certain 381 

experimentally observed phenomena cannot be replicated by the standard models provided with 382 

Dendrify. These include the depolarization block emerging in response to strong current 383 

injections73 or the reduction of backpropagation efficiency observed in some neuronal types 384 

during prolonged somatic activity59. Moreover, the current version of Dendrify supports only Na+ 385 

and partially Ca2+ VGICs and ignores many other known ion channel types74. Finally, synaptic 386 

plasticity rules must be manually implemented using the standard Brian 2 objects. However, 387 

Dendrify is a project in continuous development, and based on the community feedback, many 388 

new features or improvements will be included in future updates. 389 

In summary, we introduced a novel theoretical framework and a set of tools to allow the 390 

seamless development of reduced yet realistic spiking models of any neuronal type. We hope the 391 

tool will be readily adopted by neuroscientists and neuromorphic engineers, facilitating 392 

knowledge discovery while advancing the development of powerful brain-inspired artificial 393 

computing systems.  394 

 395 

Methods 396 

Code availability 397 

Dendrify’s code and detailed interactive Python notebooks related to all manuscript figures will 398 

be freely available on GitHub. 399 
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Somatic compartment 400 

The CA1 PC neuronal model is simulated as a leaky integrate-and-fire (I&F) model with 401 

adaptation. The equations that govern the dynamics of the soma are 402 

Cm
𝑠
d𝑉m

𝑠

d𝑡
= −g̅𝐿

𝑠(𝑉m
𝑠 − 𝐸𝐿

𝑠) − g𝐴(𝑉m
𝑠 − 𝐸𝐴) + ∑ 𝐼𝑎

𝑖,𝑠

𝑖∈𝒞𝑠

+ ∑ 𝐼syn
𝑗,𝑠

𝑗∈𝒮𝑠

+ 𝐼ext
𝑠  403 

𝜏𝐴
dg𝐴
d𝑡

= g̅𝐴|𝑉m
𝑠 − 𝑉𝐴| − g𝐴 404 

where 𝑉m
𝑠 denotes the somatic membrane voltage, Cm

𝑠  the membrane capacitance, g̅𝐿
𝑠  the 405 

constant leak conductance, 𝐸𝐿
𝑠 the leak reversal potential, g𝐴 the adaptation conductance, 𝐸𝐴 406 

the adaptation reversal potential, 𝐼𝑎
𝑖,𝑠 the axial current from the 𝑖-th compartment connected to 407 

the soma, 𝒞𝑠 the set with all compartments that are connected with the soma, 𝐼𝑠𝑦𝑛
𝑗,𝑠

 a current 408 

describing the effect of synaptic input from the 𝑗-th presynaptic neuron to the soma, 𝒮𝑠 a set 409 

with the presynaptic neurons connected to the soma, and 𝐼ext
𝑠  denotes an external current 410 

injected into the somatic compartment (similarly to an intracellular electrode). The adaptive 411 

conductance is changing over time with 𝜏𝐴 denoting the time constant of the adaptation, and g̅𝐴 412 

is the maximum conductance of the adaptation current. |⋅| denotes the absolute value. 413 

When the somatic voltage crosses a threshold, 𝑉th, a spike is generated. Here, we modified the 414 

traditional approach of the I&F models, where after a spike generation, the voltage resets back 415 

to a predetermined value, 𝑉reset, and we include two resets, one that drives the voltage instantly 416 

to a high value, 𝑉spike, to account for the biological spike amplitude, and we incrementally 417 

increase the g𝐴 by a constant amount 𝑏, to account for the spike-triggered adaptation, and then 418 
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after a short decay, we instantly reset the voltage to 𝑉reset. Mathematically, we describe this 419 

process as 420 

𝑖𝑓 𝑉m
𝑠 > 𝑉th 𝑡ℎ𝑒𝑛 {

𝑉m
𝑠 ← 𝑉spike

g𝐴 ← g𝐴 + 𝑏
𝑡spike ← 𝑡

 421 

𝑖𝑓 𝑡 = 𝑡spike + 0.5ms then 𝑉m
𝑠 ← 𝑉reset 422 

Dendritic compartments 423 

The dendritic compartments are governed by a similar equation for their dynamics, without the 424 

adaptation current and by adding two additional terms that control the simulation of the 425 

dendritic spikes. 426 

Cm
𝑑
d𝑉m

𝑑

d𝑡
= −g̅𝐿

𝑑(𝑉m
𝑑 − 𝐸𝐿

𝑑) + ∑ 𝐼𝑎
𝑖,𝑑

𝑖∈𝒞𝑑

+ ∑ 𝐼syn
𝑗,𝑑

𝑗∈𝒮𝑑

+ 𝐼Na
𝑑 + 𝐼Kdr

𝑑 + 𝐼ext
𝑑  427 

𝐼Na
𝑑 = −gNa

𝑑 (𝑉m
𝑑 − 𝐸Na)𝑓Na 428 

𝐼Kdr
𝑑 = −gKdr

𝑑 (𝑉m
𝑑 − 𝐸K)𝑓Kdr  429 

𝜏Na
d𝐼Na
𝑑

d𝑡
= −𝐼Na

𝑑  430 

𝜏Kdr
d𝐼Kdr
𝑑

d𝑡
= −𝐼Kdr

𝑑  431 

where the 𝐼Na
𝑑  and 𝐼Kdr

𝑑  denote the sodium (Na+) and the delayed-rectified potassium (K+) 432 

currents, respectively. gNa
𝑑  and gKdr

𝑑  are the corresponding conductances. These currents are 433 
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simulated as exponential decays, with time constants 𝜏Na and 𝜏Kdr, respectively. 𝑓Na and 𝑓Kdr  are 434 

Boolean parameters indicating the generation of a dendritic spike.  435 

Dendritic spike mechanism 436 

To activate the sodium current, the 𝑉m
𝑑 must cross a threshold, 𝑓Na to be equal to 1, and to be 437 

outside of the refractory period of the sodium current: 438 

𝑖𝑓 {

𝑉m
𝑑 > 𝑉𝑡ℎ

𝑑

𝑓Na = 1

 𝑡 > 𝑡spike
𝑑 + 𝑡𝑟𝑒𝑓

Na

 𝑡ℎ𝑒𝑛 

{
 
 

 
 gNa

𝑑 ← gNa
𝑑 + g̅Na

𝑑  

𝑓Na ← 0 
𝑓Kdr ← 1

𝑡spike
𝑑 ← 𝑡

 439 

where 𝑡𝑟𝑒𝑓
Na  is the refractory period during which another dendritic spike cannot be generated, 440 

g̅Na
𝑑  is the increase in conductance, and 𝑡spike

𝑑  denotes the time that voltage crosses the 441 

threshold. 442 

To activate the potassium current, a time delay should have passed and 𝑓Kdr  should be equal to 443 

1.  444 

𝑖𝑓 {
𝑡 > 𝑡spike

𝑑 + 𝑡𝑜𝑓𝑓𝑠𝑒𝑡
Kdr

𝑓Kdr = 1
 𝑡ℎ𝑒𝑛 {

gKdr
𝑑 ← gKdr

𝑑 + g̅Kdr
𝑑

𝑓Na ← 1
𝑓Kdr ← 0

 445 

where 𝑡𝑜𝑓𝑓𝑠𝑒𝑡
Kdr  denotes the time-delay in potassium current generation, and g̅Kdr

𝑑  is the increase 446 

in conductance. 447 

In particular, when the dendritic membrane voltage crosses a threshold, a sodium current is 448 

applied, and after a delayed time, a potassium current is generated. 449 
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Axial currents between compartments 450 

Each compartment receives an axial current as a sum over all axial current flowing towards it 451 

and coming from the connected compartments. The total axial current of the 𝑘-th 452 

compartment of the neuronal model is 453 

𝐼𝑎
𝑘 = ∑ 𝐼𝑎

𝑖,𝑘

𝑖∈𝒞𝑘

 454 

where 𝒞𝑘 denotes all compartments that are connected with the 𝑘-th compartment. Each 455 

compartment-specific axial current is given by 456 

𝐼𝑎
𝑖,𝑘 = g𝑐

𝑖,𝑘(𝑉m
𝑘 − 𝑉m

𝑖 ) 457 

where the g𝑐
𝑖,𝑘 denotes the coupling conductance between the 𝑖-th and 𝑘-th compartments. 458 

We use two approaches to calculate the g𝑐
𝑖,𝑘 based on the morphological properties of the 459 

compartments. 460 

When the total number of compartments is low and the adjacent-to-soma compartments are 461 

highly coupled with the soma, we calculate the coupling conductance as the reverse 𝑅long 462 

𝑅long =
𝑟𝑎𝑙

𝑘

𝜋 (
𝑑𝑘

2
)
2 ⇒ g𝑐

𝑖,𝑘 =
1

𝑅long
 463 

where 𝑑𝑘 denotes the diameter of the 𝑘-th compartment, 𝑙𝑘 its length and 𝑟𝑎 its specific axial 464 

resistance in Ω ⋅ cm. The coupling conductance is given in 𝑆 (siemens). Thus, the axial current is 465 

calculated in absolute units, i.e.,  𝐴 (ampere). 466 
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The second method uses the half-cylinder approach, where the coupling term of two adjacent 467 

compartments is calculated between their centers. 468 

𝑅long =
1

2

(

 
𝑟𝑎𝑙

𝑘

𝜋 (
𝑑𝑘

2
)
2 +

𝑟𝑎𝑙
𝑖

𝜋 (
𝑑𝑖

2
)
2

)

 ⇒ g𝑐
𝑖,𝑘 =

1

𝑅long
 469 

Notice that we did not divide by the surface area of interest as we wrote the differential 470 

equations in absolute terms. Thus, two adjacent compartments have the same coupling 471 

conductance g𝑐
𝑖,𝑘 = g𝑐

𝑘,𝑖. 472 

Global and specific properties 473 

We assume that all compartments are cylinders with known diameter 𝑑 and length 𝑙. The surface 474 

area of the 𝑖-th compartment (open cylinder) is given by: 475 

𝐴𝑖 = 2𝜋 (
𝑑𝑖

2
) 𝑙𝑖 476 

and its total membrane capacitance and leak conductance are given by: 477 

Cm
𝑖 = 𝑐m

𝑖 𝐴𝑖, g̅𝐿
𝑖 =

1

𝑟m
𝑖
𝐴𝑖  478 

where 𝑐m
𝑖  is the specific capacitance in uF/cm2 and 𝑟m

𝑖  is the specific membrane resistivity in Ω ⋅479 

cm2. 480 

Synaptic currents 481 

The synaptic currents that can flow to each compartment can be AMPA, NMDA, or GABA. The 482 

mathematical description is: 483 
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𝐼syn
𝑖 (𝑡) = g̅syn

𝑖 𝑓syn(𝜏syn
rise, 𝜏syn

decay
)𝑠syn

𝑖 (𝑡)(𝑉m
𝑖 − 𝐸syn)𝜎(𝑉m

𝑖 ), syn ∈ {AMPA, NMDA, GABA} 484 

where 𝑓syn(𝜏syn
rise, 𝜏syn

decay
) is a normalization factor dependent on the rise and decay time 485 

constants (𝜏syn
rise and 𝜏syn

decay
) to ensure that for every presynaptic spike, the maximum 486 

conductance is g̅syn
𝑖 , i.e., the 𝑓syn(𝜏syn

rise, 𝜏syn
decay

)ssyn
𝑖 (𝑡) term is bounded in [0,1]. 487 

The 𝑠syn
𝑖 (𝑡) term denotes the time-dependence of the synaptic conductance. Here, we use two 488 

methods; one with a dual exponential form as we want to set the rise and decay times 489 

independently, and the other as a simple exponential decay. 490 

The dual exponential function is given by: 491 

𝑠syn
𝑖 (𝑡) = 𝐻(𝑡 − 𝑡𝑝𝑟𝑒) (exp(−

𝑡 − 𝑡𝑝𝑟𝑒

𝜏syn
decay

) −exp(−
𝑡 − 𝑡𝑝𝑟𝑒

𝜏syn
rise

)) 492 

where 𝐻(𝑧) denotes the Heaviside function 493 

𝐻(𝑧) = {
1, if 𝑧 ≥ 0
0, if 𝑧 < 0

 494 

The normalization factor is the peak value of 𝑠syn
𝑖  at time 𝑡𝑝𝑒𝑎𝑘. 495 

d𝑠syn
𝑖

d𝑡
=
set
0 ⇔ 𝑡𝑝𝑒𝑎𝑘 =

𝜏syn
decay

𝜏syn
rise

𝜏syn
decay

− 𝜏syn
rise

ln (
𝜏syn
decay

𝜏syn
rise

) + 𝑡𝑝𝑟𝑒 496 

𝑓syn(𝜏syn
rise, 𝜏syn

decay
) =

1

𝑠syn
𝑖 (𝑡𝑝𝑒𝑎𝑘)

 497 
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For AMPA and GABA currents, the voltage-dependence is neglected, i.e., 𝜎(𝑉m
𝑖 ) = 1. For the 498 

NMDA currents, which are voltage-dependent due to magnesium (Mg2+) blockade, the sigmoidal 499 

function 𝜎 is given: 500 

𝜎(𝑉m
𝑖 ) =

1

1 +
[Mg2+]o

β
⋅ exp (−𝛼(𝑉m

𝑖 − 𝛾))
 501 

where 𝛽 (mM), 𝛼 (mV−1) and 𝛾 (mV) control the magnesium and voltage dependencies, 502 

respectively, and [Mg2+]o  denotes the external magnesium concentration, usually set at a 503 

predetermined and constant level (in mM). 504 

The dynamics of the synaptic conductance are given by a set of two differential equations that 505 

simulate the double exponential relationship found in synapses: 506 

d𝑠syn
𝑖

d𝑡
= −

𝑠syn
𝑖

𝜏syn
decay

+
𝑥syn
𝑖 (1 − 𝑠syn

𝑖 )

𝜏syn
rise

 507 

d𝑥syn
𝑖

d𝑡
= −

𝑥syn
𝑖

𝜏syn
rise

 508 

𝑖𝑓 𝑡 = 𝑡𝑝𝑟𝑒  𝑡ℎ𝑒𝑛 𝑥syn
𝑖 ← 𝑥syn

𝑖 + 1 509 

The simple decay function is given by: 510 

𝑠syn
𝑖 (𝑡) = 𝐻(𝑡 − 𝑡𝑝𝑟𝑒) exp (−

𝑡 − 𝑡𝑝𝑟𝑒

𝜏syn
decay

) 511 

The dynamics of the synaptic conductance is governed by one differential equation: 512 
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d𝑠syn
𝑖

d𝑡
= −

𝑠syn
𝑖

𝜏syn
decay

 513 

𝑖𝑓 𝑡 = 𝑡𝑝𝑟𝑒 𝑡ℎ𝑒𝑛 𝑠syn
𝑖 ← 𝑠syn

𝑖 + 1. 514 

The normalization function when the simple decay method is applied is 𝑓syn = 1. 515 

As a compartment can receive more than one presynaptic connection of the same type and/or 516 

synapses of different type simultaneously, the total synaptic current of the 𝑖-th compartment is 517 

given by: 518 

𝐼syn
𝑖 (𝑡) = g̅AMPA

𝑖 (𝑉m
𝑖 − 𝐸AMPA)𝑓AMPA ∑ 𝑠AMPA

𝑗,𝑖 (𝑡)

𝑗∈𝒮AMPA
𝑖

519 

+ g̅NMDA
𝑖 (𝑉m

𝑖 − 𝐸NMDA)𝑓NMDA ∑ 𝑠NMDA
𝑗,𝑖 (𝑡)

𝑗∈𝒮NMDA
𝑖

520 

+ g̅GABA
𝑖 (𝑉m

𝑖 − 𝐸GABA)𝜎(𝑉m
𝑖 )𝑓GABA ∑ 𝑠GABA

𝑗,𝑖 (𝑡)

𝑗∈𝒮GABA
𝑖

. 521 

 

 

A practical guide for developing reduced models with bioinspired properties. 522 

Here, we provide a step-by-step guide for developing simplified compartmental models that 523 

capture key electrophysiological and anatomical features of their biological counterparts. The 524 

proposed protocol relies on the previous work of Bush & Sejnowski21 and focuses on achieving 525 

realistic axial resistance (𝒓𝒂), input resistance (𝑹𝒊𝒏) and membrane time constant (𝛕𝐦) along with 526 

accurate positioning of synaptic inputs and ionic conductances. We illustrate this approach by 527 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490412doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490412
http://creativecommons.org/licenses/by-nc/4.0/


39 
 

breaking down the development and validation of a reduced CA1 pyramidal cell (CA1 PC).  528 

 

Step 1: Identify the most important anatomical and functional regions found in the neuronal 529 

morphology  530 

 

Reconstruction of a human CA1 PC 
(adopted from the neuromorpho.org) 

 

Based on the CA1 region layering and the spatial segregation of external input pathways, CA1 531 

pyramidal neurons can be partitioned into five functionally distinct neuronal regions75: 532 

i. The perisomatic area → primary spiking unit (s. Pyramidale) 533 

ii. The basal dendritic area → CA3 input receiver (s. Oriens) 534 

iii. The proximal apical dendritic area → dendritic region devoid of spines (s. Radiatum, < 100 535 

um from soma) 536 

iv. The medial apical dendritic area → CA3 input receiver (s. Radiatum, > 100 um from soma) 537 
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v. The distal apical dendritic area → EC layer III input receiver (s. Lacunosum Moleculare) 538 

 

Step 2: Design a toy model capturing the main neuronal features identified in the previous step 539 

• Using cylindrical compartments, design a toy model that captures the main morphological 540 

features of the neuron of interest. The number of model compartments should not be 541 

less than the number of the identified, functionally unique neuronal regions. This would 542 

prevent the model from processing the various input pathways semi-independently, as 543 

occurs in real CA1 PCs61.  544 

 

A basic five-compartment CA1 PC model 

 

• If biological accuracy is more important than simulation performance, the number of 545 

compartments can be further increased to account for more neuronal features. For 546 

example, adding 4 compartments to the previous model allows to account for the 547 
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increased dendritic branching that is observed in the distal, medial and basal areas of CA1 548 

PC dendrites. Other examples of morphologically reduced CA1 models can be seen in 549 

Tomko et. al47. 550 

 

A nine-compartment CA1 PC model with a high degree of bioinspiration 

 

Set the dimensions of the compartments according to the rules described by Bush & Sejnowski21. 551 

In short, their approach aims to preserve realistic attenuation of the currents traveling along the 552 

somatodendritic axis. This is achieved by creating compartments that have correct electrotonic 553 

length and a diameter that is representative of the dendritic diameter observed in real neurons. 554 

If there is no detailed morphological data, you can set the cylinder lengths that approximate the 555 

distance from soma and capture the decrease in dendritic diameter as you move away from the 556 

soma. Due to immense biological variability, the solutions to this problem are infinite, and a single 557 

most representative model is impossible to exist. 558 
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Step 3: Validation of passive parameters 559 

1) Membrane time constant 560 

• Start with the values of somatic capacitance (Cm) and leakage conductance (gL). Set Cm 561 

equal to 1 μF/cm2 and choose the appropriate gL value so that the desired membrane 562 

time constant (τm) is achieved according to the formula τm = Cm/gL. 563 

• Next, use the same values for the dendrites, but we multiply both by a factor of 1.2-2.0 564 

(depends on experimental data, use 1.5 if this value is unknown) to account for the added 565 

area due to synaptic spines that are not explicitly modeled. 566 

2) Input resistance and somatodendritic attenuation 567 

• Set the axial resistance (Ra) according to experimental evidence, if available. Typical 568 

values range between 100-250 MOhm·cm. 569 

• Test the attenuation of currents along the somatodendritic axis by applying long somatic 570 

current injections (Fig. 4). By default, Dendrify calculates the coupling conductances 571 

according to the half-cylinders formula76: 572 

𝑅long =
1

2

(

 
𝑟𝑎𝑙

𝑘

𝜋 (
𝑑𝑘

2
)
2 +

𝑟𝑎𝑙
𝑖

𝜋 (
𝑑𝑖

2
)
2

)

 ⇒ g𝑐
𝑖,𝑘 =

1

𝑅long
 573 

where scripts 𝑖 and 𝑘 denote two adjacent compartments, and 𝑙, 𝑑 denote the length and 574 

the diameter of the compartments, respectively. 575 

 576 
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Importantly, small manual corrections might be necessary to achieve more realistic attenuation. 577 

• Calculate the ’model’s input resistance (𝑅𝑖𝑛) by using a typical, hyperpolarizing current 578 

step protocol45. Most likely, the initial values will deviate from the experimental values 579 

due to the reduced membrane area of the simplified model. This is why we multiply both 580 

Cm and gL (somatic and dendritic) with the same scale factor until the model reaches the 581 

desired 𝑅𝑖𝑛  as explained here21. 582 

 

Step 4: Validation of active properties 583 

This step assumes that for the soma, an I&F model with adaptation is used such as the AdEx77, 584 

CAdEx78 or Izhikevich79 model. Use somatic current injections to validate the Rheobase and FI 585 

curve by adjusting the model variables based on the model-specific guidelines. 586 

Step 5: Validation of dendritic integration 587 

The last step includes the validation of the Na+ dendritic spike. First, we set a realistic gNa to gK 588 

ratio, based on experimental evidence. Then, we set a voltage threshold, which denotes the 589 

membrane voltage values above which a dSpike is initiated. To account for the geometrical 590 

characteristics of the dendritic compartments, we multiply both conductances with the 591 

compartmental surface area, i.e., 𝐴𝑖. Using the validation protocol depicted in Fig. S3, we scale 592 

the conductances to capture a realistic dSpike amplitude. 593 
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Supplementary material 789 

 

Figure S1 | Validation of the passive CA1 PC model properties (relevant to Fig. 6). a-c) Estimating 

various model properties by replicating an experimental1, light somatic stimulation protocol (500 

ms long somatic current injection of -10 pA amplitude). a) Schematic showing the somatic voltage 

trace used to calculate input resistance (𝑅𝑖𝑛). b) The membrane time constant (τm) was 

measured by fitting a monoexponential to the somatic membrane hyperpolarization. c) Somatic 
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and dendritic voltage traces used to estimate the steady-state, distance-dependent voltage 

attenuation. d) Schematic showing the measurement of the sag ratio by using a strong somatic 

stimulation protocol1 to elicit the sag response (500 ms long current injection of -394 pA 

amplitude to bring the somatic voltage to -105 mV). e-g) Comparing model properties against 

experimental in vitro data1 regarding deep and superficial PCs of the CA1b Hippocampal region. 

The experimental values are depicted as means ± std (Nsuper = 29, Ndeep = 27). 
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Figure S2 | Unitary synaptic responses of the CA1 PC model (relevant to Fig. 6). Overlay of the 

dendritic (colored) and the respective somatic (black) voltage responses when a single excitatory 

synapse is activated in each dendritic location. Synaptic conductances (gAMPA, gNMDA) were 

manually adjusted to achieve realistic somatic responses2. uPSP: somatic unitary postsynaptic 

potential. r: the ratio of the somatic to the dendritic peak voltage response (ΔVsoma /ΔVdend).  
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Figure S3 | Dendritic spiking in the CA1 PC model (relevant to Fig. 6). Dendritic voltage responses 

when Rheobase current (enough current to elicit a single dSpike) is injected directly into each 

dendrite (5 ms long square pulse). Notice that larger compartments such as the medial dendrite 

(panel b) and the trunk (panel d) require significantly more current (IR) to generate a dSpike than 

smaller compartments. Shaded boxes: show the 5 ms long stimulation period. IR: Rheobase 

(dSpike threshold) current. 
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Figure S4 | Single pathway effect on somatic and dendritic spiking (relevant to Fig. 7). a) When 

only the ECIII input is administered to a pool of 10,000 PCs, more than half (~55%) will generate 

at least a single dSpike in one of their distal dendrites. However, due to strong dendritic 

attenuation, the effect on somatic output is negligible. b) When only the CA3 input is available, 

both the receiver dendrites (medial and oblique branches) and the soma produce subthreshold 

responses. Notably, both input pathways are simulated as independent Poisson processes, the 

rate of which is selected to mimic the experiments of Jarsky et al. 3. 
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Figure S5 | Understanding the role of dendritic Na+ spikes in coincidence detection in CA1 PCs 

(relevant to Fig. 7). a) When only the ECIII input pathway is active, distal dendrites can generate 

dSpikes that fail to propagate to the soma due to strong dendritic attenuation. b) When only the 

CA3 input pathway is active, it is not powerful enough to elicit any dendritic or somatic spikes. c) 

When both input the ECIII and CA3 pathways are active, their synergistic effect results in strong 

dendritic activation that succeeds in activating the soma. d) Deactivating dendritic spiking inhibits 

also deactivates the somatic output even when both input the ECIII and CA3 pathways are active. 
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Table S1 | Parameters for the model shown in Figure 2 

Timestep dt 0.1 ms 

Specific membrane capacitance Cm 1 μF / cm2 

Specific leak conductance gL 50 μS / cm2 

Axial resistance ra 150 Ω · cm 

Resting potential (all compartments) Vrest -70 mV 

Spiking threshold Vth -40 mV 

Voltage reset after spike Vr -50 mV 

Refractory period after spike tref 3 ms 

Length soma Lsoma 25 μm 

Diameter soma Dsoma 25 μm 

Length apical Lapical 250 μm 

Diameter apical Dapical 2 μm 

Length basal Lbasal 150 μm 

Diameter basal Dbasal 2 μm 

Area scale factor sfarea 3 

Spine area factor sfspines 1.5 

Coupling conductance (soma-apical) gsoma↔apical 10 nS 

Coupling conductance (soma-basal) gsoma↔basal 10 nS 

Noise mean intensity μnoise 0 pA 

Noise standard deviation σnoise 3 pA 

Noise time constant τnoise 20 ms 

AMPA conductance gAMPA 1 nS 

AMPA time constant τAMPA 2 ms 

NMDA conductance gNMDA 1 nS 

NMDA time constant τNMDA 60 ms 

alpha (NMDA) α 0.062 mV-1 

beta (NMDA) β 3.57 mM 

gamma (NMDA) γ 0 mV 

AMPA / NMDA reversal potential EAMPA / ENMDA 0 mV 
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Table S2 | Parameters for the model shown in Figure 4 

Timestep dt 0.1 ms 

Specific membrane capacitance Cm 1 μF / cm2 

Specific leak conductance gL 40 μS / cm2 

Axial resistance ra 150 Ω · cm 

Resting potential (all compartments) Vrest -70 mV 

Spiking threshold Vth -40 mV 

1st voltage reset after spike Vr1 40 mV 

2nd voltage reset after spike Vr1 -55 mV 

Spike duration dAP 0.5 ms 

Refractory period after spike tref 5 ms 

Length soma Lsoma 25 μm 

Diameter soma Dsoma 25 μm 

Length proximal Lprox 100 μm 

Diameter proximal Dprox 2.5 μm 

Length medial Lmed 100 μm 

Diameter medial Dmed 1 μm 

Length distal Ldist 100 μm 

Diameter distal Ddist 0.5 μm 

Area scale factor sfarea 2.8 

Spine area factor sfspines 1.5 

Coupling conductance (soma-prox) gsoma↔prox 15 nS 

Coupling conductance (prox-med) gprox↔med 10 nS 

Coupling conductance (med-dist) gmed↔dist 4 nS 

AMPA conductance gAMPA 0.8 nS 

AMPA time constant τAMPA 2 ms 

NMDA conductance gNMDA 0.8 nS 

NMDA time constant τNMDA 60 ms 

alpha (NMDA) α 0.062 mV-1 

beta (NMDA) β 3.57 mM 

gamma (NMDA) γ 0 mV 

AMPA / NMDA reversal potential EAMPA / ENMDA 0 mV 

dSpike rise time constant τrise 0.6 ms 

dSpike fall time constant τdecay 1.2 ms 

Refractory period after dSpike  5 ms 

Offset of dSpike fall  0.2 ms 
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Table S3 | Parameters for the CA1 PC model shown in Figure 6 

Timestep dt 0.1 ms 

Specific membrane capacitance Cm 1 μF / cm2 

Specific leak conductance gL 40 μS / cm2 

Axial resistance ra 120 Ω · cm 

Resting potential (all compartments) Vrest -65 mV 

Spiking threshold Vth -47.5 mV 

Subthreshold adaptation activation voltage Va -65 mV 

Time constant of adaptation τa 45 ms 

Max subthreshold adaptation conductance ga 0.15 nS 

Spike-triggered adaptation Δgα 21 nS 

1st voltage reset after spike Vr1 37.5 mV 

2nd voltage reset after spike Vr1 -53 mV 

Spike duration dAP 0.8 ms 

Refractory period after spike tref 4 ms 

Length soma Lsoma 30 μm 

Diameter soma Dsoma 20 μm 

Length trunk Ltrunk 100 μm 

Diameter trunk Dtrunk 2 μm 

Length medial Lmed 150 μm 

Diameter medial Dmed 1.25 μm 

Length distal Ldist 150 μm 

Diameter distal Ddist 0.8 μm 

Length oblique Lobl 100 μm 

Diameter oblique Dobl 1 μm 

Length basal Lbas 150 μm 

Diameter basal Dbas 0.8 μm 

Area scale factor sfarea 2.9 

Spine area factor sfspines 1.5 

Coupling conductance (soma-basal) gsoma↔basal 3.8 nS 

Coupling conductance (prox-trunk) gprox↔trunk 22 nS 

Coupling conductance* (trunk-oblique) gtrunk↔obl 10.48 nS 

Coupling conductance* (trunk-medial) gtrunk↔med 10.82 nS 

Coupling conductance* (medial-distal) gmed↔dist 3.96 nS 

AMPA reversal potential EAMPA  0 mV 

AMPA time constant τAMPA 2 ms 

AMPA conductance distal gAMPA_dist 0.81 nS 

AMPA conductance medial gAMPA_med 0.81 nS 
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AMPA conductance oblique gAMPA_ob 0.6 nS 

AMPA conductance basal gAMPA_bas 0.6 nS 

NMDA reversal potential ENMDA 0.35 mV 

NMDA time constant τNMDA 60 ms 

NMDA conductance distal gAMPA_dist 0.81 nS 

NMDA conductance medial gAMPA_med 0.4 nS 

NMDA conductance oblique gAMPA_ob 0.4 nS 

NMDA conductance basal gAMPA_bas 0.4 nS 

Magnesium concentration  [Mg2+]o 1 

alpha (NMDA) α 0.087 mV-1 

beta (NMDA) β 3.57 mM 

gamma (NMDA) γ 10 mV 

Sodium reversal potential ENa 50 mV 

Potassium reversal potential EK -90 mV 

dSpike threshold  -42.5 mV 

dSpike rise time constant  0.5 ms 

dSpike fall time constant  1.2 ms 

Refractory period after dSpike  4.2 ms 

Offset of dSpike fall  0.6 ms 

Sodium channels conductance gNa 10 mS / cm2 

Potassium channels conductance gK 4 mS / cm2 

*Value generated by Dendrify 
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