

Mixture of Learning Strategies Underlies Rodent Behavior in Dynamic Foraging

Nhat Minh Le^{1,2}, Murat Yildirim², Yizhi Wang², Hiroki Sugihara^{1,2}, Mehrdad Jazayeri³,
Mriganka Sur^{1,2}

¹*Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA;*

²*Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA;*

³*McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.*

Corresponding author: Mriganka Sur, Picower Institute for Learning and Memory, 43 Vassar Street Cambridge, MA, 02139; email: msur@mit.edu

Pages: 44

ABSTRACT

In volatile foraging environments, animals need to adapt their learning in accordance with the uncertainty of the environment and knowledge of the hidden structure of the world. In these contexts, previous studies have distinguished between two types of strategies, model-free learning, where reward values are updated locally based on external feedback signals, and inference-based learning, where an internal model of the world is used to make optimal inferences about the current state of the environment. Distinguishing between these strategies during the dynamic foraging behavioral paradigm has been a challenging problem for studies of reward-guided decisions, due to the diversity in behavior of model-free and inference-based agents, as well as the complexities that arise when animals mix between these types of strategies. Here, we developed two solutions that jointly tackle these problems. First, we identified four key behavioral features that together benchmark the switching dynamics of agents in response to a change in reward contingency. We performed computational simulations to systematically measure these features for a large ensemble of model-free and inference-based agents, uncovering an organized structure of behavioral choices where observed behavior can be reliably classified into one of six distinct regimes in the two respective parameter spaces. Second, to address the challenge that arises when animals use multiple strategies within single sessions, we developed a novel state-space method, block Hidden Markov Model (blockHMM), to infer switches in discrete latent states that govern the choice sequences across blocks of trials. Our results revealed a remarkable degree of mixing between different strategies even in expert animals, such that model-free and inference-based learning modes often co-existed within single sessions. Together, these results invite a re-evaluation of the stationarity of behavior during dynamic foraging, provide a comprehensive set of tools to characterize the evolution of learning strategies, and form the basis of understanding neural circuits involved in different modes of behavior within this domain.

44 **Introduction**

45
46 Reward-guided decision making has largely been studied in terms of two broad regimes of
47 behavioral strategies and neural systems. One influential class of models involve reinforcement
48 learning models in which each action has an internal value that is updated over time based on
49 feedback from the environment^{1,2}. Variants of these model-free approaches, such as the Rescorla-
50 Wagner updating rule³, the Q-learning algorithm⁴, local matching strategies⁵, or Thomson
51 sampling⁶, have been influential in formulating efficient decision-making and learning strategies
52 in uncertain environments⁷⁻¹². These models have also been successful in explaining the activity
53 of cortical and subcortical areas in relation to reward prediction errors¹³, action values^{7,14} or
54 previous choice and outcome history^{15,16}.

55
56 When reward and outcome contingencies follow a specific structure and regularity, another set of
57 models, inference-based models with trial-to-trial Bayesian updates, are often used to simulate the
58 actions of agents¹⁷⁻¹⁹. This type of strategy involves the use of internal models to make efficient
59 inferences about the hidden states and optimal actions. Such inference-based (also known as
60 model-based) behavior are often seen only in expert animals that are familiar with the structure of
61 the task and able to hold an internal representation and understanding of the dynamics of the
62 surrounding world^{17,18}. Inference-based behavior has also been shown to engage a non-overlapping
63 set of brain areas from those that are involved in model-free strategies^{20,21}.

64
65 In many previous studies of reward-guided decision-making, these two modes of behavior, model-
66 free and inference-based learning, have largely been treated as separate behavioral domains that
67 require different sets of analytical tools and models. For example, reinforcement learning models
68 and logistic regression models have often been used in a subset of studies that assume a model-
69 free structure of behavior^{7,14}. This model-free approach allows researchers to answer questions
70 related to the value representations in different brain areas, as well as study the effect of
71 perturbations on the parameters of the models^{15,22-24}. On the other hand, a complementary set of
72 studies focus on the behavior of well-trained animal with the assumption that these animals behave
73 exclusively in the inference-based domain^{25,26}. While these stationarity assumptions are helpful
74 when animal behavior exclusively belongs to one domain or another, recent studies have started
75 to bring attention to the overlap and interaction between these types of strategies^{19,27}. For example,
76 it was found that in the same dynamic foraging task, rodents might engage in both model-free and
77 inference-based behavior, transitioning from the former strategy to the latter with experience in
78 the environment^{17,18}. Another set of studies highlighted additional complexity in rodent behavior,
79 as they often switch between states of engagement and disengagement during decision-making
80 tasks^{28,29}. These results suggest model-free and inference-based behavior might be interspersed
81 within the same session, potentially engaging different subsets of neural circuits and mechanisms
82 for parallel computation of multiple decision variables³⁰. The use of mixture of strategies is further
83 supported by the discovery of separable components of rodent behavior in a reward-guided task²⁷.
84 Together, these results call for a more unified approach for dissecting the two sets of strategies and
85 understanding the transitions between them during learning as well as within single sessions of the
86 task.

87
88 Here, we focused on the problem of distinguishing these two types of behavior in the dynamic
89 foraging paradigm (also known as the two-armed bandit task), a standard behavioral framework

90 of previous investigations into reward-guided behavior^{31,32}. Our main goal is to develop a set of
91 behavioral benchmarks, analytical tools and approaches to help reliably dissociate between the
92 two classes of strategies. This is a challenging endeavor for two primary reasons. First, these two
93 classes of models are qualitatively distinct in form: model-free approaches involve agents that
94 update their action values from trial to trial with a learning rate and an exploration parameter¹,
95 while inference-based approaches involve agents with a prior and internal model specified by some
96 parameters³³. We are thus faced with two sets of parameters with which to fit the behavior, and
97 will need to compare how well these parameter spaces can fit the same sequence of observations.
98 The second analytical challenge occurs when animals mix between different modes of behavior in
99 the same session. With this mixing, techniques that rely on aggregate measures of behavior over
100 entire sessions will lead to inaccurate estimates of behavioral parameters, as we will show in our
101 subsequent analyses, requiring alternative methods to segment and infer latent states of the
102 behavior from trial to trial.
103

104 To present our approach for distinguishing between the two types of strategies in dynamic
105 foraging, the paper is organized as follows. We first describe our experimental setup to study
106 dynamic foraging behavior in head-fixed mice. To analyze the behavior of our animals during
107 training, we focus on two models, (1) model-free agents that implement the ϵ -greedy Q-learning
108 decision strategy, and (2) inference-based agents that hold a Markovian internal model of the
109 world. With this formulation, we show that current analytical methods are inadequate to fully
110 dissociate between the two classes of strategies, as these methods are insufficient to account for
111 the diversity of learning across the parameter spaces. In addition, methods that rely on session-
112 averaged metrics might give rise to inaccurate estimates of the behavior when animals mix between
113 behavioral strategies. We then present our approach to overcome the two challenges. To
114 comprehensively compare the behavior of the two models, we characterize four main behavior
115 features of the agent's switching dynamics and perform a complete survey of these features across
116 the inference-based and Q-learning parameter spaces. This analysis reveals distinct behavioral
117 clusters which can be robustly decoded from each other, with a decoding accuracy close to 100%
118 between model-free and inference-based agents. To address the difficulty of behavioral analysis
119 of mixtures of strategies, we have built a novel state-space model (blockHMM) to infer the latent
120 states of behavior sessions, eliminating the potential confound of mixtures of learning strategies
121 on behavioral analysis. We validate this approach with simulations to demonstrate its reliability in
122 recovering the hidden states of behavior from observed choice sequences. Together, these new
123 tools reveal the highly dynamic nature of rodent behavior in this task, further highlighting the
124 variabilities between animals and the need for a statistical approach based on inferred latent states
125 for understanding the structure of task behavior.
126
127

128 **Results**

129 **Dynamic foraging task and decision strategies of model-free and inference-based agents**

130 We trained head-fixed mice on a dynamic foraging (two-armed bandit) task (Fig. 1a). Mice were
131 placed on a vertical rotating wheel³⁴, and on each trial, they were trained to perform one of two
132 actions, left or right wheel turns. On each trial, one movement was rewarded with probability of p
133

135 and the other with the complementary probability of $1 - p$. We tested mice in different dynamic
 136 environments with different values of p . In the '100-0' environment, one action yielded reward
 137 with 100% probability, while the alternative yielded no reward (Fig. 1b). Similarly, in '90-10',
 138 '80-20' and '70-30' environments, reward probabilities were assigned to the two indicated values.
 139 The environments were volatile such that the high- and low-value sides switched after a random
 140 number of trials sampled between 15-25 without any external cues, requiring agents to recognize
 141 block transitions using only the reward feedback. To ensure stable behavioral performance, we

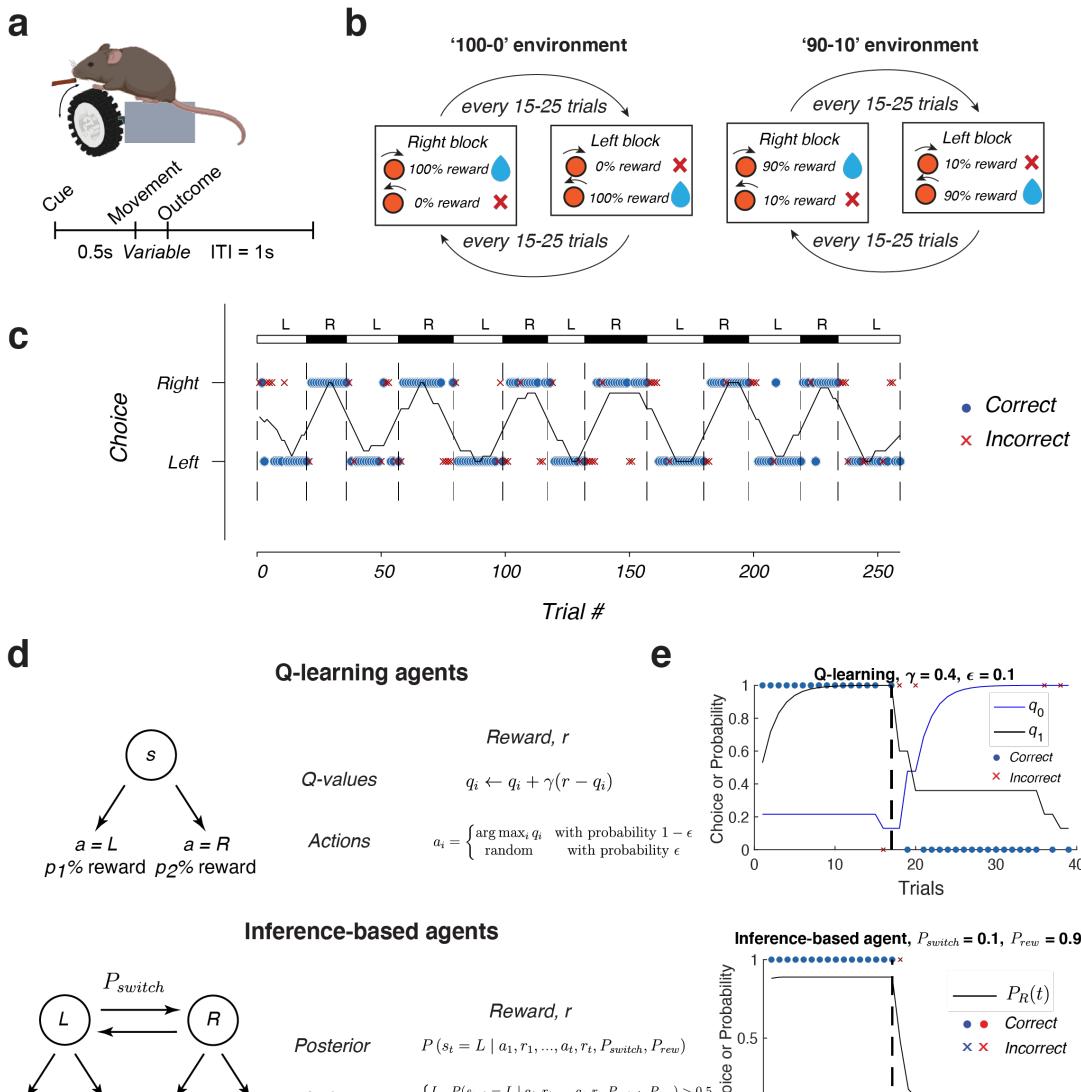


Figure 1. Dynamic foraging task and formulation of Q-learning and inference-based agents. a) (Top) Behavioral task setup for head-fixed mice with freely-rotating wheel. (Bottom) Timing structure for each trial, demarcating the cue, movement and outcome epochs. b) World transition models of the task. Hidden states alternated between right-states, with high reward probability for right actions, and left-states, with high reward probability for left actions. The block lengths were randomly sampled from a uniform distribution between 15-25 trials. c) Example behavioral performance of an animal in the 90-10 environment, block transitions are demarcated by vertical dashed lines. Dots and crosses represent individual trials (correct or incorrect). Black trace indicates the rolling performance of 15 trials. d) Implementation of Q-learning (top) and inference-based algorithms (bottom) for simulating choice sequences of simulated agents. e) Example behavior of simulated Q-learning (top) and inference-based (bottom). Each dot or cross represents the outcome of a single trial. In the Q-learning plot, black and blue traces represent the values of each of the two actions. In the inference-based plot, black trace represents the posterior probability of the right state $P(s_t = R | a_1, r_1, \dots, a_{t-1}, r_{t-1})$.

142 also required the average performance of the last 15 trials in each block to be at least 75% before
143 a state transition occurred. We collected behavioral data from $n = 21$ mice that were trained in the
144 task for up to 40 sessions per animal (typical animal behavior shown in Fig. 1c for a 90-10
145 environment).

146
147 We focused on disentangling the behavior of two classes of agents, Q-learning and inference-based
148 agents. Q-learning is a model-free learning strategy that performs iterative value updates based on
149 external feedback from the environment (Fig. 1d, top). In the dynamic foraging task with two
150 options, these agents maintain two values associated with the two actions, q_L for left actions and
151 q_R for right actions. On each trial, the value of the chosen action is updated toward the reward
152 magnitude of the experienced reward, r , with a learning rate γ .

153
154
$$q_i \leftarrow q_i + \gamma(r - q_i)$$

155
156 where q_i represents the action value for one of the arms (L or R), r reflects whether the previous
157 action was rewarded (0 or 1), and γ is the learning rate parameter. We additionally assumed that
158 the agent adopts an ε -greedy policy. In this policy, the agent chooses the higher-valued action with
159 probability $1 - \varepsilon$, and chooses actions at random (with probability 50%) on a small fraction ε of
160 trials. Altogether, the two free parameters, γ and ε , define a two-dimensional parameter space that
161 captures the entire behavioral repertoire of Q-learners.

162
163 The second class of reward-based models consists of “inference-based” agents whose actions are
164 guided by an internal model of the world. Unlike model-free agents that use the action/outcome
165 history to directly estimate an action value for each arm, these models use the history to infer the
166 hidden state of the environment (i.e., which side is more rewarding) and use that information to
167 guide actions. In our task, the world model (Fig. 1) consists of two hidden states, L and R , that
168 determine whether the “left” or “right” action is associated with higher reward probability,
169 respectively (P_{rew}). The evolution of these hidden states can be approximated by a Markov process
170 with probability P_{switch} of switching states and $1 - P_{switch}$ for remaining in the same state on each
171 trial. Given this model and observed outcomes, the ideal observer can perform Bayesian updates
172 to keep track of the posterior distribution of the two states (see update equations in *Methods*).
173

174
$$P(s_t = L | a_1, r_1, a_2, r_2, \dots, a_{t-1}, r_{t-1})$$

175

176 On each trial, the agent uses the posterior over the world states to select the action that maximizes
177 the expected reward on that trial. The free parameters, P_{rew} and P_{switch} , constitute a two-
178 dimensional parameter space that span the full behavioral repertoire of all inference-based agents
179 with potentially wide variations in behavior along these two axes.

180
181
182 **Evaluation of previous approaches for dissociating model-free and inference-based behavior**
183 **from dynamic foraging data**
184

185 Dissociating model-free from inference-based behavior has traditionally been a difficult problem
186 in this task domain. One challenge that analytical methods need to address is the large parameter
187 space involved in these two very different models – model-free agents are described by the learning

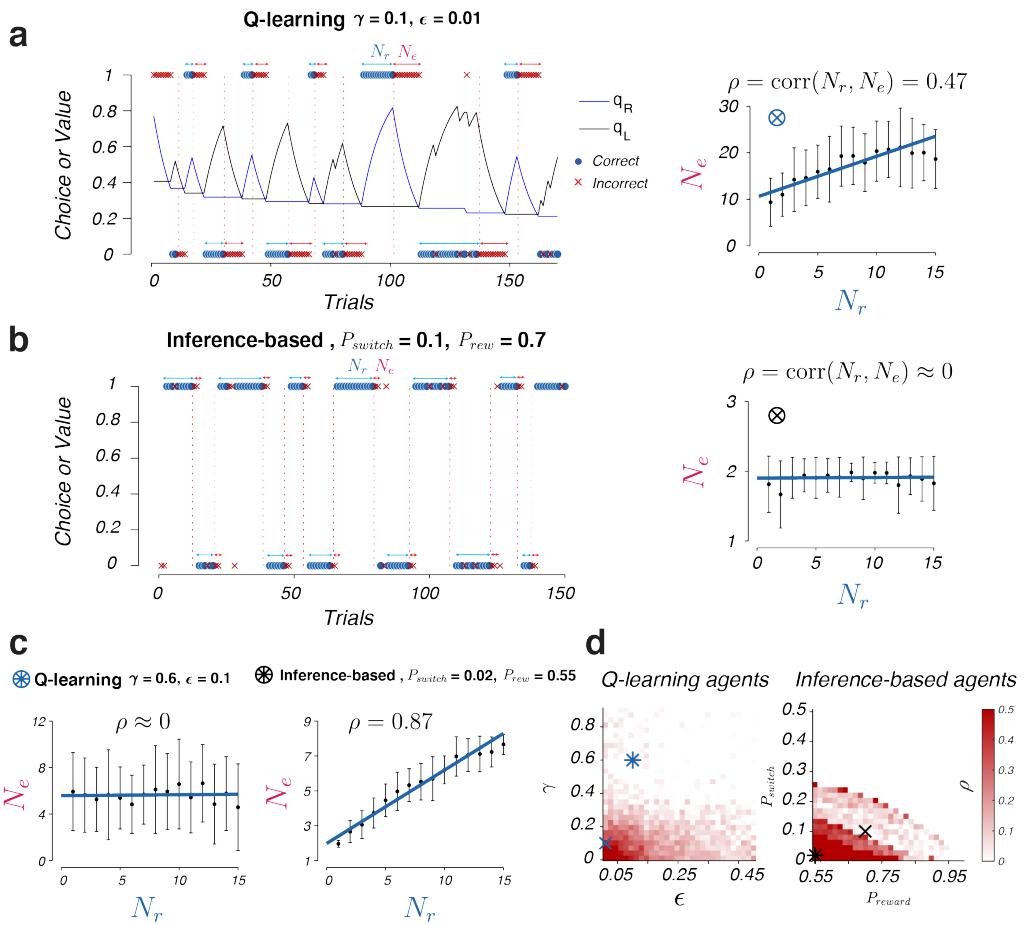
188 rates γ and exploration rates ε , while inference-based agents are specified by a combination of
189 P_{switch} and P_{rew} of their internal models. Within these parameter spaces, the behavior can vary
190 drastically from one region to another, requiring a thorough mapping of behavior in different parts
191 of the two spaces before classification algorithms can be evaluated.
192

193 Due to this large size of the parameter spaces, it might not be feasible to distinguish model-free
194 from inference-based behavior using a single behavioral metric, as previous studies have
195 done^{17,18,35}. For example, consider the use of a previously proposed feature, denoted by ρ , that
196 takes into account the correlation between the number of errors in block $t - 1$, and the number of
197 rewards in block t ¹⁷. For a Q-learning agent with a low learning rate (agent denoted by blue X in
198 Fig. 2a,d), ρ will be positive. This reflects the underlying slow value accumulation, such that the
199 more rewards are experienced in the previous block, the more errors are needed in the next block
200 to make a behavioral switch happen. On the other hand, for an inference-based agent with $P_{rew} =$
201 0.1 and $P_{switch} = 0.7$ (black X in Fig. 2b,d), the inference process is independent of the number of
202 rewards experienced in the previous block. Thus, ρ is close to 0. Hence, ρ is a reliable metric for
203 distinguishing the behavior of these two agents. However, this metric is insufficient to discriminate
204 between other pairs of agents from other parts of the corresponding parameter spaces. For instance,
205 ρ is also close to zero for a Q-learner with a high learning rate (blue * in Fig. 2c,d). Similarly, ρ
206 may be positive for an inference-based agent with a different set of parameters (black * in Fig.
207 2c,d). In fact, the overall distribution of ρ over the two parameter spaces are very similar for the
208 two types of models (Fig. 2d). Thus, dissociating model-free from inference-based behavior might
209 require more detailed benchmarking of behavior using multiple complementary behavioral
210 metrics.
211

212 Another analytical challenge for understanding dynamic foraging behavior arises when agents mix
213 between multiple strategies in a single behavioral session. This poses a problem for current
214 analytical techniques such as logistic regression^{15,19,24} or reinforcement learning models^{7,22,23,36,37}
215 which assume that the behavioral strategy is stationary within individual sessions. Although these
216 methods work well when the agent uses a single strategy with a fixed set of parameters, they can
217 provide erroneous estimates in scenarios of mixed strategies. To investigate the nature of such
218 errors, we confronted models that assume stationary behavior with data generated by agents that
219 adopt a mixture of strategies.
220

221 We simulated three agents that perform a value-guided task in a 90-10 environment (Fig. 2e). The
222 first agent was a Q-learning agent, the second was an inference-based agent, and the third (“agent
223 M”) mixes equally between the two strategies (see *Methods*). Both logistic regression and
224 reinforcement learning models gave inaccurate estimates for the parameters that underlie the
225 behavior of agent M. The learning rate inferred by the reinforcement learning model was
226 intermediate between the two learning modes that make up agent M’s strategy (Fig. 2f).

Challenge 1: diversity of behavior in parameter spaces



Challenge 2: effect of mixing of behavioral strategies

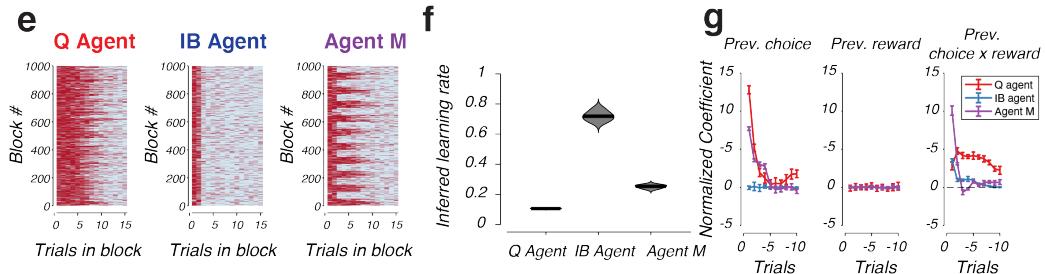


Figure 2. Evaluation of current analytical approaches for dissociating model-free from inference-based behavior. a) (Left) Simulation of a Q-learning agent with parameters $\gamma = 0.1, \epsilon = 0.01$, illustrating the correlation between the number of errors, N_e , and the number of rewards on the previous blocks, N_r . (Right) Relationship between N_e and N_r (mean \pm standard deviation, $n = 1000$ blocks across all values of N_r) showing a positive correlation between the two quantities, $\rho = 0.47$. b) Same as a, but for an inference-based agent with parameters $P_{switch} = 0.1, P_{rew} = 0.7$. Here, no correlation between N_e and N_r was seen. c) Same as a-b, but for two other Q-learning and inference-based agents that show opposite effects of ρ . d) Map of the values of ρ across the Q-learning and inference-based parameter spaces. Blue X: agent in a, black X: agent in b, blue *: Q-learning agent in c, black *: inference-based agent in c. e) Strategies of three agents over 1000 blocks of trials in the dynamic foraging task, a Q-learning agent (left), an inference-based agent (middle), and agent M (right) which mixed between the two strategies. f) Inferred learning rate by fitting the behavior of the three agents in (e) to a reinforcement learning model. Middle line represents the median ($n = 10$ repetitions). g) Logistic regression model coefficients (mean \pm standard deviation, $n = 10$ repetitions) fitted on the behavioral choices of the three agents, with regressors representing previous choice, previous reward and previous choice \times previous reward.

228 More problematic was the result of the logistic regression model. While the inference-based agent
229 showed no dependence on previous choice and the Q-learning agent showed positive coefficients
230 of previous choice regressors, agent M's dependence on previous choice was intermediate between
231 the two agents (Fig. 2g, left panel). The coefficients for the interaction terms of agent M (previous
232 choice x previous rewards) also showed a different pattern from either the inference-based or the
233 Q-learning agent. Agent M's interaction terms were higher in magnitude for the $t - 1$ trial than
234 both the Q-learning and inference-based agents (Fig. 2g, right panel). The coefficients for previous
235 reward are close to zero for all three types of agents (Fig. 2g, middle panel). Considering these
236 results in the context of differentiating inference-based from model-free strategies, the inaccurate
237 estimates are concerning. If an animal executes a mixture of inference-based and model-free
238 strategies during the task, a method that relies on these estimates will fail to discriminate between
239 the two modes and thus will be unable to discover the true underlying strategies.
240

241 **Four behavioral features to discriminate model-free from inference-based behavior**

242 We first developed a framework for differentiating model-free from inference-based behavior in
243 the case of a pure strategy with no mixing. To quantify the agent's behavior during block
244 transitions, we computed four features of the "transition function" that describes the dynamics of
245 action switching of the agents in response to an uncued change in the external reward contingency
246 (Fig. 3a). This function is a sigmoidal curve parameterized by three parameters, the switch offset,
247 s , the slope α , and the lapse ε which represents the exploration rate of the agent in the environment.
248 The fourth parameter is the foraging efficiency E , which is the fraction of rewarded choices of the
249 agent over the whole session. In the limit of large number of blocks, this fraction is reflected by
250 the area under the curve of the choice transition function. Either a decrease in offset, an increase
251 in slope or a decrease in exploration would lead to an increase in the foraging efficiency.
252

253 We hypothesized that together, the combination of these four behavioral features can help
254 discriminate different regimes of the model-free and inference-based behavioral spaces. For
255 instance, the switch offset s might be immediate or delayed depending on the learning rate of Q-
256 learning agents, or the parameters of the inference-based agent's internal model. The slope α of
257 the transition might be shallow or steep depending on the agent's strategy. For an agent that relies
258 on slow value integration from trial to trial, choice transitions might occur gradually, whereas for
259 an agent that can quickly infer the underlying states using internal models, the transitions can be
260 sharp. The degree of exploration might also be informative of the underlying strategy. For
261 example, Q-learning agents require a non-zero rate of exploration in order to prevent them from
262 getting stuck in sub-optimal strategies when reward contingencies need to be relearned. In contrast,
263 inference-based agents with a model of the environment requires no exploration to discover these
264 state changes. Finally, the overall foraging efficiency which non-linearly combines information
265 from all three metrics, could be another metric that can distinguish efficient agents from less
266 efficient ones. The use of these multiple features which are sensitive to different aspects of the
267 behavior will thus help increase our ability to distinguish diverse ranges of behavior coming from
268 different parts of the parameter spaces. Before building a decoder for behavioral strategy using
269 inputs provided by these features, we will start with a survey of how each of the four features vary
270 across the Q-learning and inference-based parameter spaces.

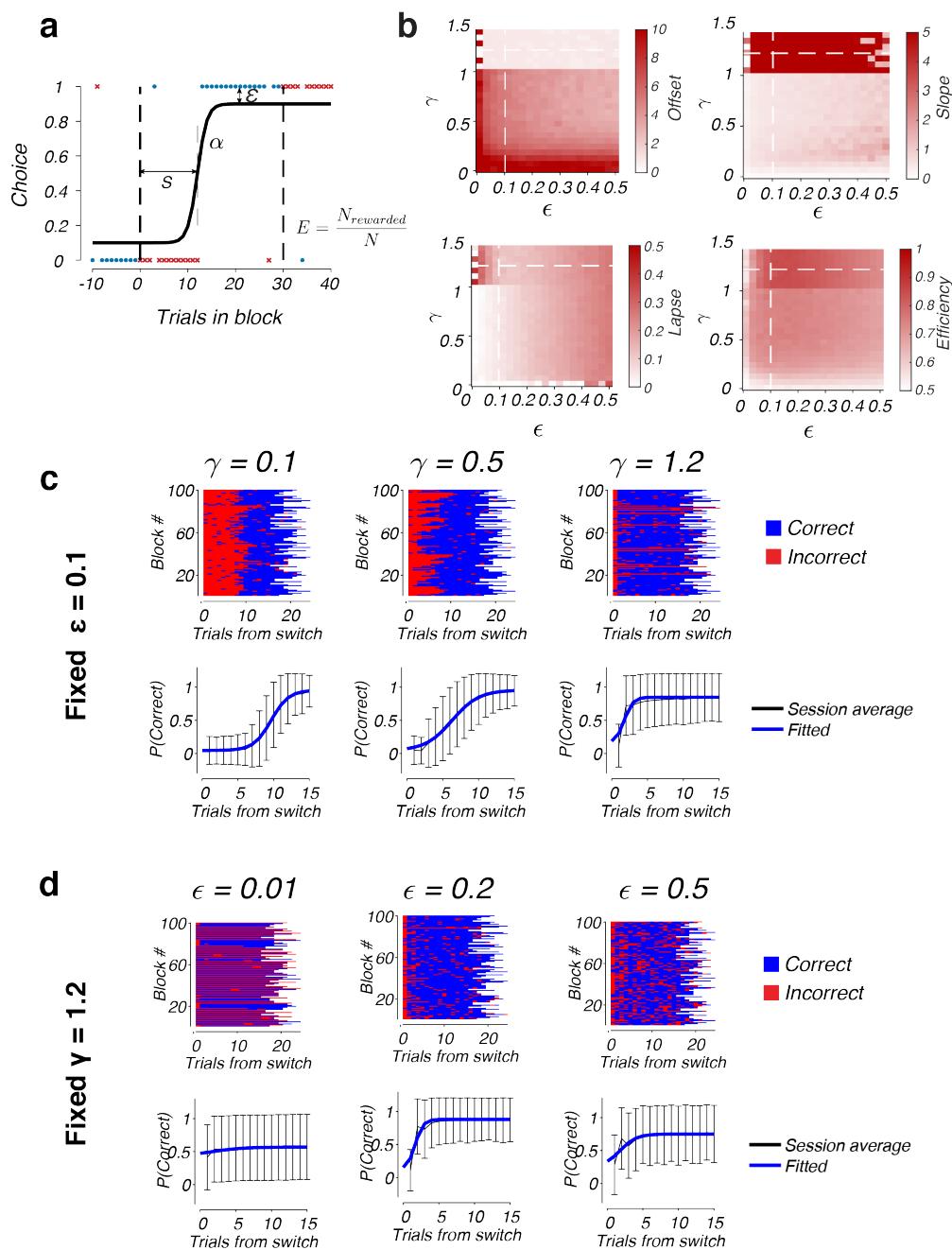


Figure 3. Behavioral metrics of Q-learning agents. a) Illustration of the sigmoidal transition function with four parameters: switch delay s , switch slope α , lapse ϵ , and overall foraging efficiency E . b) Behavior metrics for Q-learning agents in a 100-0 environment. We simulated the behavior of 25×20 Q-learning agents with different values of the learning rate γ and exploration parameter ϵ , and measured the four behavioral features for each agent by fitting the average transition function over 1000 blocks to a sigmoidal function. c) Example behavior of three Q-learning agents with a fixed $\epsilon = 0.1$ and varying learning rate γ . Top row shows the behavior of each agent over 100 blocks (each row represents the outcomes of all the trials within a single block, red: incorrect choice, blue: correct choice). Bottom row shows the average transition function (black curve, mean \pm standard deviation, $n = 1000$ blocks), and the fitted sigmoid (blue curve). d) Same as c, but for three Q-learning agents with fixed $\gamma = 1.2$ and varying ϵ .

273 **Behavioral features of Q-learning agents**

274 To characterize the behavior in the Q-learning space, we simulated an ensemble of agents, each
275 with a different combination of γ and ϵ , where $0.01 \leq \gamma \leq 1.4$, and $0.01 \leq \epsilon \leq 0.5$. For each
276 parameter combination, we simulated the agent in the given environment (100-0, 90-10, 80-20 or
277 70-30) for 1000 blocks, with block sizes randomly sampled between 15-25 (similar to the protocol
278 we use for rodent behavior training). We then averaged the behavior responses over all blocks to
279 obtain the choice transition function (Fig. 3a), and performed a sigmoidal fit of this function to
280 obtain the behavioral features s , α , and ϵ , that defined the switching dynamics for all points in the
281 Q-learning space (Fig. 3b).

282

283 The distribution of behavioral features in the space was highly non-linear, and the features showed
284 a variation along the two primary axes, γ and ϵ (Fig. 3b). When ϵ was held constant, a higher
285 learning rate led to faster and sharper switching dynamics at the block transitions (Fig. 3b, c). For
286 example, when ϵ was fixed at 0.1, increasing the learning rate γ from 0.1 to 1.2 led to faster
287 behavioral switching (offset decreased from 8.6 to 5.3, to 0.8 trials). Notably, as we traversed the
288 parameter boundary from $\gamma < 1$ to $\gamma > 1$, there was a sharp transition in the switch slope and switch
289 offset. This is because in the high learning-rate regime where $\gamma > 1$, a single error was enough for
290 agents to switch their actions, resulting in switch offsets that were very close to zero, and very
291 sharp action transitions.

292

293 Along the ϵ axis, variations in these behavioral features were non-monotonic (Fig. 3d, top). When
294 we fixed $\gamma = 1.2$, a low value of ϵ (such as $\epsilon = 0.01$, Fig. 3d, left panel) often prevented Q-learning
295 agents from switching as they failed to explore the alternative action after block transitions. This
296 agent was not able to discover the more rewarding action, leading to an average transition function
297 that is perfectly flat (Fig. 3d, bottom). A moderate value of ϵ (such as $\epsilon = 0.2$, Fig. 3d, middle
298 panel) encouraged exploration and enabled agents to discover the optimal action in order to make
299 rapid action switches. However, when the degree of exploration became large ($\epsilon = 0.5$, Fig. 3d,
300 right panel), although the agents were able to switch rapidly, their noisy asymptotic behavior
301 prevented them from fully exploiting the most rewarding action.

302 **Behavioral features of inference-based agents.**

303 Similar to the survey of the Q-learning landscape, we characterized the inference-based space by
304 simulating an ensemble of inference-based agents with different combinations of P_{switch} and
305 P_{rew} (with $0.01 \leq P_{switch} \leq 0.45$ and $0.55 \leq P_{rew} \leq 0.99$).

306 Unlike the variations seen in the Q-learning space which were mainly along the primary axes, the
307 behavior of inference-based agents varied systematically along the diagonal axis of the parameter
308 space (diagonal line in Fig. 4a). In the low P_{switch} and low P_{rew} regime (Fig. 4b, left panel), which
309 we call the ‘stable’ regime of the state space, agents assumed an internal model where state
310 transitions occur infrequently. This made them rather insensitive to errors and resulted in high
311 switch offsets (switch offset = 8.4 trials for the agent with $P_{switch} = 0.01$ and $P_{rew} = 0.55$). In
312 contrast, the regime where both P_{switch} and P_{rew} were high is called the ‘volatile’ regime (Fig. 4b,
313 right panel). Here, agents assumed an environment with frequent state transitions and high reward
314 probability. This volatile assumption made them more sensitive to errors, switching their choices
315 more readily after only a few errors (switch offset = 0.96 trials for the agent with $P_{switch} = 0.45$

316 and $P_{rew} = 0.99$). In this regime, each error was more impactful to the agent's update estimate of
 317 the current world state. The behavior in between these regimes had low exploration rates and
 318 offsets that were intermediate between the two extremes (Fig. 4b, middle panel).

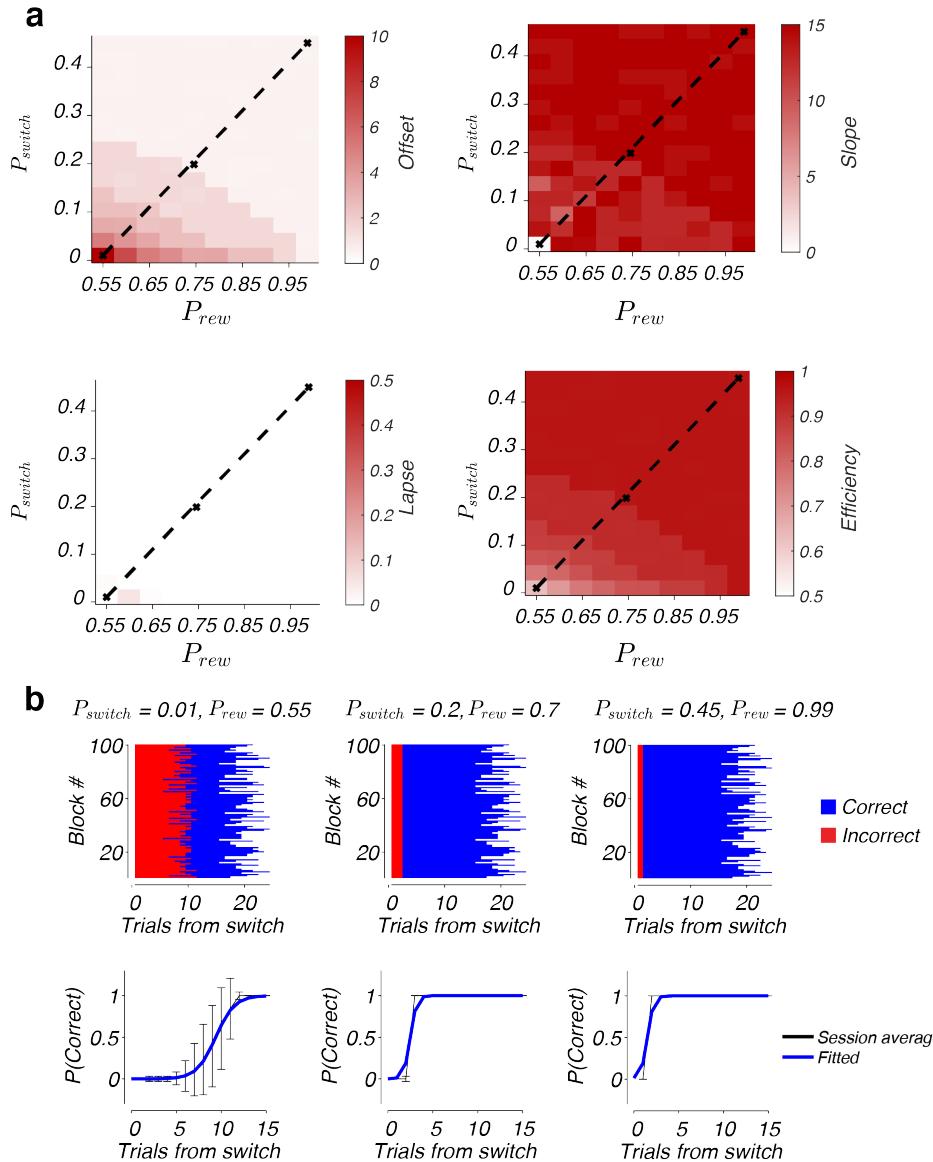


Figure 4. Behavioral metrics of inference-based agents. a) Behavioral features offset s , slope α , lapse ϵ and efficiency E for inference-based agents in the parameter space. Conventions are the same as Fig. 3a. b) Example behavior of three inference-based agents taken from the diagonal of the parameter space (represented by crosses in panel a plots). Conventions are as Fig. 3b,c).

319 One feature that distinguished inference-based agents from Q-learning agents is their lapse rates:
 320 inference-based agents tend to explore much less compared to the Q-learning agents, with lapse
 321 rates below 10% across most of the parameter space (compare Fig. 4a and Fig. 3b). This low
 322 exploration of inference-based agents can be explained by the effectiveness of the inference-
 323 based update procedure compared to the Q-learning strategy. Even for Q-learning agents with a
 324 high learning rate, a small degree of exploration is required to achieve high foraging efficiency

325 and avoid getting stuck with low-reward actions. In contrast, Bayesian inference allows
326 inference-based agents to infer state changes without the need to explore alternative choices.
327 Together with the faster switch delays and sharper switch transitions, this low exploration leads
328 to a much higher foraging efficiency than can be achieved by Q-learning agents in the uncertain
329 worlds. Indeed, foraging efficiency was consistently above 90% for most inference-based agents,
330 which was much higher than the maximum efficiency that can be achieved in the Q-learning
331 parameter space (85%).

332 The simulation of Q-learning and inference-based agents was repeated for 90-10, 80-20, and 70-
333 30 environments, yielding qualitatively the same trends and axes of variation among the four
334 behavioral features in these environments (Supp. Figs. 1, 2). Thus, the qualitative trends in these
335 features were consistent across different types of environments regardless of the level of
336 stochasticity in the reward probability.

337 **Decomposition of the Q-learning and inference-based parameter spaces into sub-regimes**
338 **with distinct behavioral signatures**

339 Given the large variation of the four behavioral features across both the Q-learning and inference-
340 based spaces, we next investigated whether the behavior of these agents naturally cluster into
341 distinct modes that are qualitatively different from each other. To perform this analysis, we pooled
342 the behavioral features from all Q-learning and inference-based agents in the 100-0 environment
343 to form a 4 x 650 feature matrix, representing 4 features/agent x 650 agents (25 x 20 Q-learning
344 and 15 x 10 inference-based agents, Fig. 5a). We applied a density-based clustering method which
345 is well-suited for cases where the component distributions are heterogeneous and non-Gaussian³⁸.
346 The data points were first non-linearly embedded onto a two-dimensional t-SNE space, and a
347 watershed algorithm was applied to identify borders of the embedding that separates regions of
348 high-density point clusters. This resulted in six clusters that can be visualized on the embedding
349 space (Fig. 5a).

350 Interestingly, when the identities of the classified points were mapped back into the parameter
351 space that they came from, each of the six clusters corresponded to a contiguous regime in either
352 the Q-learning or inference-based space, but not both (except for cluster 1 which was found both
353 in large portions of the Q-learning space and a very small region of the lower left corner of the
354 inference-based space). The first four classes were localized to regions of the Q-learning space
355 that corresponded to low (class Q1), medium (classes Q2 and Q3) and high learning rates (class
356 Q4), respectively. The remaining two classes were mapped to different sub-regimes of the
357 inference-based space: class IB5 resided in lower left corner of the space which corresponded to a
358 ‘stable’ world model with low P_{switch} ; class IB6 was mapped to the complementary region, the
359 ‘volatile’ regime where P_{switch} and P_{rew} are both high. The distribution of these regimes suggests
360 a clear distinction between Q-learning and inference-based behavior, such that inference-based
361 and Q-learning regimes are largely non-overlapping.

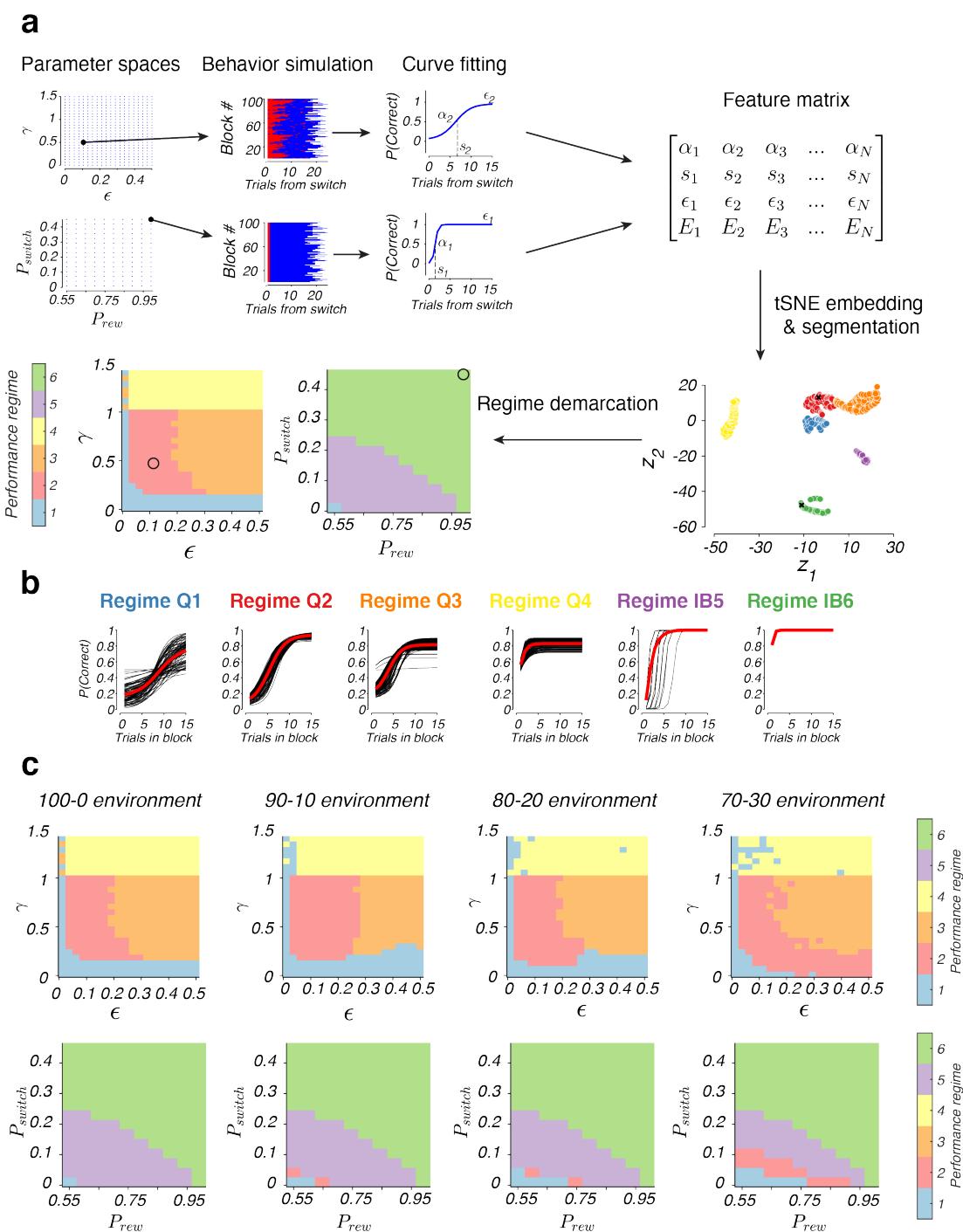


Figure 5. Decomposition of parameter spaces into regimes of qualitatively different behaviors. a) Method of segmentation of the parameter spaces. We performed a computational simulation of an ensemble of Q-learning and inference-based agents taken from grids that spanned the entire two spaces. For each agent, we obtained the transition function and four behavioral features characterizing the sigmoidal fit. We pooled the features of all agents into a feature matrix and applied a density-based approach to cluster these features into six regimes. We then visualized the regime identities for all points in the two parameter spaces. b) Transition functions grouped according to the behavioral regime Q1-4, IB5-6. Red trace represents the mean across all the transition functions in each group. c) Demarcation of the six regimes in the Q-learning and inference-based spaces in different types of environments (100-0, 90-10, 80-20, or 70-30).

363 We verified that these regimes represented distinct modes of behavior by visualizing all the choice
364 transition functions, grouped by the regime identity (Fig. 5b). We found qualitative differences
365 and systematic variations across the different regime types. For example, transition functions in
366 regime Q1 were the flattest, having shallow slopes and very late switch offset, consistent with the
367 slow switching of Q-learning agents with low learning rates. From regime Q2 to Q4, transition
368 functions became progressively steeper with higher slope and faster switch offsets. The average
369 rates of exploration for all the Q-learning regimes (Q1-Q4) were all non-zero. This lapse rate was
370 lowest for Q2 and higher in the other three regimes. In contrast, the inference-based regimes (IB5
371 and IB6) could be distinguished from the Q-learning clusters by lapse rates that were very close to
372 zero. Although the behavior transitions were sharp in both regimes, they occurred at different
373 latencies: the offset was immediate in cluster IB6 but delayed in cluster IB5, consistent with the
374 delayed switching seen in inference-based agents with low P_{switch} that assumed a more stable
375 model of the world (Fig. 5b).

376 **Structure of behavioral features and regime demarcation in 90-10, 80-20 and 70-30
377 environments**

378 So far, our clustering analysis and regime segmentation has been performed in a deterministic
379 environment (100-0) where in each state, the reward is given with 100% probability for the high-
380 value action and 0% probability for the low-value action. To determine how these clusters might
381 vary in probabilistic settings, we performed the same behavior simulation and clustering
382 procedures in 90-10, 80-20 and 70-30 environments, where rewards are given with progressively
383 higher degrees of stochasticity. For example, in a '90-10' environments, rewards are given with
384 probability 90% on the high-valued side, and only 10% on the low-valued side. In each
385 environment, we characterized the variations in the four behavioral features across the Q-learning
386 and inference-based spaces (Supp. Fig. 1-2).

387 Our simulations revealed that the boundaries of the behavioral regimes (Q1-4 and IB5-6) were
388 largely preserved across different environments. In all types of environments, the presence of six
389 clusters could be confirmed when visualized in the t-SNE embeddings (Supp. Fig. 3a).
390 Furthermore, the clusters were localized to similar regimes in the Q-learning and inference-based
391 parameter spaces (Fig. 5c). Notably, as rewards became more unreliable (going from the 100-0 to
392 the 70-30 environment), there was an increase in extent of overlap between Q-learning and
393 inference-based behavior. In the 80-20 and 70-30 environments, a larger section in the lower left
394 corner of the inference-based space was found to co-cluster with regimes Q1 and Q2 in the Q-
395 learning space. This suggests that noisy environments, it becomes more difficult to dissociate the
396 behavior of Q-learning agents in the Q1-Q2 regime from the behavior of inference-based agents
397 that hold 'stable' internal models (the dissociability of the regimes will be further quantified by
398 the decoding results in the next section and Fig. 6). Finally, when visualizing the behavioral
399 transition functions of the six behavioral regimes in different types of environments, we found the
400 same variations and patterns across the six clusters (Supp. Fig. 3b). In each environment, from
401 regime Q1 to Q4, there was a consistent increase in the slope and a decrease in offset of the
402 transition function. For the inference-based agents (IB5-6), we generally observed sharper
403 transitions and faster switches compared to their Q-learning counterparts, demonstrating the
404 usefulness of internal models in bringing about more efficient switching strategies. The IB5 cluster
405 tended to have lower lapse rate than the IB6 cluster, and this lapse rate increased as the

406 environment got noisier (100-0 to 70-30). As with the deterministic case, regime IB5 had a slightly
407 delayed offset compared to IB6, as the agents' internal belief of a stable environment made them
408 less inclined to switch their actions as successive errors were encountered. Finally, as the level of
409 noise increased in the environment, there was a general decrease in slope and increase in lapse rate
410 in the transition functions for all of the six regimes.

411 **Decoding of Q-learning and inference-based regime identity from behavioral data**

412 The segregation of the Q-learning and inference-based spaces into six discrete domains suggests
413 qualitative differences in behavior between these clusters. These differences are revealed by the
414 features of the choice transition functions, which showed systematic variations across regime and
415 environment types (Fig. 6a). For example, agents in regime Q1 have flattest transition functions
416 with the highest offsets, suggesting a random mode of behavior with slow switching between the
417 two actions. On the other hand, agents in regimes IB5 and IB6 have the lowest lapse rates and
418 sharpest transitions (highest slopes), suggesting a mode of behavior that relies on internal models
419 of the world to achieve the highest foraging efficiency. Altogether, these differences can be used
420 to decode the cluster identity from the behavioral performance of animals in an experimental
421 session. In this section, we will build and optimize these decoders, and evaluate their regime
422 classification performance on synthetic data sets for which the ground truth is known.

423 The synthetic training and validation data were again obtained by computational simulations (Fig.
424 6b). For each agent in the Q-learning and inference-based parameter spaces (with a known regime
425 identity according to our previous segmentation), we performed repeated simulations in 50
426 synthetic experimental sessions with 20 block transitions per session (chosen to resemble the
427 number of blocks that animals typically complete in a regular training day). For each synthetic
428 session, we averaged the behavior across all blocks to obtain the transition function, and fitted a
429 sigmoidal curve to estimate the four features of this function. This procedure yielded a four-
430 dimensional feature vector for each agent per session. We split this data into a training set
431 (containing 80% of the data) and a test set (20% of the data). We trained a k-nearest neighbor
432 (kNN) decoder on the training set to predict the behavioral regime (1 to 6), and evaluated its
433 performance on the held-out test set. The accuracy of the decoder was measured both by the
434 fraction of correctly labeled examples per regime, and by the Matthews Correlation Coefficient,
435 which is a metric for evaluating the decoding performance across all six clusters (similar to the
436 area under the ROC curve but for multi-class classifications).

437 We used the decoding accuracy and Matthews correlation metrics to determine the number of
438 neighbors ($k = 24$) for optimal decoding (Fig. 6c). For the optimized decoder, the performance that
439 could be achieved was significantly above chance for all six behavioral regimes (Fig. 6d). We
440 found that each cluster could be decoded with higher than 75% accuracy (compared to a chance
441 performance of 17%). Most impressively, the analysis showed that inference-based behavior (IB5-
442 6) could be almost certainly separated from Q-learning behavior (Q1-4) (decoding performance
443 was 99.8% for distinguishing classes IB5-6 from Q1-4 in the 100-0 environment). The decoder
444 performed extremely well for the inference-based regimes, achieving almost perfect performance
445 for these two clusters. The decoding accuracy was lower for classes Q1 to Q4, reflecting the higher

446 stochasticity in these four modes due to the random exploration that is inherent in the mechanism
 447 of Q-learning agents.

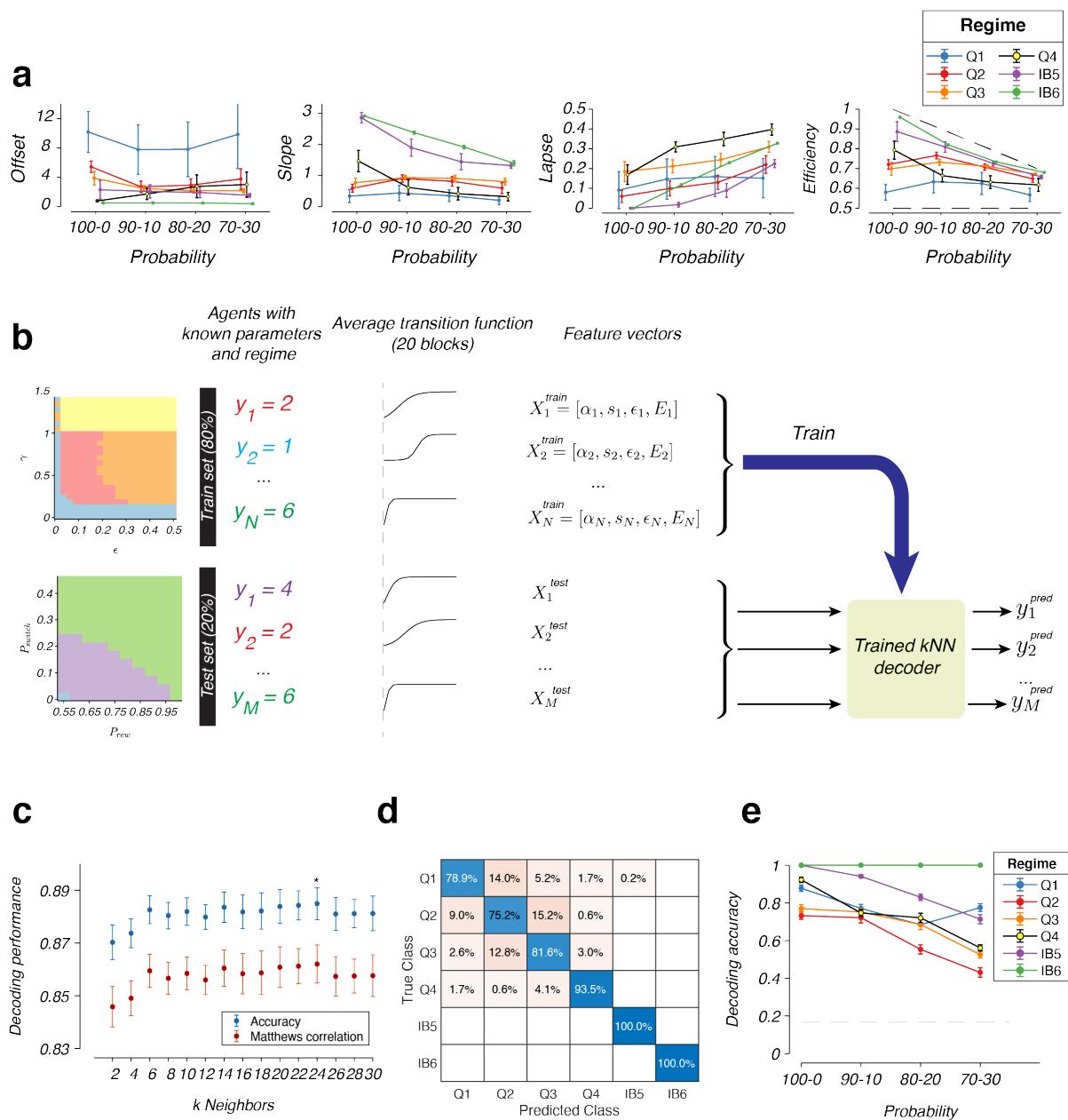


Figure 6. Decoding of behavioral regimes and evaluation of decoding accuracy. a) Average behavioral features (offset, slope, lapse and efficiency, mean \pm standard error) of simulated agents belonging to classes 1 to 6, for the four types of environments, 100-0, 90-10, 80-20 and 70-30. In the efficiency plot (right), top dashed line represents the ideal performance, bottom dashed line represents random performance. b) Procedure for the behavioral regime decoding. c) Selection of the number of nearest neighbors, k , based on cross-validated decoding performance (blue, mean \pm standard deviation, $n = 20$ repetitions) and Matthews Correlation Coefficient (red, mean \pm standard deviation, $n = 20$ repetitions). d) Cross-validated confusion matrix for simulated behavior in the 100-0 environment. Diagonal entries show the accuracy for each respective class. e) Decoding performance (mean \pm standard deviation, $n = 20$ repetitions) for the six behavioral regimes across different environments (100-0, 90-10, 80-20 and 70-30). Dashed horizontal line represents chance performance.

448 We also trained separate decoders and investigated the decoding accuracy in the other three types
449 of probabilistic environments (90-10, 80-20 and 70-30, Fig. 6e) to determine which type of
450 environment would be the most optimal for distinguishing between the six behavioral regimes. We
451 found that the decoding performance for the clusters dropped as the level of stochasticity increases
452 in the environment. The decoding accuracy was consistently high and close to perfect for regime
453 IB6, regardless of the type of environment. For each of the other five clusters, there was a drop of
454 about 20% in decoding accuracy as we go from the 100-0 environment to the 70-30 environment.
455 These results suggest that given our choice of behavioral features, more deterministic
456 environments are better for distinguishing the behavior of model-free and inference-based agents,
457 likely due to the greater separation between the behavioral features among the six types of agents
458 (Fig. 6a).

459 **Session-average rodent behavior progressed through model-free regimes with increasing**
460 **learning rates**

461 The high decoding accuracy of behavioral regimes gave us more confidence to use these decoders
462 on the experimental data that we obtained from our trained animals. We analyzed behavioral data
463 obtained from $n = 21$ head-fixed mice that were trained on the 100-0 dynamic environment. On
464 average, behavioral features varied systematically over time: choice transitions occurred faster
465 (shown by the decrease in offset) and switches became sharper (shown by the increase in slope),
466 while the lapse rate decreased with training (Fig. 7a). Although the average lapse rate decreased
467 over time, it remained high even after 3 weeks of training (~30% on day 30), suggesting a
468 substantial degree of exploration and indicating that not all animals transitioned to the inference-
469 based regime at this late stage of training.

470 The sharper and faster switches of trained mice in the task could be attributed to an increase in
471 learning rate in the Q-learning mode, or a shift from the Q-learning to the inference-based decision
472 mechanism. We dissociated these hypotheses by decoding the behavioral regime (Q1-4 or IB5-6)
473 of each training session using the decoder that was previously trained on the synthetic data (Fig.
474 6). Remarkably, we found that 100% of the decoded states over the training days (across 21
475 animals, up to 30 training days), belonged to the Q-learning regimes, Q1-Q4 (Fig. 7b). Within
476 these regimes, there was gradual shift toward regimes with higher learning rates. The behavior
477 started predominantly in state Q1, and with learning, the frequency of state Q1 decreased, while
478 states Q3 and Q4 increased in prevalence (Fig. 7b). As such, the mean decoded states across
479 animals showed a slow increase toward higher Q-learning modes (Fig. 7c). By the end of 30
480 sessions, about 40% of all animals were in class Q4, and the rest were divided between regimes
481 Q1 and Q3. There was no indication that the behavior transitioned to inference-based modes (IB5-
482 6) in any single animal.

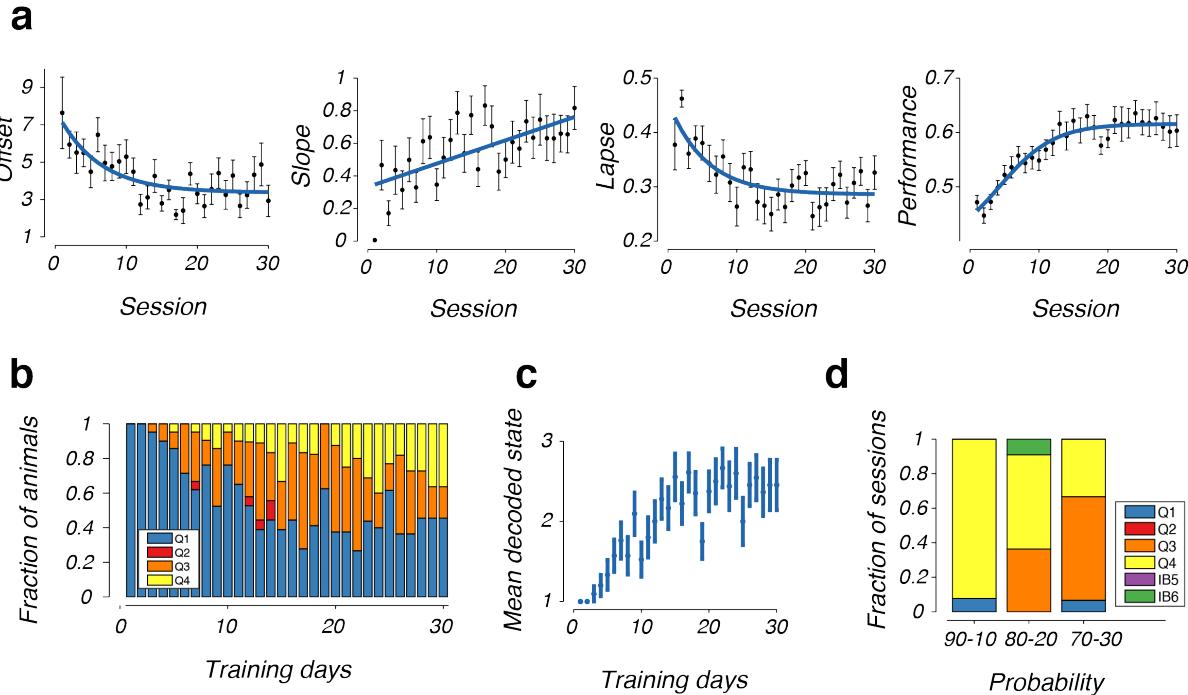


Figure 7. Decoding of session-averaged rodent behavior during dynamic foraging. a) Evolution of offset, slope, lapse and efficiency of rodent dynamic foraging behavior with training (mean \pm standard error, $n = 21$ animals). b) Distribution of decoded state across all animals ($n = 21$) with training. c) Evolution of average decoded state across all animals (mean \pm standard error, $n = 21$ animals) with training. d) Same as b, but in probabilistic environments (90-10, 80-20 and 70-30, with $n = 6$ animals). These sessions were conducted after animals became expert in the 100-0 environment.

483 We also trained a subset of $n = 6$ animals on the probabilistic environments (90-10, 80-20 and 70-
484 30). We applied decoders that are trained on synthetic data for each environment (Fig. 7d) to infer
485 the behavioral modes for these sessions, and again found that the vast majority of these sessions
486 were in the Q-learning regimes (Q1-Q4). Altogether, these results failed to reveal any signature of
487 inference-based behavior from the session-averaged behavioral features of rodents. This was
488 highly surprising, and as we noted at the start of the paper (Fig. 2d-f), could be due to the use of
489 session-averaged statistics which can yield erroneous results by masking the use of mixtures of
490 strategies in single sessions. In the next sections, we will tackle this challenge of analyzing
491 mixtures of strategies by building a state-space model to quantify dynamic shifts and transitions
492 in learning modes.

493 A novel framework to quantify mixture of strategies in dynamic foraging

494 The absence of inference-based strategies from our previous decoding analysis was highly
495 surprising for several reasons. First, inference-based behavior has been observed in previous
496 studies of dynamic foraging in rodents, as well as in other complex tasks which involve multiple
497 decision stages^{17,18}. Thus, it seems unlikely that our animals are unable to develop an internal
498 model that facilitates efficient inference in our task. Second, from our training experience, we have
499 frequently observed expert animals making sharp switches in their actions, with some animals
500 being able to reverse their actions after a single error after each block transition. Hence, our

501 inability to discover inference-based behavior was suggestive of the need for a more sophisticated
 502 analysis of behavior.

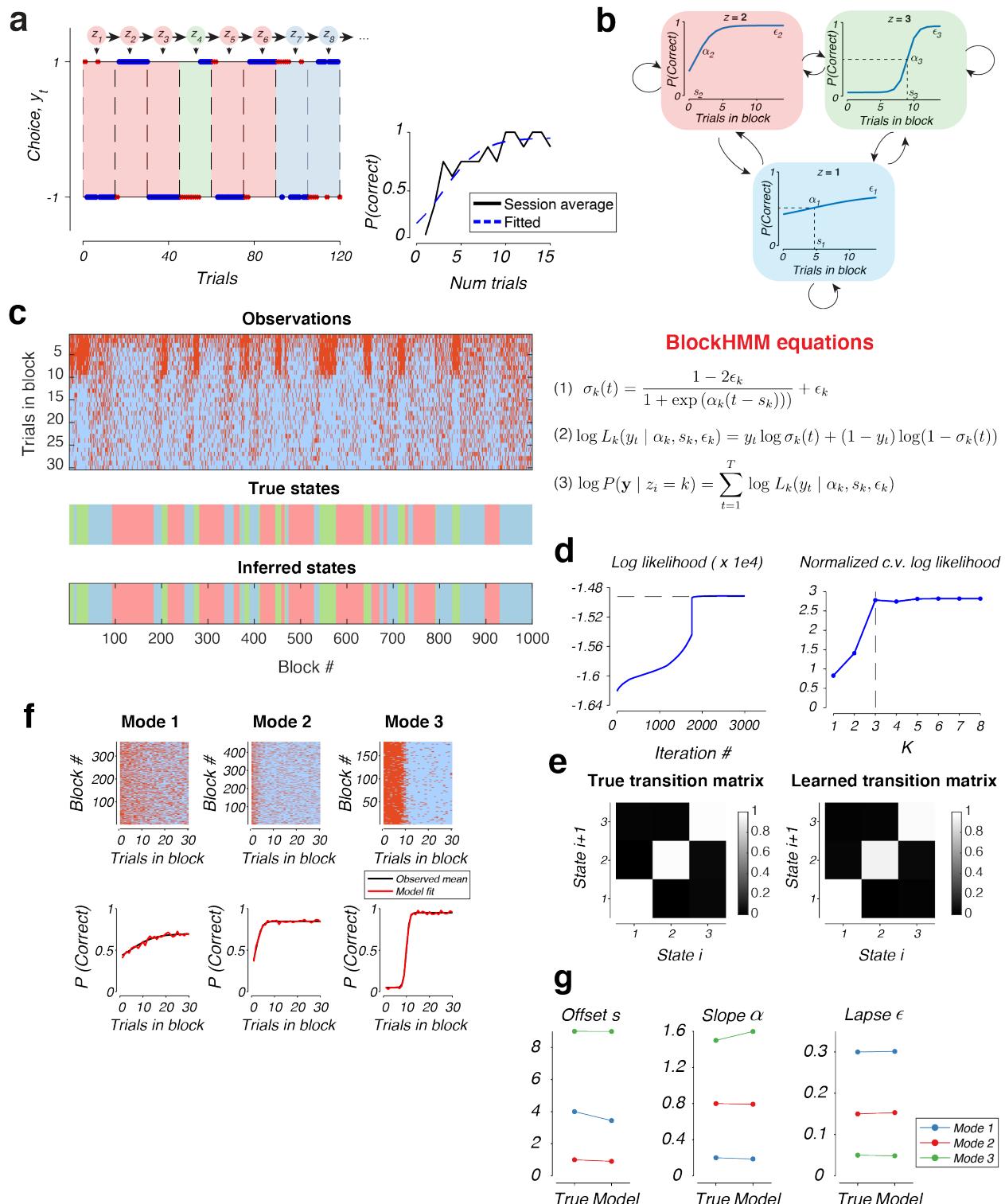


Figure 8. Formulation and evaluation of the blockHMM algorithm. a) Example of behavior generated by a blockHMM mixture with $K = 3$ components. The circles on top represent the underlying hidden states, z_i , which evolve according to a Markov chain. Each state (shown by blue, red and green shade) follows a different set of underlying switching dynamics. Blue dots represent correct choices, red crosses represent incorrect choices. (Inset) Average transition function across all blocks of the session (black) together with the fitted sigmoidal curve (blue). b) (Top) Transition functions corresponding to each of the three hidden states, $z_i = 1, 2, 3$. Each sigmoidal curve can be parameterized by three features, the slope, offset, and lapse. Arrows represent transition probabilities between the states. (Bottom) Equations of the blockHMM generative model. Each hidden state governs the choice sequence of the entire block according to the sigmoidal transitions (equations 1 and 2). The log-likelihood of the observed choices in the block is the sum of the log-likelihoods of individual trials (equation 3). c) (Top) Example behavior in 1000 blocks of trials generated by the same blockHMM mixture shown in panels a and b. Each column represents one block, with trials 1 to 30 of each block running from top to bottom. Red represents incorrect choices and blue represents correct choices. (Middle) True states that underlie the behavior shown in the top panel. (Bottom) Inferred latent states by the blockHMM fitting procedure. d) (Left) Evolution of the log-likelihood during model fitting in panel c. (Right) Dependence of cross-validated log-likelihood on the number of components, K . e) True and inferred transition matrices for the behavior shown in panel c. f) Grouping of blocks of trials according to the inferred state after the model fitting with $K = 3$ HMM components. (Top) Raw behavioral performance grouped by the identity of the latent state. Conventions are as Fig. 3c,d and Fig. 4b. (Bottom) Average transition function and fitted sigmoidal curve for each of the grouped blocks. g) Comparison of true and inferred parameters for the three components of the behavior shown in panel c.

503 One factor that might explain this result was the highly variable behavior of mice in training
504 sessions. For example, in the same session, an individual animal might vacillate between different
505 strategies, switching their choices immediately in some blocks, transitioning more slowly in others,
506 and selecting choices at random toward the end of the session as they became satiated (red, green,
507 and blue shades in Fig. 8a, respectively, for a simulated agent). These state changes pose a
508 challenge for analysis methods which make use of session-average metrics, as highlighted by our
509 examples in Fig. 2d-f. In our framework, each of these strategies might be governed by a separate
510 choice transition function with varying offsets, slopes and lapse rates (sigmoidal curves in Fig.
511 8b). Since the session average transition function (Fig. 8a, bottom panel) is more likely to be flatter
512 with higher lapse rate than a typical inference-based sigmoid, the average behavior will tend to
513 look model-free, masking the inference-based strategies in some of the individual components.

514 The fact that individual modes of the behavior might be obscured by session-averaged measures
515 prompted us to develop a computational tool to identify the discrete latent states that constitute the
516 behavior of animals across their training sessions. We took advantage of recent developments of
517 state space models that were used to infer discrete latent states from sequences of discrete or
518 continuous variables^{29,39,40}. In particular, adapting the previously developed GLM-HMM
519 framework²⁹ to the dynamic foraging setting, we assumed that each hidden state determines the
520 parameters of a single sigmoidal transition function (offset s , slope α and lapse ϵ), which in turn
521 determines the joint log likelihood of all the choices within each block. We named the approach
522 “block Hidden Markov model (blockHMM)” to indicate the use of hidden states which dictate the
523 evolution of choices throughout the block duration (Fig. 8a).

524 More concretely, we assumed that the choice sequences in each block k is governed by an
525 underlying sigmoidal transition function $\sigma_k(t)$, where $t = 0, 1, 2, \dots$ are the trial numbers within
526 the block (Fig. 8a). These transition functions can be parameterized by the switch delay s_k , slope
527 α_k and lapse rate ϵ_k (Equation 1, Fig. 8b). The discrete latent states z_i ’s evolve from one block to
528 the next with a Markovian property specified by the transition matrix $P(z_{i+1} | z_i)$ (denoted by

529 arrows in Fig. 8a). The transition function determines the likelihood of all trials within each block
530 (Equation 2, Fig. 8b). Finally, to fit the model, we used the EM algorithm to maximize the log-
531 likelihood over all observed choices, which is the sum of the log-likelihoods of individual trials
532 (Equation 3, Fig. 8b).

533 Our synthetic agent (Fig. 8a) was simulated according to a blockHMM process with $K = 3$ hidden
534 states. State $z = 1$ (blue) corresponded to a random mode of behavior with a flat transition function,
535 $z = 2$ (red) corresponded to a sigmoidal curve with a fast offset, and $z = 3$ (green) involved a sharp
536 but delayed switching of actions. We generated the behavior of this agent over 1000 blocks (Fig.
537 8c), and fitted the blockHMM model to the observed choice sequences of the agent. The log-
538 likelihood of the fit converged to the true log likelihood value (Fig. 8d, left). To determine the best
539 number of latent states for the model, we trained the model on 80% of the blocks and evaluated
540 the log-likelihood on the remaining 20% of the blocks. Inspecting the normalized cross-validated
541 log-likelihood, we found that the optimal number of clusters was $K = 3$, agreeing with the ground-
542 truth value (Fig. 8d, right). At the end of the fitting procedure, blockHMM recovered the correct
543 transition matrix (Fig. 8e), as well as the parameters of the transition function in each mode (Fig.
544 8f-g). Importantly, the inferred latent states closely matched the true states that underlie the
545 behavior (Fig. 8c, bottom panels).

546 **Mice use a mixture of strategies during dynamic foraging**

547 We used the blockHMM procedure to identify the hidden states that underlie behavioral
548 performance of our trained animals ($n = 21$). For each animal, we fit the model with the number
549 of components, K , that was chosen to maximize the cross-validated log-likelihood (Supp. Fig 4,
550 the value of K was also capped at a maximum value of 6 for interpretability). From the model fits,
551 we obtained the slope, offset and lapse parameters that define each transition function. We also
552 computed the foraging efficiency of each mode based on the performance of the animal in all of
553 the trials in the respective states. The combination of four features per strategy were then input to
554 our trained decoder (Fig. 6) to determine the behavioral regime (Q1-4 or IB5-6) for each of the six
555 HMM modes (Fig. 9a). For 11/21 animals, we observed the presence of both Q-learning and
556 inference-based regimes in the decoded HMM modes, while the rest of the animals only showed
557 the presence of Q-learning regimes. To visualize behavior within each HMM mode, we pooled
558 together the fitted functions from all animals (a total of 97 modes across 21 animals) and grouped
559 them according to the decoded regime (Fig. 9b). Overall, the shape of these HMM modes closely
560 matched the results of our regime segmentation: HMM modes that were decoded as Q1 showed
561 delayed and gradual transitions that were close to random behavior, Q2 modes showed slow
562 switching (with offset ~ 5 trials) and low exploration. Very few HMM modes were decoded to be
563 Q3 – these modes showed similar offsets to Q2 but had higher lapse rates. Q4 modes displayed
564 very fast switching (with offset of 1-2 trials) and a wide range of lapse rates. Importantly,
565 blockHMM revealed the existence of a significant number of inference-based modes, which were
566 decoded to regimes IB5-6. Consistent with our previous characterizations of these regimes, the
567 transitions in regime IB5 occurred more slowly than IB6, and transition functions in these modes
568 tended to have much lower lapse rates compared to the Q-learning regimes. Finally, we also
569 recovered the state transition matrices for each animal (Supp. Fig. 6).

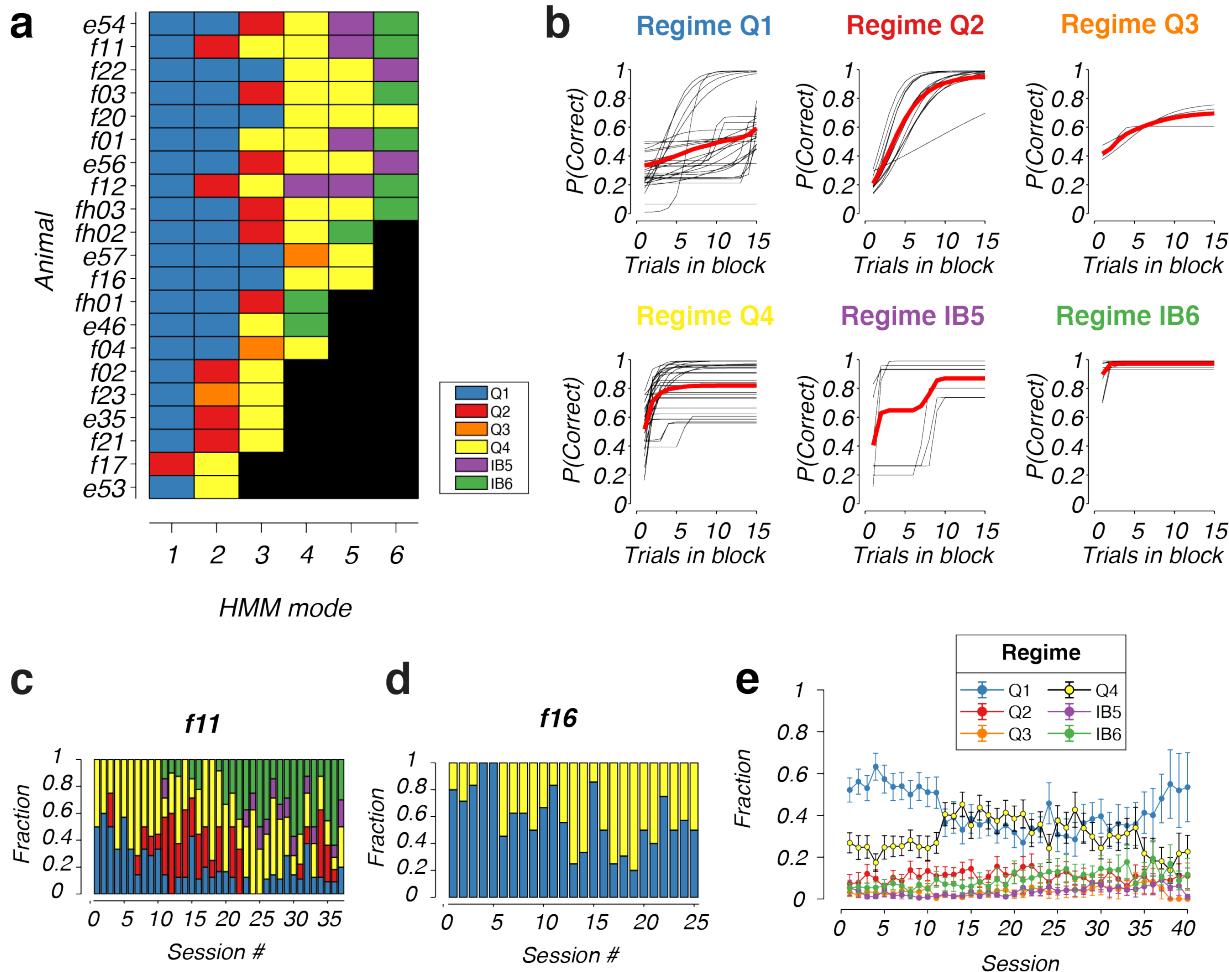


Figure 9. Mixture of strategies underlying rodent behavior in dynamic foraging. a) Composition of blockHMM mixtures for individual animals. Each row represents one mouse with ID shown on the left. The color of each square represents the decoded behavioral regime of each HMM mode (Q1-4, IB5-6). The number of blocks for each animal, K , was selected by cross-validation and are sorted here in descending order. b) Transition function of HMM modes for all animals, grouped according to the decoded behavioral regime. c) Distribution of HMM modes for an example animal, f11, across all training sessions. d) Same as c, but for another animal, f16. e) Average frequency of HMM modes for all experimental animals (mean \pm standard error, $n = 21$ animals).

570 The model fits also allowed us to investigate the extent to which individual animals mixed between
 571 learning strategies within single training sessions. Although individual behavioral profiles were
 572 highly variable, there was a significant degree of mixing between HMM modes for all animals
 573 such that on each day, it was common to see a mixture of two or more behavioral regimes. An
 574 example animal (f11, Fig. 9c) executed an approximately equal mixture of Q1 and Q4 on its first
 575 training days. This fraction slowly shifted over time, as the prevalence of the Q1 mode decreased,
 576 while other Q-learning modes with higher learning rates (such as Q2-Q4) started to dominate.
 577 Around day 10 of training, the inference-based modes started to appear, growing in proportion
 578 until the late stages of training. However, remarkably, even in the expert stage (day 38 of training),
 579 the animal never operated fully in the inference-based regime. Instead, there remained a mixture
 580 of both inference-based and Q-learning strategies in roughly equal proportions at this stage of

581 training. This was a common feature of many animals that managed to reach the inference-based
582 stage (such as animal e46, e54, e56, f01, f11, f12, fh02, fh03, Supp. Fig. 5). On the other hand, a
583 small subset of other animals, such as f16 (Fig. 9d), never reached the inference-based mode even
584 after up to 25 days of training. The behavior of these animals primarily mixed between regimes
585 Q1 and Q4 on each day, presumably alternating between periods of attention (high learning rate,
586 Q4) and low attention (low learning rate, Q1).

587 We compared the results of our segmentation approach to previously proposed metrics to
588 distinguish between model-free and inference-based behavior. We determined the ρ coefficient as
589 defined in Fig. 2 and previous studies¹⁷, for all training sessions across our $n = 21$ animals. On
590 average, ρ systematically shifted from a significantly positive value for the first 5 sessions (Supp.
591 Fig. 7a, $p < 10^{-5}$, Wilcoxon signed-rank test, $n = 21$ animals) to a value that is not significantly
592 different from 0 for sessions 21-25 (Supp. Fig. 7a, $p = 0.3$, Wilcoxon signed-rank test, $n = 21$
593 animals). This is consistent with the previously reported trend¹⁷ and the average transition from
594 model-free to inference-based modes of learning in our animals. However, the trends in ρ for single
595 animals were noisy (Supp. Fig. 7b, c) which made it more challenging to distinguish model-free
596 from inference-based behavior in single sessions. For example, although the two animals f11 and
597 f16 (Fig. 9c,d) had qualitatively different behavioral modes as revealed by blockHMM, the
598 evolution of the ρ estimates were qualitatively similar and not statistically different from sessions
599 21 – 25 (Supp. Fig. 7b, $p = 0.8$, Wilcoxon signed-rank test, $n = 5$ sessions). Moreover, for animals
600 whose behavior primarily lie in the Q-learning regime (e53, e57, f04, f16, f20), ρ was not
601 statistically different from 0 in many sessions. This discrepancy could be attributed to the level of
602 noise in the estimates, or the fact that Q-learning agents can also have ρ values close to zero
603 especially in the high-learning rate regime (Fig. 2c, d).

604 Across all animals, the average frequency and dominance of the HMM modes and behavioral
605 strategies changed systematically over the course of training (Fig. 9e). On average, animals started
606 training with a significant fraction of the Q1 mode and smaller fraction of Q4 (56% in Q1 and 24%
607 in Q4, averaged across days 1-5). Over the course of training, the mixture of behavioral strategies
608 slowly shifted from Q1 to Q4, such that around day 15, there is a higher fraction of Q4 than Q1
609 mode (39% in Q4 compared to 35% in Q1, averaged across days 16-20). This shift in composition
610 reflects an average increase in learning rate in the Q-learning regime. At the same time, the fraction
611 of inference-based modes, IB5 and IB6, was low at the beginning (3% in IB5 and 6% in IB6
612 averaged across days 1-5), but continuously increased as animals gained experience with the task
613 (6% in IB5 and 14% in IB6 averaged across days 36-40). Notably, at the expert stage, there was a
614 significant fraction of blocks in the inference-based mode (20% in IB5-6 combined averaged
615 across days 36-40), but the mixture of strategies still remained with Q1 and Q4 being the primary
616 Q-learning modes of the animals. Overall, these ubiquitous use of mixtures of strategies, which
617 were distinctive both in naïve and expert animals, further underscore the importance of our
618 approach to dissociate and characterize the features that constitute individual modes of behavior.

619 **Discussion**

620

621 Model-free and inference-based strategies are the two types of models that are most often used for
622 analysis of choice sequences in dynamic foraging experiments. Model-free constructs such as
623 reinforcement learning models have been particularly useful when probing representation of action
624 values in numerous brain regions^{7,14,15,22,41-43}. Complementarily, inference-based models using
625 Bayesian inferences has helped us understand the inference process that occurs in the brain from
626 trial to trial when animals hold an internal model of the world transitions^{18,26}. In the dynamic
627 foraging task, while most studies tend to focus exclusively on one of the two model types, it has
628 been recognized that both of these modes can co-exist in the behavior of humans and rodents, with
629 a transition from model-free to inference-based behavior as they gain familiarity with the task^{17,44}.
630 By providing the tools to understand the difference between these two modes of behavior, our
631 study provides a basis for comparison between these two disparate spaces of models. Our efforts
632 are among other work of dissociating model-free from inference-based (or model-based) behavior
633 in other task domains⁴⁵⁻⁴⁸. As building internal models of the world is a crucial, challenging but
634 less understood brain function⁴⁹, distinguishing between model-free from inference-based
635 behavior in dynamic foraging is the first step toward an understanding of how these internal models
636 can be acquired with learning.

637

638 Our approach builds upon previous work in this domain in several ways. First, we proposed a
639 framework that relies on quantitative measurements of four behavioral features that characterize
640 transitions between actions, using the concept of transition functions which had only been
641 qualitatively characterized by other studies¹⁹. Our combined use of four behavior features also
642 makes it easier to decode the behavioral strategies, as these metrics offer better coverage of the
643 large parameter spaces involved in the two models, γ - ϵ for Q-learning agents, or P_{switch} - P_{rew} for
644 inference-based agents. Although we have not considered other behavior features such as the
645 probability of action switching^{19,26}, similar metrics can be incorporated in the same framework to
646 potentially improve the decodability of strategies even further. In general, the use of multiple
647 features would help maximize the discriminability between the two types of behavior in the high-
648 dimensional feature space. This offers an improvement from previous attempts which use a single
649 parameter to distinguish between the two modes of learning. For example, we showed that ρ by
650 itself is insufficient to distinguish model-free from inference-based behavior for certain pairs of
651 agents¹⁷. In the same way, this problem also applies to other single metrics such as transition
652 slope¹⁸ or offset³⁵ which have been used in previous studies. Our approach also differs from
653 previous attempts using data-driven methods²⁷ to predict the choice of animals and agents on
654 individual trials. We instead try to estimate a set of aggregate behavioral metrics such as the switch
655 offset and lapse rate to decode the behavioral regimes of different agents. Since our focus is to
656 predict the behavioral class rather than the choice on single trials, this allows us to gain statistical
657 power and robustness as these aggregate measures can be estimated more accurately from the
658 performance of the animals over multiple blocks of trials, in comparison to single-trial choice
659 prediction which can be difficult due to the presence of noise in the choice sequences⁵⁰.

660

661 Among the four features we investigated, the variation in lapse rate during training was particularly
662 noteworthy. We found that there was a high lapse rate in our experimental animals, even in the
663 deterministic environment where the reward contingency should be straightforward to learn and
664 acquire. On average in this easiest task condition, the lapse rate of animals even on day 30 of

665 training was close to 30%. In our Q-learning model, this lapse rate could be accounted for by a
666 high value of ϵ which leads to a high degree of exploration of the animals. This high rate of
667 exploration would agree with previous studies of mice in a maze⁵¹, open-field⁵² or head-fixed⁹,
668 which found a tendency for mice to explore their environments, presumably to gain information
669 about unknown events or contingencies^{53,54}. Although exploration is the most direct explanation
670 for the high lapse rate, we cannot rule out the possibility that the high lapse rate could be caused
671 to other factors such as inattention, motor errors, or incomplete knowledge of the task^{29,55-57}, which
672 similarly affect the interpretation of lapse rates in sensory-guided behavioral paradigms^{9,29}.
673

674 Together, the four behavioral features of the transition dynamics, the switch offset, slope, lapse
675 and efficiency, provide a basis for reliably classify the behavior of different Q-learning and
676 inference-based agents into one of six distinct clusters that show qualitatively different behavioral
677 phenotypes. Remarkably, each of these two parameter spaces can be further segmented into
678 smaller subdomains, thus highlighting the heterogeneity of behavior within these two classes of
679 strategies. We found that the Q-learning space can be divided into four clusters, Q1-Q4, that
680 broadly correspond to different learning rates. Q1 is a low-learning rate regime where the behavior
681 is close to random on most of the block, Q2,3 have moderate learning rates where slow block
682 transitions occur, while Q4 is a high-learning rate regime where the behavior transitions are fast,
683 but foraging efficiency can be strongly dependent on the degree of exploration, highlighting the
684 well-known exploration-exploitation trade-off in reinforcement learning^{58,59}. In this regime, too
685 low exploration risks getting the agent stuck a sub-optimal choice during block transitions, while
686 too high exploration results in a failure to maximize received rewards. The types of behavior for
687 model-free agents might be even more complex when alternative schemes for exploration, such as
688 soft-max, UCB-1 or pursuit⁵⁹, are considered. Interestingly, in our characterization, the difference
689 between lapse rates turned out to be an important criterion for distinguishing model-free from
690 inference-based behavior, especially in deterministic (100-0) environments. Here, model-free
691 clusters (Q1-Q4) tend to have significant, non-zero rates of exploration, while inference-based
692 clusters (IB5-6) has a lapse rate that is very close to zero. This suggests that the lapse rate can
693 serve as an additional discriminator for the two types of models, in addition to other metrics that
694 have been considered by previous studies^{17,18}.
695

696 The ground-truth parameters used in our simulations also allowed us to evaluate the reliability of
697 decoding model-free from inference-based behavior in different types of environments. We found
698 that decoding accuracy was highest in the deterministic (100-0) environment and slowly degrades
699 for more stochastic environments (going from 90-10 to 80-20 and 70-30). This degradation arises
700 because in probabilistic environments, inference-based and model-free transition functions
701 become more similar. In such noisy environments, an efficient inference-based procedure might
702 still give rise to slow and delayed switching since in these environments, the rewards received are
703 rather uninformative of the current state of the world. The lapse rates of inference-based agents
704 also become non-zero in this unreliable condition which makes it difficult to distinguish between
705 the effect of ϵ -greedy exploration in Q-learning agents. On the other hand, in the deterministic,
706 100-0 environment, a failure to fully exploit an action after switching must be attributed to
707 exploration, allowing an accurate detection of exploration states which imply a Q-learning
708 behavior. The decoding accuracy of behavioral strategies thus establishes a baseline evaluation of
709 our ability to distinguish model-free from inference-based behavior in high-noise environments.
710

711 The second major contribution of this work is the development of a state-space model, blockHMM,
712 which allows us to segment of behavior during the session into blocks of trials that are governed
713 by different underlying states. Our work adds to the existing body of literature for quantifying
714 mixtures of strategies in reward-guided contexts which revealed interacting components of
715 behavior involving reinforcement learning, working memory, episodic memory or the interaction
716 between model-free and model-based systems^{27,60}. To tackle challenges faced by models that
717 assume stationarity of behavior (Fig. 2e-g), our model takes inspiration from recent modeling
718 approaches which are used to infer discrete latent states that underlie neural dynamics³⁹, natural
719 behavior⁴⁰, and behavior in decision-making tasks^{28,29}. In particular, we adapted the recent GLM-
720 HMM framework²⁹, where discrete hidden states determine the coefficients of a generalized linear
721 model (GLM) which specifies how the decision of the animal depends on external trial variables.
722 While the latent states in this approach are updated from trial to trial, latent states in the blockHMM
723 framework govern the choice selection across entire blocks, and are only updated at the boundaries
724 of block transitions. Each state involves a separate sigmoidal transition function parameterized by
725 the slope, offset and switch. By pooling the behavior across different sessions, blockHMM
726 bootstraps from the large number of blocks across multiple sessions to estimate these state-specific
727 parameters. As these are the same parameters that are used for decoding Q-learning or inference-
728 based regimes, this allows us to recover the behavioral regime (Q1-4 or IB5-6) that corresponds
729 to each state. We performed a cross-validation analysis to determine the number of states, K , that
730 best describe the behavior of each animal, ensuring that these modes are meaningful units of
731 behavioral states and not arbitrary noise patterns that are fit by the model.
732

733 Our results uncover a remarkable diversity of behavior across the 21 animals that were trained in
734 the task. This diversity is demonstrated by different number of HMM modes, K , the composition
735 of the modes (Fig. 9a), the shapes of the transition function of each mode (Fig. 9b), the transition
736 probabilities (Supp. Fig. 5), as well as the evolution of the mixture composition throughout the
737 course of training (Supp. Fig. 4). We found only 11/21 of our animals transitioned to an inference-
738 based mode of learning, while the rest of the animals remained in the Q-learning modes. This
739 might explain why some previous studies might not observe efficient inference-based behavior of
740 rodents during behavioral switching¹⁹, since a large fraction of animals might have failed to
741 transition to this regime.

742 Not only is the behavior variable across animals, but it can also be highly dynamic within a session.
743 We found that rodents frequently employ a mixture of strategies, mixing between periods of
744 random behavior, Q-learning and inference-based behavior even at the expert stage after being
745 exposed to the task for many weeks. This is so even for the easiest reward contingency (100-0
746 environment) where the optimal decision is simple – the animal only needs to make a switch each
747 time a single error is encountered. Although we might expect rodents to be able to quickly figure
748 out this task and become fully committed to the inference-based strategy, this was not the case.
749 Instead, the frequent switches between behavioral states is representative of rodent behavior and
750 agrees with many other studies of a diverse array of tasks^{28,29}. This feature of rodent behavior once
751 again highlights the need for powerful analytical methods that can infer hidden behavioral states
752 that govern behavior, since these types of models allow a finer scale resolution when dissecting
753 the behavioral circuits.

754 Overall, our study lays the foundation for future analyses and investigations into the neural basis
755 of model-free and inference-based behavior, and calls for a focus on the problem of state
756 segmentation in rodent behavioral studies. An interesting question that is raised by our
757 characterizations is how internal models are acquired during the task, and the factors that affect
758 the evolution of parameters of these internal models. The methods developed in the paper can be
759 leveraged in investigations of the neural mechanisms that govern these distinct modes, as well as
760 the plasticity of these circuits during the transition between model-free and inference-based
761 behavior. The state segmentation approach will also be a valuable tool for perturbation
762 experiments, with the power to reveal shifts in composition, order or transition probabilities
763 between these modes, thus augmenting existing methods for a much richer and complete view of
764 rodent behavior during dynamic foraging.

765
766

767 Materials and Methods

768

769 **Animals.** All experimental procedures performed on mice were approved by the Massachusetts
770 Institute of Technology Animal Care and Use Committee. Mice were housed on a 12 h light/dark
771 cycle with temperature (70 ± 2 °F) and humidity (30–70%) control. Animals were group-housed
772 before surgery and singly housed afterwards. Adult mice (2-6 months) of either sex were used
773 for these studies. In addition to wild-type mice (C57BL/6J), the following transgenic lines were
774 used: Ai184D (B6.Cg-Igs7tm148.1(tetO-GCaMP6f,CAG-tTA2)Hze/J), Jackson #030328;
775 Ai162D (B6.Cg-Igs7tm162.1(tetO-GCaMP6s,CAG-tTA2)Hze/J), Jackson #031562;
776 B6.129(Cg)-Slc6a4tm1(cre)Xz/J, Jackson #014554.

777

778 **Surgical procedures.** Surgeries were performed under isoflurane anesthesia (3–4% induction,
779 1–2.5% maintenance). Animals were given analgesia (slow release buprenex 0.1 mg/kg and
780 Meloxicam 0.1 mg/kg) before surgery and their recovery was monitored daily for 72 h. Once
781 anesthetized, animals were fixed in a stereotaxic frame. The scalp was sterilized with betadine
782 and ethanol. The skull was attached to a stainless-steel custom-designed headplate
783 (eMachines.com) using Metabond. Animals were allowed to recover for at least 5 days before
784 commencing water restriction for behavioral experiments.

785

786 **Behavioral apparatus and task training.** The training apparatus and software for running the
787 experiments were adapted from the Rigbox framework for psychophysics experiments in
788 rodents^{61,62}. Mice were head-fixed on the platform (built from Thorlabs hardware parts) and their
789 body placed in a polypropylene tube to limit the amount of movement and increase comfort.
790 Their paws rested on a vertical Lego wheel (radius 31 mm) which was coupled to a rotary
791 encoder (E6B2-CWZ6C, Omron), which provided input to a data acquisition board (BNC-2110,
792 National Instruments). The data acquisition board also provided outputs to a solenoid valve
793 (#003-0137-900, Parker) which controlled the water reward delivery.

794

795 After mice recovered from surgery, they were placed under water restriction for 1 week, with
796 daily water given by HydroGel (Clear H₂O). The initial amount of HydroGel was equivalent to
797 2mL of water a day, and this decreased gradually until mice received an amount equivalent to 40
798 mL/kg each day. Mice were weighed weekly and monitored signs of distress during the course of
799 training. In the case of substantial weight loss (>10% loss weekly) or decrease in body condition

800 score, the restricted water amount was increased accordingly. Mice were handled daily during
801 the initial 1-week water restriction period for ~10 minutes each day. They were then allowed to
802 explore the apparatus and given water manually by a syringe on the platform. If mice did not
803 receive their daily water amounts during training, they were given the remaining amount as
804 hydrogel (Clear H₂O) in their home cage.
805

806 When mice were comfortable with the setup, they were head-fixed on the platform and given
807 small water rewards of 4 μ L from a lick spout every 10 seconds, for a total duration of 10
808 minutes. This duration was increased to 20 minutes, and 40 minutes on the two subsequent days.
809 The wheel was fixed during this protocol. On the next day, mice were trained on the
810 *movementWorld* protocol, with the wheel freely moving. Here, each trial was signal with an
811 auditory tone (0.5s, 5 kHz), following which movements in any direction crossing the movement
812 threshold of 8.1° rotation were rewarded with 4 μ L of water. Mice then had to remain stationary
813 for 0.5 s before the next trial starts. This discouraged a strategy of continuous rotation of the
814 wheel.
815

816 After mice became comfortable with this stage and consistently obtained at least 0.6 mL of water
817 each session, they were taken to the final task stage, *blockWorldRolling*. Each trial began with an
818 auditory tone (0.5s, 5 kHz). During a delay period of 0.5 s from the trial tone onset, movements
819 of the wheel were discounted. After this window, the movement period started, where
820 movements of the wheel past a specified threshold were recorded. The threshold was fixed at
821 8.1° in the first session of *blockWorldRolling* and subsequently increased to 9.5°, and 10.8° on
822 the next days. The trials were grouped into blocks of trials of 15-25 trials, with lengths of the
823 blocks sampled uniformly at random. The blocks alternated between the “left” and “right” state.
824 In the “left” state, left wheel turns were rewarded with probability 100% and right wheel turns
825 were not rewarded. In the “right” state, right wheel turns were rewarded with probability 100%
826 and left wheel turns were not rewarded. If mice made the correct movement, they were given a 4
827 μ L water reward. For unrewarded trials, a white noise sound was played for 0.5 s, followed by a
828 time-out of 1 s. After the trial feedback was given, an inter-trial interval (ITI) of 0.5 s elapsed
829 before the next trial started. The ITI was gradually increased to 1 s once animals performed well
830 in the task. If mice didn’t make a choice within 20 seconds, the trial was aborted, signaled by a
831 white noise and 1-s time-out period (similar to an error trial). After the length of the block has
832 passed, if the rolling performance of the animal in the last 15 trials was above 75%, the state of
833 the block would flip and the next block continued. Otherwise, the block continued until the
834 rolling performance in the last 15 trials in the block passed 75%.
835

836 For $n = 6$ animals (F11, F12, F16, F17, F20, F21), after becoming expert in the 100-0
837 environment, we continued training them in successively more volatile environments. Each
838 animal was trained in 2-3 sessions in the 90-10 environment, followed by 2-3 sessions in each of
839 the 80-20, and 70-30 environments. The example behavior in Fig. 1c was for animal F11 on a
840 90-10 environment.
841
842

843 **Simulated environment.** We simulated an artificial environment that alternates between two
844 states, “left” and “right”, in blocks of trials. The first block was chosen at random to be in the “left”
845 or “right” state, and the state identity flipped for each subsequent block. At the start of each block,

846 we determined the number of trials in the blocks, N , by sampling an integer at random in the range
847 [15, 25]. We then simulated N trials in the block. In each trial, the agent selected an action (see
848 “Simulation of Q-learning agents” and “Simulation of inference-based agents” for details below)
849 and received feedback from the environment. If the block was in the “left” state, left actions yielded
850 reward with probability of p and right actions yielded reward with probability of $1 - p$. Conversely,
851 if the block was in the “right” state, left actions yielded reward with probability of $1 - p$ and right
852 actions yielded reward with probability of p . We considered four different environments with $p =$
853 1.0, 0.9, 0.8 and 0.7, which we called 100-0, 90-10, 80-20 and 70-30, respectively.
854

855 **Simulation of Q-learning agents.** Each Q-learning agent was defined by two parameters, the
856 learning rate γ and exploration rate ϵ . For our simulations, we simulated a 25 x 20 grid of
857 parameters within the range $0.01 \leq \gamma \leq 1.4$, and $0.01 \leq \epsilon \leq 0.5$.
858

859 On each trial, the Q-learning agent implemented a Q-value update and selected actions with an ϵ -
860 greedy policy. The agent maintained two values associated with the two actions, q_L for left actions
861 and q_R for right actions. We initialized $q_L = q_R = 0.5$. On each trial, the agent updated these
862 values according to
863

$$q_i \leftarrow q_i + \gamma(r - q_i)$$

864 where r is the feedback of the trial ($r = 1$ for rewarded actions and $r = 0$ for non-rewarded actions).
865 The Q-learner chose the higher-valued action with probability $1 - \epsilon$, and selected actions at random
866 (with probability 50% for each choice) on a small fraction ϵ of trials.
867

868 **Simulation of inference-based agents.** Each inference-based agent held an internal model which
869 consisted of two hidden states, L and R , that corresponded to the unobserved hidden states, “left”
870 or “right”, of the environment. The internal model was defined by two parameters, P_{switch} and
871 P_{rew} according to
872

$$P(s_{i+1} = R | s_i = L) = P(s_{i+1} = L | s_i = R) = P_{switch}$$

$$P(s_{i+1} = L | s_i = L) = P(s_{i+1} = R | s_i = R) = 1 - P_{switch}$$

$$P(r_i = 1 | s_i = L, c_i = L) = P(r_i = 1 | s_i = R, c_i = R) = P_{rew}$$

$$P(r_i = 1 | s_i = L, c_i = R) = P(r_i = 1 | s_i = R, c_i = L) = 1 - P_{rew}$$

873 where s_i refers to the hidden state on trial i and c_i refers to the choice on trial i .
874

875 That is, the evolution of the hidden states followed a Markov process with probability P_{switch} of
876 switching states and $1 - P_{switch}$ for remaining in the same state on each trial. For our simulations,
877 we simulated a 15 x 10 grid of parameters within the range $0.01 \leq P_{switch} \leq 0.45$, and $0.55 \leq$
878 $P_{rew} \leq 0.99$.
879

880 We derived a recursive update for the agent’s posterior belief about the current world state, given
881 previous choices and feedback. Let $P_L(t) = (s_t = L | c_1, r_1, c_2, r_2, \dots, c_{t-1}, r_{t-1})$ and $P_R(t) =$
882 $(s_t = R | c_1, r_1, c_2, r_2, \dots, c_{t-1}, r_{t-1})$. Then
883

892
$$P_L(t) = \frac{1}{\Omega} \sum_{i=L,R} P_i(t-1) \text{P}(r_{t-1} | s_{t-1} = i) \text{P}(s_t = L | s_{t-1} = i)$$

893
$$P_R(t) = \frac{1}{\Omega} \sum_{i=L,R} P_i(t-1) \text{P}(r_{t-1} | s_{t-1} = i) \text{P}(s_t = R | s_{t-1} = i)$$

894

895 where Ω is a normalization factor to ensure $P_L(t) + P_R(t) = 1$.

896

897 We initialized $P_L(0) = P_R(0) = 0.5$. On each trial, the agent selected the left action if $P_L(t) >$
898 0.5, the right action if $P_L(t) < 0.5$, and acted randomly otherwise.

899

900 **Evaluation of previous metrics and approaches.** For a given agent, the ρ metric is defined as
901 follows. For each block transition, we counted the number of consecutive rewards that take place
902 before the block transition, N_r , and the number of consecutive errors that take place immediately
903 after the block transition, N_e . We defined ρ to be the Pearson correlation coefficient between N_r
904 and N_e across all the blocks in the session. To minimize the effect of outliers, we only considered
905 blocks where $N_r \leq 15$.

906

907 The Q-learning and inference-based agents in Fig. 2a-d were simulated in a 90-10 environment,
908 where the block lengths ranged from 5 to 40. The block lengths were sampled as follows. The
909 minimum possible block length was 5 trials, and each subsequent trial where the agent chose the
910 high-reward side, there was a 10% probability of switching states. The block also automatically
911 switched after 40 trials had elapsed.

912

913 The Q-learning agent in Fig. 2e was simulated with $\gamma = 0.1$ and $\epsilon = 0.1$. The inference-based agent
914 in Fig. 2e was simulated with $P_{rew} = 0.7$ and $P_{switch} = 0.2$. Each agent was simulated for 10 total
915 sessions, each lasting 1000 blocks. For agent M, we used a mixture of strategies: we alternated
916 between the Q-learner's strategy for 50 blocks and the inference-based agent's strategy for 50
917 blocks, and kept alternating between these modes until the agent has executed 1000 blocks in total.
918 This was repeated for 10 total sessions (similar to the Q-learning and inference-based agents) to
919 obtain error bars for the parameter estimates.

920

921 To infer the learning rates in a traditional reinforcement learning framework (Fig. 2f), we fit a
922 reinforcement learning model with three parameters, learning rate γ , inverse temperature β , and
923 bias b , to the sequence of choices and feedback of the agent. We assumed the agent maintained Q-
924 values for the left and right action and use the same update rules as described in "Simulation of Q-
925 learning agents". Given Q-values q_L and q_R , the likelihood of selecting an action is given by

926

927
$$\text{P}(a(t) = L) = \frac{1}{1 + \exp[-\beta(q_L(t) - q_R(t) + b)]}$$

928

929 We jointly fit γ , β , and b using the MATLAB function fmincon with initial values $\gamma_0 = 0.2$, $\beta =$
930 1 and $b_0 = 0$, with the constraint $\beta \geq 0$.

931

932 **Logistic regression model.** Similar to previous studies, we fitted a logistic regression of the
933 following form to predict the choice on trial n based on the previous choices, previous outcomes,
934 and interaction between previous choices and outcomes:
935

$$936 \quad \log \frac{p(c_n = L)}{1 - p(c_n = L)} = \sum_{i=1}^N \alpha_i c_{n-i} + \sum_{i=1}^N \beta_i r_{n-i} + \sum_{i=1}^N \gamma_i c_{n-i} r_{n-i}$$

937 In other words, the logit was a linear combination of the previous N choices ($c_{n-i} = 1$ for left
938 choice and -1 for right choice), previous N rewards ($r_{n-i} = 1$ for rewarded actions and -1 for
939 unrewarded actions), and previous N interactions of choice and reward. The logistic regression
940 model in Fig. 2g was fitted with MATLAB function `mnrfit` to recover the best fit coefficients
941 $\alpha_i, \beta_i, \gamma_i$, together with the confidence intervals of these estimates. For ease of visualization, the
942 parameters α, β and γ were normalized by their respective maximum values.
943

944 **Characterization of Q-learning and inference-based spaces.** We simulated an ensemble of Q-
945 learning and inference-based agents with parameters as described above. For each agent, the
946 behavior was simulated for a total of 1000 blocks. To calculate the transition function of the agent,
947 we took the average of the “signed choice”

$$948 \quad f(t) = \frac{\sum_{n=1}^{N_{blocks}} c_{n,t} u_{n,t}}{N_{blocks}}$$

949 where $c_{n,t}$ denotes the choice in trial t of the block n (-1 for left and 1 for right choices) and $u_{n,t}$
950 denotes the unobserved hidden state in trial t of the block n (-1 for “left” state and 1 for “right”
951 state). The signed choice ensures that $f(t)$ is an increasing function of t regardless of the hidden
952 state of the block.
953

954 The transition function $f(t)$ was fit with a sigmoidal curve with the form

$$956 \quad f(t) = \epsilon + \frac{1 - 2\epsilon}{1 + \exp(-\alpha(t - s))}$$

957 Where ϵ, α and s are free parameters of the function representing the lapse rate, slope and offset,
958 respectively. The parameters were jointly fit with the Python function `scipy.optimize.minimize()`,
959 with constraints $s \geq 0, \alpha \geq 0, 0 \leq \epsilon \leq 0.5$.
960

961 We also determined the foraging efficiency of the agent, $E = N_{rewarded}/N$, where $N_{rewarded}$ is
962 the number of rewarded trials and N is the total number of trials in the session.
963

964
965 **Clustering into behavioral regimes (Fig. 5).** The above fitting procedure was done for all 650
966 agents (25 x 20 Q-learning and 15 x 10 inference-based agents). We pooled the four behavioral
967 features, ϵ, α, s , and E , from these agents to form a 4 x 650 feature matrix, representing 4
968 features/agent and 650 agents. We applied a density-based clustering method to segment the cloud
969 of points into distinct domains. First, the four-dimensional features were embedded into a two-
970 dimensional t-SNE space using the MATLAB `tsne` function with Euclidean distance metric and
971 perplexity of 30. For the 90-10 world, the perplexity was adjusted to 25 to achieve better
972 convergence of the t-SNE clusters.
973

974 We formed 2-D histograms of the data points in the t-SNE space using the MATLAB hist2d
975 function ($n = 25$ bins in each dimension). These histograms were heat maps that indicated regions
976 of high concentration of the data points. The histograms were mean-filtered by a square kernel of
977 size 4x4, and local ‘noise’ maxima with heights less than 3 were suppressed. A watershed
978 algorithm was run on the resulting heat map to identify the local clusters of high density. The
979 identities of these clusters were assigned after mapping back to the location in the Q-learning or
980 inference-based parameter spaces.
981

982 **Decoding analysis (Fig. 6).** We generated a synthetic data set using computational simulations
983 that serve as the basis for our decoding analysis. For each agent in the Q-learning and inference-
984 based parameter spaces, we performed repeated simulations in 50 synthetic experimental sessions
985 with 20 block transitions per session. For each synthetic session, we obtained the transition
986 function $f(t)$, and fit a sigmoidal curve to estimate the four features, ϵ , α , s , and E of the behavior.
987 The fitted slope was capped at a maximum value of 20 to avoid outliers. To balance the number
988 of training examples for different classes in the data set, we determined the number of training
989 examples, n_1, \dots, n_6 , for each of the six classes (Q1-4, or IB5-6), and subsampled each class so
990 that each class contains $N = \min(n_1, \dots, n_6)$ examples. We split this data into a training set
991 (containing 80% of the data) and a test set (20% of the data). Each of the four features were
992 normalized to mean 0 and standard deviation 1. A k -nearest neighbor (kNN) decoder was trained
993 on the training set to predict the behavioral regime (1 to 6). Its performance was evaluated on the
994 held-out test set. The accuracy of the decoder was measured both by the fraction of correctly
995 labeled examples per regime, and by the Matthews Correlation Coefficient.

996 **Session-averaged decoding (Fig. 7).** For each behavioral session consisting of N blocks, we
997 obtained the transition function $f(t)$ as described in *Characterization of Q-learning and inference-
998 based spaces*. We obtained the sigmoidal fit of this function and determined the parameters ϵ , α ,
999 s , and E of the session. The features were input to the kNN decoder that was trained in the
1000 *Decoding analysis* section. This results in a predicted class (Q1-4 or IB5-6) for each behavioral
1001 session. For sessions in probabilistic environments (90-10, 80-20 or 70-30), the behavioral features
1002 were input to the corresponding decoder which were trained on synthetic data from the
1003 corresponding environment type.
1004

1005 **BlockHMM implementation.** The blockHMM inference procedure was implemented based on
1006 the existing ssm toolbox that was previously developed for a wide range of Bayesian state-space
1007 models⁶³.
1008

1009 We added an implementation to this toolbox by specifying a new set of transition and observation
1010 probabilities which specify the blockHMM process. Each observation was defined by three
1011 vectors, α , s and ϵ representing the parameters of the sigmoidal transition function for each of the
1012 K HMM modes (each vector has dimension $K \times 1$). The vectors were initialized to $\alpha_i = 4$, $s_i =$
1013 0.2 , $\epsilon_i = 0.3$ for all $1 \leq i \leq K$.
1014

1015 Given the hidden state in block i , i.e. given $z_i = k$, the joint log likelihood of the observed choices
1016 in the block is defined via the sigmoidal transition function specified by parameters $\alpha_k, s_k, \epsilon_k$
1017

1018
$$\sigma_k(t) = \frac{1 - 2\epsilon_k}{1 + \exp(\alpha_k(t - s_k))} + \epsilon_k$$

1019 where $t = 1, 2, \dots, T$ enumerates the position of the trials in the block.

1020
1021 The log-likelihood for a “signed” choice y_t (the product of choice c_t and hidden state u_t) is that
1022 of a Bernoulli random variable with a rate of $\sigma_k(t)$.

1023
$$\log L(y_t | \alpha_k, s_k, \epsilon_k) = y_t \log \sigma_k(t) + (1 - y_t) \log(1 - \sigma_k(t))$$

1024
1025 The joint log-likelihood of the observed choices in the block i is the sum of the log-likelihoods of
1026 individual trials

1027
$$\log P(\mathbf{y} | z_i = k) = \sum_{t=1}^T \log L(y_t | \alpha_k, s_k, \epsilon_k)$$

1028 The joint log-likelihood for the whole session is the sum of the log-likelihood in individual blocks.
1029 The hidden states evolved according to a Markovian process with stationary transition governed
1030 by a transition matrix T with dimension $K \times K$.

1031
1032 The blockHMM was fit with an Expectation-Maximization (EM) algorithm. The hidden states
1033 were initialized based on k -means clustering with K clusters. The implementation of the EM
1034 algorithm was the same as described previously for the ssm toolbox. We used the L-BFGS
1035 algorithm for the M-step when updating the values of α , s and ϵ , with constraints $s \geq 0.01$, $\alpha \geq$
1036 0.01 , $0.01 \leq \epsilon \leq 0.5$.

1037
1038 To evaluate the cross-validated log-likelihood (Fig. 8d), we split the data into 80% training set and
1039 20% test set. The blockHMM was run on the training set and the log-likelihood L_{test} was evaluated
1040 on the test set. We normalized this cross validated log-likelihood by

1041
1042
$$L_{norm} = \frac{L_{test} - L_0}{n_{test} \log(2)}$$

1043 where L_0 is the cross-validated log-likelihood of a null model (a Bernoulli(p) model where p is the
1044 observed fraction of trials where $y_t = 1$), n_{test} is the number of trials in the test set.

1045
1046 **Synthetic agent simulation.** The synthetic agent (Fig. 8c-g) was simulated with $K = 3$ HMM
1047 modes with parameters $s_1 = 4, \alpha_1 = 0.2, \epsilon_1 = 0.3; s_2 = 1, \alpha_2 = 0.8, \epsilon_2 = 0.15; s_3 = 9, \alpha_3 =$
1048 $1.5, \epsilon_3 = 0.05$. The true transition matrix of the agent was

1049
1050
$$T = \begin{bmatrix} 0.966 & 0.003 & 0.031 \\ 0.007 & 0.954 & 0.039 \\ 0.025 & 0.020 & 0.955 \end{bmatrix}$$

1051
1052 The behavior was generated for $N = 1000$ blocks, each block consisting of 30 trials.
1053

1054 **BlockHMM fitting to animal behavior.** For each animal, we concatenated the behavioral choices
1055 from all training sessions into a $B \times T$ matrix where B is the total number of blocks from all the
1056 sessions and $T = 15$ is the number of trials in each block (for blocks that are longer than T trials
1057 we kept only the first T trials of that block). The blockHMM fitting procedure was run on this

1058 matrix for $K = 1, 2, 3, \dots, 8$ modes. We chose the value of K that maximized the normalized log-
1059 likelihood of the test set (L_{norm}). We capped this K value at 6 for interpretability of the model (i.e.
1060 if the value of K with the highest log-likelihood is higher than 6, we chose $K = 6$ as the optimal
1061 value).

1062
1063 After fitting the blockHMM model, we recovered parameters $s_k, \alpha_k, \epsilon_k$ for individual modes in the
1064 model. We determined the foraging efficiency E_k by numerically integrating the area under the
1065 curve of the choice transition function (with a step size of 0.1)

1066

$$E_k = \int_1^{25} \sigma_k(t) dt$$

1067 Together, the four parameters $s_k, \alpha_k, \epsilon_k, E_k$ are input into the kNN decoder that was trained in
1068 “Decoding analysis” to infer the behavioral regime (Q1-4, IB5-6) of each of the HMM modes.

1069
1070
1071
1072 **Data availability.** The data that support the findings of this study are available from the
1073 corresponding authors upon reasonable request.

1074
1075 **Code availability.** Code used in this study is available at <https://github.com/nhat-le/switching-simulations>.

1076
1077
1078
1079
1080
1081 **REFERENCES**

1. Sutton, R. S. & Barto, A. G. *Reinforcement learning: An introduction*. (MIT press, 2018).
2. Kaelbling, L. P., Littman, M. L. & Cassandra, A. R. Planning and acting in partially observable stochastic domains. *Artif. Intell.* **101**, 99–134 (1998).
3. Rescorla, R. A. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. *Curr. Res. theory* 64–99 (1972).
4. Watkins, C. J. C. H. & Dayan, P. Q-learning. *Mach. Learn.* **8**, 279–292 (1992).
5. Herrnstein, R. J. Secondary reinforcement and rate of primary reinforcement. *J. Exp. Anal. Behav.* **7**, 27–36 (1964).
6. Thompson, W. R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika* **25**, 285–294 (1933).
7. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Neuroscience: Representation of action-specific reward values in the striatum. *Science (80-.)* **310**, 1337–1340 (2005).
8. Sugrue, L. P., Corrado, G. S. & Newsome, W. T. Matching behavior and the representation of value in the parietal cortex. *Science (80-.)* **304**, 1782–1787 (2004).
9. Pisupati, S., Chartarifsky-Lynn, L., Khanal, A. & Churchland, A. K. Lapses in perceptual decisions reflect exploration. *Elife* **10**, e55490 (2021).
10. Gershman, S. J. Deconstructing the human algorithms for exploration. *Cognition* **173**, 34–42 (2018).
11. Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A. & Cohen, J. D. Humans use directed

1103 and random exploration to solve the explore-exploit dilemma. *J. Exp. Psychol. Gen.* **143**,
1104 2074 (2014).

1105 12. Trepka, E. *et al.* Entropy-based metrics for predicting choice behavior based on local
1106 response to reward. *Nat. Commun.* **12**, 6567 (2021).

1107 13. Schultz, W. Predictive reward signal of dopamine neurons. *J. Neurophysiol.* **80**, 1–27
1108 (1998).

1109 14. Lau, B. & Glimcher, P. W. Value Representations in the Primate Striatum
1110 during Matching Behavior. *Neuron* **58**, 451–463 (2008).

1111 15. Hattori, R., Danskin, B., Babic, Z., Mlynaryk, N. & Komiyama, T. Area-Specificity and
1112 Plasticity of History-Dependent Value Coding During Learning. *Cell* **177**, 1858–1872.e15
1113 (2019).

1114 16. Hattori, R. & Komiyama, T. Context-dependent persistency as a coding mechanism for
1115 robust and widely distributed value coding. *Neuron* **110**, 502–515.e11 (2022).

1116 17. Vertechi, P. *et al.* Inference-Based Decisions in a Hidden State Foraging Task:
1117 Differential Contributions of Prefrontal Cortical Areas. *Neuron* **106**, 166–176.e6 (2020).

1118 18. Costa, V. D., Tran, V. L., Turchi, J. & Averbeck, B. B. Reversal learning and dopamine: a
1119 bayesian perspective. *J. Neurosci.* **35**, 2407–2416 (2015).

1120 19. Beron, C. C., Neufeld, S. Q., Linderman, S. W. & Sabatini, B. L. Efficient and stochastic
1121 mouse action switching during probabilistic decision making. *bioRxiv* (2021).

1122 20. Cox, J. & Witten, I. B. Striatal circuits for reward learning and decision-making. *Nat. Rev.
1123 Neurosci.* **20**, 482–494 (2019).

1124 21. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Inactivation of dorsolateral striatum
1125 enhances sensitivity to changes in the action-outcome contingency in instrumental
1126 conditioning. *Behav. Brain Res.* **166**, 189–196 (2006).

1127 22. Tai, L. H., Lee, A. M., Benavidez, N., Bonci, A. & Wilbrecht, L. Transient stimulation of
1128 distinct subpopulations of striatal neurons mimics changes in action value. *Nat. Neurosci.*
1129 **15**, 1281–1289 (2012).

1130 23. Verharen, J. P. H., Adan, R. A. H. & Vanderschuren, L. J. M. J. Differential contributions
1131 of striatal dopamine D1 and D2 receptors to component processes of value-based decision
1132 making. *Neuropsychopharmacology* **44**, 2195–2204 (2019).

1133 24. Donahue, C. H., Liu, M. & Kreitzer, A. C. Distinct value encoding in striatal direct and
1134 indirect pathways during adaptive learning. *bioRxiv* 277855 (2018).

1135 25. Angela, J. Y. & Dayan, P. Uncertainty, neuromodulation, and attention. *Neuron* **46**, 681–
1136 692 (2005).

1137 26. Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural circuits in the frontal
1138 cortex. *Science (80-.).* **364**, (2019).

1139 27. Miller, K. J., Botvinick, M. M. & Brody, C. D. From predictive models to cognitive
1140 models: Separable behavioral processes underlying reward learning in the rat. *bioRxiv*
1141 461129 (2021).

1142 28. Roy, N. A., Bak, J. H., Akrami, A., Brody, C. D. & Pillow, J. W. Extracting the dynamics
1143 of behavior in sensory decision-making experiments. *Neuron* **109**, 597–610.e6 (2021).

1144 29. Ashwood, Z. C. *et al.* Mice alternate between discrete strategies during perceptual
1145 decision-making. *Nat. Neurosci.* 1–12 (2022).

1146 30. Cazettes, F., Murakami, M., Renart, A. & Mainen, Z. F. Reservoir of decision strategies in
1147 the mouse brain. (2021).

1148 31. Calhoun, A. J. & Hayden, B. Y. The foraging brain. *Curr. Opin. Behav. Sci.* **5**, 24–31

1149 (2015).

1150 32. Witten, I. H. The apparent conflict between estimation and control—A survey of the two-
1151 armed bandit problem. *J. Franklin Inst.* **301**, 161–189 (1976).

1152 33. Ma, W. J. Bayesian Decision Models: A Primer. *Neuron* **104**, 164–175 (2019).

1153 34. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of
1154 choice, action and engagement across the mouse brain. *Nature* **576**, 266–273 (2019).

1155 35. Kheifets, A. & Gallistel, C. R. Mice take calculated risks. *Proc. Natl. Acad. Sci.* **109**,
1156 8776–8779 (2012).

1157 36. Lak, A. *et al.* Reinforcement biases subsequent perceptual decisions when confidence is
1158 low, a widespread behavioral phenomenon. *Elife* **9**, e49834 (2020).

1159 37. Ito, M. & Doya, K. Validation of decision-making models and analysis of decision
1160 variables in the rat basal ganglia. *J. Neurosci.* **29**, 9861–9874 (2009).

1161 38. Berman, G. J., Bialek, W. & Shaevitz, J. W. Predictability and hierarchy in Drosophila
1162 behavior. *Proc. Natl. Acad. Sci.* **113**, 11943–11948 (2016).

1163 39. Linderman, S., Nichols, A., Blei, D., Zimmer, M. & Paninski, L. Hierarchical recurrent
1164 state space models reveal discrete and continuous dynamics of neural activity in *C.*
1165 *elegans*. *BioRxiv* 621540 (2019).

1166 40. Buchanan, E. K., Lipschitz, A., Linderman, S. W. & Paninski, L. Quantifying the
1167 behavioral dynamics of *C. elegans* with autoregressive hidden Markov models. in
1168 *Workshop on Worm's neural information processing at the 31st conference on neural*
1169 *information processing systems* (2017).

1170 41. Grossman, C. D., Bari, B. A. & Cohen, J. Y. Serotonin neurons modulate learning rate
1171 through uncertainty. *Curr. Biol.* **32**, 586-599.e7 (2022).

1172 42. Bari, B. A. *et al.* Stable Representations of Decision Variables for Flexible Behavior.
1173 *Neuron* **103**, 922-933.e7 (2019).

1174 43. Bloem, B., Huda, R., Sur, M. & Graybiel, A. M. Two-photon imaging in mice shows
1175 striosomes and matrix have overlapping but differential reinforcement-related responses.
1176 *Elife* **6**, e32353 (2017).

1177 44. Eckstein, M. K., Master, S. L., Dahl, R. E., Wilbrecht, L. & Collins, A. G. E. The Unique
1178 Advantage of Adolescents in Probabilistic Reversal: Reinforcement Learning and
1179 Bayesian Inference Provide Adequate and Complementary Models. *BioRxiv* 2007–2020
1180 (2021).

1181 45. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based
1182 influences on humans' choices and striatal prediction errors. *Neuron* **69**, 1204–1215
1183 (2011).

1184 46. Akam, T. *et al.* The Anterior Cingulate Cortex Predicts Future States to Mediate Model-
1185 Based Action Selection. *Neuron* **109**, 149-163.e7 (2021).

1186 47. Lee, S. W., Shimojo, S. & O'Doherty, J. P. Neural Computations Underlying Arbitration
1187 between Model-Based and Model-free Learning. *Neuron* **81**, 687–699 (2014).

1188 48. Haith, A. M. & Krakauer, J. W. Model-Based and Model-Free Mechanisms of Human
1189 Motor Learning BT - Progress in Motor Control. in (eds. Richardson, M. J., Riley, M. A.
1190 & Shockley, K.) 1–21 (Springer New York, 2013).

1191 49. Niv, Y. Learning task-state representations. *Nat. Neurosci.* **22**, 1544–1553 (2019).

1192 50. Daw, N. D. Trial-by-trial data analysis using computational models. *Decis. making, Affect.*
1193 *Learn. Atten. Perform. XXIII* **23**, (2011).

1194 51. Rosenberg, M., Zhang, T., Perona, P. & Meister, M. Mice in a labyrinth show rapid

1195 learning, sudden insight, and efficient exploration. *Elife* **10**, e66175 (2021).

1196 52. Fonio, E., Benjamini, Y. & Golani, I. Freedom of movement and the stability of its
1197 unfolding in free exploration of mice. *Proc. Natl. Acad. Sci.* **106**, 21335–21340 (2009).

1198 53. Gordon, G., Fonio, E. & Ahissar, E. Emergent exploration via novelty management. *J.*
1199 *Neurosci.* **34**, 12646–12661 (2014).

1200 54. Thompson, S. M., Berkowitz, L. E. & Clark, B. J. Behavioral and neural subsystems of
1201 rodent exploration. *Learn. Motiv.* **61**, 3–15 (2018).

1202 55. Wichmann, F. A. & Hill, N. J. The psychometric function: I. Fitting, sampling, and
1203 goodness of fit. *Percept. Psychophys.* **63**, 1293–1313 (2001).

1204 56. Erlich, J. C., Brunton, B. W., Duan, C. A., Hanks, T. D. & Brody, C. D. Distinct effects of
1205 prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat.
1206 *Elife* **4**, e05457 (2015).

1207 57. Carandini, M. & Churchland, A. K. Probing perceptual decisions in rodents. *Nat.*
1208 *Neurosci.* **16**, 824–831 (2013).

1209 58. Tijmsma, A. D., Drugan, M. M. & Wiering, M. A. Comparing exploration strategies for Q-
1210 learning in random stochastic mazes. in *2016 IEEE Symposium Series on Computational*
1211 *Intelligence (SSCI)* 1–8 (IEEE, 2016).

1212 59. Thrun, S. B. Efficient exploration in reinforcement learning. (1992).

1213 60. Collins, A. G. E. & Frank, M. J. How much of reinforcement learning is working memory,
1214 not reinforcement learning? A behavioral, computational, and neurogenetic analysis. *Eur.*
1215 *J. Neurosci.* **35**, 1024–1035 (2012).

1216 61. Bhagat, J., Wells, M. J., Harris, K. D., Carandini, M. & Burgess, C. P. Rigbox: an Open-
1217 Source toolbox for probing neurons and behavior. *Eneuro* **7**, (2020).

1218 62. Burgess, C. P. *et al.* High-Yield Methods for Accurate Two-Alternative Visual
1219 Psychophysics in Head-Fixed Mice. *Cell Rep.* **20**, 2513–2524 (2017).

1220 63. Linderman, S., Antin, B., Zoltowski, D. & Glaser, J. SSM: Bayesian Learning and
1221 Inference for State Space Models. (2020).

1222

1223 Acknowledgements

1224 The authors thank Tzuhsuan Ma, Morteza Sarafyazd, John Tauber, Indie Garwood and members
1225 of the Sur lab for insightful feedback on the project conceptualization and implementation of the
1226 Hidden Markov Model. This work was supported by US National Institute of Health (NIH) grants
1227 R01MH126351 and R01EY028219 (MS), K99 EB027706 (MY), Army Research Office grant
1228 W911NF-21-1-0328 (MS), Paul and Lilah Newton Brain Science Research Award (NML), and an
1229 equipment grant from the Massachusetts Life Sciences Initiative.

1230

1231 Author contributions

1232 N.M.L. conceived of the analysis framework with inputs from M.Y., M.S. and M.J. N.M.L. built
1233 the animal training apparatus. N.M.L. and M.Y. performed animal surgeries. N.M.L., M.Y., Y.W.
1234 and H.S. performed animal training. N.M.L. performed computational simulations, experimental
1235 data analyses and designed the blockHMM algorithm. M.S. and M.J. supervised the project. All
1236 authors contributed to the interpretation of the results. N.M.L. wrote the manuscript with input
1237 from all authors.

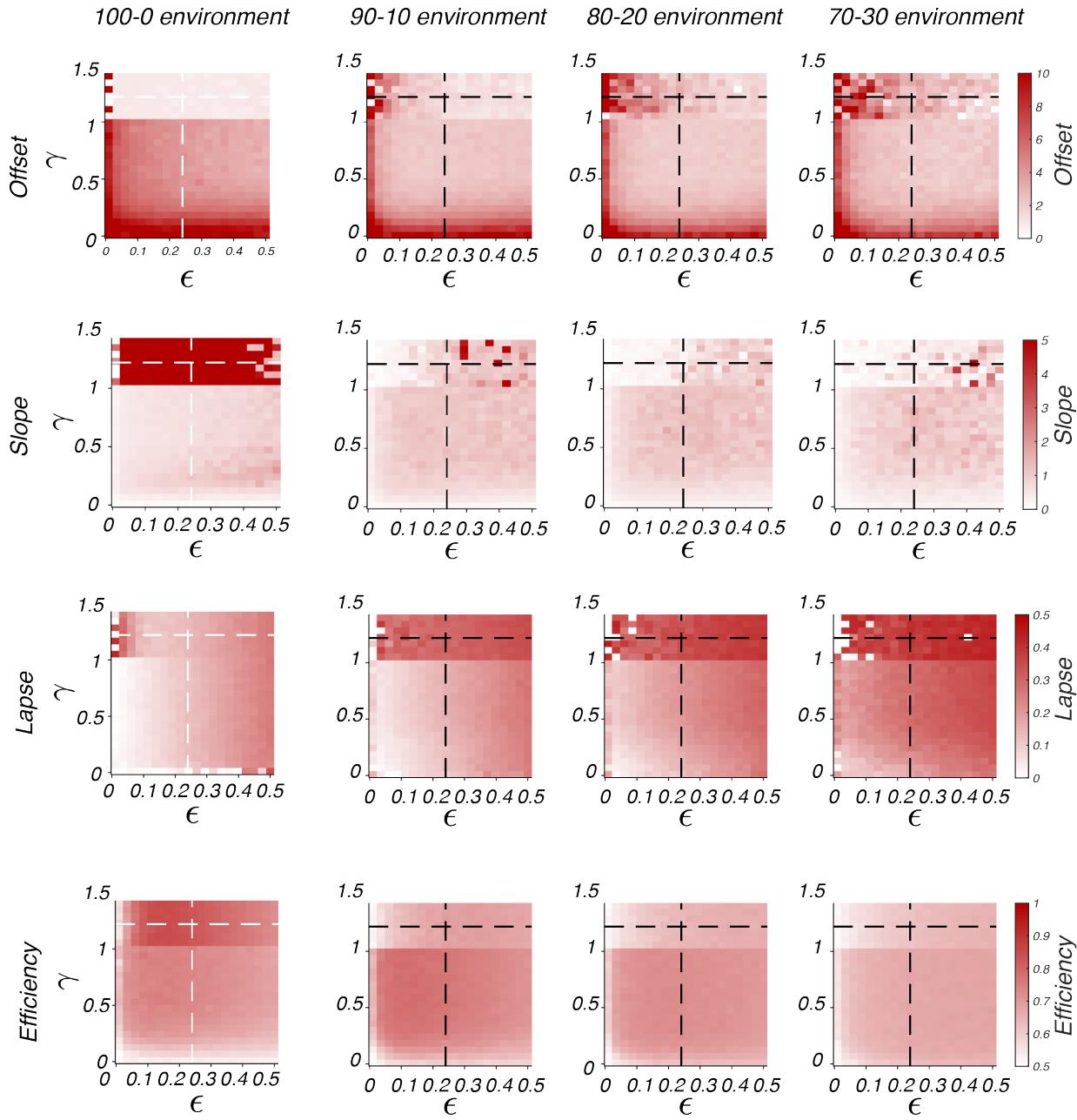
1238

1239 **Additional information**

1240 **Competing interests.** The authors declare no competing interests.

1241
1242
1243

SUPPLEMENTARY FIGURES



1244
1245

1246 **Figure S1.** Behavioral metrics of Q-learning agents in different types of deterministic and
1247 stochastic environments (100-0, 90-10, 80-20 and 70-30). Conventions are the same as Fig. 3b.

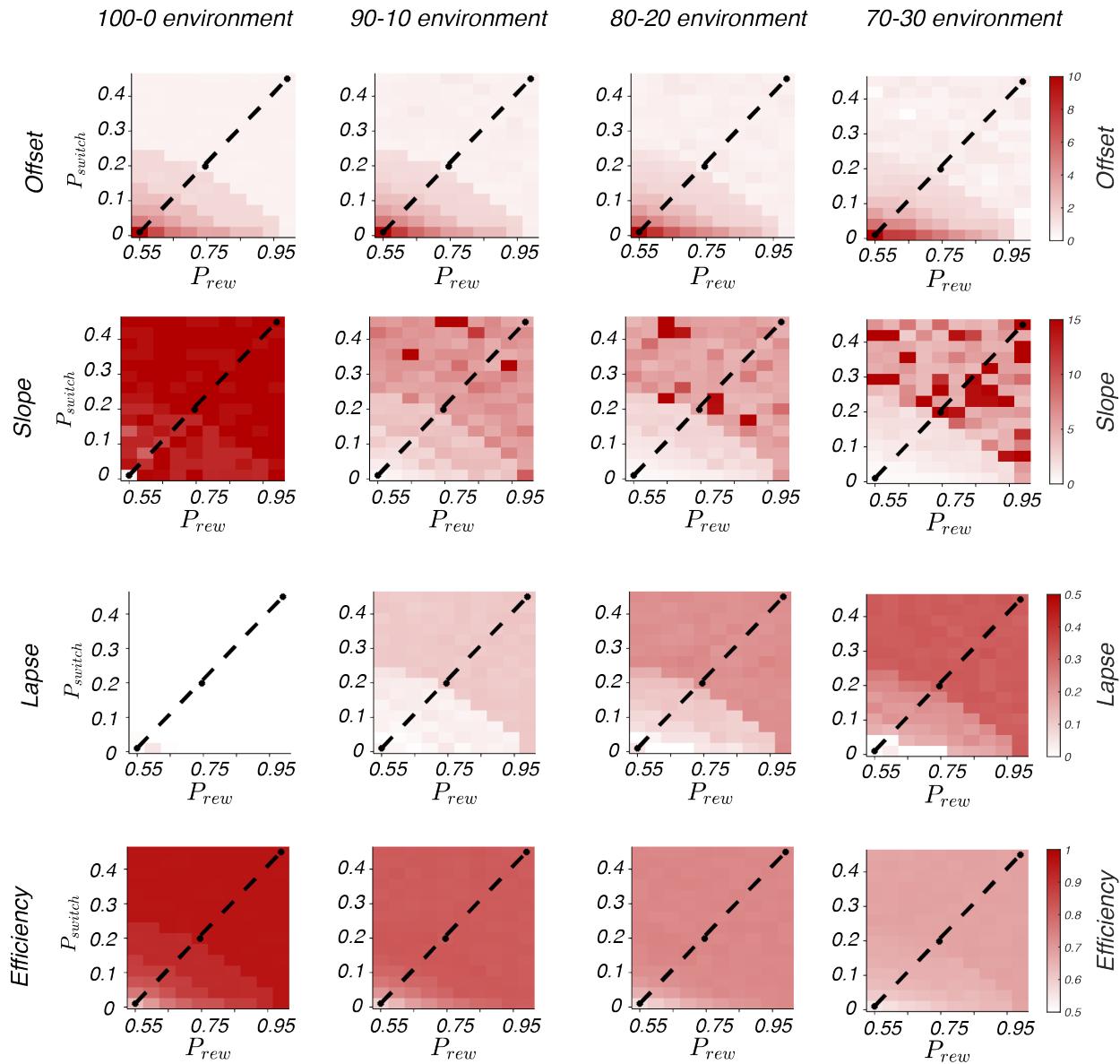
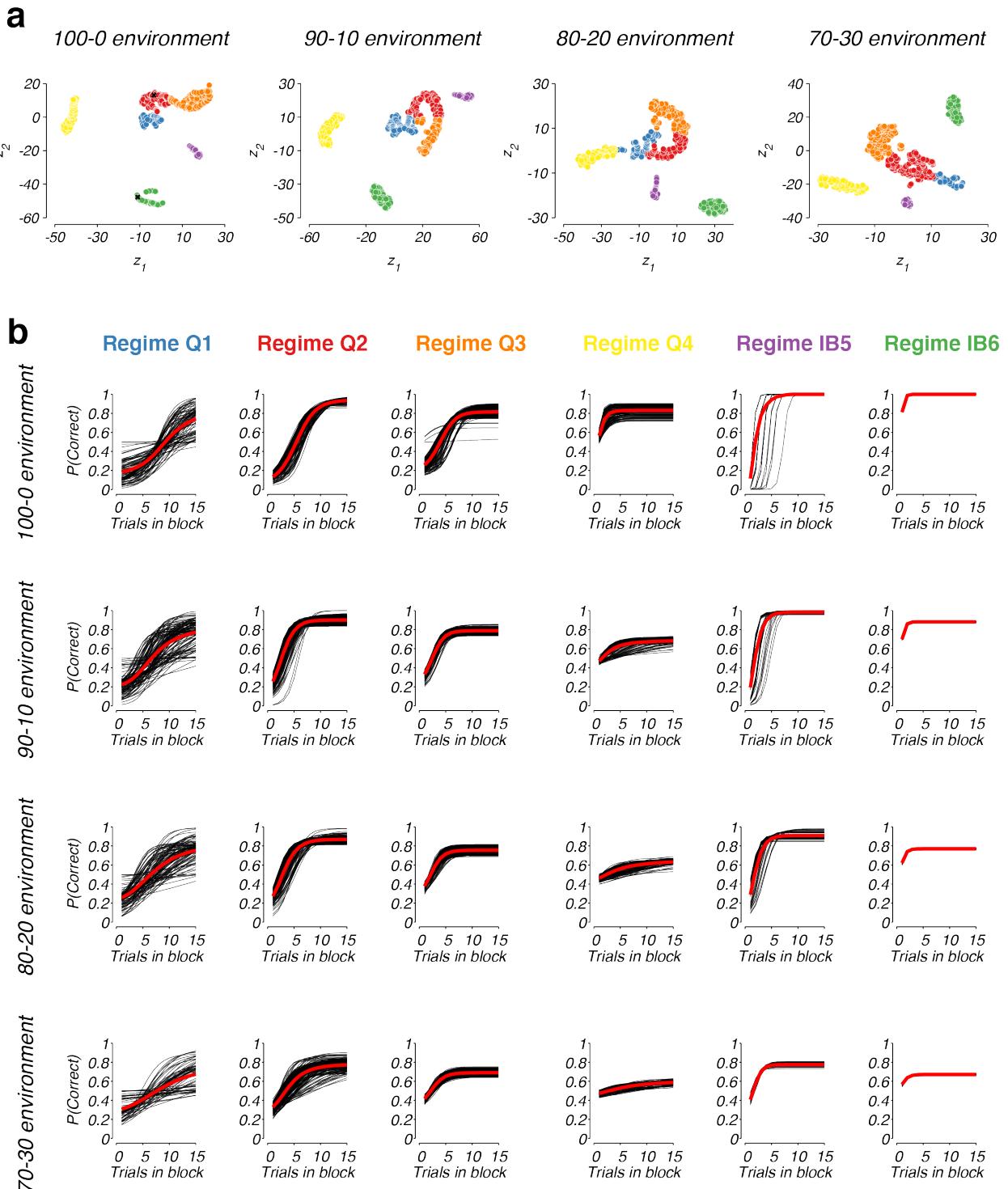
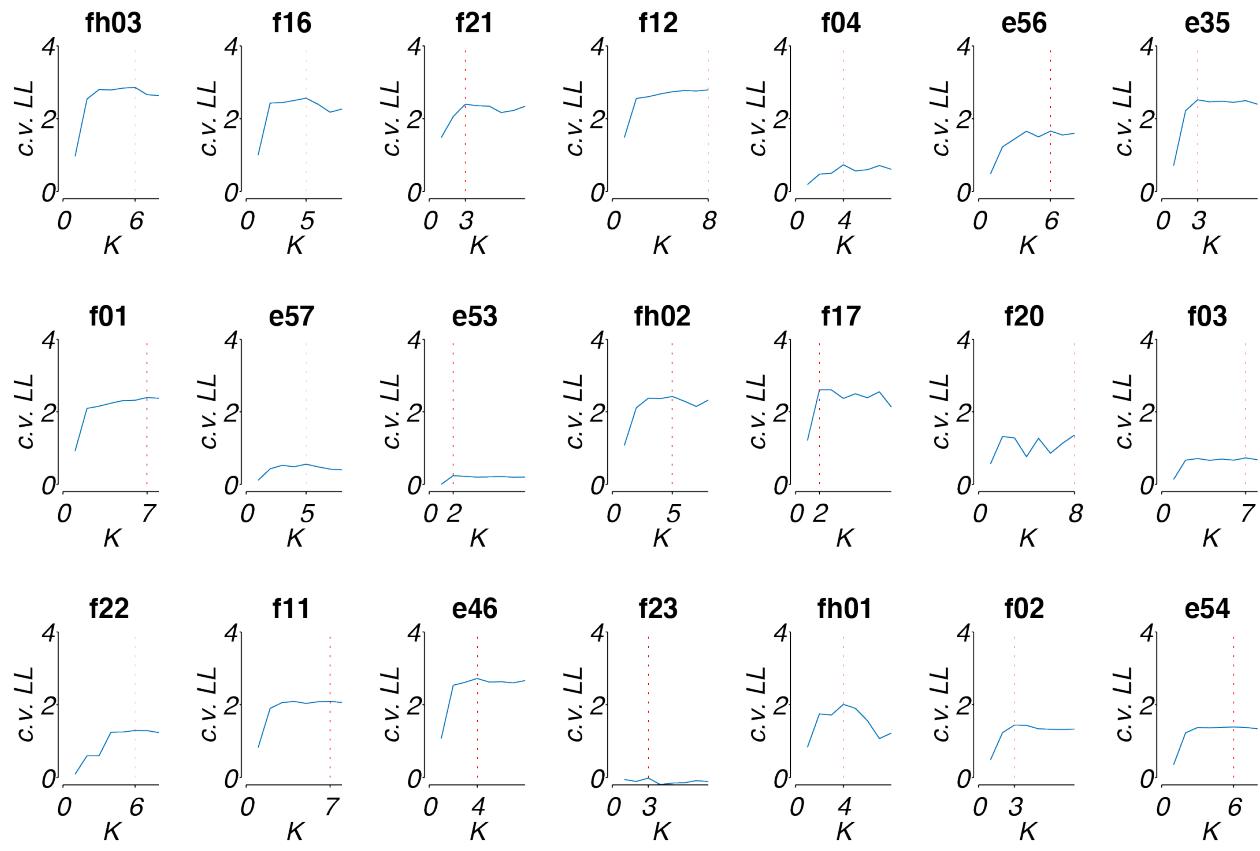


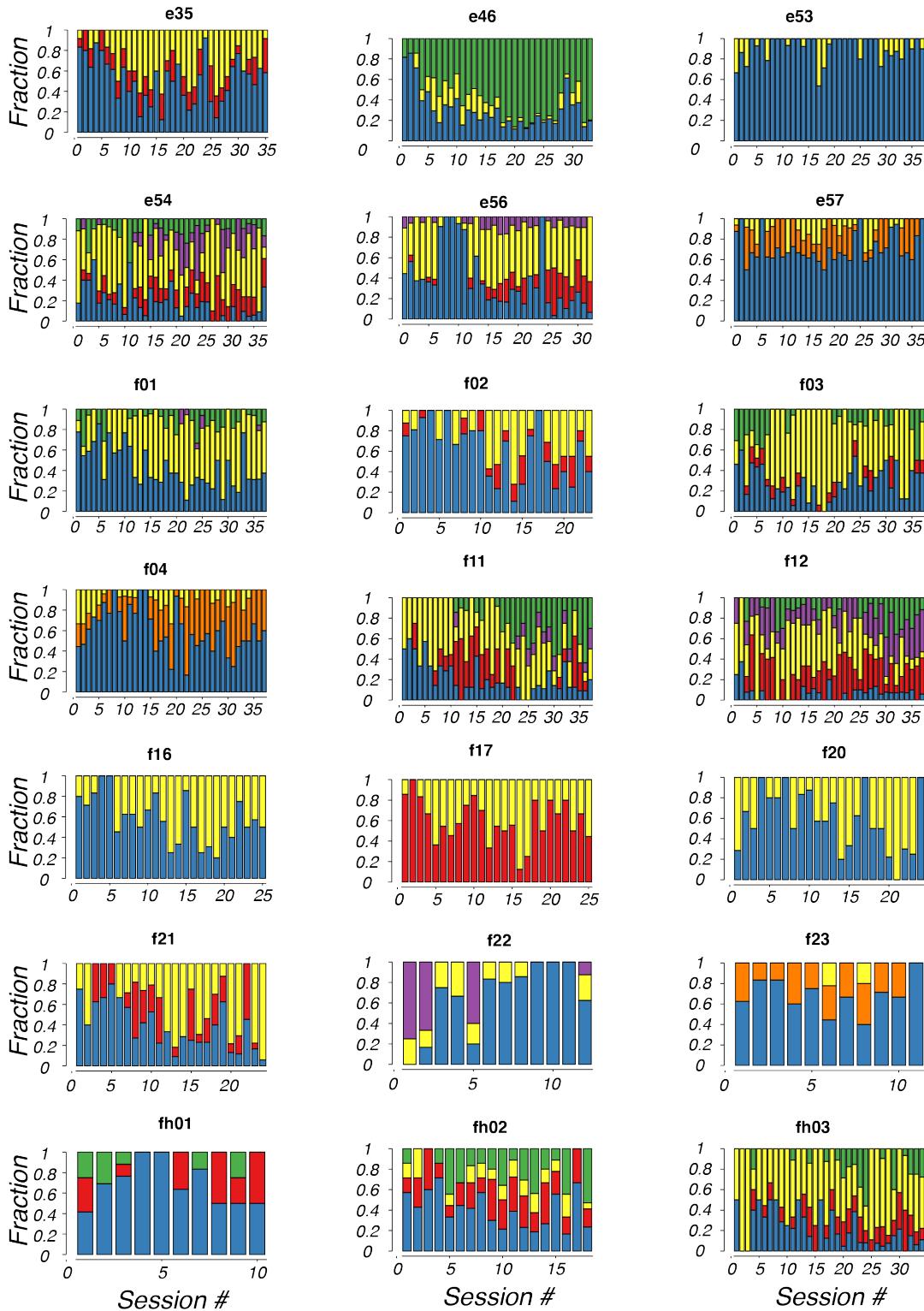
Figure S2. Behavioral metrics of inference-based agents in different types of deterministic and stochastic environments (100-0, 90-10, 80-20 and 70-30). Conventions are the same as Fig. 3b.





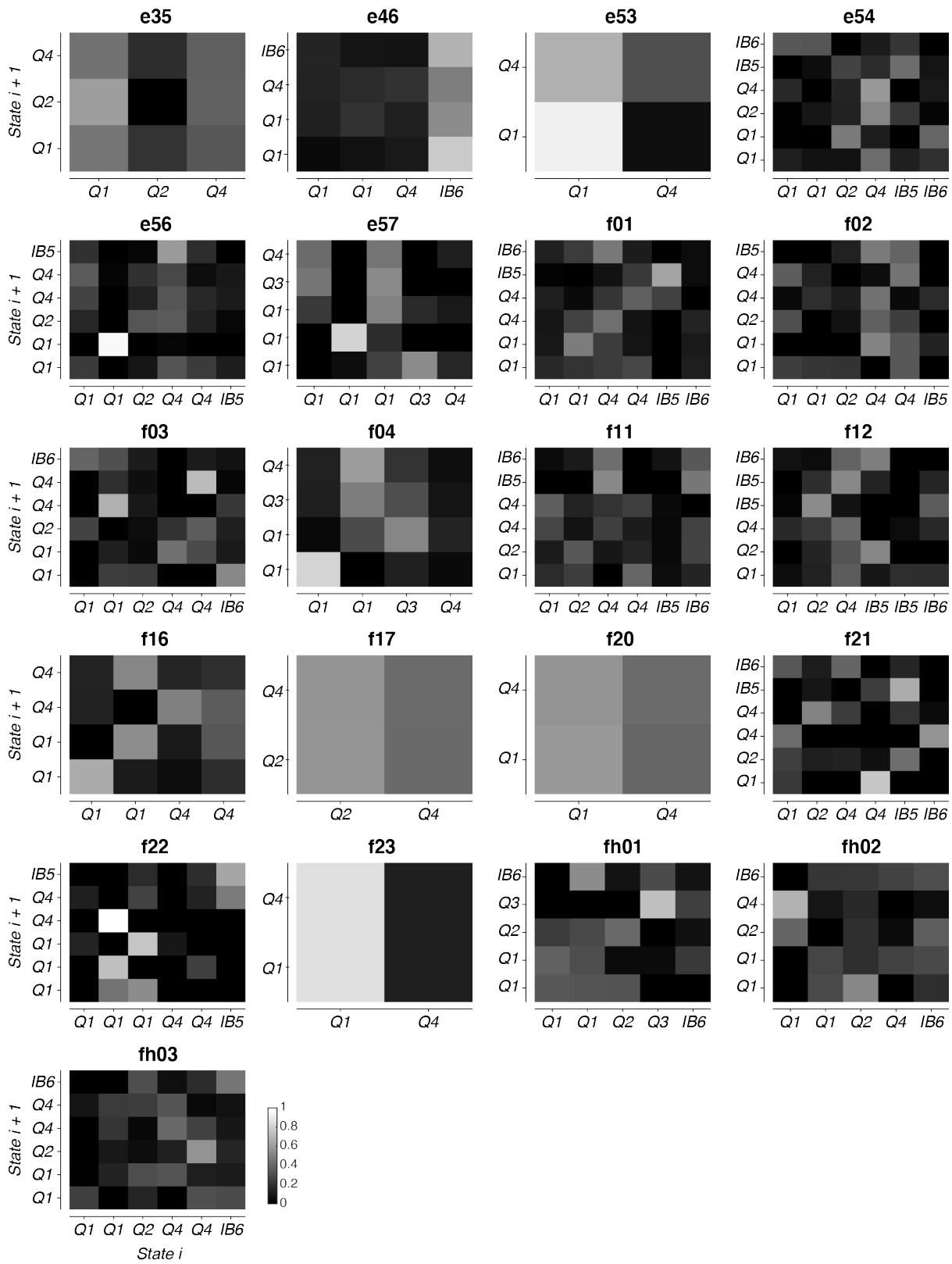
1259
1260
1261
1262
1263
1264

Figure S4. Normalized cross-validated log-likelihood for different values of K , the number of clusters of the blockHMM for the $n = 21$ mice used in the paper. For each animal, the value of K that gave the highest cross-validated log-likelihood was chosen for subsequent analyses and fitting (this K value is indicated by the vertical red line).



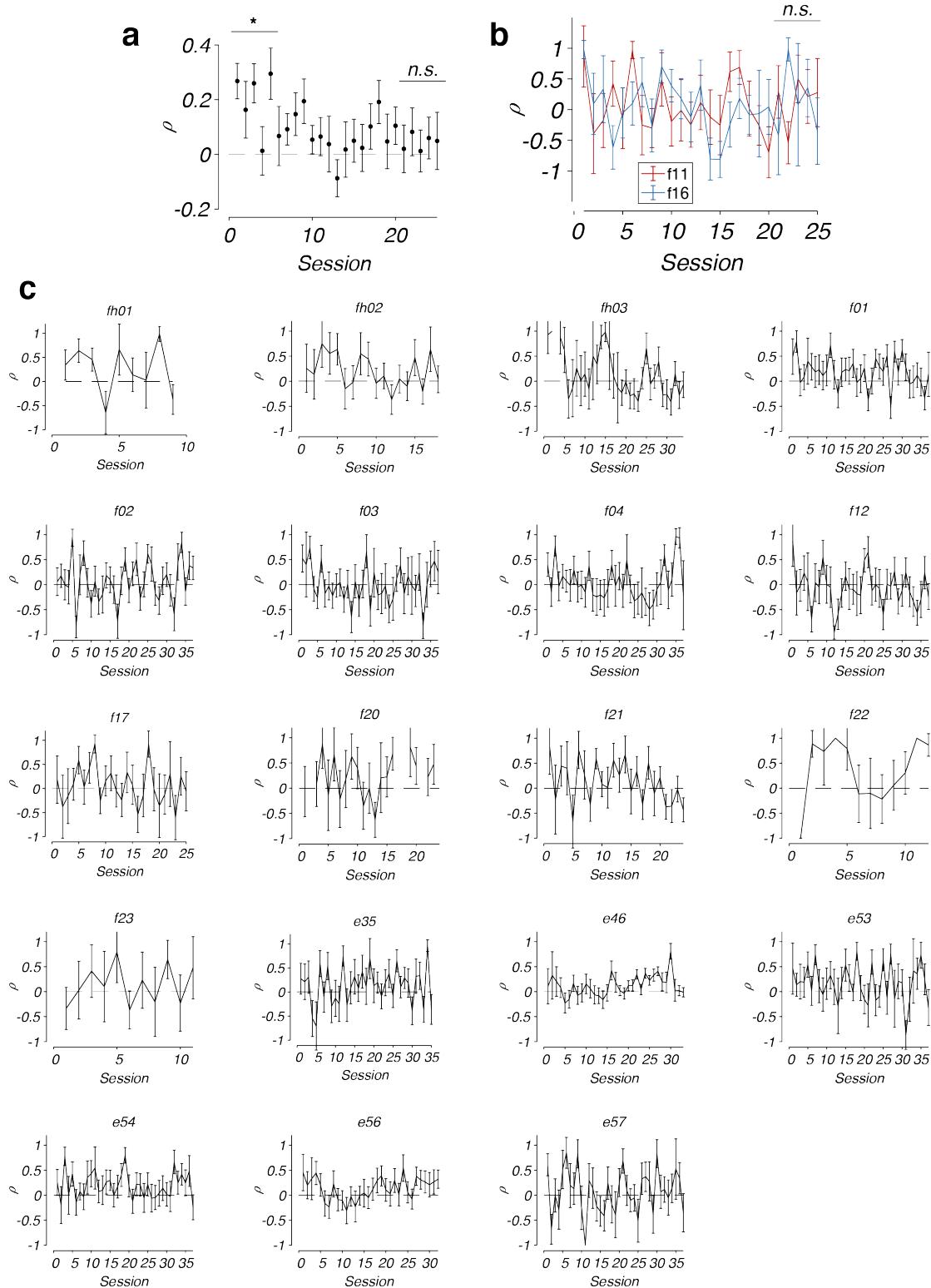
1265
1266

1267 **Figure S5.** Evolution of mixture of behavioral strategies as inferred by blockHMM for all the n
1268 = 21 mice through different training sessions. Colors and conventions are the same as Fig. 9.



1269
1270

1271 **Fig. S6.** Transition functions as fitted by the blockHMM procedure for all the $n = 21$ mice
1272 analyzed in the paper.



1273
1274
1275
1276
1277

Fig. S7. a) Average evolution of ρ across all experimental animals (mean \pm standard errors, $n = 21$ animals). b) Comparison of the evolution of ρ for two animals, f11 and f16 (mean \pm standard errors). c) Fitting of ρ for the remaining 19 animals over the course of training (mean \pm standard errors).