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ABSTRACT

11 Advances in Nanopore sequencing have opened up the possibility for the simultaneous analysis
12 of genomic and epigenetic variation by way of base-calling and methylation-calling of the same
13 long reads. Methylation analysis based on long read technologies requires a re-evaluation of data
14 storage and analysis approaches previously developed for either CpG-methylation arrays or short-read
15 bisulfite sequencing data. To address this, we here present a toolbox for the segmentation and
16 differential methylation analysis of (haplotyped) methylation calls from Nanopore data. Additionally,
17 we describe a storage format for read-level and reference-anchored methylation call data, which
18 simultaneously allows for efficient storage and rapid data access.

19 Keywords nanopore - methylation - methS - pycometh

20 Background

21 The analysis of DNA base modifications, such as cytosine methylation, has become a crucial component of understanding
22 epigenetic transcriptional regulation. In mammalian cells, the predominant and most well studied type of base
23 modification is the methylation of cytosine in the 5’CpG3’ context (often abbreviated SmC or simply CpG-methylation).
24 Genomic regions enriched with this CpG motif (often referred to as CpG-islands, CGI) are found to be less tightly
25 associated with nucleosomes, hence more accessible to DNA-binding proteins such as transcription factors [1]].
26 Methylation of CpG in regulatory regions can then influence gene expression in a variety of ways. Primarily, CpG-
27 methylation is associated with the silencing of related genes, either through direct interference with transcription factor
28 binding or via recruitment of binding proteins attracted to methylated CpG [} 2]. Other, arguably less well studied,
29 types of DNA base modifications include the methylation of adenine in 5’GATC3’ (SmA) context or any of the oxidative
s0 derivatives of SmC (5hmC, 5fC, and 5caC) [3]].

31 There exists a growing repertoire of high-throughput assays for the profiling of CpG-methylation states. Among the
32 most popular methods are bead array based techniques, which cover a specific set of CpG sites on the human genome and
33 allow for rapid quantitative evaluation of methylation rates in these regions. For other organisms and for a genome-wide
34 evaluation of cytosine methylation, whole genome bisulfte sequencing (WGBS) has long been considered a gold
35 standard, offering single-base resolution and genome-wide coverage[4), 5], and more recently, enzymatic methylation
36 sequencing has gained popularity as an alternative to bisulfite conversion, promising lower DNA degradation and more
37 balanced base representation [6]. Both methods are based on short-read sequencing techniques and can also be used in
38 a single-cell setting.

39 Demand for longer reads have given rise to long-read sequencing techniques such as the sequencing technology
40 by Pacific Biosciences (PacBio) as well as Oxford Nanopore Technologies (ONT), which can directly sequence
41 native DNA and RNA molecules. Sequencing long single molecules can aide in the reliable detection of structural
42 variations [[7], phasing of variants into paternal and maternal haplotype [8]], as well as the assembly of an entire
43 human genome including low-complexity regions, that otherwise remain difficult to resolve with short-read sequencing
44 [9]. Additionally, the same ONT sequencing datasets can be reprocessed to obtain measurements of modification
45 states of sequenced bases [10]. This allowed for a host of applications for profiling the epigenome in a haplotype
46 resolved whole-genome single-molecule setting [[L1], which requires software tools for the inference of methylation
47 state as well as interpretation of methylation rates. A number of methylation callers have already been published,
48 including Nanopolish [[11], DeepSignal [12]] and ONT’s own Megalodon [13]]. These methods have been compared and
49 benchmarked elsewhere [14].

50 In this work we focus on the data management, the interpretation and the downstream analysis of ONT methylation
51 calls. To facilitate these tasks, we propose a software toolbox for the storage, segmentation, and differential methylation
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52 calling between samples and/or haplotypes. Specifically, we present MetHS, an HDF5-based container format for
53 efficient storage of read-level reference-anchored methylation calls, and PycoMeth, a software suite for sequence based,
s+ and methylation based segmentation as well as differential methylation testing and reporting.

55 Results

s6 MetHS - read-level base modification container

57 A single PromethION flow-cell can produce up to 290 billion basepairs of sequencing data [[15]. Given that nearly
58 1% of the human genome consists of CpG sites [[16], this would result in up to 2.7 billion CpG-methylation calls per
s9 flow-cell. As each of the reads of the flow cell represent different molecules it is crucial that storage and analysis of
60 these base modification calls can be performed efficiently without compromising these unique advantages provided
61 by ONT sequencing. The various DNA base modification callers for ONT data implement different output formats.
62 Nanopolish and DeepSignal output unsorted tab-separated text files, with one line per read-mapping. HTSLib [17] has
63 recently implemented two new tags (MM and ML) which store base modifications together with the read-alignments in
6+ the SAM format. Support for these tags, however, is currently still limited and subsetting base modification calls to a
65 specific region requires cross-referencing the MM tag with the reference sequence, since base modifications are stored
66 without explicit genomic coordinates.

67 We therefore define a file format specifically designed to allow for efficient downstream analysis, while keeping the
68 ONT specific information. Implemented as an Hierarchical Data Format (HDF) version 5[18]] container, we denote
so the format MetH5 (Figure[I). We also implement a python API in the package meth5 in order to abstract away the
70 architecture and provide a developer-friendly interface. In designing the MetH5 format, we consider the following
71 design principles. Read-level storage: all base modification calls are stored together with the read they originated from,
72 in order to allow read-level and read-group-level analyses. Minimal precision loss: instead of binary calls, we can store
73 the actual confidence values output by the base modification caller, in the current implementation log-likelihood ratios
74 from Nanopolish. Rapid random access: base modification calls are stored in order of their genomic coordinate and
75 indexed such that they can be retrieved with minimum disk 10. Designed for parallel processing: Chunked storage
76 and accessor methods allow for even load distribution when used in parallel systems, even when copy number differs
77 and coordinate-based parallel processing would result in uneven load distribution if processed on genomic windows.
78 Efficient use of storage: using the correct data-types, data compression, and avoiding data duplication (such as read
79 names or chromosome names). Flexible annotations: reads can be annotated with arbitrary read-group qualifiers (e.g.
go sample, haplotype group, haplotype id).

81 In addition to a python API, the package methS also implements a command line user interface (CLI) with the
g2 following sub-commands: create_m5 reads one or more Nanopolish output files to create a single MetH5 container,
83 merge_mb reads multiple MetHS containers and merges them into a single one while retaining read-group annotations,
84 annotate_reads stores read-group annotation from a tab-delimited file in an existing MetHS container. MetHS5 offers
85 favorable random and sequential access times compared to previous solutions (Figure [ID).
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Figure 1: MetHS5 file format. A) Structure of the HDF5 container including dataset types and shapes. N, refers to
the number of methylation calls per chromosome z. R refers to the total number of reads in the entire container.
Methylation calls are stored together with their genomic coordinate on the chromosome (range), the log-likelihood ratio
(LLR) of methylation, and a numeric read-id unique to this container. Read names are stored optionally, mapping each
read-id to their globally unique read name. An arbitrary number of read groupings can be stored, assigning each read
to exactly one read group per grouping. B) Process of converting Nanopolish result files from multiple Nanopolish
runs (e.g. runs parallelized on a compute cluster) to a single MetHS5 file which can then be accessed using the meth5
API by other tools such as PycoMeth. C) Schematic representation of random access in the MetH5 format. An index
per chromosome allows direct access to the required chunk. The range data-set can then be searched for the start and
end-index. Once these indices have been acquired, LLRs and read-ids can be read directly and optionally. If globally
unique read-names are required, they can be looked up directly using the read-id, equally with read groups such as
haplotype assignments. D) Performance comparison between MetHS and BAM/CRAM format with MM tag (Methods).
In the file-size comparison, the hatched area is the size of the regular BAM/CRAM file without modification scores.


https://doi.org/10.1101/2022.02.16.480699
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.16.480699; this version posted February 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

PYCOMETH: A TOOLBOX FOR DIFFERENTIAL METHYLATION TESTING FROM NANOPORE METHYLATION CALLS

s Bayesian methylome segmentation

g7 As part of the PycoMeth suite we provide PycoMeth Meth_Seg, a Bayesian changepoint detection algorithm (Figure
g8 [2]A) designed for the segmentation of CpG-methylation profiles. Briefly, our approach is based on modeling methylation
g9 states as Bernoulli trials, with the respective methylation rate parameter depending on both the read-group as well
90 as the segment. A hidden Markov model (HMM) then models methylation calls as uncertain observations of these
91 methylation states. The segmentation is then optimized to determine the segmentation that maximizes the likelihood of
92 observations. Default hyperparameters are optimized to maximize sensitivity such that typically an oversegmentation is
93 achieved. In a second pass model parameters are then compared between neighboring segments, whereby segments
94 with concordant estimates of methylation rate parameter in all read-groups are merged (default threshold is a minimum
95 of 0.25 methylation rate difference in one read-group).

96 Note that unlike segmentations of differential methylation profiles, this segmentation is unbiased towards change-
97 points which will result in differentially methylated sites. Furthermore, it allows consideration of more than two
98 read-groups, such as when creating a joint segmentation of /N > 2 samples or when considering haplotypes in a multiple
99 sample analysis.

100 Segmentation can be performed either via a python API, or using a CLI which takes one or more MetHS5 files as
101 the input. The CLI also supports chunked operations, taking advantage of the chunked data storage, in order to allow
102 efficient load distribution on parallel systems.

103 Sequence based segmentation

104 Next to the CpG-methylation based segmentation, PycoMeth Meth_Seg also implements a sequence-based segmentation
105 method in its CGI-Finder algorithm. This is aimed towards finding the CpG-rich regions known as CGIs. Segments
106 of at least 200 basepairs length with a minimum of 0.5 CG content are classified as CGlIs if an enrichment of CpGs
107 (compared to the expected CpG distribution given the observed CG content) is found. The parameters for this test
108 (minimum length, minimum CG content, and minimum enrichment) can be user specified. This segmentation can
109 be launched from PycoMeth’s CLI and requires only the reference genome as an input and uses no sample-specific
110 information.

111 Differential methylation testing

112 PycoMeth’s Meth_Comp subcommand performs differential methylation testing on CpG-methylation calls between
113 two or more samples. CpG-methylation calls can either be provided as one MetHS5 file per sample, or a single MetH5
114 file containing read-group annotations. Furthermore, PycoMeth Meth_Comp requires an annotation file, in bed-format,
115 defining the regions to be tested (Figure 2B). Either of the two segmentation methods provided by PycoMeth above
116 provide reasonable candidate regions that can be used by PycoMeth Meth_Comp for differential methylation testing,
117 but any user provided annotation will also work. If haplotype information is stored as read-groups in the MetH5
118 file, differential methylation testing between haplotypes can be used to determine allele specific methylation (ASM)
119 patterns within a single sample. Statistical testing performed by PycoMeth can be parameterized with a variety of
120 options. Comparison of methylation rates can be performed in two modes: The parameter -hypothesis 1lr_diff
121 performs an unpaired ranked test between all methylation call LLRs of the two samples. This mode assumes all
122 LLRs are independent and draws statistical power from both segment size and read-depth. More conservatively, the
123 parameter ~-hypothesis bs_diff first computes a methylation rate (3-score), and draws statistical power only from
124 read-depth (Figure ST). For multiple testing correction, PycoMeth optionally implements independent hypothesis
125 weighing [19] and a number of options for p-value adjustment. Differentially methylated regions (DMRs) are reported
126 as a tab-separated file, and the Comp_Report subcommand provides a method to generate easily digestible HTML
127 reports visualizing DMRs in a functional context.
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Figure 2: PycoMeth workflow. A) Methylome segmentation using a Bayesian changepoint detection HMM. Segmen-
tation can be computed on a read-level or on a read-group (e.g. haplotype) level. Emission likelihood in the HMM
models methylation call uncertainties as well as an optional methylation rate prior. B) Differential methylation testing
either by comparing overall distribution of log-likelihood ratios in a segment, or by comparing read-level methylation

rates, followed by multiple testing correction. C) The reporting module generates an overview HTML report, as well as
individual interval reports.
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128 Application to whole genome ONT sequencing data

129 We apply PycoMeth to ONT sequencing data from a father-mother-son trio sequenced by the Genome in a Bottle
130 (GIAB) consortium [20]. Methylation calls on the samples HG002 (son), HG003 (father), and HG004 (mother) have
131 been collected from Nanopolish, both as BAM file with MM tag as well as stored in MetH5 format (Methods). We use
132 PycoMeth Meth_Seg to generate a methylome segmentation and test for DMRs between the parental samples. Using
133 haplotype assigned reads, we further analyze HG003 for ASM.

134 To show the benefits of the MetHS container format, we compare our format with the current definition and
135 implementation of modification scores in HTSLib (MM and ML tag). Assessing the advantages of the MetHS file
136 format, Figure[TD compares random access and sequential access times of methylation scores stored in MetHS5 versus
137 BAM and CRAM (compressed BAM) format, as well as storage space required. While BAM/CRAM files make
138 slightly more efficient (between 11 to 65 percent depending on compression) use of storage, they are significantly more
139 expensive to read (about 5 to 90 times slower depending on compression).
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Fastseg + PycoMeth

Fastseg + PycoMeth

MethCP Methylkit + PycoMeth

PycoMeth PycoMeth

400 600
Number of Segments

0 800 0 0 ) ) 800

Fastseg + PycoMeth Fastseg + PycoMeth

MethCP Methylkit + PycoMeth

PycoMeth PycoMeth

4000 6000 8000 10000 12000 0 2000 4000

6000 8000 10000 12000
B Number of CpGs Number of CpGs
200 —_—
S b S 200
o o
c c
o k)
€ 100 k<
< < 100
£ €
o o
g i 8
0 T T T 0 T _x_ T
PycoMeth MethCP Fastseg + PycoMeth PycoMeth Methylkit + PycoMeth Fastseg + PycoMeth
C Example differential methylation (bayesian segmentation HG0O03+HG004)
l p(ximet)=0 I mmm HGO002
] vaw, HG002 (H1)
% =W HG002 (H2)
! P(ximet)=1 === HG003
; wa HGOO03 (H1)
4 aw HG003 (H2)
N
- == HGO004
[ a4 HGO004 (H1)
N e HG004 (H2)
Diffmet  E—
<< DNABS-DT <<
>> DNARBS >>
34986684 34989126 34990085 34991440 34992876 34994773

Location on chr9

Figure 3: Benchmark of findings on HG003 and HG004. A) Number of segments and number of CpG-sites within
segments that were identified as differentially methylated between different segmentations and differential methylation
testing tools. B) Length distribution of differentially methylated segments in basepairs. C) Example differentially
methylated segment identified by PycoMeth with Bayesian segmentation method based on HG003 and HG004
including haplotype information. Green lines represent the segmentation. Differentially methylated region is proximal
to transcription start sites of various transcripts of gene DNAHBS. We also observe that differential methylation between
the two samples is induced by methylation in only a single haplotype of HG003, whereas the other haplotype and both
haplotypes of HG004 are unmethylated.

140 A combined methylome segmentation based on HG003 and HG004 with haplotype information identifies 1,039,084
141 segments to be tested for differential methylation. PycoMeth identifies 924 of these segments as significantly differen-
142 tially methylated, with a minimum absolute methylation rate difference of 0.5 and FDR less than 0.05 Figure[3A). A
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143 sample-specific haplotype-informed segmentation of HG003 identified 1,046,252 segments, of which 874 were found
144 to be allele specifically methylated, covering a total of 12,775 ASM CpG-sites Figure[JA).

145 Due to the lack of tools designed for segmentation and differential methylation analysis in single-molecule se-
146 quencing data, we instead compare our segmentation with three commonly used methods designed for segmentation
147 of methylation rates from bisulfite sequencing data, methylKit [21]], which implements single-sample methylation
148 rate segmentation, fastseg [22[], which is called by methylKit and can be used in a multi-sample setting, and MethCP
149 [23]. When comparing with the methylKit and fastseg, we then apply PycoMeth Meth_Comp for differential methy-
150 lation testing, when comparing to MethCP we leverage the MethCP segmentation and differential methylation test
151 implementation.

152 Figure 3A shows the number of segments and CpG sites within segments found as differentially methylated in
153 both the sample comparison as well as the ASM setting. With the PycoMeth Meth_Seg segmentation, the differential
154 methylation test was able to identify about four times as many differentially methylated CpG sites in the sample
155 comparison compared to MethylKit and about three times as many in the ASM scenario. Figure[3C shows an example
156 segment called as differentially methylated and containing ASM, which was called by PycoMeth and missed by other
157 calling methods. The MethCP segmentation and testing performed well and identified a slightly larger number of CpG
158 sites as differentially methylated, albeit distributed over fewer segments. This is expected, seeing how MethCP also
159 draws statistical power from the number of CpGs in a segment, whereas PycoMeth in the read-level 3-score mode
160 draws statistical power only from read-depth (Figure SI). We also note that MethCP finds largely different DMRs from
161 PycoMeth, with only a small overlap in DMRs identified between the two methods (only 497 from 1489 total DMRs
162 were called by both methods).

s Conclusion

164 We present a toolkit and efficient file-format for epigenetic analyses on ONT reads. Due to the novelty of single-molecule
165 methylation calling, few standards for storage and analysis exist. With the MetHS format, we attempt to provide an
166 efficient method of storing reference-anchored methylation calls without compromising on read-level information or
167 methylation call uncertainty information. The PycoMeth Bayesian segmentation method and differential methylation
168 testing take advantage of read-level or read-group level information, which tools designed for bisulfite sequencing
169 typically do not consider. This new approach performs comparable or better than previous tools in terms of number of
170 differentially methylated CpG sites identified, while integrating sample and haplotype information during segmentation
171 and drawing power from added read depth. We also find that the type of segmentation greatly affects the kind of DMR
172 identified and at this point would recommend to combine multiple segmentations, as the Bayesian segmentation by
173 PycoMeth and the segmentation by MethCP are highly complementary.

17+ Discussion

175 All tools have been developed and tested with methylation calls from Nanopolish[[10]] in mind, but are fully applicable
176 to methylation calls from any methylation caller. More recent methods have show better methylation calling accuracy
177 and thus given a preview of what is to come, but at this time, we found Nanopolish to be the most stable and user-
178 friendly of the published tools. Once a new gold-standard methylation caller can be determined, we aim to adapt our
179 toolbox to provide support. Specifically, with methylation calling capabilities currently being integrated with ONT
180 basecaller guppy[24] and the development of bonito[25]], we intend to expand the meth5 library and PycoMeth to
181 support methylation calls from these callers as they get a stable release. While mainly developed for evaluation of
182 CpG-methylation, all methods (aside from the CGI-finder) are also applicable to other types of epigenetic marks, such
183 as adenine methylation, or cytosine methylation in GpC context, another avenue we are pushing for future versions of
184 the software.

185 We have shown that the segmentation method used to determine segments for DMR testing has a great impact
186 on DMRs found. We intend to further study possible improvements to methylome segmentation without biasing the
187 segmentation towards differential methylation testing.

188 While using MetHS5 as a file storage shows the markedly better performance to current SAM based file formats,
189 we are aware of the advantages of having methylation calls stored in a well supported file format. In our experiments,
190 we still observe compatibility issues between BAM files generated by Nanopolish, both with read-anchored as well
191 as reference-anchored calls, and modbampy, and pysam support for modification calls is still limited. Still, we intend
192 to implement support for BAM and CRAM files with modification calls in future versions of PycoMeth, as well as a
193 conversion tool to and from meth5 format, as part of the meth5 library.
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19«  Materials and Methods

195 Data preparation

196 Raw fast5 files were downloaded from the Human Pangenome Project’s S3 bucket. In order to reach approximately 20x
197 to 30x coverage, we use 4 flow-cells from HG002 and 3 flowcells from HG003 and HG004 respectively (Table S1).
198 Phased SVs were downloaded from the NCBI ftp server (Table S1). Reads have been re-basecalled using guppy version
199 5.0.11 with the high-accuracy model with modbases. Alignment to reference genome GRCH38 was performed using
200 minimap?2 [26] with the map-ont preset and otherwise default settings. Reads were haplotagged using whatshap[§]]
201 version 1.1. To produce Nanopolish[[10] methylation calls in MetHS format, we run Nanopolish call-methylation with
202 Nanopolish version 0.13.3 and then use the python methS API to convert the Nanopolish output to the MetH5 format. In
203 order to generate BAM files with MM tags, the "methylation_bam" branch (commit 9B01ad7) of Nanopolish has been
204 used. BAM files were compressed to create CRAM files using samtools view -Cand both BAM and CRAM were
205 indexed using "samtools index". Performance comparisons between MetH5 and BAM/CRAM files were performed
206 using the meth5 version 0.8.0 and modbampy version 0.4.1 [27]

207 Methylome segmentation

208 PycoMeth Meth_Seg was called with a window size of 300 CpG-calls (grouped calls are counted as one call) with a
209  maximum of 20 segments per window. No methylation rate prior was provided and haplotype information was provided
210 as read-groups in the MetHS format. For the segmentation using MethylKit, fastseg, and MethCP, pseudo-bisulfite
211 sequencing data has been created from the Nanopore methylation calls. Log-likelihood ratios were thresholded (level
212 2.0), binarized, and methylation rates were computed. The MethylKit segmentations for ASM calling were created
213 based on total methylation rate per sample. For fastseg and MethCP, methylation rates per haplotype were computed.
214 MethylKit segmentations were created using the function methSeg with parameters maxInt=100 and minSeg=10 as
215 suggested in the MethylKit documentation. Fastseg segmentations were created using the function fastseg and the
216 parameter cyberWeight=100 in order to get a comparable number of segments to PycoMeth. MethCP was run with
217 default parameters.

218 Differential methylation testing

219 In all comparisons, PycoMeth Meth_Comp was run with the "bs_diff" hypothesis option for a more conservative
220 evaluation. This which bases the test’s power on read-depth rather than segment length. P-value adjustment was
221 performed using the Benjamini-Hochberg method[28]] on p-values weighted using independent hypothesis weighting .
222 MethCP differential methylation testing was run with Fisher’s combined probability test. P-values reported by MethCP
223 are already reported as adjusted by MethylKit’s implementation of SLIM. All significantly different intervals were then
224 subset to those with a minimum of 0.5 methylation rate difference between group (methylation rate computed per CpG
225 site and then averaged over the segment). Intervals called by MethCP which were based on a single call were removed,
226 since these obtained false significance from grouped Nanopolish calls being duplicated in the pseudo-bulk generation

227 (Figure SI)
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234

API: application programming interface

235 ASM: allele specific methylation
CGI: CpG-Island

237 e CLI: command line interface

236

238 CpG: 5’-cytosine-phosphate-guanine-3’

DMR: differentially methylated region
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HDF5: Hierarchical Data Format (HDF) version 5

241 ¢ HMM: Hidden Markov Model

LLR: log-likelihood ratio

NCBI: National Center for Biotechnology Information

240

242

243

244 ONT: Oxford Nanopore Technologies
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246 Code availability
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A Fisher test used on pseudo-bulk data
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Supplementary Figure 1: Illustration of where different differential methylation testing methods draw their power. A) In
attempting to analyze Nanopolish methylation calls with tools developed for bulk bisulfite sequencing data, we create
pseudo-bulk data. Tests generated for pseudo-bulk comparison (such as MethCP which we evaluated in this work) test
based on CpG-level methylation rates and coverage across all reads and therefore draw power from the segment size and
read depth. Furthermore, since Nanopolish generates grouped calls for nearby CpG-sites, some calls are therefore not
independent and thus artificially generate more testing power. B) PycoMeth with the parameter "—hypothesis 1lr_diff"
performs the less conservative test, implemented in the PycoMeth package, where each individual methylation call is
treated as independent and samples are compared based on their LLR distribution. Here discovery power is determined
also by a combination of segment length and sequencing depth. C) PycoMeth with the parameter "—hypothesis bs_diff"
instead computes a methylation rate per read per segment and draws power only from the independent information
(sequencing depth).
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