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ABSTRACT 15 
 16 
In volatile foraging environments, animals need to adapt their learning in accordance with the 17 
uncertainty of the environment and knowledge of the hidden structure of the world. In these 18 
contexts, previous studies have distinguished between two types of strategies, model-free learning, 19 
where reward values are updated locally based on external feedback signals, and inference-based 20 
learning, where an internal model of the world is used to make optimal inferences about the current 21 
state of the environment. Distinguishing between these strategies during the dynamic foraging 22 
behavioral paradigm has been a challenging problem for studies of reward-guided decisions, due 23 
to the diversity in behavior of model-free and inference-based agents, as well as the complexities 24 
that arise when animals mix between these types of strategies. Here, we developed two solutions 25 
that jointly tackle these problems. First, we identified four key behavioral features that together 26 
benchmark the switching dynamics of agents in response to a change in reward contingency. We 27 
performed computational simulations to systematically measure these features for a large ensemble 28 
of model-free and inference-based agents, uncovering an organized structure of behavioral choices 29 
where observed behavior can be reliably classified into one of six distinct regimes in the two 30 
respective parameter spaces. Second, to address the challenge that arises when animals use 31 
multiple strategies within single sessions, we developed a novel state-space method, block Hidden 32 
Markov Model (blockHMM), to infer switches in discrete latent states that govern the choice 33 
sequences across blocks of trials. Our results revealed a remarkable degree of mixing between 34 
different strategies even in expert animals, such that model-free and inference-based learning 35 
modes often co-existed within single sessions. Together, these results invite a re-evaluation of the 36 
stationarity of behavior during dynamic foraging, provide a comprehensive set of tools to 37 
characterize the evolution of learning strategies, and form the basis of understanding neural circuits 38 
involved in different modes of behavior within this domain. 39 
 40 
 41 
 42 
 43 
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Introduction 44 
 45 
Reward-guided decision making has largely been studied in terms of two broad regimes of 46 
behavioral strategies and neural systems. One influential class of models involve reinforcement 47 
learning models in which each action has an internal value that is updated over time based on 48 
feedback from the environment1,2. Variants of these model-free approaches, such as the Rescorla-49 
Wagner updating rule3, the Q-learning algorithm4, local matching strategies5, or Thomson 50 
sampling6, have been influential in formulating efficient decision-making and learning strategies 51 
in uncertain environments7–12. These models have also been successful in explaining the activity 52 
of cortical and subcortical areas in relation to reward prediction errors13, action values7,14 or 53 
previous choice and outcome history15,16.  54 
 55 
When reward and outcome contingencies follow a specific structure and regularity, another set of 56 
models, inference-based models with trial-to-trial Bayesian updates, are often used to simulate the 57 
actions of agents17–19. This type of strategy involves the use of internal models to make efficient 58 
inferences about the hidden states and optimal actions. Such inference-based (also known as 59 
model-based) behavior are often seen only in expert animals that are familiar with the structure of 60 
the task and able to hold an internal representation and understanding of the dynamics of the 61 
surrounding world17,18. Inference-based behavior has also been shown to engage a non-overlapping 62 
set of brain areas from those that are involved in model-free strategies20,21. 63 
 64 
In many previous studies of reward-guided decision-making, these two modes of behavior, model-65 
free and inference-based learning, have largely been treated as separate behavioral domains that 66 
require different sets of analytical tools and models. For example, reinforcement learning models 67 
and logistic regression models have often been used in a subset of studies that assume a model-68 
free structure of behavior7,14. This model-free approach allows researchers to answer questions 69 
related to the value representations in different brain areas, as well as study the effect of 70 
perturbations on the parameters of the models15,22–24. On the other hand, a complementary set of 71 
studies focus on the behavior of well-trained animal with the assumption that these animals behave 72 
exclusively in the inference-based domain25,26. While these stationarity assumptions are helpful 73 
when animal behavior exclusively belongs to one domain or another, recent studies have started 74 
to bring attention to the overlap and interaction between these types of strategies19,27. For example, 75 
it was found that in the same dynamic foraging task, rodents might engage in both model-free and 76 
inference-based behavior, transitioning from the former strategy to the latter with experience in 77 
the environment17,18. Another set of studies highlighted additional complexity in rodent behavior, 78 
as they often switch between states of engagement and disengagement during decision-making 79 
tasks28,29. These results suggest model-free and inference-based behavior might be interspersed 80 
within the same session, potentially engaging different subsets of neural circuits and mechanisms 81 
for parallel computation of multiple decision variables30. The use of mixture of strategies is further 82 
supported by the discovery of separable components of rodent behavior in a reward-guided task27. 83 
Together, these results call for a more unified approach for dissecting the two sets of strategies and 84 
understanding the transitions between them during learning as well as within single sessions of the 85 
task. 86 
 87 
Here, we focused on the problem of distinguishing these two types of behavior in the dynamic 88 
foraging paradigm (also known as the two-armed bandit task), a standard behavioral framework 89 
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of previous investigations into reward-guided behavior31,32. Our main goal is to develop a set of 90 
behavioral benchmarks, analytical tools and approaches to help reliably dissociate between the 91 
two classes of strategies. This is a challenging endeavor for two primary reasons. First, these two 92 
classes of models are qualitatively distinct in form: model-free approaches involve agents that 93 
update their action values from trial to trial with a learning rate and an exploration parameter1, 94 
while inference-based approaches involve agents with a prior and internal model specified by some 95 
parameters33. We are thus faced with two sets of parameters with which to fit the behavior, and 96 
will need to compare how well these parameter spaces can fit the same sequence of observations. 97 
The second analytical challenge occurs when animals mix between different modes of behavior in 98 
the same session. With this mixing, techniques that rely on aggregate measures of behavior over 99 
entire sessions will lead to inaccurate estimates of behavioral parameters, as we will show in our 100 
subsequent analyses, requiring alternative methods to segment and infer latent states of the 101 
behavior from trial to trial. 102 
 103 
To present our approach for distinguishing between the two types of strategies in dynamic 104 
foraging, the paper is organized as follows. We first describe our experimental setup to study 105 
dynamic foraging behavior in head-fixed mice. To analyze the behavior of our animals during 106 
training, we focus on two models, (1) model-free agents that implement the ε-greedy Q-learning 107 
decision strategy, and (2) inference-based agents that hold a Markovian internal model of the 108 
world. With this formulation, we show that current analytical methods are inadequate to fully 109 
dissociate between the two classes of strategies, as these methods are insufficient to account for 110 
the diversity of learning across the parameter spaces. In addition, methods that rely on session-111 
averaged metrics might give rise to inaccurate estimates of the behavior when animals mix between 112 
behavioral strategies. We then present our approach to overcome the two challenges. To 113 
comprehensively compare the behavior of the two models, we characterize four main behavior 114 
features of the agent’s switching dynamics and perform a complete survey of these features across 115 
the inference-based and Q-learning parameter spaces. This analysis reveals distinct behavioral 116 
clusters which can be robustly decoded from each other, with a decoding accuracy close to 100% 117 
between model-free and inference-based agents. To address the difficulty of behavioral analysis 118 
of mixtures of strategies, we have built a novel state-space model (blockHMM) to infer the latent 119 
states of behavior sessions, eliminating the potential confound of mixtures of learning strategies 120 
on behavioral analysis. We validate this approach with simulations to demonstrate its reliability in 121 
recovering the hidden states of behavior from observed choice sequences. Together, these new 122 
tools reveal the highly dynamic nature of rodent behavior in this task, further highlighting the 123 
variabilities between animals and the need for a statistical approach based on inferred latent states 124 
for understanding the structure of task behavior. 125 
 126 
 127 
Results 128 
 129 
Dynamic foraging task and decision strategies of model-free and inference-based agents 130 
 131 
We trained head-fixed mice on a dynamic foraging (two-armed bandit) task (Fig. 1a). Mice were 132 
placed on a vertical rotating wheel34, and on each trial, they were trained to perform one of two 133 
actions, left or right wheel turns. On each trial, one movement was rewarded with probability of p 134 
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and the other with the complementary probability of 1 – p. We tested mice in different dynamic 135 
environments with different values of p. In the `100-0` environment, one action yielded reward  136 
with 100% probability, while the alternative yielded no reward (Fig. 1b). Similarly, in `90-10`, 137 
`80-20` and `70-30` environments, reward probabilities were assigned to the two indicated values. 138 
The environments were volatile such that the high- and low-value sides switched after a random 139 
number of trials sampled between 15-25 without any external cues, requiring agents to recognize 140 
block transitions using only the reward feedback. To ensure stable behavioral performance, we 141 

Figure 1. Dynamic foraging task and formulation of Q-learning and inference-based agents. a) (Top) Behavioral task 
setup for head-fixed mice with freely-rotating wheel. (Bottom) Timing structure for each trial, demarcating the cue, 
movement and outcome epochs. b) World transition models of the task. Hidden states alternated between right-states, 
with high reward probability for right actions, and left-states, with high reward probability for left actions. The block 
lengths were randomly sampled from a uniform distribution between 15-25 trials. c) Example behavioral performance of 
an animal in the 90-10 environment, block transitions are demarcated by vertical dashed lines. Dots and crosses represent 
individual trials (correct or incorrect). Black trace indicates the rolling performance of 15 trials. d) Implementation of Q-
learning (top) and inference-based algorithms (bottom) for simulating choice sequences of simulated agents. e) Example 
behavior of simulated Q-learning (top) and inference-based (bottom). Each dot or cross represents the outcome of a single 
trial. In the Q-learning plot, black and blue traces represent the values of each of the two actions. In the inference-based 
plot, black trace represents the posterior probability of the right state 𝑃( 𝑠! = 𝑅 ∣∣ 𝑎", 𝑟", … , 𝑎!#", 𝑟!#" ). 
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also required the average performance of the last 15 trials in each block to be at least 75% before 142 
a state transition occured. We collected behavioral data from n = 21 mice that were trained in the 143 
task for up to 40 sessions per animal (typical animal behavior shown in Fig. 1c for a 90-10 144 
environment).  145 
 146 
We focused on disentangling the behavior of two classes of agents, Q-learning and inference-based 147 
agents. Q-learning is a model-free learning strategy that performs iterative value updates based on 148 
external feedback from the environment (Fig. 1d, top). In the dynamic foraging task with two 149 
options, these agents maintain two values associated with the two actions, 𝑞!	for left actions and 150 
𝑞" for right actions. On each trial, the value of the chosen action is updated toward the reward 151 
magnitude of the experienced reward, r, with a learning rate γ. 152 
 153 

𝑞# ← 𝑞# + γ(𝑟 − 𝑞#)  154 
 155 

where qi represents the action value for one of the arms (L or R), r reflects whether the previous 156 
action was rewarded (0 or 1), and γ is the learning rate parameter. We additionally assumed that 157 
the agent adopts an ε-greedy policy. In this policy, the agent chooses the higher-valued action with 158 
probability 1 - ε, and chooses actions at random (with probability 50%) on a small fraction ε of 159 
trials. Altogether, the two free parameters, γ and ε, define a two-dimensional parameter space that 160 
captures the entire behavioral repertoire of Q-learners. 161 
 162 
The second class of reward-based models consists of “inference-based” agents whose actions are 163 
guided by an internal model of the world. Unlike model-free agents that use the action/outcome 164 
history to directly estimate an action value for each arm, these models use the history to infer the 165 
hidden state of the environment (i.e., which side is more rewarding) and use that information to 166 
guide actions. In our task, the world model (Fig. 1) consists of two hidden states, L and R, that 167 
determine whether the “left” or “right” action is associated with higher reward probability, 168 
respectively (𝑃$%&). The evolution of these hidden states can be approximated by a Markov process 169 
with probability 𝑃'&#()*	of switching states and 1 – 𝑃'&#()*	 for remaining in the same state on each 170 
trial. Given this model and observed outcomes, the ideal observer can perform Bayesian updates 171 
to keep track of the posterior distribution of the two states (see update equations in Methods). 172 
 173 

𝑃( 𝑠( = 𝐿 ∣∣ 𝑎,, 𝑟,, 𝑎-, 𝑟-, … , 𝑎(.,, 𝑟(., ) 174 
 175 
On each trial, the agent uses the posterior over the world states to select the action that maximizes 176 
the expected reward on that trial. The free parameters, 𝑃$%& and 𝑃'&#()*	, constitute a two-177 
dimensional parameter space that span the full behavioral repertoire of all inference-based agents 178 
with potentially wide variations in behavior along these two axes. 179 
 180 
 181 
Evaluation of previous approaches for dissociating model-free and inference-based behavior 182 
from dynamic foraging data 183 
 184 
Dissociating model-free from inference-based behavior has traditionally been a difficult problem 185 
in this task domain. One challenge that analytical methods need to address is the large parameter 186 
space involved in these two very different models – model-free agents are described by the learning 187 
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rates γ and exploration rates ε, while inference-based agents are specified by a combination of 188 
𝑃'&#()*	 and 𝑃$%& of their internal models. Within these parameter spaces, the behavior can vary 189 
drastically from one region to another, requiring a thorough mapping of behavior in different parts 190 
of the two spaces before classification algorithms can be evaluated. 191 
 192 
Due to this large size of the parameter spaces, it might not be feasible to distinguish model-free 193 
from inference-based behavior using a single behavioral metric, as previous studies have 194 
done17,18,35. For example, consider the use of a previously proposed feature, denoted by ρ, that 195 
takes into account the correlation between the number of errors in block t – 1, and the number of 196 
rewards in block t17. For a Q-learning agent with a low learning rate (agent denoted by blue X in 197 
Fig. 2a,d), ρ will be positive. This reflects the underlying slow value accumulation, such that the 198 
more rewards are experienced in the previous block, the more errors are needed in the next block 199 
to make a behavioral switch happen. On the other hand, for an inference-based agent with 𝑃$%& 	= 200 
0.1 and 𝑃'&#()*	 = 0.7 (black X in Fig. 2b,d), the inference process is independent of the number of 201 
rewards experienced in the previous block. Thus, ρ is close to 0. Hence, ρ is a reliable metric for 202 
distinguishing the behavior of these two agents. However, this metric is insufficient to discriminate 203 
between other pairs of agents from other parts of the corresponding parameter spaces. For instance, 204 
ρ is also close to zero for a Q-learner with a high learning rate (blue * in Fig. 2c,d). Similarly, ρ 205 
may be positive for an inference-based agent with a different set of parameters (black * in Fig. 206 
2c,d). In fact, the overall distribution of ρ over the two parameter spaces are very similar for the 207 
two types of models (Fig. 2d). Thus, dissociating model-free from inference-based behavior might 208 
require more detailed benchmarking of behavior using multiple complementary behavioral 209 
metrics. 210 
 211 
Another analytical challenge for understanding dynamic foraging behavior arises when agents mix 212 
between multiple strategies in a single behavioral session. This poses a problem for current 213 
analytical techniques such as logistic regression15,19,24 or reinforcement learning models7,22,23,36,37 214 
which assume that the behavioral strategy is stationary within individual sessions. Although these 215 
methods work well when the agent uses a single strategy with a fixed set of parameters, they can 216 
provide erroneous estimates in scenarios of mixed strategies. To investigate the nature of such 217 
errors, we confronted models that assume stationary behavior with data generated by agents that 218 
adopt a mixture of strategies.  219 
 220 
We simulated three agents that perform a value-guided task in a 90-10 environment (Fig. 2e). The 221 
first agent was a Q-learning agent, the second was an inference-based agent, and the third (“agent 222 
M”) mixes equally between the two strategies (see Methods). Both logistic regression and 223 
reinforcement learning models gave inaccurate estimates for the parameters that underlie the 224 
behavior of agent M. The learning rate inferred by the reinforcement learning model was 225 
intermediate between the two learning modes that make up agent M’s strategy (Fig. 2f).  226 
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 227 

Figure 2. Evaluation of current analytical approaches for dissociating model-free from inference-based behavior. a) 
(Left) Simulation of a Q-learning agent with parameters γ = 	0.1, ϵ = 	0.01, illustrating the correlation between the 
number of errors, 𝑁$, and the number of rewards on the previous blocks, 𝑁%. (Right) Relationship between 𝑁$ and 𝑁% 
(mean ± standard deviation, n = 1000 blocks across all values of Nr) showing a positive correlation between the two 
quantities, ρ = 0.47. b) Same as a, but for an inference-based agent with parameters 𝑃&'(!)* = 0.1, 𝑃%$' = 0.7. Here, no 
correlation between 𝑁$ and 𝑁% was seen. c) Same as a-b, but for two other Q-learning and inference-based agents that 
show opposite effects of 𝜌. d) Map of the values of 𝜌 across the Q-learning and inference-based parameter spaces. Blue 
X: agent in a, black X: agent in b, blue *: Q-learning agent in c, black *: inference-based agent in c. e) Strategies of three 
agents over 1000 blocks of trials in the dynamic foraging task, a Q-learning agent (left), an inference-based agent 
(middle), and agent M (right) which mixed between the two strategies. f) Inferred learning rate by fitting the behavior 
of the three agents in (e) to a reinforcement learning model. Middle line represents the median (n = 10 repetitions). g) 
Logistic regression model coefficients (mean ± standard deviation, n = 10 repetitions) fitted on the behavioral choices 
of the three agents, with regressors representing previous choice, previous reward and previous choice x previous reward. 
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More problematic was the result of the logistic regression model. While the inference-based agent 228 
showed no dependence on previous choice and the Q-learning agent showed positive coefficients 229 
of previous choice regressors, agent M’s dependence on previous choice was intermediate between 230 
the two agents (Fig. 2g, left panel). The coefficients for the interaction terms of agent M (previous 231 
choice x previous rewards) also showed a different pattern from either the inference-based or the 232 
Q-learning agent. Agent M’s interaction terms were higher in magnitude for the t – 1 trial than 233 
both the Q-learning and inference-based agents (Fig. 2g, right panel). The coefficients for previous 234 
reward are close to zero for all three types of agents (Fig. 2g, middle panel). Considering these 235 
results in the context of differentiating inference-based from model-free strategies, the inaccurate 236 
estimates are concerning. If an animal executes a mixture of inference-based and model-free 237 
strategies during the task, a method that relies on these estimates will fail to discriminate between 238 
the two modes and thus will be unable to discover the true underlying strategies. 239 
 240 
Four behavioral features to discriminate model-free from inference-based behavior 241 
We first developed a framework for differentiating model-free from inference-based behavior in 242 
the case of a pure strategy with no mixing. To quantify the agent’s behavior during block 243 
transitions, we computed four features of the “transition function” that describes the dynamics of 244 
action switching of the agents in response to an uncued change in the external reward contingency 245 
(Fig. 3a). This function is a sigmoidal curve parameterized by three parameters, the switch offset, 246 
s, the slope α, and the lapse ε which represents the exploration rate of the agent in the environment. 247 
The fourth parameter is the foraging efficiency E, which is the fraction of rewarded choices of the 248 
agent over the whole session. In the limit of large number of blocks, this fraction is reflected by 249 
the area under the curve of the choice transition function. Either a decrease in offset, an increase 250 
in slope or a decrease in exploration would lead to an increase in the foraging efficiency. 251 
 252 
We hypothesized that together, the combination of these four behavioral features can help 253 
discriminate different regimes of the model-free and inference-based behavioral spaces. For 254 
instance, the switch offset s might be immediate or delayed depending on the learning rate of Q-255 
learning agents, or the parameters of the inference-based agent’s internal model. The slope 𝛼 of 256 
the transition might be shallow or steep depending on the agent’s strategy. For an agent that relies 257 
on slow value integration from trial to trial, choice transitions might occur gradually, whereas for 258 
an agent that can quickly infer the underlying states using internal models, the transitions can be 259 
sharp. The degree of exploration might also be informative of the underlying strategy. For 260 
example, Q-learning agents require a non-zero rate of exploration in order to prevent them from 261 
getting stuck in sub-optimal strategies when reward contingencies need to be relearned. In contrast, 262 
inference-based agents with a model of the environment requires no exploration to discover these 263 
state changes. Finally, the overall foraging efficiency which non-linearly combines information 264 
from all three metrics, could be another metric that can distinguish efficient agents from less 265 
efficient ones. The use of these multiple features which are sensitive to different aspects of the 266 
behavior will thus help increase our ability to distinguish diverse ranges of behavior coming from 267 
different parts of the parameter spaces. Before building a decoder for behavioral strategy using 268 
inputs provided by these features, we will start with a survey of how each of the four features vary 269 
across the Q-learning and inference-based parameter spaces. 270 
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 271 
 272 

Figure 3. Behavioral metrics of Q-learning agents. a) Illustration of the sigmoidal transition function with four parameters: 
switch delay s, switch slope α, lapse ε, and overall foraging efficiency E. b) Behavior metrics for Q-learning agents in a 
100-0 environment. We simulated the behavior of 25 x 20 Q-learning agents with different values of the learning rate γ and 
exploration parameter ε, and measured the four behavioral features for each agent by fitting the average transition function 
over 1000 blocks to a sigmoidal function. c) Example behavior of three Q-learning agents with a fixed ϵ = 	0.1 and varying 
learning rate γ. Top row shows the behavior of each agent over 100 blocks (each row represents the outcomes of all the 
trials within a single block, red: incorrect choice, blue: correct choice). Bottom row shows the average transition function 
(black curve, mean ± standard deviation, n = 1000 blocks), and the fitted sigmoid (blue curve). d) Same as c, but for three 
Q-learning agents with fixed γ = 	1.2 and varying 𝜖. 
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Behavioral features of Q-learning agents 273 
To characterize the behavior in the Q-learning space, we simulated an ensemble of agents, each 274 
with a different combination of γ and ε, where 0.01	 ≤ γ ≤ 1.4, and 0.01	 ≤ ϵ ≤ 0.5. For each 275 
parameter combination, we simulated the agent in the given environment (100-0, 90-10, 80-20 or 276 
70-30) for 1000 blocks, with block sizes randomly sampled between 15-25 (similar to the protocol 277 
we use for rodent behavior training). We then averaged the behavior responses over all blocks to 278 
obtain the choice transition function (Fig. 3a), and performed a sigmoidal fit of this function to 279 
obtain the behavioral features s, α, and ε, that defined the switching dynamics for all points in the 280 
Q-learning space (Fig. 3b). 281 
 282 
The distribution of behavioral features in the space was highly non-linear, and the features showed 283 
a variation along the two primary axes, γ and ε (Fig. 3b). When ε was held constant, a higher 284 
learning rate led to faster and sharper switching dynamics at the block transitions (Fig. 3b, c). For 285 
example, when ε was fixed at 0.1, increasing the learning rate γ from 0.1 to 1.2 led to faster 286 
behavioral switching (offset decreased from 8.6 to 5.3, to 0.8 trials). Notably, as we traversed the 287 
parameter boundary from γ < 1 to γ > 1, there was a sharp transition in the switch slope and switch 288 
offset. This is because in the high learning-rate regime where γ > 1, a single error was enough for 289 
agents to switch their actions, resulting in switch offsets that were very close to zero, and very 290 
sharp action transitions.  291 
 292 
Along the ε axis, variations in these behavioral features were non-monotonic (Fig. 3d, top). When 293 
we fixed γ = 1.2, a low value of ε (such as ε = 0.01, Fig. 3d, left panel) often prevented Q-learning 294 
agents from switching as they failed to explore the alternative action after block transitions. This 295 
agent was not able to discover the more rewarding action, leading to an average transition function 296 
that is perfectly flat (Fig. 3d, bottom). A moderate value of ε (such as ε = 0.2, Fig. 3d, middle 297 
panel) encouraged exploration and enabled agents to discover the optimal action in order to make 298 
rapid action switches. However, when the degree of exploration became large (ε = 0.5, Fig. 3d, 299 
right panel), although the agents were able to switch rapidly, their noisy asymptotic behavior 300 
prevented them from fully exploiting the most rewarding action. 301 

Behavioral features of inference-based agents. 302 

Similar to the survey of the Q-learning landscape, we characterized the inference-based space by 303 
simulating an ensemble of inference-based agents with different combinations of 𝑃'&#()*	and 304 
𝑃$%& (with 0.01 ≤ 𝑃'&#()* ≤ 0.45 and 0.55 ≤ 𝑃$%& ≤ 0.99). 305 

Unlike the variations seen in the Q-learning space which were mainly along the primary axes, the 306 
behavior of inference-based agents varied systematically along the diagonal axis of the parameter 307 
space (diagonal line in Fig. 4a). In the low 𝑃'&#()*	and low 𝑃$%& 	regime (Fig. 4b, left panel), which 308 
we call the ‘stable’ regime of the state space, agents assumed an internal model where state 309 
transitions occur infrequently. This made them rather insensitive to errors and resulted in high 310 
switch offsets (switch offset = 8.4 trials for the agent with 𝑃'&#()*	 = 0.01 and 𝑃$%& 	= 0.55). In 311 
contrast, the regime where both 𝑃'&#()*	and 𝑃$%& 	were high is called the ‘volatile’ regime (Fig. 4b, 312 
right panel). Here, agents assumed an environment with frequent state transitions and high reward 313 
probability. This volatile assumption made them more sensitive to errors, switching their choices 314 
more readily after only a few errors (switch offset = 0.96 trials for the agent with 𝑃'&#()*	 = 0.45 315 
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and 𝑃$%& 	= 0.99). In this regime, each error was more impactful to the agent’s update estimate of 316 
the current world state. The behavior in between these regimes had low exploration rates and 317 
offsets that were intermediate between the two extremes (Fig. 4b, middle panel). 318 

One feature that distinguished inference-based agents from Q-learning agents is their lapse rates: 319 
inference-based agents tend to explore much less compared to the Q-learning agents, with lapse 320 
rates below 10% across most of the parameter space (compare Fig. 4a and Fig. 3b). This low 321 
exploration of inference-based agents can be explained by the effectiveness of the inference-322 
based update procedure compared to the Q-learning strategy. Even for Q-learning agents with a 323 
high learning rate, a small degree of exploration is required to achieve high foraging efficiency 324 

Figure 4. Behavioral metrics of inference-based agents. a) Behavioral features offset s, slope α, lapse ϵ and 
efficiency E for inference-based agents in the parameter space. Conventions are the same as Fig. 3a. b) Example 
behavior of three inference-based agents taken from the diagonal of the parameter space (represented by crosses in 
panel a plots). Conventions are as Fig. 3b,c). 
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and avoid getting stuck with low-reward actions. In contrast, Bayesian inference allows 325 
inference-based agents to infer state changes without the need to explore alternative choices. 326 
Together with the faster switch delays and sharper switch transitions, this low exploration leads 327 
to a much higher foraging efficiency than can be achieved by Q-learning agents in the uncertain 328 
worlds. Indeed, foraging efficiency was consistently above 90% for most inference-based agents, 329 
which was much higher than the maximum efficiency that can be achieved in the Q-learning 330 
parameter space (85%). 331 

The simulation of Q-learning and inference-based agents was repeated for 90-10, 80-20, and 70-332 
30 environments, yielding qualitatively the same trends and axes of variation among the four 333 
behavioral features in these environments (Supp. Figs. 1, 2). Thus, the qualitative trends in these 334 
features were consistent across different types of environments regardless of the level of 335 
stochasticity in the reward probability. 336 

Decomposition of the Q-learning and inference-based parameter spaces into sub-regimes 337 
with distinct behavioral signatures 338 

Given the large variation of the four behavioral features across both the Q-learning and inference-339 
based spaces, we next investigated whether the behavior of these agents naturally cluster into 340 
distinct modes that are qualitatively different from each other. To perform this analysis, we pooled 341 
the behavioral features from all Q-learning and inference-based agents in the 100-0 environment 342 
to form a 4 x 650 feature matrix, representing 4 features/agent x 650 agents (25 x 20 Q-learning 343 
and 15 x 10 inference-based agents, Fig. 5a). We applied a density-based clustering method which 344 
is well-suited for cases where the component distributions are heterogeneous and non-Gaussian38. 345 
The data points were first non-linearly embedded onto a two-dimensional t-SNE space, and a 346 
watershed algorithm was applied to identify borders of the embedding that separates regions of 347 
high-density point clusters. This resulted in six clusters that can be visualized on the embedding 348 
space (Fig. 5a).  349 

Interestingly, when the identities of the classified points were mapped back into the parameter 350 
space that they came from, each of the six clusters corresponded to a contiguous regime in either 351 
the Q-learning or inference-based space, but not both (except for cluster 1 which was found both 352 
in large portions of the Q-learning space and a very small region of the lower left corner of the 353 
inference-based space). The first four classes were localized to regions of the Q-learning space 354 
that corresponded to low (class Q1), medium (classes Q2 and Q3) and high learning rates (class 355 
Q4), respectively. The remaining two classes were mapped to different sub-regions of the 356 
inference-based space: class IB5 resided in lower left corner of the space which corresponded to a 357 
‘stable’ world model with low 𝑃'&#()*	; class IB6 was mapped to the complementary region, the 358 
‘volatile’ regime where 𝑃'&#()*		and 𝑃$%& 	are both high. The distribution of these regimes suggests 359 
a clear distinction between Q-learning and inference-based behavior, such that inference-based 360 
and Q-learning regimes are largely non-overlapping. 361 
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 362 

Figure 5. Decomposition of parameter spaces into regimes of qualitatively different behaviors. a) Method of 
segmentation of the parameter spaces. We performed a computational simulation of an ensemble of Q-learning and 
inference-based agents taken from grids that spanned the entire two spaces. For each agent, we obtained the transition 
function and four behavioral features characterizing the sigmoidal fit. We pooled the features of all agents into a 
feature matrix and applied a density-based approach to cluster these features into six regimes. We then visualized 
the regime identities for all points in the two parameter spaces. b) Transition functions grouped according to the 
behavioral regime Q1-4, IB5-6. Red trace represents the mean across all the transition functions in each group. c) 
Demarcation of the six regimes in the Q-learning and inference-based spaces in different types of environments 
(100-0, 90-10, 80-20, or 70-30).  
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We verified that these regimes represented distinct modes of behavior by visualizing all the choice 363 
transition functions, grouped by the regime identity (Fig. 5b). We found qualitative differences 364 
and systematic variations across the different regime types. For example, transition functions in 365 
regime Q1 were the flattest, having shallow slopes and very late switch offset, consistent with the 366 
slow switching of Q-learning agents with low learning rates. From regime Q2 to Q4, transition 367 
functions became progressively steeper with higher slope and faster switch offsets. The average 368 
rates of exploration for all the Q-learning regimes (Q1-Q4) were all non-zero. This lapse rate was 369 
lowest for Q2 and higher in the other three regimes. In contrast, the inference-based regimes (IB5 370 
and IB6) could be distinguished from the Q-learning clusters by lapse rates that were very close to 371 
zero. Although the behavior transitions were sharp in both regimes, they occurred at different 372 
latencies: the offset was immediate in cluster IB6 but delayed in cluster IB5, consistent with the 373 
delayed switching seen in inference-based agents with low 𝑃'&#()*	that assumed a more stable 374 
model of the world (Fig. 5b). 375 

Structure of behavioral features and regime demarcation in 90-10, 80-20 and 70-30 376 
environments 377 

So far, our clustering analysis and regime segmentation has been performed in a deterministic 378 
environment (100-0) where in each state, the reward is given with 100% probability for the high-379 
value action and 0% probability for the low-value action. To determine how these clusters might 380 
vary in probabilistic settings, we performed the same behavior simulation and clustering 381 
procedures in 90-10, 80-20 and 70-30 environments, where rewards are given with progressively 382 
higher degrees of stochasticity. For example, in a ’90-10’ environments, rewards are given with 383 
probability 90% on the high-valued side, and only 10% on the low-valued side. In each 384 
environment, we characterized the variations in the four behavioral features across the Q-learning 385 
and inference-based spaces (Supp. Fig. 1-2). 386 

Our simulations revealed that the boundaries of the behavioral regimes (Q1-4 and IB5-6) were 387 
largely preserved across different environments. In all types of environments, the presence of six 388 
clusters could be confirmed when visualized in the t-SNE embeddings (Supp. Fig. 3a). 389 
Furthermore, the clusters were localized to similar regimes in the Q-learning and inference-based 390 
parameter spaces (Fig. 5c). Notably, as rewards became more unreliable (going from the 100-0 to 391 
the 70-30 environment), there was an increase in extent of overlap between Q-learning and 392 
inference-based behavior. In the 80-20 and 70-30 environments, a larger section in the lower left 393 
corner of the inference-based space was found to co-cluster with regimes Q1 and Q2 in the Q-394 
learning space. This suggests that noisy environments, it becomes more difficult to dissociate the 395 
behavior of Q-learning agents in the Q1-Q2 regime from the behavior of inference-based agents 396 
that hold ‘stable’ internal models (the dissociability of the regimes will be further quantified by 397 
the decoding results in the next section and Fig. 6). Finally, when visualizing the behavioral 398 
transition functions of the six behavioral regimes in different types of environments, we found the 399 
same variations and patterns across the six clusters (Supp. Fig. 3b). In each environment, from 400 
regime Q1 to Q4, there was a consistent increase in the slope and a decrease in offset of the 401 
transition function. For the inference-based agents (IB5-6), we generally observed sharper 402 
transitions and faster switches compared to their Q-learning counterparts, demonstrating the 403 
usefulness of internal models in bringing about more efficient switching strategies. The IB5 cluster 404 
tended to have lower lapse rate than the IB6 cluster, and this lapse rate increased as the 405 
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environment got noisier (100-0 to 70-30). As with the deterministic case, regime IB5 had a slightly 406 
delayed offset compared to IB6, as the agents’ internal belief of a stable environment made them 407 
less inclined to switch their actions as successive errors were encountered. Finally, as the level of 408 
noise increased in the environment, there was a general decrease in slope and increase in lapse rate 409 
in the transition functions for all of the six regimes. 410 

Decoding of Q-learning and inference-based regime identity from behavioral data 411 

The segregation of the Q-learning and inference-based spaces into six discrete domains suggests 412 
qualitative differences in behavior between these clusters. These differences are revealed by the 413 
features of the choice transition functions, which showed systematic variations across regime and 414 
environment types (Fig. 6a). For example, agents in regime Q1 have flattest transition functions 415 
with the highest offsets, suggesting a random mode of behavior with slow switching between the 416 
two actions. On the other hand, agents in regimes IB5 and IB6 have the lowest lapse rates and 417 
sharpest transitions (highest slopes), suggesting a mode of behavior that relies on internal models 418 
of the world to achieve the highest foraging efficiency. Altogether, these differences can be used 419 
to decode the cluster identity from the behavioral performance of animals in an experimental 420 
session. In this section, we will build and optimize these decoders, and evaluate their regime 421 
classification performance on synthetic data sets for which the ground truth is known. 422 

The synthetic training and validation data were again obtained by computational simulations (Fig. 423 
6b). For each agent in the Q-learning and inference-based parameter spaces (with a known regime 424 
identity according to our previous segmentation), we performed repeated simulations in 50 425 
synthetic experimental sessions with 20 block transitions per session (chosen to resemble the 426 
number of blocks that animals typically complete in a regular training day). For each synthetic 427 
session, we averaged the behavior across all blocks to obtain the transition function, and fitted a 428 
sigmoidal curve to estimate the four features of this function. This procedure yielded a four-429 
dimensional feature vector for each agent per session. We split this data into a training set 430 
(containing 80% of the data) and a test set (20% of the data). We trained a k-nearest neighbor 431 
(kNN) decoder on the training set to predict the behavioral regime (1 to 6), and evaluated its 432 
performance on the held-out test set. The accuracy of the decoder was measured both by the 433 
fraction of correctly labeled examples per regime, and by the Matthews Correlation Coefficient, 434 
which is a metric for evaluating the decoding performance across all six clusters (similar to the 435 
area under the ROC curve but for multi-class classifications). 436 

We used the decoding accuracy and Matthews correlation metrics to determine the number of 437 
neighbors (k = 24) for optimal decoding (Fig. 6c). For the optimized decoder, the performance that 438 
could be achieved was significantly above chance for all six behavioral regimes (Fig. 6d). We 439 
found that each cluster could be decoded with higher than 75% accuracy (compared to a chance 440 
performance of 17%). Most impressively, the analysis showed that inference-based behavior (IB5-441 
6) could be almost certainly separated from Q-learning behavior (Q1-4) (decoding performance 442 
was 99.8% for distinguishing classes IB5-6 from Q1-4 in the 100-0 environment). The decoder 443 
performed extremely well for the inference-based regimes, achieving almost perfect performance 444 
for these two clusters. The decoding accuracy was lower for classes Q1 to Q4, reflecting the higher 445 
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stochasticity in these four modes due to the random exploration that is inherent in the mechanism 446 
of Q-learning agents. 447 

Figure 6. Decoding of behavioral regimes and evaluation of decoding accuracy. a) Average behavioral features 
(offset, slope, lapse and efficiency, mean ± standard error) of simulated agents belonging to classes 1 to 6, for the 
four types of environments, 100-0, 90-10, 80-20 and 70-30. In the efficiency plot (right), top dashed line represents 
the ideal performance, bottom dashed line represents random performance. b) Procedure for the behavioral regime 
decoding. c) Selection of the number of nearest neighbors, k, based on cross-validated decoding performance (blue, 
mean ± standard deviation, n = 20 repetitions) and Matthews Correlation Coefficient (red, mean ± standard deviation, 
n = 20 repetitions). d) Cross-validated confusion matrix for simulated behavior in the 100-0 environment. Diagonal 
entries show the accuracy for each respective class. e) Decoding performance (mean ± standard deviation, n = 20 
repetitions) for the six behavioral regimes across different environments (100-0, 90-10, 80-20 and 70-30). Dashed 
horizontal line represents chance performance. 
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We also trained separate decoders and investigated the decoding accuracy in the other three types 448 
of probabilistic environments (90-10, 80-20 and 70-30, Fig. 6e) to determine which type of 449 
environment would be the most optimal for distinguishing between the six behavioral regimes. We 450 
found that the decoding performance for the clusters dropped as the level of stochasticity increases 451 
in the environment. The decoding accuracy was consistently high and close to perfect for regime 452 
IB6, regardless of the type of environment. For each of the other five clusters, there was a drop of 453 
about 20% in decoding accuracy as we go from the 100-0 environment to the 70-30 environment. 454 
These results suggest that given our choice of behavioral features, more deterministic 455 
environments are better for distinguishing the behavior of model-free and inference-based agents, 456 
likely due to the greater separation between the behavioral features among the six types of agents 457 
(Fig. 6a).  458 

Session-average rodent behavior progressed through model-free regimes with increasing 459 
learning rates 460 

The high decoding accuracy of behavioral regimes gave us more confidence to use these decoders 461 
on the experimental data that we obtained from our trained animals. We analyzed behavioral data 462 
obtained from n = 21 head-fixed mice that were trained on the 100-0 dynamic environment. On 463 
average, behavioral features varied systematically over time: choice transitions occurred faster 464 
(shown by the decrease in offset) and switches became sharper (shown by the increase in slope), 465 
while the lapse rate decreased with training (Fig. 7a). Although the average lapse rate decreased 466 
over time, it remained high even after 3 weeks of training (~30% on day 30), suggesting a 467 
substantial degree of exploration and indicating that not all animals transitioned to the inference-468 
based regime at this late stage of training. 469 

The sharper and faster switches of trained mice in the task could be attributed to an increase in 470 
learning rate in the Q-learning mode, or a shift from the Q-learning to the inference-based decision 471 
mechanism. We dissociated these hypotheses by decoding the behavioral regime (Q1-4 or IB5-6) 472 
of each training session using the decoder that was previously trained on the synthetic data (Fig. 473 
6). Remarkably, we found that 100% of the decoded states over the training days (across 21 474 
animals, up to 30 training days), belonged to the Q-learning regimes, Q1-Q4 (Fig. 7b). Within 475 
these regimes, there was gradual shift toward regimes with higher learning rates. The behavior 476 
started predominantly in state Q1, and with learning, the frequency of state Q1 decreased, while 477 
states Q3 and Q4 increased in prevalence (Fig. 7b). As such, the mean decoded states across 478 
animals showed a slow increase toward higher Q-learning modes (Fig. 7c). By the end of 30 479 
sessions, about 40% of all animals were in class Q4, and the rest were divided between regimes 480 
Q1 and Q3. There was no indication that the behavior transitioned to inference-based modes (IB5-481 
6) in any single animal. 482 
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We also trained a subset of n = 6 animals on the probabilistic environments (90-10, 80-20 and 70-483 
30). We applied decoders that are trained on synthetic data for each environment (Fig. 7d) to infer 484 
the behavioral modes for these sessions, and again found that the vast majority of these sessions 485 
were in the Q-learning regimes (Q1-Q4). Altogether, these results failed to reveal any signature of 486 
inference-based behavior from the session-averaged behavioral features of rodents. This was 487 
highly surprising, and as we noted at the start of the paper (Fig. 2d-f), could be due to the use of 488 
session-averaged statistics which can yield erroneous results by masking the use of mixtures of 489 
strategies in single sessions. In the next sections, we will tackle this challenge of analyzing 490 
mixtures of strategies by building a state-space model to quantify dynamic shifts and transitions 491 
in learning modes. 492 

A novel framework to quantify mixture of strategies in dynamic foraging 493 

The absence of inference-based strategies from our previous decoding analysis was highly 494 
surprising for several reasons. First, inference-based behavior has been observed in previous 495 
studies of dynamic foraging in rodents, as well as in other complex tasks which involve multiple 496 
decision stages17,18. Thus, it seems unlikely that our animals are unable to develop an internal 497 
model that facilitates efficient inference in our task. Second, from our training experience, we have 498 
frequently observed expert animals making sharp switches in their actions, with some animals 499 
being able to reverse their actions after a single error after each block transition. Hence, our 500 

Figure 7. Decoding of session-averaged rodent behavior during dynamic foraging. a) Evolution of offset, slope, lapse 
and efficiency of rodent dynamic foraging behavior with training (mean ± standard error, n = 21 animals). b) Distribution 
of decoded state across all animals (n = 21) with training. c) Evolution of average decoded state across all animals (mean 
± standard error, n = 21 animals) with training. d) Same as b, but in probabilistic environments (90-10, 80-20 and 70-30, 
with n = 6 animals). These sessions were conducted after animals became expert in the 100-0 environment. 
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inability to discover inference-based behavior was suggestive of the need for a more sophisticated 501 
analysis of behavior. 502 
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One factor that might explain this result was the highly variable behavior of mice in training 503 
sessions. For example, in the same session, an individual animal might vacillate between different 504 
strategies, switching their choices immediately in some blocks, transitioning more slowly in others, 505 
and selecting choices at random toward the end of the session as they became satiated (red, green, 506 
and blue shades in Fig. 8a, respectively, for a simulated agent). These state changes pose a 507 
challenge for analysis methods which make use of session-average metrics, as highlighted by our 508 
examples in Fig. 2d-f. In our framework, each of these strategies might be governed by a separate 509 
choice transition function with varying offsets, slopes and lapse rates (sigmoidal curves in Fig. 510 
8b). Since the session average transition function (Fig. 8a, bottom panel) is more likely to be flatter 511 
with higher lapse rate than a typical inference-based sigmoid, the average behavior will tend to 512 
look model-free, masking the inference-based strategies in some of the individual components. 513 

The fact that individual modes of the behavior might be obscured by session-averaged measures 514 
prompted us to develop a computational tool to identify the discrete latent states that constitute the 515 
behavior of animals across their training sessions. We took advantage of recent developments of 516 
state space models that were used to infer discrete latent states from sequences of discrete or 517 
continuous variables29,39,40. In particular, adapting the previously developed GLM-HMM 518 
framework29 to the dynamic foraging setting, we assumed that each hidden state determines the 519 
parameters of a single sigmoidal transition function (offset s, slope α and lapse ϵ), which in turn 520 
determines the joint log likelihood of all the choices within each block. We named the approach 521 
“block Hidden Markov model (blockHMM)” to indicate the use of hidden states which dictate the 522 
evolution of choices throughout the block duration (Fig. 8a). 523 

More concretely, we assumed that the choice sequences in each block k is governed by an 524 
underlying sigmoidal transition function σ/(𝑡), where t = 0, 1, 2, … are the trial numbers within 525 
the block (Fig. 8a). These transition functions can be parameterized by the switch delay 𝑠/, slope 526 
α/ and lapse rate ϵ/ 	(Equation 1, Fig. 8b). The discrete latent states 𝑧#’s evolve from one block to 527 
the next with a Markovian property specified by the transition matrix 𝑃( 𝑧#0, ∣∣ 𝑧# ) (denoted by 528 

Figure 8. Formulation and evaluation of the blockHMM algorithm. a) Example of behavior generated by a 
blockHMM mixture with K = 3 components. The circles on top represent the underlying hidden states, 𝑧(, which 
evolve according to a Markov chain. Each state (shown by blue, red and green shade) follows a different set of 
underlying switching dynamics. Blue dots represent correct choices, red crosses represent incorrect choices. (Inset) 
Average transition function across all blocks of the session (black) together with the fitted sigmoidal curve (blue). 
b) (Top) Transition functions corresponding to each of the three hidden states, 𝑧( = 1, 2, 3. Each sigmoidal curve can 
be parameterized by three features, the slope, offset, and lapse. Arrows represent transition probabilities between the 
states. (Bottom) Equations of the blockHMM generative model. Each hidden state governs the choice sequence of 
the entire block according to the sigmoidal transitions (equations 1 and 2). The log-likelihood of the observed choices 
in the block is the sum of the log-likelihoods of individual trials (equation 3). c) (Top) Example behavior in 1000 
blocks of trials generated by the same blockHMM mixture shown in panels a and b. Each column represents one 
block, with trials 1 to 30 of each block running from top to bottom. Red represents incorrect choices and blue 
represents correct choices. (Middle) True states that underlie the behavior shown in the top panel. (Bottom) Inferred 
latent states by the blockHMM fitting procedure. d) (Left) Evolution of the log-likelihood during model fitting in 
panel c. (Right) Dependence of cross-validated log-likelihood on the number of components, K. e) True and inferred 
transition matrices for the behavior shown in panel c. f) Grouping of blocks of trials according to the inferred state 
after the model fitting with K = 3 HMM components. (Top) Raw behavioral performance grouped by the identity of 
the latent state. Conventions are as Fig. 3c,d and Fig. 4b. (Bottom) Average transition function and fitted sigmoidal 
curve for each of the grouped blocks. g) Comparison of true and inferred parameters for the three components of the 
behavior shown in panel c. 
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arrows in Fig. 8a). The transition function determines the likelihood of all trials within each block 529 
(Equation 2, Fig. 8b). Finally, to fit the model, we used the EM algorithm to maximize the log-530 
likelihood over all observed choices, which is the sum of the log-likelihoods of individual trials 531 
(Equation 3, Fig. 8b). 532 

Our synthetic agent (Fig. 8a) was simulated according to a blockHMM process with K = 3 hidden 533 
states. State z = 1 (blue) corresponded to a random mode of behavior with a flat transition function, 534 
z = 2 (red) corresponded to a sigmoidal curve with a fast offset, and z = 3 (green) involved a sharp 535 
but delayed switching of actions. We generated the behavior of this agent over 1000 blocks (Fig. 536 
8c), and fitted the blockHMM model to the observed choice sequences of the agent. The log-537 
likelihood of the fit converged to the true log likelihood value (Fig. 8d, left). To determine the best 538 
number of latent states for the model, we trained the model on 80% of the blocks and evaluated 539 
the log-likelihood on the remaining 20% of the blocks. Inspecting the normalized cross-validated 540 
log-likelihood, we found that the optimal number of clusters was K = 3, agreeing with the ground-541 
truth value (Fig. 8d, right). At the end of the fitting procedure, blockHMM recovered the correct 542 
transition matrix (Fig. 8e), as well as the parameters of the transition function in each mode (Fig. 543 
8f-g). Importantly, the inferred latent states closely matched the true states that underlie the 544 
behavior (Fig. 8c, bottom panels). 545 

Mice use a mixture of strategies during dynamic foraging 546 

We used the blockHMM procedure to identify the hidden states that underlie behavioral 547 
performance of our trained animals (n = 21). For each animal, we fit the model with the number 548 
of components, K, that was chosen to maximize the cross-validated log-likelihood (Supp. Fig 4, 549 
the value of K was also capped at a maximum value of 6 for interpretability). From the model fits, 550 
we obtained the slope, offset and lapse parameters that define each transition function. We also 551 
computed the foraging efficiency of each mode based on the performance of the animal in all of 552 
the trials in the respective states. The combination of four features per strategy were then input to 553 
our trained decoder (Fig. 6) to determine the behavioral regime (Q1-4 or IB5-6) for each of the six 554 
HMM modes (Fig. 9a). For 11/21 animals, we observed the presence of both Q-learning and 555 
inference-based regimes in the decoded HMM modes, while the rest of the animals only showed 556 
the presence of Q-learning regimes. To visualize behavior within each HMM mode, we pooled 557 
together the fitted functions from all animals (a total of 97 modes across 21 animals) and grouped 558 
them according to the decoded regime (Fig. 9b). Overall, the shape of these HMM modes closely 559 
matched the results of our regime segmentation: HMM modes that were decoded as Q1 showed 560 
delayed and gradual transitions that were close to random behavior, Q2 modes showed slow 561 
switching (with offset ~5 trials) and low exploration. Very few HMM modes were decoded to be 562 
Q3 – these modes showed similar offsets to Q2 but had higher lapse rates. Q4 modes displayed 563 
very fast switching (with offset of 1-2 trials) and a wide range of lapse rates. Importantly, 564 
blockHMM revealed the existence of a significant number of inference-based modes, which were 565 
decoded to regimes IB5-6. Consistent with our previous characterizations of these regimes, the 566 
transitions in regime IB5 occurred more slowly than IB6, and transition functions in these modes 567 
tended to have much lower lapse rates compared to the Q-learning regimes. Finally, we also 568 
recovered the state transition matrices for each animal (Supp. Fig. 6). 569 
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The model fits also allowed us to investigate the extent to which individual animals mixed between 570 
learning strategies within single training sessions. Although individual behavioral profiles were 571 
highly variable, there was a significant degree of mixing between HMM modes for all animals 572 
such that on each day, it was common to see a mixture of two or more behavioral regimes. An 573 
example animal (f11, Fig. 9c) executed an approximately equal mixture of Q1 and Q4 on its first 574 
training days. This fraction slowly shifted over time, as the prevalence of the Q1 mode decreased, 575 
while other Q-learning modes with higher learning rates (such as Q2-Q4) started to dominate. 576 
Around day 10 of training, the inference-based modes started to appear, growing in proportion 577 
until the late stages of training. However, remarkably, even in the expert stage (day 38 of training), 578 
the animal never operated fully in the inference-based regime. Instead, there remained a mixture 579 
of both inference-based and Q-learning strategies in roughly equal proportions at this stage of 580 

Figure 9. Mixture of strategies underlying rodent behavior in dynamic foraging. a) Composition of blockHMM 
mixtures for individual animals. Each row represents one mouse with ID shown on the left. The color of each square 
represents the decoded behavioral regime of each HMM mode (Q1-4, IB5-6). The number of blocks for each animal, 
K, was selected by cross-validation and are sorted here in descending order. b) Transition function of HMM modes for 
all animals, grouped according to the decoded behavioral regime. c) Distribution of HMM modes for an example 
animal, f11, across all training sessions. d) Same as c, but for another animal, f16. e) Average frequency of HMM 
modes for all experimental animals (mean ± standard error, n = 21 animals). 
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training. This was a common feature of many animals that managed to reach the inference-based 581 
stage (such as animal e46, e54, e56, f01, f11, f12, fh02, fh03, Supp. Fig. 5). On the other hand, a 582 
small subset of other animals, such as f16 (Fig. 9d), never reached the inference-based mode even 583 
after up to 25 days of training. The behavior of these animals primarily mixed between regimes 584 
Q1 and Q4 on each day, presumably alternating between periods of attention (high learning rate, 585 
Q4) and low attention (low learning rate, Q1). 586 

We compared the results of our segmentation approach to previously proposed metrics to 587 
distinguish between model-free and inference-based behavior. We determined the ρ coefficient as 588 
defined in Fig. 2 and previous studies17, for all training sessions across our n = 21 animals. On 589 
average, ρ systematically shifted from a significantly positive value for the first 5 sessions (Supp. 590 
Fig. 7a, p < 10-5, Wilcoxon signed-rank test, n = 21 animals) to a value that is not significantly 591 
different from 0 for sessions 21-25 (Supp. Fig. 7a, p = 0.3, Wilcoxon signed-rank test, n = 21 592 
animals). This is consistent with the previously reported trend17 and the average transition from 593 
model-free to inference-based modes of learning in our animals. However, the trends in ρ for single 594 
animals were noisy (Supp. Fig. 7b, c) which made it more challenging to distinguish model-free 595 
from inference-based behavior in single sessions. For example, although the two animals f11 and 596 
f16 (Fig. 9c,d) had qualitatively different behavioral modes as revealed by blockHMM, the 597 
evolution of the ρ estimates were qualitatively similar and not statistically different from sessions 598 
21 – 25 (Supp. Fig. 7b, p = 0.8, Wilcoxon signed-rank test, n = 5 sessions). Moreover, for animals 599 
whose behavior primarily lie in the Q-learning regime (e53, e57, f04, f16, f20), ρ was not 600 
statistically different from 0 in many sessions. This discrepancy could be attributed to the level of 601 
noise in the estimates, or the fact that Q-learning agents can also have ρ values close to zero 602 
especially in the high-learning rate regime (Fig. 2c, d). 603 

Across all animals, the average frequency and dominance of the HMM modes and behavioral 604 
strategies changed systematically over the course of training (Fig. 9e). On average, animals started 605 
training with a significant fraction of the Q1 mode and smaller fraction of Q4 (56% in Q1 and 24% 606 
in Q4, averaged across days 1-5). Over the course of training, the mixture of behavioral strategies 607 
slowly shifted from Q1 to Q4, such that around day 15, there is a higher fraction of Q4 than Q1 608 
mode (39% in Q4 compared to 35% in Q1, averaged across days 16-20). This shift in composition 609 
reflects an average increase in learning rate in the Q-learning regime. At the same time, the fraction 610 
of inference-based modes, IB5 and IB6, was low at the beginning (3% in IB5 and 6% in IB6 611 
averaged across days 1-5), but continuously increased as animals gained experience with the task 612 
(6% in IB5 and 14% in IB6 averaged across days 36-40). Notably, at the expert stage, there was a 613 
significant fraction of blocks in the inference-based mode (20% in IB5-6 combined averaged 614 
across days 36-40), but the mixture of strategies still remained with Q1 and Q4 being the primary 615 
Q-learning modes of the animals. Overall, these ubiquitous use of mixtures of strategies, which 616 
were distinctive both in naïve and expert animals, further underscore the importance of our 617 
approach to dissociate and characterize the features that constitute individual modes of behavior.  618 
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Discussion 619 
 620 
Model-free and inference-based strategies are the two types of models that are most often used for 621 
analysis of choice sequences in dynamic foraging experiments. Model-free constructs such as 622 
reinforcement learning models have been particularly useful when probing representation of action 623 
values in numerous brain regions7,14,15,22,41–43. Complementarily, inference-based models using 624 
Bayesian inferences has helped us understand the inference process that occurs in the brain from 625 
trial to trial when animals hold an internal model of the world transitions18,26. In the dynamic 626 
foraging task, while most studies tend to focus exclusively on one of the two model types, it has 627 
been recognized that both of these modes can co-exist in the behavior of humans and rodents, with 628 
a transition from model-free to inference-based behavior as they gain familiarity with the task17,44. 629 
By providing the tools to understand the difference between these two modes of behavior, our 630 
study provides a basis for comparison between these two disparate spaces of models. Our efforts 631 
are among other work of dissociating model-free from inference-based (or model-based) behavior 632 
in other task domains45–48. As building internal models of the world is a crucial, challenging but 633 
less understood brain function49, distinguishing between model-free from inference-based 634 
behavior in dynamic foraging is the first step toward an understanding of how these internal models 635 
can be acquired with learning. 636 
 637 
Our approach builds upon previous work in this domain in several ways. First, we proposed a 638 
framework that relies on quantitative measurements of four behavioral features that characterize 639 
transitions between actions, using the concept of transition functions which had only been 640 
qualitatively characterized by other studies19. Our combined use of four behavior features also 641 
makes it easier to decode the behavioral strategies, as these metrics offer better coverage of the 642 
large parameter spaces involved in the two models, γ-ε for Q-learning agents, or 𝑃'&#()*	- 𝑃$%& 	for 643 
inference-based agents. Although we have not considered other behavior features such as the 644 
probability of action switching19,26, similar metrics can be incorporated in the same framework to 645 
potentially improve the decodability of strategies even further. In general, the use of multiple 646 
features would help maximize the discriminability between the two types of behavior in the high-647 
dimensional feature space. This offers an improvement from previous attempts which use a single 648 
parameter to distinguish between the two modes of learning. For example, we showed that ρ by 649 
itself is insufficient to distinguish model-free from inference-based behavior for certain pairs of 650 
agents17. In the same way, this problem also applies to other single metrics such as transition 651 
slope18 or offset35 which have been used in previous studies. Our approach also differs from 652 
previous attempts using data-driven methods27 to predict the choice of animals and agents on 653 
individual trials. We instead try to estimate a set of aggregate behavioral metrics such as the switch 654 
offset and lapse rate to decode the behavioral regimes of different agents. Since our focus is to 655 
predict the behavioral class rather than the choice on single trials, this allows us to gain statistical 656 
power and robustness as these aggregate measures can be estimated more accurately from the 657 
performance of the animals over multiple blocks of trials, in comparison to single-trial choice 658 
prediction which can be difficult due to the presence of noise in the choice sequences50. 659 
 660 
Among the four features we investigated, the variation in lapse rate during training was particularly 661 
noteworthy. We found that there was a high lapse rate in our experimental animals, even in the 662 
deterministic environment where the reward contingency should be straightforward to learn and 663 
acquire. On average in this easiest task condition, the lapse rate of animals even on day 30 of 664 
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training was close to 30%. In our Q-learning model, this lapse rate could be accounted for by a 665 
high value of ϵ	which leads to a high degree of exploration of the animals. This high rate of 666 
exploration would agree with previous studies of mice in a maze51, open-field52 or head-fixed9, 667 
which found a tendency for mice to explore their environments, presumably to gain information 668 
about unknown events or contingencies53,54. Although exploration is the most direct explanation 669 
for the high lapse rate, we cannot rule out the possibility that the high lapse rate could be caused 670 
to other factors such as inattention, motor errors, or incomplete knowledge of the task29,55–57, which 671 
similarly affect the interpretation of lapse rates in sensory-guided behavioral paradigms9,29.  672 
 673 
Together, the four behavioral features of the transition dynamics, the switch offset, slope, lapse 674 
and efficiency, provide a basis for reliably classify the behavior of different Q-learning and 675 
inference-based agents into one of six distinct clusters that show qualitatively different behavioral 676 
phenotypes. Remarkably, each of these two parameter spaces can be further segmented into 677 
smaller subdomains, thus highlighting the heterogeneity of behavior within these two classes of 678 
strategies. We found that the Q-learning space can be divided into four clusters, Q1-Q4, that 679 
broadly correspond to different learning rates. Q1 is a low-learning rate regime where the behavior 680 
is close to random on most of the block, Q2,3 have moderate learning rates where slow block 681 
transitions occur, while Q4 is a high-learning rate regime where the behavior transitions are fast, 682 
but foraging efficiency can be strongly dependent on the degree of exploration, highlighting the 683 
well-known exploration-exploitation trade-off in reinforcement learning58,59. In this regime, too 684 
low exploration risks getting the agent stuck a sub-optimal choice during block transitions, while 685 
too high exploration results in a failure to maximize received rewards. The types of behavior for 686 
model-free agents might be even more complex when alternative schemes for exploration, such as 687 
soft-max, UCB-1 or pursuit59, are considered. Interestingly, in our characterization, the difference 688 
between lapse rates turned out to be an important criterion for distinguishing model-free from 689 
inference-based behavior, especially in deterministic (100-0) environments. Here, model-free 690 
clusters (Q1-Q4) tend to have significant, non-zero rates of exploration, while inference-based 691 
clusters (IB5-6) has a lapse rate that is very close to zero. This suggests that the lapse rate can 692 
serve as an additional discriminator for the two types of models, in addition to other metrics that 693 
have been considered by previous studies17,18. 694 
 695 
The ground-truth parameters used in our simulations also allowed us to evaluate the reliability of 696 
decoding model-free from inference-based behavior in different types of environments. We found 697 
that decoding accuracy was highest in the deterministic (100-0) environment and slowly degrades 698 
for more stochastic environments (going from 90-10 to 80-20 and 70-30). This degradation arises 699 
because in probabilistic environments, inference-based and model-free transition functions 700 
become more similar. In such noisy environments, an efficient inference-based procedure might 701 
still give rise to slow and delayed switching since in these environments, the rewards received are 702 
rather uninformative of the current state of the world. The lapse rates of inference-based agents 703 
also become non-zero in this unreliable condition which makes it difficult to distinguish between 704 
the effect of ε-greedy exploration in Q-learning agents. On the other hand, in the deterministic, 705 
100-0 environment, a failure to fully exploit an action after switching must be attributed to 706 
exploration, allowing an accurate detection of exploration states which imply a Q-learning 707 
behavior. The decoding accuracy of behavioral strategies thus establishes a baseline evaluation of 708 
our ability to distinguish model-free from inference-based behavior in high-noise environments. 709 
 710 
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The second major contribution of this work is the development of a state-space model, blockHMM, 711 
which allows us to segment of behavior during the session into blocks of trials that are governed 712 
by different underlying states. Our work adds to the existing body of literature for quantifying 713 
mixtures of strategies in reward-guided contexts which revealed interacting components of 714 
behavior involving reinforcement learning, working memory, episodic memory or the interaction 715 
between model-free and model-based systems27,60. To tackle challenges faced by models that 716 
assume stationarity of behavior (Fig. 2e-g), our model takes inspiration from recent modeling 717 
approaches which are used to infer discrete latent states that underlie neural dynamics39 , natural 718 
behavior40, and behavior in decision-making tasks28,29. In particular, we adapted the recent GLM-719 
HMM framework29, where discrete hidden states determine the coefficients of a generalized linear 720 
model (GLM) which specifies how the decision of the animal depends on external trial variables. 721 
While the latent states in this approach are updated from trial to trial, latent states in the blockHMM 722 
framework govern the choice selection across entire blocks, and are only updated at the boundaries 723 
of block transitions. Each state involves a separate sigmoidal transition function parameterized by 724 
the slope, offset and switch. By pooling the behavior across different sessions, blockHMM 725 
bootstraps from the large number of blocks across multiple sessions to estimate these state-specific 726 
parameters. As these are the same parameters that are used for decoding Q-learning or inference-727 
based regimes, this allows us to recover the behavioral regime (Q1-4 or IB5-6) that corresponds 728 
to each state. We performed a cross-validation analysis to determine the number of states, K, that 729 
best describe the behavior of each animal, ensuring that these modes are meaningful units of 730 
behavioral states and not arbitrary noise patterns that are fit by the model. 731 
 732 
Our results uncover a remarkable diversity of behavior across the 21 animals that were trained in 733 
the task. This diversity is demonstrated by different number of HMM modes, K, the composition 734 
of the modes (Fig. 9a), the shapes of the transition function of each mode (Fig. 9b), the transition 735 
probabilities (Supp. Fig. 5), as well as the evolution of the mixture composition throughout the 736 
course of training (Supp. Fig. 4). We found only 11/21 of our animals transitioned to an inference-737 
based mode of learning, while the rest of the animals remained in the Q-learning modes. This 738 
might explain why some previous studies might not observe efficient inference-based behavior of 739 
rodents during behavioral switching19, since a large fraction of animals might have failed to 740 
transition to this regime. 741 

Not only is the behavior variable across animals, but it can also be highly dynamic within a session. 742 
We found that rodents frequently employ a mixture of strategies, mixing between periods of 743 
random behavior, Q-learning and inference-based behavior even at the expert stage after being 744 
exposed to the task for many weeks. This is so even for the easiest reward contingency (100-0 745 
environment) where the optimal decision is simple – the animal only needs to make a switch each 746 
time a single error is encountered. Although we might expect rodents to be able to quickly figure 747 
out this task and become fully committed to the inference-based strategy, this was not the case. 748 
Instead, the frequent switches between behavioral states is representative of rodent behavior and 749 
agrees with many other studies of a diverse array of tasks28,29. This feature of rodent behavior once 750 
again highlights the need for powerful analytical methods that can infer hidden behavioral states 751 
that govern behavior, since these types of models allow a finer scale resolution when dissecting 752 
the behavioral circuits. 753 
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Overall, our study lays the foundation for future analyses and investigations into the neural basis 754 
of model-free and inference-based behavior, and calls for a focus on the problem of state 755 
segmentation in rodent behavioral studies. An interesting question that is raised by our 756 
characterizations is how internal models are acquired during the task, and the factors that affect 757 
the evolution of parameters of these internal models. The methods developed in the paper can be 758 
leveraged in investigations of the neural mechanisms that govern these distinct modes, as well as 759 
the plasticity of these circuits during the transition between model-free and inference-based 760 
behavior. The state segmentation approach will also be a valuable tool for perturbation 761 
experiments, with the power to reveal shifts in composition, order or transition probabilities 762 
between these modes, thus augmenting existing methods for a much richer and complete view of 763 
rodent behavior during dynamic foraging. 764 
 765 
 766 
Materials and Methods 767 
 768 
Animals. All experimental procedures performed on mice were approved by the Massachusetts 769 
Institute of Technology Animal Care and Use Committee. Mice were housed on a 12 h light/dark 770 
cycle with temperature (70 ± 2 °F) and humidity (30–70%) control. Animals were group-housed 771 
before surgery and singly housed afterwards. Adult mice (2-6 months) of either sex were used 772 
for these studies. In addition to wild-type mice (C57BL/6J), the following transgenic lines were 773 
used: Ai184D (B6.Cg-Igs7tm148.1(tetO-GCaMP6f,CAG-tTA2)Hze/J), Jackson #030328; 774 
Ai162D (B6.Cg-Igs7tm162.1(tetO-GCaMP6s,CAG-tTA2)Hze/J), Jackson #031562; 775 
B6.129(Cg)-Slc6a4tm1(cre)Xz/J, Jackson #014554. 776 
 777 
Surgical procedures. Surgeries were performed under isoflurane anesthesia (3–4% induction, 778 
1–2.5% maintenance). Animals were given analgesia (slow release buprenex 0.1 mg/kg and 779 
Meloxicam 0.1 mg/kg) before surgery and their recovery was monitored daily for 72 h. Once 780 
anesthetized, animals were fixed in a stereotaxic frame. The scalp was sterilized with betadine 781 
and ethanol. The skull was attached to a stainless-steel custom-designed headplate 782 
(eMachines.com) using Metabond. Animals were allowed to recover for at least 5 days before 783 
commencing water restriction for behavioral experiments. 784 
 785 
Behavioral apparatus and task training. The training apparatus and software for running the 786 
experiments were adapted from the Rigbox framework for psychophysics experiments in 787 
rodents61,62. Mice were head-fixed on the platform (built from Thorlabs hardware parts) and their 788 
body placed in a polypropylene tube to limit the amount of movement and increase comfort. 789 
Their paws rested on a vertical Lego wheel (radius 31 mm) which was coupled to a rotary 790 
encoder (E6B2-CWZ6C, Omron), which provided input to a data acquisition board (BNC-2110, 791 
National Instruments). The data acquisition board also provided outputs to a solenoid valve 792 
(#003-0137-900, Parker) which controlled the water reward delivery. 793 
 794 
After mice recovered from surgery, they were placed under water restriction for 1 week, with 795 
daily water given by HydroGel (Clear H2O). The initial amount of HydroGel was equivalent to 796 
2mL of water a day, and this decreased gradually until mice received an amount equivalent to 40 797 
mL/kg each day. Mice were weighed weekly and monitored signs of distress during the course of 798 
training. In the case of substantial weight loss (>10% loss weekly) or decrease in body condition 799 
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score, the restricted water amount was increased accordingly. Mice were handled daily during 800 
the initial 1-week water restriction period for ~10 minutes each day. They were then allowed to 801 
explore the apparatus and given water manually by a syringe on the platform. If mice did not 802 
receive their daily water amounts during training, they were given the remaining amount as 803 
hydrogel (Clear H2O) in their home cage. 804 
 805 
When mice were comfortable with the setup, they were head-fixed on the platform and given 806 
small water rewards of 4 µL from a lick spout every 10 seconds, for a total duration of 10 807 
minutes. This duration was increased to 20 minutes, and 40 minutes on the two subsequent days. 808 
The wheel was fixed during this protocol. On the next day, mice were trained on the 809 
movementWorld protocol, with the wheel freely moving. Here, each trial was signal with an 810 
auditory tone (0.5s, 5 kHz), following which movements in any direction crossing the movement 811 
threshold of 8.1° rotation were rewarded with 4 µL of water. Mice then had to remain stationary 812 
for 0.5 s before the next trial starts. This discouraged a strategy of continuous rotation of the 813 
wheel. 814 
 815 
After mice became comfortable with this stage and consistently obtained at least 0.6 mL of water 816 
each session, they were taken to the final task stage, blockWorldRolling. Each trial began with an 817 
auditory tone (0.5s, 5 kHz). During a delay period of 0.5 s from the trial tone onset, movements 818 
of the wheel were discounted. After this window, the movement period started, where 819 
movements of the wheel past a specified threshold were recorded. The threshold was fixed at 820 
8.1° in the first session of blockWorldRolling and subsequently increased to 9.5°, and 10.8° on 821 
the next days. The trials were grouped into blocks of trials of 15-25 trials, with lengths of the 822 
blocks sampled uniformly at random. The blocks alternated between the “left” and “right” state. 823 
In the “left” state, left wheel turns were rewarded with probability 100% and right wheel turns 824 
were not rewarded. In the “right” state, right wheel turns were rewarded with probability 100% 825 
and left wheel turns were not rewarded. If mice made the correct movement, they were given a 4 826 
µL water reward. For unrewarded trials, a white noise sound was played for 0.5 s, followed by a 827 
time-out of 1 s. After the trial feedback was given, an inter-trial interval (ITI) of 0.5 s elapsed 828 
before the next trial started. The ITI was gradually increased to 1 s once animals performed well 829 
in the task. If mice didn’t make a choice within 20 seconds, the trial was aborted, signaled by a 830 
white noise and 1-s time-out period (similar to an error trial). After the length of the block has 831 
passed, if the rolling performance of the animal in the last 15 trials was above 75%, the state of 832 
the block would flip and the next block continued. Otherwise, the block continued until the 833 
rolling performance in the last 15 trials in the block passed 75%. 834 
 835 
For n = 6 animals (F11, F12, F16, F17, F20, F21), after becoming expert in the 100-0 836 
environment, we continued training them in successively more volatile environments. Each 837 
animal was trained in 2-3 sessions in the 90-10 environment, followed by 2-3 sessions in each of 838 
the 80-20, and 70-30 environments. The example behavior in Fig. 1c was for animal F11 on a 839 
90-10 environment. 840 
 841 
 842 
Simulated environment. We simulated an artificial environment that alternates between two 843 
states, “left” and “right”, in blocks of trials. The first block was chosen at random to be in the “left” 844 
or “right” state, and the state identity flipped for each subsequent block. At the start of each block, 845 
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we determined the number of trials in the blocks, N, by sampling an integer at random in the range 846 
[15, 25]. We then simulated N trials in the block. In each trial, the agent selected an action (see 847 
“Simulation of Q-learning agents” and “Simulation of inference-based agents” for details below) 848 
and received feedback from the environment. If the block was in the “left” state, left actions yielded 849 
reward with probability of p and right actions yielded reward with probability of 1 – p. Conversely, 850 
if the block was in the “right” state, left actions yielded reward with probability of 1 – p and right 851 
actions yielded reward with probability of p. We considered four different environments with p = 852 
1.0, 0.9. 0.8 and 0.7, which we called 100-0, 90-10, 80-20 and 70-30, respectively. 853 
 854 
Simulation of Q-learning agents. Each Q-learning agent was defined by two parameters, the 855 
learning rate γ	and exploration rate ϵ. For our simulations, we simulated a 25 x 20 grid of 856 
parameters within the range 0.01	 ≤ γ ≤ 1.4, and 0.01 ≤ ϵ ≤ 0.5. 857 
 858 
On each trial, the Q-learning agent implemented a Q-value update and selected actions with an ϵ-859 
greedy policy. The agent maintained two values associated with the two actions, 𝑞!	for left actions 860 
and 𝑞" for right actions. We initialized 𝑞! = 𝑞" = 0.5. On each trial, the agent updated these 861 
values according to 862 
 863 

𝑞# ← 𝑞# + γ(𝑟 − 𝑞#)  864 
 865 
where r is the feedback of the trial (r = 1 for rewarded actions and r = 0 for non-rewarded actions). 866 
The Q-learner chose the higher-valued action with probability 1 - ε, and selected actions at random 867 
(with probability 50% for each choice) on a small fraction ε of trials.  868 
 869 
Simulation of inference-based agents. Each inference-based agent held an internal model which 870 
consisted of two hidden states, L and R, that corresponded to the unobserved hidden states, “left” 871 
or “right”, of the environment. The internal model was defined by two parameters, 𝑃'&#()*	 and 872 
𝑃$%&	 according to 873 
 874 

P( s10, = 𝑅 ∣∣ 𝑠# = 𝐿 ) = P( 𝑠#0, = 𝐿 ∣∣ 𝑠# = 𝑅 )  =  P231456 875 
 876 

P( 𝑠#0, = 𝐿 ∣∣ 𝑠# = 𝐿 ) = P( 𝑠#0, = 𝑅 ∣∣ 𝑠# = 𝑅 )  =  1 − 𝑃'&#()* 877 
P( 𝑟# = 1 ∣∣ 𝑠# = 𝐿, 𝑐# = 𝐿 ) = P( 𝑟# = 1 ∣∣ 𝑠# = 𝑅, 𝑐# = 𝑅 )  =  𝑃$%& 878 

P( 𝑟# = 1 ∣∣ 𝑠# = 𝐿, 𝑐# = 𝑅 ) = P( 𝑟# = 1 ∣∣ 𝑠# = 𝑅, 𝑐# = 𝐿 )  =  1 − 𝑃$%& 879 
 880 
where 𝑠# refers to the hidden state on trial I and 𝑐_𝑖 refers to the choice on trial i. 881 
 882 
That is, the evolution of the hidden states followed a Markov process with probability 𝑃'&#()*	of 883 
switching states and 1 – 𝑃'&#()*	 for remaining in the same state on each trial. For our simulations, 884 
we simulated a 15 x 10 grid of parameters within the range 0.01	 ≤ 𝑃'&#()*	 ≤ 0.45, and 0.55 ≤885 
𝑃$%& ≤ 0.99. 886 
 887 
We derived a recursive update for the agent’s posterior belief about the current world state, given 888 
previous choices and feedback. Let  P7(t) = ( 𝑠( = 𝐿 ∣∣ c,, 𝑟,, 𝑐-, 𝑟-, … , 𝑐(.,, 𝑟(., ) and 𝑃"(𝑡) =889 
( 𝑠( = 𝑅 ∣∣ 𝑐,, 𝑟,, 𝑐-, 𝑟-, … , 𝑐(.,, 𝑟(., ). Then 890 
 891 
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𝑃!(𝑡) =
1
Ω J 𝑃#(𝑡 − 1)
#8!,"

 P( 𝑟(., ∣∣ 𝑠(., = 𝑖 ) P( 𝑠( = 𝐿 ∣∣ 𝑠(., = 𝑖 ) 892 

𝑃"(𝑡) =
1
Ω J 𝑃#(𝑡 − 1)
#8!,"

 P( 𝑟(., ∣∣ 𝑠(., = 𝑖 ) P( 𝑠( = 𝑅 ∣∣ 𝑠(., = 𝑖 ) 893 

 894 
where Ω is a normalization factor to ensure 𝑃!(𝑡)  +  𝑃"(𝑡) =  1. 895 
 896 
We initialized 𝑃!(0) 	= 	𝑃!(0) 	= 	0.5. On each trial, the agent selected the left action if 𝑃!(𝑡) 	>897 
	0.5, the right action if 𝑃!(𝑡) 	< 	0.5, and acted randomly otherwise. 898 
 899 
Evaluation of previous metrics and approaches. For a given agent, the ρ metric is defined as 900 
follows. For each block transition, we counted the number of consecutive rewards that take place 901 
before the block transition, 𝑁$, and the number of consecutive errors that take place immediately 902 
after the block transition, 𝑁%. We defined ρ to be the Pearson correlation coefficient between 𝑁$ 903 
and 𝑁% across all the blocks in the session. To minimize the effect of outliers, we only considered 904 
blocks where 𝑁$ ≤ 15. 905 
 906 
The Q-learning and inference-based agents in Fig. 2a-d were simulated in a 90-10 environment, 907 
where the block lengths ranged from 5 to 40. The block lengths were sampled as follows. The 908 
minimum possible block length was 5 trials, and each subsequent trial where the agent chose the 909 
high-reward side, there was a 10% probability of switching states. The block also automatically 910 
switched after 40 trials had elapsed.  911 
 912 
The Q-learning agent in Fig. 2e was simulated with γ = 0.1 and ϵ = 0.1. The inference-based agent 913 
in Fig. 2e was simulated with 𝑃$%& = 0.7 and 𝑃'&#()* = 0.2. Each agent was simulated for 10 total 914 
sessions, each lasting 1000 blocks. For agent M, we used a mixture of strategies: we alternated 915 
between the Q-learner’s strategy for 50 blocks and the inference-based agent’s strategy for 50 916 
blocks, and kept alternating between these modes until the agent has executed 1000 blocks in total. 917 
This was repeated for 10 total sessions (similar to the Q-learning and inference-based agents) to 918 
obtain error bars for the parameter estimates. 919 
 920 
To infer the learning rates in a traditional reinforcement learning framework (Fig. 2f), we fit a 921 
reinforcement learning model with three parameters, learning rate γ, inverse temperature β, and 922 
bias b, to the sequence of choices and feedback of the agent. We assumed the agent maintained Q-923 
values for the left and right action and use the same update rules as described in “Simulation of Q-924 
learning agents”. Given Q-values 𝑞! and 𝑞", the likelihood of selecting an action is given by 925 
 926 

P(𝑎(𝑡) = 𝐿) =
1

1 + 𝑒𝑥𝑝[−β(𝑞!(𝑡) − 𝑞"(𝑡) + 𝑏)]
 927 

 928 
We jointly fit γ, β, and b using the MATLAB function fmincon with initial values γ: = 0.2, β =929 
	1 and 𝑏: = 0, with the constraint β ≥ 0. 930 
 931 
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Logistic regression model. Similar to previous studies, we fitted a logistic regression of the 932 
following form to predict the choice on trial n based on the previous choices, previous outcomes, 933 
and interaction between previous choices and outcomes: 934 
 935 

log
𝑝(𝑐; = 𝐿)

1 − 𝑝(𝑐; = 𝐿) =Jα#𝑐;.#

<

#8,

+Jβ#𝑟;.#

<

#8,

+Jγ#𝑐;.#𝑟;.#

<

#8,

 936 

In other words, the logit was a linear combination of the previous N choices (𝑐;.# = 1 for left 937 
choice and -1 for right choice), previous N rewards (𝑟;.# = 1 for rewarded actions and -1 for 938 
unrewarded actions), and previous N interactions of choice and reward. The logistic regression 939 
model in Fig. 2g was fitted with MATLAB function mnrfit to recover the best fit coefficients 940 
α# , β# , γ# , together with the confidence intervals of these estimates. For ease of visualization, the 941 
parameters α, β and γ were normalized by their respective maximum values. 942 
 943 
Characterization of Q-learning and inference-based spaces. We simulated an ensemble of Q-944 
learning and inference-based agents with parameters as described above. For each agent, the 945 
behavior was simulated for a total of 1000 blocks. To calculate the transition function of the agent, 946 
we took the average of the “signed choice” 947 

f(𝑡) =
∑ 𝑐;,(𝑢;,(
<+,-./0
;8,
𝑁=>?)/'

 948 

 949 
where 𝑐;,( denotes the choice in trial t of the block n (-1 for left and 1 for right choices) and 𝑢;,( 950 
denotes the unobserved hidden state in trial t of the block n (-1 for “left” state and 1 for “right” 951 
state). The signed choice ensures that f(t) is an increasing function of t regardless of the hidden 952 
state of the block. 953 
 954 
The transition function f(t) was fit with a sigmoidal curve with the form 955 

f(𝑡) = ϵ +
1 − 2ϵ

1 + 𝑒𝑥𝑝^−α(𝑡 − 𝑠)_
 956 

 957 
Where ϵ, α and 𝑠 are free parameters of the function representing the lapse rate, slope and offset, 958 
respectively. The parameters were jointly fit with the Python function scipy.optimize.minimize(), 959 
with constraints 𝑠 ≥ 0, α ≥ 0, 0 ≤ ϵ ≤ 0.5. 960 
 961 
We also determined the foraging efficiency of the agent, 𝐸 = 𝑁$%&@$A%A/𝑁, where 𝑁$%&@$A%A 	is 962 
the number of rewarded trials and N is the total number of trials in the session. 963 
 964 
 965 
Clustering into behavioral regimes (Fig. 5). The above fitting procedure was done for all 650 966 
agents (25 x 20 Q-learning and 15 x 10 inference-based agents). We pooled the four behavioral 967 
features, ϵ, α, 𝑠, and E, from these agents to form a 4 x 650 feature matrix, representing 4 968 
features/agent and 650 agents. We applied a density-based clustering method to segment the cloud 969 
of points into distinct domains. First, the four-dimensional features were embedded into a two-970 
dimensional t-SNE space using the MATLAB tsne function with Euclidean distance metric and 971 
perplexity of 30. For the 90-10 world, the perplexity was adjusted to 25 to achieve better 972 
convergence of the t-SNE clusters. 973 
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We formed 2-D histograms of the data points in the t-SNE space using the MATLAB hist2d 974 
function (n = 25 bins in each dimension). These histograms were heat maps that indicated regions 975 
of high concentration of the data points. The histograms were mean-filtered by a square kernel of 976 
size 4x4, and local ‘noise’ maxima with heights less than 3 were suppressed. A watershed 977 
algorithm was run on the resulting heat map to identify the local clusters of high density. The 978 
identities of these clusters were assigned after mapping back to the location in the Q-learning or 979 
inference-based parameter spaces. 980 
 981 

Decoding analysis (Fig. 6). We generated a synthetic data set using computational simulations 982 
that serve as the basis for our decoding analysis. For each agent in the Q-learning and inference-983 
based parameter spaces, we performed repeated simulations in 50 synthetic experimental sessions 984 
with 20 block transitions per session. For each synthetic session, we obtained the transition 985 
function f(t), and fit a sigmoidal curve to estimate the four features, ϵ, α, 𝑠, and E of the behavior. 986 
The fitted slope was capped at a maximum value of 20 to avoid outliers. To balance the number 987 
of training examples for different classes in the data set, we determined the number of training 988 
examples, 𝑛,, … , 𝑛B, for each of the six classes (Q1-4, or IB5-6), and subsampled each class so 989 
that each class contains N = 𝑚𝑖𝑛(𝑛,, … , 𝑛B) examples. We split this data into a training set 990 
(containing 80% of the data) and a test set (20% of the data). Each of the four features were 991 
normalized to mean 0 and standard deviation 1. A k-nearest neighbor (kNN) decoder was trained 992 
on the training set to predict the behavioral regime (1 to 6). Its performance was evaluated on the 993 
held-out test set. The accuracy of the decoder was measured both by the fraction of correctly 994 
labeled examples per regime, and by the Matthews Correlation Coefficient. 995 

Session-averaged decoding (Fig. 7). For each behavioral session consisting of N blocks, we 996 
obtained the transition function f(t) as described in Characterization of Q-learning and inference-997 
based spaces. We obtained the sigmoidal fit of this function and determined the parameters ϵ, α, 998 
𝑠, and E of the session. The features were input to the kNN decoder that was trained in the 999 
Decoding analysis section. This results in a predicted class (Q1-4 or IB5-6) for each behavioral 1000 
session. For sessions in probabilistic environments (90-10, 80-20 or 70-30), the behavioral features 1001 
were input to the corresponding decoder which were trained on synthetic data from the 1002 
corresponding environment type. 1003 
 1004 
BlockHMM implementation. The blockHMM inference procedure was implemented based on 1005 
the existing ssm toolbox that was previously developed for a wide range of Bayesian state-space 1006 
models63. 1007 
 1008 
We added an implementation to this toolbox by specifying a new set of transition and observation 1009 
probabilities which specify the blockHMM process. Each observation was defined by three 1010 
vectors, 𝜶, s and 𝝐 representing the parameters of the sigmoidal transition function for each of the 1011 
K HMM modes (each vector has dimension K x 1). The vectors were initialized to 𝛂𝒊 = 4, 𝑠# =1012 
0.2, ϵ# = 0.3 for all 1	 ≤ 𝑖	 ≤ 𝐾. 1013 
 1014 
Given the hidden state in block i, i.e. given 𝑧# = 𝑘, the joint log likelihood of the observed choices 1015 
in the block is defined via the sigmoidal transition function specified by parameters α/ , 𝑠/ , ϵ/ 1016 
 1017 
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σ/(𝑡) =
1 − 2ϵ/

1 + 𝑒𝑥𝑝^α/(𝑡 − 𝑠/)_
+ ϵD 1018 

where t = 1, 2, …, T enumerates the position of the trials in the block. 1019 
 1020 
The log-likelihood for a “signed” choice 𝑦( (the product of choice 𝑐( and hidden state 𝑢() is that 1021 
of a Bernoulli random variable with a rate of σ/(𝑡). 1022 

𝑙𝑜𝑔 𝐿 (𝑦(|α/ , 𝑠/ , ϵ/) = 𝑦( log σ/ (𝑡) + (1 − 𝑦() log^1 − σ/(𝑡)_ 1023 
 1024 
The joint log-likelihood of the observed choices in the block i is the sum of the log-likelihoods of 1025 
individual trials 1026 

𝑙𝑜𝑔 𝑃 (𝒚 ∣∣ 𝑧# = 𝑘 ) =J𝑙𝑜𝑔 𝐿 ( 𝑦( ∣∣ α/ , 𝑠/ , ϵ/ )
E

(8,

 1027 

The joint log-likelihood for the whole session is the sum of the log-likelihood in individual blocks. 1028 
The hidden states evolved according to a Markovian process with stationary transition governed 1029 
by a transition matrix T with dimension K x K. 1030 
 1031 
The blockHMM was fit with an Expectation-Maximization (EM) algorithm. The hidden states 1032 
were initialized based on k-means clustering with K clusters. The implementation of the EM 1033 
algorithm was the same as described previously for the ssm toolbox. We used the L-BFGS 1034 
algorithm for the M-step when updating the values of 𝜶, s and 𝝐, with constraints  𝒔 ≥ 0.01, 𝜶 ≥1035 
0.01, 0.01 ≤ 𝝐 ≤ 0.5. 1036 
 1037 
To evaluate the cross-validated log-likelihood (Fig. 8d), we split the data into 80% training set and 1038 
20% test set. The blockHMM was run on the training set and the log-likelihood 𝐿(%'( was evaluated 1039 
on the test set. We normalized this cross validated log-likelihood by 1040 
 1041 

𝐿;?$F =
𝐿(%'( − 𝐿:
𝑛(%'( 𝑙𝑜𝑔(2)

 1042 

where 𝐿: is the cross-validated log-likelihood of a null model (a Bernoulli(p) model where p is the 1043 
observed fraction of trials where 𝑦( = 1), 𝑛(%'( is the number of trials in the test set. 1044 
 1045 
Synthetic agent simulation. The synthetic agent (Fig. 8c-g) was simulated with K = 3 HMM 1046 
modes with parameters 𝑠, = 4, α, = 0.2, ϵ, = 0.3; 𝑠- = 1, α- = 0.8, ϵ- = 0.15; 𝑠G = 9, αG =1047 
1.5, ϵG = 0.05. The true transition matrix of the agent was  1048 
 1049 

𝑇  =   u
0.966 0.003 0.031
0.007 0.954 0.039
0.025 0.020 0.955

w 1050 

 1051 
The behavior was generated for N = 1000 blocks, each block consisting of 30 trials. 1052 
 1053 
BlockHMM fitting to animal behavior. For each animal, we concatenated the behavioral choices 1054 
from all training sessions into a B x T matrix where B is the total number of blocks from all the 1055 
sessions and T = 15 is the number of trials in each block (for blocks that are longer than T trials 1056 
we kept only the first T trials of that block). The blockHMM fitting procedure was run on this 1057 
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matrix for K = 1, 2, 3, …, 8 modes. We chose the value of K that maximized the normalized log-1058 
likelihood of the test set (𝐿;?$F). We capped this K value at 6 for interpretability of the model (i.e. 1059 
if the value of K with the highest log-likelihood is higher than 6, we chose K = 6 as the optimal 1060 
value). 1061 
 1062 
After fitting the blockHMM model, we recovered parameters 𝑠/ , α/ , ϵ/ for individual modes in the 1063 
model. We determined the foraging efficiency 𝐸/ by numerically integrating the area under the 1064 
curve of the choice transition function (with a step size of 0.1) 1065 
 1066 

𝐸/ = x σ/(𝑡)dt
-H

,
 1067 

Together, the four parameters 𝑠/ , α/ , ϵ/ , 𝐸/ are input into the kNN decoder that was trained in 1068 
“Decoding analysis” to infer the behavioral regime (Q1-4, IB5-6) of each of the HMM modes. 1069 
 1070 
 1071 
Data availability. The data that support the findings of this study are available from the 1072 
corresponding authors upon reasonable request. 1073 
 1074 
Code availability. Code used in this study is available at https://github.com/nhat-le/switching-1075 
simulations. 1076 
 1077 
 1078 
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SUPPLEMENTARY FIGURES 1241 
 1242 

 1243 

 1244 
 1245 
Figure S1. Behavioral metrics of Q-learning agents in different types of deterministic and 1246 
stochastic environments (100-0, 90-10, 80-20 and 70-30). Conventions are the same as Fig. 3b. 1247 
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 1248 
 1249 
Figure S2. Behavioral metrics of inference-based agents in different types of deterministic and 1250 
stochastic environments (100-0, 90-10, 80-20 and 70-30). Conventions are the same as Fig. 3b. 1251 
 1252 
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 1253 
 1254 
Figure S3. a) Non-linear embedding of all agents’ behavioral features on the t-SNE space. Points 1255 
are colored based on the results of density-based segmentation (Colors of the six clusters are the 1256 
same as in Fig. 5). b) Transition functions of all simulated agents grouped according to the six 1257 
behavioral regimes. Red lines indicate the mean across all functions in the group. 1258 
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 1259 
 1260 
Figure S4. Normalized cross-validated log-likelihood for different values of K, the number of 1261 
clusters of the blockHMM for the n = 21 mice used in the paper. For each animal, the value of K 1262 
that gave the highest cross-validated log-likelihood was chosen for subsequent analyses and 1263 
fitting (this K value is indicated by the vertical red line). 1264 
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 1265 
 1266 
Figure S5. Evolution of mixture of behavioral strategies as inferred by blockHMM for all the n 1267 
= 21 mice through different training sessions. Colors and conventions are the same as Fig. 9. 1268 
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 1269 
 1270 
Fig. S6. Transition functions as fitted by the blockHMM procedure for all the n = 21 mice 1271 
analyzed in the paper. 1272 
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 1273 
Fig. S7. a) Average evolution of ρ across all experimental animals (mean ± standard errors, n = 1274 
21 animals). b) Comparison of the evolution of 𝜌 for two animals, f11 and f16 (mean ± standard 1275 
errors). c) Fitting of 𝜌 for the remaining 19 animals over the course of training (mean ± standard 1276 
errors). 1277 
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