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Abstract  

Radiation therapy is an effective cancer treatment although damage to healthy tissues is 

common. Here we characterize the methylomes of healthy human and mouse tissues to 

establish sequencing-based, cell-type specific reference DNA methylation atlases. 

Identified cell-type specific DNA blocks were mostly hypomethylated and located within 

genes intrinsic to cellular identity. Cell-free DNA fragments released from dying cells into 

the circulation were captured from serum samples by hybridization to CpG-rich DNA 

panels. The origins of the circulating DNA fragments were inferred from mapping to the 

established DNA methylation atlases. Thoracic radiation-induced tissue damages in a 

mouse model were reflected by dose-dependent increases in lung endothelial, 

cardiomyocyte and hepatocyte methylated DNA in serum. The analysis of serum samples 

from breast cancer patients undergoing radiation treatment revealed distinct tissue-

specific epithelial and endothelial responses to radiation across multiple organs. 

Strikingly, patients treated for right-sided breast cancers also showed increased 

hepatocyte and liver endothelial DNA in the circulation indicating the impact on liver 

tissues. Thus, changes in cell-free methylated DNA can uncover cell-type specific effects 

of radiation and provide a quantitative measure of the biologically effective radiation dose 

received by healthy tissues. 

 

Keywords: apoptosis, bisulfite treated DNA, capture-sequencing, cell-free DNA (cfDNA), 

cellular damage, DNA methylation, liquid biopsy, radiation-induced toxicity, tissue-of-

origin  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.04.12.487966doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.487966
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Graphical Abstract 
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Introduction 

Radiation therapy is an effective cancer treatment; however, surrounding normal tissues 

are also impacted leading to tissue damage and remodeling(1–4). For breast cancer 

patients, the heart, lungs, and skin are the most common organs-at-risk for toxicity(5–7). 

However, radiation-induced toxicities vary due to patient-specific factors and clinical 

symptoms may be acute or long-term, often appearing months or even years after 

treatment(6). The mechanisms of radiation-induced tissue injury are still poorly 

characterized and there are few biomarkers of radiation-related damage. Here we 

address this unmet need for sensitive and tissue-specific detection of cellular injury using 

serially collected blood samples.  

Decoding the cellular origins of circulating cell-free DNA (cfDNA) from blood 

samples (“liquid biopsies”) is a promising approach for non-invasive monitoring of organ 

homeostasis, where rising levels of cfDNA released from dying cells indicate increased 

tissue damage(8–13). The majority of cfDNA fragments peak around 167 bp, 

corresponding to the length of DNA wrapped around a nucleosome (147 bp) plus a linker 

fragment (20 bp). This nucleosomal footprint in cfDNA reflects degradation by nucleases 

as a by-product of cell death and the tissue origins of the cfDNA fragments can be 

uncovered using highly cell-type specific DNA methylation patterns(8, 14). DNA 

methylation typically involves covalent addition of a methyl group to the 5-carbon of 

cytosine (5mc) with the human and mouse genomes containing 28 and 13 million CpG 

sites respectively(14, 15). Dynamic changes to the methylome during development and 

cellular differentiation lead to stable, cell-type specific patterns of DNA methylation that 
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are conserved during DNA replication and thus provide the predominant mechanism for 

inherited cellular memory during cell growth(16–19). 

Recent studies have demonstrated the feasibility of Tissue-Of-Origin (TOO) 

analysis in the circulation using cell-free DNA methylation(20–24). However, few of these 

studies have focused on tracking intervention-related changes over time that is feasible 

by analyses of serially collected liquid biopsies(25–27). The short half-life of cfDNA (15 

mins – 2 hours) is ideal for detecting real-time changes in tissue homeostasis due to 

therapeutic interventions(27, 28). Also, few cfDNA analyses have taken advantage of 

CpG pattern analysis to increase sensitivity and specificity of cell type proportion 

estimates(22, 23, 29–32). Each cfDNA molecule originates from a defined cell and pattern 

analysis of sequence reads allows for individual classification of each sequenced 

fragment as opposed to traditional methods that average the methylation status across a 

population of fragments aligned at single CpG sites(27, 28). Building on these advances, 

we present a fine-tuned approach for deconvolution of cfDNA patterns based on 

fragment-level CpG methylation blocks.  

Here, we first report comprehensive, sequencing-based DNA methylation 

reference maps of healthy human and mouse cell-types and show the close relationship 

of DNA methylation with cellular gene expression. Then, we apply cell-type specific DNA 

methylation to trace the origins of cfDNA in serum samples. We report that hybridization 

capture sequencing of methylated cfDNA in serum samples reflects dose-dependent 

tissue damages in a mouse model of radiation injury. In addition, analyses of serial serum 

samples from breast cancer patients undergoing routine radiation treatment indicate 

distinct cellular damages in different organs providing a measure of the biologically 
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effective radiation doses being administered. As proof of concept, radiation treatment 

serves as a powerful tool to validate the cell-type specific methylation signatures 

developed in the atlases and demonstrates application to detect cellular injury in the 

circulation. 

 

Results 

Experimental paradigm to identify the cellular origins of radiation-induced damage 

from cfDNA in the circulation. 

To investigate if radiation-induced tissue damages can be monitored from changes in 

methylated cfDNA in the circulation, we collected serial serum samples from breast 

cancer patients undergoing routine radiation treatment as well as serum and tissue 

samples from mice that had received different doses of thoracic radiation (Figure 1). The 

bioanalyzer trace in Figure 1 shows readings of cfDNA isolated from serum samples that 

were bisulfite treated, enriched for sequences of interest by methylome-wide hybridization 

capture and subjected to sequence analysis. As a prerequisite for identification of the 

cellular origins of the cfDNA fragments isolated from the circulation, we established 

human and mouse cell-type specific DNA methylation atlases. We took a sequencing-

based approach interrogating existing WGBS data sets and generated complementary 

data from additional cell-types composing at-risk organs that include the lungs, heart, and 

liver (Supplemental Table S1 and S2). The characteristics and validation of the DNA 

methylation blocks that provide the basis for the cell-type specific mouse and human 

atlases are described next. 
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Differences in DNA methylation blocks reflect distinct developmental lineages 

and cellular identities 

We obtained controlled access to reference human and mouse WGBS datasets from 

publicly available databases, preferentially from primary cells isolated from healthy 

human and mouse tissues. Additionally, we generated cell-type specific methylomes for 

mouse immune cell types (CD19+ B cells, Gr1+ Neutrophils, CD4+ T cells, and CD8+ T 

cells) and human tissue-specific endothelial cell types (coronary artery, pulmonary artery, 

cardiac microvascular and liver sinusoidal endothelial cells). This resulted in curation of 

mouse methylation data from 10 different cell types and 18 tissues to establish the most 

comprehensive mouse methylation atlas to date. In addition, we characterized 

methylation data from over 30 distinct human cell types with a diverse representation of 

donors (Supplemental Tables 1 and 2). To better understand the epigenomic landscape 

of these healthy human and mouse cell types in tissues, we characterized the 

methylomes by first segmenting the data into homogenously methylated blocks where 

DNA methylation levels at adjacent CpG sites are highly correlated across different cell 

types(22). Curated human WGBS datasets from healthy cell types were segmented to 

identify 351,395 blocks covered by our hybridization capture panel used in the analysis 

of cfDNA in human serum (captures 80Mb, ~20% of CpGs).  Likewise, segmentation of 

mouse WGBS datasets from healthy cell types and tissues identified 1,344,889 blocks 

covered by the mouse hybridization capture panel (captures 210 Mb, ~75% of CpGs). 

Unsupervised hierarchical clustering analysis of the top 30,000 variable methylation 

blocks amongst all human samples revealed that cellular identity and developmental 

lineage primarily drives the relationship between samples and is presented as a 
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dendrogram and UMAP projection in Figure 2a and 2b. The respective analysis of mouse 

cell types is depicted in Figure 2c and Supplemental Figure 1.  The tight relationship of 

methylomes of the same cell type observed from the cluster analysis reinforces the 

concept that methylation status is conserved at regions critical to cell identity. The 

variation in distance between all samples was ~12x larger than the variation in distance 

between samples from the same cell type. This stability allows methylated DNA to serve 

as a robust biomarker of cell types across diverse populations. For the most part, cells 

composing distinct lineages remain closely related, including immune, epithelial, muscle, 

neuron, endothelial, and stromal cell types. Examples are tissue-specific endothelial and 

tissue-resident immune cells that cluster with endothelial or immune cells respectively, 

independent of the germ layer origin of their tissues of residence. Collectively, these 

findings support that DNA methylation is highly cell-type specific and reflects cell lineage 

specification.  

 

Development of sequencing-based DNA methylation atlases of primary human and 

mouse cell-types  

Based on the above unsupervised clustering analysis, we selected a final set of 

reference methylomes used to identify differentially methylated cell-type specific blocks. 

We excluded WGBS samples from bulk tissues and samples with low coverage. Subsets 

of some related cell types were considered together to form the final groups (i.e., 

monocytes grouped together with macrophages and colon grouped together with small 

intestine). We identified cell-type specific differentially methylated blocks (DMBs) that 

contained a minimum of 3 CpG sites and overlapped with captured regions from our 
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hybridization panels used in the analysis of cfDNA from serum. The co-methylation status 

of neighboring CpG sites in these blocks distinguished amongst all cell types included in 

the final groups. Overall, we identified 4,637 human and 7,344 mouse DMBs with a 

methylation difference of 0.35 for mouse and 0.4 for human. The human and mouse DNA 

methylation blocks specific for these cell types can be found in Supplemental Tables 3 

and 4. A summary of human and mouse cell-type specific methylation blocks is in 

Supplemental Table 5. Intriguingly, a variable number of blocks were identified for each 

cell-type using the same thresholds. This is likely due to genuine biologic differences 

between cell types but also impacted by the depth of coverage, purity, and degree of 

separation from other tissues and cell types currently included in the atlas. To visualize 

cell-type specific DMBs, we created a methylation score that applies to both 

hypomethylated and hypermethylated DMBs. The score calculates the number of fully 

unmethylated read-pairs divided by total coverage for hypomethylated blocks (and vice 

versa for hypermethylated blocks). The heatmaps in Figure 3a and 3b depict up to 100 

blocks with the highest methylation score for each cell-type group.  

 

Differential DNA methylation is closely linked to the regulation of cell-type specific 

functions 

We next sought to understand the role of cell-type specific methylation in shaping cellular 

identity and function. For this we identified genes adjacent to cell-type specific methylation 

blocks and performed pathway analysis of annotated genes using both Ingenuity Pathway 

Analysis (IPA) and GREAT(42, 43). Important biological differences were also observed 

in the gene sets identified based on specific processes unique to the cell types profiled. 
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For example, the biological function of genes associated with immune cell-type specific 

methylation reflects processes of leukocyte cell-cell adhesion, immune response-

regulating signaling, and hematopoietic system development (Supplemental Figure 2). 

In contrast, fatty acid metabolic process, lipid metabolism, and acute phase response 

signaling were identified for hepatocytes. Significantly enriched biological pathways and 

functions for genes associated with differential methylation in each cell type examined 

are provided in Supplemental Table 11. 

 

Cell-type specific DNA blocks are mostly hypomethylated and enriched at 

intragenic regions containing developmental TF binding motifs 

The majority of human and mouse cell-type specific blocks identified here were 

hypomethylated, consistent with other studies(14, 17). In human samples we found 86% 

of cell-type specific DMBs hypomethylated and only 14% hypermethylated. Strikingly, in 

the mouse samples, 98% of cell-type specific DMBs were hypomethylated and only 2% 

were hypermethylated. The schematic in Figure 3c depicts the location of identified 

human cell-type specific hypo- and hyper-methylated blocks. Interestingly, regardless of 

directionality the majority of cell-type specific blocks were located within intragenic 

regions. To assess if the genomic locations of cell-type specific blocks are distinct, we 

compared the locations to the captured blocks that do not vary amongst cell types (Figure 

3d; Supplemental Table 10). We found that for both human and mouse, there was a 

significant enrichment of cell-type specific blocks within intragenic regions relative to other 

captured regions (Fisher’s exact test, p<0.05). There was also a significant relationship 

between directionality and intragenic distribution, with a significantly larger proportion of 

cell-type specific blocks being hypermethylated in exons and hypomethylated in introns 
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(Chi-square, df=3,  p<0.05). The similar distribution of cell-type specific methylation 

blocks in human and mouse suggests a conserved biological function of these genomic 

regions across species. 

 To further explore what common function these identified regions may have in 

human and mouse development, we performed motif analysis using HOMER to see if 

there were commonly enriched transcription factor binding sites (TFBS)(41). MADS motifs 

bound by MEF2 transcription factors were significantly enriched in both human and 

mouse cell-type specific hypomethylated blocks (Figure 3e - left). The MEF2 

transcription factors are established developmental regulators with roles in the 

differentiation of many cell types from distinct lineages. In contrast, Homeobox motifs 

bound by several different HOX TFs were enriched in the human cell-type specific 

hypermethylated blocks (Figure 3e - right). Specifically, HOXB13 was the top TF 

associated with binding at sites within the human hypermethylated DMBs. Recently, 

HOXB13 has been found to control cell state through binding to super-enhancer regions, 

suggesting a novel regulatory function for cell-type specific hypermethylation(48). In 

addition to the common TFBS enriched by all cell-type specific blocks, endothelial-specific 

TFs were found to be enriched in the endothelial-cell hypomethylated blocks, including 

EWS, ERG, Fli1, ETV2/4, and SOX6 (see Figure 4e). Overall, these data indicate 

functions of these cell-type specific blocks that represent cell-specific biology that is still 

underexplored.  

 

Methylation profiling of tissue-specific endothelial cell types reveals epigenetic 

heterogeneity associated with differential gene expression 
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Radiation-induced endothelial damage is thought to be a leading cause for development 

of late-onset complications from cardiovascular disease(49–51). We thus generated 

tissue-specific endothelial methylomes paired with transcriptomes to be able to identify 

damage to distinct populations of microvascular and large vessel endothelial cell types 

including coronary artery, pulmonary artery, cardiac microvascular, and liver sinusoidal 

endothelia. We also made use of publicly available liver sinusoidal endothelial(52) and 

umbilical vein endothelial methylomes(53) to complement our data (Supplemental Table 

S1). Previous studies support considering the heart and lung as an integrated system in 

the development of radiation damage due to the shared cardiopulmonary circulation(4). 

Therefore, we merged cardiac and pulmonary endothelial cell types to generate a joint 

cardiopulmonary endothelial signal and identified the specific methylation blocks for 

cardiopulmonary (CPEC), liver sinusoidal (LSEC), and umbilical vein endothelial 

(HUVEC) cell types as distinct populations. We also identified pan-endothelial methylation 

blocks with methylation status in common to all endothelial cell populations relative to 

other cell-types (Supplemental Figure 6a-f). Pathway analysis of genes associated with 

these genomic regions confirmed endothelial cell identity based on genes involved in the 

regulation of vasculogenesis and angiogenesis (Figure 4a). In addition, unique pathways 

identified the tissue-specific epigenetic diversity of endothelial cell populations from 

different organs (Figure 4d). The DNA methylation status at several tissue-specific blocks 

was found to correspond with RNA expression levels of known endothelial-specific genes, 

confirming the identity of endothelial populations characterized (Figure 4b and 4c, 

Supplemental Table 9)(46, 54–59). For example, hypomethylation was associated with 

increased expression at several pan-endothelial genes, including NOTCH1, ACVRL1, 
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FLT1, MMRN2, NOS3 and SOX7. Likewise, hypomethylation at cardiopulmonary- or liver-

specific endothelial genes was associated with differential expression when comparing 

the two populations to reflect tissue-specific differences. 

 

Methylated cfDNA changes indicate dose-dependent radiation damage in mice 

To explore the relationship between radiation-induced damage in tissues to changing 

proportions of cell-free DNA origins in the circulation, we used mice to model the response 

to exposure from different radiation doses. Mice received upper thorax radiation of 3 Gy 

or 8 Gy relative to sham control, forming three groups for comparison (Figure 1). Tissues 

and serum were harvested 24 hours after the last fraction of treatment and tissues in the 

path of the radiation beam (heart, lungs and liver) were analyzed. H&E-stained sections 

showed a visible, dose-dependent impact of radiation on the tissues (Figure 5a). The 

changes were most apparent in tissue sections of the lungs showing noticeable alveolar 

collapse with increased radiation dose. Liver tissues showed increased fibrosis with 

increased radiation doses and only minor changes were apparent in cardiac tissues 

matching with its higher resilience to radiation. Tissue effects were also assessed through 

qPCR analysis of established indicators of radiation effects, including expression of 

CDKN1A (p21), that exhibited a dose-dependent increase in expression in response to 

radiation in all tissues (p<0.05, Kruskal-Wallis Test) (Figure 5b, Supplemental Figure 

4)(60).  

To assess whether these damages of heart, lung, and liver are reflected in altered 

cfDNA patterns in the circulation, we used capture sequencing of CpG containing cfDNA 

fragments. For the data analysis we applied the above-described cell-type specific 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.04.12.487966doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.487966
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

methylation blocks derived from the mouse methylation atlas. We found a significant 

dose-dependent increase in lung endothelial, cardiomyocyte and combined solid organ 

cfDNA across all three treatment groups that correlated with radiation-induced cell death 

in the corresponding tissues (p<0.05, Kruskal-Wallis Test) (Figure 5c and Supplemental 

Figure 8g). The dose-dependent increase in hepatocyte cfDNA was not statistically 

significant and immune cell cfDNA showed no change between treatment groups 

(p≥0.05, Kruskal-Wallis Test) (Figure 5c and Supplemental Figure 8f). We conclude 

that changes in cfDNA fragments in the circulation can reveal the cellular source of 

radiation-induced damage in tissues. 

 

Radiation treatment of patients with breast cancer  

To evaluate whether changes in cfDNA patterns could indicate damages to tissues in 

patients treated with radiation, we collected serum samples from randomly selected 

breast cancer patients at three timepoints during their standard-of-care radiation therapy 

after surgery (Figure 1). A baseline sample was taken for each patient before onset of 

radiation therapy and a second End-Of-Treatment (EOT) sample was taken 30 minutes 

after the last treatment. Finally, a recovery sample was taken one month after completion 

of radiation therapy. Demographic information and clinical characteristics of patients 

enrolled in this study are in Supplemental Table 8. 

 

Methylated cfDNA changes provide an estimate of tissue dose to indicate radiation-

induced damages to healthy tissues  
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Due to close proximity with the target treatment area, the heart and lungs are common 

organs-at-risk for breast cancer patients undergoing radiation therapy (Figure 6a). To 

assess therapy-induced lung damage, we examined cfDNA from serum for the presence 

of lung epithelial DMBs. Interestingly, we did not observe a significant increase in lung 

epithelial cfDNA across all patients (p≥0.05, Friedman Test) (Figure 6b). However, a few 

patients showed increased lung epithelial cfDNA indicating lung damage that correlated 

with increasing dose and volume of the lungs targeted (Figure 6c). Changes in lung 

epithelial cfDNA after radiation correlated with the volume of the ipsilateral lung receiving 

20 Gy doses (Lung V20) (Pearson’s r = 0.78, p <0.05). In addition to lung injury, 

cardiovascular disease is one of the most serious complications from radiation exposure 

that is associated with increased morbidity and mortality(6). Through deconvolution using 

cardiopulmonary endothelial (CPEC) and cardiomyocyte-specific DMBs, we found 

increased CPEC and cardiomyocyte cfDNA in serum indicating significant cardiovascular 

cell damage across all breast cancer patients (p<0.05, Friedman Test) (Figure 6d and 

f). Changes in total endothelial cfDNA after radiation correlated with the average volume 

of the lung receiving a 5 Gy dose (Lung V5 Mean) (Pearson’s r = 0.71, p <0.05) (Figure 

6g). Surprisingly, cardiomyocyte-specific methylated DNA in the circulation correlated 

with the maximum radiation dose to the heart (Pearson’s r = 0.63, p <0.05), but not the 

mean dose to the heart (Pearson’s r = -0.09, p≥0.05) (Figure 6e). This suggests that 

radiation-induced damage of cardiomyocytes requires a threshold dose indicating the 

relative resilience of this cell type compared to epithelial and endothelial cells from the 

heart and lungs.  
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Radiation-induced hepatocyte and liver endothelial cfDNAs in patient with right- 

versus left-sided breast cancer  

While liver damage is not a common radiation-induced toxicity in breast cancer patients, 

a substantial dose may still be administered to the liver, especially with right-sided tumors 

(Figure 6a). We used the top hepatocyte (n=200) and liver sinusoidal endothelial DNA 

methylation blocks to assess the sequence data for the presence of liver-derived cfDNA. 

Surprisingly, in patients receiving radiation treatment of right-sided breast cancer, an 

increase in hepatocyte plus liver sinusoidal endothelial methylated DNA in the circulation 

indicated significant radiation-induced cellular damage in the liver (p<0.05, Wilcoxon 

matched-pairs signed rank test) (Figure 6h and i). Elevated levels of either hepatocyte 

and/or liver sinusoidal endothelial cfDNA were detected in seven of the eight breast 

cancer patients with right-sided tumors. In contrast, there was no significant increase in 

hepatocyte or liver sinusoidal endothelial cfDNA in patients with left-sided breast cancer 

(p≥0.05, Wilcoxon matched-pairs signed rank test).  

 

Distinct endothelial and epithelial damages from radiation 

We observed distinct epithelial and endothelial cell-type responses to radiation across the 

different tissue cfDNAs profiled. Different responses to radiation were observed when 

comparing hepatocyte to lung epithelial damages (Fig 6b versus 6h), demonstrating the 

ability of methylated cfDNA to distinguish between tissue-specific epithelial cell types from 

serum samples. Likewise, analysis for tissue-specific endothelial populations revealed 

differences in cardiopulmonary microvascular and liver sinusoidal endothelial responses 

to radiation (Fig 6f  versus 6i). In general, there was greater magnitude of damage to the 
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combined endothelium compared to the epithelium across different organs 

(Supplemental Figure 8e). The endothelium forms a layer of cells lining blood as well as 

lymphatic vessels and turnover of this cell type may contribute to the high amplitude of 

signal detected from serum(24). This could, however, also be a result of the different 

sensitivities of endothelial versus epithelial cell types to radiation-induced damage. There 

was a five-fold higher signal from cardiopulmonary endothelial cfDNA compared to lung 

epithelial cfDNA. Also, in comparison to lung epithelial- and cardiopulmonary endothelial-

derived cfDNA, sustained injury and delayed recovery is indicated by elevated 

cardiomyocyte cfDNA at the recovery time point (two-fold elevation from baseline) 

(Figure 6d). This may reflect important differences in cell turnover rates leading to 

differential processes of regeneration and repair in these cell types. Notably, one month 

after completion of radiation therapy, lung epithelial and cardiopulmonary endothelial 

damage signatures detected from cfDNA had returned to baseline levels whereas 

sustained higher cfDNA from cardiomyocytes and liver cell-types indicates lingering 

tissue remodeling. Taken as a whole, these findings demonstrate applicability of this 

approach to uncover distinct cellular damages in different tissues during the course of 

treatment by the analysis of blood samples.  

 

Discussion 

This study demonstrates the feasibility of tissue-of-origin analysis of cell-free methylated 

DNA to monitor tissue responses to radiation exposure. The assignment of DNA 

fragments extracted from serum samples from patients undergoing treatment as well as 

from experimental animals to specific cell types required in-depth analysis of tissue- and 
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cell-type DNA methylation patterns. We expected to at least identify a set of biomarkers 

from this analysis and were positively surprised by the significant association of the cell-

type specific DNA methylation blocks with cell-type specific gene expression, transcription 

factor binding motifs and signaling pathway regulation. We were particularly intrigued by 

how well-conserved cell-type specific DNA methylation appears to be across different 

individuals suggesting broad applicability in the monitoring of tissue damage in diverse 

patient populations. It appears that disease- or ageing-related changes in DNA 

methylation occur outside the cell-type specific blocks and thus will exert their impact 

without altering the features defining a particular cell type.   

 To enhance the quality and sensitivity of the analyses, we developed human and 

mouse reference methylation atlases that were tailored to this application and study 

design. We optimized a capture-sequencing methodology for low-integrity cfDNA 

samples from human and mouse serum samples, achieving increased sequencing 

coverage and sensitivity of deconvolution applying a fragment-level probabilistic model. 

These improvements allow for accurate cellular assignment of cfDNA fragments in serum. 

When evaluating our approach, we also directly compared cfDNA extracted from serum 

and plasma samples harvested from the same donor. The results were highly correlated 

and we found slightly less variation across donors in the cell-type proportions contributing 

to the cfDNA extracted from serum compared to plasma (details in the Supplemental 

Methods section; Supplemental Figure 9). Overall, the sequencing-based fragment-

level deconvolution model allows for accurate prediction of contributions from solid organ 

cell types.  
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Comparing the origins of elevated cfDNA after radiation showed similar changes 

in both human and mouse serum samples, providing further validation. In both human 

and mouse, there was a significant increase in endothelial and cardiomyocyte cfDNA after 

radiation. Likewise, there was an overall increase in cfDNA derived from any solid-organ 

tissue post-radiation (Supplemental Figure 8). We also detected significantly increased 

breast basal and luminal epithelial cfDNA across all breast cancer patients 

(Supplemental Figure 8c and d). While there wasn’t a significant dose-dependent 

increase, there was a parallel increase in mammary epithelial cfDNA in mice treated with 

radiation (3Gy and 8Gy combined) compared to sham control (Supplemental Figure 8h). 

The total concentration of cfDNA was elevated in some breast cancer patients at the end 

of treatment (EOT) as well, suggesting an overall increase in cfDNA shortly after radiation 

treatment in some patients (Supplemental Table 7). However, this trend was not 

consistent for all patients. Similarly, changes in mouse cfDNA concentration with 

increasing radiation dose were not significant (p≥ 0.05, Kruskal-Wallis Test; 

Supplemental Table 6) as also found by others(61). However, despite similarities, it was 

difficult to fully align the human and mouse results given the scarcity of deep-sequencing 

WGBS data from purified murine cell types.  

We generated tissue-specific endothelial methylomes to profile differing 

sensitivities of cardiopulmonary microvascular and liver sinusoidal endothelial cells to 

radiation. In many tissues, the vascular endothelium is among the first cell types known 

to be damaged(4, 62). Likewise, our analysis indicated greater damage to the 

endothelium compared to epithelium in different organs. However, the role of radiation-

induced endothelial damage in mediating acute and chronic adverse effects has yet to be 
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fully understood. While there are important tissue-specific differences between these 

endothelial cell populations reflected by several distinct methylation patterns identified in 

our atlas, we were unsure if we would be able to discriminate contributions between these 

cell-types in the circulation given the high similarity of methylation patterns across all 

endothelial cell-types derived from common lineages (Figure 2a, b). We were pleasantly 

surprised by the diverse injury patterns observed juxtaposing cardiopulmonary 

endothelial to liver sinusoidal endothelial signals that were consistent with our 

expectations based on corresponding clinical data. Recent studies suggest that 

compromised endothelial cell function also impairs wound healing by depriving tissues of 

signals necessary for regeneration and contributing to accelerated aging of the 

hematopoietic and vascular systems(63–65). Notably, one month after completion of 

radiation therapy we found that the majority of  damage signatures in the circulation had 

returned to baseline levels whereas increased turnover of cardiomyocytes and liver cell-

types is indicated by sustained elevation of the respective cfDNAs likely due to ongoing 

tissue remodeling. Exploration of these tissue- and cell-type specific differences may 

shed light on previously unknown mechanisms of radiation-induced damages.   

The liver is not a common organ-at-risk for radiation-induced toxicity in breast 

cancer, and we were surprised to find an increase in hepatocyte and liver sinusoidal 

endothelial cell methylated DNA in the circulation of patients receiving radiation treatment 

for right-sided breast cancer. Previous studies have not found a meaningful relationship 

between breast cancer RT and overt liver fibrosis, even at doses higher than 40 Gy; 

although, increased hepatic exposure is expected in radiation treatment of patients with 

right-sided breast cancer(66). In comparison to previous methods that did not detect 
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radiation-induced liver damage, our finding demonstrates the sensitivity of circulating cell-

free methylated DNA to identify previously unknown cell types and tissues impacted by 

radiation treatment. Despite being at subclinical levels, this may become relevant in 

patients with hepatotoxic therapy regimens or co-morbidities.  

While the methylated cfDNA signals indicate damage to liver cells associated with 

treatment of right-sided tumors, it is unknown if this contributes to clinically impactful 

adverse effects. Interestingly, three patients (RT-102, RT-103, RT-107) presented with 

grade 2 skin toxicity based on Common Terminology Criteria for Adverse Events (CTCAE 

V5) within our study timeline up to one month after completion of radiation therapy. We 

detected significantly increased breast basal and luminal epithelial damages in these 

three patients to correlate with the clinical presentation (Supplemental Figure 8c and 

d). We also detected elevated breast epithelial injury in patients that underwent 

mastectomy, were treated with proton beam therapy, and had higher overall dose 

administered – all clinical factors associated with elevated risk of skin toxicity. With 

adaptive radiation planning, the potential to modify ongoing treatment could tailor therapy 

to individual needs, both increasing dose in more tolerant patients and decreasing dose 

in sensitive patients between fractions to optimize efficacy while also minimizing toxicity. 

There are many factors to consider when assessing the risk for adverse events, including 

patient characteristics, pre-existing disease, and treatment-related risk factors, such as 

dose, tumor location and effects of combination therapy. Cell-free DNA analyses may be 

used to compare these different cohorts as well as distinct toxicity profiles associated with 

3D-CRT to other more recent RT techniques, such as proton beam therapy (PBT) and 

intensity-modulated radiation therapy (IMRT). Likewise, exploration of regional variation 
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in tissue-specific response to radiation may offer new opportunities to reduce normal 

tissue side effects(67). 

As proof of concept, radiation treatment served as a powerful tool to validate the 

cell-type specific methylation signatures developed in the atlases and demonstrate 

application to detect cellular injury in the circulation. In mice, we performed paired tissue 

and serum analysis allowing for a direct comparison. Similarly, treatment planning for 

breast cancer patients provided an estimate of the organ volume impacted and radiation 

dose level for organs-at-risk from radiation damage, including the heart and lungs. Given 

this tissue-informed knowledge, we observed a striking degree of correlation between 

dose and cell-type contributors to the circulation after radiation, supporting that 

methylated cfDNA changes can indicate the actual tissue dose administered providing an 

objective measure of cellular injury in vivo. We conclude that the minimally invasive 

detection of cell-free methylated DNA from serum samples can indicate organ-specific 

damages, biologically effective radiation doses received by tissues and reveal previously 

unknown cell types impacted by radiation treatment. 

 

Methods  

Human BC patient serum sample collection  

Serial serum samples were collected from 15 breast cancer patients at Baseline (before 

radiation treatment), End-of-Treatment (EOT; 30 minutes after the last radiation 

treatment), and Recovery (one month after cessation of radiation treatment), thus 

allowing for a within-patient internal control and baseline. A schematic of the time series 

for sample collection can be found in Figure 1. For serum isolation, peripheral blood (~8-
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12 mL) was collected in red-top venous puncture tubes and allowed to clot at room 

temperature for 30 minutes before centrifugation at 1500 x g for 20 min at 4ºC to separate 

the serum fraction. Patients received either three-dimensional conformal RT (3D-CRT) or 

a combination of proton beam therapy (PBT) and 3D-CRT. Patient characteristics and 

treatment details including radiation dosimetry are summarized in Supplemental Tables 

8 and 12. 

 

Mouse serum and tissue collection 

C57Bl6 mice (n=18) were irradiated to the upper thorax at different doses (sham control, 

3Gy, 8Gy) for 3 consecutive treatments. Serum and tissues were collected 24 hours after 

the last radiation dose. For serum isolation, blood was collected via cardiac puncture 

(~1mL) and allowed to clot at room temperature for 30 minutes before centrifugation at 

1500 x g for 20 min at 4ºC to separate the serum fraction. Heart, lung, and liver tissues 

were harvested and sectioned to be both flash frozen and formalin fixed for subsequent 

analysis.  

 

Cell isolation to generate reference methylomes  

Reference methylomes were generated for mouse immune cell types and human 

endothelial cell types to complement publicly available datasets. Peripheral blood and 

bone marrow were isolated and spleens from healthy C57Bl6 mice were dissociated to 

single cells and FACS sorted using cell-type specific antibodies. Buffy coat (n=4), bone 

marrow (n=3), CD19+ B cell (n=1), CD4 T cell (n=1), CD8 T cell (n=1) and Gr1+ Neutrophil 

(n=1) methylomes were generated after cell isolation using the following antibodies: FITC 
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anti-mouse CD45 (cat#103107), Alexa Fluor 647 anti-mouse CD3 (cat#100209), Brilliant 

Violet 711 anti-mouse CD4 (cat#100549), Brilliant Violet 421 anti-mouse CD8a 

(cat#100737), PE anti-mouse CD19 (cat#152407), PE/Cy7 anti-mouse Ly-6G/Ly-6C (Gr-

1) (cat#108415) (all BioLegend 1:20). Cryopreserved passage 1 human liver sinusoidal 

endothelial cells (LSEC) were purchased from ScienCell research laboratories 

(SKU#5000). Purity was determined by immunofluorescence with antibodies specific to 

vWF/Factor VIII and CD31(PECAM). Cryopreserved passage 2 human coronary artery 

(HCAEC SKU#C-14022), cardiac microvascular (HCMEC SKU#C-14029), and 

pulmonary artery endothelial cells (HPAEC SKU#C-14024) were isolated from single 

donor healthy human tissues purchased from PromoCell. Paired RNA-seq data was 

generated from the same cell-populations used for DNA methylation profiling to validate 

the identity of purchased cell populations through analysis of cell type expression 

markers. 

 

Isolation of circulating cell-free DNA (cfDNA)  

Circulating cell-free DNA was extracted from 3 to 4 mL human serum or plasma or 0.5 

mL mouse serum, using the QIAamp Circulating Nucleic Acid kit (Qiagen) according to 

the manufacturer’s instructions. Cell-free DNA was quantified via Qubit fluorometer using 

the dsDNA High Sensitivity Assay Kit (Thermo Fisher Scientific). Fragment size 

distribution of isolated cfDNA was validated on the 2100 Bioanalyzer TapeStation (Agilent 

Technologies). Additional size selection using Beckman Coulter beads was applied to 

remove high-molecular weight DNA reflective of cell-lysis and leukocyte contamination as 

previously described(33). Size distribution of cell-free DNA fragments was re-verified 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.04.12.487966doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.487966
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

following purification (Supplemental Figure 9).  Additional details can be found in 

Supplemental Methods.  

 

Isolation and fragmentation of genomic DNA  

Genomic DNA from tissues was extracted with the DNeasy Blood and Tissue Kit (Qiagen) 

following the manufacturer’s instructions and quantified via the Qubit fluorometer dsDNA 

BR Assay Kit (Thermo Fisher Scientific). Genomic DNA was fragmented via sonification 

using a Covaris M220 instrument to the recommended 150-200 base pairs before library 

preparation. Lambda phage DNA (Promega Corporation) was also fragmented and 

included as a spike-in to all DNA samples at 0.5%w/w, serving as an internal 

unmethylated control. Bisulfite conversion efficiency was calculated through assessing 

the number of unconverted C’s on unmethylated lambda phage DNA. The SeqCap Epi 

capture pool contains probes to capture the lambda genomic region from base 4500 to 

6500.  

 

Bisulfite capture-sequencing library preparation  

Bisulfite capture-sequencing libraries were generated from either cfDNA or fragmented 

genomic DNA using the same protocol. As a first step, WGBS libraries were generated 

using the Pico Methyl-Seq Library Prep Kit (Zymo Research) with the following 

modifications: Bisulfite-conversion was carried out using the EZ DNA Methylation Gold 

kit (Zymo Research) instead of the EZ DNA Methylation-Lightning Kit. For mouse 

samples, cfDNA from two mice in the same group was pooled as the input of library 

preparation. An additional 2 PCR cycles were added to the recommended cycle number 
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based on the total amounts of input cfDNA. WGBS libraries were eluted in 15uL 10mM 

Tris-HCl buffer, pH 8. Library quality control was performed with an Agilent 2100 

Bioanalyzer and quantity determined via the KAPA Library Quantification Kit (KAPA 

Biosystems). 

Cell-free WGBS libraries were pooled to meet the required 1ug DNA input 

necessary for targeted enrichment. However, no more than four WGBS libraries were 

pooled in a single hybridization reaction and the 1ug input DNA was divided evenly 

between the libraries to be multiplexed. Hybridization capture was carried out according 

to the SeqCap Epi Enrichment System protocol (Roche NimbleGen, Inc.) using SeqCap 

Epi CpGiant probe pools for human samples and SeqCap Epi Developer probes for 

mouse samples with xGen Universal Blocker-TS Mix (Integrated DNA Technologies, 

USA) as the blocking reagent. Washing and recovering of the captured library, as well as 

PCR amplification and final purification, were carried out as recommended by the 

manufacturer. The capture library products were assessed by Agilent Bioanalyzer DNA 

1000 assays (Agilent Technologies, Inc.). Bisulfite capture-sequencing libraries with 

inclusion of 15-20% spike-in PhiX Control v3 library (Illumina) were clustered on an 

Illumina Novaseq 6000 S4 flow cell followed by 150bp paired-end sequencing. 

 

Bisulfite sequencing data alignment and preprocessing  

Paired-end FASTQ files were trimmed using TrimGalore (V 0.6.6) with parameters “--

paired -q 20 --clip_R1 10 --clip_R2 10 --three_prime_clip_R1 10 --three_prime_clip_R2 

10” (https://github.com/FelixKrueger/TrimGalore). Trimmed paired-end FASTQ reads 

were mapped to the human genome (GRCh37/hg19 build) using Bismark (V 0.22.3)(34) 
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with parameters “--non-directional”, then converted to BAM files using Samtools (V 

1.12)(35). BAM files were sorted and indexed using Samtools (V1.12). Reads were 

stripped from non-CpG nucleotides and converted to BETA and PAT files using wgbstools 

(V 0.1.0), a tool suite for working with WGBS data while preserving read-specific intrinsic 

dependencies (https://github.com/nloyfer/wgbs_tools)(22, 36).  

 

Reference DNA methylation data from healthy tissues and cells   

Controlled access to reference WGBS data from normal human tissues and cell types 

was requested from public consortia participating in the International Human Epigenome 

Consortium (IHEC)(37) and upon approval downloaded from the European Genome-

Phenome Archive (EGA), Japanese Genotype-phenotype Archive (JGA), database of 

Genotypes and Phenotypes (dbGAP), and ENCODE portal data repositories. Reference 

mouse WGBS data from normal tissues and cells were downloaded from selected GEO 

and SRA datasets. Additional information and citation of reference methylation data used 

in this study can be found in Supplemental Methods and Supplemental Tables 1 and 2.   

 

Segmentation and clustering analysis 

We segmented the genome into blocks of homogenous methylation as described by 

Loyfer et al 2022 using wgbstools (with parameters segment --max_bp 5000)(22, 36). In 

brief, a multi-channel Dynamic Programming segmentation algorithm was used to divide 

the genome into continuous genomic regions (blocks) showing homogenous methylation 

levels across multiple CpGs for each sample. We applied the segmentation algorithm to 

297 human reference WGBS methylomes and retained 351,395 blocks covered by the 
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hybridization capture panel used in the analysis of cfDNA that captures 80Mb (~20% of 

CpGs).  Likewise, segmentation of 109 mouse WGBS datasets from healthy cell types 

and tissues identified 1,344,889 blocks covered by the mouse hybridization capture panel 

that captures 210 Mb (~75% of CpGs). The human blocks had a median length of 326 bp 

(interquartile range, IQR = 890 bp) and 8 CpGs (IQR = 14 CpGs). Similarly, the mouse 

blocks had a median length of 770 bp (IQR =1,252 bp) and 7 CpGs (IQR = 7 CpGs). The 

hierarchical relationship between reference tissue and cell type WGBS datasets was 

visualized as a tree dendrogram. The top 30,000 most variable methylation blocks 

containing at least three CpG sites and coverage across 90% of samples were selected. 

We computed the average methylation for each block and sample using wgbstools (--

beta_to_table). Trees were assembled using the unweighted pair-group method with 

arithmetic mean (UPGMA)(38), using scipy (V 1.7.1)(39) and L1 distance, and then 

visualized in R with the ggtree package (V 2.4.1)(40). The similarity between samples 

was assessed by the degree of variation in distance between samples of the same cell-

type (average 23,056) compared to samples between different cell-types (average 

273,018). Dimensional reduction was also performed on the selected blocks using the 

UMAP package (V 0.2.8.2.0). Default UMAP parameters were used (15 neighbors, 2 

components, Euclidean metric, and a minimum distance of 0.1). 

 

Identification of cell-type specific methylation blocks  

Tissue and cell-type specific methylation blocks were identified from reference WGBS 

data using custom scripts (Supplemental code and Supplemental Methods). We 

performed a one-vs-all comparison to identify differentially methylated blocks unique for 
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each group. This was done separately for human and mouse. From this we first identified 

blocks covering a minimum of three CpG sites, with length less than 2Kb and at least 10 

observations. Then, we calculated the average methylation per block/sample, as the ratio 

of methylated CpG observations across all sequenced reads from that block. Differential 

blocks were sorted by the margin of separation, termed “delta beta”, defined as the 

minimal difference between the average methylation in any sample from the target group 

vs all other samples. We selected blocks with a delta-beta ≥ 0.4 for human and ≥ 0.35 

for mouse. Additional separation of endothelial cell populations from different tissues was 

performed to identify unique markers for liver endothelial versus cardiopulmonary 

endothelial blocks that do not overlap. Separately, pan-endothelial blocks were identified 

with methylation status in common to all endothelial cell populations. For some cell-types, 

a reduced subset of blocks (ie. top 200) were used for deconvolution in the circulation if 

the original number identified was greater than one standard deviation above the mean. 

Selected human and mouse blocks for cell types of interest can be found in 

Supplemental Tables 3 and 4.  

 

Likelihood-based probabilistic model for fragment-level deconvolution  

The cell type origins of cfDNA were determined using a probabilistic fragment-level 

deconvolution algorithm.  Using this model, the likelihood of each cfDNA molecule was 

calculated using a 4th-order Markov Model, by which methylation of each CpG site directly 

depends on up to four adjacent previous sites within each fragment. We estimated these 

parameters for each differential block at every tissue and cell-type, and then used Bayes’ 

theorem to infer the posterior probability of cell-of-origin for each fragment, based on its 
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complete methylation pattern. The model was trained on reference bisulfite-sequencing 

data from normal cells and tissues of known identity to learn the distribution of each 

marker in the target tissue/cell population of interest compared to background. Then the 

model was applied to predict the origins of each cfDNA molecule. The joint probability of 

each cfDNA molecule (methylation patterns and cellular origin) is calculated based on the 

likelihood of the methylation pattern (using the parameters for that cell type) times the 

prior probability that a read is originating from the target cell type. A prior of 0.1 was used 

for the combined endothelial cell-type group and 0.85 for the combined immune cell-type 

group as expected based on findings in previous reports(24). A prior of 0.05 was used for 

all other solid organ cell-types. Finally, each fragment is assigned to the cell type of origin 

with the maximal posterior probability (“hard” assignment). The proportion of molecules 

(fragments) assigned to the tissue of interest across all cell-type specific markers was 

then averaged and used to determine the relative abundance of cell-free DNA derived 

from that tissue in each respective sample. We then adjusted the resulting proportions 

from all cell types to have a sum of 1 by imposing a normalization constraint. Tissue-

specific endothelial cell-types were normalized within the predicted total endothelial 

proportion identified by pan-endothelial markers in common to all endothelial cell-types.  

Predicted cell-type proportions were converted to genome equivalents and reported as 

Geq/mL through multiplying the concentration of cfDNA (ng/mL) by the mass of the 

human haploid genome 3.3 x 10-12 grams or the mouse haploid genome equivalent of 3.0 

x 10-12 grams.  

In-silico simulations and WGBS deconvolution 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.04.12.487966doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.487966
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

In silico mix-in simulations were performed using wgbstools (V 0.1.0)(36) to validate the 

fragment-level deconvolution algorithm at the identified cell-type specific blocks 

(Supplemental Figures 3, 5, 6 and 7) as previously described(22, 24). For each cell type 

profiled, we mixed known proportions of target fragments into a background of leukocyte 

fragments using wgbstools mix_pat. The leukocyte fragments were obtained from n=4 

buffy coat samples in mouse and n=5 buffy coat samples in human. We performed three 

replicates for each admixture ratio assessed (0.05%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 

15%), which were analyzed as described above, and present the average predicted 

proportion and standard deviation across all replicates. Model accuracy was assessed 

through correct classification of the actual percent target mixed.  

 

Functional annotation and pathway analysis  

Cell-type specific methylation blocks were annotated and motif analysis was performed 

using HOMER (V4.11.1) (http://homer.ucsd.edu/homer/)(41) using the annotatePeaks.pl 

and findMotifsGenome.pl functions. The top 5 motifs based on p-value were selected from 

each analysis. Pathway analysis of genes adjacent to identified tissue and cell-type 

specific methylation blocks was performed using Ingenuity Pathway Analysis (IPA)(42) 

(Qiagen) and Genomic Regions Enrichment of Annotations Tool (GREAT)(43). 

GeneSetCluster was used to cluster identified gene-set pathways based on shared 

genes(44).  

 

Genome Browser visualization  
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Endothelial methylomes and paired transcriptomes were uploaded as custom tracks for 

visualization on the UCSC genome browser(45). Methylomes were converted to bigwig 

format using the wgbstools beta2bw. Enrichment for chromatin marks was assessed 

through analysis of published H3K27ac and H3K4me3  ChIP-seq data(46). GTEx single 

nucleus RNAseq data was acquired from the GTEx v9 Portal (gtexportal.org)(47) and 

analyzed using R (V 4.1.3). Counts per ten thousand reads (CP10K) of NOS3 were log-

transformed and averaged for each specific cell type. Color represents the general cell 

type and intensity of color represents the number of cells expressing NOS3. 

 

Statistics  

Statistical analyses for group comparisons and correlations were performed using Prism 

(GraphPad Software, Inc., United States) and R (V 4.1.3). A correlation analysis was 

performed to assess relationship between changing cell-free methylated DNAs and dose 

using Pearson’s Correlation Coefficient. Statistically significant comparisons are shown, 

with significance defined as P less than 0.05. 

 

Study Approval  

Breast cancer patients undergoing adjuvant radiation therapy were enrolled and provided 

signed informed consent in this IRB approved study at Medstar Georgetown University 

Hospital (IRB protocol # 2013-0049). Animal studies were approved by the Georgetown 

University IACUC (protocol #2017-0029). 
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Figure 1. Experimental paradigm using cell-free methylated DNA in blood to identify 

cellular origins of radiation-induced tissue damages. Serial serum samples were collected 

from breast cancer patients treated with radiation. In parallel, paired serum and tissue samples 

were collected from mice receiving radiation at 3Gy or 8Gy doses compared to sham control. Cell-

free DNA (cfDNA) methylome profiling of serum samples was performed using hybridization 

capture-sequencing of bisulfite-treated cfDNA. Cell-type specific methylation blocks were 

identified from Whole Genome Bisulfite Sequencing (WGBS) reference data of healthy tissues 

and used to identify the cellular origins of the serum cfDNA.  
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Figure 2. Characterization of human and mouse cell-type specific reference methylation 

data. (a) Tree dendrogram depicting the relationship between different cell types. Whole Genome 

Bisulfite Sequencing (WGBS) datasets were included in the analysis. Methylation status of the 

top 30,000 variable blocks was used as input for the unsupervised hierarchical clustering. 

Samples from cell types with greater than n=3 replicates were merged. (b, c) UMAP projection of 

human (b) and mouse (c) WGBS reference datasets. Abbreviations: CAEC = coronary artery 

endothelial cell, CMEC = cardiac microvascular endothelial cell, CPEC = joint cardio-pulmonary 

endothelial cell, HUVEV = human umbilical vein endothelial cell, LSEC = liver sinusoidal 

endothelial cell, MK = megakaryocyte, NK = natural killer cell, PAEC = pulmonary artery 

endothelial cell, PMEC = pulmonary microvascular endothelial cell. 
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Figure 3. Cell-type specific DNA blocks are mostly hypomethylated, enriched at intragenic 

regions and developmental transcription factor (TF) binding motifs. (a-b) Heatmaps of 

differentially methylated cell-type specific blocks identified from reference WGBS data compiled 

from healthy cell types and tissues in human (a) and mouse (b). Each cell in the plot marks the 

methylation score of one genomic region (rows) at each of the 20 cell types in human and 9 in 

mouse (columns). Up to 100 blocks with the highest methylation score are shown per cell type. 

The methylation score represents the number of fully unmethylated or methylated read-pairs / 

total coverage for hypo- and hyper-methylated blocks, respectively. (c) Schematic diagram 

depicting location of human cell-type specific hypo- and hyper-methylated blocks. Genomic 

annotations of cell-type specific methylation blocks were determined by analysis using HOMER. 

(d) Distribution of human (left) and mouse (right) cell-type specific methylation blocks relative to 

genomic regions used in the hybridization capture probes. Captured blocks with less than 5% 

variance across cell types represent blocks without cell-type specificity and were used as 

background. (e) Top 5 TF binding sites enriched among cell-type specific hypo- and hyper-

methylated blocks in human (top) and mouse (bottom), using HOMER motif analysis. As above, 

captured blocks with less than 5% variance across cell types were used as background. 
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Figure 4. Methylation profiling of tissue-specific endothelial cell types reveals epigenetic 

heterogeneity associated with differential gene expression and biological functions. (a) 

Functions of genes adjacent to endothelial-specific methylation blocks (all p<0.05). Blue color 

indicates nearby hypomethylated regulatory blocks. Yellow color indicates nearby 

hypermethylated regulatory blocks. (b) Example of the NOS3 locus specifically unmethylated in 

endothelial cells. This endothelial-specific, differentially methylated block (DMB; highlighted in 

light blue) is 157 bp long (7 CpGs), and is located within the NOS3 gene, an endothelial-specific 

gene (upregulated in paired RNA-sequencing data as well as in vascular endothelial cells, GTEx 

inset). The alignment from the UCSC genome browser (top) provides the genomic locus 

organization and is aligned with the average methylation (purple tracks) across cardiomyocyte, 

lung epithelial, liver sinusoidal endothelial (LSEC), cardiopulmonary endothelial (CPEC), 

hepatocyte, and immune (PBMC) samples (n=3 / cell-type group). Results from RNA-sequencing 

generated from paired cell-types are depicted (green tracks) as well as peak intensity from 

H3K27ac and H3K4me3 published ChIP-seq data generated in endothelial cells (blue tracks).  (c) 

Expression levels of genes adjacent to tissue-specific endothelial methylation blocks. Expression 

data were generated from paired RNA-sequencing of the same cardiopulmonary endothelial 

(CPEC) and liver sinusoidal endothelial (LSEC) cell populations used to generate methylation 

reference data. Pan-endothelial genes upregulated in both populations (ALL) are identified as 

common endothelial-specific methylation blocks to both LSEC and CPEC tissue-specific 

endothelial populations. (d) Pathways related to the biological function of genes containing 

endothelial-specific methylation blocks (all p<0.05). Unique pathways in distinct tissue-specific 

endothelial cells are highlighted in distinct colors. (e) Top 5 transcription factor binding sites 

enriched amongst endothelial-specific hypomethylated blocks, using HOMER de novo and known 

motif analysis. The background for the HOMER analysis consisted of 3,589 non-endothelial cell-

type specific hypomethylated blocks. Abbreviations: CPEC = cardio-pulmonary endothelial cell, 

HUVEV = human umbilical vein endothelial cell, LSEC = liver sinusoidal endothelial cell. 
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Figure 5. Dose-dependent radiation damage in mouse tissues correlates with the origins 

of methylated cfDNA in the circulation. (a) Representative H&E staining of lung, heart, and 

liver tissues from mice treated with 3Gy or 8Gy radiation compared to sham control. Scale bar, 

200 𝜇m. (b) qPCR analysis of CDKN1A (p21) mRNA. The expression in each sample was 

normalized to ACTB and is shown relative to the expression in the sham control. Mean ± SD; N 

= 3. Kruskal-Wallis test was used for comparisons amongst groups; lung tissue p=0.004, heart 

tissue p=0.025, liver tissue p=0.004. (c) Lung endothelial, cardiomyocyte and hepatocyte 

methylated cfDNA in the circulation of mice treated with 3Gy and 8Gy radiation compared to sham 

control expressed in Genome Equivalents per mL serum (Geq/mL). CfDNA was extracted from 

18 mice (n=6 in each group) with cfDNA from 2 mice pooled in each methylome preparation. 

Mean ± SD; N = 3 independent methylome preparations. Kruskal-Wallis test was used for 

comparisons amongst groups. ns, P ≥0.05; *, P < 0.05; lung endothelial p=0.01, cardiomyocyte 

p=0.01, hepatocyte p=0.13. 
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Figure 6. Methylated cell-type specific cfDNAs provide an estimate of tissue dose to indicate 
radiation-induced tissue damages in breast cancer patients. (a) Representative 3D-CRT 

treatment planning for patients with right-sided (i and ii) and left-sided (iii and iv) breast cancer, 

respectively. Computed tomography simulation of coronal and sagittal images depicting the anatomic 

position of the target volume in relation to nearby organs. The color map represents different radiation 

dose levels or isodose lines (Green: 95% of prescription dose, yellow: 90% isodose line, cyan: 80% 

isodose line, orange: 70% isodose line, brown: 50% isodose line). (b, d, f) Lung epithelial, 

cardiomyocyte, and cardiopulmonary endothelial (CPEC) cfDNA (in Geq/mL) in serum samples 

collected at different times. Fragment-level deconvolution used lung epithelial (n=69), cardiomyocyte 

(n=375), and CPEC specific methylation blocks (n=99), respectively. Friedman test was performed 

comparing paired results at baseline, EOT, and recovery timepoints. The results were considered 

significant when *p < 0.05; ns, p ≥ 0.05; lung epithelial p=0.99, cardiomyocyte p= 0.01, 

cardiopulmonary endothelial p=0.03. Mean fold change in lung epithelial, cardiomyocyte, and CPEC 

cfDNA at EOT and recovery relative to baseline levels is shown in bold. Data presented as mean ± 

SEM; N = 15. (b) Correlation of lung epithelial cfDNA with dosimetry data. EOT/Baseline represents 

the fraction of lung epithelial cfDNA post-radiation at end-of-treatment (EOT) relative to baseline levels. 

The volume of the lung receiving 20 Gy dose is represented by Lung V20 (%). One patient (RT108) 

had a five-fold increase in lung epithelial methylated DNA after radiation relative to all other patients 

and thus was treated as an outlier and removed from correlation analysis (with inclusion of RT108, 

Pearson’s r = 0.67 and p = 0.006; with exclusion of RT108, Pearson’s r = 0.78 and p = 0.001). (e) 

Correlation of cardiomyocyte cfDNA at EOT with the maximum dose to the heart (Gy). (g) Correlation 

of total endothelial cfDNA with dosimetry data as determined by deconvolution at pan-endothelial 

methylation blocks (n=131). EOT/Baseline represents the fraction of endothelial cfDNA post-radiation 

at end-of-treatment (EOT) relative to baseline levels. The mean volume of the lung receiving 5 Gy 

dose is represented by Lung V5 Mean (%). *(c, e, g) Pearson correlation r was calculated, and linear 

correlation was considered significant when *p < 0.05; ns, p ≥ 0.05. (h, i) Hepatocyte and Liver 

sinusoidal endothelial (LSEC) cfDNA (in Geq/mL) in serum samples collected at different times (EOT, 

end of treatment). Fragment-level deconvolution used top hepatocyte (n=200) and liver endothelial-

specific methylation blocks (n=61). Mean fold change in right-sided hepatocyte and liver endothelial 

cfDNA at EOT and recovery relative to baseline levels is shown in bold. Data presented as mean ± 

SEM; N = 8 right-sided, N = 7 left-sided. Wilcoxon matched pairs signed rank test was used for 

comparison amongst groups and results were considered significant when *p < 0.05; ns, p ≥ 0.05; 

hepatocyte right-sided p= 0.02, hepatocyte left-sided p=0.81, LSEC right-sided p=0.02, and LSEC left-

sided p=0.93.  
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Supplementary Methods and Figures 

Supplement to:  

“Cell-free, methylated DNA in blood samples reveals tissue-specific cellular damage 

from radiation treatment.” Barefoot et al. 2022.  

 

Supplemental Materials and Methods 

Processing of human serum and plasma samples  

Circulating cell-free DNA was extracted from 3 to 4 mL human serum or plasma or 0.5 

mL mouse serum, using the QIAamp Circulating Nucleic Acid kit (Qiagen) according to 

the manufacturer’s instructions. Cell-free DNA was quantified via Qubit fluorometer using 

the dsDNA High Sensitivity Assay Kit (Thermo Fisher Scientific). Fragment size 

distribution of isolated cfDNA was validated on the 2100 Bioanalyzer TapeStation (Agilent 

Technologies). Additional size selection using Beckman Coulter beads was applied to 

remove high-molecular weight DNA reflective of cell-lysis and leukocyte contamination as 

previously described(1). Size distribution of cell-free DNA fragments was re-verified 

following purification.  

Control human serum and plasma from healthy adult donors was purchased from 

Innovative Research (SKU#ISERS10ML and SKU#IPLASK2E10ML) to compare results 

from our analyses across sample preparations. While plasma is produced when whole 

blood is collected in tubes that are treated with anticoagulant, serum is obtained after 

allowing blood to clot for 30 minutes at room temperature and then centrifuging the 

samples to remove the cellular component(2, 3). Studies demonstrate that cellular 

components significantly increase in samples that sit longer than 60 minutes while 
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clotting; however, adherence to standard operating procedures for preparation of serum 

and plasma have been found to greatly reduce contamination and sources of error(4).  

We took extra steps to address these concerns by ensuring timely processing of blood 

samples and performing an additional bead purification after cfDNA isolation to remove 

high-molecular weight DNA, likely derived from contaminating blood cell lysis 

(Supplemental Figure 9a and b). We found that taking this approach, cfDNA methylation 

status at the block level is highly correlated when comparing cfDNA derived from serum 

or plasma (Supplemental Figure 9c;  Pearson r = 0.95). In addition, deconvolution 

analysis verified that the %immune and %solid organ origins of cfDNA does not vary 

across the two sample types (Supplemental Figure 9d). In fact, there appears to be 

slightly less variation across donors in the predicted cell type proportions composing 

cfDNA extracted from serum compared to plasma. Thus, despite an overall higher Geq 

Immune found in serum due to the overall higher cfDNA concentrations, this background 

signal is consistent from sample-to-sample allowing for accurate comparison of changes 

over time in serial samples collected from the same individuals (Supplemental Figure 

9d and e).  

  

RNA isolation, RNA-sequencing, and RT-qPCR analysis 

RNA was isolated from tissues or sorted cells using the RNeasy Kit (Qiagen) following 

homogenization using the MagNA Lyser (Roche) according to the manufacturer’s protocol 

and quantified by Qubit RNA BR assay (Thermo Fisher Scientific). Total RNA was 

validated using an Agilent RNA 6000 nano assay on the 2100 Bioanalyzer TapeStation 

(Agilent Technologies). The resulting RNA Integrity number (RIN) of samples selected for 
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downstream qPCR or RNAseq analysis was at least 7. Reverse transcription (RT) was 

done using the iScript cDNA Synthesis Kit (Bio-Rad) according to the manufacturer’s 

protocol. Real-time quantitative RT–PCR was performed with iQ SYBR Green Supermix 

(Bio-Rad). Primers used for RT–qPCR were purchased from Integrated DNA 

Technologies, and their sequences are provided below. Fold change was calculated as 

a percentage normalized to housekeeping gene human actin (ACTB) using the delta-Ct 

method. All RT–qPCR assays were done in triplicate. RNA-sequencing libraries were 

prepared using TruSeq Total RNA library Prep Kit (Illumina) at Novogene Corporation 

Inc., and 150bp paired-end sequencing was performed on an Illumina HiSeq 4000 with a 

depth of 50 million reads per sample. A reference index was generated using GTF 

annotation from GENCODEv28. Raw FASTQ files were aligned and assembled to 

GRCh38 and GRCh37 with HISAT2 / Stringtie (V 2.1.0)(5). The differential expression 

was analyzed in R with packages EdgeR (V 3.32.1) and Rsubread (V1.6.3)(6, 7). Derived 

counts per million and p-values were used to create a rank ordered list, which was then 

used for subsequent integrative analysis. Expression levels at known cell type markers 

from single cell expression databases were used to validate the identity of isolated cell-

type populations for methylome analysis(8). 

Primers used for RT–qPCR in radiation-treated mouse tissues: 

 

 

Reference DNA methylation data from healthy tissues and cells   

Gene PrimerBank ID Amplicon Size (bp) Forward primer (5' -> 3') Reverse Primer (5' -> 3')
Cdkn1a 6671726a1 103 CCTGGTGATGTCCGACCTG CCATGAGCGCATCGCAATC
GADD45A 6681149a1 121 CCGAAAGGATGGACACGGTG TTATCGGGGTCTACGTTGAGC
Bad 6671610a1 106 AAGTCCGATCCCGGAATCC GCTCACTCGGCTCAAACTCT
Bax 6680770a1 140 TGAAGACAGGGGCCTTTTTG AATTCGCCGGAGACACTCG
Aifm3 30424786a1 127 CACGCCACTTCCATGCTGA AGCTCCACTTCCCGCATCT
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Controlled access to reference WGBS data from normal human tissues and cell types 

was requested from public consortia participating in the International Human Epigenome 

Consortium (IHEC)(9) and upon approval downloaded from the European Genome-

Phenome Archive (EGA), Japanese Genotype-phenotype Archive (JGA), database of 

Genotypes and Phenotypes (dbGAP), and ENCODE portal data repositories 

(Supplemental Table 1)(10–12). Reference mouse WGBS data from normal tissues and 

cells were downloaded from selected GEO and SRA datasets (Supplemental Table 

2)(13–26). Downloaded FASTQs were processed and realigned in a similar manner as 

the locally generated bisulfite-sequencing libraries described above. However, 

parameters were adjusted to account for each respective WGBS library type at both 

trimming and alignment steps as previously described in the Bismark User Guide 

(http://felixkrueger.github.io/Bismark/Docs/). WBGS libraries were deduplicated using 

deduplicate_bismark (V 0.22.3)  Special consideration of bisulfite conversion efficiency 

was given to samples prepared by the µWGBS protocol and reads with a bisulfite 

conversion rate below 90% or with fewer than three cytosines outside a CpG context were 

removed(27).  

 

Identification of cell-type specific methylation blocks  

We reduced the original 297 human WGBS samples to a final set of 104 samples to 

identify differentially methylated cell-type specific blocks. We excluded samples from bulk 

tissues and those that did not have sufficient coverage (missing values in >50% of 

methylation blocks). Outlier replicates, or those clustering with fibroblasts or stromal cell 

types were excluded, due to possible contamination. Only immune cell methylomes that 
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were reprocessed from raw sequencing data to PAT files were used to identify DMBs. 

We organized the final 104 human reference samples into groupings of 20 cell types 

(Supplemental Table 1). Similarly, the starting 109 mouse WGBS samples were reduced 

to a final set of 43 samples that were organized into a final grouping of 9 cell types and 

tissues (Supplemental Table 2). Tissue and cell-type specific methylation blocks were 

identified from reference WGBS data using custom scripts (Supplemental code). We 

performed a one-vs-all comparison to identify differentially methylated blocks unique for 

each group. This was done separately for human and mouse. From this we first identified 

blocks covering a minimum of three CpG sites, with length less than 2Kb and at least 10 

observations. Then, we calculated the average methylation per block/sample, as the ratio 

of methylated CpG observations across all sequenced reads from that block. Differential 

blocks were sorted by the margin of separation, termed “delta beta”, defined as the 

minimal difference between the average methylation in any sample from the target group 

vs all other samples. We selected blocks with a delta-beta ≥ 0.4 for human and ≥ 0.35 

for mouse. This resulted in a variable number of cell-type specific blocks available for 

each tissue and cell type. Additional separation of endothelial cell populations from 

different tissues was performed to identify unique markers for liver endothelial versus 

cardiopulmonary endothelial blocks that do not overlap. Separately, pan-endothelial 

blocks were identified with methylation status in common to all endothelial cell 

populations. For some cell-types, a reduced subset of blocks (ie. top 200) were used for 

deconvolution in the circulation if the original number identified was greater than one 

standard deviation above the mean. Selected human and mouse blocks for cell types of 

interest can be found in Supplemental Tables 3 and 4. 
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Methylation score and visualization of cell-type specific methylation atlas 

Each DNA fragment was characterized as U (mostly unmethylated), M (mostly 

methylated) or X (mixed) based on the fraction of methylated CpG sites as previously 

described(28). We used thresholds of ≤33% methylated CpGs for U reads and ≥66% 

methylated CpGs for M. We then calculated a methylation score for each identified cell-

type specific block based on the proportion of U/X/M reads among all reads. The U 

proportion was used to define hypomethylated blocks and the M proportion was used to 

define hypermethylated blocks. Heatmaps were generated using the pretty heatmap 

function in the RStudio Package for the R bioconductor (RStudioTeam, 2015). 

 

In-silico simulations and WGBS deconvolution 

In silico mix-in simulations were performed using wgbstools (V 0.1.0)(29) to validate the 

fragment-level deconvolution algorithm at the identified cell-type specific blocks 

(Supplemental Figures 3, 5, 6 and 7). Reference data with greater than three replicates 

per cell type were split into independent training and testing sets, leaving at least one 

replicate out for testing. Since the mouse lung endothelial reference WGBS data had only 

three replicates, sequenced fragments were merged across replicates for this cell type 

and then randomly split into training (80%) and testing (20%) sets (using wgbstools merge 

and then wgbstools pat_splitter). The cell-type specific blocks included in the human and 

mouse methylation atlases were constructed using training set fragments only. For each 

cell type profiled, we mixed known proportions of target fragments into a background of 

leukocyte fragments using wgbstools mix_pat. The leukocyte fragments were obtained 
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from n=4 buffy coat samples in mouse and n=5 buffy coat samples in human. We 

performed three replicates for each admixture ratio assessed (0.05%, 0.1%, 0.5%, 1%, 

2%, 5%, 10%, 15%), which were analyzed as described above, and present the average 

predicted proportion and standard deviation across all replicates. Model accuracy was 

assessed through correct classification of the actual percent target mixed. 

Each mixture was analyzed using our WGBS atlas and fragment-level 

deconvolution model in contrast to the 450K array atlas and NNLS model described in 

Moss et al(30). Array based 450K data were simulated using wgbstools beta_to_450k 

function (V 0.1.0) and deconvolution performed as in Moss et al. 

(https://github.com/nloyfer/meth_atlas). Our sequencing-based approach allowed for 

fragment-level cfDNA analysis of CpG methylation patterns, as opposed to relying on the 

use of single CpG sites from methylation array data(31).  From the in-silico mix-in 

simulations, we found that our probabilistic fragment-level deconvolution model 

outperforms traditional array-based analysis for each tissue and cell type of interest to 

validate the prediction accuracy and sensitivity (Supplemental Figure 7). We found that 

pattern analysis at the cell-type specific methylation blocks identified here allowed for 

accurate detection of cfDNA from a given source when present in less than 0.1% of a 

mixture, a marked improvement in comparison to current 450K approaches 

(Supplemental Figure 7).  

 

Functional annotation and pathway analysis  

Cell-type specific methylation blocks were provided as input for analysis in HOMER 

(V4.11.1) (http://homer.ucsd.edu/homer/)(32). Each block was associated with its closest 
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nearby gene and provided a genomic annotation using the annotatePeaks.pl function, 

with “-size given -CpG” parameters. By default, TSS (transcription start site) was defined 

from -1 kb to +100 bp, TTS (transcription termination site) was defined from -100 bp to 

+1 kb, and CpG islands were defined as a genomic segment with GC content ≥50%, 

genomic length >200 bp and the ratio of observed/expected CpG number >0.6. Prediction 

of known and de-novo transcription factor binding motifs were also assessed by HOMER 

using the findMotifsGenome.pl function. The top 5 motifs based on p-value were selected 

from each analysis. Pathway analysis of identified tissue and cell-type specific 

methylation blocks was performed using Ingenuity Pathway Analysis (IPA)(33) (Qiagen) 

and Genomic Regions Enrichment of Annotations Tool (GREAT)(34). GeneSetCluster 

was used to cluster identified gene-set pathways based on shared genes(35). Canonical 

pathways/functional annotations were grouped into clusters by calculating the similarity 

of pathways/annotations using the relative risk (RR) of each pathway appearing based 

on the genes enriched within the pathway. RR scores were clustered into groups using 

kmeans. Over-representation analysis was implemented in the WebgestaltR 

(ORAperGeneSet) plugin to interpret and functionally label identified gene-set 

clusters(36). Integration of methylome and transcriptome data generated from tissue-

specific endothelial cells was performed using an expanded set of cell-type specific blocks 

(--bg.quant 0.2) compared to the more restricted set of blocks used for deconvolution 

analysis in the circulation (--bg.quant 0.1). The extended endothelial-specific methylation 

blocks can be found in Supplemental Table 9. 
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Mouse Methylation Reference Data

names
Brain (n = 9)

Cardiomyocyte (n = 3)

GI (n = 7)

Heart (n = 5)

Hepatocyte (n = 3)

Immune (n = 33)

Kidney (n = 5)

Liver (n = 5)

Lung (n = 5)

LungEndothelial (n = 3)

Mammary (n = 5)

Reproductive (n = 2)

Skin (n = 1)

UMAP − 25301 markers

names
Brain (n = 9)

Cardiomyocyte (n = 3)

GI (n = 7)

Heart (n = 5)

Hepatocyte (n = 3)

Immune (n = 33)

Kidney (n = 5)

Liver (n = 5)

Lung (n = 5)

LungEndothelial (n = 3)

Mammary (n = 5)

Reproductive (n = 2)

Skin (n = 1)

UMAP − 25301 markers

Brain (n=9) 
names

Brain (n = 9)

Cardiomyocyte (n = 3)

GI (n = 7)

Heart (n = 5)

Hepatocyte (n = 3)

Immune (n = 33)

Kidney (n = 5)

Liver (n = 5)

Lung (n = 5)

LungEndothelial (n = 3)

Mammary (n = 5)

Reproductive (n = 2)

Skin (n = 1)

UMAP − 25301 markers

Cardiomyocyte (n=3)

names
Brain (n = 9)

Cardiomyocyte (n = 3)

GI (n = 7)

Heart (n = 5)

Hepatocyte (n = 3)

Immune (n = 33)

Kidney (n = 5)

Liver (n = 5)

Lung (n = 5)

LungEndothelial (n = 3)

Mammary (n = 5)

Reproductive (n = 2)

Skin (n = 1)

UMAP − 25301 markers

Intestine + Colon (n=6)

names
Brain (n = 9)

Cardiomyocyte (n = 3)

GI (n = 7)

Heart (n = 5)

Hepatocyte (n = 3)

Immune (n = 33)

Kidney (n = 5)

Liver (n = 5)

Lung (n = 5)

LungEndothelial (n = 3)

Mammary (n = 5)

Reproductive (n = 2)

Skin (n = 1)

UMAP − 25301 markers

Heart (n=5)

names
Brain (n = 9)

Cardiomyocyte (n = 3)

GI (n = 7)

Heart (n = 5)

Hepatocyte (n = 3)

Immune (n = 33)

Kidney (n = 5)

Liver (n = 5)

Lung (n = 5)

LungEndothelial (n = 3)

Mammary (n = 5)

Reproductive (n = 2)

Skin (n = 1)

UMAP − 25301 markers

Lung (n=5)

names
Brain (n = 9)

Cardiomyocyte (n = 3)

GI (n = 7)

Heart (n = 5)

Hepatocyte (n = 3)

Immune (n = 33)

Kidney (n = 5)

Liver (n = 5)

Lung (n = 5)

LungEndothelial (n = 3)

Mammary (n = 5)

Reproductive (n = 2)

Skin (n = 1)

UMAP − 25301 markers

Lung Endothelial (n=3)

names
Brain (n = 9)

Cardiomyocyte (n = 3)

GI (n = 7)

Heart (n = 5)

Hepatocyte (n = 3)

Immune (n = 33)

Kidney (n = 5)

Liver (n = 5)

Lung (n = 5)

LungEndothelial (n = 3)

Mammary (n = 5)

Reproductive (n = 2)

Skin (n = 1)

UMAP − 25301 markers

Immune (n=31)
- Bcell (n=4)
- CD4 Tcell (n=5)
- CD8 Tcell (n=1)
- Tissue-resident Tcell (n=9)
- Neutrophil (n=1)
- Buffy Coat (n =4)
- Bone Marrow (n=5)
- Spleen (n=1)
- Thymus (n=1)

- Cerebellum (n=5)
- Hypothalamus (n=3)
- Olfactory bulb (n=1)

names
Brain (n = 9)

Cardiomyocyte (n = 3)

GI (n = 7)

Heart (n = 5)

Hepatocyte (n = 3)

Immune (n = 33)

Kidney (n = 5)

Liver (n = 5)

Lung (n = 5)

LungEndothelial (n = 3)

Mammary (n = 5)

Reproductive (n = 2)

Skin (n = 1)

UMAP − 25301 markers

Mammary Epithelial (n=5)

names
Brain (n = 9)

Cardiomyocyte (n = 3)

GI (n = 7)

Heart (n = 5)

Hepatocyte (n = 3)

Immune (n = 33)

Kidney (n = 5)

Liver (n = 5)

Lung (n = 5)

LungEndothelial (n = 3)

Mammary (n = 5)

Reproductive (n = 2)

Skin (n = 1)

UMAP − 25301 markers
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Supplemental Figure 1. Characterization of mouse cell-type specific reference methylation 

data.  Tree dendrogram depicting relationship between mouse reference Whole Genome Bisulfite 

Sequencing (WGBS) datasets from different tissues and cell types included in the analysis. 

Methylation status of the top 30,000 variable blocks was used as input data for the unsupervised 

hierarchical clustering.  
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Supplemental Figure 2. Biological validation of cell-type specific DNA methylation blocks 

in human and mouse. (a, b) Heatmap of distance scores between gene-set pathways identified 

from GeneSetCluster. Genes adjacent to human (a) and mouse (b) cell-type specific methylation 

blocks were identified using HOMER and pathway analysis was performed using both Ingenuity 

Pathway Analysis (IPA) and GREAT. Significantly enriched gene-set pathways (p<0.05) from 

differentially methylated blocks identified in immune, cardiomyocyte, hepatocyte, and endothelial 

cell types were analyzed using GeneSetCluster. Cluster analysis was performed to determine the 

distance between all identified gene-set pathways based on the degree of overlapping genes from 

each individual gene set compared to all others. Over-representation analysis was implemented 

in the WebgestaltR (ORAperGeneSet) plugin to interpret and functionally label identified gene-

set clusters.  
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Supplemental Figure 3. Sensitivity and specificity of identified mouse cell-type specific 

differentially methylated blocks. (a-d) (Left) Heatmap of all cell-type specific methylation blocks 

selected for each target cell type. All blocks contain >3 CpG sites and have a margin of beta 

difference greater than or equal to 0.35 separating the target cell type from all others included in 

the reference maps. All identified methylation blocks for lung endothelial (n=1,546), hepatocyte 

(n=616), and cardiomyocyte (n=2,917) mouse cell types were hypomethylated. In contrast, all 

identified immune cell-specific blocks (n=148) were hypermethylated relative to other solid organ 

cell types in mouse. (Right) In-silico mix-in validation using a fragment-level probabilistic 

deconvolution model. Target cell-type read-pairs were in-silico mixed into a background of 

lymphocyte or buffy coat read-pairs at various known percentages (0.5%, 1%, 2%, 5%, 10%, 

15%). The deconvolution model was validated on these in-silico mixed samples of known cell-

type proportions at the blocks selected. The average predicted %target is shown relative to the 

known %mixed to assess sensitivity and specificity of the identified cell-type specific blocks and 

deconvolution model. Data presented as mean ± SD; N=3 replicates per proportion. Reference 

WGBS samples with less than 3 replicates were split into “0.8 train” to select methylation blocks 

and “0.2 test” to generate in-silico mixed samples. When available, in-silico mixed samples of the 

same cell type derived from differently aged mice were also tested (infant < 6 weeks old). In 

addition, bulk tissue containing the respective cell type was tested as well.  
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Supplemental Figure 4. Indicators of damage from radiation in mouse tissues. qPCR 

analysis of markers of apoptosis and radiation damage (Trp53, Gadd45a, Aifm3, and Bad) in 

mouse lung, heart, and liver tissues treated with 3Gy and 8Gy radiation compared to sham control. 

The gene expression in each sample was normalized to the expression of ACTB (beta- actin). 

Data presented as mean ± SD; N = 3. Kruskal-Wallis test was used for comparisons amongst 

groups and results were considered significant when *p < 0.05; ns, p ≥ 0.05.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplemental Figure 5.

Hyper

Hypo

0 5 10 15
0

5

10

15

20

Actual Percent Lung Epithelial Mixed

Pr
ed

ic
te

d 
%

 L
un

g 
E

pi
th

el
ia

l

Lung Epithelial Blocks

Lung Epithelial

Actual

Hyper

Hypo

0 5 10 15
0

5

10

15

20

Actual Percent Hepatocyte Mixed

Pr
ed

ic
te

d 
%

 H
ep

at
oc

yt
e

Hepatocyte Blocks

Hepatocyte

Actual

Hyper

Hypo

0 5 10 15
0

5

10

15

20

Actual Percent Cardiomyocyte Mixed

Pr
ed

ic
te

d 
%

 C
ar

di
om

yo
cy

te

Cardiomyocyte Blocks

Cardiomyocyte

Actual

Hyper

Hypo

0 5 10 15
0

5

10

15

20

Actual Percent Solid Organ Mixed

Pr
ed

ic
te

d 
%

So
lid

 O
rg

an

Immune vs Solid Organ Blocks

solid organ

Actual

a

b

c

Hyper

Hypo

0 5 10 15
0

5

10

15

20

Actual Percent Hepatocyte Mixed
Pr

ed
ic

te
d 

%
 H

ep
at

oc
yt

e

Hepatocyte Blocks

Hepatocyte

Actual

Hyper

Hypo

0 5 10 15
0

5

10

15

20

Actual Percent Lung Epithelial Mixed

Pr
ed

ic
te

d 
%

 L
un

g 
E

pi
th

el
ia

l

Lung Epithelial Blocks

Lung Epithelial

Actual

d



Supplemental Figure 5. Sensitivity and specificity of identified human cell-type specific 

differentially methylated blocks. (a-d) (Left) Heatmap of all cell-type specific methylation blocks 

selected for each target cell type. All blocks contain >3 CpG sites and have a margin of beta 

difference greater than or equal to 0.4 separating the target cell type from all others included in 

the reference maps. (Right) In-silico mix-in validation from the fragment-level probabilistic 

deconvolution model. Target cell-type read-pairs were in-silico mixed into a background of 

lymphocyte or buffy coat read-pairs at various known percentages (0.1%, 0.5%, 1%, 2%, 5%, 

10%, 15%). The deconvolution model was validated on these in-silico mixed samples of known 

cell-type proportions at the blocks selected. The average predicted %target is graphed relative to 

the known %mixed to assess sensitivity and specificity of the identified cell-type specific blocks 

and deconvolution model. Data presented as mean ± SD; N=3 replicates per proportion. 
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Supplemental Figure 6. Sensitivity and specificity of identified human endothelial specific 

differentially methylated blocks. (a, c, e) Heatmap of cell-type specific methylation blocks 

selected for each target cell type. All blocks contain >3 CpG sites and have a margin of beta 

difference greater than or equal to 0.4 separating the target cell type from all others included in 

the reference maps. (b, d, f) Enlarged heatmap of cardiopulmonary (b) or liver endothelial (d) 

specific methylation blocks that are unique relative to other liver or cardiopulmonary endothelial 

blocks respectively; (f) pan-endothelial specific methylation blocks with common methylation 

status amongst cardiopulmonary, liver, and HUVEC endothelial cell populations. Methylation 

status is represented by M-values (Logit transformation of " −values) to limit heteroscedasticity 

in visual representation of methylation differences across regions. (g) In-silico mix-in validation 

from a fragment-level probabilistic deconvolution model. Target cell-type read-pairs were in-silico 

mixed into a background of lymphocyte or buffy coat read-pairs at various known percentages 

(0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%). The deconvolution model was validated on these in-silico 

mixed samples of known cell-type proportions at the blocks selected. The average predicted 

%target is graphed relative to the known %mixed to assess sensitivity and specificity of the 

identified cell-type specific blocks and deconvolution model. Data presented as mean ± SD; N=3 

replicates per proportion.  
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Supplemental Figure 7. Performance of the probabilistic fragment-level deconvolution 

algorithm using WGBS data relative to NNLS MethAtlas from 450K array data. Cell type-

specific markers outperform the array-based atlas and achieve <0.1% resolution. Shown are in 

silico simulations for four cell types, computationally mixed within leukocytes at various known 

percentages (0.05%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%). Each mixture was analyzed using 

our WGBS atlas and fragment-level deconvolution model (red), compared to Moss et al. 2018 

(gray). Data presented as mean ± SD; N=10 replicates per proportion.  
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Supplemental Figure 8. Radiation-induced effects on immune and other solid organ cell-
types in human (a-e) and mouse (f-h) samples. (a) Predicted human immune-derived cfDNA 

in Geq. Human Geq are calculated by multiplying the relative fraction of cell-type specific cfDNA 

x initial concentration cfDNA ng/mL x the weight of the haploid human genome. Immune cfDNA 

was assessed at n = 222 methylation blocks found to separate immune cell types from solid organ 

cell types. (immune = Bcell, CD4Tcell, CD8Tcell, NK, MK, Erythroblast, Monocyte, Macrophage, 

Neutrophil; solid organ = breast basal/luminal epi, lung epi, hepatocyte, kidney podocyte, 

pancreas islet, colon epi, cardiomyocyte, LSEC, CPEC, HUVEC, neuron, and skeletal muscle). 

(b) Predicted human solid organ-derived cfDNA in Geq where %solid organ is defined as 100-

%immune using the above n=222 methylation blocks. (c) Breast basal epithelial cfDNA (in 

Geq/mL). Fragment-level deconvolution used top breast basal epithelial specific methylation 

blocks (n=200). (d) Breast luminal epithelial cfDNA (in Geq/mL). Fragment-level deconvolution 

used breast luminal epithelial specific methylation blocks (n=330). (e) Predicted total endothelial 

cfDNA (in Geq/mL). Fragment-level deconvolution was assessed at n =  131 methylation blocks 

found to separate endothelial cells from all other cell types. (endothelial = CPEC, LSEC, HUVEC; 

non-endothelial = Bcell, CD4Tcell, CD8Tcell, NK, MK, Erythroblast, Monocyte, Macrophage, 

Neutrophil, breast basal/luminal epi, lung epi, hepatocyte, kidney podocyte, pancreas islet, colon 

epi, cardiomyocyte, neuron, and skeletal muscle). (a-e) Friedman test was performed for 

comparisons amongst groups. ns, p > 0.05; *, p < 0.05; immune p=0.07, solid organ p=0.008, 

breast basal epithelial p=0.002, breast luminal epithelial p=0.02, total endothelial p=0.01. Mean 

fold change relative to baseline is presented as mean ± SEM; N = 15. (f) Predicted mouse 

immune-derived cfDNA in Geq. Mouse Geq are calculated by multiplying the relative fraction of 

cell-type specific cfDNA x initial concentration cfDNA ng/mL x the weight of the haploid mouse 

genome. Immune cfDNA was assessed at n = 148 methylation blocks found to separate immune 

cell types from solid organ cell types. (immune = Bcell, CD4Tcell, CD8Tcell, Neutrophil; solid 

organ = mammary epi, cardiomyocyte, hepatocyte, lung endothelial, cerebellum, hypothalamus, 

colon, intestine, kidney). (g) Predicted mouse solid organ-derived cfDNA (in Geq/mL). (h) 

Mammary epithelial cfDNA (in Geq/mL). Fragment-level deconvolution used mouse mammary 

epithelial specific methylation blocks (n=874). (f-h) Mean ± SD; N = 3 independent methylome 

preparations. Kruskal-Wallis test was used for comparisons amongst groups. ns, p > 0.05; *, p < 

0.05; immune p = 0.20, solid organ p = 0.01, mammary epithelial p=0.19. 
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Supplemental Figure 9. Comparison of methylation status and cellular origins of cfDNA 

isolated from serum and plasma of healthy human controls.  (a, b) Representative 

bioanalyzer trace of freshly isolated cfDNA extracted from healthy control human serum before 

(a) and after (b) removal of high-molecular weight (HMW) DNA. (c) Density scatter plot comparing 

methylation status across blocks in cfDNA isolated from control human serum (n=4) versus control 

human plasma (n=4). Methylation levels are highly correlated at the block-level with Pearson’s r 

=0.95 and R2=0.89. (d) Predicted %Immune versus %Solid Organ derived cfDNA extracted from 

either serum or plasma. Origins were assessed at n = 222 methylation blocks found to separate 

immune cell types from solid organ cell types. (e) Immune and solid organ Geq from cfDNA 

isolated from serum versus plasma. (d, e) Data presented as mean ± SD; N=4 samples per group.  

Mann-Whitney test was used for comparisons amongst groups. ns, p ≥0.05; *, p < 0.05. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Legends for Supplementary Data File 1:  
Supplemental Table S1. Human reference methylation data from healthy tissues and cell types.  
 
Supplemental Table S2. Mouse reference methylation data from healthy tissues and cell types.  
 
Supplemental Table S3. Identified human cell-type specific methylation blocks. Annotation was 
performed using Homer. The margin of separation represents the delta-beta (maximum higher – 
minimum lower) across all samples. Blocks with a (-) direction are hypomethylated and (+) 
direction are hypermethylated. AMF (average methylation fraction) indicated as a fraction. 
 
Supplemental Table S4. Identified mouse tissue and cell-type specific methylation blocks. 
Annotation was performed using Homer. The margin of separation represents the delta-beta 
(maximum higher – minimum lower) across all samples. Blocks with a (-) direction are 
hypomethylated and (+) direction are hypermethylated. AMF (average methylation fraction) 
indicated as a fraction. 
 
Supplemental Table S5. Summary of identified human (A) and mouse (B) cell-type specific 
methylation blocks.  
 
Supplemental Table S6. Mouse cfDNA sample concentrations and predicted cell-type 
proportions from deconvolution analysis at identified cell-type specific blocks for target cell types.  
 
Supplemental Table S7. Human cfDNA sample concentrations and predicted cell-type 
proportions from deconvolution analysis at identified cell-type specific blocks for target cell types.  
 
Supplemental Table S8. Characteristics of breast cancer patients enrolled in this study.  
 
Supplemental Table S9. Extended endothelial-specific methylation blocks (bg.quant 0.2) used 
for pathway analysis and validation of cell identity through integration with paired RNA expression 
data. 
 
Supplemental Table S10. Genomic annotation of identified human and mouse cell-type specific 
hypomethylated and hypermethylated blocks relative to all captured blocks.  
 
Supplemental Table S11. Top 25 significantly enriched biological pathways and functions for 
genes associated with differential methylation in each cell-type. 
 
Supplemental Table S12. Extended clinical data and characteristics of breast cancer patients 
enrolled in this study. 
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