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ABSTRACT

In volatile foraging environments, animals need to adapt their learning in accordance with the
uncertainty of the environment and knowledge of the hidden structure of the world. In these
contexts, previous studies have distinguished between two types of strategies, model-free learning,
where reward values are updated locally based on external feedback signals, and inference-based
learning, where an internal model of the world is used to make optimal inferences about the current
state of the environment. Distinguishing between these strategies during the dynamic foraging
behavioral paradigm has been a challenging problem for studies of reward-guided decisions, due
to the diversity in behavior of model-free and inference-based agents, as well as the complexities
that arise when animals mix between these types of strategies. Here, we developed two solutions
that jointly tackle these problems. First, we identified four key behavioral features that together
benchmark the switching dynamics of agents in response to a change in reward contingency. We
performed computational simulations to systematically measure these features for a large ensemble
of model-free and inference-based agents, uncovering an organized structure of behavioral choices
where observed behavior can be reliably classified into one of six distinct regimes in the two
respective parameter spaces. Second, to address the challenge that arises when animals use
multiple strategies within single sessions, we developed a novel state-space method, block Hidden
Markov Model (blockHMM), to infer switches in discrete latent states that govern the choice
sequences across blocks of trials. Our results revealed a remarkable degree of mixing between
different strategies even in expert animals, such that model-free and inference-based learning
modes often co-existed within single sessions. Together, these results invite a re-evaluation of the
stationarity of behavior during dynamic foraging, provide a comprehensive set of tools to
characterize the evolution of learning strategies, and form the basis of understanding neural circuits
involved in different modes of behavior within this domain.
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Introduction

Reward-guided decision making has largely been studied in terms of two broad regimes of
behavioral strategies and neural systems. One influential class of models involve reinforcement
learning models in which each action has an internal value that is updated over time based on
feedback from the environment!2. Variants of these model-free approaches, such as the Rescorla-
Wagner updating rule®, the Q-learning algorithm?, local matching strategies’, or Thomson
sampling®, have been influential in formulating efficient decision-making and learning strategies
in uncertain environments’'2. These models have also been successful in explaining the activity
of cortical and subcortical areas in relation to reward prediction errors!'®, action values”!* or
previous choice and outcome history!>16.

When reward and outcome contingencies follow a specific structure and regularity, another set of
models, inference-based models with trial-to-trial Bayesian updates, are often used to simulate the
actions of agents'’"!°. This type of strategy involves the use of internal models to make efficient
inferences about the hidden states and optimal actions. Such inference-based (also known as
model-based) behavior are often seen only in expert animals that are familiar with the structure of
the task and able to hold an internal representation and understanding of the dynamics of the
surrounding world!”!8, Inference-based behavior has also been shown to engage a non-overlapping
set of brain areas from those that are involved in model-free strategies?®?!.

In many previous studies of reward-guided decision-making, these two modes of behavior, model-
free and inference-based learning, have largely been treated as separate behavioral domains that
require different sets of analytical tools and models. For example, reinforcement learning models
and logistic regression models have often been used in a subset of studies that assume a model-
free structure of behavior’-'4. This model-free approach allows researchers to answer questions
related to the value representations in different brain areas, as well as study the effect of
perturbations on the parameters of the models'>2*24, On the other hand, a complementary set of
studies focus on the behavior of well-trained animal with the assumption that these animals behave
exclusively in the inference-based domain®>-2°, While these stationarity assumptions are helpful
when animal behavior exclusively belongs to one domain or another, recent studies have started
to bring attention to the overlap and interaction between these types of strategies!*?’. For example,
it was found that in the same dynamic foraging task, rodents might engage in both model-free and
inference-based behavior, transitioning from the former strategy to the latter with experience in
the environment!'”!8, Another set of studies highlighted additional complexity in rodent behavior,
as they often switch between states of engagement and disengagement during decision-making
tasks?®2°, These results suggest model-free and inference-based behavior might be interspersed
within the same session, potentially engaging different subsets of neural circuits and mechanisms
for parallel computation of multiple decision variables®°. The use of mixture of strategies is further
supported by the discovery of separable components of rodent behavior in a reward-guided task?’.
Together, these results call for a more unified approach for dissecting the two sets of strategies and
understanding the transitions between them during learning as well as within single sessions of the
task.

Here, we focused on the problem of distinguishing these two types of behavior in the dynamic
foraging paradigm (also known as the two-armed bandit task), a standard behavioral framework
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90  of previous investigations into reward-guided behavior*!~*2. Our main goal is to develop a set of
91  behavioral benchmarks, analytical tools and approaches to help reliably dissociate between the
92  two classes of strategies. This is a challenging endeavor for two primary reasons. First, these two
93  classes of models are qualitatively distinct in form: model-free approaches involve agents that
94  update their action values from trial to trial with a learning rate and an exploration parameter’,
95  while inference-based approaches involve agents with a prior and internal model specified by some
96  parameters®®. We are thus faced with two sets of parameters with which to fit the behavior, and
97  will need to compare how well these parameter spaces can fit the same sequence of observations.
98  The second analytical challenge occurs when animals mix between different modes of behavior in
99  the same session. With this mixing, techniques that rely on aggregate measures of behavior over
100  entire sessions will lead to inaccurate estimates of behavioral parameters, as we will show in our
101  subsequent analyses, requiring alternative methods to segment and infer latent states of the
102 behavior from trial to trial.
103
104  To present our approach for distinguishing between the two types of strategies in dynamic
105  foraging, the paper is organized as follows. We first describe our experimental setup to study
106  dynamic foraging behavior in head-fixed mice. To analyze the behavior of our animals during
107  training, we focus on two models, (1) model-free agents that implement the e-greedy Q-learning
108  decision strategy, and (2) inference-based agents that hold a Markovian internal model of the
109  world. With this formulation, we show that current analytical methods are inadequate to fully
110  dissociate between the two classes of strategies, as these methods are insufficient to account for
111  the diversity of learning across the parameter spaces. In addition, methods that rely on session-
112 averaged metrics might give rise to inaccurate estimates of the behavior when animals mix between
113 behavioral strategies. We then present our approach to overcome the two challenges. To
114 comprehensively compare the behavior of the two models, we characterize four main behavior
115  features of the agent’s switching dynamics and perform a complete survey of these features across
116  the inference-based and Q-learning parameter spaces. This analysis reveals distinct behavioral
117  clusters which can be robustly decoded from each other, with a decoding accuracy close to 100%
118  between model-free and inference-based agents. To address the difficulty of behavioral analysis
119  of mixtures of strategies, we have built a novel state-space model (blockHMM) to infer the latent
120  states of behavior sessions, eliminating the potential confound of mixtures of learning strategies
121  on behavioral analysis. We validate this approach with simulations to demonstrate its reliability in
122 recovering the hidden states of behavior from observed choice sequences. Together, these new
123 tools reveal the highly dynamic nature of rodent behavior in this task, further highlighting the
124  variabilities between animals and the need for a statistical approach based on inferred latent states
125  for understanding the structure of task behavior.
126
127
128  Results
129
130  Dynamic foraging task and decision strategies of model-free and inference-based agents
131
132 We trained head-fixed mice on a dynamic foraging (two-armed bandit) task (Fig. 1a). Mice were
133 placed on a vertical rotating wheel*#, and on each trial, they were trained to perform one of two
134 actions, left or right wheel turns. On each trial, one movement was rewarded with probability of p
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and the other with the complementary probability of 1 — p. We tested mice in different dynamic
environments with different values of p. In the "100-0" environment, one action yielded reward

with 100% probability, while the alternative yielded no reward (Fig. 1b). Similarly, in "90-10",
*80-20" and "70-30" environments, reward probabilities were assigned to the two indicated values.
The environments were volatile such that the high- and low-value sides switched after a random
number of trials sampled between 15-25 without any external cues, requiring agents to recognize
block transitions using only the reward feedback. To ensure stable behavioral performance, we
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Figure 1. Dynamic foraging task and formulation of Q-learning and inference-based agents. a) (Top) Behavioral task
setup for head-fixed mice with freely-rotating wheel. (Bottom) Timing structure for each trial, demarcating the cue,
movement and outcome epochs. b) World transition models of the task. Hidden states alternated between right-states,
with high reward probability for right actions, and left-states, with high reward probability for left actions. The block
lengths were randomly sampled from a uniform distribution between 15-25 trials. ¢) Example behavioral performance of
an animal in the 90-10 environment, block transitions are demarcated by vertical dashed lines. Dots and crosses represent
individual trials (correct or incorrect). Black trace indicates the rolling performance of 15 trials. d) Implementation of Q-
learning (top) and inference-based algorithms (bottom) for simulating choice sequences of simulated agents. ¢) Example
behavior of simulated Q-learning (top) and inference-based (bottom). Each dot or cross represents the outcome of a single
trial. In the Q-learning plot, black and blue traces represent the values of each of the two actions. In the inference-based
plot, black trace represents the posterior probability of the right state P(s, = R | @y, 7y, ., Qp_1, 71 )-
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142 also required the average performance of the last 15 trials in each block to be at least 75% before
143 astate transition occured. We collected behavioral data from n = 21 mice that were trained in the
144  task for up to 40 sessions per animal (typical animal behavior shown in Fig. 1c for a 90-10
145  environment).

146

147  We focused on disentangling the behavior of two classes of agents, Q-learning and inference-based
148  agents. Q-learning is a model-free learning strategy that performs iterative value updates based on
149  external feedback from the environment (Fig. 1d, top). In the dynamic foraging task with two
150  options, these agents maintain two values associated with the two actions, q;, for left actions and
151  qg for right actions. On each trial, the value of the chosen action is updated toward the reward
152 magnitude of the experienced reward, », with a learning rate y.

153

154 qi < q+v(r—q;)

155

156  where ¢; represents the action value for one of the arms (L or R), r reflects whether the previous
157  action was rewarded (0 or 1), and y is the learning rate parameter. We additionally assumed that
158  the agent adopts an e-greedy policy. In this policy, the agent chooses the higher-valued action with
159  probability 1 - ¢, and chooses actions at random (with probability 50%) on a small fraction ¢ of
160 trials. Altogether, the two free parameters, y and ¢, define a two-dimensional parameter space that
161  captures the entire behavioral repertoire of Q-learners.

162

163  The second class of reward-based models consists of “inference-based” agents whose actions are
164  guided by an internal model of the world. Unlike model-free agents that use the action/outcome
165  history to directly estimate an action value for each arm, these models use the history to infer the
166  hidden state of the environment (i.e., which side is more rewarding) and use that information to
167  guide actions. In our task, the world model (Fig. 1) consists of two hidden states, L and R, that
168  determine whether the “left” or “right” action is associated with higher reward probability,
169  respectively (P, ). The evolution of these hidden states can be approximated by a Markov process
170  with probability Py,,i;c, of switching states and 1 — Py,,;+., for remaining in the same state on each
171  trial. Given this model and observed outcomes, the ideal observer can perform Bayesian updates
172 to keep track of the posterior distribution of the two states (see update equations in Methods).

173

174 P(s;=Llayr,azr, . 01,1—1)

175

176  On each trial, the agent uses the posterior over the world states to select the action that maximizes
177  the expected reward on that trial. The free parameters, P.,, and Pg,;¢cn, constitute a two-
178  dimensional parameter space that span the full behavioral repertoire of all inference-based agents
179  with potentially wide variations in behavior along these two axes.

180

181

182  Evaluation of previous approaches for dissociating model-free and inference-based behavior
183  from dynamic foraging data

184

185  Dissociating model-free from inference-based behavior has traditionally been a difficult problem
186  in this task domain. One challenge that analytical methods need to address is the large parameter
187  space involved in these two very different models — model-free agents are described by the learning
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188  rates y and exploration rates ¢, while inference-based agents are specified by a combination of
189  Pgyiten and P, of their internal models. Within these parameter spaces, the behavior can vary
190  drastically from one region to another, requiring a thorough mapping of behavior in different parts
191  of the two spaces before classification algorithms can be evaluated.

192

193 Due to this large size of the parameter spaces, it might not be feasible to distinguish model-free
194  from inference-based behavior using a single behavioral metric, as previous studies have
195  done!”!83, For example, consider the use of a previously proposed feature, denoted by p, that
196  takes into account the correlation between the number of errors in block 7 — 1, and the number of
197  rewards in block #'7. For a Q-learning agent with a low learning rate (agent denoted by blue X in
198  Fig. 2a,d), p will be positive. This reflects the underlying slow value accumulation, such that the
199  more rewards are experienced in the previous block, the more errors are needed in the next block
200  to make a behavioral switch happen. On the other hand, for an inference-based agent with Py, =
201 0.1 and Py, itcn = 0.7 (black X in Fig. 2b,d), the inference process is independent of the number of
202  rewards experienced in the previous block. Thus, p is close to 0. Hence, p is a reliable metric for
203  distinguishing the behavior of these two agents. However, this metric is insufficient to discriminate
204  between other pairs of agents from other parts of the corresponding parameter spaces. For instance,
205  pis also close to zero for a Q-learner with a high learning rate (blue * in Fig. 2c,d). Similarly, p
206  may be positive for an inference-based agent with a different set of parameters (black * in Fig.
207  2c,d). In fact, the overall distribution of p over the two parameter spaces are very similar for the
208  two types of models (Fig. 2d). Thus, dissociating model-free from inference-based behavior might
209  require more detailed benchmarking of behavior using multiple complementary behavioral
210  metrics.

211

212 Another analytical challenge for understanding dynamic foraging behavior arises when agents mix
213  between multiple strategies in a single behavioral session. This poses a problem for current
214 analytical techniques such as logistic regression'>!*-?* or reinforcement learning models’-2%23-36-37
215  which assume that the behavioral strategy is stationary within individual sessions. Although these
216  methods work well when the agent uses a single strategy with a fixed set of parameters, they can
217  provide erroneous estimates in scenarios of mixed strategies. To investigate the nature of such
218  errors, we confronted models that assume stationary behavior with data generated by agents that
219  adopt a mixture of strategies.

220

221  We simulated three agents that perform a value-guided task in a 90-10 environment (Fig. 2e). The
222 first agent was a Q-learning agent, the second was an inference-based agent, and the third (“agent
223  M”) mixes equally between the two strategies (see Methods). Both logistic regression and
224 reinforcement learning models gave inaccurate estimates for the parameters that underlie the
225  behavior of agent M. The learning rate inferred by the reinforcement learning model was
226  intermediate between the two learning modes that make up agent M’s strategy (Fig. 2f).
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227 Challenge 1: diversity of behavior in parameter spaces
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Figure 2. Evaluation of current analytical approaches for dissociating model-free from inference-based behavior. a)
(Left) Simulation of a Q-learning agent with parameters y = 0.1,e = 0.01, illustrating the correlation between the
number of errors, N,, and the number of rewards on the previous blocks, N,. (Right) Relationship between N, and N,
(mean + standard deviation, » = 1000 blocks across all values of N;) showing a positive correlation between the two
quantities, p = 0.47. b) Same as a, but for an inference-based agent with parameters Ps,,;j;cn = 0.1, B, = 0.7. Here, no
correlation between N, and N, was seen. ¢) Same as a-b, but for two other Q-learning and inference-based agents that
show opposite effects of p. d) Map of the values of p across the Q-learning and inference-based parameter spaces. Blue
X: agent in a, black X: agent in b, blue *: Q-learning agent in c, black *: inference-based agent in c. e) Strategies of three
agents over 1000 blocks of trials in the dynamic foraging task, a Q-learning agent (left), an inference-based agent
(middle), and agent M (right) which mixed between the two strategies. f) Inferred learning rate by fitting the behavior
of the three agents in (e) to a reinforcement learning model. Middle line represents the median (z = 10 repetitions). g)
Logistic regression model coefficients (mean + standard deviation, n = 10 repetitions) fitted on the behavioral choices
of the three agents, with regressors representing previous choice, previous reward and previous choice x previous reward.
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228  More problematic was the result of the logistic regression model. While the inference-based agent
229  showed no dependence on previous choice and the Q-learning agent showed positive coefficients
230  of previous choice regressors, agent M’s dependence on previous choice was intermediate between
231  the two agents (Fig. 2g, left panel). The coefficients for the interaction terms of agent M (previous
232 choice x previous rewards) also showed a different pattern from either the inference-based or the
233 Q-learning agent. Agent M’s interaction terms were higher in magnitude for the 7 — 1 trial than
234 both the Q-learning and inference-based agents (Fig. 2g, right panel). The coefficients for previous
235 reward are close to zero for all three types of agents (Fig. 2g, middle panel). Considering these
236  results in the context of differentiating inference-based from model-free strategies, the inaccurate
237  estimates are concerning. If an animal executes a mixture of inference-based and model-free
238  strategies during the task, a method that relies on these estimates will fail to discriminate between
239  the two modes and thus will be unable to discover the true underlying strategies.

240

241  Four behavioral features to discriminate model-free from inference-based behavior

242 We first developed a framework for differentiating model-free from inference-based behavior in
243  the case of a pure strategy with no mixing. To quantify the agent’s behavior during block
244 transitions, we computed four features of the “transition function” that describes the dynamics of
245  action switching of the agents in response to an uncued change in the external reward contingency
246  (Fig. 3a). This function is a sigmoidal curve parameterized by three parameters, the switch offset,
247 s, the slope a, and the lapse ¢ which represents the exploration rate of the agent in the environment.
248  The fourth parameter is the foraging efficiency £, which is the fraction of rewarded choices of the
249  agent over the whole session. In the limit of large number of blocks, this fraction is reflected by
250  the area under the curve of the choice transition function. Either a decrease in offset, an increase
251  inslope or a decrease in exploration would lead to an increase in the foraging efficiency.

252

253  We hypothesized that together, the combination of these four behavioral features can help
254  discriminate different regimes of the model-free and inference-based behavioral spaces. For
255  instance, the switch offset s might be immediate or delayed depending on the learning rate of Q-
256  learning agents, or the parameters of the inference-based agent’s internal model. The slope a of
257  the transition might be shallow or steep depending on the agent’s strategy. For an agent that relies
258  on slow value integration from trial to trial, choice transitions might occur gradually, whereas for
259  an agent that can quickly infer the underlying states using internal models, the transitions can be
260  sharp. The degree of exploration might also be informative of the underlying strategy. For
261  example, Q-learning agents require a non-zero rate of exploration in order to prevent them from
262  getting stuck in sub-optimal strategies when reward contingencies need to be relearned. In contrast,
263  inference-based agents with a model of the environment requires no exploration to discover these
264  state changes. Finally, the overall foraging efficiency which non-linearly combines information
265  from all three metrics, could be another metric that can distinguish efficient agents from less
266  efficient ones. The use of these multiple features which are sensitive to different aspects of the
267  behavior will thus help increase our ability to distinguish diverse ranges of behavior coming from
268  different parts of the parameter spaces. Before building a decoder for behavioral strategy using
269  inputs provided by these features, we will start with a survey of how each of the four features vary
270  across the Q-learning and inference-based parameter spaces.
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Figure 3. Behavioral metrics of Q-learning agents. a) Illustration of the sigmoidal transition function with four parameters:
switch delay s, switch slope a, lapse ¢, and overall foraging efficiency E. b) Behavior metrics for Q-learning agents in a
100-0 environment. We simulated the behavior of 25 x 20 Q-learning agents with different values of the learning rate y and
exploration parameter ¢, and measured the four behavioral features for each agent by fitting the average transition function
over 1000 blocks to a sigmoidal function. ¢) Example behavior of three Q-learning agents with a fixed € = 0.1 and varying
learning rate y. Top row shows the behavior of each agent over 100 blocks (each row represents the outcomes of all the
trials within a single block, red: incorrect choice, blue: correct choice). Bottom row shows the average transition function
(black curve, mean + standard deviation, n = 1000 blocks), and the fitted sigmoid (blue curve). d) Same as c, but for three
Q-learning agents with fixed y = 1.2 and varying €.
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273  Behavioral features of Q-learning agents

274  To characterize the behavior in the Q-learning space, we simulated an ensemble of agents, each
275  with a different combination of y and &, where 0.01 <y < 1.4, and 0.01 < e < 0.5. For each
276  parameter combination, we simulated the agent in the given environment (100-0, 90-10, 80-20 or
277  70-30) for 1000 blocks, with block sizes randomly sampled between 15-25 (similar to the protocol
278  we use for rodent behavior training). We then averaged the behavior responses over all blocks to
279  obtain the choice transition function (Fig. 3a), and performed a sigmoidal fit of this function to
280  obtain the behavioral features s, a, and ¢, that defined the switching dynamics for all points in the
281  Q-learning space (Fig. 3b).

282

283  The distribution of behavioral features in the space was highly non-linear, and the features showed
284  a variation along the two primary axes, y and ¢ (Fig. 3b). When ¢ was held constant, a higher
285  learning rate led to faster and sharper switching dynamics at the block transitions (Fig. 3b, c¢). For
286  example, when ¢ was fixed at 0.1, increasing the learning rate y from 0.1 to 1.2 led to faster
287  behavioral switching (offset decreased from 8.6 to 5.3, to 0.8 trials). Notably, as we traversed the
288  parameter boundary from y <1 to y > 1, there was a sharp transition in the switch slope and switch
289  offset. This is because in the high learning-rate regime where y > 1, a single error was enough for
290 agents to switch their actions, resulting in switch offsets that were very close to zero, and very
291  sharp action transitions.

292

293  Along the ¢ axis, variations in these behavioral features were non-monotonic (Fig. 3d, top). When
294  we fixed y = 1.2, a low value of ¢ (such as ¢ = 0.01, Fig. 3d, left panel) often prevented Q-learning
295  agents from switching as they failed to explore the alternative action after block transitions. This
296  agent was not able to discover the more rewarding action, leading to an average transition function
297  that is perfectly flat (Fig. 3d, bottom). A moderate value of ¢ (such as ¢ = 0.2, Fig. 3d, middle
298  panel) encouraged exploration and enabled agents to discover the optimal action in order to make
299  rapid action switches. However, when the degree of exploration became large (¢ = 0.5, Fig. 3d,
300 right panel), although the agents were able to switch rapidly, their noisy asymptotic behavior
301  prevented them from fully exploiting the most rewarding action.

302  Behavioral features of inference-based agents.

303  Similar to the survey of the Q-learning landscape, we characterized the inference-based space by
304  simulating an ensemble of inference-based agents with different combinations of Pg,,;;., and
305 Py (With 0.01 < Pgppipcp < 0.45 and 0.55 < B, < 0.99).

306  Unlike the variations seen in the Q-learning space which were mainly along the primary axes, the
307  behavior of inference-based agents varied systematically along the diagonal axis of the parameter
308  space (diagonal line in Fig. 4a). In the low Pyt and low PB,.,, regime (Fig. 4b, left panel), which
309  we call the ‘stable’ regime of the state space, agents assumed an internal model where state
310  transitions occur infrequently. This made them rather insensitive to errors and resulted in high
311  switch offsets (switch offset = 8.4 trials for the agent with P,;;c, = 0.01 and P, = 0.55). In
312 contrast, the regime where both Pg,,;;., and P, were high is called the ‘volatile’ regime (Fig. 4b,
313 right panel). Here, agents assumed an environment with frequent state transitions and high reward
314  probability. This volatile assumption made them more sensitive to errors, switching their choices
315  more readily after only a few errors (switch offset = 0.96 trials for the agent with Py, = 0.45
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316  and B, = 0.99). In this regime, each error was more impactful to the agent’s update estimate of
317  the current world state. The behavior in between these regimes had low exploration rates and
318  offsets that were intermediate between the two extremes (Fig. 4b, middle panel).
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Figure 4. Behavioral metrics of inference-based agents. a) Behavioral features offset s, slope o, lapse € and
efficiency £ for inference-based agents in the parameter space. Conventions are the same as Fig. 3a. b) Example
behavior of three inference-based agents taken from the diagonal of the parameter space (represented by crosses in

panel a plots). Conventions are as Fig. 3b,c).

319  One feature that distinguished inference-based agents from Q-learning agents is their lapse rates:
320 inference-based agents tend to explore much less compared to the Q-learning agents, with lapse
321  rates below 10% across most of the parameter space (compare Fig. 4a and Fig. 3b). This low
322 exploration of inference-based agents can be explained by the effectiveness of the inference-
323 based update procedure compared to the Q-learning strategy. Even for Q-learning agents with a
324  high learning rate, a small degree of exploration is required to achieve high foraging efficiency
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325 and avoid getting stuck with low-reward actions. In contrast, Bayesian inference allows

326  inference-based agents to infer state changes without the need to explore alternative choices.

327  Together with the faster switch delays and sharper switch transitions, this low exploration leads
328  to a much higher foraging efficiency than can be achieved by Q-learning agents in the uncertain
329  worlds. Indeed, foraging efficiency was consistently above 90% for most inference-based agents,
330  which was much higher than the maximum efficiency that can be achieved in the Q-learning

331  parameter space (85%).

332 The simulation of Q-learning and inference-based agents was repeated for 90-10, 80-20, and 70-
333 30 environments, yielding qualitatively the same trends and axes of variation among the four
334  behavioral features in these environments (Supp. Figs. 1, 2). Thus, the qualitative trends in these
335  features were consistent across different types of environments regardless of the level of
336  stochasticity in the reward probability.

337  Decomposition of the Q-learning and inference-based parameter spaces into sub-regimes
338  with distinct behavioral signatures

339  Given the large variation of the four behavioral features across both the Q-learning and inference-
340  based spaces, we next investigated whether the behavior of these agents naturally cluster into
341  distinct modes that are qualitatively different from each other. To perform this analysis, we pooled
342  the behavioral features from all Q-learning and inference-based agents in the 100-0 environment
343  to form a 4 x 650 feature matrix, representing 4 features/agent x 650 agents (25 x 20 Q-learning
344  and 15 x 10 inference-based agents, Fig. 5a). We applied a density-based clustering method which
345  is well-suited for cases where the component distributions are heterogeneous and non-Gaussian?®,
346  The data points were first non-linearly embedded onto a two-dimensional t-SNE space, and a
347  watershed algorithm was applied to identify borders of the embedding that separates regions of
348  high-density point clusters. This resulted in six clusters that can be visualized on the embedding
349  space (Fig. 5a).

350 Interestingly, when the identities of the classified points were mapped back into the parameter
351  space that they came from, each of the six clusters corresponded to a contiguous regime in either
352 the Q-learning or inference-based space, but not both (except for cluster 1 which was found both
353  in large portions of the Q-learning space and a very small region of the lower left corner of the
354  inference-based space). The first four classes were localized to regions of the Q-learning space
355  that corresponded to low (class Q1), medium (classes Q2 and Q3) and high learning rates (class
356  Q4), respectively. The remaining two classes were mapped to different sub-regions of the
357 inference-based space: class IB5 resided in lower left corner of the space which corresponded to a
358  ‘stable’ world model with low Pg,,;¢cp ; class IB6 was mapped to the complementary region, the
359  ‘volatile’ regime where Ps,,;;c;, and P, are both high. The distribution of these regimes suggests
360 a clear distinction between Q-learning and inference-based behavior, such that inference-based
361  and Q-learning regimes are largely non-overlapping.
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Figure 5. Decomposition of parameter spaces into regimes of qualitatively different behaviors. a) Method of
segmentation of the parameter spaces. We performed a computational simulation of an ensemble of Q-learning and
inference-based agents taken from grids that spanned the entire two spaces. For each agent, we obtained the transition
function and four behavioral features characterizing the sigmoidal fit. We pooled the features of all agents into a
feature matrix and applied a density-based approach to cluster these features into six regimes. We then visualized
the regime identities for all points in the two parameter spaces. b) Transition functions grouped according to the
behavioral regime Q1-4, IB5-6. Red trace represents the mean across all the transition functions in each group. c¢)
Demarcation of the six regimes in the Q-learning and inference-based spaces in different types of environments
(100-0, 90-10, 80-20, or 70-30).
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363  We verified that these regimes represented distinct modes of behavior by visualizing all the choice
364 transition functions, grouped by the regime identity (Fig. 5b). We found qualitative differences
365 and systematic variations across the different regime types. For example, transition functions in
366  regime Q1 were the flattest, having shallow slopes and very late switch offset, consistent with the
367  slow switching of Q-learning agents with low learning rates. From regime Q2 to Q4, transition
368 functions became progressively steeper with higher slope and faster switch offsets. The average
369 rates of exploration for all the Q-learning regimes (Q1-Q4) were all non-zero. This lapse rate was
370  lowest for Q2 and higher in the other three regimes. In contrast, the inference-based regimes (IB5
371  and IB6) could be distinguished from the Q-learning clusters by lapse rates that were very close to
372 zero. Although the behavior transitions were sharp in both regimes, they occurred at different
373  latencies: the offset was immediate in cluster IB6 but delayed in cluster IB5, consistent with the
374  delayed switching seen in inference-based agents with low Ps,, i, that assumed a more stable
375  model of the world (Fig. 5b).

376  Structure of behavioral features and regime demarcation in 90-10, 80-20 and 70-30
377  environments

378  So far, our clustering analysis and regime segmentation has been performed in a deterministic
379  environment (100-0) where in each state, the reward is given with 100% probability for the high-
380  wvalue action and 0% probability for the low-value action. To determine how these clusters might
381 vary in probabilistic settings, we performed the same behavior simulation and clustering
382  procedures in 90-10, 80-20 and 70-30 environments, where rewards are given with progressively
383  higher degrees of stochasticity. For example, in a ’90-10" environments, rewards are given with
384  probability 90% on the high-valued side, and only 10% on the low-valued side. In each
385  environment, we characterized the variations in the four behavioral features across the Q-learning
386  and inference-based spaces (Supp. Fig. 1-2).

387  Our simulations revealed that the boundaries of the behavioral regimes (Q1-4 and IB5-6) were
388  largely preserved across different environments. In all types of environments, the presence of six
389  clusters could be confirmed when visualized in the t-SNE embeddings (Supp. Fig. 3a).
390  Furthermore, the clusters were localized to similar regimes in the Q-learning and inference-based
391  parameter spaces (Fig. 5¢). Notably, as rewards became more unreliable (going from the 100-0 to
392 the 70-30 environment), there was an increase in extent of overlap between Q-learning and
393  inference-based behavior. In the 80-20 and 70-30 environments, a larger section in the lower left
394  corner of the inference-based space was found to co-cluster with regimes Q1 and Q2 in the Q-
395 learning space. This suggests that noisy environments, it becomes more difficult to dissociate the
396  behavior of Q-learning agents in the Q1-Q2 regime from the behavior of inference-based agents
397  that hold ‘stable’ internal models (the dissociability of the regimes will be further quantified by
398  the decoding results in the next section and Fig. 6). Finally, when visualizing the behavioral
399 transition functions of the six behavioral regimes in different types of environments, we found the
400  same variations and patterns across the six clusters (Supp. Fig. 3b). In each environment, from
401 regime Q1 to Q4, there was a consistent increase in the slope and a decrease in offset of the
402  transition function. For the inference-based agents (IB5-6), we generally observed sharper
403  transitions and faster switches compared to their Q-learning counterparts, demonstrating the
404  usefulness of internal models in bringing about more efficient switching strategies. The IB5 cluster
405 tended to have lower lapse rate than the IB6 cluster, and this lapse rate increased as the
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406  environment got noisier (100-0 to 70-30). As with the deterministic case, regime IB5 had a slightly
407  delayed offset compared to IB6, as the agents’ internal belief of a stable environment made them
408 less inclined to switch their actions as successive errors were encountered. Finally, as the level of
409  noise increased in the environment, there was a general decrease in slope and increase in lapse rate
410  in the transition functions for all of the six regimes.

411  Decoding of Q-learning and inference-based regime identity from behavioral data

412  The segregation of the Q-learning and inference-based spaces into six discrete domains suggests
413 qualitative differences in behavior between these clusters. These differences are revealed by the
414  features of the choice transition functions, which showed systematic variations across regime and
415  environment types (Fig. 6a). For example, agents in regime Q1 have flattest transition functions
416  with the highest offsets, suggesting a random mode of behavior with slow switching between the
417  two actions. On the other hand, agents in regimes IB5 and IB6 have the lowest lapse rates and
418  sharpest transitions (highest slopes), suggesting a mode of behavior that relies on internal models
419  of the world to achieve the highest foraging efficiency. Altogether, these differences can be used
420  to decode the cluster identity from the behavioral performance of animals in an experimental
421  session. In this section, we will build and optimize these decoders, and evaluate their regime
422  classification performance on synthetic data sets for which the ground truth is known.

423 The synthetic training and validation data were again obtained by computational simulations (Fig.
424  6b). For each agent in the Q-learning and inference-based parameter spaces (with a known regime
425  identity according to our previous segmentation), we performed repeated simulations in 50
426  synthetic experimental sessions with 20 block transitions per session (chosen to resemble the
427  number of blocks that animals typically complete in a regular training day). For each synthetic
428  session, we averaged the behavior across all blocks to obtain the transition function, and fitted a
429  sigmoidal curve to estimate the four features of this function. This procedure yielded a four-
430  dimensional feature vector for each agent per session. We split this data into a training set
431  (containing 80% of the data) and a test set (20% of the data). We trained a k-nearest neighbor
432 (kNN) decoder on the training set to predict the behavioral regime (1 to 6), and evaluated its
433  performance on the held-out test set. The accuracy of the decoder was measured both by the
434  fraction of correctly labeled examples per regime, and by the Matthews Correlation Coefficient,
435  which is a metric for evaluating the decoding performance across all six clusters (similar to the
436  area under the ROC curve but for multi-class classifications).

437  We used the decoding accuracy and Matthews correlation metrics to determine the number of
438  neighbors (k= 24) for optimal decoding (Fig. 6¢). For the optimized decoder, the performance that
439  could be achieved was significantly above chance for all six behavioral regimes (Fig. 6d). We
440  found that each cluster could be decoded with higher than 75% accuracy (compared to a chance
441  performance of 17%). Most impressively, the analysis showed that inference-based behavior (IB5-
442 6) could be almost certainly separated from Q-learning behavior (Q1-4) (decoding performance
443 was 99.8% for distinguishing classes IB5-6 from Q1-4 in the 100-0 environment). The decoder
444  performed extremely well for the inference-based regimes, achieving almost perfect performance
445  for these two clusters. The decoding accuracy was lower for classes Q1 to Q4, reflecting the higher
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446  stochasticity in these four modes due to the random exploration that is inherent in the mechanism
447  of Q-learning agents.
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Figure 6. Decoding of behavioral regimes and evaluation of decoding accuracy. a) Average behavioral features
(offset, slope, lapse and efficiency, mean + standard error) of simulated agents belonging to classes 1 to 6, for the
four types of environments, 100-0, 90-10, 80-20 and 70-30. In the efficiency plot (right), top dashed line represents
the ideal performance, bottom dashed line represents random performance. b) Procedure for the behavioral regime
decoding. c) Selection of the number of nearest neighbors, &, based on cross-validated decoding performance (blue,
mean + standard deviation, n = 20 repetitions) and Matthews Correlation Coefficient (red, mean + standard deviation,
n =20 repetitions). d) Cross-validated confusion matrix for simulated behavior in the 100-0 environment. Diagonal
entries show the accuracy for each respective class. e) Decoding performance (mean + standard deviation, n = 20
repetitions) for the six behavioral regimes across different environments (100-0, 90-10, 80-20 and 70-30). Dashed
horizontal line represents chance performance.
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448  We also trained separate decoders and investigated the decoding accuracy in the other three types
449  of probabilistic environments (90-10, 80-20 and 70-30, Fig. 6e) to determine which type of
450  environment would be the most optimal for distinguishing between the six behavioral regimes. We
451  found that the decoding performance for the clusters dropped as the level of stochasticity increases
452  in the environment. The decoding accuracy was consistently high and close to perfect for regime
453  1B6, regardless of the type of environment. For each of the other five clusters, there was a drop of
454  about 20% in decoding accuracy as we go from the 100-0 environment to the 70-30 environment.
455  These results suggest that given our choice of behavioral features, more deterministic
456  environments are better for distinguishing the behavior of model-free and inference-based agents,
457  likely due to the greater separation between the behavioral features among the six types of agents
458  (Fig. 6a).

459  Session-average rodent behavior progressed through model-free regimes with increasing
460  learning rates

461  The high decoding accuracy of behavioral regimes gave us more confidence to use these decoders
462  on the experimental data that we obtained from our trained animals. We analyzed behavioral data
463  obtained from n = 21 head-fixed mice that were trained on the 100-0 dynamic environment. On
464  average, behavioral features varied systematically over time: choice transitions occurred faster
465  (shown by the decrease in offset) and switches became sharper (shown by the increase in slope),
466  while the lapse rate decreased with training (Fig. 7a). Although the average lapse rate decreased
467  over time, it remained high even after 3 weeks of training (~30% on day 30), suggesting a
468  substantial degree of exploration and indicating that not all animals transitioned to the inference-
469  Dbased regime at this late stage of training.

470  The sharper and faster switches of trained mice in the task could be attributed to an increase in
471  learning rate in the Q-learning mode, or a shift from the Q-learning to the inference-based decision
472  mechanism. We dissociated these hypotheses by decoding the behavioral regime (Q1-4 or IB5-6)
473  of each training session using the decoder that was previously trained on the synthetic data (Fig.
474  6). Remarkably, we found that 100% of the decoded states over the training days (across 21
475  animals, up to 30 training days), belonged to the Q-learning regimes, Q1-Q4 (Fig. 7b). Within
476  these regimes, there was gradual shift toward regimes with higher learning rates. The behavior
477  started predominantly in state Q1, and with learning, the frequency of state Q1 decreased, while
478  states Q3 and Q4 increased in prevalence (Fig. 7b). As such, the mean decoded states across
479  animals showed a slow increase toward higher Q-learning modes (Fig. 7c). By the end of 30
480  sessions, about 40% of all animals were in class Q4, and the rest were divided between regimes
481 Q1 and Q3. There was no indication that the behavior transitioned to inference-based modes (IB5-
482  6) in any single animal.
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Figure 7. Decoding of session-averaged rodent behavior during dynamic foraging. a) Evolution of offset, slope, lapse
and efficiency of rodent dynamic foraging behavior with training (mean + standard error, n = 21 animals). b) Distribution
of decoded state across all animals (rz = 21) with training. c) Evolution of average decoded state across all animals (mean
+ standard error, n = 21 animals) with training. d) Same as b, but in probabilistic environments (90-10, 80-20 and 70-30,
with n = 6 animals). These sessions were conducted after animals became expert in the 100-0 environment.

483  We also trained a subset of n = 6 animals on the probabilistic environments (90-10, 80-20 and 70-
484  30). We applied decoders that are trained on synthetic data for each environment (Fig. 7d) to infer
485  the behavioral modes for these sessions, and again found that the vast majority of these sessions
486  were in the Q-learning regimes (Q1-Q4). Altogether, these results failed to reveal any signature of
487 inference-based behavior from the session-averaged behavioral features of rodents. This was
488  highly surprising, and as we noted at the start of the paper (Fig. 2d-f), could be due to the use of
489  session-averaged statistics which can yield erroneous results by masking the use of mixtures of
490  strategies in single sessions. In the next sections, we will tackle this challenge of analyzing
491  mixtures of strategies by building a state-space model to quantify dynamic shifts and transitions
492  in learning modes.

493 A novel framework to quantify mixture of strategies in dynamic foraging

494  The absence of inference-based strategies from our previous decoding analysis was highly
495  surprising for several reasons. First, inference-based behavior has been observed in previous
496  studies of dynamic foraging in rodents, as well as in other complex tasks which involve multiple
497  decision stages!”!%. Thus, it seems unlikely that our animals are unable to develop an internal
498  model that facilitates efficient inference in our task. Second, from our training experience, we have
499  frequently observed expert animals making sharp switches in their actions, with some animals
500 being able to reverse their actions after a single error after each block transition. Hence, our
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501 inability to discover inference-based behavior was suggestive of the need for a more sophisticated
502  analysis of behavior.
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Figure 8. Formulation and evaluation of the blockHMM algorithm. a) Example of behavior generated by a
blockHMM mixture with K = 3 components. The circles on top represent the underlying hidden states, z;, which
evolve according to a Markov chain. Each state (shown by blue, red and green shade) follows a different set of
underlying switching dynamics. Blue dots represent correct choices, red crosses represent incorrect choices. (Inset)
Average transition function across all blocks of the session (black) together with the fitted sigmoidal curve (blue).
b) (Top) Transition functions corresponding to each of the three hidden states, z; = 1, 2, 3. Each sigmoidal curve can
be parameterized by three features, the slope, offset, and lapse. Arrows represent transition probabilities between the
states. (Bottom) Equations of the blockHMM generative model. Each hidden state governs the choice sequence of
the entire block according to the sigmoidal transitions (equations 1 and 2). The log-likelihood of the observed choices
in the block is the sum of the log-likelihoods of individual trials (equation 3). ¢) (Top) Example behavior in 1000
blocks of trials generated by the same blockHMM mixture shown in panels a and b. Each column represents one
block, with trials 1 to 30 of each block running from top to bottom. Red represents incorrect choices and blue
represents correct choices. (Middle) True states that underlie the behavior shown in the top panel. (Bottom) Inferred
latent states by the blockHMM fitting procedure. d) (Left) Evolution of the log-likelihood during model fitting in
panel c. (Right) Dependence of cross-validated log-likelihood on the number of components, K. ) True and inferred
transition matrices for the behavior shown in panel c. f) Grouping of blocks of trials according to the inferred state
after the model fitting with K =3 HMM components. (Top) Raw behavioral performance grouped by the identity of
the latent state. Conventions are as Fig. 3¢,d and Fig. 4b. (Bottom) Average transition function and fitted sigmoidal
curve for each of the grouped blocks. g) Comparison of true and inferred parameters for the three components of the
behavior shown in panel c.

503  One factor that might explain this result was the highly variable behavior of mice in training
504  sessions. For example, in the same session, an individual animal might vacillate between different
505  strategies, switching their choices immediately in some blocks, transitioning more slowly in others,
506  and selecting choices at random toward the end of the session as they became satiated (red, green,
507 and blue shades in Fig. 8a, respectively, for a simulated agent). These state changes pose a
508 challenge for analysis methods which make use of session-average metrics, as highlighted by our
509  examples in Fig. 2d-f. In our framework, each of these strategies might be governed by a separate
510  choice transition function with varying offsets, slopes and lapse rates (sigmoidal curves in Fig.
511  8b). Since the session average transition function (Fig. 8a, bottom panel) is more likely to be flatter
512 with higher lapse rate than a typical inference-based sigmoid, the average behavior will tend to
513  look model-free, masking the inference-based strategies in some of the individual components.

514  The fact that individual modes of the behavior might be obscured by session-averaged measures
515  prompted us to develop a computational tool to identify the discrete latent states that constitute the
516  behavior of animals across their training sessions. We took advantage of recent developments of
517  state space models that were used to infer discrete latent states from sequences of discrete or
518  continuous variables?>*** In particular, adapting the previously developed GLM-HMM
519  framework® to the dynamic foraging setting, we assumed that each hidden state determines the
520  parameters of a single sigmoidal transition function (offset s, slope a and lapse €), which in turn
521  determines the joint log likelihood of all the choices within each block. We named the approach
522 “block Hidden Markov model (blockHMM)” to indicate the use of hidden states which dictate the
523  evolution of choices throughout the block duration (Fig. 8a).

524  More concretely, we assumed that the choice sequences in each block & is governed by an
525  underlying sigmoidal transition function o, (t), where t =0, 1, 2, ... are the trial numbers within
526  the block (Fig. 8a). These transition functions can be parameterized by the switch delay s, slope
527 oy and lapse rate €, (Equation 1, Fig. 8b). The discrete latent states z;’s evolve from one block to
528  the next with a Markovian property specified by the transition matrix P(z;; | z; ) (denoted by
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529  arrows in Fig. 8a). The transition function determines the likelihood of all trials within each block
530  (Equation 2, Fig. 8b). Finally, to fit the model, we used the EM algorithm to maximize the log-
531 likelihood over all observed choices, which is the sum of the log-likelihoods of individual trials
532 (Equation 3, Fig. 8b).

533 Our synthetic agent (Fig. 8a) was simulated according to a blockHMM process with K = 3 hidden
534  states. State z =1 (blue) corresponded to a random mode of behavior with a flat transition function,
535  z=2(red) corresponded to a sigmoidal curve with a fast offset, and z = 3 (green) involved a sharp
536  but delayed switching of actions. We generated the behavior of this agent over 1000 blocks (Fig.
537  8c), and fitted the blockHMM model to the observed choice sequences of the agent. The log-
538 likelihood of the fit converged to the true log likelihood value (Fig. 8d, left). To determine the best
539  number of latent states for the model, we trained the model on 80% of the blocks and evaluated
540  the log-likelihood on the remaining 20% of the blocks. Inspecting the normalized cross-validated
541  log-likelihood, we found that the optimal number of clusters was K = 3, agreeing with the ground-
542  truth value (Fig. 8d, right). At the end of the fitting procedure, blockHMM recovered the correct
543  transition matrix (Fig. 8e), as well as the parameters of the transition function in each mode (Fig.
544  8f-g). Importantly, the inferred latent states closely matched the true states that underlie the
545  behavior (Fig. 8c, bottom panels).

546  Mice use a mixture of strategies during dynamic foraging

547 We used the blockHMM procedure to identify the hidden states that underlie behavioral
548  performance of our trained animals (n = 21). For each animal, we fit the model with the number
549  of components, K, that was chosen to maximize the cross-validated log-likelihood (Supp. Fig 4,
550  the value of K was also capped at a maximum value of 6 for interpretability). From the model fits,
551  we obtained the slope, offset and lapse parameters that define each transition function. We also
552  computed the foraging efficiency of each mode based on the performance of the animal in all of
553  the trials in the respective states. The combination of four features per strategy were then input to
554  our trained decoder (Fig. 6) to determine the behavioral regime (Q1-4 or IB5-6) for each of the six
555 HMM modes (Fig. 9a). For 11/21 animals, we observed the presence of both Q-learning and
556  inference-based regimes in the decoded HMM modes, while the rest of the animals only showed
557  the presence of Q-learning regimes. To visualize behavior within each HMM mode, we pooled
558  together the fitted functions from all animals (a total of 97 modes across 21 animals) and grouped
559  them according to the decoded regime (Fig. 9b). Overall, the shape of these HMM modes closely
560 matched the results of our regime segmentation: HMM modes that were decoded as Q1 showed
561  delayed and gradual transitions that were close to random behavior, Q2 modes showed slow
562  switching (with offset ~5 trials) and low exploration. Very few HMM modes were decoded to be
563 Q3 — these modes showed similar offsets to Q2 but had higher lapse rates. Q4 modes displayed
564  very fast switching (with offset of 1-2 trials) and a wide range of lapse rates. Importantly,
565  blockHMM revealed the existence of a significant number of inference-based modes, which were
566  decoded to regimes IB5-6. Consistent with our previous characterizations of these regimes, the
567  transitions in regime IB5 occurred more slowly than IB6, and transition functions in these modes
568 tended to have much lower lapse rates compared to the Q-learning regimes. Finally, we also
569  recovered the state transition matrices for each animal (Supp. Fig. 6).
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Figure 9. Mixture of strategies underlying rodent behavior in dynamic foraging. a) Composition of blockHMM
mixtures for individual animals. Each row represents one mouse with ID shown on the left. The color of each square
represents the decoded behavioral regime of each HMM mode (Q1-4, IB5-6). The number of blocks for each animal,
K, was selected by cross-validation and are sorted here in descending order. b) Transition function of HMM modes for
all animals, grouped according to the decoded behavioral regime. c) Distribution of HMM modes for an example
animal, f11, across all training sessions. d) Same as c, but for another animal, f16. ¢) Average frequency of HMM
modes for all experimental animals (mean + standard error, #» = 21 animals).

570  The model fits also allowed us to investigate the extent to which individual animals mixed between
571  learning strategies within single training sessions. Although individual behavioral profiles were
572 highly variable, there was a significant degree of mixing between HMM modes for all animals
573  such that on each day, it was common to see a mixture of two or more behavioral regimes. An
574  example animal (f11, Fig. 9c) executed an approximately equal mixture of Q1 and Q4 on its first
575  training days. This fraction slowly shifted over time, as the prevalence of the Q1 mode decreased,
576  while other Q-learning modes with higher learning rates (such as Q2-Q4) started to dominate.
577  Around day 10 of training, the inference-based modes started to appear, growing in proportion
578  until the late stages of training. However, remarkably, even in the expert stage (day 38 of training),
579  the animal never operated fully in the inference-based regime. Instead, there remained a mixture
580  of both inference-based and Q-learning strategies in roughly equal proportions at this stage of
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581  training. This was a common feature of many animals that managed to reach the inference-based
582  stage (such as animal e46, e54, 56, f01, f11, f12, th02, th03, Supp. Fig. 5). On the other hand, a
583  small subset of other animals, such as 16 (Fig. 9d), never reached the inference-based mode even
584  after up to 25 days of training. The behavior of these animals primarily mixed between regimes
585 QI and Q4 on each day, presumably alternating between periods of attention (high learning rate,
586  Q4) and low attention (low learning rate, Q1).

587  We compared the results of our segmentation approach to previously proposed metrics to
588  distinguish between model-free and inference-based behavior. We determined the p coefficient as
589  defined in Fig. 2 and previous studies!’, for all training sessions across our n = 21 animals. On
590  average, p systematically shifted from a significantly positive value for the first 5 sessions (Supp.
591  Fig. 7a, p < 103, Wilcoxon signed-rank test, » = 21 animals) to a value that is not significantly
592  different from O for sessions 21-25 (Supp. Fig. 7a, p = 0.3, Wilcoxon signed-rank test, n = 21
593  animals). This is consistent with the previously reported trend!” and the average transition from
594  model-free to inference-based modes of learning in our animals. However, the trends in p for single
595  animals were noisy (Supp. Fig. 7b, c) which made it more challenging to distinguish model-free
596  from inference-based behavior in single sessions. For example, although the two animals f11 and
597  fl16 (Fig. 9c,d) had qualitatively different behavioral modes as revealed by blockHMM, the
598  evolution of the p estimates were qualitatively similar and not statistically different from sessions
599 21 -—25 (Supp. Fig. 7b, p = 0.8, Wilcoxon signed-rank test, n = 5 sessions). Moreover, for animals
600  whose behavior primarily lie in the Q-learning regime (e53, €57, f04, 16, f20), p was not
601 statistically different from 0 in many sessions. This discrepancy could be attributed to the level of
602 noise in the estimates, or the fact that Q-learning agents can also have p values close to zero
603  especially in the high-learning rate regime (Fig. 2c, d).

604  Across all animals, the average frequency and dominance of the HMM modes and behavioral
605  strategies changed systematically over the course of training (Fig. 9¢). On average, animals started
606  training with a significant fraction of the Q1 mode and smaller fraction of Q4 (56% in Q1 and 24%
607  in Q4, averaged across days 1-5). Over the course of training, the mixture of behavioral strategies
608  slowly shifted from Q1 to Q4, such that around day 15, there is a higher fraction of Q4 than QI
609  mode (39% in Q4 compared to 35% in Q1, averaged across days 16-20). This shift in composition
610 reflects an average increase in learning rate in the Q-learning regime. At the same time, the fraction
611  of inference-based modes, IB5 and IB6, was low at the beginning (3% in IB5 and 6% in 1B6
612  averaged across days 1-5), but continuously increased as animals gained experience with the task
613 (6% in IB5 and 14% in IB6 averaged across days 36-40). Notably, at the expert stage, there was a
614  significant fraction of blocks in the inference-based mode (20% in IB5-6 combined averaged
615  across days 36-40), but the mixture of strategies still remained with Q1 and Q4 being the primary
616  Q-learning modes of the animals. Overall, these ubiquitous use of mixtures of strategies, which
617  were distinctive both in naive and expert animals, further underscore the importance of our
618  approach to dissociate and characterize the features that constitute individual modes of behavior.
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619  Discussion

620

621  Model-free and inference-based strategies are the two types of models that are most often used for
622  analysis of choice sequences in dynamic foraging experiments. Model-free constructs such as
623  reinforcement learning models have been particularly useful when probing representation of action
624  values in numerous brain regions’-!%!>2241-43 " Complementarily, inference-based models using
625  Bayesian inferences has helped us understand the inference process that occurs in the brain from
626  trial to trial when animals hold an internal model of the world transitions'®?®. In the dynamic
627  foraging task, while most studies tend to focus exclusively on one of the two model types, it has
628  been recognized that both of these modes can co-exist in the behavior of humans and rodents, with
629  atransition from model-free to inference-based behavior as they gain familiarity with the task!744,
630 By providing the tools to understand the difference between these two modes of behavior, our
631  study provides a basis for comparison between these two disparate spaces of models. Our efforts
632  are among other work of dissociating model-free from inference-based (or model-based) behavior
633  in other task domains**%. As building internal models of the world is a crucial, challenging but
634  less understood brain function®), distinguishing between model-free from inference-based
635  behavior in dynamic foraging is the first step toward an understanding of how these internal models
636  can be acquired with learning.

637

638  Our approach builds upon previous work in this domain in several ways. First, we proposed a
639  framework that relies on quantitative measurements of four behavioral features that characterize
640  transitions between actions, using the concept of transition functions which had only been
641  qualitatively characterized by other studies!®. Our combined use of four behavior features also
642  makes it easier to decode the behavioral strategies, as these metrics offer better coverage of the
643  large parameter spaces involved in the two models, y-¢ for Q-learning agents, or Pgy;¢ch - Prew fOr
644  inference-based agents. Although we have not considered other behavior features such as the
645  probability of action switching!®-?, similar metrics can be incorporated in the same framework to
646  potentially improve the decodability of strategies even further. In general, the use of multiple
647  features would help maximize the discriminability between the two types of behavior in the high-
648  dimensional feature space. This offers an improvement from previous attempts which use a single
649  parameter to distinguish between the two modes of learning. For example, we showed that p by
650 itself is insufficient to distinguish model-free from inference-based behavior for certain pairs of
651  agents'’. In the same way, this problem also applies to other single metrics such as transition
652  slope!® or offset®®> which have been used in previous studies. Our approach also differs from
653  previous attempts using data-driven methods?’ to predict the choice of animals and agents on
654  individual trials. We instead try to estimate a set of aggregate behavioral metrics such as the switch
655  offset and lapse rate to decode the behavioral regimes of different agents. Since our focus is to
656  predict the behavioral class rather than the choice on single trials, this allows us to gain statistical
657 power and robustness as these aggregate measures can be estimated more accurately from the
658  performance of the animals over multiple blocks of trials, in comparison to single-trial choice
659  prediction which can be difficult due to the presence of noise in the choice sequences™.

660

661  Among the four features we investigated, the variation in lapse rate during training was particularly
662  noteworthy. We found that there was a high lapse rate in our experimental animals, even in the
663  deterministic environment where the reward contingency should be straightforward to learn and
664  acquire. On average in this easiest task condition, the lapse rate of animals even on day 30 of
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665  training was close to 30%. In our Q-learning model, this lapse rate could be accounted for by a
666  high value of € which leads to a high degree of exploration of the animals. This high rate of
667  exploration would agree with previous studies of mice in a maze®!, open-field>? or head-fixed®,
668  which found a tendency for mice to explore their environments, presumably to gain information
669  about unknown events or contingencies™-*. Although exploration is the most direct explanation
670  for the high lapse rate, we cannot rule out the possibility that the high lapse rate could be caused
671  to other factors such as inattention, motor errors, or incomplete knowledge of the task?®->3-57, which
672  similarly affect the interpretation of lapse rates in sensory-guided behavioral paradigms®?.

673

674  Together, the four behavioral features of the transition dynamics, the switch offset, slope, lapse
675 and efficiency, provide a basis for reliably classify the behavior of different Q-learning and
676  inference-based agents into one of six distinct clusters that show qualitatively different behavioral
677  phenotypes. Remarkably, each of these two parameter spaces can be further segmented into
678  smaller subdomains, thus highlighting the heterogeneity of behavior within these two classes of
679  strategies. We found that the Q-learning space can be divided into four clusters, Q1-Q4, that
680  broadly correspond to different learning rates. Q1 is a low-learning rate regime where the behavior
681 is close to random on most of the block, Q2,3 have moderate learning rates where slow block
682  transitions occur, while Q4 is a high-learning rate regime where the behavior transitions are fast,
683  but foraging efficiency can be strongly dependent on the degree of exploration, highlighting the
684  well-known exploration-exploitation trade-off in reinforcement learning>®°. In this regime, too
685  low exploration risks getting the agent stuck a sub-optimal choice during block transitions, while
686  too high exploration results in a failure to maximize received rewards. The types of behavior for
687  model-free agents might be even more complex when alternative schemes for exploration, such as
688  soft-max, UCB-1 or pursuit®, are considered. Interestingly, in our characterization, the difference
689  between lapse rates turned out to be an important criterion for distinguishing model-free from
690 inference-based behavior, especially in deterministic (100-0) environments. Here, model-free
691  clusters (Q1-Q4) tend to have significant, non-zero rates of exploration, while inference-based
692  clusters (IB5-6) has a lapse rate that is very close to zero. This suggests that the lapse rate can
693  serve as an additional discriminator for the two types of models, in addition to other metrics that
694  have been considered by previous studies'”!3.

695

696  The ground-truth parameters used in our simulations also allowed us to evaluate the reliability of
697  decoding model-free from inference-based behavior in different types of environments. We found
698  that decoding accuracy was highest in the deterministic (100-0) environment and slowly degrades
699  for more stochastic environments (going from 90-10 to 80-20 and 70-30). This degradation arises
700  because in probabilistic environments, inference-based and model-free transition functions
701  become more similar. In such noisy environments, an efficient inference-based procedure might
702 still give rise to slow and delayed switching since in these environments, the rewards received are
703  rather uninformative of the current state of the world. The lapse rates of inference-based agents
704  also become non-zero in this unreliable condition which makes it difficult to distinguish between
705  the effect of e-greedy exploration in Q-learning agents. On the other hand, in the deterministic,
706  100-0 environment, a failure to fully exploit an action after switching must be attributed to
707  exploration, allowing an accurate detection of exploration states which imply a Q-learning
708  behavior. The decoding accuracy of behavioral strategies thus establishes a baseline evaluation of
709  our ability to distinguish model-free from inference-based behavior in high-noise environments.
710
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711  The second major contribution of this work is the development of a state-space model, blockHMM,
712 which allows us to segment of behavior during the session into blocks of trials that are governed
713 by different underlying states. Our work adds to the existing body of literature for quantifying
714  mixtures of strategies in reward-guided contexts which revealed interacting components of
715  behavior involving reinforcement learning, working memory, episodic memory or the interaction
716  between model-free and model-based systems?’, To tackle challenges faced by models that
717  assume stationarity of behavior (Fig. 2e-g), our model takes inspiration from recent modeling
718  approaches which are used to infer discrete latent states that underlie neural dynamics® , natural
719  behavior*®, and behavior in decision-making tasks?®%°. In particular, we adapted the recent GLM-
720  HMM framework?’, where discrete hidden states determine the coefficients of a generalized linear
721  model (GLM) which specifies how the decision of the animal depends on external trial variables.
722 While the latent states in this approach are updated from trial to trial, latent states in the blockHMM
723 framework govern the choice selection across entire blocks, and are only updated at the boundaries
724  of block transitions. Each state involves a separate sigmoidal transition function parameterized by
725  the slope, offset and switch. By pooling the behavior across different sessions, blockHMM
726  bootstraps from the large number of blocks across multiple sessions to estimate these state-specific
727  parameters. As these are the same parameters that are used for decoding Q-learning or inference-
728  based regimes, this allows us to recover the behavioral regime (Q1-4 or IB5-6) that corresponds
729  to each state. We performed a cross-validation analysis to determine the number of states, K, that
730  best describe the behavior of each animal, ensuring that these modes are meaningful units of
731  behavioral states and not arbitrary noise patterns that are fit by the model.

732

733 Our results uncover a remarkable diversity of behavior across the 21 animals that were trained in
734 the task. This diversity is demonstrated by different number of HMM modes, K, the composition
735  of the modes (Fig. 9a), the shapes of the transition function of each mode (Fig. 9b), the transition
736  probabilities (Supp. Fig. 5), as well as the evolution of the mixture composition throughout the
737  course of training (Supp. Fig. 4). We found only 11/21 of our animals transitioned to an inference-
738  based mode of learning, while the rest of the animals remained in the Q-learning modes. This
739  might explain why some previous studies might not observe efficient inference-based behavior of
740  rodents during behavioral switching!®, since a large fraction of animals might have failed to
741  transition to this regime.

742  Notonly is the behavior variable across animals, but it can also be highly dynamic within a session.
743  We found that rodents frequently employ a mixture of strategies, mixing between periods of
744  random behavior, Q-learning and inference-based behavior even at the expert stage after being
745  exposed to the task for many weeks. This is so even for the easiest reward contingency (100-0
746  environment) where the optimal decision is simple — the animal only needs to make a switch each
747  time a single error is encountered. Although we might expect rodents to be able to quickly figure
748  out this task and become fully committed to the inference-based strategy, this was not the case.
749  Instead, the frequent switches between behavioral states is representative of rodent behavior and
750  agrees with many other studies of a diverse array of tasks?®?°. This feature of rodent behavior once
751  again highlights the need for powerful analytical methods that can infer hidden behavioral states
752 that govern behavior, since these types of models allow a finer scale resolution when dissecting
753  the behavioral circuits.
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754 Overall, our study lays the foundation for future analyses and investigations into the neural basis
755  of model-free and inference-based behavior, and calls for a focus on the problem of state
756  segmentation in rodent behavioral studies. An interesting question that is raised by our
757  characterizations is how internal models are acquired during the task, and the factors that affect
758  the evolution of parameters of these internal models. The methods developed in the paper can be
759  leveraged in investigations of the neural mechanisms that govern these distinct modes, as well as
760  the plasticity of these circuits during the transition between model-free and inference-based
761  behavior. The state segmentation approach will also be a valuable tool for perturbation
762  experiments, with the power to reveal shifts in composition, order or transition probabilities
763  between these modes, thus augmenting existing methods for a much richer and complete view of
764  rodent behavior during dynamic foraging.

765

766

767  Materials and Methods

768

769  Animals. All experimental procedures performed on mice were approved by the Massachusetts
770  Institute of Technology Animal Care and Use Committee. Mice were housed on a 12 h light/dark
771  cycle with temperature (70 + 2 °F) and humidity (30-70%) control. Animals were group-housed
772 before surgery and singly housed afterwards. Adult mice (2-6 months) of either sex were used
773  for these studies. In addition to wild-type mice (C57BL/6J), the following transgenic lines were
774 used: Ail84D (B6.Cg-Igs7tm148.1(tetO-GCaMP6f,CAG-tTA2)Hze/J), Jackson #030328;

775  Ail62D (B6.Cg-Igs7tm162.1(tetO-GCaMP6s,CAG-tTA2)Hze/J), Jackson #031562;

776  B6.129(Cg)-Slc6adtml(cre)Xz/J, Jackson #014554.

777

778  Surgical procedures. Surgeries were performed under isoflurane anesthesia (3—4% induction,
779  1-2.5% maintenance). Animals were given analgesia (slow release buprenex 0.1 mg/kg and

780  Meloxicam 0.1 mg/kg) before surgery and their recovery was monitored daily for 72 h. Once

781  anesthetized, animals were fixed in a stereotaxic frame. The scalp was sterilized with betadine
782  and ethanol. The skull was attached to a stainless-steel custom-designed headplate

783  (eMachines.com) using Metabond. Animals were allowed to recover for at least 5 days before
784  commencing water restriction for behavioral experiments.

785

786  Behavioral apparatus and task training. The training apparatus and software for running the
787  experiments were adapted from the Rigbox framework for psychophysics experiments in

788  rodents®!%2, Mice were head-fixed on the platform (built from Thorlabs hardware parts) and their
789  body placed in a polypropylene tube to limit the amount of movement and increase comfort.

790  Their paws rested on a vertical Lego wheel (radius 31 mm) which was coupled to a rotary

791  encoder (E6B2-CWZ6C, Omron), which provided input to a data acquisition board (BNC-2110,
792  National Instruments). The data acquisition board also provided outputs to a solenoid valve

793  (#003-0137-900, Parker) which controlled the water reward delivery.

794

795  After mice recovered from surgery, they were placed under water restriction for 1 week, with
796  daily water given by HydroGel (Clear H>O). The initial amount of HydroGel was equivalent to
797  2mL of water a day, and this decreased gradually until mice received an amount equivalent to 40
798  mL/kg each day. Mice were weighed weekly and monitored signs of distress during the course of
799  training. In the case of substantial weight loss (>10% loss weekly) or decrease in body condition
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800  score, the restricted water amount was increased accordingly. Mice were handled daily during
801 the initial 1-week water restriction period for ~10 minutes each day. They were then allowed to
802  explore the apparatus and given water manually by a syringe on the platform. If mice did not

803  receive their daily water amounts during training, they were given the remaining amount as

804  hydrogel (Clear H>O) in their home cage.

805

806  When mice were comfortable with the setup, they were head-fixed on the platform and given
807  small water rewards of 4 uL from a lick spout every 10 seconds, for a total duration of 10

808  minutes. This duration was increased to 20 minutes, and 40 minutes on the two subsequent days.
809  The wheel was fixed during this protocol. On the next day, mice were trained on the

810  movementWorld protocol, with the wheel freely moving. Here, each trial was signal with an

811  auditory tone (0.5s, 5 kHz), following which movements in any direction crossing the movement
812  threshold of 8.1° rotation were rewarded with 4 pL of water. Mice then had to remain stationary
813  for 0.5 s before the next trial starts. This discouraged a strategy of continuous rotation of the

814  wheel.

815

816  After mice became comfortable with this stage and consistently obtained at least 0.6 mL of water
817  each session, they were taken to the final task stage, blockWorldRolling. Each trial began with an
818  auditory tone (0.5s, 5 kHz). During a delay period of 0.5 s from the trial tone onset, movements
819  of the wheel were discounted. After this window, the movement period started, where

820  movements of the wheel past a specified threshold were recorded. The threshold was fixed at

821  8.1°in the first session of blockWorldRolling and subsequently increased to 9.5°, and 10.8° on
822  the next days. The trials were grouped into blocks of trials of 15-25 trials, with lengths of the

823  blocks sampled uniformly at random. The blocks alternated between the “left” and “right” state.
824  Inthe “left” state, left wheel turns were rewarded with probability 100% and right wheel turns
825  were not rewarded. In the “right” state, right wheel turns were rewarded with probability 100%
826  and left wheel turns were not rewarded. If mice made the correct movement, they were given a 4
827  uL water reward. For unrewarded trials, a white noise sound was played for 0.5 s, followed by a
828  time-out of 1 s. After the trial feedback was given, an inter-trial interval (ITI) of 0.5 s elapsed
829  before the next trial started. The ITI was gradually increased to 1 s once animals performed well
830 in the task. If mice didn’t make a choice within 20 seconds, the trial was aborted, signaled by a
831  white noise and 1-s time-out period (similar to an error trial). After the length of the block has
832  passed, if the rolling performance of the animal in the last 15 trials was above 75%, the state of
833  the block would flip and the next block continued. Otherwise, the block continued until the

834  rolling performance in the last 15 trials in the block passed 75%.

835

836  Forn=6animals (F11, F12, F16, F17, F20, F21), after becoming expert in the 100-0

837  environment, we continued training them in successively more volatile environments. Each

838  animal was trained in 2-3 sessions in the 90-10 environment, followed by 2-3 sessions in each of
839  the 80-20, and 70-30 environments. The example behavior in Fig. 1¢ was for animal F11 on a
840  90-10 environment.

841

842

843  Simulated environment. We simulated an artificial environment that alternates between two
844  states, “left” and “right”, in blocks of trials. The first block was chosen at random to be in the “left”
845  or “right” state, and the state identity flipped for each subsequent block. At the start of each block,
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846  we determined the number of trials in the blocks, N, by sampling an integer at random in the range
847  [15, 25]. We then simulated N trials in the block. In each trial, the agent selected an action (see
848  “Simulation of Q-learning agents” and “Simulation of inference-based agents” for details below)
849  andreceived feedback from the environment. If the block was in the “left” state, left actions yielded
850  reward with probability of p and right actions yielded reward with probability of 1 —p. Conversely,
851  if the block was in the “right” state, left actions yielded reward with probability of 1 — p and right
852  actions yielded reward with probability of p. We considered four different environments with p =
853  1.0,0.9.0.8 and 0.7, which we called 100-0, 90-10, 80-20 and 70-30, respectively.

854

855  Simulation of Q-learning agents. Each Q-learning agent was defined by two parameters, the
856  learning rate y and exploration rate €. For our simulations, we simulated a 25 x 20 grid of
857  parameters within the range 0.01 <y < 1.4,and 0.01 < e < 0.5.

858

859  On each trial, the Q-learning agent implemented a Q-value update and selected actions with an e-
860  greedy policy. The agent maintained two values associated with the two actions, q; for left actions
861 and gy for right actions. We initialized q; = qz = 0.5. On each trial, the agent updated these
862  values according to

863

864 qi < q+v(r—q;)

865

866  where r is the feedback of the trial (» = 1 for rewarded actions and » = 0 for non-rewarded actions).
867  The Q-learner chose the higher-valued action with probability 1 - ¢, and selected actions at random
868  (with probability 50% for each choice) on a small fraction ¢ of trials.

869

870  Simulation of inference-based agents. Each inference-based agent held an internal model which
871  consisted of two hidden states, L and R, that corresponded to the unobserved hidden states, “left”
872  or “right”, of the environment. The internal model was defined by two parameters, Pg,;¢:cn and
873 P, according to

874

875 P(sisg1 =R 1s;=L) =P(si41 =L|s; =R) = Psyiten

876

877 P(sig1=L1s;=L)=P(syy1 =RI1s;=R) = 1= Pgyycn
878 P(Ti:].|Si:L,Ci:L):P(Ti:1|Si:R,Cl':R) = Prew
879 P(Tizllsi:L,Ci:R):P(Tizl|Si:R,Ci:L) = 1_PT6W
880

881  where s; refers to the hidden state on trial I and c_i refers to the choice on trial i.

882

883  That is, the evolution of the hidden states followed a Markov process with probability Ps,itcn Of
884  switching states and 1 — Pg,,,;;.;, for remaining in the same state on each trial. For our simulations,
885  we simulated a 15 x 10 grid of parameters within the range 0.01 < Pg,i;cn < 0.45, and 0.55 <
886 Py < 0.99.

887

888  We derived a recursive update for the agent’s posterior belief about the current world state, given
889  previous choices and feedback. Let P.(t) = (s; =L | ¢cq,1y,C5, 12, e, Cieq1,Te—1 ) and Pg(t) =
890 (s =R |cy,1,C5 Ty e, Ciq1,Te—1 ). Then

891
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892 P,(t) =% Z Pt —1) P(rioy | Seog = i) P(s; =L 15, =10)
) i=L,R
893 Po(t) = 5 Z Pt —1) P(rioy ISy = i) P(s; = R | Se_q = 1)
i=L,R
894
895  where Q is a normalization factor to ensure P, (t) + Pr(t) = 1.
896

897  We initialized P, (0) = P,(0) = 0.5. On each trial, the agent selected the left action if P, (t) >
898 0.5, the right action if P, (t) < 0.5, and acted randomly otherwise.

899

900  Evaluation of previous metrics and approaches. For a given agent, the p metric is defined as
901  follows. For each block transition, we counted the number of consecutive rewards that take place
902  before the block transition, N,., and the number of consecutive errors that take place immediately
903 after the block transition, N,. We defined p to be the Pearson correlation coefficient between N,
904  and N, across all the blocks in the session. To minimize the effect of outliers, we only considered
905  blocks where N,. < 15.

906

907  The Q-learning and inference-based agents in Fig. 2a-d were simulated in a 90-10 environment,
908  where the block lengths ranged from 5 to 40. The block lengths were sampled as follows. The
909  minimum possible block length was 5 trials, and each subsequent trial where the agent chose the
910  high-reward side, there was a 10% probability of switching states. The block also automatically
911  switched after 40 trials had elapsed.

912

913  The Q-learning agent in Fig. 2e was simulated with y = 0.1 and € = 0.1. The inference-based agent
914  in Fig. 2e was simulated with B,,,, = 0.7 and P,,,;;.n, = 0.2. Each agent was simulated for 10 total
915  sessions, each lasting 1000 blocks. For agent M, we used a mixture of strategies: we alternated
916  between the Q-learner’s strategy for 50 blocks and the inference-based agent’s strategy for 50
917  blocks, and kept alternating between these modes until the agent has executed 1000 blocks in total.
918  This was repeated for 10 total sessions (similar to the Q-learning and inference-based agents) to
919  obtain error bars for the parameter estimates.

920

921  To infer the learning rates in a traditional reinforcement learning framework (Fig. 2f), we fit a
922  reinforcement learning model with three parameters, learning rate y, inverse temperature 3, and
923  bias b, to the sequence of choices and feedback of the agent. We assumed the agent maintained Q-
924 wvalues for the left and right action and use the same update rules as described in “Simulation of Q-

925  learning agents”. Given Q-values q; and gy, the likelihood of selecting an action is given by
926

927 P(a(t) = L) =

928

929  We jointly fit y, B, and b using the MATLAB function fmincon with initial values y, = 0.2, =
930 1 and by = 0, with the constraint § > 0.

931

1
1+ exp[—B(q,(t) — qr(t) + b)]
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932  Logistic regression model. Similar to previous studies, we fitted a logistic regression of the
933  following form to predict the choice on trial # based on the previous choices, previous outcomes,
934  and interaction between previous choices and outcomes:

935

936 lglf(;(c_f)m Zacnl ZB”” Zvlnl

i=1
937  In other words, the logit was a linear combination of the prev10us N choices (c,_; = 1 for left
938  choice and -1 for right choice), previous N rewards (r,,_; = 1 for rewarded actions and -1 for
939  unrewarded actions), and previous N interactions of choice and reward. The logistic regression
940  model in Fig. 2g was fitted with MATLAB function mnrfit to recover the best fit coefficients
941 oy, Bi, Vi, together with the confidence intervals of these estimates. For ease of visualization, the
942  parameters o, 3 and y were normalized by their respective maximum values.

943

944  Characterization of Q-learning and inference-based spaces. We simulated an ensemble of Q-
945  learning and inference-based agents with parameters as described above. For each agent, the
946  behavior was simulated for a total of 1000 blocks. To calculate the transition function of the agent,

947  we took the average of the “signed choice”
ZNblocks

Cnh+U
948 f(t) = ntont
Nblocks
949

950  where ¢, ; denotes the choice in trial ¢ of the block 7 (-1 for left and 1 for right choices) and u,, ,
951  denotes the unobserved hidden state in trial ¢ of the block » (-1 for “left” state and 1 for “right”
952  state). The signed choice ensures that f{¢) is an increasing function of ¢ regardless of the hidden
953  state of the block.

954
955  The transition function f{#) was fit with a sigmoidal curve with the form
1-—2e
956 f(t) =€+
© 1+ exp(—a(t — s))
957

958  Where €, o and s are free parameters of the function representing the lapse rate, slope and offset,
959  respectively. The parameters were jointly fit with the Python function scipy.optimize.minimize(),
960  with constraints s > 0,0 = 0,0 < € < 0.5.

961

962  We also determined the foraging efficiency of the agent, E = N,owardea/N> Where Nyowarded 18
963  the number of rewarded trials and N is the total number of trials in the session.

964

965

966  Clustering into behavioral regimes (Fig. 5). The above fitting procedure was done for all 650
967  agents (25 x 20 Q-learning and 15 x 10 inference-based agents). We pooled the four behavioral
968  features, €, a, s, and E, from these agents to form a 4 x 650 feature matrix, representing 4
969  features/agent and 650 agents. We applied a density-based clustering method to segment the cloud
970  of points into distinct domains. First, the four-dimensional features were embedded into a two-
971  dimensional t-SNE space using the MATLAB tsne function with Euclidean distance metric and
972  perplexity of 30. For the 90-10 world, the perplexity was adjusted to 25 to achieve better
973  convergence of the t-SNE clusters.
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974  We formed 2-D histograms of the data points in the t-SNE space using the MATLAB hist2d
975  function (n = 25 bins in each dimension). These histograms were heat maps that indicated regions
976  of high concentration of the data points. The histograms were mean-filtered by a square kernel of
977  size 4x4, and local ‘noise’ maxima with heights less than 3 were suppressed. A watershed
978  algorithm was run on the resulting heat map to identify the local clusters of high density. The
979  identities of these clusters were assigned after mapping back to the location in the Q-learning or

980 inference-based parameter spaces.
981

982  Decoding analysis (Fig. 6). We generated a synthetic data set using computational simulations
983  that serve as the basis for our decoding analysis. For each agent in the Q-learning and inference-
984  based parameter spaces, we performed repeated simulations in 50 synthetic experimental sessions
985  with 20 block transitions per session. For each synthetic session, we obtained the transition
986  function f{f), and fit a sigmoidal curve to estimate the four features, €, a, s, and E of the behavior.
987  The fitted slope was capped at a maximum value of 20 to avoid outliers. To balance the number
988  of training examples for different classes in the data set, we determined the number of training
989  examples, n4, ..., ng, for each of the six classes (Q1-4, or IB5-6), and subsampled each class so
990  that each class contains N = min(n, ..., ng) examples. We split this data into a training set
991  (containing 80% of the data) and a test set (20% of the data). Each of the four features were
992  normalized to mean 0 and standard deviation 1. A k-nearest neighbor (kNN) decoder was trained
993  on the training set to predict the behavioral regime (1 to 6). Its performance was evaluated on the
994  held-out test set. The accuracy of the decoder was measured both by the fraction of correctly
995  labeled examples per regime, and by the Matthews Correlation Coefficient.

996  Session-averaged decoding (Fig. 7). For each behavioral session consisting of N blocks, we
997  obtained the transition function f{¢) as described in Characterization of Q-learning and inference-
998  based spaces. We obtained the sigmoidal fit of this function and determined the parameters €, a,
999 s, and E of the session. The features were input to the kNN decoder that was trained in the
1000  Decoding analysis section. This results in a predicted class (Q1-4 or IB5-6) for each behavioral
1001  session. For sessions in probabilistic environments (90-10, 80-20 or 70-30), the behavioral features
1002  were input to the corresponding decoder which were trained on synthetic data from the
1003  corresponding environment type.
1004
1005 BlockHMM implementation. The blockHMM inference procedure was implemented based on
1006  the existing ssm toolbox that was previously developed for a wide range of Bayesian state-space
1007  models®.
1008
1009  We added an implementation to this toolbox by specifying a new set of transition and observation
1010  probabilities which specify the blockHMM process. Each observation was defined by three
1011 vectors, a, s and € representing the parameters of the sigmoidal transition function for each of the
1012 K HMM modes (each vector has dimension K x 1). The vectors were initialized to a; = 4, s; =
1013  0.2,¢; =0.3foralll <i <K.
1014
1015  Given the hidden state in block 7, i.e. given z; = k, the joint log likelihood of the observed choices
1016  in the block is defined via the sigmoidal transition function specified by parameters oy, Sy, €
1017
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1—2¢

1+ ex'p(ak(t — sk))
1019  where =1, 2, ..., T enumerates the position of the trials in the block.

1020

1021  The log-likelihood for a “signed” choice y; (the product of choice ¢, and hidden state u;) is that
1022  of a Bernoulli random variable with a rate of o, (t).

1023 log L (yela, sy, €) = ye log oy (£) + (1 — y,) log(1 — 0y (1))

1024

1025  The joint log-likelihood of the observed choices in the block i is the sum of the log-likelihoods of
1026  individual trials

1018 o, (t) = + €

T
1027 logP(yIzi:k)=ZZogL(yt|ak,sk,ek)

t=1
1028  The joint log-likelihood for the whole session is the sum of the log-likelihood in individual blocks.

1029  The hidden states evolved according to a Markovian process with stationary transition governed
1030 by a transition matrix 7 with dimension K x K.

1031

1032 The blockHMM was fit with an Expectation-Maximization (EM) algorithm. The hidden states
1033 were initialized based on k-means clustering with K clusters. The implementation of the EM
1034  algorithm was the same as described previously for the ssm toolbox. We used the L-BFGS
1035  algorithm for the M-step when updating the values of &, s and €, with constraints s > 0.01, a >
1036 0.01,0.01 <€ <0.5.

1037

1038  To evaluate the cross-validated log-likelihood (Fig. 8d), we split the data into 80% training set and
1039 20% test set. The blockHMM was run on the training set and the log-likelihood L;.¢; was evaluated
1040  on the test set. We normalized this cross validated log-likelihood by

1041

Leest — L
1042 Lnorm = ————

Nyese l0g(2)
1043 where L, is the cross-validated log-likelihood of a null model (a Bernoulli(p) model where p is the
1044  observed fraction of trials where y; = 1), n;.s: is the number of trials in the test set.
1045
1046  Synthetic agent simulation. The synthetic agent (Fig. 8c-g) was simulated with K = 3 HMM
1047 modes with parameters s; =4,a; = 0.2,¢; =0.3;s5, = 1,0, = 0.8,€;, = 0.15;53 = 9,03 =
1048  1.5,e3 = 0.05. The true transition matrix of the agent was
1049

0.966 0.003 0.031
1050 T = 10.007 0.954 0.039

0.025 0.020 0.955
1051

1052 The behavior was generated for N = 1000 blocks, each block consisting of 30 trials.

1053

1054  BlockHMM fitting to animal behavior. For each animal, we concatenated the behavioral choices
1055  from all training sessions into a B x 7 matrix where B is the total number of blocks from all the
1056  sessions and 7 = 15 is the number of trials in each block (for blocks that are longer than 7 trials
1057  we kept only the first 7 trials of that block). The blockHMM fitting procedure was run on this
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1058  matrix for K= 1, 2, 3, ..., 8 modes. We chose the value of K that maximized the normalized log-
1059  likelihood of the test set (L, orm ). We capped this K value at 6 for interpretability of the model (i.e.
1060 if the value of K with the highest log-likelihood is higher than 6, we chose K = 6 as the optimal
1061  value).

1062

1063 After fitting the blockHMM model, we recovered parameters sy, ay, €, for individual modes in the
1064  model. We determined the foraging efficiency Ej by numerically integrating the area under the
1065  curve of the choice transition function (with a step size of 0.1)

1066

25
1

1068  Together, the four parameters sy, oy, €, E are input into the kNN decoder that was trained in
1069  “Decoding analysis” to infer the behavioral regime (Q1-4, IB5-6) of each of the HMM modes.
1070

1071

1072  Data availability. The data that support the findings of this study are available from the

1073 corresponding authors upon reasonable request.

1074

1075  Code availability. Code used in this study is available at https://github.com/nhat-le/switching-
1076  simulations.
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1246  Figure S1. Behavioral metrics of Q-learning agents in different types of deterministic and
1247  stochastic environments (100-0, 90-10, 80-20 and 70-30). Conventions are the same as Fig. 3b.
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1250  Figure S2. Behavioral metrics of inference-based agents in different types of deterministic and
1251  stochastic environments (100-0, 90-10, 80-20 and 70-30). Conventions are the same as Fig. 3b.
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1255  Figure S3. a) Non-linear embedding of all agents’ behavioral features on the t-SNE space. Points
1256  are colored based on the results of density-based segmentation (Colors of the six clusters are the
1257  same as in Fig. 5). b) Transition functions of all simulated agents grouped according to the six
1258  behavioral regimes. Red lines indicate the mean across all functions in the group.
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1261  Figure S4. Normalized cross-validated log-likelihood for different values of K, the number of
1262 clusters of the blockHMM for the n = 21 mice used in the paper. For each animal, the value of K
1263  that gave the highest cross-validated log-likelihood was chosen for subsequent analyses and
1264

fitting (this K value is indicated by the vertical red line).
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1267  Figure S5. Evolution of mixture of behavioral strategies as inferred by blockHMM for all the n
1268 =21 mice through different training sessions. Colors and conventions are the same as Fig. 9.
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1271  Fig. S6. Transition functions as fitted by the blockHMM procedure for all the n =21 mice
1272 analyzed in the paper.
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1274  Fig. S7. a) Average evolution of p across all experimental animals (mean + standard errors, n =
1275 21 animals). b) Comparison of the evolution of p for two animals, f11 and f16 (mean =+ standard
1276  errors). c) Fitting of p for the remaining 19 animals over the course of training (mean + standard
1277  errors).
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