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Abstract

Computational modeling has been indispensable for understanding how subcellular neuronal
features influence circuit processing. However, the role of dendritic computations in network-
level operations remains largely unexplored. This is partly because existing tools do not allow the
development of realistic and efficient network models that account for dendrites. Current spiking
neural networks, although efficient, are usually quite simplistic, overlooking essential dendritic
properties. Conversely, circuit models with morphologically detailed neuron models are
computationally costly, thus impractical for large-network simulations. To bridge the gap
between these two extremes, we introduce Dendrify, an open-source Python package
compatible with Brian2, designed to facilitate the development of bioinspired spiking neural
networks. Dendrify, through simple commands, automatically generates reduced compartmental

neuron models with simplified yet biologically relevant dendritic and synaptic integrative
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properties. Such models strike a good balance between flexibility, performance, and biological
accuracy, allowing us to explore dendritic contributions to network-level functions while paving

the way for developing more powerful neuromorphic systems.

Introduction

Simulations of spiking neural networks (SNNs) are widely used to understand how brain
functions arise from area-specific network dynamics'. Moreover, SNNs have recently gained
much attention for their value in low-power neuromorphic computing and practical machine
learning applications®3. SNNs typically comprise point, integrate-and-fire (I&F) neurons and can
replicate basic biological features such as specific connectivity motifs, excitation-inhibition
dynamics, and learning via synaptic plasticity rules. However, SNNs often ignore dendrites, the
thin membranous extensions of neurons that receive the vast majority of incoming inputs.
Numerous studies have shown that the dendrites of excitatory and inhibitory neurons possess
compelling computational capabilities*” that can significantly influence both neuronal and circuit

function®® and cannot be captured by point-neuron SNNs.

First, dendrites can act as semi-independent thresholding units, producing local
regenerative events termed dendritic spikes (dSpikes). These spikes are generated by local
voltage-gated mechanisms (e.g., Na*/Ca?* channels, NMDA receptors) and influence both
synaptic input integration and plasticity*°. Moreover, dendritic mechanisms operate in multiple
timescales, ranging from a few up to hundreds of milliseconds, allowing complex computations,
including coincidence detection, low-pass filtering, input segregation/amplification, parallel

nonlinear processing, and logical operations®15.
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Due to these nonlinear phenomena, the arrangement of synapses along dendrites becomes
a key determinant of local and somatic responses. For example, the impact of inhibitory pathways
depends on their exact location relative to excitatory inputs!®!’. Moreover, functionally related
synapses can form anatomical clusters, which facilitate the induction of dSpikes, thus increasing
computational efficiency and storage capacity'®2°. Finally, dendritic morphology and passive
properties shape the general electrotonic properties of neurons?. For example, dendritic filtering
affects both the amplitude and the kinetics of synaptic currents traveling towards the somain a
location-dependent manner. Given the complexity of dendritic processing, SNNs that lack
dendrites may fail to account for important dendritic contributions to neuronal integration and

output, limiting their true computational power.

Conversely, biophysical models of neurons with a detailed morphology are ideal for
studying how dendritic processing affects neuronal computations at the single-cell level. Such
models comprise hundreds of compartments, each furnished with numerous ionic mechanisms
to faithfully replicate the electrophysiological profile of simulated neurons. However, achieving
high model accuracy is typically accompanied by increased complexity (e.g., higher CPU/GPU
demands and larger run times), as numerous differential equations have to be solved at each
simulation time step!. Therefore, this category of models is unsuitable for large-network

simulations, where computational efficiency is a key priority.

A middle-ground solution utilizes simplified models that capture only the essential
electrophysiological characteristics of real neurons?=26, Notable examples of this approach are
found in recent theoretical studies showing that dendritic mechanisms convey significant

advantages to simplified network models of varying levels of abstraction. These include improved

3
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associative learning?®, better input discrimination (pattern separation?’), efficient short-term
memory (persistent activity?®), and increased memory storage and recall capacity®. Similar
advantages were recently seen in the machine learning field: the addition of dendritic nodes in
artificial neural networks (ANNs) reduced the number of trainable parameters required to
achieve high-performance accuracy?® (also see3°). Moreover, incorporating dendritic nodes in
Self Organizing Map classifiers3! and other types of neuro-inspired networks3? improved their

ability to learn continuously.

Overall, while dendrites confer advanced computational power to simulated biological
networks and these benefits are likely to extend to machine learning systems, SNNs remain
largely dendrite-ignorant. A likely reason is that the current theoretical framework for modeling
dendritic properties consists of overly complex equations with numerous free parameters,

making it mathematically intractable and impractical for use in SNNs.

To address the abovementioned complexity issues and provide a framework that allows
the seamless incorporation of dendrites in SNN models, we developed Dendrify (Figure 1).
Dendrify is a free, open-source Python package that facilitates the addition of dendrites along
with various dendritic mechanisms in SNNs. Importantly, Dendrify works seamlessly with the
Brian 2 simulator33; it builds upon the powerful and flexible features of the latter while it
automates some potentially complex and error-prone steps related to compartmental modeling.
Specifically, through simple and intuitive commands, Dendrify automatically generates and
handles all the equations (and most parameters) needed by Brian 2 to build simplified
compartmental neurons. Its internal library of premade models supports a broad range of

neuronal mechanisms, yet it allows users to provide their own model equations. Among other

4
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85  optimizations, we also introduce a novel phenomenological approach for modeling dSpikes,

86  significantly more efficient and mathematically tractable than the Hodgkin-Huxley formalism.

Detailed biophysical Reduced I&F
models models
//’ Dendrify \\
atga \ 1okr
X Inneficient ,/'/ Realistic v Lightweight %, X Unrealistic
/ \
1 \
. 1
X Require :' v Highly v/ Easyto 1X Low
expertise | accurate develop E accuracy
]
I 1
X Numerous i v Dendritic v Fewer EX No active
parameters | mechanisms parameters | dendrites
1 ]
\ 1
X Small \ v Low-level v/ Large / x simple
networks \\ experiments networks /' experimetns
N, ,/
b
Na* spikes
2+ o
Ca“" spikes
N g .4
O oOol%w O |
\ /\ ! | 7 7\,"/|\v/\| | Q
' 0f - 101708 ]
O ANA IR S
NMDA spikes ) O | bad

7\| n |‘7< (

x| Qo
Q1o [RR
nNARA QO

N 7\ "N R
Microcircuit of detailed SNN comprising active
biophysical neurons dendritic mechanisms

Figure 1 | The main characteristics of Dendrify. a) Dendrify stemmed from our efforts to bridge
the gap between detailed biophysical models and reduced I&F models. The result is a modeling
framework for developing simplified compartmental models that balance efficiency and
biological accuracy by capturing the most important characteristics of both worlds. b) Dendrify
facilitates the development of SNNs comprising reduced compartmental neurons (ball and sticks)
and known dendritic phenomena, such as various types of local spikes (Color code; teal: Na*

spikes, red: Ca?* spikes, orange: NMDA spikes. Scalebar: 20mV / 10ms).
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87 To demonstrate the power of Dendrify, we showcase its main features through four
88 modeling paradigms of increasing complexity. a) A basic compartmental model with passive
89 dendrites, b) a reduced compartmental model with active dendrites, c¢) a simplified model of a
90 CA1 pyramidal neuron that reproduces numerous experimental observations, and d) a pool of
91 CAl neurons used to assess the contribution of dendritic Na* spikes in coincidence input
92  detection. Moreover, we provide a step-by-step guide for designing reduced compartmental
93  models that capture the key electrophysiological and anatomical properties of their biological
94  counterparts. Notably, the proposed guide builds upon established theoretical work??>24, and
95 its implementation is not exclusive to any simulator software. To our knowledge, this is the first
96 tool that adds dendrites to simple, phenomenological neuronal models in a standardized and

97  mathematically concise manner.

98 Results

99 Example 1: A basic compartmental model with passive dendrites

100 We start with a simple neuron model consisting of three compartments (Fig. 2a). A soma,
101 modeled as a leaky I&F unit, and two passive dendrites (apical & basal) that are electrically
102  coupled to the soma (see Methods). This architecture is meant to roughly resemble the general
103  dendritic organization of excitatory, pyramidal-like neurons. In this example, the apical dendrite
104  can integrate excitatory synaptic inputs consisting of a fast a-amino-3-hydroxy-5-methyl-4-
105 isoxazolepropionic acid (AMPA) component and a slow N-methyl-D-aspartate (NMDA)

106  component. In addition, both dendritic compartments are connected to a source of Gaussian
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white noise (i.e., noisy input current). The Python code needed to reproduce this model is

described in Fig. 3. All model parameters are available in Table S1.

To test our model’s electrical behavior, we applied depolarizing current injections (400 ms
pulses of 100 pA at -70 mV baseline voltage) individually to each compartment and recorded the
voltage responses of all compartments (Fig. 2b). As expected, the largest depolarization was
observed at the current injection site, while compartments located further apart were less
affected. Note that the basal dendrite in this model is more excitable than the apical one due to
the difference in length (150 pum vs. 250 um, respectively). The attenuation of currents traveling

along the somatodendritic axis is an intrinsic property of biological neurons and is due to the

morphology and cable properties of dendritic trees*34,
a b
100 pA — soma 100 pA — apical 100 pA — basal
Model 1 I e I o
>
|
wn
100 ms
apical NMDA
AMPA
c d
AMPA & NMDA NMDA blocked Somatic responses
30
input # —
35 E
soma E  AMPA&NMDA
% - 8 20
25 E |_ o
0 input # I_'g
20 50 ms 3 3]
basal s 32 5 10
20 ®
10 13 [}
5 s = AMPA
— 0
0 10 20

Expected EPSP (mV)

Figure 2 | A basic compartmental neuron model with passive dendrites. a) Schematic
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illustration of a compartmental model consisting of a soma (spiking unit) and two dendrites
(passive integrators). The apical dendrite can integrate excitatory synapses comprising AMPA and
NMDA currents. b) Membrane voltage responses to current injections of the same amplitude,
applied individually to each compartment. Notice the electrical segregation caused by the
resistance between the three neuronal compartments. ¢) Somatic responses to a varying number
of simultaneous synaptic inputs. Left: control EPSPs, right: EPSPs in the presence of NMDA
blockers. d) Input-output function of the apical dendrite as recorded at the soma. The dotted line
represents a linear function. Notice the shift from supralinear to sublinear mode when NMDARs
are blocked. The simulations and analysis code related to the above figure will be provided upon

reasonable request, and will be freely available upon publication.

117 Although dendritic attenuation may seem undesirable, it has several computational
118 advantages®. For instance, it allows dendrites to operate semi-independently from the soma®
119  and perform complex functions, especially when paired with local voltage-gated mechanisms. In
120  our toy model, simultaneous activation of an increasing number of synapses on the apical
121  dendrite evokes somatic responses much larger than the expected arithmetic sum of individual
122 inputs (Fig. 2c-d). The additional depolarization is due to the activation of NMDARs (at elevated
123  dendritic voltages), resulting in supralinear integration. However, when NMDARs are blocked,
124  the apical dendrite switches from supralinear to a sublinear integration mode (Fig. 2c-d), and this
125  alteration can be dendrite-specific. This happens because synaptic currents are susceptible to the
126  decrease in driving force as dendritic voltage approaches the AMPA reversal potential (Eampa=0
127  mV). Both types of dendritic integration have been observed in real neurons and allow distinct

128  computations, such as e.g. clustered vs. scattered input sensitivity3*.

129 This example shows that even rudimentary compartmental models can simulate essential
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dendritic functions like signal attenuation and segregation that point-neuron models cannot
capture. Importantly, they allow the presence of multiple input segregation sites, theoretically
enhancing the computational capacity of single neurons3®. In addition, we provide an example of
how even basic dendritic-driven mechanisms can impact neuronal integration and somatic
output.

import brian2 as b

> from brian2.units import *
from dendrify import Soma, Dendrite, NeuronModel

soma = Soma('soma', model='leakyIF', length=25%um, diameter=25%um)

apical = Dendrite('apical', length=250%*um, diameter=2xum)

basal = Dendrite('basal', length=150*um, diameter=2*um)

) apical.noise(tau=20*ms, sigma=3*pA, mean=0*pA)
) basal.noise(tau=20*ms, sigma=3*pA, mean=0%*pA)

) apical.synapse('AMPA', pre='cortex', g=1*nS, t_decay=2*ms)
) apical.synapse('NMDA', pre='cortex', g=1*nS, t_decay=60*ms)

edges = [(soma, apical, 10*nS), (soma, basal, 10*nS)]

pyr_model = NeuronModel(edges, cm=1*uF/(cm**2), gl=50*uS/(cmx*2),
v_rest=-70*mV, r_axial=150xohm*cm,
scale_factor=3, spine_factor=1.5)

) pyr_group = b.NeuronGroup(4, model=pyr_model.equations, method='euler",
threshold='V_soma > -40*mV', reset='V_soma = -50*mV',
refractory=3*ms, namespace=pyr_model.parameters)

» pyr_model.link(pyr_group)

Figure 3 | Python code for the neuron model in Figure 2a. Dendrify applies a standardized
approach for describing the architecture, mechanisms, and parameters of simplified

compartmental models. This approach involves creating Soma/Dendrite objects (lines 6, 9, 12)
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representing the model’s compartments. Here, soma acts as the primary spiking unit (leaky I1&F),
while dendrites are simulated (by default) as passive leaky integrators. Users can specify each
compartment’s physical dimensions, which are used to calculate its surface area. Moreover,
Dendrify allows adding any desired mechanism (dendritic, synaptic, or other) to a single

compartment, such as Gaussian noise (lines 15, 16) and synaptic currents (lines 19, 20). Users can

specify the coupling strength between the adjacent compartments (line 23); otherwise, it is
inferred from the model parameters (see Methods). Finally, we introduce another object, the
NeuronModel (line 24), which has four primary functions: a) to group related Compartment
objects into a single model, b) to allow setting global model parameters, c) to extract model
equations, properties, and custom events, d) to allow deeper integration with Brian 2, which
unlocks several automations (line 32). Upon creating a NeuronModel, users can easily construct
a NeuronGroup (line 29 - a group of neurons that share the same equations and properties),
Brian’s core object of every simulation. The entire simulation code and detailed Dendrify
examples will be freely available on GitHub. For more information, see the Methods section and

the Brian 2 documentation: https://brian2.readthedocs.io/en/stable.

135 Example 2: A reduced compartmental model with active dendrites

136 In the previous example, dendrites were modeled as passive leaky compartments with
137  added synaptic mechanisms. However, a unique feature of Dendrify is the ability to incorporate
138  voltage-gated ion channels (VGICs, see Methods) that are implemented phenomenologically
139  without utilizing the Hodgkin-Huxley formalism. This approach further reduces mathematical and
140 computational complexity as exemplified by a second reduced model (parameters shown in
141  Table S2) consisting of a somatic compartment (leaky I&F) and an apical dendrite divided into
142  three segments (Fig. 4a, Fig. 5). All dendritic compartments are equipped with models of Na*-

143  type VGICs (allowing the generation of Na* dSpikes), while the distal and proximal segments can

10
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integrate synaptic inputs consisting of AMPA and NMDA currents.

First, to test the impact of locally generated Na* spikes on dendritic and somatic responses
in the model neuron, we simulated the application of short current injections (5 ms long pulses
of rheobase intensity) to each dendritic segment and recorded simultaneously from all
compartments (Fig. 4b-d). Although model parameters were adjusted to elicit nearly identical
responses in all dendritic compartments (Fig. 4e left), somatic responses varied significantly,
depending on the dSpike initiation site (Fig. 4e right). As in real neurons, distal dSpikes became
much weaker and broader as they traveled towards the soma due to the dendritic filtering

effect*37.

11
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Figure 4 | A reduced compartmental model that replicates active dendritic properties. a)
Schematic illustration of a compartmental model consisting of a soma (leaky 1&F) and three
dendritic segments (trunk, proximal, distal) equipped with Na*-type VGICs. The distal and
proximal segments can also receive AMPA and NMDA synapses. b-d) Rheobase current injections

(5ms square pulses) for dSpike generation were applied individually to each dendritic segment.
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Shaded areas: location of current injection and dSpike initiation. Top: stimulation protocol
showing the current threshold for a single dSpike (rheobase current). e) First temporal derivative
of dendritic (left) and somatic (right) voltage traces from panels b-d. f) Input-output function of
the distal (left) and proximal (right) segment as recorded from the corresponding dendritic
locations. We also indicate the number of quasi-simultaneously activated synapses (ISI = 0.1 ms)
needed to elicit a single dSpike in each case. OFF: deactivation of Na* dSpikes. Dashed lines: linear
input-output relationship. g) Left: Backpropagating dSpikes are generated in response to somatic
current injections. The short-amplitude spikelets detected in the distal branch are subthreshold
voltage responses for dSpike initiation. Right: Magnified and superimposed voltage traces (top)
from the dashed box (left). Bellow: dendritic voltage-activated currents responsible for dSpikes
generation in each dendritic segment. The simulations and analysis code related to the above

figure will be provided upon reasonable request, and will be freely available upon publication.

153 Moreover, the threshold for dendritic spiking significantly differs among the three dendritic
154  locations (Fig. 4b-d top). For example, dSpike generation in the distal segment (Fig. 4b) requires
155  approximately 2.5 times less current than the proximal one (Fig. 4c). Due to its smaller diameter
156  and sealed end, the distal segment has higher input resistance (Rinput); thus, its membrane is
157 more excitable. Biological neurons also exhibit a large variability of axial resistance along their
158  dendrites caused mainly by differences in local branch dimensions (length and diameter) and
159  dendritic geometry (e.g., bifurcations number, branch order). This location-dependent change in
160 input resistance (typically increases in the thinner, distal branches) serves two functions. First, it
161 increases the probability of dSpike initiation in the distal dendritic branches, and second, it helps

162  to counterbalance the distance-dependent input attenuation caused by cable filtering3*37:38,

163 To examine how dendritic spiking combined with local branch properties affect synaptic

13
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164  integration in our toy model, we activated quasi-simultaneously (train of spikes with ISI 0.1 ms)
165 an increasing number of synapses placed on the distal and the proximal segments. We then
166  compared the peak amplitude of the dendritic voltage responses (Actual) to what would be
167  obtained by a linear arithmetic sum of unitary responses (Expected) (Fig. 4f). Both segments
168 produce voltage responses that increase in a sigmoid-like fashion, with a supralinear rise in their
169  amplitude occurring above a certain number of synapses (Fig. 4f control). This behavior is typical
170 of pyramidal neurons in the cortex and the hippocampusi®i23>3% 35 well as some
171  interneurons’*°. Moreover, blocking dSpikes (Fig. 4f OFF) disrupts the above response leading to
172  sublinear integration. Although the two segments appear to have similar input-output curves,
173  dendritic nonlinearities emerge earlier in the distal compartment. This is because of its higher
174  input resistance (Rinput), requiring less synaptic excitation to cross the dSpike voltage threshold.
175  This model property, which is based on experimental data3’, highlights the importance of
176  accounting for input pathways projecting to different dendritic locations, as they may be subject
177  to different integration rules. Notably, the same approach used to build phenomenological

178  models of Na* dSpikes can be used to build models of other types of local spikes (e.g., Ca?*-based).

179 Another key feature of biological neurons is the ability of APs initiated in the axon to invade
180 the soma and nearby dendrites and propagate backward towards the dendritic tips. The
181 transmission efficacy of these backpropagating action potentials (BPAPs) depends on the
182  dendritic morphology and the abundance of dendritic VGICs (Na* or Ca%*)%®. Notably, in several
183  neuronal types, BPAPs can propagate more efficiently than forward-propagating dSpikes, acting
184  asfeedback signals of somatic activity3® and serving as instructive plasticity signals*'=3. To test if

185  our model can recreate the generation of BPAPs, we injected a depolarizing step current at the

14
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186  soma (135 pA for 300 ms) capable of eliciting a small number of somatic APs (Fig. 4f). Upon
187  somatic activation (the axon is not explicitly modeled here), BPAPs were successfully generated
188 and propagated to the distal dendritic segment. There, dSpikes were reduced to sharp, small-
189  amplitude responses (spikelets), as observed experimentally**. These spikelets resulted from
190 attenuating ion influxes from nearby dSpikes, that failed to trigger local suprathreshold
191 responses. It should be noted that to achieve BPAP generation, we had to utilize a custom version

192  of the I&F model?® that results in a more realistic somatic AP shape (see Methods).

193 Altogether, the above simulations show that Dendrify allows the development of reduced
194  compartmental models that incorporate phenomenological voltage-gated mechanisms and can
195 replicate a variety of dendritic features and their impact on somatic output. These reduced yet
196  more biologically relevant models offer a compelling alternative for developing SNNs with a high
197  degree of bioinspiration and small computational overhead. Importantly, Dendrify provides easy

198  access to this category of models by radically simplifying their implementation in Brian 2.

199 Example 3: A simplified yet biologically accurate model of a CA1 pyramidal cell

200 The previous examples demonstrated how Dendrify promotes the development of simple
201 compartmental models reproducing several essential dendritic functions. However, our
202  examples comprised generic neuron models rather than an area-specific cell type. To explore our
203  approach’s full potential and limitations, we built a simplified yet realistic model of a CA1l
204  pyramidal cell (PC). This cell type was selected due to the availability of a large number of

205 experimental data* and computational models*®*’ to compare our work with. Notably, to keep
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206  our approach simple, we did not use third-party software to design the model’s morphology*® or
207  fit its parameters®. Instead, based on previous theoretical work??%?4, we created a set of
208 instructions that guides Dendrify users throughout model development and validation processes.

209 The specific approach is briefly discussed below (for a more detailed description, see Methods).

210 Our reduced CA1 PC model (Fig. 6a) consists of 9 segments (1 somatic + 8 dendritic), the
211  dimensions of which were constrained using mouse anatomical data®>!. All model parameters
212 are provided in Table S3. Our goal was to preserve: a) the main functional and anatomical
213 characteristics of the dendritic morphology, b) accurate synaptic placement, and c) realistic
214  dendritic attenuation (axial resistance). In particular, this morphology reflects the anatomical
215 layering of the CA1 hippocampal area and the spatial segregation of input pathways coming from
216  theEntorhinal Cortex (EC) and the CA3 area, respectively. Moreover, synaptic conductances were
217  manually calibrated to ensure that the AMPA to NMDA ratio and the unitary postsynaptic
218  responses along the dendritic tree agree with empirical data (Fig. S2, Table $3)>>~>’. To directly
219  compare our model with the available in vitro data*, we replicated the experimental procedures
220 used to estimate essential electrophysiological properties (Fig. 6b-c, Fig. S1). We observe that
221  the model’s membrane time constant (tm), input resistance (Rinput), Sag ratio, and F-I curve closely
222  approximate the respective properties of real PCs located in the CAlb subregion, the most central

223  part of the CA1 area.
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import brian2 as b
from brian2.units import =
from dendrify import Soma, Dendrite, NeuronModel

soma = Soma('soma', model='leakyIF', length=25*um, diameter=25%um )

trunk = Dendrite('trunk', length=100%um, diameter=2.5%um)
trunk.dspikes('Na', threshold=-35*mV, g_rise=34xnS, g_fall=27.2%nS)

prox = Dendrite('prox', length=100*um, diameter=1%um)
prox.synapse('AMPA', pre='pathY', g=0.8*nS, t_decay=2*ms)
prox.synapse('NMDA', pre='pathY', g=0.8*nS, t_decay=60*ms)
prox.dspikes('Na', threshold=-35*mV, g_rise=15.3*nS, g_fall=12.24%nS)

dist = Dendrite('dist', length=100%um, diameter=0.5%um)
dist.synapse('AMPA', pre='pathX', g=0.8*nS, t_decay=2*ms)
dist.synapse('NMDA', pre='pathX', g=0.8*%nS, t_decay=60*ms)
dist.dspikes('Na', threshold=-35xmV, g_rise=7xnS, g_fall=5.6%*nS)

edges = [(soma, trunk, 15*%nS), (trunk, prox, 10*nS), (prox, dist, 4%nS)]

pyr_model = NeuronModel(edges, cm=1*uF/(cm**2), gl=40*uS/(cm**2),
v_rest=-70*mV, r_axial=150*ohm*cm,
scale_factor=2.8, spine_factor=1.5)

pyr_model .dspike_properties('Na', tau_rise=0.6*ms, tau_fall=1.2#*ms,
refractory=5+ms, offset_fall=0.2*ms)

pyr_group = b.NeuronGroup(1, model=pyr_model.equations, method='euler',
threshold='V_soma > -40*mV', reset='V_soma = 40*mV',
refractory=4xms, events=pyr_model.events,
namespace=pyr_model.parameters)
pyr_model.link(pyr_group)

Figure 5 | Python code for the model shown in Figure 4a. The code shown here follows the same
principles described in Fig. 3. In addition, we introduce another feature of Dendrify, which is the

option to add a dendritic spiking mechanism to Dendrite objects (lines 10, 16, 22). Dendritic

spiking is modeled in an event-driven fashion, which mimics the rising and falling phase of dSpikes
caused by the sequential activation of inward Na* (or Ca?*) and outward K* currents (Fig. 4g, also
see Methods). Users can specify the dSpike threshold and the amplitudes of the inward (‘g_rise’)
and outward (‘g_fall’) currents individually in each dendrite. Moreover, it is possible to set global

dSpike properties (lines 31, 32), such as the decay time constants for the rise and the fall phases,
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the temporal delay of the fall phase (offset_fall), and a dSpike refractory period.

224 Since studies with simultaneous somatodendritic recordings are scarce in the literature, we
225  utilized data from various sources (experimental®*°? and modelling®>4647:8) to calibrate our
226  model’s dendritic properties. First, to quantify dendritic attenuation as a function of distance
227  fromthe soma, we injected current at the soma (1,000 ms square pulse of -10 pA) and calculated
228  the ratio of the dendritic to somatic steady-state voltage responses (dVgend/dVsoma) at various
229  locations. The reduced model is similar to three detailed biophysical models*® (Fig. 6d). Next, to
230 examine synaptic input attenuation, we activated synapses (single pulse with a time interval of
231 0.1 ms) at various apical dendrite locations and calculated the somatic to dendritic peak voltage
232 (dVsoma/dVdens) (Fig. 6€). Compared to experimental data®? and a recent, highly optimized
233 biophysical model®®, the reduced model captures the distance-dependent attenuation of EPSPs.
234 It should be noted that the high variability in the morphology®! and the electrophysiological
235 properties® of real CA1 PCs make any attempt to build a single (detailed or simplified) neuron
236  model that replicates all characteristics virtually impossible (also see*’). As an alternative
237  approach, Dendrify’s ease of implementation and simulation efficiency allows for the
238 development of multiple, different single neuron models, each designed to replicate specific

239  features found in these cells.

240 The dendrites of biological CA1 PCs express several VGICs that allow them to perform
241  complex operations®*°. For simplicity, we equipped our CA1 neuron model only with Na*VGICs,
242  which underlie the generation of Na* dSpikes (Fig. 4). First, to test our model’s ability to generate

243  BPAPs, we injected current at the soma (500 ms square pulse of 200 pA) and recorded
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simultaneously from the most distal parts of the apical dendritic segments (Fig. 4f). We observed
that BPAPs are successfully generated and propagate robustly to the end of the main apical trunk
(250 um from the soma). From that point onwards (> 250 um from the soma), BPAPs are reduced
to small-amplitude spikelets that fail to trigger dSpike initiation in the distal dendritic segments.
This phenomenon has also been documented in recent in vitro studies**. However, we should
note that backpropagation efficacy among actual CA1 PCs is quite variable and highly dependent

on the dendritic morphology and ionic channel distribution®°.
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Figure 6 | CA1 pyramidal model validation. a) Schematic illustration of our reduced CA1 PC
model consisting of a somatic and eight dendritic segments (2 x basal, 1 x proximal trunk, 1 x
distal trunk, 2 x radial oblique, 2 x distal tuft). Grey numbers: distance of the indicated points
from the soma. Red axons: EC layer two input, orange axons: CA3 input. Long horizontal lines:
borders of the four CA1 layers (sIm: stratum lacunosum-moleculare, sr: stratum radiatum, sp:
stratum pyramidale, so: stratum oriens). b) Somatic voltage responses to various (1,000 ms long)
current injections used for model validation. c) F-I curves comparing the model with actual
superficial and deep PCs located in the CAlb area®. Shaded area: SEM. d) Steady-state, distance-
dependent voltage attenuation of a long current pulse injected at the soma. G15: data for three
different detailed biophysical models adapted from Golding et al., 2005%. e) The attenuation of
postsynaptic currents propagating along the apical dendrite as a function of distance from the
soma. M18: biophysical modeling data adapted from Migliore et al., 20188, Exp: experimental
data adapted from Magee & Cook, 2000%°. Shaded area: 2 standard deviations. f) Simultaneous
somatodendritic recordings in response to a somatic current injection showing the emergence of
BPAPs. T1/T2: start/end of current injection (duration = 500 ms). g) Main panel: Input-output
function of the reduced model’s oblique dendrite (the interval between inputs is 0.1 ms). P03:
biophysical modeling data adapted from Poirazi et al., 2003%°. Arrows: indicate a different
number of co-active synapses (grey = 13, pink = 14, blue = 24). Inset: dendritic voltage responses
from the three highlighted cases. h) Main panel: peak dV/dt of somatic voltage responses as a
function of synaptic inputs (data aligned to their respective thresholds for dSpike initiation). M18:
biophysical modeling data adapted from Migliore et al., 20188, Exp: experimental data adapted
from Magee & Cook, 2000%°. Shaded areas: SEM. Inset: First temporal derivative of the reduced
model’s somatic EPSPs. Numbers indicate the number of co-active synapses on the apical oblique
dendrites. The simulations and analysis code related to the above figure will be provided upon

reasonable request, and will be freely available upon publication.

251 Next, we tested our model’s ability to generate dSpikes in response to correlated synaptic

252  input onto its oblique dendrites (see Fig. S3). This property is a hallmark of real CA1 PCs* and
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253  was used in the past as a metric of model accuracy?’. Our model reproduces a sigmoidal-like
254  input-output function (Fig. 6g), also observed in a previous example (Fig. 4f). Above a certain
255  number of quasi-simultaneous activation (0.1 ms interval) of synaptic inputs, dendritic responses
256 increase sharply due to dSpike initiation, resulting in supralinear integration®. Dendritic sodium
257  spikes cause a rapid jump in the amplitude and kinetics of somatic EPSPs, similar to what is
258  observed in in vitro and biophysical modeling studies3>>8 (Fig. 6h). Capturing this dendro-somatic
259  nonlinear interaction in our model is essential since this feature is known to increase the
260 conditional excitability of biological CA1 PCs and the temporal precision of their spiking

261  output>,

262 In sum, the above example demonstrates that Dendrify can be used to build versatile,
263  reduced models that reproduce a wide range of biophysical and synaptic characteristics of
264  specific types of neurons. Although at a fraction of the computational cost, these reduced models
265  are on par with far more complex ones in terms of accuracy for several features. Moreover, their
266  small number of parameters makes them substantially more flexible and tractable since

267 modelers can easily adjust their properties and incorporate any available data type.

268 Example 4: Pathway interaction in CA1 model neurons

269 Biological CA1 PCs are more likely to generate action potentials when input from the EC on
270  their distal tuft is paired with coincident CA3 input on more proximal dendritic branches. Due to
271  strong dendritic attenuation, distal synaptic input generally has a negligible effect on the soma,
272  even when dSpikes are generated®. However, combining EC and (moderate) CA3 input results in

273  more reliable dSpike initiation and propagation, facilitating axonal action-potential output®.
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To test whether our reduced model (Fig. 6a) captures the coincidence detection capabilities
of CA1 pyramidal neurons, we constructed a pool of 10,000 CA1 pyramidal neurons (Fig. 7a).
Every neuron received five streams of input drawn from two different Poisson distributions (EC
vs. CA3). Each input stream was assigned to a single dendritic branch; two EC streams impinged
onto the distal tuft segments, whereas three CA3 streams impinged onto the oblique dendrites
and the distal trunk. To replicate the experiments of Jarsky et al®! regarding the response of CA1
pyramidal neurons to EC, CA3, and EC + CA3 input, we adjusted the average rates (A) of the
Poisson distributions so that: a) When only the EC pathway is active, neurons have a moderate
probability (>55%) of generating at least one distal dSpike, but no somatic APs (Fig. S4a, Fig. S5a).
b) When only the CA3 pathway is active, neurons generate neither dendritic nor somatic spikes
(Fig. S4b, Fig. S5b). c) The model outcome when simultaneously activating the two input

pathways in the presence or absence of dendritic Na* VGICs is shown in (Fig. 7b-c, Fig. S5b-c).
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Figure 7 | Pathway interaction in a reduced CA1 network model. a) Schematic illustration of a
pool of reduced compartmental CA1 PCs (N = 10,000). The arrows represent the two streams of
input (independent Poisson-distributed spike trains) projecting to distinct dendritic segments.
Each neuron represents a repetition of the same experiment with independent Poisson-
distributed inputs of the same average frequency. Bottom: table describing the conditional
activation of CA1 PCs requiring coincident EC and CA3 input. b) Probability distribution of somatic
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spike count, with (ON) or without (OFF) dendritic spikes when both EC and CA3 input is applied
to the network. ¢) Summary of the results shown in panel b. Active neurons: PCs that fired >1
somatic spike. Notice the reduction of the active population size when dendritic spiking is turned
off. d) Repeating the coincidence detection experiment for a broad range of input intensities.
Left: Mean neuronal firing rate (MFR) for each combination of EC/CA3 input amplitudes. Centre:
same as in Left but with dSpikes turned off. The highlighted squares indicate the initial
experimental conditions for the data shown in panels b and c. Right: quantifying the decrease in
coincidence detection efficacy by measuring the MFR percentage decrease (dSpikes ON vs.
dSpikes OFF). Deactivation of dendritic spiking results in reduced MFR in all cases tested. The
white squares (bottom left) represent cases with very low initial MFR (< 0.1 Hz or < 5% network
activity) that were excluded from the analysis. The highlighted squares indicate the experimental
conditions of the data shown in panel f. e) Distribution of the results shown in panel d (right). f)
Comparing the ISl distributions between the dSpikes ON and OFF conditions, using the
highlighted cases in panel d (right). The circles represent the distribution medians and the vertical
lines the first and third quantiles containing 50% of the data. Stars denote significance with
unpaired t test (two-tailed) with Bonferroni’s correction. The simulations and analysis code
related to the above figure will be provided upon reasonable request, and will be freely available

upon publication.

286 In control conditions (dSpikes ON), most neurons (~80 %) generated one or more somatic
287  spikes when both the EC and CA3 pathways were active. The rest of the population remained
288  silent throughout the 500 ms of the simulation duration. Deactivating dendritic spikes (dSpikes
289  OFF) impacted neuronal firing significantly: the percentage of active neurons dropped to ~10%,
290 signifying a ~70% decrease compared to the control experiment (dSpikes ON). In addition, all
291  active neurons fired just a single somatic spike. This finding is in line with previous studies®! and

292  suggests a direct link between dendritic spiking and the conditional activation of CA1 PCs.
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293  Importantly, it highlights our model’s ability to reproduce complex pathway interaction rules

294  discovered in biological neurons beyond their basic dendritic properties (Fig. 6).

295 We next performed a parametric exploration of the input space to gain more insight into
296 the above phenomenon and assess its robustness (Fig. 7d). Specifically, we created ten input
297  distributions for each pathway, with firing rates that varied by 50-150% (with step 10%) of the
298  original values. This led to 121 EC / CA3 inputs combinations, which were then tested in the
299 presence and absence of dSpikes. Coincidence detection efficacy was estimated using the mean
300 neuronal firing rate (MFR) for every combination of inputs (Fig. 7d left, center). This metric
301 provides a quantitive way of gauging the dendritic effect on somatic output (Fig. 7b) rather than

302 simply recording the percentage of active neurons.

303 We found that dSpike deactivation greatly decreased the estimated MFR across all input
304 combinations (Fig. 7d right). This drop in MFR ranged between 40-100% (Fig. 7e); cases with
305 lowerinitial activity were prone to complete silencing, whereas high-activity cases were affected
306 to a lesser extent. Moreover, dendritic spiking significantly decreased the inter-spike intervals
307 (ISI) of somatic APs (Fig. 7f). The increased excitability caused by dSpikes resulted in somatic
308 responses with lower ISIs, close to those reported during bursting. However, in agreement with
309 experimental data®”®3, the simulated neurons did not generate actual somatic bursts since this
310 behavior requires the presence of dendritic Ca* plateau potentials, which are not included in our

311 model.

312 Overall, this example highlighted the ability of our simplified neuron models to reproduce

313  coincidence detection rules intrinsic to the dendrites of biological CA1 PCs. Moreover, we verified
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314  the robustness of this behavior through a wide variety of EC/CA3 input parameters. Finally, we
315 showed that dendritic Na* spikes determine the frequency of somatic output in response to
316 coincident input and their temporal precision, reducing the threshold for strong somatic

317  activity®?.

318 Discussion

319 Establishing a rapport between biological and artificial neural networks is necessary for
320 understanding and hopefully replicating our brain’s superior computing capabilities?3%4,
321 However, despite decades of research revealing the central role of dendrites in neuronal
322 information processing“*>3* the dendritic contributions to network-level functions remain
323 largely unexplored. Dendrify aims to promote the development of realistic spiking network
324 models by providing a theoretical framework and a modeling toolkit for efficiently adding
325  bioinspired dendritic mechanisms to SNNs. This is materialized by developing simplified yet

326  biologically accurate neuron models, optimal for network simulations in the Brian 2 simulator.

327 Here, we demonstrated the ability of simple phenomenological models developed with
328  Dendrify to reproduce numerous experimentally observed dendritic functions. First, we showed
329 that even a generic toy model with passive dendrites can display some electrical segmentation
330 due to the resistance between its compartments (Fig. 2). This property allows dendrites to
331 operate semi-autonomously from the soma and multiple input integration sites to coexist within
332  asingle neuron3®. Next, we showed that adding dendritic Na* VGICs to a basic four-compartment
333  model (Fig. 4) unlocks important dendritic features that include: a) the presence of branch-

334  specific integration rules affected by local dendritic morphology3*, b) the supralinear summation
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335 of correlated synaptic inputs and its impact on neuronal output®®, c) the generation of BPAPs as
336 feedback signals of neuronal activity3®43°°. Finally, we built a simplified yet biologically
337  constrained model of a CA1 PC (Fig. 6) and showed its ability to capture numerous passive (tm,
338  Rinput, Sag ratio, somatodendritic attenuation) and active (F-I curve, nonlinear dendritic
339 integration, BPAPs generation) properties of real CA1l PCs. Notably, the reduced model
340 reproduced complex coincidence detection rules found in CA1 PC dendrites and the impact of
341  Na*dSpikes on the frequency and the temporal precision of neuronal output'®®> (Fig. 7). Overall,
342  we illustrated that Dendrify allows for building simple, mathematically tractable models that

343  replicate essential dendritic functions and their influence on neuronal activity.

344 Multiple recent SNNs studies seemingly converge to the same conclusion; neural
345  heterogeneity within a network can positively impact its learning and information processing
346  capabilities®. For example, heterogeneous SNNs with dynamic neuronal properties, such as
347 learnable adaptation® and membrane®’ time constants or a slowly moving firing threshold®8,
348 performed better in complex tasks like image classification or playing Atari games. Since
349 dendrites constitute a significant source of heterogeneity in biological networks, we expect that
350 transferring their properties into SNNs can confer important computational advantages. These
351 include a) the coexistence of numerous semi-independent integration sites within a single

352  neuron3

, b) flexible and adaptive information processing that adjusts to computational
353 demand®, c) the presence of multi-timescale dynamics®’, and d) synergy between different
354  synaptic plasticity rules?. Indeed, few recent studies suggest that combining nonlinear dendritic

355 mechanisms with local learning rules provides SNNs with compelling advantages over previous

356 modeling standards. In particular, dendritic SNNs prolong memory retention in an associative
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357 task?® and enable sophisticated credit assighment in hierarchical circuits®®. However, despite
358 noteworthy progress, we have a long way to go until we fully understand the implications of

359 dendritic processing in neural network functions.

360 Dendrify enables the development of reduced phenomenological neuron models that
361 preserve many essential properties of their biological counterparts. It is designed for non-experts
362 to increase its attractiveness to both experimental and theoretical groups interested in
363 developing bioinspired SNNs. Although software tools that help create reduced neuron models
364 are readily available?®*, they rely on the HH formalism to simulate VGICs across the
365 somatodendritic axis. Here, by modeling dSpike mechanisms in an event-driven fashion, we
366  significantly reduce model complexity while maintaining high biological accuracy. Moreover,
367 contrary to similar known approaches?®, dSpikes and BPAPs are not simulated by clamping
368 segment voltages, allowing multiple synaptic or dendritic currents to be summed as in real
369 neurons. Notably, the proposed approach requires a relatively small number of free parameters,
370 resulting in straightforward model development and calibration. The latter is also facilitated by
371 the intuitiveness and the powerful features of the Brian 2 simulator, which has seamless
372  compatibility with Dendrify and requires only basic knowledge of the Python programming
373 language. Finally, our approach allows testing new algorithms compatible with neuromorphic
374  hardware’®’!, which has seen impressive resource-saving benefits by including dendrites’. We
375 expect Dendrify to be a valuable tool for anyone interested in developing SNNs with a high degree

376  of bioinspiration to study how single-cell properties can influence network-level functions.

377 It is important to note that the presented modeling framework does not come without any

378 limitations. First, reduced compartmental models cannot compete with morphologically detailed
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379 modelsinterms of spatial resolution. More specifically, in detailed models, each dendrite consists
380 of several segments used to ensure numerical simulation stability and allow more sophisticated
381 and realistic synaptic placement. In addition, since we do not utilize the HH formalism, certain
382 experimentally observed phenomena cannot be replicated by the standard models provided with
383  Dendrify. These include the depolarization block emerging in response to strong current
384 injections’?® or the reduction of backpropagation efficiency observed in some neuronal types
385  during prolonged somatic activity>®. Moreover, the current version of Dendrify supports only Na*
386 and partially Ca?* VGICs and ignores many other known ion channel types’. Finally, synaptic
387  plasticity rules must be manually implemented using the standard Brian 2 objects. However,
388  Dendrify is a project in continuous development, and based on the community feedback, many

389 new features or improvements will be included in future updates.

390 In summary, we introduced a novel theoretical framework and a set of tools to allow the
391 seamless development of reduced yet realistic spiking models of any neuronal type. We hope the
392 tool will be readily adopted by neuroscientists and neuromorphic engineers, facilitating
393 knowledge discovery while advancing the development of powerful brain-inspired artificial

394  computing systems.

395

396 Methods

397 Code availability

398 Dendrify’s code and detailed interactive Python notebooks related to all manuscript figures will

399  be freely available on GitHub.
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400 Somatic compartment

401 The CA1 PC neuronal model is simulated as a leaky integrate-and-fire (I&F) model with

402  adaptation. The equations that govern the dynamics of the soma are

dv; - ;
103 G = —BLOR — ED) — gaOR —ED + ) I8+ ) I+ I3
iecs jEss
dga  _
404 TAE:gAlvrrsi_VAl_gA

405 where V5 denotes the somatic membrane voltage, C5, the membrane capacitance, g; the

406  constant leak conductance, E; the leak reversal potential, g, the adaptation conductance, E,
407  the adaptation reversal potential, Ifl's the axial current from the i-th compartment connected to
408  the soma, C° the set with all compartments that are connected with the soma, Isjj‘,sn a current
409  describing the effect of synaptic input from the j-th presynaptic neuron to the soma, §° a set
410  with the presynaptic neurons connected to the soma, and I3, denotes an external current
411  injected into the somatic compartment (similarly to an intracellular electrode). The adaptive

412  conductance is changing over time with 74 denoting the time constant of the adaptation, and g4

413  is the maximum conductance of the adaptation current. |-| denotes the absolute value.

414  When the somatic voltage crosses a threshold, V,, a spike is generated. Here, we modified the
415  traditional approach of the I&F models, where after a spike generation, the voltage resets back
416  toapredetermined value, V,eser, and we include two resets, one that drives the voltage instantly
417  to a high value, Vgp,ike, to account for the biological spike amplitude, and we incrementally

418 increase the g, by a constant amount b, to account for the spike-triggered adaptation, and then
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419  after a short decay, we instantly reset the voltage to Vieset- Mathematically, we describe this

420  process as

s
Vm < Vspike

421 if Vo >Vinthen g4 < ga+b
tspike <t
422 if t = tspike + 0.5ms then V7 « Vigger

423 Dendritic compartments

424  The dendritic compartments are governed by a similar equation for their dynamics, without the
425  adaptation current and by adding two additional terms that control the simulation of the

426  dendritic spikes.

dvd
427 cd d_m= f(Vd—ELd)+ZIld+lejylfl-l'INa-"IKd + 1%,
iecd jesd
428 Ig, = —gf. (V2 — Exa) fna
429 I, = =gk, Vil — B fx,,
drg
430 TNaﬁ = —Ia
drg
1 i = I,

432  where the Iﬁa and Il‘édr denote the sodium (Na*) and the delayed-rectified potassium (K*)

433  currents, respectively. gﬁa and gﬁdr are the corresponding conductances. These currents are
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434 simulated as exponential decays, with time constants Ty, and 7k, respectively. fy, and fx,_are

435 Boolean parameters indicating the generation of a dendritic spike.

436 Dendritic spike mechanism

437  To activate the sodium current, the ;¢ must cross a threshold, fy, to be equal to 1, and to be

438  outside of the refractory period of the sodium current:

(8Na < 8Na + BNa

Vd >V, fo e 0
439 if fna=1 then fo <1
t > tgpike + t1I"\Ieaf ;dr
t& e <t
pike

440 where t;“;} is the refractory period during which another dendritic spike cannot be generated,
441  g¢, is the increase in conductance, and t_fpike denotes the time that voltage crosses the

442 threshold.

443  To activate the potassium current, a time delay should have passed and der should be equal to

444 1.
d d =d
t>td . i BKar < BKar T 8Ky
445 if { spike 1°f fset then fua < 1
der B der < O

446  where t;&‘jﬁset denotes the time-delay in potassium current generation, and gl‘idr is the increase

447 in conductance.

448 In particular, when the dendritic membrane voltage crosses a threshold, a sodium current is

449  applied, and after a delayed time, a potassium current is generated.
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450  Axial currents between compartments

451  Each compartment receives an axial current as a sum over all axial current flowing towards it
452  and coming from the connected compartments. The total axial current of the k-th

453  compartment of the neuronal model is

454 I = z I;*

ieck

455  where C* denotes all compartments that are connected with the k-th compartment. Each

456  compartment-specific axial current is given by
457 1 = g (v — i)
458  where the gi’k denotes the coupling conductance between the i-th and k-th compartments.

459  We use two approaches to calculate the gi’k based on the morphological properties of the

460 compartments.

461  When the total number of compartments is low and the adjacent-to-soma compartments are

462 highly coupled with the soma, we calculate the coupling conductance as the reverse Rjopg

463 Riong =

464  where d¥ denotes the diameter of the k-th compartment, I its length and 7 its specific axial
465  resistance in () - cm. The coupling conductance is given in S (siemens). Thus, the axial current is

466 calculated in absolute units, i.e., A (ampere).
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467  The second method uses the half-cylinder approach, where the coupling term of two adjacent

468 compartments is calculated between their centers.

1 rlk ik
Riong =3 2 I
(7)) =(3)

470  Notice that we did not divide by the surface area of interest as we wrote the differential

469

- 1
i,k

= =

Be Rlong

471  equations in absolute terms. Thus, two adjacent compartments have the same coupling

472  conductance gi’k = g’g’i.

473  Global and specific properties

474  We assume that all compartments are cylinders with known diameter d and length L. The surface

475  area of the i-th compartment (open cylinder) is given by:

. dty
476 Al =2m <?> I

477  and its total membrane capacitance and leak conductance are given by:

T
478 Ch = chAL gl = A

m

479  where cl, is the specific capacitance in uF/cm? and 7} is the specific membrane resistivity in Q -

480 cm?.

481 Synaptic currents

482  The synaptic currents that can flow to each compartment can be AMPA, NMDA, or GABA. The

483  mathematical description is:
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484 Hyn(6) = Blyn foyn (2555 T5yn ™ )ty () (Vi = Egyn)o (), syn € {AMPA, NMDA, GABA]}

485  where fsyn(rgi,srf, Tg_;rfay) is a normalization factor dependent on the rise and decay time

486  constants (tise and rfjgay) to ensure that for every presynaptic spike, the maximum

487  conductance is gLy, i.e., the ﬁsyn(rgﬁf, Tg}?ﬁay)sgyn(t) term is bounded in [0,1].
488 The Séyn(t) term denotes the time-dependence of the synaptic conductance. Here, we use two

489 methods; one with a dual exponential form as we want to set the rise and decay times

490 independently, and the other as a simple exponential decay.

491  The dual exponential function is given by:

. t—t t—t
pre pre
492 seyn(t) = H(t = tpre) (exp (‘ Tcay> —exp <— r—se>>
Tsyn Tsyn

493  where H(z) denotes the Heaviside function

1,ifz>0

494 H(z) = {0 ifz <0

495  The normalization factor is the peak value of Ssiyn at time tpeqp-

i decay_rise decay
dse T T T
yn set _ syn syn syn
496 dt 0= tpeak = decay rise In rise T Lpre
syn Tsyn syn
deca 1
rise y
497 fsyn (Tsyn » Tsyn ) 1 (+
Ssyn(tpeak)
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498 For AMPA and GABA currents, the voltage-dependence is neglected, i.e., G(Vnil) = 1. For the
499  NMDA currents, which are voltage-dependent due to magnesium (Mg?*) blockade, the sigmoidal

500 function o is given:

1

1+ —[MgBZJ’]O - exp (—a(Vni1 — y))

501 o(Vi) =

502 where B (mM), a (mV~1) and ¥y (mV) control the magnesium and voltage dependencies,
503 respectively, and [Mg?*], denotes the external magnesium concentration, usually set at a

504  predetermined and constant level (in mM).

505 The dynamics of the synaptic conductance are given by a set of two differential equations that

506 simulate the double exponential relationship found in synapses:

dSsyn Ssyn xéyn(l - Sslyn)
507 = — .
dt decay rlise
syn syn
dxt xt
dt Tsyn
509 if t = tyre then xby, « xbyy + 1

510 The simple decay function is given by:

. t—t
pre
511 Sslyn(t) = H(t - tpre) exp <_ decay )
T

syn

512 The dynamics of the synaptic conductance is governed by one differential equation:
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513 dSslyn . S;yn
dt " “decay
syn
514 if t = type then siyy, « siyn + 1.

515  The normalization function when the simple decay method is applied is fsyn, = 1.

516  As a compartment can receive more than one presynaptic connection of the same type and/or

517  synapses of different type simultaneously, the total synaptic current of the i-th compartment is

518 given by:
519 Isiyn(t) = giAMPA(Vnil - EAMPA)fAMPA 2 SAMPA(t)
JEShmpa
520 + ghmpa (Vi — Exmpa ) fampa z stivpa(®)
J€Skmpa
521 + 86 asa(Vih — Ecapa)o (Vi) foasa Z séapa®).

T
J€SGcaBA

522 A practical guide for developing reduced models with bioinspired properties.

523  Here, we provide a step-by-step guide for developing simplified compartmental models that
524  capture key electrophysiological and anatomical features of their biological counterparts. The
525 proposed protocol relies on the previous work of Bush & Sejnowski?! and focuses on achieving
526 realistic axial resistance (r,), input resistance (R;;,) and membrane time constant (t,,) along with

527  accurate positioning of synaptic inputs and ionic conductances. We illustrate this approach by

38


https://doi.org/10.1101/2022.05.03.490412
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.03.490412; this version posted May 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

528  breaking down the development and validation of a reduced CA1 pyramidal cell (CA1 PC).

529 Step 1: Identify the most important anatomical and functional regions found in the neuronal

530 morphology

EC LIII

CA3

CA3

Reconstruction of a human CA1 PC
(adopted from the neuromorpho.org)

531 Based on the CA1 region layering and the spatial segregation of external input pathways, CA1

532  pyramidal neurons can be partitioned into five functionally distinct neuronal regions’>:

533 i.  The perisomatic area = primary spiking unit (s. Pyramidale)

534 ii.  The basal dendritic area - CA3 input receiver (s. Oriens)

535 iii.  The proximal apical dendritic area = dendritic region devoid of spines (s. Radiatum, < 100
536 um from soma)

537 iv.  The medial apical dendritic area - CA3 input receiver (s. Radiatum, > 100 um from soma)
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538 v.  The distal apical dendritic area = EC layer Ill input receiver (s. Lacunosum Moleculare)

539  Step 2: Design a toy model capturing the main neuronal features identified in the previous step

540 e Using cylindrical compartments, design a toy model that captures the main morphological
541 features of the neuron of interest. The number of model compartments should not be
542 less than the number of the identified, functionally unique neuronal regions. This would
543 prevent the model from processing the various input pathways semi-independently, as
544 occurs in real CA1 PCs®1,
CA1 model
400 PM eeeeseeeneny
sim ECIII
........... . 50pm
CA3
sr
Sp
o) CA3

A basic five-compartment CA1 PC model

545 e If biological accuracy is more important than simulation performance, the number of
546 compartments can be further increased to account for more neuronal features. For
547 example, adding 4 compartments to the previous model allows to account for the
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548 increased dendritic branching that is observed in the distal, medial and basal areas of CA1
549 PC dendrites. Other examples of morphologically reduced CA1 models can be seen in
550 Tomko et. al*’.
CA1 model
ECII
CA3
CA3

A nine-compartment CA1 PC model with a high degree of bioinspiration

551  Setthe dimensions of the compartments according to the rules described by Bush & Sejnowski??.
552  Inshort, their approach aims to preserve realistic attenuation of the currents traveling along the
553  somatodendritic axis. This is achieved by creating compartments that have correct electrotonic

554  length and a diameter that is representative of the dendritic diameter observed in real neurons.

555 If there is no detailed morphological data, you can set the cylinder lengths that approximate the
556 distance from soma and capture the decrease in dendritic diameter as you move away from the
557 soma. Due toimmense biological variability, the solutions to this problem are infinite, and a single

558  most representative model is impossible to exist.
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Step 3: Validation of passive parameters

1) Membrane time constant

Start with the values of somatic capacitance (Cm) and leakage conductance (g.). Set Cp,
equal to 1 pF/cm? and choose the appropriate g;, value so that the desired membrane
time constant (tm) is achieved according to the formula t,, = C,,/gL-

Next, use the same values for the dendrites, but we multiply both by a factor of 1.2-2.0
(depends on experimental data, use 1.5 if this value is unknown) to account for the added

area due to synaptic spines that are not explicitly modeled.

2) Input resistance and somatodendritic attenuation

Set the axial resistance (Ra) according to experimental evidence, if available. Typical
values range between 100-250 MOhm-cm.

Test the attenuation of currents along the somatodendritic axis by applying long somatic
current injections (Fig. 4). By default, Dendrify calculates the coupling conductances

according to the half-cylinders formula’®:

1 r,lk 1,
Riong =5 2 I
(7) =(7)

where scripts i and k denote two adjacent compartments, and [, d denote the length and

; 1
Lk
= 7= —
8 Rlong

the diameter of the compartments, respectively.
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Importantly, small manual corrections might be necessary to achieve more realistic attenuation.

e Calculate the ‘model’s input resistance (R;;,) by using a typical, hyperpolarizing current
step protocol*®. Most likely, the initial values will deviate from the experimental values
due to the reduced membrane area of the simplified model. This is why we multiply both
Cyn and g;, (somatic and dendritic) with the same scale factor until the model reaches the

desired R;,, as explained here?!.

Step 4: Validation of active properties

This step assumes that for the soma, an I&F model with adaptation is used such as the AdEx”’,
CAdEx’® or Izhikevich’® model. Use somatic current injections to validate the Rheobase and Fl

curve by adjusting the model variables based on the model-specific guidelines.
Step 5: Validation of dendritic integration

The last step includes the validation of the Na* dendritic spike. First, we set a realistic gy to gk
ratio, based on experimental evidence. Then, we set a voltage threshold, which denotes the
membrane voltage values above which a dSpike is initiated. To account for the geometrical
characteristics of the dendritic compartments, we multiply both conductances with the
compartmental surface area, i.e., A*. Using the validation protocol depicted in Fig. S3, we scale

the conductances to capture a realistic dSpike amplitude.
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Figure S1 | Validation of the passive CA1 PC model properties (relevant to Fig. 6). a-c) Estimating
various model properties by replicating an experimental?, light somatic stimulation protocol (500
ms long somatic current injection of -10 pA amplitude). a) Schematic showing the somatic voltage
trace used to calculate input resistance (R;;). b) The membrane time constant (t,,) was

measured by fitting a monoexponential to the somatic membrane hyperpolarization. ¢) Somatic
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and dendritic voltage traces used to estimate the steady-state, distance-dependent voltage
attenuation. d) Schematic showing the measurement of the sag ratio by using a strong somatic
stimulation protocol® to elicit the sag response (500 ms long current injection of -394 pA
amplitude to bring the somatic voltage to -105 mV). e-g) Comparing model properties against
experimental in vitro data® regarding deep and superficial PCs of the CAlb Hippocampal region.

The experimental values are depicted as means * std (Nsuper = 29, Ndeep = 27).
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Figure S2 | Unitary synaptic responses of the CA1 PC model (relevant to Fig. 6). Overlay of the
dendritic (colored) and the respective somatic (black) voltage responses when a single excitatory
synapse is activated in each dendritic location. Synaptic conductances (gampa, Enmpa) were
manually adjusted to achieve realistic somatic responses?. uPSP: somatic unitary postsynaptic

potential. r: the ratio of the somatic to the dendritic peak voltage response (AVoma /AVdend)-
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Figure S3 | Dendritic spiking in the CA1 PC model (relevant to Fig. 6). Dendritic voltage responses
when Rheobase current (enough current to elicit a single dSpike) is injected directly into each
dendrite (5 ms long square pulse). Notice that larger compartments such as the medial dendrite
(panel b) and the trunk (panel d) require significantly more current (Ig) to generate a dSpike than
smaller compartments. Shaded boxes: show the 5 ms long stimulation period. Iz: Rheobase

(dSpike threshold) current.
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Figure S4 | Single pathway effect on somatic and dendritic spiking (relevant to Fig. 7). a) When
only the EClIl input is administered to a pool of 10,000 PCs, more than half (~55%) will generate
at least a single dSpike in one of their distal dendrites. However, due to strong dendritic
attenuation, the effect on somatic output is negligible. b) When only the CA3 input is available,
both the receiver dendrites (medial and oblique branches) and the soma produce subthreshold
responses. Notably, both input pathways are simulated as independent Poisson processes, the

rate of which is selected to mimic the experiments of Jarsky et al. 3.
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Figure S5 | Understanding the role of dendritic Na* spikes in coincidence detection in CA1 PCs
(relevant to Fig. 7). a) When only the ECIII input pathway is active, distal dendrites can generate
dSpikes that fail to propagate to the soma due to strong dendritic attenuation. b) When only the
CA3 input pathway is active, it is not powerful enough to elicit any dendritic or somatic spikes. c)
When both input the ECIIl and CA3 pathways are active, their synergistic effect results in strong
dendritic activation that succeeds in activating the soma. d) Deactivating dendritic spiking inhibits

also deactivates the somatic output even when both input the ECIIl and CA3 pathways are active.
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Table S1 | Parameters for the model shown in Figure 2

Timestep dt 0.1 ms
Specific membrane capacitance Cm 1 uF / cm?
Specific leak conductance gL 50 uS / cm?
Axial resistance ra 150Q - cm
Resting potential (all compartments) Vrest -70 mV
Spiking threshold Vih -40 mV
Voltage reset after spike Ve -50 mV
Refractory period after spike tref 3ms
Length soma Lsoma 25 um
Diameter soma Dsoma 25 um
Length apical Lapical 250 um
Diameter apical Dapical 2 um
Length basal Lbasal 150 um
Diameter basal Dbasal 2 um

Area scale factor Sfarea 3

Spine area factor Sfspines 1.5
Coupling conductance (soma-apical) 8soma<>apical 10 nS
Coupling conductance (soma-basal) 8somacbasal 10nS
Noise mean intensity Mnoise 0 pA
Noise standard deviation Onoise 3 pA
Noise time constant Thoise 20 ms
AMPA conductance SAMPA 1nS
AMPA time constant TAMPA 2ms
NMDA conductance ENMDA 1nS
NMDA time constant TNMDA 60 ms
alpha (NMDA) a 0.062 mv?
beta (NMDA) B 3.57 mM
gamma (NMDA) Y 0omV
AMPA / NMDA reversal potential Eampa / Enmipa 0mVv
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Table S2 | Parameters for the model shown in Figure 4

Timestep dt 0.1 ms
Specific membrane capacitance Cm 1 uF / cm?
Specific leak conductance gL 40 uS / cm?
Axial resistance ra 150Q - cm
Resting potential (all compartments) Vrest -70 mV
Spiking threshold Vih -40 mV

1%t voltage reset after spike Vi1 40 mV

2" voltage reset after spike Vi1 -55 mV
Spike duration dap 0.5 ms
Refractory period after spike tref 5ms
Length soma Lsoma 25 um
Diameter soma Dsoma 25 um
Length proximal Lorox 100 pm
Diameter proximal Dprox 2.5 um
Length medial Limed 100 um
Diameter medial Dmed 1um
Length distal List 100 um
Diameter distal Dist 0.5 um
Area scale factor Sfarea 2.8

Spine area factor Sfspines 1.5
Coupling conductance (soma-prox) Esoma<>prox 15 nS
Coupling conductance (prox-med) Eprox<>med 10 nS
Coupling conductance (med-dist) Emed<>dist 4nS
AMPA conductance 8AMPA 0.8nS
AMPA time constant TAMPA 2 ms
NMDA conductance ENMDA 0.8nS
NMDA time constant TNMDA 60 ms
alpha (NMDA) a 0.062 mv?!
beta (NMDA) B 3.57 mM
gamma (NMDA) Y omvVv
AMPA / NMDA reversal potential Eampa / Enmvipa 0mvVv
dSpike rise time constant Trise 0.6 ms
dSpike fall time constant Tdecay 1.2 ms
Refractory period after dSpike 5ms
Offset of dSpike fall 0.2 ms
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Table S3 | Parameters for the CA1 PC model shown in Figure 6

Timestep dt 0.1 ms
Specific membrane capacitance Cm 1 uF / cm?
Specific leak conductance gL 40 uS / cm?
Axial resistance ra 120Q - cm
Resting potential (all compartments) Vrest -65 mV
Spiking threshold Vih -47.5 mV
Subthreshold adaptation activation voltage Va -65 mV
Time constant of adaptation Ta 45 ms
Max subthreshold adaptation conductance ga 0.15nS
Spike-triggered adaptation Ago 21nS

15t voltage reset after spike Vr1 37.5mV
2" voltage reset after spike Vi1 -53 mvV
Spike duration dap 0.8 ms
Refractory period after spike tref 4 ms
Length soma Lsoma 30 um
Diameter soma Dsoma 20 um
Length trunk Ltrunk 100 um
Diameter trunk Dtrunk 2 um
Length medial Lmed 150 um
Diameter medial Dmed 1.25 um
Length distal List 150 um
Diameter distal Dist 0.8 um
Length oblique Lobl 100 pm
Diameter oblique Dobl 1um
Length basal Lbas 150 pum
Diameter basal Dbas 0.8 um
Area scale factor Sfarea 2.9
Spine area factor Sfspines 1.5
Coupling conductance (soma-basal) 8somacbasal 3.8nS
Coupling conductance (prox-trunk) Bprox<>trunk 22 nS
Coupling conductance” (trunk-oblique) Strunk<sobl 10.48 nS
Coupling conductance” (trunk-medial) Strunk<>med 10.82 nS
Coupling conductance” (medial-distal) Emed<dist 3.96 nS
AMPA reversal potential Eampa omv
AMPA time constant TAMPA 2 ms
AMPA conductance distal SAMPA_dist 0.81nS
AMPA conductance medial SAMPA_med 0.81nS
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AMPA conductance oblique EAMPA_ob 0.6 nS
AMPA conductance basal SAMPA_bas 0.6 nS
NMDA reversal potential Envba 0.35mV
NMDA time constant TNMDA 60 ms
NMDA conductance distal EAMPA_dist 0.81nS
NMDA conductance medial EAMPA_med 0.4 nS
NMDA conductance oblique EAMPA_ob 0.4nS
NMDA conductance basal SAMPA_bas 0.4 nS
Magnesium concentration [Mg%*]o 1

alpha (NMDA) a 0.087 mv?
beta (NMDA) B 3.57 mM
gamma (NMDA) Y 10 mV
Sodium reversal potential Ena 50 mV
Potassium reversal potential Ex -90 mV
dSpike threshold -42.5 mV
dSpike rise time constant 0.5ms
dSpike fall time constant 1.2 ms
Refractory period after dSpike 4.2 ms
Offset of dSpike fall 0.6 ms
Sodium channels conductance ENa 10 mS / cm?
Potassium channels conductance gk 4mS/cm?

*Value generated by Dendrify
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