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ABSTRACT

Advances in Nanopore sequencing have opened up the possibility for the simultaneous analysis11

of genomic and epigenetic variation by way of base-calling and methylation-calling of the same12

long reads. Methylation analysis based on long read technologies requires a re-evaluation of data13

storage and analysis approaches previously developed for either CpG-methylation arrays or short-read14

bisulfite sequencing data. To address this, we here present a toolbox for the segmentation and15

differential methylation analysis of (haplotyped) methylation calls from Nanopore data. Additionally,16

we describe a storage format for read-level and reference-anchored methylation call data, which17

simultaneously allows for efficient storage and rapid data access.18

Keywords nanopore · methylation · meth5 · pycometh19

Background20

The analysis of DNA base modifications, such as cytosine methylation, has become a crucial component of understanding21

epigenetic transcriptional regulation. In mammalian cells, the predominant and most well studied type of base22

modification is the methylation of cytosine in the 5’CpG3’ context (often abbreviated 5mC or simply CpG-methylation).23

Genomic regions enriched with this CpG motif (often referred to as CpG-islands, CGI) are found to be less tightly24

associated with nucleosomes, hence more accessible to DNA-binding proteins such as transcription factors [1].25

Methylation of CpG in regulatory regions can then influence gene expression in a variety of ways. Primarily, CpG-26

methylation is associated with the silencing of related genes, either through direct interference with transcription factor27

binding or via recruitment of binding proteins attracted to methylated CpG [1, 2]. Other, arguably less well studied,28

types of DNA base modifications include the methylation of adenine in 5’GATC3’ (5mA) context or any of the oxidative29

derivatives of 5mC (5hmC, 5fC, and 5caC) [3].30

There exists a growing repertoire of high-throughput assays for the profiling of CpG-methylation states. Among the31

most popular methods are bead array based techniques, which cover a specific set of CpG sites on the human genome and32

allow for rapid quantitative evaluation of methylation rates in these regions. For other organisms and for a genome-wide33

evaluation of cytosine methylation, whole genome bisulfte sequencing (WGBS) has long been considered a gold34

standard, offering single-base resolution and genome-wide coverage[4, 5], and more recently, enzymatic methylation35

sequencing has gained popularity as an alternative to bisulfite conversion, promising lower DNA degradation and more36

balanced base representation [6]. Both methods are based on short-read sequencing techniques and can also be used in37

a single-cell setting.38

Demand for longer reads have given rise to long-read sequencing techniques such as the sequencing technology39

by Pacific Biosciences (PacBio) as well as Oxford Nanopore Technologies (ONT), which can directly sequence40

native DNA and RNA molecules. Sequencing long single molecules can aide in the reliable detection of structural41

variations [7], phasing of variants into paternal and maternal haplotype [8], as well as the assembly of an entire42

human genome including low-complexity regions, that otherwise remain difficult to resolve with short-read sequencing43

[9]. Additionally, the same ONT sequencing datasets can be reprocessed to obtain measurements of modification44

states of sequenced bases [10]. This allowed for a host of applications for profiling the epigenome in a haplotype45

resolved whole-genome single-molecule setting [11], which requires software tools for the inference of methylation46

state as well as interpretation of methylation rates. A number of methylation callers have already been published,47

including Nanopolish [11], DeepSignal [12] and ONT’s own Megalodon [13]. These methods have been compared and48

benchmarked elsewhere [14].49

In this work we focus on the data management, the interpretation and the downstream analysis of ONT methylation50

calls. To facilitate these tasks, we propose a software toolbox for the storage, segmentation, and differential methylation51
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calling between samples and/or haplotypes. Specifically, we present MetH5, an HDF5-based container format for52

efficient storage of read-level reference-anchored methylation calls, and PycoMeth, a software suite for sequence based,53

and methylation based segmentation as well as differential methylation testing and reporting.54

Results55

MetH5 - read-level base modification container56

A single PromethION flow-cell can produce up to 290 billion basepairs of sequencing data [15]. Given that nearly57

1% of the human genome consists of CpG sites [16], this would result in up to 2.7 billion CpG-methylation calls per58

flow-cell. As each of the reads of the flow cell represent different molecules it is crucial that storage and analysis of59

these base modification calls can be performed efficiently without compromising these unique advantages provided60

by ONT sequencing. The various DNA base modification callers for ONT data implement different output formats.61

Nanopolish and DeepSignal output unsorted tab-separated text files, with one line per read-mapping. HTSLib [17] has62

recently implemented two new tags (MM and ML) which store base modifications together with the read-alignments in63

the SAM format. Support for these tags, however, is currently still limited and subsetting base modification calls to a64

specific region requires cross-referencing the MM tag with the reference sequence, since base modifications are stored65

without explicit genomic coordinates.66

We therefore define a file format specifically designed to allow for efficient downstream analysis, while keeping the67

ONT specific information. Implemented as an Hierarchical Data Format (HDF) version 5[18] container, we denote68

the format MetH5 (Figure 1). We also implement a python API in the package meth5 in order to abstract away the69

architecture and provide a developer-friendly interface. In designing the MetH5 format, we consider the following70

design principles. Read-level storage: all base modification calls are stored together with the read they originated from,71

in order to allow read-level and read-group-level analyses. Minimal precision loss: instead of binary calls, we can store72

the actual confidence values output by the base modification caller, in the current implementation log-likelihood ratios73

from Nanopolish. Rapid random access: base modification calls are stored in order of their genomic coordinate and74

indexed such that they can be retrieved with minimum disk IO. Designed for parallel processing: Chunked storage75

and accessor methods allow for even load distribution when used in parallel systems, even when copy number differs76

and coordinate-based parallel processing would result in uneven load distribution if processed on genomic windows.77

Efficient use of storage: using the correct data-types, data compression, and avoiding data duplication (such as read78

names or chromosome names). Flexible annotations: reads can be annotated with arbitrary read-group qualifiers (e.g.79

sample, haplotype group, haplotype id).80

In addition to a python API, the package meth5 also implements a command line user interface (CLI) with the81

following sub-commands: create_m5 reads one or more Nanopolish output files to create a single MetH5 container,82

merge_m5 reads multiple MetH5 containers and merges them into a single one while retaining read-group annotations,83

annotate_reads stores read-group annotation from a tab-delimited file in an existing MetH5 container. MetH5 offers84

favorable random and sequential access times compared to previous solutions (Figure 1D).85
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Figure 1: MetH5 file format. A) Structure of the HDF5 container including dataset types and shapes. Nx refers to
the number of methylation calls per chromosome x. R refers to the total number of reads in the entire container.
Methylation calls are stored together with their genomic coordinate on the chromosome (range), the log-likelihood ratio
(LLR) of methylation, and a numeric read-id unique to this container. Read names are stored optionally, mapping each
read-id to their globally unique read name. An arbitrary number of read groupings can be stored, assigning each read
to exactly one read group per grouping. B) Process of converting Nanopolish result files from multiple Nanopolish
runs (e.g. runs parallelized on a compute cluster) to a single MetH5 file which can then be accessed using the meth5
API by other tools such as PycoMeth. C) Schematic representation of random access in the MetH5 format. An index
per chromosome allows direct access to the required chunk. The range data-set can then be searched for the start and
end-index. Once these indices have been acquired, LLRs and read-ids can be read directly and optionally. If globally
unique read-names are required, they can be looked up directly using the read-id, equally with read groups such as
haplotype assignments. D) Performance comparison between MetH5 and BAM/CRAM format with MM tag (Methods).
In the file-size comparison, the hatched area is the size of the regular BAM/CRAM file without modification scores.
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Bayesian methylome segmentation86

As part of the PycoMeth suite we provide PycoMeth Meth_Seg, a Bayesian changepoint detection algorithm (Figure87

2A) designed for the segmentation of CpG-methylation profiles. Briefly, our approach is based on modeling methylation88

states as Bernoulli trials, with the respective methylation rate parameter depending on both the read-group as well89

as the segment. A hidden Markov model (HMM) then models methylation calls as uncertain observations of these90

methylation states. The segmentation is then optimized to determine the segmentation that maximizes the likelihood of91

observations. Default hyperparameters are optimized to maximize sensitivity such that typically an oversegmentation is92

achieved. In a second pass model parameters are then compared between neighboring segments, whereby segments93

with concordant estimates of methylation rate parameter in all read-groups are merged (default threshold is a minimum94

of 0.25 methylation rate difference in one read-group).95

Note that unlike segmentations of differential methylation profiles, this segmentation is unbiased towards change-96

points which will result in differentially methylated sites. Furthermore, it allows consideration of more than two97

read-groups, such as when creating a joint segmentation ofN > 2 samples or when considering haplotypes in a multiple98

sample analysis.99

Segmentation can be performed either via a python API, or using a CLI which takes one or more MetH5 files as100

the input. The CLI also supports chunked operations, taking advantage of the chunked data storage, in order to allow101

efficient load distribution on parallel systems.102

Sequence based segmentation103

Next to the CpG-methylation based segmentation, PycoMeth Meth_Seg also implements a sequence-based segmentation104

method in its CGI-Finder algorithm. This is aimed towards finding the CpG-rich regions known as CGIs. Segments105

of at least 200 basepairs length with a minimum of 0.5 CG content are classified as CGIs if an enrichment of CpGs106

(compared to the expected CpG distribution given the observed CG content) is found. The parameters for this test107

(minimum length, minimum CG content, and minimum enrichment) can be user specified. This segmentation can108

be launched from PycoMeth’s CLI and requires only the reference genome as an input and uses no sample-specific109

information.110

Differential methylation testing111

PycoMeth’s Meth_Comp subcommand performs differential methylation testing on CpG-methylation calls between112

two or more samples. CpG-methylation calls can either be provided as one MetH5 file per sample, or a single MetH5113

file containing read-group annotations. Furthermore, PycoMeth Meth_Comp requires an annotation file, in bed-format,114

defining the regions to be tested (Figure 2B). Either of the two segmentation methods provided by PycoMeth above115

provide reasonable candidate regions that can be used by PycoMeth Meth_Comp for differential methylation testing,116

but any user provided annotation will also work. If haplotype information is stored as read-groups in the MetH5117

file, differential methylation testing between haplotypes can be used to determine allele specific methylation (ASM)118

patterns within a single sample. Statistical testing performed by PycoMeth can be parameterized with a variety of119

options. Comparison of methylation rates can be performed in two modes: The parameter �hypothesis llr_diff120

performs an unpaired ranked test between all methylation call LLRs of the two samples. This mode assumes all121

LLRs are independent and draws statistical power from both segment size and read-depth. More conservatively, the122

parameter �hypothesis bs_diff first computes a methylation rate (β-score), and draws statistical power only from123

read-depth (Figure S1). For multiple testing correction, PycoMeth optionally implements independent hypothesis124

weighing [19] and a number of options for p-value adjustment. Differentially methylated regions (DMRs) are reported125

as a tab-separated file, and the Comp_Report subcommand provides a method to generate easily digestible HTML126

reports visualizing DMRs in a functional context.127
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Figure 2: PycoMeth workflow. A) Methylome segmentation using a Bayesian changepoint detection HMM. Segmen-
tation can be computed on a read-level or on a read-group (e.g. haplotype) level. Emission likelihood in the HMM
models methylation call uncertainties as well as an optional methylation rate prior. B) Differential methylation testing
either by comparing overall distribution of log-likelihood ratios in a segment, or by comparing read-level methylation
rates, followed by multiple testing correction. C) The reporting module generates an overview HTML report, as well as
individual interval reports.
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Application to whole genome ONT sequencing data128

We apply PycoMeth to ONT sequencing data from a father-mother-son trio sequenced by the Genome in a Bottle129

(GIAB) consortium [20]. Methylation calls on the samples HG002 (son), HG003 (father), and HG004 (mother) have130

been collected from Nanopolish, both as BAM file with MM tag as well as stored in MetH5 format (Methods). We use131

PycoMeth Meth_Seg to generate a methylome segmentation and test for DMRs between the parental samples. Using132

haplotype assigned reads, we further analyze HG003 for ASM.133

To show the benefits of the MetH5 container format, we compare our format with the current definition and134

implementation of modification scores in HTSLib (MM and ML tag). Assessing the advantages of the MetH5 file135

format, Figure 1D compares random access and sequential access times of methylation scores stored in MetH5 versus136

BAM and CRAM (compressed BAM) format, as well as storage space required. While BAM/CRAM files make137

slightly more efficient (between 11 to 65 percent depending on compression) use of storage, they are significantly more138

expensive to read (about 5 to 90 times slower depending on compression).139
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Figure 3: Benchmark of findings on HG003 and HG004. A) Number of segments and number of CpG-sites within
segments that were identified as differentially methylated between different segmentations and differential methylation
testing tools. B) Length distribution of differentially methylated segments in basepairs. C) Example differentially
methylated segment identified by PycoMeth with Bayesian segmentation method based on HG003 and HG004
including haplotype information. Green lines represent the segmentation. Differentially methylated region is proximal
to transcription start sites of various transcripts of gene DNAHB5. We also observe that differential methylation between
the two samples is induced by methylation in only a single haplotype of HG003, whereas the other haplotype and both
haplotypes of HG004 are unmethylated.

A combined methylome segmentation based on HG003 and HG004 with haplotype information identifies 1,039,084140

segments to be tested for differential methylation. PycoMeth identifies 924 of these segments as significantly differen-141

tially methylated, with a minimum absolute methylation rate difference of 0.5 and FDR less than 0.05 Figure 3A). A142
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sample-specific haplotype-informed segmentation of HG003 identified 1,046,252 segments, of which 874 were found143

to be allele specifically methylated, covering a total of 12,775 ASM CpG-sites Figure 3A).144

Due to the lack of tools designed for segmentation and differential methylation analysis in single-molecule se-145

quencing data, we instead compare our segmentation with three commonly used methods designed for segmentation146

of methylation rates from bisulfite sequencing data, methylKit [21], which implements single-sample methylation147

rate segmentation, fastseg [22], which is called by methylKit and can be used in a multi-sample setting, and MethCP148

[23]. When comparing with the methylKit and fastseg, we then apply PycoMeth Meth_Comp for differential methy-149

lation testing, when comparing to MethCP we leverage the MethCP segmentation and differential methylation test150

implementation.151

Figure 3A shows the number of segments and CpG sites within segments found as differentially methylated in152

both the sample comparison as well as the ASM setting. With the PycoMeth Meth_Seg segmentation, the differential153

methylation test was able to identify about four times as many differentially methylated CpG sites in the sample154

comparison compared to MethylKit and about three times as many in the ASM scenario. Figure 3C shows an example155

segment called as differentially methylated and containing ASM, which was called by PycoMeth and missed by other156

calling methods. The MethCP segmentation and testing performed well and identified a slightly larger number of CpG157

sites as differentially methylated, albeit distributed over fewer segments. This is expected, seeing how MethCP also158

draws statistical power from the number of CpGs in a segment, whereas PycoMeth in the read-level β-score mode159

draws statistical power only from read-depth (Figure S1). We also note that MethCP finds largely different DMRs from160

PycoMeth, with only a small overlap in DMRs identified between the two methods (only 497 from 1489 total DMRs161

were called by both methods).162

Conclusion163

We present a toolkit and efficient file-format for epigenetic analyses on ONT reads. Due to the novelty of single-molecule164

methylation calling, few standards for storage and analysis exist. With the MetH5 format, we attempt to provide an165

efficient method of storing reference-anchored methylation calls without compromising on read-level information or166

methylation call uncertainty information. The PycoMeth Bayesian segmentation method and differential methylation167

testing take advantage of read-level or read-group level information, which tools designed for bisulfite sequencing168

typically do not consider. This new approach performs comparable or better than previous tools in terms of number of169

differentially methylated CpG sites identified, while integrating sample and haplotype information during segmentation170

and drawing power from added read depth. We also find that the type of segmentation greatly affects the kind of DMR171

identified and at this point would recommend to combine multiple segmentations, as the Bayesian segmentation by172

PycoMeth and the segmentation by MethCP are highly complementary.173

Discussion174

All tools have been developed and tested with methylation calls from Nanopolish[10] in mind, but are fully applicable175

to methylation calls from any methylation caller. More recent methods have show better methylation calling accuracy176

and thus given a preview of what is to come, but at this time, we found Nanopolish to be the most stable and user-177

friendly of the published tools. Once a new gold-standard methylation caller can be determined, we aim to adapt our178

toolbox to provide support. Specifically, with methylation calling capabilities currently being integrated with ONT179

basecaller guppy[24] and the development of bonito[25], we intend to expand the meth5 library and PycoMeth to180

support methylation calls from these callers as they get a stable release. While mainly developed for evaluation of181

CpG-methylation, all methods (aside from the CGI-finder) are also applicable to other types of epigenetic marks, such182

as adenine methylation, or cytosine methylation in GpC context, another avenue we are pushing for future versions of183

the software.184

We have shown that the segmentation method used to determine segments for DMR testing has a great impact185

on DMRs found. We intend to further study possible improvements to methylome segmentation without biasing the186

segmentation towards differential methylation testing.187

While using MetH5 as a file storage shows the markedly better performance to current SAM based file formats,188

we are aware of the advantages of having methylation calls stored in a well supported file format. In our experiments,189

we still observe compatibility issues between BAM files generated by Nanopolish, both with read-anchored as well190

as reference-anchored calls, and modbampy, and pysam support for modification calls is still limited. Still, we intend191

to implement support for BAM and CRAM files with modification calls in future versions of PycoMeth, as well as a192

conversion tool to and from meth5 format, as part of the meth5 library.193
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Materials and Methods194

Data preparation195

Raw fast5 files were downloaded from the Human Pangenome Project’s S3 bucket. In order to reach approximately 20x196

to 30x coverage, we use 4 flow-cells from HG002 and 3 flowcells from HG003 and HG004 respectively (Table S1).197

Phased SVs were downloaded from the NCBI ftp server (Table S1). Reads have been re-basecalled using guppy version198

5.0.11 with the high-accuracy model with modbases. Alignment to reference genome GRCH38 was performed using199

minimap2 [26] with the map-ont preset and otherwise default settings. Reads were haplotagged using whatshap[8]200

version 1.1. To produce Nanopolish[10] methylation calls in MetH5 format, we run Nanopolish call-methylation with201

Nanopolish version 0.13.3 and then use the python meth5 API to convert the Nanopolish output to the MetH5 format. In202

order to generate BAM files with MM tags, the "methylation_bam" branch (commit 9B01ad7) of Nanopolish has been203

used. BAM files were compressed to create CRAM files using samtools view -C and both BAM and CRAM were204

indexed using "samtools index". Performance comparisons between MetH5 and BAM/CRAM files were performed205

using the meth5 version 0.8.0 and modbampy version 0.4.1 [27]206

Methylome segmentation207

PycoMeth Meth_Seg was called with a window size of 300 CpG-calls (grouped calls are counted as one call) with a208

maximum of 20 segments per window. No methylation rate prior was provided and haplotype information was provided209

as read-groups in the MetH5 format. For the segmentation using MethylKit, fastseg, and MethCP, pseudo-bisulfite210

sequencing data has been created from the Nanopore methylation calls. Log-likelihood ratios were thresholded (level211

2.0), binarized, and methylation rates were computed. The MethylKit segmentations for ASM calling were created212

based on total methylation rate per sample. For fastseg and MethCP, methylation rates per haplotype were computed.213

MethylKit segmentations were created using the function methSeg with parameters maxInt=100 and minSeg=10 as214

suggested in the MethylKit documentation. Fastseg segmentations were created using the function fastseg and the215

parameter cyberWeight=100 in order to get a comparable number of segments to PycoMeth. MethCP was run with216

default parameters.217

Differential methylation testing218

In all comparisons, PycoMeth Meth_Comp was run with the "bs_diff" hypothesis option for a more conservative219

evaluation. This which bases the test’s power on read-depth rather than segment length. P-value adjustment was220

performed using the Benjamini-Hochberg method[28] on p-values weighted using independent hypothesis weighting .221

MethCP differential methylation testing was run with Fisher’s combined probability test. P-values reported by MethCP222

are already reported as adjusted by MethylKit’s implementation of SLIM. All significantly different intervals were then223

subset to those with a minimum of 0.5 methylation rate difference between group (methylation rate computed per CpG224

site and then averaged over the segment). Intervals called by MethCP which were based on a single call were removed,225

since these obtained false significance from grouped Nanopolish calls being duplicated in the pseudo-bulk generation226

(Figure S1)227
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ACGTCGTACGTCGTATACGTACGT (grouped call by Nanopolish)

Pseudo-bulk conversion

Fisher test used on pseudo-bulk data

PycoMeth read-level 
beta score difference test 
(more conservative)

Power depends 
on read depth

PycoMeth 
LLR-difference test
(less conservative)

Power increased 
by both dimensions

Read/segment rate computation

A

B

C

Power increased 
by both dimensions

Supplementary Figure 1: Illustration of where different differential methylation testing methods draw their power. A) In
attempting to analyze Nanopolish methylation calls with tools developed for bulk bisulfite sequencing data, we create
pseudo-bulk data. Tests generated for pseudo-bulk comparison (such as MethCP which we evaluated in this work) test
based on CpG-level methylation rates and coverage across all reads and therefore draw power from the segment size and
read depth. Furthermore, since Nanopolish generates grouped calls for nearby CpG-sites, some calls are therefore not
independent and thus artificially generate more testing power. B) PycoMeth with the parameter "–hypothesis llr_diff"
performs the less conservative test, implemented in the PycoMeth package, where each individual methylation call is
treated as independent and samples are compared based on their LLR distribution. Here discovery power is determined
also by a combination of segment length and sequencing depth. C) PycoMeth with the parameter "–hypothesis bs_diff"
instead computes a methylation rate per read per segment and draws power only from the independent information
(sequencing depth).
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